
Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

ISSN: 0025-5742

THE

MATHEMATICS

STUDENT
Volume 83, Numbers 1 - 4, (2014)

Edited by

J. R. PATADIA

(Issued: July, 2014)

PUBLISHED BY
THE INDIAN MATHEMATICAL SOCIETY

www.indianmathsociety.org.in



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

THE MATHEMATICS STUDENT

Edited by J. R. PATADIA

In keeping with the current periodical policy, THE MATHEMATICS STUDENT
will seek to publish material of interest not just to mathematicians with specialized
interest but to the postgraduate students and teachers of mathematics in India.
With this in view, it will ordinarily publish material of the following type:

1. the texts of Presidential Addresses, the Plenary talks and the Award Lectures
delivered at the Annual Conferences.

2. the abstracts of the research papers presented at the Annual Conferences.
3. the texts of certain invited talks delivered at the Annual Conferences.
4. research papers, and
5. the Proceedings of the Society’s Annual Conferences, Expository and Popular

articles, Book Reviews, Reports of IMS Sponsored lectures, etc.

Expository articles and research papers are invited for publication in THE MATH-
EMATICS STUDENT. Manuscripts intended for publication should be submitted
online in the LATEX and .pdf file including figures and tables to the Editor J. R.
Patadia on E-mail: jamanadaspat@gmail.com.

Manuscripts (including bibliographies, tables, etc.) should be typed double spaced
on A4 size white paper with 1 inch (2.5 cm.) margins on all sides with font size
11 pt., preferably in LATEX. Sections should appear in the following order: Title
Page, Abstract, Text, Notes and References. Comments or replies to previously
published articles should also follow this format with the exception of abstracts.
In LATEX, the following preamble be used as is required by the Press:

\ documentclass[10 pt]amsart
\ usepackage amsfonts, amssymb, amscd, amsmath, enumerate, verbatim, calc
\ renewcommand1.11.2
\ textwidth=12 cm
\ textheight=20 cm
\ topmargin=0.5 cm
\ oddsidemargin=1.5 cm
\ evensidemargin=1.5 cm
\ pagestyle{plain}

The details are available on Indian Mathematical Society website: www.indianmath
society.org.in

Authors of articles / research papers printed in the the Mathematics Student
as well as in the Journal shall be entitled to receive a soft copy (PDF file with
watermarked “Author’s copy”) of the paper published. There are no page charges.
However, if author(s) (whose paper is accepted for publication in any of the IMS
periodicals) is (are) unable to send the LaTeX file of the accepted paper, then a
charge Rs. 100 (US $ 10) per page will be levied for LaTex typesetting charges.

All business correspondence should be addressed to S. K. Nimbhorkar, Treasurer,
Indian Mathematical Society, Dept. of Mathematics, Dr. B. A. M. University,
Aurangabad - 431 004 (Maharashtra), India. E-mail: sknimbhorkar@gmail.com

Copyright of the published articles lies with the Indian Mathematical Society.

In case of any query, the Editor may be contacted.



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

ISSN: 0025-5742

THE

MATHEMATICS

STUDENT
Volume 83, Numbers 1 - 4, (2014)

Edited by

J. R. PATADIA

(Issued: July, 2014)

PUBLISHED BY
THE INDIAN MATHEMATICAL SOCIETY

www.indianmathsociety.org.in



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

ii

c© THE INDIAN MATHEMATICAL SOCIETY, 2014.

This volume or any part thereof may not be
reproduced in any form without the written
permission of the publisher.

This volume is not to be sold outside the
Country to which it is consigned by the
Indian Mathematical Society.

Member’s copy is strictly for personal use. It
is not intended for sale or circular.

Published by Prof. N. K. Thakare for the Indian Mathematical Society,
type set by Balwant Mahajan at “Akshay”, 215, Samarthnagar,
Aurangabad - 431001 and printed by Dinesh Barve at Parashuram Pro-
cess, Shed No. 1246/3, S. No. 129/5/2, Dalviwadi Road, Barangani Mala,
Wadgaon Dhayari, Pune 411 041 (India). Printed in India.



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

The Mathematics Student ISSN: 0025-5742

Vol. 83, Nos. 1 - 4, (2014), 01 - 04

THE UNIVERSAL APPEAL OF MATHEMATICS*

GEETHA S. RAO

Mathematics is the Queen of all Sciences, the King of all Arts and the Master

of all that is being surveyed. Such is the immaculate and immense potential of

this all-pervasive, fascinating subject, that it transcends all geographical barriers,

territorial domains and racial prejudices.

The four pillars that support the growth, development, flowering and fruition of

this ever - green subject are analytic thinking, logical reasoning, critical reviewing

and decision making.

Every situation in real life can be modeled and simulated in mathematical lan-

guage. So much so, every human must be empowered with at least a smattering

of mathematical knowledge. Indeed, the field of Artificial Intelligence is one where

these concepts are implemented and imparted to the digital computers of today.

From times immemorial, people knew how to count and could trade using the

barter system. Those who could join primary schools learnt the fundamental

arithmetic and algebraic rules. Upon entry into high school and higher secondary

classes, the acquaintance with the various branches of this exciting subject com-

mences. It is at this point that effective communication skills of the teacher impact

the comprehension and conceptual understanding of the students.

Unfortunately, if the teacher is unsure of the methods and rules involved, then

begins a dislike of the subject by the students being taught. To prevent a carcino-

genic spread of this dislike, the teacher ought to be suitably oriented and know

precisely how to captivate the imagination of the students. If this is the case,

the students enjoy the learning process and even start loving the subject, making

them eagerly await the Mathematics classes, with bated breath!

* The text of the Presidential Address (general) delivered at the 79th Annual Conference of the

Indian Mathematical Society held at Rajagiri School of Engineering and Technology, Rajagiri

Valley, Kakkanad, Dist. Ernakulam, Cochin - 682 039, Kerala, during the period December 28 -

31, 2013.

c© Indian Mathematical Society, 2014 .
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2 GEETHA S. RAO

Acquiring necessary knowledge of algebraic operations, permutations and combi-

nations, rudiments of probabilistic methods, persuasive ideas from differential and

integral calculus and modern set theory will strengthen the bonds of mathematical

wisdom.

From that stage, when one enters the portals of university education, general

or technical, the opportunity to expand one’s horizon of mathematical initiation

is stupendous. Besides, the effective use of Mathematics in Aeronautical, Agri-

cultural, Biological, Chemical, Geographical and Physical Sciences, Engineering,

Medicine, Meteorology, Robotics, Social Sciences and other branches of knowledge

is indeed mind boggling.

Armed with this mathematical arsenal, the choice of a suitable career becomes very

diverse. No two humans need to see eye-to-eye as far as such a choice is concerned,

as the variety is staggering! So, it is crystal clear that studying Mathematics, at

every level, is not only meaningful and worthwhile but absolutely essential.

A natural mathematical genius like Srinivasa Ramanujan was and continues to

be an enigma,and a Swayambhu, who could dream of extraordinary mathematical

formulae, without any formal training.

A formally trained mathematician is capable of achieving laudable goals and im-

minent success in everything that he chooses to learn and if possible, discover for

himself, the eternal truths of mathematics, provided he pursues the subject with

imagination, passion, vigour and zeal.

Nothing can be so overwhelming as a long standing problem affording a unique

solution, by the creation of new tools, providing immense pleasure, a sense of

reward and tremendous excitement in the voyage of discovery.

These flights of imagination and intuition form the core of research activities.

With the advent of the computers, numerical algorithms gained in currency and

greater precision, enabling the mathematical techniques to grow rapidly, by leaps

and bounds!

Until the enunciation of the Uncertainty Principle of W. Heisenberg, in 1932,

mathematics meant definite rules of certainty. One may venture to say that per-

haps this is the origin of Fuzziness. L. A. Zadeh wrote a seminal paper, entitled

Fuzzy sets, Information and Control, 8 (1965), 328-353. He must be considered

a remarkable pioneer who invented the subject of fuzzy mathematics, which is an

amalgam of mathematical rules and methods of probability put together to define

domains of fuzziness.

Fuzzy means frayed, fluffy, blurred, or indistinct. On a cold wintry day, haziness

is seen around dawn, and a person or an object at a distance, viewed through the
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THE UNIVERSAL APPEAL OF MATHEMATICS 3

mist, will appear hazy. This is a visual representation of fuzziness. The input

variables in a fuzzy control system are mapped into sets of membership functions

known as fuzzy sets. The process of converting a crisp input value to a fuzzy value

is called fuzzification.

A control system may also have various types of switches or on-off inputs along

with its analog inputs, and such switch inputs will have a truth value equal to

either 0 or 1.

Given mappings of input variables into membership functions and truth values, the

micro-controller makes decisions concerning what action should be taken, based

on a set of rules. Fuzzy concepts are those that cannot be expressed as true or

false, but rather as partially true!

Fuzzy logic is involved in approximating rather than precisely determining the

value. Traditional control systems are based on mathematical models in which

one or more differential equations that define the system’s response to the inputs

will be used. In many cases, the mathematical model of the control process may

not exist, or may be too expensive, in terms of computer processing power and

memory, and a system based on empirical rules may be more effective.

Furthermore, fuzzy logic is more suited to low-cost implementation based on inex-

pensive sensors, low resolution analog-to-digital converters and 4-bit or 8-bit micro-

controller chips. Such systems can be easily upgraded by adding new rules/novel

features to improve performance. In many cases, fuzzy control can be used to

enhance the power of existing systems by adding an extra layer of intelligence to

the current control system. In practice, there are several different ways to define

a rule, but the most simple one employed is the max-min inference method, in

which the output membership function is given the truth value generated by the

underlying premise. It is important to note that rules involved in hardware are

parallel, while in software they are sequential.

In 1985, interest in fuzzy systems was sparked by the Hitachi company in Japan,

whose experts demonstrated the superiority of fuzzy control systems for trains.

These ideas were quickly adopted and fuzzy systems were used to control accel-

erating, braking and stoppage of electric trains, which led to the historic intro-

duction, in 1987, of the bullet train, with a speed of 200 miles per hour, between

Tokyo and Sendai.

During an international conference of fuzzy researchers in Tokyo, in 1987, T. Ya-

makawa explained the use of fuzzy control, through a set of simple dedicated fuzzy
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4 GEETHA S. RAO

logic chips, in an inverted pendulum experiment. The Japanese soon became in-

fatuated with fuzzy systems and implemented these methods in a wide range of

astonishing commercial and industrial applications.

In 1988, the vacuum cleaners of Matsushita used micro-controllers running fuzzy

algorithms to interrogate dust sensors and adjust suction power accordingly. The

Hitachi washing machines used fuzzy controllers to load-weight, fabric-mix and

dirt sensors and automatically set the wash cycle for the optimum use of power,

water and detergent.

The renowned Canon camera company developed an auto-focusing camera that

uses a charge coupled device to measure the clarity of the image in six regions

of its field of view and use the information provided to determine if the image is

in focus. It also tracks the rate of change of lens movement during focusing and

controls its speed to prevent overshoot.

Work on fuzzy systems is also being done in USA, Europe, China and India. NASA

in USA has studied fuzzy control for automated space docking, as simulation

showed that a fuzzy control system can greatly reduce fuel consumption. Firms

such as Boeing, General Motors, Allen-Bradley, Chrysler, Eaton and Whirlpool

have used fuzzy logic to improve on automotive transmissions, energy efficient

electric motors, low power refrigerators, etc.

Researchers are concentrating on many applications of fuzzy control systems, have

developed fuzzy expert systems and have integrated fuzzy logic, neural networks

and adaptive genetic software systems, with the ultimate goal of building self-

learning fuzzy control systems.

This, in my opinion, is sufficient reason to induce you to start learning mathemat-

ics!

Geetha S. Rao.

(Ex Professor), Ramanujan Institute for Advanced Study in Mathematics, Uni-

versity of Madras,

Chepauk, Chennai 600 005.

E-mail : geetha srao@yahoo.com
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A NEW TOOL IN APPROXIMATION THEORY*

GEETHA S. RAO

Abstract. The concept of ‘best coapproximation’ is introduced. The prop-

erties of the cometric projection are discussed. The effectiveness of this tool

is studied in detail. Connections between bases and best coapproximation in

Banach spaces are pointed out.

1. Best coapproximation in a normed linear space

In 1970, I. Singer wrote a treatise on best approximation in normed linear

spaces. C. Franchetti and M. Furi (1972) introduced an inequality while charac-

terizing real Hilbert spaces among real reflexive Banach spaces. P.L. Papini and

I. Singer (1979) introduced the definition of ‘best coapproximation’, which is a

new tool in Approximation Theory. Let X be a real normed linear space and G a

nonempty subset of X .

Definition 1.1. An element g0 ∈ G is called an element of best coapproximation

(resp. best approximation) of x ∈ X by the elements of G if

‖g0 − g‖ ≤ ‖x− g‖, for every g ∈ G

(resp. ‖x− g0‖ ≤ ‖x− g‖, for every g ∈ G)

.
Notation. The set of all the best coapproximations (respectively, best approxi-

mations) of x ∈ X by the elements of G is denoted by RG(x) (PG(x)).

Definition 1.2. The set-valued map RG, defined on D(RG), by x → RG(x) is

called the cometric projection of X onto G.

Definition 1.3. The set-valued map PG, defined on D(PG), by x → PG(x) is

called the metric projection of X onto G.

* The text of the Presidential Address (technical) delivered at the 79th Annual Conference of

the Indian Mathematical Society held at Rajagiri School of Engineering and Technology, Raja-

giri Valley, Kakkanad, Dist. Ernakulam, Cochin - 682 039, Kerala, during the period December

28 - 31, 2013.

c© Indian Mathematical Society, 2014 .
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6 GEETHA S. RAO

Some properties of RG(x) and RG

(1) G is contained in D(RG) and RG(x) = {x}, if x ∈ G.

(2) If G is closed, RG(x) is closed.

(3) If G is convex, RG(x) is convex.

(4) If x ∈ D(RG), RG(x) is bounded.

(5) If g0 ∈ RG(x), then g0 ∈ RG(tx+ (1 − t)g0), t ≥ 1.

(6) If 0 ∈ G or if G is a linear subspace of X , then ‖g0‖ ≤ ‖x‖, g0 ∈ RG(x).

(7) If g0 ∈ RG(x), then ‖x− g0‖ ≤ 2‖x− g‖, g ∈ G.

(8) If G′ is a linear subspace of X such that G ⊂ G′, then RG(RG′(x)) ⊂

RG(x), x ∈ X .

(9) If x ∈ D(RG), then RG(RG(x)) = RG(x).

(10) If x ∈ D(RG) and g ∈ G, then x+g ∈ D(RG) and RG(x+g) = RG(x)+g,

i.e., RG is quasi-additive.

(11) If x ∈ D(RG) and α ∈ R then αx ∈ D(RG) and RG(αx) = αRG(x), i.e.,

RG is homogeneous.

2. The Gateaux derivative or the tangent functional

Definition 2.1. The right-hand Gateaux derivative or tangent functional of a

pair of elements x, y ∈ X , denoted by τ(x, y), is defined by

τ(x, y) = lim
t→0+

||x+ ty|| − ||x||

t
.

Remarks.

(1) This limit exists always.

(2) The functional τ(x, y) is increasing with t and −τ(x,−y) ≤ τ(x, y). Equal-

ity holds for every pair x, y when X is a smooth Banach space.

Orthogonal retract map

Definition 2.2. Let G be a linear subspace of X and x ∈ X . An element g0 ∈ G

is an orthogonal retract to X from G if τ(g0 − g, x− g0) ≥ 0, for every g ∈ G.

The set of all orthogonal retracts from G is denoted by R′
G(x) and the map

R′
G : x → R′

G(x)

is called the orthogonal retract map.

3. Orthogonality in a normed linear space

Definition 3.1 (G.D. Birkhoff, 1935). Let G be a linear subspace of a real normed

linear space X and let x, y ∈ X . Then x is orthogonal to y, written as x ⊥ y, if

‖x+ αy‖ ≥ ‖x‖, for every α ∈ R.
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Further, x ⊥ G, if x ⊥ g, for every g ∈ G, and G ⊥ x, if g ⊥ x, for every

g ∈ G.

Remarks.

(1) g0 ∈ RG(x) if and only if G ⊥ (x− g0).

(2) g0 ∈ PG(x) if and only if (x− g0) ⊥ G.

(3) RG(x) = PG(x) in inner product spaces and Hilbert spaces.

(4) In an arbitrary normed linear space RG(x) 6= PG(x), in general.

Some special nomenclature

Let X be a real normed linear space and G a linear subspace of X .

Definition 3.2. G is a proximinal (resp. semi-Chebyshev or Chebyshev) subspace

of X if RG(x) contains at least (resp. at most or exactly one) element.

4. Continuity of RG

P.L. Papini and I. Singer (1979), GSR and K. R. Chandrasekaran (1986)and

GSR and S. Muthukuamr (1987) proved results concerning the continuity of RG.

Definition 4.1. A set G in X is boundedly compact if every bounded sequence

in G has a convergent subsequence.

The following are true:

(1) If G is a finite-dimensional Chebyshev subspace of X , then RG is contin-

uous on X .

(2) If G is a Chebyshev set in X , then RG is continuous on G.

(3) If for some fixed α, xn ∈ Rα(x) and xn → x, then RG(xn) → RG(x),

where for α ≥ 0, we define

Rα(x) = {y ∈ X : ‖RG(x− y)− (RG(x) −RG(y))‖ ≤ α‖x− y‖}.

(4) If for some fixed α, Rα(x) contains a neighbourhood of x, then RG is

continuous at x.

(5) If R−1

G (0) +R−1

G (0) ⊂ R−1

G (0), then RG is continuous.

(6) If G is also a hyperplane, then RG is continuous.

(7) If RG is continuous at the points of R−1

G (0), then RG is continuous.

(8) If G is closed and R−1

G (0) is boundedly compact, then RG is continuous.

5. Semicontinuity of RG

Definition 5.1 (I. Singer). Let X,Y be real normed linear spaces. Let 2Y denote

the collection of all bounded closed subsets of Y . A mapping u : X → 2Y is said

to be
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(1) upper semicontinuous (resp. lower semicontinuous) if the set {x ∈ X :

u(x) ∩N 6= ∅} is closed for every closed set N ⊂ Y (resp. open for every

open set N ⊂ Y ).

(2) upper (K) semicontinuous (resp. lower (K) semicontinuous) if the rela-

tions limn→∞ xn = 0, yn ∈ u(xn), (n = 1, 2, · · · ), limn→∞ yn = y imply

that y ∈ u(x) (respectively, if the relations limn→∞ xn = x, y ∈ u(x)

imply the existence of a sequence {yn} with yn ∈ u(xn), n = 1, 2, · · · , such

that limn→∞ yn = y.

6. Radial continuity of RG and R′
G

W. Pollard, Diplomarbeit, University of Bonn, 1967, introduced the concept

of radial continuity of a set-valued operator. This involves the restriction of the

concerned set-valued maps to certain prescribed line segments to be upper semi-

continuous or lower semicontinuous.

Definition 6.1 ((GSR and K.R. Chandrasekaran, 1981). Let G be a non-empty

set in X and x0 ∈ X . RG is said to be

(1) outer radially lower (ORL) continuous at x0 if for each g0 ∈ RG(x0) and

each open set W with W ∩RG(x0) 6= ∅, there exists a neighbourhood U

of x0 such that RG(x)∩W 6= ∅ for every x ∈ U ∩{g0+α(x− g0) : α ≥ 1}.

RG is ORL continuous if it is ORL continuous at each point.

(2) RG is Inner Radially Lower (IRL) continuous at xn if for each g0 ∈ RG(x0)

and each open set W with W ∩RG(x0) 6= ∅, there exists a neighbourhood

U of xn such that RG(x) ∩W 6= ∅ for for every x ∈ U ∩ {g0 + α(x − g0) :

0 ≤ α ≤ 1}. RG is IRL continuous if it is IRL continuous at each point.

(3) RG is Outer Radially Upper (ORU) continuous at xn if for each g0 ∈

RG(x0) and each open set W ⊃ RG(x0), there exists a neighbourhood U

of xn such that W ⊃ RG(x) for every x ∈ U ∩ {g+0+α(x0 − g0 : α ≥ 1}.

RG is ORU continuous if it is ORU continuous at each point.

(4) RG is inner radially upper (IRU) continuous at x0 if for each g0 ∈ RG(x0)

and each open set W with W ⊃ RG(x0) 6= ∅, there exists a neighbourhood

U of x0 such that W ⊃ RG(x) 6= ∅ for every x ∈ U ∩ {g0 +α(x− g0) : 0 ≤

α ≤ 1}. RG is IRU continuous if it is ORU continuous at each point.

Some Results (GSR and K.R. Chandrasekaran)

(1) If G is a non-empty subset of X then RG is ORL continuous and IRU

continuous.

(2) Let G be a non-empty subset of X, x0 ∈ X . If ‖x0 − βg0 − (1 − β)g1‖ =

dist (x0, G), for all g0, g1 ∈ PG(x0) and β ≥ 1, then PG is IRL continuous

at x0.
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(3) Let x0 ∈ X . Let G be a non-empty subset of X such that

βg + (1 − β)g0 ∈ G for all β ≥ 1, g ∈ G and g0 ∈ R′
G(x0). If R′

G(x0)

is such that αg0 + (1− α)g1 ∈ R′
G(x0) for all α ≥ 1, g0, g1 ∈ R′

G(x0), then

R′
G is IRL continuous at x0.

(4) If G is a convex subset of X then R′
G is ORL continuous.

(5) Let G be a boundedly compact closed subset of X such that R′
G(x) 6= ∅,

for every x ∈ X . Then R′
G is upper semicontinuous.

7. Metric projection bound, MPB(X) and Cometric projection bound,

CMPB(X)

M. A. Smith (1981) introduced the notion of metric projection bound of a

real normed linear space X and proved that 1 ≤ MPB(X) ≤ 2. GSR and K. R.

Chandrasekaran (1986) introduced the notion of cometric projection bound of X ,

as follows:

Definition 7.1. The cometric projection bound of X , denoted by CMPB(X), is

defined by

CMPB(X) = sup{‖RG‖ : G is a closed proximinal subspace of X},

where ‖RG‖ = sup {‖y‖ : y ∈ RG(x), ‖x‖ ≤ 1}.

Remark 7.1. RG = PG for every subspace G of X if and only if MPB(X) = 1.

8. Linear selections for RG

GSR and K.R. Chandrasekaran (1986): Let G be a proximinal subspace of a real

normed linear space X .

Definition 8.1. A selection for RG is a function s : X → G such that s(x) ∈

RG(x), for every x ∈ X .

A linear (resp. continuous) selection for RG is a selection which is also linear

(resp. continuous).

Theorem 8.1. Let G be a Chebyshev subspace of X. The following statements

are equivalent:

(1) RG is linear.

(2) R−1

G (0) is a subspace of X.

(3) R−1

G (0) contains a subspace H of X such that X = G⊕H.

(4) RG is quasi-linear, i.e. there exists a constant K such that

‖RG(x+ y)‖ ≤ K(‖RG(x)‖ + ‖RG(y)‖).

Theorem 8.2. Let G be a proximinal subspace of X which is also a hyperplane.

Then RG admits a linear selection.
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Remark 8.1.

(1) If RG admits a linear selection then RG admits a continuous selection.

(2) RG admits a linear selection if and only if R−1

G (0) contains a closed sub-

space H of X such that X = G⊕H .

(3) Following H. K. Hsiao and R. Smarzewski (1995), GSR and R. Saravanan

proved that every selection for RG is a sunny selection, i.e., s(fα) = s(f),

for all f ∈ X,α ≥ 0 and fα = αf + (1− α) s(f).

9. Modulus of continuity of RG

Let X be a real normed linear space. Let A,B be nonempty subsets of X .

Definition 9.1. The deviation of A from B, denoted by δ(A,B), is defined by

δ(A,B) = sup
x∈A

inf
y∈B

‖x− y‖ = sup
x∈A

dist(x,B)

Following G. Godini (1981), GSR and K.R. Chandrasekaran defined :

Definition 9.2. Let G be a linear subspace of X . Let x ∈ D(RG), ε ≥ 0. The

modulus of continuity of RG is defined by

wG(x,∈) = δ(RG(B(x, ε)), RG(x)).

Results concerning modulus of continuity of RG

(1) As RG(x) ⊂ RG(B(x, ε)), whenever RG(x) is not empty, RG(B(x, ε)) is

not empty.

(2) wG(x, 0) = 0, wG(x, ε1) ≤ wG(x, ε2), ε1 ≤ ε2.

(3) If x ∈ D(RG), ε ≥ 0, then wG(x + g, ε) = wG(x, ε), t ∈ R.

(4) wG(x+ g, ε) = wG(x, ε), g ∈ G.

(5) ε ≤ wG(x, ε) ≤ ε+ 2‖x‖.

Cases where equality holds

(6) If G is a proximinal subspace of X which is also a hyperplane, then

wG(x, ε) = ε.

(7) If R−1

G (0) is a subspace of X , then wG(x, ε) = ε.

(8) If X is a real inner product space, G is a linear subspace of X and x

εD(RG), then wG(x, ε) = ε.

10. Lipschitz and uniform Lipschitz conditions

Let G be a linear subspace of a real normed linear space X .

Definition 10.1. Let x ∈ D(RG). RG satisfies a Lipschitz condition at x if there

is a constant C, depending on x and G, such that

δ(RG(y), RG(x)) ≤ C‖x− y‖, forally ∈ D(RG).
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Each real number C satisfying the inequality is called a Lipschitz constant for RG

at x. RG satisfies a uniform Lipschitz condition on M ⊂ D(RG) if there exists a

constant C, depending on M and G, which is a Lipschitz constant for RG at each

x ∈ M .

Theorem 10.1. Let G be a linear subspace of a real normed linear space X. Then

RG satisfies a Lipschitz condition at x ∈ D(RG) if and only if

sup
t>0

wG(tx, 1) < ∞.

Remarks.

(1) If x ∈ D(RG) and supt>0 wG(tx, 1) < ∞, then supt>0 wG (tx, 1) is the

smallest Lipschitz constant for RG at x.

(2) If G is a Chebyshev subspace of X and for x ∈ X , there exist constants

C > 0, δ > 0 such that

‖RG(y)−RG(x)‖ ≤ C‖x− y‖

whenever y ∈ X and ‖x− y‖ < δ, then for all y ∈ X

‖RG(y)−RG(x)‖ ≤ max(C, 1 + 2(| x‖δ)‖x− y‖)

.(3) If RG satisfies a Lipschitz condition at every point x ∈ S(0, 1) ∩ R−1

G (0),

then RG satisfies a Lipschitz condition at every point y ∈ D(RG).

Definition 10.2. Let G be a linear subspace of a real normed linear space X and

M ⊂ D(RG). The modulus of upper (H) semicontinuity of RG on M, denoted by

wG(M ; ε), is defined by

wG(M ; ε) = supwG(x; ε) : x ∈ M, ε > 0.

Remark. When M = D(RG), wG(M ; ε) = wG(D(RG); ε) is denoted by wG(ε).

When is wG(M ; ε) finite?

(1) When M\G is a bounded subset of X .

(2) When X is an inner product space.

(3) Let Gb = {x ∈ X : dist(x,G) ≤ b}, b > 0. Let M = Gb ∩ D(RG). Then

wG(M ; ε) is finite, for each ε > 0.

(4) If M is a cone with vertex at the origin and M ⊂ D(RG), then for each

ε > 0, wG(M ; ε) = εwG(M ; 1).

Theorem 10.2. Let G be a linear subspace of a real normed linear space X. Then

RG satisfies a uniform Lipschitz condition on D(RG) if and only if wG(1) < ∞.

Further, RG satisfies a uniform Lipschitz condition on D(RG) if and only if there

exist b, r > 0 such that RG(y) ∩ B(0; r) 6= ∅ for every y ∈ (R−1

G (0)b) ∩ D(RG),

where y ∈ R−1

G (0)b implies that dist(y,R−1

G (0)) ≤ b.
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11. Two fixed point theorems.

Theorem 11.1. Let G be a proximinal subspace of X such that

G = G1 ⊕G2,

where G1, G2 are proximinal subspaces of X with

R−1

G1
(0) ∩R−1

G2
(0) = R−1

G (0).

If Tx : x → G1, x ∈ X and Tx(y) = RG1
(x − RG2

(x − y)), y ∈ X, then Tx has a

unique fixed point.

Theorem 11.2. Let G be a nonempty subset of X such that R′
G(y) 6= ∅, for

every y ∈ X. Let x ∈ X\0 be such that R′
G(x) is a singleton. For r > 0, let the

many-valued mapping fx,r : X → 2X be defined by

z → x+
r

r + ‖x−R′
G(x)‖

(z −R′
G(z))

z ∈ X. The following statements are equivalent :

(1) z ∈ X is a fixed point of fx,r.

(2) ‖z−x‖ = r and there exists y ∈ R′
G(z) such that x ∈ (z, y) = {tz+(1−t)y :

0 ≤ t ≤ 1.}

12. Strong best approximation and strong best coapproximation

M. W. Bartelt and H. W. McLaughlin (1973) studied the problem of strong

best approximation. P. L. Papini (1978) introduced strong approximation via tan-

gent functionals. G. Nuernberger (1979) obtained some special results concerning

unicity and strong unicity for best approximation.

Definition 12.1. Let G be a subset of a normed linear space X, f ∈ X\G and

gf ∈ G. Then gf is called a strongly unique best approximation to f from G, if

there exists a constant kf > 0 such that for all g ∈ G,

‖f − gf‖ ≤ ‖f − g‖ − kf‖g − gf‖. (12.1)

gf is called a strongly unique best coapproximation to f from G, if there exists a

constant kf > 0 such that for all g ∈ G

‖g − gf‖ ≤ ‖f − g‖ − kf‖f − gf‖. (12.2)

GSR and R. Saravanan (2003) list the following results:

(1) It is clear that if some kf > 0 satisfies (1) (resp. (1’)), then every smaller

value of kf > 0 will also satisfy (1) (resp. (1’)). The maximum of all such

numbers kf > 0 is called the strong unicity constant of f and is denoted

by K(f).
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(2) Obviously, every strongly unique best approximation is a unique best ap-

proximation. But a strongly unique best coapproximation need not imply

the uniqueness.

(3) It is clear that gf is a strongly unique best coapproximation to f from G

with the corresponding, strong unicity constant equal to 1 if and only if

gf is a strongly unique best approximation to f from G with the corre-

sponding strong unicity constant equal to 1. Thus, the strongly unique

best coapproximation implies the uniqueness if the corresponding strong

unicity constant is equal to 1.

(4) In contrast to best coapproxiation, the strongly unique best coapproxi-

mation does not coincide with the strongly unique best approximation

in inner product spaces. However, in such spaces, every strongly unique

bestcoapproximation is unique.

13. Two important estimates

Theorem 13.1. Let G be a finite dimensional subspace of X and L : X ⇒ G be

a projection with ‖L‖ < 1. Let f ∈ X\G and gf ∈ G be a best coapproximation to

f . Then

‖g − gf‖ ≤
‖f − L(f)‖

1− ‖L‖
.

Theorem 13.2. Let G be a subset of X. Let f1, f2 ∈ X\G, gf1 ∈ RG(f1), gf2 ∈

RG(f2), g1 ∈ PG(f1) and g2 ∈ PG(f2). Then

max{
1

2
‖f1 − gf1‖,

1

2
{‖gf1 − gf2‖ − ‖f1 − f2‖} ≤ ‖f1 − g1‖ (13.1)

and

max{
1

2
‖f2 − gf2‖,

1

2
{‖gf1 − gf2‖ − ‖f1 − f2‖} ≤ ‖f2 − g2‖. (13.2)

14. Kolmogorov criterion for best uniform coapproximation

GSR and R. Saravanan (1999, 2002) established the following results concern-

ing the Kolmogorov criterion :

For all functions f ∈ C[a, b], the uniform norm is defined by

‖f‖ = sup
t∈[a,b]

|f(t)|.

Best coapproximation with respect to this norm is called best uniform coapproxi-

mation.

Definition 14.1. The set E(f) of extreme points of a function f ∈ C[a, b] is

defined by

E(f) = {t ∈ [a, b] : |f(t)| = ‖f‖∞}.
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Theorem 14.1. Let G be a subset of C[a, b] such that αg ∈ G, for all g ∈ G and

α ∈ [0,∞). Let f ∈ C[a, b]\G and gf ∈ G. The following are equivalent :

(i) The function gf is a best uniform coapproximation to f from G.

(ii) For every function g ∈ G,

min
t∈E(g−gf )

(f(t)− gf (t))/(g(t)− gf (t)) ≤ 0.

If, in addition, gf is a unique best uniform coapproximation to f from G, then

for every function g ∈ G\gf and every set U containing E(g − gf),

inf
t∈G

(f(t)− gf(t))(g(t) − gf (t)) ≤ 0.

Remark 14.1. Let G be a subset of C[a, b], f ∈ C[a, b]\G and gf ∈ G be a best

uniform coapproximation to f from G. It is known that for every g ∈ G,

‖f − gf‖∞ ≤ 2‖f − g‖∞.

However, if G is a Chebyshev subspace, then a lower bound for ‖f − gf‖∞ can be

obtained in the following way:

Theorem 14.2. Let G be an n-dimensional Chebyshev subspace of C[a, b], f ∈

C[a, b]\G and gf ∈ G. If gf is a best uniform coapproximation but not a best

uniform approximation to f from G, then there exists a non-trivial function g ∈ G

such that

‖g‖ ≤ ‖f − gf‖∞.

Following the technique of G. Nuernberger (1989) let Sn(x1, · · · , xk) denote

the space of polynomial splines of degree n with k fixed knots x1, · · · , xk.

Theorem 14.3. Let G = Sn(x1, · · · , xk) ⊂ C[a, b], f ∈ C[a, b]\G and gf ∈ G. If

gf is a best uniform coapproximation but a best uniform approximation to f from

G, then there exists a non-trivial spline g ∈ G such that

‖g‖∞ ≤ ‖f − gf‖∞.

A relation between interpolation and best uniform coapproximation can be

obtained.

Theorem 14.4. Let G be an n-dimensional Chebyshev subspace of C[a, b], f ∈

C[a, b]\G and gf ∈ G. If gf is a best uniform coapproximation to f from G then

gf interpolates f at at least n points of [a, b).

An upper bound for the error ‖f − gf‖∞ under some conditions:

Theorem 14.5. Let G be a space of polynomials of degree n defined on [a, b] and

f ∈ Cn[a, b]\G. If gf ∈ G is a best uniform coapproximation to f from G, then

‖f − gf‖ ∈
1

n!
‖f (n)‖∞‖w‖∞,
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where w(x) = (x− x1) · · · (x− xn) and x1, · · · , xn are the points in [a, b] at which

gf interpolates f .

Theorem 14.6. Let G be a subspace of C[a, b], f ∈ C[a, b]\G and gf ∈ G be a

best uniform coapproximation to f from G. Then there does not exist a function

in G, which interpolates f − gf at its extremal points.

15. Characterization of best L1- coapproximation

Let f ∈ C[a, b]. The zero set of f is defined by

Z(f) = {t ∈ [a, b] : f(t) = 0}.

Following B. R. Kripke and T. J. Rivlin (1965). GSR and R. Saravanan (1999),

established the following:

Theorem 15.1. Let G be a subspace of C[a, b], f ∈ C[a, b]\G and gf ∈ G. The

following statements are equivalent :

(i) The function gf is a best L1-coapproximation to f from G.

(ii) For every function g ∈ G,

∫ b

a

[f(t)− gf(t)] sgn(g(t))dt ≤

∫
Z(g)

|f(t)− gf (t)| dt.

Theorem 15.2. Let G be a subset of C[a, b], f ∈ C[a, b]\G and gf ∈ G. Then the

function gf is a best L1- coapproximation to f from G if and only if for all g ∈ G,
∫
[a,b]\Z(f−gf )

|g(t)− gf(t)|dt ≤

∫
[a,b]\Z(f−gf )

|f(t)− g(t)|dt.

Theorem 15.3. Let G be a subset of C[a, b], f ∈ C[a, b]\G and gf ∈ G. Then

each of the following statements implies that gf is a best L1-coapproximation to f

from G :

(i) For every function g ∈ G and all t ∈ [a, b],

(f(t)− gf (t)) (gf (t)− g(t)) ≥ 0.

(ii) For every function g ∈ G and all t ∈ [a, b],

g(t)− |f(t)− g(t)| ≤ gf (t) ≤ g(t) + |f(t)− g(t)|.

Remark 15.1. Statement (ii) also implies that

(a) gf is a best L1-approximation to f from G.

(b) gf is a strongly unique best L1-coapproximation and strongly unique best

L1-approximation to f from G.
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Theorem 15.4. Let G be a subset of C[a, b], f ∈ C[a, b]\G and gf ∈ G. If for

every g ∈ G,

(gf (t)− f(t)) ⊥ sgn(gf(t)− g(t)), t ≤ [a, b],

then gf is a best L1-approximation to f from G.

16. Characterization of best one-sided L1-coapproximation

GSR and R. Saravanan (1999). Let G be a subset of C[a, b] and f ∈ C[a, b].

A function gf ∈ G with gf ≤ f is called a best one-sided L1-coapproximation to

f from G if for every g ∈ G with g ≤ f ,

‖g − gf‖1 ≤ ‖f − g‖1.

Example 16.1. Let G ⊂ C[a, b] be defined by

G = {g ∈ C[a, b] : g(t) = 0 for all t ∈ [a, b]}.

Then 0 is a best one-sided L1-coapproximation to every f ∈ C[a, b]\G.

Remarks.

(1) The set of best one-sided L1-coapproximations is a convex set.

(2) Let G be a subset of C[a, b] such that 0 ∈ G and f ∈ C[a, b]\G. If 0 and

gf 6= 0 are best one-sided L1-coapproximation to f from G, then

Z(fα − αgf ) ⊂ Z(gf ), 0 < α < 1.

Furthermore, if f and gf are continuously differentiable then

Z(f ′ − αg′f ) ∩ (Z(f − αgf ) ∩ (a, b)) ⊂ Z(g′f) ∩ (Z(gf) ∩ (a, b)).

17. Best simultaneous coapproximation

Definition 17.1. (GSR and R. Saravanan, 1998). Let G be a subset of a normed

linear space X . An element g0 ∈ G is called a best simultaneous coapproximation

to f ∈ X from G if

‖g − g0‖ ≤ max(‖f − g‖, ‖f − g‖)

for every g ∈ G.
Denote by SG(f, f) the set of all best simultaneous coapproximation to f from G,

for f ∈ X .

Properties.

(i) SG(f, f̃) is closed if G is closed.

(ii) SG(f, f̃) is convex if G is convex.

(iii) SG(f, f̃) is bounded.

(iv) If g0 ∈ SG(f, f̃), then

g0 ∈ SG(α
nf + (1− αn)g0, α

nf̃ + (1 − αn)g0), α ≥ 1, n = 0, 1, 2, · · ·
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(v) If 0 ∈ G or if G is a subspace of X, then ‖g0‖ ≤ max(‖f‖, ‖f̃‖).

(vi) If g0 ∈ SG(f, f̃), then for every g ∈ G,

‖f − g0‖ ≤ 2max(‖f − g‖, ‖f̃ − g‖)

‖f̃ − g0‖ ≤ 2max(‖f − g‖, ‖f̃ − g‖)

(vii) If G is finite dimensional, SG(f, f̃) is compact.

(viii) If f ∈ G and f̃ ∈ X\G, then f ∈ SG(f, f̃). If f, f̃ ∈ G, then αf + (1− α) f̃ ,

0 ≤ α ≤ 1, is a best simultaneous coapproximation to f, f̃ from G. Moreover,

every element in SG(f, f̃) is of the form αf +(1−α). Thus, if f, f̃ ∈ G, then

SG(f, f̃) = αf + (1− α)f̃ : 0 ≤ α ≤ 1

(ix) If G is a subspace of X , f, f̃ ∈ X , then

SG(f + g, f̃ + g) = SG(f, f̃) + g, for all g ∈ G.

SG(αf, αf̃ ) = SG(f, f̃) + g, for allg ∈ ℜ.

(x) If f, f̃ ∈ X\G and g0 ∈ G, then if g0 is a best coapproximation to f from

G, g0 is a best simultaneous coapproximation to f, f̃ from G. The converse

is not true. i.e. if g0 is a best simultaneous coapproximation to f , f̃ ∈

X\G, then g0 need not be a best coapproximation to either f or f̃ . Thus,

RG(f) ∪RG(f̃) ⊂ SG(f, f̃).

(xi) If 0 ≤ α ≤ 1, and g0 is a best simultaneous coapproximation to αf+(1−α)f ,

for some α, then g0 is a best simultaneous coapproximation to f, f̃ from G.

(xii) A Kolmogorov type criterion can also be proved for best simultaneous coap-

proximation

18. Bases in Banach spaces

The idea of introducing the notion of a basis in a finite or infinite dimensional

Banach space was conceived by J. Schauder in 1927.

S. Banach raised the basis problem in 1932 and this problem was solved in the

negative by P. Enflo.

So many genearlizations of the notion of a basis in a Banach Space (even non-

separable) have evolved since then, like Schauder decompositions, Enflo- Rosenthal

sets (1973) and transfinite bases.

Definition 18.1. A sequence {xn} in an infinite dimensional Banach space E is

called a basis of E if for every x ∈ E, there exists a unique sequence of scalars

{αn}∞ ⊂ K, such that

x =

∞∑
i=1

αi xi, i.e. lim
n→∞

‖x−

n∑
i=1

αixi, ‖ = 0.
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Definition 18.2. A system of n elements {xi}
n
i=1 in a Banach space E of dimen-

sion n < ∞ is called a basis of E if it is a basis of the underlying linear space, i.e.,

if for every x ∈ E, there exists a unique system of n scalars {αi}
n
i=1 ⊂ K such that

x =
∑∞

i−1
αixi.

Definition 18.3. Let {xn} be a basis of a Banach space E. The sequence of

linear functionals {fn} defined by fn(x) = αn, where

x =
∞∑
i−1

αixi, n = 1, 2, · · · ,

is called the associated sequence of coefficient functionals.

Schauder basis. (a.s.c.f.) are continuous on E.

J. R. Retherford (1970) and P. K. Jain and K. Ahmad (1980, 1981) connected

Schauder bases and best approximation very effectively.

GSR and M. Swaminathan (1990) did extensive work on characterizing mono-

tone, strictly monotone, comonotone, and strictly comonotone bases by introduc-

ing two spectacular properties (Λ1) and (Λ2).

Orthogonal, strictly orthogonal, coorthogonal, strictly coorthogonal and un-

conditional bases are defined and characterized. Strict polynomial bases are de-

fined and a theorem involving 18 equivalent conditions to characterize these bases

in terms of best coapproximation has been provided.

Normal and strongly normal bases are defined and the bases are characterized

in terms of best coapproximation.
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A: combinatorics, graph theory and discrete

mathematics :

A-1: The diameter variability of the strong product of graphs,

Chithra M.R. and A. Vijayakumar (Cochin: vambat@gmail.com).

The diameter of a graph can be affected by the addition or the deletion

of edges. In this paper we examine the strong product of graphs whose

diameter increases (decreases) by the deletion (addition) of a single edge.

The problems of minimality and maximality of the strong product with

respect to its diameter are also solved. These problems are motivated by

the fact that a good network must be hard to disrupt and the transmissions

must remain connected even if some vertices or edges fail.

A-2: Friendly Index Set of One Point Union of Two Complete

Graphs, Pradeep G. Bhat and Devadas Nayak C (Manipal :

devadasnayakc@yahoo.com).

Let G be a graph with vertex set V (G) and edge set E(G). Consider

the set A = {0, 1}. A labeling f : V (G) → A induces a partial edge labeling

f∗ : E(G) → A defined by f∗(xy) = f(x), if and only if f(x) = f(y), for

each edge xy ∈ E(G). For i ∈ A, let vf (i) = |{v ∈ V (G) : f(v) = i}|

and ef∗(i) = |{e ∈ E(G) : f∗(e) = i}|. A labeling f of a graph G is said

to be friendly if |vf (0) − vf (1)| ≤ 1. The balance index set of a graph G,

denoted by BI(G) is defined as {|ef∗(1) − ef∗(0)| : where f∗ runs over all

friendly labeling f of G}. If the labeling f : V (G) → A induces an edge

labeling f∗ : E(G) → A defined by f∗(xy) = |f(x)− f(y)| for each edge

xy in E(G), then the friendly index set of a graph G, denoted by FI(G)

c© Indian Mathematical Society, 2014 .
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is defined by {|ef∗(1) − ef∗(0)| : where f∗ runs over all friendly labeling f

of G}. In this paper we obtain the relation between balance index set and

friendly index set. Also we obtain friendly index set of one point union of

two complete graphs.

A-3: On The Path Eigenvalues of Graphs, S.C. Patekar (Pune :

2008scpatekar@math.unipune.ac.in).

We introduce the concept of Path Matrix for a graph and explore the

eigenvalues of this matrix. We call these eigenvalues as the path eigen-

values of the graph. Some results concerning path eigenvalues have been

investigated.

A-4: Removal cycles avoiding two connected subgraphs,

Y. M. Borse and B. N. Waphare (Pune : ymborse@math.unipune.ac.in;

ymborse11@gmail.com).

In this paper, we provide a sufficient condition for the existence of a

cycle C in a connected graph G which is edge-disjoint from two connected

subgraphs of G such that G− E(C) is connected.

A-5: A Characterization of n-Connected Matroids,

P.P. Malavadkar (Pune : pmalavadkar@gmail.com).

It is known that if M is n-connected matroid then, its girth and cogirth

is at least n. This condition is necessary but not sufficient. In this paper

we give a necessary and sufficient condition for a (n−1)-connected matroid

to be n-connected.

A-6: On 3-connected es-splitting binary matroids, S.B. Dhotre

(Pune).

The es-splitting operation on a 3-connected matroid need not pre-serve

the 3-connectedness of the matroid. In this paper, we provide a sufficient

condition for a 3-connected binary matroid which yields a

3-connected binary matroid by es-splitting operation. We derive a splitting

lemma for 3-connected matroids from the results obtained in the process.

A-7: Hexagonal array grammar system, Jismy Joseph,

Dersanambika K.S. and Sujathakumari K. (Kerala : jismykjoseph@gmail.

com, dersanapdf@yahoo.com, nksujathakumari@gmail.com).

Cooperating rectangular array grammar system was introduced in 1995

by J.Dassow, R.Freund and G.Paun. The results of the rectangular array
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grammar system either contradict the corresponding result for string gram-

mar system or are not even known for the string grammar system. Mo-

tivated by their work here we introduce hexagonal array grammar system

which is an extension of rectangular array grammar system. Also we in-

vestigate about the generating power of hexagonal array grammar system

and compare different types of hexagonal array grammar system.

B: Algebra, Number Theory and Lattice Theory:

B-1: Multiplicative generalized derivations in semiprime rings,

Asma Ali and Shahoor Khan (Aligarh : asma ali2@rediffmail.com, sha-

hoor.khan@rediffmail.com).

Let R be a semiprime ring and let F, f : R→ R be maps (not necessarily

additive) satisfying F (xy) = F (x)y + xf(y) for all x, y ∈ R. The purpose

of the paper is to study the following identities: (i) F (xy)± [x, y] ∈ Z(R),

(ii) F (xy)± (x◦y) ∈ Z(R), (iii) F (x)F (y)± [x, y] ∈ Z(R), (iv) F (x)F (y)±

(x ◦ y) ∈ Z(R), (v) F ([x, y]) ± [x, y] = 0, (vi) F ([x, y]) ± xy = 0,(vii)

F (x◦y)± (x◦y) = 0, (viii) F (xy) = F (x)F (y) and (ix) F (xy) = F (y)F (x)

for all x, y in some appropriate subset of R.

B-2: Some Results on Derivations on Semirings, R. Vembu (Tamil-

nadu).

In the recent past the concept of derivation on many algebraic struc-

tures were defined and theories were developed to a certain extent on them.

Derivation on semirings, derivations on semi-prime rings and Jordan deriva-

tion on semirings are a few among them. The theory available in the lit-

erature on these derivations contains many conceptual and logical errors.

In this paper we point out some of such errors and correct them. We also

prove some results on derivations on semirings in this paper.

B-3: Special Jacobson radicals for near-rings, Ravi Srinivasa Rao

and K.J. Lakshmi Narayana (Andhra Pradesh).

For a right near-ring R, right R-groups of type-dν are introduced, which

is a class of distributively generated right R-groups, ν ∈ {0, 1, 2}. Using

them the right Jacobson radicals of type-dν , J
r
dν
, are introduced for near-

rings which generalize the Jacobson radical of rings. It is proved that Jr
dν

is a special radical in the class of all near-rings.
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B-4: (α, 1) Derivations on Semirings, S.P. Nirmala Devi and M. Chan-

dramouleeswaran (Tamil Nadu : moulee59@gmail.com,

spnirmala1980@gmail.com).

The notion of a semiring was introduced by H.S. Vandiver in 1934. The

notion of derivations of rings can be naturally extended in semirings. The

theory of derivations on semirings is not well developed as compared to

the theory of derivations on rings due to the absence of additive inverse

and the lack of some important concepts included by commutators. This

motivated Chandramouleeswaran and Thiruveni to discuss in detail the

notion of derivations on semirings in 2010. In 2008, Mustaf Kazaz and

AkinAlkan introduced the notion of two-sided Γ−α− derivations in prime

and semiprime Γ−near-rings. In this paper, we introduce the notion of two

sided α derivation and (α, 1) derivation on a semiring and derive some of

its properties on prime semirings.

B-5: Left Jordan Derivations on Semirings, V. Thiruveni and M.

Chandramouleeswaran (Tamil Nadu : moulee59@gmail.com,

thiriveni2009@gmail.com).

Based on the works on derivations on rings and near rings, in 2010,

we introduced the notion of derivation on semirings. Here, we introduce

the notion of Left Jordan derivation on semirings and the main theorem

of this paper states that the existence of a nonzero Left Jordan derivation

D : S → X forces S to be commutative.

B-6: On Left Derivations on TM-algebras, T. Ganesh Kumar and

M. Chandramouleeswaran (Tamil Nadu : moulee59@gmail.com, ganeshku-

mar.wbc@gmail.com).

It is well known that BCK and BCI-algebras are two classes of algebras

of logic. They were introduced by Imai and Iseki and have been exten-

sively investigated by many researchers. It is known that the class of BCK-

algebras is a proper subclass of the class of BCI-algebras. Recently another

algebra based on propositional calculi was introduced by Tamilarasi and

Mekalai in the year 2010 known as TM-algebras. Motivated by the notion

of derivations on rings and near-rings Jun and Xin studied the notion of

derivation on BCI-algebras. Recently, in 2012 we have introduced the no-

tion of derivation on TM-algebras. In this paper, we introduce the notion

of left derivation on TM-algebras. We study the properties of regular left
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derivations on TM-algebras and prove that the set of all left derivations on

a TM-algebra forms a semi group under a suitable binary composition.

B-7: Level β -subalgebras of β-algebras, M. Abu Ayub Ansari and M.

Chandramouleeswaran (Tamil Nadu : moulee59@gmail.com,

ayubansari61@gmail.com).

In 1966, Y.Imai and K.Iseki introduced two new classes of abstract alge-

bras: BCK-algebras and BCI-algebras. It is known that the class of BCK-

algebras is a proper subclass of the class of BCI-algebras. In 2002, J.Neggers

and H.S.Kim introduced the notion of -algebras. In 2012 Y.H.Kim investi-

gated some properties of -algebras. Lofti A.Zadeh, in 1965 introduced the

theory of fuzzy sets . The study of fuzzy algebraic structures was started

with the introduction of the concept of fuzzy subgroups in 1971, by Rosen-

feld. O.G.Xi applied the concept of fuzzy sets to BCK-algebras and got

some results in 1991. In 1993, Y.B.Jun applied it to BCI-algebras. This

motivated us to study the fuzzy algebraic structures on -algebras. Recently,

we have introduced the notion of fuzzy -subalgebras on -algebras and in-

vestigated some of their properties. In this paper, we introduce the notion

of level -subalgebras of a -algebra and investigate some of their properties.

B-8: Cocentralizing derivations on prime rings, Asma Ali and Farhat

Ali (Aligarh : asma ali2@rediffmail.com, 04farhatamu@gmail.com).

Let R be a ring with center Z(R). An additive mapping f : R → R

is said to be a derivation on R if f(xy) = f(x)y + xf(y), for all x, y ∈ R.

We extend the result of Samman and Thaheem to the case of Lie ideals.

In the present note, we prove that if R is a semiprime ring, L is a non zero

square closed Lie ideal of R such that L * Z(R) and f, g are derivations of

R such that f(x)y + yg(x) = 0 for all x, y ∈ L; if f(L) ⊆ L and g(L) ⊆ L,

then f(u)[x, y] = 0 = [x, y]g(u) for all x, y, u ∈ L and f, g central on L. If

R is a prime ring with charR = 2, then f = g = 0 on R.

B-9: On symmetric generalized biderivations of prime and

semiprime rings, Asma Ali and Khalid Ali Hamdin (Aligarh :

asma ali2@rediffmail.com, hamdinkh@yahoo.com)

Let R be a ring with center Z(R). A biadditive mapping D(., .) :

R × R → R is said to be a biderivation if for all x, y ∈ R, the mappings

y 7→ D(x, y) and x 7→ D(x, y) are derivations of R. A mapping f : R → R

defined by f(x) = D(x, x) for all x ∈ R, is called trace of D. A biadditive
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mapping ∆ : R × R → R is said to be a generalized D-biderivation if

for every x ∈ R, the map y 7→ ∆(x, y) is a generalized derivation of R

associated with the function y 7→ D(x, y) as well as for every y ∈ R, the map

x 7→ ∆(x, y) is a generalized derivation of R associated with the function

x 7→ D(x, y), whereD is a biadditive map on R. In this paper, motivated by

a result of Vukman, we prove that if L is a noncentral square closed Lie ideal

U of a prime ring R admitting a symmetric generalized D-biderivation ∆ is

commuting on U , then ∆ = 0 on U . Moreover, we prove that a nonzero left

ideal L of a 2-torsion free semiprime ring is central if it satisfies one of the

following properties: (i) [x, y] = f(xy)− f(yx), (ii) [x, y] = f(yx)− f(xy),

(iii) xy − D(x, x) = yx − D(y, y), (iv) xy + D(x, x) = yx + D(y, y), (v)

yx −D(x, x) = xy −D(y, y) and (vi) yx+D(x, x) = xy +D(y, y), for all

x, y ∈ L, where f stands for the trace of symmetric biderivation D(., .) :

R×R→ R.

B-10: On classical prime subtractive subsemimodules of quo-

tient semimodule, Jaypraksh Ninu Chaudhari (Jalgaon : jnchaudhari@

rediffmail.com).

In this paper, we obtain the relation between classical prime (weakly

classical prime) subtractive subsemimodules containing a Q-subsemi-

module N of an R-semimodule and classical prime (weakly classical prime)

subtractive subsemimodule of the quotient semimodule M/N(Q).

B-11: On generalization of classical prime subsemimodules, Dipak

Ravindra Bonde (Dharangaon : drbonde@rediffmail.com).

In this paper, the concept of classical prime subsemimodule is general-

ized to weakly classical prime subsemimodules of semimodules over semir-

ings. We prove that, if N is a weakly classical prime subtractive subsemi-

module of a semimodule M over an entire semiring R, then either N is

classical prime or (N :M)(N :M)N = 0.

B-12: Characterization of strong regularly in near-rings, M.K.

Manoranjan (Madhepura : manojmanoranjan.kumar@gmail.com).

In this paper, we shall prove some characterizations of the strong reg-

ularity in near-rings which are closely related with strongly reduced near-

rings. A near-ring R is said to be left regular if for each a ∈ R there exists

x ∈ R such that a = xa2. A near-ring is called strongly left regular if R
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is left regular and regular, similarly we define right regular. A strongly

left regular and strongly right near-ring is called strongly regular near-ring.

Equivalently, left and right regularity implies strong regularity. Also, the

concept of strongly left, strongly right and strong regularities are all equiv-

alent. An idempotent element e ∈ R is called left semi central if ea = eae

for a ∈ R. Similarly, right semi centrality can be defined in a symmetric

way. A near-ring in which every idempotent element is left semi central

is called left semi central. A near-ring R is reduced if R has no non-zero

nilpotent elements. We find that a strongly regular near-ring is reduced

and every strongly reduced near-ring is reduced.

B-13: Ideals In Bisemirings, M.D. Suryawanshi (Dhule :

manoharsuryawanshi65@gmail.com).

In this paper, we introduce the notion of a partitioning biideal in a

bisemiring and hence the quotient structure of bisemiring is defined. Also

we prove that I is the partitioning biideal of a bisemiring R with respect to

two subsets Q and Q′, then the quotient bisemiring
R

lq
and

R

lq
are isomor-

phic.

B-14: Posets dismantlable by doubly irreducibles, A. N. Bhavale

(Pune : ashokbhavale@gmail.com).

Benoit Larose and Lfiszl Zadori introduced the concept of a poset dis-

mantlable by irreducibles. We introduce the concept of a poset dismantlable

by doubly irreducibles. In order to study these posets we introduce the op-

erations of 1-sum and 2-sum for posets. Using these operations, we obtain

the structure theorem for posets dismantlable by doubly irreducibles.

B-15: Some special classes of near-ring modules, Ravi Srinivasa Rao

and K.J. Lakshmi Narayana (Andhra Pradesh : dr rsrao@yahoo.com).

Near-rings considered are right near-rings and R is a near-ring. Re-

cently, special classes of near-ring right modules have been introduced and

studied. Also Characterization of some concrete special radicals of near-

rings in terms of the special classes of near-ring right modules are presented.

In this paper six more classes of near-ring right modules have been studied.

It is shown that they are all special classes.

B-16: On X4
1 +4X4

2 = X8
3 +4X8

4 and Y 4
1 = Y 4

2 +Y 4
3 +4Y 4

4 , Susil Kumar

Jena (Bhubaneswar : susil kumar@yahoo.co.uk).
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The two related diophantine equations: X4
1 + 4X4

2 = X8
3 + 4X8

4 and

Y 4
1 = Y 4

2 + Y 4
3 + 4Y 4

4 , have infinitely many non-trivial and primitive inte-

gral solutions for their parameters. We give two parametric solutions, one

for each of these equations.

B-17: S. Chowla and S.S. Pillai The story of two peerless Indian

Mathematicians, Dayasankar Gupta (Sant Kabir Nagar).

This paper represents the Chowla Pillai-Correspondence, Warings prob-

lem, Least prime-quadratic residue, Chowla’s counter-examples to a claim

of Ramanujan and a disproof of Chowla’s conjecture, problem on consecu-

tive numbers, conjecture, independent values of cotangent function, number

of permutation of a given order, closed form for the prime case, applica-

tions to finite groups, convenient number and class numbers, matrices and

quadratic polynomials, average of Eulers phi-functions.

C: Real and Complex Analysis (Including Special

Functions, Summability and Transforms)

C-1 Some results on a class of entire dirichlet series with com-

plex frequencies, Niraj Kumar and Garima Manocha (New Delhi :nira-

jkumar2001@hotmail.com, garima89.manocha@gmail.com).

Let F be a class of entire functions represented by Dirichlet series with

complex frequencies for which ek|λ
k| |ak| is bounded. Some results for this

set are then studied.

C-2: On a class of integral transform of pathway type, Dilip Kumar

(Kerala :dilipkumar.cms@gmail.com).

The integral transform named Pα-transform introduced in this paper is

a binomial type transform containing many class of transforms including

the well known Laplace transform. The paper is motivated by the idea

of pathway model introduced by Mathai in 2005 [Linear Algebra and Its

Applications, 396, 317-328]. The composition of the transform with differ-

ential and integral operators are proved along with convolution theorem.

Being a new transform, the Pα-transform of some elementary functions are

given in the paper. As an illustration of applications of the general the-

ory of differential equations, a simple differential equation is solved by the

new transform. Pα-transform of some generalized special functions such
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as H-function, G-function, Wright generalized hypergeometric function,

generalized hypergeometric function and Mittag-Leffler function are also

obtained. Also the solutions of fractional kinetic equations are obtained

by using Pα-transform. The results for the classical Laplace transform is

retrieved by letting α→ 1.

C-3: An Extension of α-type polynomial sets, S.J. Rapeli, S.B. Rao

and A.K. Shukla (Surat).

In this paper, we discuss α-type polynomial sets and also its general-

ization in two variables. Some properties of certain polynomials have also

been shown for in support of α-type zero in two variables.

C-4: Recurence Relation and Integral Representation of Gener-

alized K-Mittag-Leffer Function GE
γ,q
k,α,β(z), Kuldeep Singh Gehlot

(Rajasthan :drksgehlot@rediffmail.com).

In this paper author calculate the recurrence relations and six different

integral representation of Generalized K-Mittag-Leffler function introduced

by Gehlot and Kuldeep Singh ( 2012). Also find out six different integral

representations of K-Mittag-Leffler function, definded by Dorrego G.A. and

Cerutti R.A. (2012). And several special cases have been discussed.

D: Functional Analysis

D-1: Watson transform for boehmians, R. Roopkumar (Karaikudi).

Proving the required auxiliary results, we construct two Boehmian

spaces which properly contain T ′(λ, µ) and T ′(1−µ, 1−λ). Next we prove

the convolution theorem for the Watson transform on T ′(λ, µ) using both

Mellin type convolutions ∨ and ∧. Applying the convolution theorem, we

extend the Watson transform to the context of Boehmians as a bijective

map a Boehmian space onto the other Boehmian space and prove that

the extended Watson transform is linear, continuous map with respect to

δ-convergence as well as ∆-convergence.

D-2: An iterative algorithm for generalized mixed vector equilib-

rium problems and relativity non-expansive mapping in Banach

spaces, K. R. Kazmi and Mohammad Farid

(Aligarh :kekazmi@gmail.com; mohdfrd55@gmail.com).

In this paper, we introduce an iterative schemes for finding a common

solution of split generalized vector variational inequality problem and fixed
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point in a real Hilbert space. We prove that the sequences generated by

the proposed iterative scheme converge strongly to the common solution of

split generalized vector variational inequality problem and the fixed point

problem for nonexpansive mappings. The results presented in this paper

are the supplement, extension and generalization of the previously known

results in the area.

D-3: An iterative method for split generalized vector equilibrium

problem and fixed point problem, K.R. Kazmi, S.H. Rizvi and Mohd.

Farid (Aligarh).

In this paper, we introduce and study an explicit iterative method to ap-

proximate a common solution of split generalized vector equilibrium prob-

lem and fixed point problem for a finite family of nonexpansive mappings

in real Hilbert spaces using the viscosity Cesáro mean approximation. We

prove that the sequences generated by the proposed iterative scheme con-

verge strongly to the common solution of split generalized vector equilib-

rium problem and fixed point problem for finite family of nonexpansive

mappings. Further, we give a numerical a example to justify our main re-

sult. The results presented in this paper are the supplement, extension and

generalization of the previously known results in this area.

D-4: Common fixed point theorem for cyclic weak (φ,ψ)-

contraction in Menger space, Sahni Mary Roosevelt and Dersanam-

bika K.S. (Kerala : sahniroosevelt@gmail.com; dersanapdf@yahoo.com).

An altering distance function is a control function which alter the met-

ric distances between two points enabling one to deal with relatively new

classes of fixed point problems. But, the uniqueness of control function

creates difficulties in proving the existence of fixed point under contractive

conditions. Cyclic weak (φ,ψ)-contraction mapping is extended to Menger

space and fixed point theorem for such mappings are studied in Menger

space.

D-5: A unique common fixed point theorem in complete G-metric

space with six mappings, Anushri A. Aserkar and Manjusha P. Gandhi

(Nagpur :aserkar aaa@rediffmail.com).

In the present paper, we have proved a unique common fixed point

theorem for six mappings which is an extension of Gregus theorem [1980]

in complete symmetric G-metric space. The mappings in pairs satisfy the
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weakly compatibility condition. Mustafa and Sims [2006] generalized metric

spaces to G metric space. This new structure was a great alternative to

amend the flaws in the concept of D-metric spaces. It was proved by

Mustafa and Sims that every G-metric space is topologically equivalent to

a metric space.

D-6: Common fixed point of coincidently commuting mappings in

2 non-archimedean menger PM-space, Bijendra Singh, V. K. Gupta

and Jaya Kushwah (Ujjain : kushwahjaya@gmail.com).

In the present paper, we prove a fixed point theorem for quasi-contraction

pair of coincidentally commuting mappings in a 2 non-Archimedean Menger

PM-space usings idea of Achari [1] and Chamola et.al.[2].

D-7: Common fixed points of generalized Meir-Keeler α-

contractions, Deepesh Kumar Patel, Thabet Abdeljawad and Dhananjay

Gopal (Surat : deepesh456@gmail.com, gopal.dhananjay@rediffmail.com).

Motivated by Abdeljawad (Fixed Point Theory and Applications 2013),

we establish some common fixed point theorems for three and four self-

mappings satisfying generalized Meir-Keeler α-contraction in metric spaces.

As a consequence the results of Rao and Rao (Indian J. Pure Appl. Math.,

16(1)(1985), 1249-1262), Jungck (Internat. J. Math. Math. Sci., 9(4)(1986),

771-779), and Abdeljawad itself are generalized, extended and improved.

Sufficient examples are given to support our main results.

D-8: On Existence of Coincidence and Common Fixed Point

for Faintly Compatible Maps, Anita Tomar (Dehradun : anitatmr@

yahoo.com).

In this paper, we discuss the existence of coincidence and common

fixed point for faintly compatibility maps satisfying both contractive and

non contractive condition . Our results improve the results of Bisht and

Shahzad without containment and continuity requirement of involved maps

on metric space. Example to demonstrate the validity of results obtained

is also furnished.

E: Differential Equations, Integral Equations and

Functional Equations
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E-1: On some mixed integral inequalities and applications, S.D.

Kendre (Pune : sdkendre@yahoo.com).

In this paper, we establish some nonlinear mixed integral inequalities

which provide an explicit bound on unknown function, and can be used as a

tool in the study of certain nonlinear mixed integral equations. The purpose

of this paper is to extend certain results which proved by Pachpatte.

E-2: On the fixed solutions of second order nonlinear delay dif-

ference equations with asymptotic and stability behaviors, Dr. B.

Selvaraj and Mr. S. Raju (Coimbatore : rajumurugasamy@gmail.com).

Some new criteria are obtained for asymptotic and stability behaviors

of fixed solutions of the second order nonlinear delay difference equation of

the form ∆2(xn + pnxn−k − qnxn−1) + f(xn) = 0, n = 0, 1, 2, 3... Examples

are inserted to illustrate the results.

E-3: Immovability of a quartic functional equation in Felbin’s

Type Spaces, M. Arunkumar and S. Karthikeyan (Tiruvannamalai :an-

narun2002@yahoo.co.in, karthik.sma204@yahoo.com).

In this paper, the authors investigate the immovability of a quartic

functional equation

n∑
i=1

f

(
n∑

i=1

xij

)
= 6

∑
1≤i<j≤n

f(xi + xj + xk)− (6n − 18)
∑

1≤i<j≤n

f(xi − xj)

+(n− 8)f

(
n∑

i=1

xi

)
+

(
3n2 − 17n + 22

16

)
f

(
n∑

i=1

2xi

)
,

where

xij =



−xj if i = j

xj if i 6= j

in Felbin’s type spaces.

E-4: Random stability of an additive quadratic functional equa-

tion: a fixed point approach, M. Arun Kumar and P. Agilan (Tiruvan-

namalai :annarun2002@yahoo.co.in, agilram@gmail.com).
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Using the fixed point method, we prove the generalized Hyers-Ulam

stability of the following additive quadratic functional equation

f(3x+ 2y + z) + f(3x− 2y + z) + f(3x+ 2y − z) + f(3x− 2y − z)

= 12f(x) + 12[f(x) + f(−x)] + 8[f(y) + f(−y)] + 2[f(z) + f(−z)]

in random normed spaces.

E-5: Solution and stability of a n-dimensional quadratic func-

tional equation in quasi-beta normed spaces: direct and fixed

point methods, M. Arun Kumar, S. Murthy, S. Ramamoorthi and G.

Ganapathy

(Tiruvannamalai : annarun2002@yahoo.co.in, smurthy07@yahoo.co.in, rams-

dmaths@yahoo.com, ganagandhi@yahoo.co.in).

In this paper, the authors has proved the general solution and general-

ized Ulam-Hyers stability of a n-dimensional quadratic functional equation

of the form

n∑
i=0

[
f

(
x2i + x2i+1

2

)
+ f

(
x2i − x2i+1

2

)]
=

1

2

n∑
i=0

f(x2i) + f(x2i+1)

where n ≥ 1 in Quasi-Beta normed spaces using direct and fixed point

methods.

E-6: Permanence of 2-variable additive functional equation in

non-archimedean fuzzy φ-2-normed space : Hyers direct method,

M. Arunkumar, T. Namachivayam

(Tiruvannamalai :annarun2002@yahoo.co.in, namachi.siva@rediffmail.com).

In this paper, the authors investigate the solution of a 2-variable addi-

tive functional equation

g(2x ± y ± z, 2u± v ± w) = g(x± y, u± v) + g(x± z, u± w).

Its generalized Ulam-Hyers stability in non-Archimedian fuzzy φ-2-normed

spaces using Hyers direct method.

E-7: New Oscillation Criteria for Higher Order Non-Linear Func-

tional Difference Equations, B.Selvaraj and S.Kaleeswari (Tamil Nadu

:professorselvaraj@gmail.com, kaleesdesika@gmail.com).
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In this paper some new criteria for the oscillation of high order func-

tional difference equation of the form

∆2
(
r (n)

[
∆(m−2)y (n)

]α)
+ q (n) f [y (g (n))] = 0,

where
∞∑

s=n0

r−
1

α (s) < ∞ and m > 1 are discussed. Examples are given to

illustrate the results.

E-8: Battle outcome in a counter insurgency operation by secu-

rity force under decapitation warfare involving range-dependent

attrition-rate coefficients in the regular combat, Lambodara Sahu

(Pune : lsahucme@gmail.com).

In this paper, a conceptual model dealing with certain operational fac-

tors like robustness of forces, undermining effects, maximum effective range,

break-points, is being discussed referring the concepts of Lanchester-type

equations with range-dependent attrition-rate coefficients to project the ef-

fectiveness of forces of regular combat under decapitation warfare, while

figuring out the importance of undermining operation in addition to the

advantage of closeness to the target by considering a few case studies.

F: Geometry

F-1: Contact CR-submanifolds of an indefinite trans-Sasakian

manifold, Bandana Das and Arindam Bhattacharyya.

This paper is based on contact CR-submanifolds of an indefinite trans-

Sasakian manifold of type (α, β). Here some properties of contact CR-

submanifolds of an indefinite trans-Sasakian manifold have been studied

and also the sectional curvatures of contact CR-submanifolds of an indefi-

nite trans-Sasakian space form are discussed.

F-2: On generalized ϕ-recurrent trans-sasakian manifolds,

D.Debnath and A.Bhattacharyya (dipankardebnath123@hotmail.com).

The object of the present paper is to study generalized ϕ-recurrent

trans-Sasakian manifolds. It is proved that a generalized ϕ-recurrent trans-

Sasakian manifold is an Einstein manifold. Also we obtained a relation

between the associated 1-forms A and B for a generalized ϕ-recurrent
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and generalized concircular ϕ-recurrent trans-Sasakian manifolds and fi-

nally proved that a three dimensional locally generalized ϕ-recurrent trans-

Sasakian manifold is of constant curvature.

F-3: Some properties of slant and pseudo-slant submanifolds of

an ǫ-paracontact Sasakian manifold, Barnali Laha and Arindam Bhat-

tacharyya (Kolkata : barnali.laha87@gmail.com, bhattachar1968@

yahoo.co.in).

In the present note, we have derived some results pertaining to the ge-

ometry of slant and pseudo-slant submanifolds of an ǫ-paracontact Sasakian

manifold. In particular, we have obtained the necessary and sufficient con-

ditions of a totally umbilical proper slant submanifold to be totally geodesic,

provided the mean curvature vector H ∈ µ. In addition to this, we have

obtained the integrability conditions of the distributions of pseudo-slant

submanifold.

F-4: Almost pseudo Ricci symmetric viscous fluid spacetime, Bud-

dhadev Pal and Arindam Bhattacharyya

(Kolkata : buddha.pal@rediffmail.com, bhattachar1968@yahoo.co.in).

The object of the present paper is to investigate the application of

almost pseudo Ricci symmetric manifolds to the General Relativity and

Cosmology. Also, we study the space time when the anisotropic pressure

tensor in energy momentum tensor of type (0, 2) takes the different form.

F-5: Evolution of ℑ-functional and ω-entropy functional for the

conformal Ricci flow, Nirabhra Basu and Arindam Bhattacharyya (West

Bengal: nirabhra.basu@yahoo.com, bhattachar1968@yahoo.co.in).

In this paper we define the ℑ-functional and the ω-entropy functional

for the conformal Ricci flow and see how they evolve according to time.

G: Topology

G-1: On b∗-I-open sets in ideal topological spaces, K. Viswanathan,

S. Jafari and J. Jayasudha.

In this paper, we introduce and investigate the notions of b∗-I-open

sets in ideal topological spaces. Further we have discussed some properties

of b∗-I-open sets and obtained decomposition of semi∗-I-continuity.
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G-2: Idealization of a Decomposition Theorem, R. Santhi and M.

Rameshkumar

(Tamil Nadu : santhifuzzy@yahoo.co.in, rameshngm@gmail.com).

In this paper we introduce and investigate the notion of regular-Is-

closed set, AIs-set, regular-Is-continuous and AIs-continuous in ideal topo-

logical spaces. Then we show that a function f : (X, τ,I) → (Y, σ) is con-

tinuous if and only if it is α-Is-continuous and AIs-continuous. Also we

proved that regular-Is-closed set and regular closed are independent.

G-3: Fuzzy generalized minimal continuous maps in fuzzy topo-

logical spaces, Suwarnlatha. N. Banasode (Karnataka).

In this paper a new class of fuzzy generalized minimal continuous maps

that includes a class of fuzzy generalized minimal irresolute maps are in-

troduced and studied in fuzzy topological spaces. A mapping f : X → Y ,

from a fts X into a fts Y is said to be fuzzy generalized minimal continuous

(briefly f -g-mi continuous) map if the inverse image of every fuzzy minimal

closed set in Y is a fuzzy g-mi closed set in X.

G-4: Contra functions via b-I-open sets, S.P. Jothiprakash (Tamil

Nadu).

In this paper, we introduce contra open, contra closed, irresolute and

contra irresolute functions via b-I-open sets and study some of their prop-

erties.

G-5: Soft πg-closed set in soft topological spaces, A. Selvi and I.

Arockiarani (Tamil Nadu :selviantony.pc@gmail.com).

In 1999, Molodtsov initiated the theory of soft sets as a new mathemat-

ical tool for dealing with uncertainties. He has shown several applications

of this theory in solving many practical problems in economics, engineer-

ing, social science, medical science, etc. Later several other authors have

developed many areas of soft set theory. Recently, in 2011, Shabir and

Naz introduced soft topological spaces. Kannan introduced soft general-

ized closed sets in soft topological spaces which are defined over an initial

universe with a fixed set of parameters. This paper aims to introduce a new

concept as soft πg-closed sets in soft topological spaces and give a study

of soft πg-closed set and soft πsg-closed sets in soft topological spaces.

Moreover, some of the characterizations are obtained. Then we investigate

the relationships of soft πg-closed sets with other existing soft closed sets
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with counter examples. These results will enable us to carry out a general

framework for their applications in real life.

G-6: Pre closed sets in bim spaces, A. Dhanis Arul Mary and I.

Arockiarani (Tamil Nadu : dhanisarulmary@gmail.com).

In 2000, V. Popa and T. Noiri introduced the concept of minimal struc-

ture space. They also introduced the notion of mx-open set and mx-closed

set and characterize those sets using mx-closure and mx-interior operators,

respectively. In 1969, J.C. Kelly introduced the notion of bitopological

spaces and extended some of the standard results of separation axioms in

a topological space to a bitopological space. Thereafter, a large number

of papers have been written to generalize topological concepts to bitopo-

logical setting. In 2010, C. Boonpok introduced the notion of biminimal

structure spaces. In this paper, we introduce the concept of pre closed

sets in biminimal structure spaces and studied m1
xm

2
x- pre closed sets and

m1
xm

2
x-pre open sets and derived some of their properties. Also, we discuss

the concept of pre-neighborhood and pre-accumulation points in biminimal

structure spaces and obtain some of their characterizations.

G-7: Topologies generated by the a-cuts of a fuzzy set, R. Padmapriya

and Dr. P. Thangavelu

(Coimbatore :priyabharathi28@gmail.com, thangavelu@karunya.edu).

Zadeh introduced the concept of fuzzy sets in 1965. The a-cuts of a

fuzzy subset A of a non-empty set X may generate a topology. Such a

topology is called a topology generated by the fuzzy set A of X. The

purpose of this paper is to characterize such topologies.

G-8: Generalizations of Pawlaks rough approximation spaces by

using αβ-open sets, K. Reena and I. Arockiarani (Coimbatore :reena-

maths1@gmail.com).

This paper extends Pawlak’s rough set theory to a topological space

model where the set approximations are defined using the topological notion

αβ open sets. A number of important results using the topological notion

αβ-open sets are obtained. We also proved that some of the properties

of αβ Pawlaks rough set model are special instances of those topological

generalizations.
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G-9: Fuzzy neutrosophic soft matrix theory, I.R. Sumathi and I.

Arockiarani (Coimbatore : sumathi raman2005@yahoo.co.in).

Molodtsov introduced the concept of soft set theory which can be used

as a mathematical tool for dealing with uncertainty. The parameterizations

tool of soft set theory enhances the flexibility of its application. Moreover,

Maji extended soft sets to intuitionistic fuzzy soft set which handles only

the truth membership and falsity membership; it does not handle the in-

determinacy. Neutrosophic set was initiated by Smarandache which is a

mathematical tool for handling problems involving imprecise, indetermi-

nacy and inconsistent data. One of the important theory of mathematics

which has a vast application in science and engineering is the theory of

matrices. The subject explored in this paper is the matrix representation

of fuzzy neutrosophic soft set namely Fuzzy neutrosophic soft matrices.

Further, we have defined some basic operations on Fuzzy Neutrosophic soft

matrices and have applied in decision making problem. This study provides

us an opportunity to go further on fuzzy neutrosophic soft matrices with

new operations and this matrix models could be carried out in the real

world problems.

G-10: On generalized fuzzy neutrosophic soft sets, J. Martina Jency

and I. Arockiarani (Coimbatore :martinajency@gmail.com).

Molodtsov proposed the novel concept of soft set theory which pro-

vides a completely new approach for modeling vagueness and uncertainty.

Combining soft sets with intuitionistic fuzzy sets Maji defined intuitionis-

tic fuzzy soft sets for solving decision making problems. F. Smarandache

introduced the concept of neutrosophic set which is a mathematical tool

for handling problems involving imprecise, indeterminacy and inconsistent

data. Inspired by the varied applications of neutrosophic set in real life sit-

uations, we have introduced a new notion of set namely fuzzy neutrosophic

soft set. In the present study, we have introduced the concept of generalized

fuzzy neutrosophic soft set and studied some of its properties. We have put

forward some propositions based on this new notion. We hope that this

paper will promote the future study on generalized fuzzy neutrosophic soft

set and generalized fuzzy neutrosophic soft topological spaces to carry out

a general framework for their application in practical life.
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G-11: A Few Covering Properties of the α-Topology, Shalu (Mod-

inagar : drshalumath@gmail.com).

In the present paper we have obtained some results of P -closed proper-

ties by using α-topology. A topological space (X,T ) is para-rc-Lindelof if

every cover of X by regular closed sets has a locally countable refinements

by regular closed sets .We also prove that T and Tα share these properties.

H: Measure Theory, Probability Theory and Sto-

chastic Processes, and Information Theory

H-1: Reliability of Machine Repair Problem with Spares and Par-

tial Server Vacation Policies for Repairmen, D.C. Sharma (Rajasthan

:dcsharma 1961@yahoo.co.in).

In this paper we have taken a machine repairable system with spares

and repairmen with the partial server vacation policy. In our system, the

first repairman never takes vacations and always available for serving the

failed units. The second repairman goes to vacation of random length

when number of failed units is less than certain number of machine (say)

N . At the end of vacation period, this repairman returns back if there

are N or more failed units/machine accumulated in the system. Otherwise

this repairman goes for another vacation. Vacation time is exponentially

distributed. By using of Markov process theory, we develop the steady state

probabilities equations and solve these equations recursively. We present

reliability measures. Availability of the system is maintained at certain level

and the optimum value of N has been calculated. A Sensitivity analysis is

also investigated.

I: Numerical Analysis, Approximation Theory and

Computer Science

I-1: On Oscillatory Matrices, Ravinder Kumar and Ram Asrey Rajput

(Agra : ravinder dei@yahoo.com, ramasreyrajput@yahoo.co.in).

A real matrix A is called oscillatory if all its minors are nonnegative and

if some power of A has all minors positive. In this paper we present eigen-

value inequalities that hold for oscillatory matrices. In particular bounds

for determinant of an oscillatory matrix are derived.
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I-2: A New Technique to Solve Reaction-Diffusion Boundary

Value Problems, Surabhi Tiwari (Allahabad :surabhi@mnnit.ac.in).

Reaction-diffusion equations are important to a wide range of applied

areas such as cell processes, drug release, ecology, spread of diseases, in-

dustrial catalytic processes, transport of contaminants in the environment,

chemistry in interstellar media, etc. The aim of this paper is to build an

efficient initial value technique for solving a third order linear reaction dif-

fusion singularly perturbed boundary value problem. Using this technique,

a third order linear reaction diffusion singularly perturbed boundary value

problem is reduced to three approximate unperturbed linear initial value

problems and then Runge-Kutta fourth order scheme is used to solve these

unperturbed linear problems numerically. Numerical examples are solved

using this given method. It is observed that the presented method approx-

imates the exact solution very well for crude mesh size h. Error analysis

and convergence analysis of the method are also described.

I-3: Simulation of extended spiking neural P systems with as-

trocytes using petri nets, Rosini B. and Dersanambika K.S. ( Kerala

:brosini@gmail.com, dersanapdf@yahoo.com).

Spiking Neural P (SNP ) system characterizes the movement of spikes

among neurons. However, in biological nervous system, besides neurons

themselves, astrocytes (star-shaped glial cells spanning around neurons)

also play an important role on the functioning and interaction of neurons.

In this work, we focus on the excitatory and inhibitory role of astrocytes.

This paper proposes the concept of translating Extended Spiking Neural

P systems with Astrocytes (ESN PA system) to Petri nets. For a given

ESN PA system, we are able to model a Petri net, that can be employed

to simulate the behavior of an ESN PA system.

I-4: On generalized α-difference operator of third kind and its ap-

plications in number theory, G. Britto Antony Xavier, P. Rajiniganth

and V. Chandrasekar (Tamilnadu, shcbritto@yahoo.co.in).

In this paper, the authors extend the theory of the generalized α-

difference operator ∆α(l) to the Generalized α-difference operator of the

third kind ∆α(l1,l2,l2) for the positive reals l1, l2 and l3. We also present the

discrete version of Leibnitz Theorem, Binomial Theorem, Newton’s formula

with reference to ∆α(l1,l2,l3). Also, by defining its inverse, we establish a
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few formulae for the sum of the second partial sums of higher powers of

arithmetic-geometric progression in number theory.

I-5: Eigen frequency based solutions focusing vibration isolation

system design for industrial applications, S.N. Bagchi (Pune : de-

sign@resistoflex.in; www.resistoflex.in).

This is an industry-academia oriented presentation related to the math-

ematical solutions focusing Vibration and Shock isolation system design for

industrial applications, covering power plants to transportation. The appli-

cation of Air springs in deluxe buses and railways for a comfortable journey

will be highlighted. The resonance frequency of our flexible body organs

like intestine, backbone, shoulder joints, neck and knee joint etc., are all

in the low frequency range. Hence during a long journey on a rough road,

some of the body organs are excited by road vibrations. A fuzzy model

and the statistical data of the human body response is used to optimize

the bus suspension design using a low natural frequency Air Spring for a

comfortable long journey. The mathematical approach and modalities have

an engineering-physics orientation. In view of the inter-disciplinary nature

of the subject and wide spectrum of coverage from Molecular vibration to

Machine vibration the presentation is based on simple spring mass models

of polyatomic molecule to spring supported industrial machines. Based on

spring-mass model of a system the eigen-frequency is calculated which is

the solution of a differential equation. The response of the spring supported

system due to any exciting force of dynamic nature depends on the unique

value of eigen-frequency in x, y and z direction. An optimized design cal-

culation of a rotating machine is presented. The seismic isolators used for

the Earthquake protection of buildings is briefed.

I-6: A numerical method for weighted low-rank matrix approxi-

mation, Aritra Dutta (Florida :d.aritra2010@knights.ucf.edu).

In scientific and engineering field, the best approximation by a low-rank

matrix has become an important tool in dimensional reduction of data and

matrix decomposition. When the Frobenious norm or ℓ1-norm is used, the

best low rank approximation has a closed form formula in terms of Princi-

pal Component Analysis [1] or Robust Principal Component Analysis [2].

When a weight is inserted in the norm, the corresponding weighted approx-

imation problem is much harder to solve. Indeed, according to Srebro and
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Jaakkola [3], the weighted low-rank approximation problems do not admit

a closed form solution in general. In this presentation, I propose a new

numerical method to solve the weighted low-rank approximation problem.

More precisely, we use the optimization approach using the Augmented

Lagrange Method (ALM) together with the penalty terms and then using

the alternating directional method to solve the problem numerically. I also

present some numerical experiments to show the effectiveness of the new

algorithm.

I also show, as a limiting case, how our algorithm for the weighted low-

rank approximation is related to the work of Golub-Hoffman-Stewart [4]

where they showed how to obtain a best approximation of a low rank matrix

in which a specified set of columns of the matrix remains fixed. Finally, I

discuss some applications of the weighted low-rank approximation in image

and video analysis.

J: Operations Research

No paper

K: Solid Mechanics, Fluid Mechanics, Geophysics

and Relativity

K-1: Effects of piezoelectricity on waves in monoclinic poro-

elastic materials, Anil K. Vashishth and Vishakha Gupta (Kurukshetra

: akvashishth@kuk.ac.in, vi shu85@yahoo.co.in ).

Piezoelectric materials are materials which produce electric field when

stress is applied and get strained when electric field is applied. Piezoelectric

materials are acting as very important functional components in sonar pro-

jectors, fluid monitors, pulse generators and surface acoustic wave devices.

Wave propagation in porous piezoelectric material having crystal symmetry

2 is studied analytically. The Christoffel equation is derived. The phase

velocities of propagation and the attenuation quality factors of all these

waves are described in terms of complex wave velocities. The effects of

phase direction, porosity, wave frequency and the piezoelectric interaction

on phase velocities are studied numerically for a particular model. The

results are reduced for the crystal classes 2mm and 6mm from the class 2.
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K-2: Uniqueness theorem and theorem of reciprocity in the Lin-

ear Theory of Porous Piezoelectricity, Anil K. Vashishth and Vishakha

Gupta (Kurukshetra :akvashishth@kuk.ac.in, vi shu85@yahoo.co.in).

General theorems of classical elasticity are generalized for the linear

theory of porous piezoelectric material. The constitutive equations are for-

mulated for the porous piezoelectric materials. The reciprocal relation in

the linear theory of porous piezoelectric materials is proved. The unique-

ness theorem is established for the three dimensional porous piezoelectric

body with assumption of positive definiteness of elastic fields. Alternative

proof of the uniqueness theorem, without using the assumption of positive

definiteness of elastic fields, is also given.

K-3: Pulsatile flow in carotid artery bifurcation in reference to

atherosclerosis with varying frequencies, G. Manjunatha and K.S.

Basavarajappa (Manipal : gudekote−m@rediffmail.com).

The mathematical model is studied to analyze the plaques of atheroscle-

rosis in the common carotid and internal carotid arteries (CCA and ICA)

of the vascular bifurcations. ‘Y’ model with flow ratio 70%: 30% between

internal carotid artery (ICA) and external carotid artery (ECA) from the

neck of the common carotid artery (CCA) is employed in the analysis. The

dilation of the offspring (the carotid sinus or bulb) is analyzed for plaques.

For a pulsatile flow, a representative normal carotid artery bifurcation wave

form is imposed at the carotid artery (CCA) inlet of the model with mean

and peak flow rates 6.0 - 23.8 m/sec. Peak systolic and diastolic pressure

are compared with varying cardiac cycle (< 70 and > 70 beats per min).

Series solution method is used to study the governing equations of motions

with perturbations on the characterizing physiological flow parameters.

K-4: Numerical simulation of Bödewadt flow of a non-Newtonian

fluid, Bikash Sahoo (Rourkela).

Both Newtonian and non-Newtonian flows past rotating disks have

drawn the attention of many researchers due to their fundamental immense

engineering and industrial applications. The problem arising when a vis-

cous fluid rotates with a uniform angular velocity at a larger distance from

a stationary disk is one of the few problems in fluid dynamics for which

the Navier-Stokes equations admit an exact solution. This problem was

initially studied by Bödewadt by making boundary layer approximations.
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That is why the flow is well known as Bödewadt flow. However, the Navier-

Stokes equations for the Bödewadt flow for a non-Newtonian fluid do not

possess an exact solution and one has to adopt effective numerical method

to solve the resulting nonlinear differential equations. In this paper, the

steady Bödewadt flow of a non-Newtonian Reiner-Rivlin fluid has been

considered. The resulting highly nonlinear differential equations are solved

by a second order finite difference method. The effects of non-Newtonian

cross-viscous parameter K on the velocity field has been studied in detail

and shown graphically. One of the important findings of the present investi-

gation is that when the non-Newtonian parameter K is increased, solutions

to the boundary value problem tend to approach their far-field asymptotic

boundary values more rapidly.

L: Electromagnetic Theory, Magneto-Hydro-

dynamics Astronomy And Astrophysics

L-1: Effect of Thermal Radiation on MHD flow with variable

Viscosity and Thermal Conductivity over a Stretching Sheet in

Porous Media, Pentyala Srinivasa Rao, B. Kumbhakar and B.V. Rathish

Kumar (Dhanbad : pentyalasrinivasa@gmail.com).

An investigation has been made for two dimensional steady stagnation

point flow of a viscous incompressible electrically conducting fluid over a lin-

early stretching sheet in porous media with variable viscosity and thermal

conductivity. The viscosity and thermal conductivity are taken as inverse

linear and linear functions of temperature respectively. The medium is in-

fluenced by a traverse magnetic field and volumetric rate of heat generation

or absorption in the presence of radiation effect. The governing boundary

layer equations are transformed into ordinary differential equations by tak-

ing suitable similarity variables. The resulting coupled nonlinear differen-

tial equations are solved numerically by using fourth order Runge Kutta

method along with shooting method. The effect of various parameters such

as radiation, porosity, viscosity, thermal conductivity, Hartmann number,

Prandtl number etc. have been discussed in detail with computer generated

figures and tables.

L-2: Effect of nonuniform temperature gradients and DC elec-

tric field on thermal convective instability in an Oldroyd-B fluid
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saturated porous media, Deepa K Nair, Potluri Geetha Vani and I. S.

Shivakumara (Bangalore :vijaydeepavijay@rediffmail.com, shivakumarais@

gmail.com, gipotluri@gmail.com).

The effect of vertical DC electric field on the onset of convection in

a horizontal layer of an Oldroyd-B viscoelastic dielectric fluid saturated

Brinkman porous medium heated either from below or from above is inves-

tigated. The isothermal boundaries are considered to be either rigid or free.

The resulting eigenvalue problem is solved using the Galerkin method for

three kinds of velocity boundary conditions namely, free-free, rigid-rigid,

and lower rigid and upper free. The results indicate that the instability

behavior depends significantly on the nature of boundaries. The effects of

Darcy number, the Prandtl number, the ratio of strain-retardation time to

the stress-relaxation time and the stress-relaxation parameter are analyzed

on the stability of the system. Besides, the similarities and differences

between free-free, rigid-rigid and rigid-free boundaries are emphasized in

triggering convective instability. The stress-free boundaries are found to

be less stable than that of rigid-rigid and rigid-free boundaries. The exist-

ing results in the literature are obtained as special cases from the present

general study.

L-3: Solution of Flow of Current in Electrical Circuit via Frac-

tional Calculus Approach, P.V. Shah, A.D. Patel and A.K. Shukla

(Surat).

The present paper deals with the solution of Flow of Current in Elec-

trical Circuit by using fraction calculus approach. We also discuss different

cases of R-I (Resistence-Inductence) circuit. We also analyze the main

result.

M: Bio-Mathematics

M-1: Fractional Bioheat Model to Study Effect of Frequency and

Blood Perfusion in Skin Tissue with Sinusoidal Heat Flux Con-

dition on Skin Tissue, R.S. Damor, S. Kumar and A.K. Shukla (Surat).

This paper deals with the study of fractional bioheat model for heat

transfer in skin tissue with sinusoidal heat flux condition to evaluate effect of

different frequency and blood perfusion on skin tissue. Numerical solution

is obtained by implicit finite difference method. The effect of anomalous
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diffusion in skin tissue has been studied with different frequency and blood

perfusion respectively, the temperature profiles are obtained for different

order fractional bioheat model.

M-2: Study of magnetic fluid hyperthermia, Sonalika Singh and

Sushil Kumar (Surat).

Hyperthermia is a type of cancer treatment which kills cancereous cells,

usually with minimal damage to normal tissues. The present study has been

discussed the numerical methods to solve mathematical model of single

phase lag heat transfer in bi-layered spherical tissue during magnetic fluid

hyperthermia treatment for tumour.

M-3: A probabilistic model to study the gene expression in a cell,

Amit Sharma and Neeru Adlakha (Surat :amitsharmajrf@gmail.com,

neeru.adlakha21@gmail.com).

Cell is the primordial unit of all living organisms and to understand

the mechanism of cell, it is important to understand the transcription and

translation process in the cell. A mathematical model of gene expression

is developed to understand these processes. In this paper, future state of

the model is predicted on the base of present state. The initial state of the

system is assumed to be known. Based on the initial state, the successive

states are predicted using probabilities. The model is used to predict the

final state of central dogma.

M-4: Biomathematics : modular forms and Galois representation

of BIS process, Ashwini K. Sinha, M.M. Bajaj and Rashmi Sinha.

GL2(R) consists of matrices with positive determinant. Let H be the

complex upper half plane endowed with its natural GL+
2 (R) action by linear

fractional transformations: γ : z :=
az + b

cz + d
, where a, b, c, d are the entries

of γ as above and z ∈ H. If f is any C-valued function on H. wstabilizer of

∞ in SL2(Z). Assume conditions Adding the cusps oince f ∈Mk(SL2(Z))

is a cusp form iff u vanishes infinity there is an exact sequence for even

k ≥ 4

0 → Sk(SL2(Z)) →Mk(SL2(C)) → C → 0

induced by the map ∑
n≥0

anq
n → a0.
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It follows that in this case there is a unique normalized modular form.

N: History and teaching of mathematics:

No paper.

ABSTRACT OF THE PAPERS FOR IMS PRIZES.

GROUP-1:

IMS-1: Modified lattice paths and Gordon-McIntosh eight order

mock theta functions, Rachna Sachdeva (Chandigarh, rachna.sachdeva.

1989@gmail.com).

We modify the lattice paths introduced by Agarwal and Bressoud in

1989. We use these modified lattice paths to provide combinatorial inter-

pretations of two Gordon-McIntosh eight order mock theta functions.

IMS-2: Number of self-orthogonal negacyclic codes over finite

fields, Amita Sahni (Chandigarh : sahniamita05@gmail.com).

The main objective of this article is to study self-orthogonal negacyclic

codes of length n over a finite field Fq, where the characteristic of Fq does

not divide n. We investigate issues related to their existence, characteriza-

tion and enumeration. We find the necessary and sufficient conditions for

the existence of self-orthogonal negacyclic codes of length n over a finite

field Fq. We characterizes the defining sets and the corresponding generator

polynomials of these codes. We obtain formulae to calculate the number of

self-dual and self-orthogonal negacyclic codes of a given length n over Fq.

The enumeration formula for self-orthogonal negacyclic codes involves a

two-variable function χ defined by χ(d, q) = 0 if d divides (qk +1) for some

k ≥ 0 and χ(d, q) = 1, otherwise. We have found necessary and sufficient

conditions when χ(d, q) = 0 holds.

IMS-3: The b-chromatic number of graphs, Aparna Lakshmanan S.

(Kerala :aparnaren@gmail.com).

Given a coloring of G, a color class of G is the collection of all vertices

having the same color. A coloring of G is a b-coloring if every color class

contains a vertex that is adjacent to at least one vertex in each of the

remaining color classes. The b-chromatic number of G, denoted by ϕ(G),

is the largest integer k such that G admits a b-coloring with k colors. In

this paper, we find the b-chromatic number of complete-n-partite graphs
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and the double graph of the complete graphs, cycles and paths. In the last

section, the problem of ”for what values of a ∈ [χ(G), d+1] does there exist

a d-regular graph G, with ϕ(G) = a” is discussed.

IMS-4: Combinatorial Interpretations of two Gordon-McIntosh

eight order mock theta functions,Garima Sood (Chandigarh :garima-

sood18@gmail.com).

In 2004, A.K. Agarwal gave the combinatorial interpretations of four

mock theta functions of Srinivasa Ramanujan using n-color partitions which

were introduced by himself and G.E. Andrews in 1987. In this paper we

introduce a new class of partitions and call them “split (n + t)-color par-

titons”. These new partitions generalize Agarwal-Andrews (n + t)-color

partitons. We use these new combinatorial objects and give combinato-

rial meaning to two eight order mock theta functions of Gordon-McIntosh

found in 2000. The work done here has great potential for further research.

IMS-5: On Some Modular Equations In The Spirit Of Ramanu-

jan, B.R. Srivatsa Kumar, (Manipal :sri−vatsabr@yahoo.com).

We establish certain new modular equations, by employing Ramanu-

jan’s modular equations.

IMS-6: Equitable ∆-coloring conjecture for generalized Myciel-

skian of graphs, T. Kavaskar (t kavaskar@yahoo.com).

A graph G is equitably k-colorable if G has a proper k-coloring in which

any two color classes differ in size by at most 1. The smallest integer k for

which G is equitably k-colorable is defined to be the equitable chromatic

number of G, denoted by χ = (G). In 1994, Chen, Lih and Wu conjec-

tured that, every connected graph G, different from complete graph, odd

cycle or K2n+1,2n+1, is equitably ∇-colorable. Only few families of graphs

have been proved to satisfy this conjecture. In this paper, we prove that

one more family of graphs satisfies this conjecture, namely, the generalized

Mycielskian of some families graphs.

GROUP-2:

IMS-7: Existence Theorems for Solvability of Functional Equa-

tions arising in Dynamic Programming, Deepmala (Raipur :dmrai23@

gmail.com).
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The existence problems of solutions of various functional equations aris-

ing in dynamic programming are both theoretical and practical interest.

Under certain conditions, we give some sufficient conditions ensuring both

the existence and the uniqueness of solutions for functional equation aris-

ing in dynamic programming of multistage decision processes. Here, we

use Boyd-Wong fixed point theorem to show the solvability of the func-

tional equation arising in dynamic programming. Our main results extend,

improve and generalize the results due to several authors. Thus, we can

say that the method described in our main section is an important pro-

cedure which is helpful for engineers, computer scientists, economists and

researchers for finding the existence and uniqueness of the solutions of func-

tional equations arising in dynamic programming. An example is also given

to demonstrate the advantage of our results over the existing ones in the

literature.

GROUP-3:

No paper.

GROUP-4:

IMS-8: Solution and stability of a functional equation originating

from consecutive terms of a geometric progression, M. Arunkumar

(Tiruvannamalai :annarun2002@yahoo.co.in).

In this paper, the author has proved the generalized Ulam-Hyers

stability of a new type of the functional equation

l(uv) + l
(u
v

)
= 2l(u),

with v 6= 0, which is originating from consecutive terms of an geometric

progression. An application of this functional equation is also studied.

IMS-9: Existence and controllability results for mixed functional

integrodifferential equations with infinite delay, Kishor D. Kucche

(Maharashtra : kdkucche@gmail.com).

Sufficient conditions are established for the existence of mixed neu-

tral functional integrodifferential equations with infinite delay. The results

are obtained using the theory of fractional powers of operators and the
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Sadovskii’s fixed point theorem. As an application we prove a controllabil-

ity result for the system.

GROUP-5:

No paper.

GROUP-6:

IMS-10: Mathematical Modeling of delivery of molecular medicine

to solid tumers with chemotherapy, Ram Singh

( Rajouri : singh ram2008@hotmail.com ).

The key aim of this investigation is to develop a pharmacokinetic math-

ematical model for the localization of anti-cancer agents in the solid tumor

tissues and subsequent intra tumoral drug generation associated with two

step cancer chemotherapy. The equations governing the diffusion of large

anti-cancer molecular cojugate out of vasculature and into the tumor are

derived and numerically analyzed. The expressions for the concentration

of molecular agents into various compartments have been obtained. The

effects of the tumor vasculature, binding kinetics, and administration sched-

ule on the intra tumoral conjugate concentration are investigated and the

critical parameters that influence the localization and retention of the agent

in the tumor are determined. We have incorporated the different cases of

dosing intervals in the present model which makes our model more real-

istic than the model have been presented so far. Sensitivity analysis has

been performed to validate the obtained analytical results. The finite dif-

ference technique has been used to solve the partial differential equations.

Predictions made by the developed model can lead for the improvement of

treatment protocols for two-step cancer chemotherapy.

ABSTRACT OF THE PAPERS FOR AMU PRIZE.

AMU-1: Generalized derivations and commutativity in near rings,

Phool Miyan (Aligarh : phoolmiyan83@gmail.com).

Let N be a near ring. An additive mapping f : N −→ N is said

to be a right generalized (resp. left generalized) derivation with associated

derivation d onN if f(xy) = f(x)y+xd(y) (resp. f(xy) = d(x)y+xf(y)) for

all x, y ∈ N. A mapping f : N −→ N is said to be a generalized derivation

with associated derivation d on N if f is both a right generalized and a left
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generalized derivation with associated derivation d on N . The purpose of

the present paper is to prove some theorems in the setting of a semigroup

ideal of a 3-prime near ring admitting a generalized derivation, thereby

extending some known results proved by Bell and Mason [North-Holland

Mathematical Studies, 137 (1987), 31-35] and Bell [Kluwer Academic Publ.

Math. Appl. Dordr., 426 (1997), 191-197] on derivation to generalized

derivation of a 3-prime near ring.

AMU-2: Characterization of symmetric biderivations on prime

rings, Faiza Shujat (Aligarh : faiza.shujat@gmail.com).

The purpose of the present paper is to prove some results concerning

symmetric biderivation on a one sided ideal of a ring, which are of inde-

pendent interest. Moreover, we obtain a generalization of a result of Bresar

[J. Algebra 172 (1995)]. A biadditive mapping D : R × R → R is called

a biderivation if for every x ∈ R, the map y 7→ D(x, y) as well as for ev-

ery y ∈ R, the map x 7→ D(x, y) is a derivation of R, i.e., D(xy, z) =

D(x, z)y + xD(y, z) for all x, y, z ∈ R and D(x, yz) = D(x, y)z + yD(x, z)

for all x, y, z ∈ R. In [Canad Math Bull. 22(4) (1979)] Herstein determined

the structure of a prime ring R admitting a nonzero derivation d such that

the values of d commute, that is for which d(x)d(y) = d(y)d(x) for all

x, y ∈ R. Perhaps even more natural might be the question of what can be

said on a derivation when elements in a prime ring commute with all the

values of a nonzero derivation. Herstein addressed this question by prov-

ing the following result. If d is a nonzero derivation of a prime ring R and

a /∈ Z(R) is such that [a, d(x)] = 0 for all x ∈ R, then R has a characteristic

2, a2 ∈ Z(R) and d(x) = [λa, x], for all x ∈ R and λ ∈ C, the extended

centroid of R. In the mentioned paper, Bresar generalized above result of

Herstein and gave a dscription of derivations d, g and h of a prime ring

satisfying d(x) = ag(x) + h(x)b, x ∈ R, where a, b are some fixed elements

in R. Then d, g, h has the following forms d(x) = [λab, x], g(x) = [λb, x]

and h(x) = [λa, x] for all x ∈ R. Inspired by all these observations, our

aim is to generalize above results for the case of biderivations on two sided

ideals of prime rings. We prove the following. Let R be a prime ring of

char 6= 2, I a nonzero ideal of R and D, G, H : I × I → Q be biderivations

of R with trace d, g, h, respectively. Suppose there exists a, b ∈ R such

that D(x, x) = aG(x, x) +H(x, x)b for all x ∈ I. If a, b /∈ Z(R), then there
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exists λ ∈ C such that d(x) = [λab, x], g(x) = [λb, x] and h(x) = [λa, x] for

all x ∈ I.

ABSTRACT OF THE PAPERS FOR V. M. SHAH PRIZE.

VM Shah-1: Bi Unique Range Sets For Meromorphic Functions,

Abhijit Banerjee (West Bengal :abanerjee kal@yahoo.co.in, abanerjeekal@

gmail.com).

Let f and g be two non-constant meromorphic functions and S be a

set of distinct elements of C and Ef (S) =
⋃

a∈S{z : f(z) = a}, where each

point is counted according to its multiplicity. Denote by Ef (S) the reduced

form of Ef (S). If Ef (S) = Eg(S), we say that f and g share the set S CM.

If Ef (S) = Eg(S), we say that f and g share the set S IM. In this paper

we introduce a new kind of pair of finite range sets in C such that two

meromorphic functions share the sets with some relaxed sharing conditions

become identical.
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VISCOSITY APPROXIMATION METHODS FOR

MINIMIZATION AND FIXED POINT PROBLEMS

- A RELOOK*

D. V. PAI

Abstract. The present lecture is intended to be a survey of two broad

themes in mathematics: “minimization problems” and “fixed point prob-

lems” with a focus on a common thread which links these two themes- the

so-called “viscosity approximation methods”. The talk will broadly consist

of two parts. The first part will be a revisit to the viscosity solutions of

minimization problems. The second part will review viscosity approximation

methods for fixed points of non-expansive mappings.

1. Introduction

I feel deeply indebted and honored that the Indian Mathematical Society has

invited me to deliver this lecture, which is the 11th Ganesh Prasad Memorial

Lecture. At the outset, I must thank Prof. Mrs. Geetha Rao, the President,

Prof. N. K. Thakare, the General Secretary and Prof. Satya Deo Tripathi, the

Academic Secretary, for doing me this honor. Dr. Ganesh Prasad (1876-1935)

who is verily considered as the father of mathematical researches in India was a

mentor to many of the illustrious mathematicians from India including the late

Dr. A. N. Singh, Dr. Gorakh Prasad, Dr. R. S. Verma, Dr. B. N. Prasad, Dr. N.

G. Shabde, Dr.R. D. Mishra and others. Dr. Prasad made many important and

lasting contributions to mathematics which included over fifty research papers and

eleven books of which ‘A Treatise on Spherical Harmonics and the Functions of

Bessel and Lame’ has become almost a classic. Aside from being a great scholar

and a researcher, Dr. Prasad was also a great philanthropic individual, and above

* The text of the Eleventh Ganesh Prasad Memorial Award Lecture delivered at the 79th Annu-

al Conference of the Indian Mathematical Society held at Rajagiri School of Engineering and

Technology, Rajagiri Valley, Kakkanad, Dist. Ernakulam, Cochin - 682 039, Kerala, during the

period December 28 - 31, 2013.

2010 AMS Subject Classification : 47H09; 47H10; 65K05; 65K10; 65K10;90C25

Key words and phrases: minimization problems, viscosity methods, Tikhonov well-posed-

ness, Tikhonov regularization, Γ-convergence, epi-convergence, non-expansive mappings, fixed

point property, viscosity approximation

c© Indian Mathematical Society, 2014 .
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all a great human being. I salute his memory before turning to the technical parts

of this talk.

The present lecture is intended to be a survey of two broad themes in Math-

ematics (rather, I should say Modern Applied Mathematics) where one would

like to explore a common underlying thread- the so-called viscosity approxima-

tion methods. The first part (Section 2) is a revisit to the viscosity solutions of

minimization problems. The second part (Section 3) is a survey of viscosity ap-

proximation methods for fixed points of non-expansive maps which is attracting

some renewed attention recently. It is perhaps appropriate to begin with the fol-

lowing three interesting quotes. The second one is related to the famous problem

of brachistochrone posed by Johann Bernoulli.

“Because the shape of the whole universe is most perfect, and, in fact designed

by the wisest creator, nothing in all of the world will occur in which no maximum

or minimum rule is shining forth”.

Leonard Euler

“If one considers motions with the same initial and terminal points then, the

shortest distance between them being a straight line, one might think that the

motion along it needs least time. It turns out that this is not so”.

Galileo Galilei

“The profound significance of well-posed problems for advancement of math-

ematical science is undeniable”.

David Hilbert

The so-called viscosity approximation methods have been long used in diverse

problems arising in variational analysis and optimization. These have various

applications to different areas such as mathematical programming(cf.,e.g.,[11]) ,

variational problems including the classical minimal hypersurface problem (cf.[12]),

plasticity theory(cf.[25]), phase transition (cf.[21]), PDE’s (cf., e.g.,[3, 5, 17]), con-

trol theory (cf.,e.g.,[3, 9, 11, 16]). The main feature of these viscosity approx-

imation methods is to be able to capture as a limit of solutions of a sequence

of approximating problems, a particular solution of the underlying problem, the

so-called viscosity solution, which is often a preferred solution.

The viscosity approximation methods for fixed points seem to have originated

in the initial questions pertaining to the fixed point property in the metric fixed

point theory for non-expansive mappings. One of the first seminal results in this

direction is the one due to Browder [7]. A number of others have also contributed

to this topic(cf.,e.g.,[14, 18, 22, 23, 24, 29]). More recently, there is some renewed

interest in the minimum norm fixed points of non-expansive maps (cf.,e.g.,[30]),
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which are related to viscosity approximations. We will review a few of these results

in Section 3.

2. Viscosity Solutions Of Minimization Problems

2.1. Existence analysis in Optimization and some preliminaries. Let us

begin by recalling the so-called Max-Min Theorem from elementary calculus which

asserts that a continuous function f : D ⊂ R
n → R defined on a compact subset

D of Rn is bounded and that it attains its (global) maximum and its (global)

minimum at some points of D. Since the topology of R
n that we are using is

metrizable, by Heine-Borel theorem, saying that D is compact is equivalent to

saying that D is closed and bounded. More importantly, it is equivalent to saying

that every sequence x(n) in D has a convergent subsequence x(nk) converging in

D.

We intend to begin by looking at a slightly more general result than the above

stated result. For this purpose, let us observe that since maxDf = −minD(−f),

the problem of maximizing f is equivalent to the problem of minimizing −f .

Thus, without loss of generality, we may confine our attention to minimization

problems in what is sometimes called unilateral analysis. We recall below some of

the standard definitions.

Definition 2.1. Let X be a topological space. A function f : X → R ∪ {∞} is

said to be (i) inf-compact if for each α ∈ R, the sub-level set of f at height α:

levαf = {x ∈ X : f(x) ≤ α}

is compact. It is said to be (ii) lower semi-continuous (lsc) if levαf is closed for

each α ∈ R. Furthermore, in case X is a normed linear space, f is said to be (iii)

coercive if lim‖x‖→+∞f(x) = +∞.

Remark 2.1. It is clear from the definitions that for a function f : X → R ∪ {∞}

defined on a normed space X , f is coercive if and only if f is inf-bounded, that

is to say that the sublevel set levαf of f at height α is bounded for each α ∈ R.

As a result, we see that if X = R
n with the usual topology, then for a function

f : Rn → R ∪ {∞} which is lsc, f is coercive if and only if f is inf-compact.

Remark 2.2. It is easily seen that f : X → R ∪ {∞} is lsc if and only if

∀x ∈ X, f(x) ≤ liminfy→xf(y) := supN∈Nx
infy∈Nf(y).

Here Nx denotes the family of neighborhoods of x. Moreover, in case X is

metrizable, then it is easily seen that a function f : X → R ∪ {∞} is lsc if

and only if it is sequentially lsc: whenever a sequence xn in X converges to x0,

liminfnf(xn) ≥ f(x0).



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

56 D. V. PAI

Let us recall that one main reason for bringing in extended real-valued func-

tions in variational analysis and optimization is that these provide a flexible ap-

proach to modeling of minimization problems with constraints. Most minimization

problems can be formulated as

min{f0(x) : x ∈ Ω}, (2.1)

where f0 : X → R is a real-valued function, and Ω ⊆ X is the so-called constraint

set or feasible set, X being some vector space, usually R
n in case of a mathematical

programming problem. A natural way of dealing with such a problem is to apply

a penalty to it. For example, introduce a distance d on X and for any positive

real number λ, let us consider the minimization problem

min{f0(x) + λdist(x,Ω) : x ∈ X}, (2.2)

where,

dist(x,Ω) = inf{d(x, y) : y ∈ Ω} (2.3)

is the distance function from x to Ω. Let us note that the penalty is equal to

zero if x ∈ Ω (that is if the constraint is satisfied), and when x /∈ Ω it takes

larger and larger values with λ (when the constraint is violated). Notice that the

approximated problem (2.2) can be written as

min{fλ(x) : x ∈ X}, (2.4)

where

fλ(x) = f0(x) + λdist(x,Ω), (2.5)

is a real-valued function. Thus the approximated problems (2.2) are unconstrained

problems. As λ → +∞, the (generalized) sequence of functions (2.5) increases to

the function f : X → R ∪ {∞}, which is equal to

f(x) =



f0(x), if x ∈ Ω,

+∞, otherwise.
. (2.6)

Thus we are led to minimization of an extended real-valued function f :

min{f(x) : x ∈ X}

where f is given by (2.6). Let us note that if we introduce the indicator function

δΩ of the set Ω:

δΩ(x) =



0, if x ∈ Ω,

+∞, otherwise,
. (2.7)

then we have the convenient expression f = f0+δΩ. We now come to the following

generalization of the Min-Max Theorem popularly called the Weierstrass theorem.
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The set of all the global minimizers of f on X is usually denoted by argminX(f).

The next theorem gives the conditions under which argminX(f) 6= ∅.

Theorem 2.1. Let X be a topological space and let f : X → R ∪ {+∞} be

an extended real-valued function which is lower semicontinuous and inf-compact.

Then infXf > −∞, and there exists some x̂ ∈ X which minimizes f on X:

f(x̂) ≤ f(x) ∀x ∈ X.

Proof. We need to prove that argminf 6= ∅. Indeed,

argminf =
⋂

α>infXf

levαf

=
⋂

α0>α>infXf

levαf,

where α0 > infXf is taken arbitrary. The conclusion now follows from the com-

pactness of the level set levα0
f and the finite intersection property of the closed

sets levαf for α0 > α > infXf. �

Remark 2.3. As a corollary of the preceding theorem, we have: Let X be a topo-

logical space and K be a compact subset of X . If f : X → R ∪ {+∞} is lower

semicontinuous, then argminK(f) 6= ∅.

Remark 2.4. A scrutiny of the proof of the preceding theorem reveals that the

inf-compactness assumption on f can be slightly relaxed. In fact, the compactness

of some lower level set levα0
f at a height α0 > infXf is all that we need for

ensuring the conclusion of this theorem.

Theorem 2.2. Let X be a topological space and f : X → R∪{+∞} be a function

which is lsc and such that for some α0 > infXf, levα0
is compact. Then infXf >

−∞ and

argminX(f) 6= ∅.

To consider the difference between the last two theorems, let us take X = R
n

and f(x) = ‖x‖
1+‖x‖ . Then levαf is compact for each α < 1, but lev1f = R

n. We

can apply the preceding theorem to conclude the existence of a minimizer which

is 0 in this case.

Corollary 2.1. Let X = R
n with the usual topology, and f : X → R ∪ {+∞} be

a function which is lsc and coercive. Then

argminX(f) 6= ∅.

A natural generalization of the above corollary to infinite dimensional spaces

is the next well known theorem.
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Theorem 2.3. Let X be a reflexive Banach space and let f : X → R ∪ {+∞} be

convex lsc and coercive function. Then

argminX(f) 6= ∅.

Proof. Since f is convex lsc, it is weakly lsc. Also the sublevel sets of f are

bounded in view of the coercivity of f . Hence f is weakly inf-compact in view of

the reflexivity of X . An application of Theorem 2.1 taking the topology as the

weak topology gives the desired conclusion. �

In many situations of practical interest, the objective function f to be min-

imized fails to be lower semicontinuous for a topology τ for which a minimizing

sequence is τ -relatively compact. This necessitates the introduction of a τ -lower

closure of f for consideration of the relaxed problem as follows

Definition 2.2. Given a topological space (X, τ) and a function f : X → R ∪

{+∞}, the τ -lower envelope of f is defined as

lscτf = sup{g : X → R ∪ {+∞}, g τ − lsc, g ≤ f}.

Remark 2.5. It is easily seen that for a function f : X → R ∪ {+∞}, for any

x ∈ X ,

lscτf(x) = liminfy→xf(y) = min{liminfλf(xλ) : net xλ → x}.

Also, it is clear that f is τ -lsc at x ∈ X if and only if f(x) = lscτf(x).

Example 2.1. Consider the function f : R → R defined by

f(x) =



1, if x ∈ R, x ≤ 0

0, if x ∈ R, x > 0
. (2.8)

Clearly, the function f is not lsc, its lower closure is the function

lscτf(x) =



1, if x ∈ R, x < 0

0, if x ∈ R, x ≥ 0
. (2.9)

Remark 2.6. For a function f : X → R ∪ {+∞}, it is easily seen that

infX(f) = infX(lscτf). (2.10)

Also,

argminX(f) ⊂ argminX(lscτf).
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2.2. Tikhonov well-posedness of minimization problems. Let X be a con-

vergence space: convergence of sequences < xn > (or nets < xλ > is defined in X

satisfying the ‘Kuratowski axioms’. Let

f : X → (−∞,+∞](= R ∪ {+∞})

be a proper function which is bounded below. Consider the minimization problem

(X, f) :

min{f(x) : x ∈ X}.

Let us denote

vX(f) = inf
X

f := inf{f(x) : x ∈ X}

the optimal value function. Let

argminX(f) := {x ∈ X : f(x) = vX(f)},

denote the set of optimal solutions of (X, f), and for ǫ ≥ 0, let

ǫ− argminX(f) := {x ∈ X : f(x) ≤ vX(f) + ǫ}

denote the non-void set of ǫ-approximate solutions of (X, f). Apparently, the first

notion of well-posedness for minimization problems is due to Tikhonov (1963),

which demands

• Existence and uniqueness of a global minimizer: ∃x0 ∈ X such that {x0} =

argminX(f).

• Whenever, one is able to compute approximately the optimal value f(x0) =

vX(f), one automatically approximates the optimal solution x0.

• More precisely, if < xn >⊂ X is a sequence such that f(xn) −→ vX(f)

(such a sequence is called a minimizing sequence for (X, f)), then xn →

x0 where {x0} = argminX(f).

• Put differently, problem (X, f) isTikhonov well-posed (T.W.p.) if f has a

unique global minimizer on X towards which every minimizing sequence

converges.

The following example illustrates that uniqueness of a global minimizer of f need

not entail Tikhonov well-posedness of problem (X, f).

Example 2.2. Let X = R and let

f(x) = −x, if x < 0, |x− 1|, if x ≥ 0.

Here argminX(f) = {1}, x0 = 1, vX(f) = 0.

Let xn = − 1
n
. Then < xn > is a minimizing sequence which fails to converge to

x0.

The next example is a classical example usually encountered in mathematical

programming.
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Example 2.3. Let Ω ⊂ R
n, and f ∈ C(2)(Ω),x0 ∈ Ω. Suppose ∇f(x0) = 0, and

that the Hessian Hf (x0) is positive definite. Then x0 is a local minimizer of f.

By Taylor’s formula, there is a α > 0 such that

f(x) ≥ f(x0) + α‖x− x0‖
2,x ∈ B. (2.11)

Here the problem (B, f) is T.w.p.

The example to follow shows that if problem (X, f) is not Tikhonov well-posed,

then one may find a minimizing sequence which is not convergent.

Example 2.4. Let E = R
2, equipped with the box norm ‖x‖ = max{|x1|, |x2|}, x =

(x1, x2) ∈ R
2. Let X = {(x1, 0) : x1 ∈ R}. Let f(x) = ‖(0, 1) − (x1, 0)‖, x ∈

X. Here vX(f) = 1, argminXf = {(x1, 0) : −1 ≤ x1 ≤ 1}. Clearly, (X, f) is

not Tikhonov well-posed. However, if we define xn = (−1, 0), if n is even and

xn = (1, 0), if n is odd, then clearly {xn} is a minimizing sequence which is not

convergent.

The next theorem lists some of the classical sufficient conditions for Tikhonov

well-posedness of problem (X, f) (cf.,e.g., [11]).

Theorem 2.4. Under any one of the following conditions, problem (X, f) is

T.w.p.

(i) X = R
n, f : X → R is strictly convex, and coercive:

f(x) −→ +∞ as ‖x‖ → ∞.

(ii) E is a reflexive Banach space,

X ⊂ E is a nonempty closed convex set, f : X → R ∪ {+∞} is proper,

strictly convex, lsc, and coercive.

(iii) X = R
k, f : X → R is convex and lsc, argminX(f) is a singleton.

For geometric notions in Banach spaces from the theory of best approximations

needed in the next two results one may refer to Chapter 8 of [20].

Theorem 2.5. Let X be a nonempty closed and convex subset of a Banach space

E which is in the class (Rf) ∩ (R) ∩ (A) of Banach spaces that are reflexive,

strictly convex and satisfying the Kadec norm property (A): the weak convergence

of a norm one sequence {xn} in E implies its strong convergence. Let fu : X → R

be defined by:

fu(x) = ‖u− x‖, x ∈ X.

Then (X, fu) is T.w.p. for each u ∈ E.

Corollary 2.2. If X is a nonempty closed and convex subset of a uniformly convex

Banach space E and fu is the function as defined in the previous theorem, then

(X, fu) is T.w.p.for each u ∈ E.
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Remark 2.7. Let X be a subset of a normed linear space E. Let us recall that X

is said to be (i)Chebyshev if each element u ∈ E has a unique best approximation

(nearest element) from X and it is said to be (ii) approximatively compact if

for each u ∈ E each minimizing sequence {xn} ∈ X , i.e., a sequence such that

‖u − xn‖ → dist(u,X), has a convergent subsequence converging in X. If X

is Chebyshev and approximatively compact, then it is easily seen that (X, fu) is

T.w.p. for each u ∈ E. Here fu is the function as defined in the last theorem.

Definition 2.3. Recall that a function c : T → [0,+∞) is called a forcing function

(or a firm function)if

0 ∈ T ⊂ [0,+∞), < tn >⊂ T, c(tn) → 0 ⇒ tn → 0.

Also, recall that if K is a nonempty convex subset of a normed space then a

function f : K → R is said to be quasi-uniformly convex if there exists a forcing

function c : [0,+∞) → [0,+∞) such that

f(αx+(1−α)y) ≤ max{f(x), f(y)}−c(‖x−y‖), ∀x, y ∈ K and α ∈ (0, 1). (2.12)

Theorem 2.6. ([11]) Let K be a nonempty closed and convex subset of a Banach

space X, and f : K → R be lower semicontinuous, bounded below, and quasi-

uniformly convex. Then problem (K, f) is T.w.p.

2.3. Tikhonov regularization of ill-posed problems. Let us consider problem

(K, f) where K ⊂ X , a Banach space and f : X → R are such that (K, f) is

Tikhonov ill-posed. Our aim here is to explore a strongly convergent minimizing

sequence for (K, f) by approximately solving appropriate perturbations of (K, f)

by adding to f a small regularizing term.This procedure seems fairly practical

since only approximate knowledge of f is all that is required. Fix up sequences

αn > 0, ǫn ≥ 0 such that αn → 0 and ǫn → 0. For regularizing (K, f), we add to f

a small non-negative quasi-uniformly convex term αng defined on the whole of X .

Theorem 2.7. Let X be a Banach space,f : X → R be w−sequentially l.s.c.,

K ⊂ X be nonempty w-compact, and g : X → [0,+∞) be l.s.c. and quasi-

uniformly convex. Let αn > 0, ǫn ≥ 0 be given sequences of numbers such that

αn → 0 and ǫn → 0. Then the following conclusions hold:

(i) If un ∈ ǫn−argminK(f+αng), n ∈ N, then < un > is a minimizing sequence

for (K, f) : f(un) → vK(f).

Also, if ǫn
αn

→ 0, then we have:

(ii) ∅ 6= limsupn[ǫn − argminK(f + αng)] ⊂ argminargminK(f)(g).

Furthermore, if K and f are both convex, then we have:

(iii) argminargminK(f)(g) is a singleton and denoting this set by {ũ}, we have

un → ũ if un ∈ ǫn − argminK(f + αng), n ∈ N.
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Remark 2.8. The above result which is a modified form of a result in [11], attrib-

uted to [19], already motivates the use of the terms ‘viscosity function’ g and the

‘viscosity solutions’ argminargminK(f)(g) in what follows.

2.4. Viscosity approximation of minimization problems. Viscosity meth-

ods have been long employed for studying diverse problems arising in variational

analysis and optimization. (cf.,e.g.,[3] for viscosity solutions of minimization prob-

lems, [12] for minimal hypersurface problem, [25] for plasticity, [27] for Tikhonov

regularization, [9] for control theory: Hamilton-Jacobi equations, [11] for well-

posedness and Tikhonov regularization). A characteristic feature of these meth-

ods is to capture as a limit of solutions of approximating problems, obtained by

perturbing the objective function by a small multiple of a well behaved function,

a particular solution of the underlying problem, the so-called viscosity solution

which is often the preferred solution.

An abstract setting

Let X be an arbitrary set to be equipped with a suitable topology τ . Let

f : X → R∪{+∞} be a given extended real-valued function whose definition may

be determined by some constraints. Let us consider the minimization problem

(P ) min{f(x) : x ∈ X}.

Given g : X → R
+∪{+∞} called the viscosity function and a sequence 〈ǫn〉 ⊂ R

+,

convergent to 0, let us consider the sequence of perturbed minimization problems:

(Pn) min{f(x) + ǫng(x) : x ∈ X}.

It is assumed that for each n ∈ N, there exists a solution un of (Pn),

Our main goal here is to investigate the convergence of the sequence {un} and

to characterize its limit. To this end, the notion of variational convergence called

Γ-convergence given below, introduced by De Giogi and Franzoni[10] (also, called

epi-convergence in Attouch [2, 3]), is very useful.

Definition 2.4. Given a topological space (X, τ) and functions < f, fn : X →

R ∪ {+∞}, n ∈ N >, the sequence < fn > is said to Γ-converge to f , written

τ − Γ− limn→∞ fn = f, if for each x ∈ X , we have:

(i) There exists < xn > which is τ -convergent to x for which

lim supn→∞fn(xn) ≤ f(x);

(i) Whenever < xn > is τ -convergent to x, we have

f(x) ≤ lim infn→∞fn(xn).

For simplicity, we simply write fn
Γ
→ f, whenever {fn} Γ-converges to f . In

general, there is no connection between Γ-convergence and pointwize convergence.
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However, it is known (cf.[3]) that in case of monotone sequences the two notions

coincide upto lower closures.

(i) If

f1 ≤ f2 ≤ . . . ≤ fn ≤ . . . ,

then

τ − Γ− lim
n→∞

fn = supn∈N(lscτfn);

(ii) If

f1 ≥ f2 ≥ . . . ≥ fn ≥ . . . ,

then

τ − Γ− lim
n→∞

fn = lscτ(infnfn).

This explains in some sense the success of monotone approximation schemes and

viscosity methods in variational analysis and optimization.

Remark 2.9. Let (X, τ) be a first countable topological space and f : X → R ∪

{+∞} be a given function . If we take the sequence < fn > to be the constant

sequence fn = f, n ∈ N then it is easy to see that fn
Γ
→ lscτf . From this, one

concludes that Γ-convergence is not topological.

The following result is mostly well known (cf., e.g., [4, p. 466]).

Theorem 2.8. Let us be given a sequence < ǫn >⊂ R
+ such that ǫn → 0 and a

sequence of minimization problems

(Pn) min{fn(x) : x ∈ X}.

Assume that there exists a topology τ on X such that:

(i) For every n ∈ N, there exists an ǫn-approximate solution un to (Pn), un ∈

ǫn − argminX(fn), n ∈ N, such that the sequence < un : n ∈ N > is τ-

relatively compact;

(ii) f = τ − Γ− limn→∞ fn.

Then

lim
n→∞

vX(fn) = vX(f),

and every τ-cluster point û of < un > minimizes f on X, i.e., û ∈ argminX(f).

The following theorem is a modifed version of Theorem 2.6 in [3] for the relaxed

problem .

Theorem 2.9. Let f : X → R ∪ {+∞} be a given function which is proper and

bounded below. Consider the associated minimization problem:

(P ) min{f(x);x ∈ X}.
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Let < ǫn >,< αn >,n ∈ N be given sequences in R
+, ǫn 6= 0, such that ǫn →

0, αn → 0, and letting βn := αn

ǫn
, βn → 0.

Let us be given a function g : X → R
+ ∪ {+∞}(called the viscosity function),and

for each n ∈ N, consider the perturbed minimization problem

(Pn) min{f(x) + ǫng(x) : x ∈ X}.

Assume that there exists an αn-approximate solution of (Pn) : un ∈ αn−argminX

(fn), n ∈ N, where fn := f + ǫng such that for some topology τ on X, we have:

(i) The sequence < un >n∈N is τ-relatively compact;

(ii) lscτ(f + δdom(g)) = lscτ (f), and the function g is τ-l.s.c.

(iii) lscτ(f + ǫng) = lscτf + ǫng ∀n ∈ N;

(iv) dom(g) ∩ argminX(lscτf) 6= ∅.

Here dom(g) denotes the effective domain of g.

Then every τ-cluster point û of < un > minimizes the function lscτf on X,

limn f(un) = vX(f), and û satisfies for all v ∈ argminX(lscτf), the so-called

relaxed viscosity selection criterion

û ∈ argminX(lscτf), g(û) ≤ g(v) ⇔ û ∈ argminargminX (lscτf)(g).

Moreover, the sequence < un > is a minimizing sequence of problem (P ) :

lim
n→∞

1

ǫn
[f(un)− vX(f)] = 0

and also, limn→∞ g(un) = vargminX (lscτ f)(g).

Corollary 2.3. Under the assumptions as in the previous theorem, except that

the viscosity function g : X → R
+ is assumed to be finite-valued, the conditions

(iii) and (iv) are dropped, and in place of (iii) we assume (iii)‘: f and g are both

τ-lsc, then the conclusions as stated in the theorem hold.

The next theorem for viscosity solutions of convex minimization problems is

a modifed version of a result in [3].

Theorem 2.10. Let X be a reflexive Banach space (resp. the dual E∗ of a sepa-

rable normed space E),and f as above is a proper, convex, l.s.c. (resp. w∗-l.s.c.)

function which is bounded below and g : X → R
+ is coercive:

lim‖x‖→∞g(x) = ∞.

Then the sequence un as in the previous theorem is bounded if and only if argminX(f) 6=

∅. In that case, every w−(resp. w ∗−)cluster point û of the sequence < un > min-

imizes f on X and satisfies the following viscosity selection property:

(V SP ) û ∈ argminargminX(f)(g).
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Moreover, the sequence < un > is a minimizing sequence of problem (P ) :

lim
n→∞

1

ǫn
[f(un)− vX(f)] = 0

and also, limn→∞ g(un) = vargminX (f)(g).

3. Viscosity Approximation of Fixed Points

3.1. Introduction. Let K be a nonempty, closed and convex subset of a (real)

Banach space X . Let T : K → K be a non-expansive map:

‖Tx− Ty‖ ≤ ‖x− y‖ ∀x, y ∈ K.

We are mostly concerned here with the approximation of fixed points of T. Let

Fix(T ) denote the set

{x ∈ K : x = Tx}

of fixed points of T. It is well known that, even if Fix(T ) 6= ∅, the sequence of

Picard iterates xn = T nx0, n ∈ N, of T may fail to converge. Also, Fix(T ) need

not contain just one element.

3.2. Fixed point property.

Definition 3.1. A nonempty, bounded closed convex subset K of a Banach space

X is said to satisfy the fixed point property (f.p.p.) if Fix(T ) 6= ∅ for every non-

expansive map T : K → K.

In this connection, a central question which was being asked is the following:

What conditions on K or X ensure that K satisfies f.p.p.?

The question, as stated above, arose in four interesting papers which appeared

in 1965. The answers are given in the theorem given below.

Theorem 3.1. Let K be a nonempty bounded closed convex subset of a Banach

space X. Then K admits f.p.p. under any of the following conditions.

(i) (Browder [6])

X is a Hilbert space.

(ii) (Browder[7], Göhde[13])

X is uniformly convex.

(iii) (Kirk[15])

Kis weakly compact, and it has normal structure:

Every nonempty bounded convex subset S of K , containing at least two

points, admits a nondiametral point x:

r(x, S) := supy∈S‖x− y‖ < diam(S) := sup{‖y1 − y2‖ : y1, y2 ∈ S}.



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

66 D. V. PAI

A historical conjecture

For a while it was conjectured that

Any nonempty weakly compact convex subset of a Banach space must satisfy f.p.p.

This conjecture was settled in the negative by Alspach [1], who gave an in-

teresting example of a weakly compact convex subset of L1[0, 1] which admits an

isometry lacking a fixed point.

3.3. Viscosity approximation of fixed points. Let us be given a non-expansive

map T : K → K, where K is a nonempty closed convex subset of a Banach space

X. It is easily seen that Fix(T ) is closed, and that it is convex provided X is

strictly convex. Let us be given a contraction f : K → K :

‖f(x)− f(y)‖ ≤ α‖x− y‖ ∀x, y ∈ K,

for some α ∈ (0, 1). Assuming Fix(T ) 6= ∅, for each ǫ ∈ (0, 1), let us consider the

perturbed map Tǫ : K → K given by

Tǫx = ǫf(x) + (1 − ǫ)Tx, x ∈ K. (3.1)

Approximation of fixed points

Let us note that

• Tǫ is a contraction on K. Hence,

• it has a unique fixed point xǫ in K:

xǫ = ǫf(xǫ) + (1− ǫ)T (xǫ). (3.2)

Our aim here is to review some of the results concerning convergence of the net

< xǫ >, as given in (3.2), to a fixed point of T. Apparently, the first result in this

direction is due to Browder[8], which is stated below.

Fix up u ∈ K, and consider the contraction Pǫ on K defined by

Pǫx = ǫu+ (1− ǫ)Tx, x ∈ K. (3.3)

Let uǫ ∈ K be the unique fixed point of Pǫ:

uǫ = ǫu+ (1− ǫ)Tuǫ. (3.4)

First viscosity result for fixed points

In case X is a Hilbert space, using monotonicity and demi-closedness of the

operator I − P , Browder [8] established the following result.

Theorem 3.2. (Browder)

In a Hilbert space X, the net < uǫ : ǫ ∈ (0, 1) >, as defined in (3.4), converges

to the unique fixed point of T that is nearest to u, in other words, to the best

approximation of u onto Fix(T ).
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In order to review some generalizations of this result to Banach spaces, we

need to recall below some definitions.

Definition 3.2. LetS(X) denote the unit sphere {x ∈ X : ‖x‖ = 1} of the Banach

space X . The norm ‖.‖ in X is said to be Gâteaux differentiable if the limit

limt→0
‖x+ ty‖ − ‖x‖

t

exists for each x, y ∈ S(X); X is said to have a uniformly Gâteaux differentiable

norm if for each y ∈ S(X), the above limit is uniform for x ∈ S(X).

Definition 3.3. If dim(X) ≥ 2, the modulus of smoothness of X is the function

ρX : [0,∞) → [0,∞) defined by

ρX(θ) := sup{
‖x+ y‖+ ‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = θ}.

The space X is said to be

(i) smooth, if the norm ‖.‖ is Gâteaux differentiable;

(ii) uniformly smooth, if

limθ→0
ρX(θ)

θ
= 0.

The following theorem partially generalizes Theorem 3.2.

Theorem 3.3. (Reich[24], Morales and Jung[22])

Let K be a nonempty closed and convex subset of a Banach space X which has

a uniformly Gâteaux differentiable norm, and let T : K → K be a non-expansive

map with Fix(T ) 6= ∅. Then for any choice of u ∈ K the net < uǫ >, as defined

in (3.4), converges to a fixed point of T.

Explicit iteration

An explicit iterative process suggested by discretization of (3.2) is

xn+1 = ǫnf(xn) + (1− ǫn)Txn, n ∈ N, (3.5)

where {ǫn} is a sequence in (0, 1).

A special case of (3.5) is the iterative process

un+1 = ǫnu+ (1− ǫn)Tun, n ∈ N, (3.6)

where u, u0 in K are arbitrary and {ǫn} ⊂ (0, 1).

This iteration was first introduced by Halpern[14] in the framework of Hilbert

spaces. He proved the weak convergence of {un} to a fixed point of T , where

ǫn := n−a, a ∈ (0, 1). Lions[18] further improved the result of Halpern as follows.

Theorem 3.4. In a Hilbert space X, the sequence {un} as defined in (3.6) con-

verges to the unique best approximation of u onto Fix(T ), provided {ǫn} satisfies

the following:
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(L1) limn→∞ ǫn = 0;

(L2)
∑

ǫn = ∞;

(L3) lim |ǫn−ǫn−1|
ǫ2
n

= 0.

Whittman[28] showed that the above theorem holds with condition (L3) re-

placed by the condition

(W3)
∑

|ǫn+1 − ǫn| < ∞,

the other conditions remaining the same.

For viscosity approximation, Moudafi [23] established the convergence in the norm

of the implicit method (3.2) by taking ǫ = ǫn = δn
1+δn

as well as the strong conver-

gence of the explicit method (3.5) by taking ǫn as above. In the latter case, the

condition (L3) of Lions was replaced by

(M3) lim
n→∞

|
1

δn
−

1

δn−1
| = 0.

In each case, the iterates converge to the unique fixed point of PFix(T ) ◦ f.

Both the results of Moudafi[23] were extended by Xu[29] as follows:

Theorem 3.5. In a Hilbert space X, let the net < xǫ > be given by (3.2). Then

we have:

(i) limǫ→0 xǫ = x̂ exists;

(ii) x̂ = PFix(T )f(x̂), or equivalently, x̂ is the unique solution in Fix(T ) to the

variational inequality

(V I) 〈(I − f)x̂, x̂− x〉 ≤ 0, x ∈ Fix(T ), (3.7)

where PFix(T ) denotes the metric projection onto Fix(T )

In the sequel, we denote by ΛK the set of all contractions f : K → K.

Theorem 3.6. Let X be a Hilbert space, K be a nonempty closed convex subset

of X,T : K → K be a non-expansive map with Fix(T ) 6= ∅, and f : K → K

be a contraction. Let the sequence {xn} be generated by (3.5). Then under the

hypothesis (H1)-(H3), where (H1) = (L1), (H2) = (L2), and

(H3) either
∑

|ǫn+1 − ǫn| < ∞ or lim
ǫn+1

ǫn
= 1, (3.8)

xn → x̂, where x̂ is the unique solution of the variational inequalities (3.7).

The next two theorems from [29] are Banach space versions of Theorems 3.5

and 3.6.
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Theorem 3.7. Let X be a uniformly smooth Banach space, K a nonempty closed

convex subset of X,T : K → K a nonexpansive map with Fix(T ) 6= ∅, and

f ∈ ΛK . Then the net < xǫ : ǫ ∈ (0, 1) > defined by (3.2) converges to an element

of Fix(T ). If Q : ΛK → Fix(T ) is defined by

Q(f) := lim
ǫ→0

xǫ, f ∈ ΛK , (3.9)

then Q(f) solves the variational inequalities

〈(I − f)Q(f), J(Q(f)− x)〉 ≤ 0, f ∈ ΛK , x ∈ Fix(T ). (3.10)

Here J denotes the duality map of X defined by

J(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, x ∈ X.

Remark 3.1. In particular, if we take f = u ∈ K, a constant, then (3.10) is reduced

to

〈Qu− u, J(Qu− x)〉 ≤ 0, u ∈ K, x ∈ Fix(T ), (3.11)

which is a result of Reich [24].

Theorem 3.8. Let X be a uniformly smooth Banach space, K a nonempty closed

convex subset of X,T : K → K a nonexpansive mapping with Fix(T ) 6= ∅, and

f ∈ ΛK . Then the sequence {xn} defined by (3.5), where {ǫn} satisfies (H1)-(H3)

as in Theorem 3.6, converges to Q(f), where Q : ΛK → Fix(T ) is defined by (3.6).

3.4. Minimum-norm fixed points. For an ill-posed minimization problem posed

over a Hilbert space X , if the viscosity function used for regularization is g(x) =
1
2‖x‖

2, then one knows that the so-called viscosity solution is a minimum norm

solution among all the solutions of the original problem. As a typical example, let

us consider the ill-posed constrained linear inverse problem:

Tx = y, x ∈ K, (3.12)

where X,Y are Hilbert spaces, K is a nonempty closed convex subset of Y , T :

X → Y is a bounded linear map and y ∈ Y. The problem is said to be well-posed

if there is a unique solution which depends continuously on the data y; otherwise,

it is said to be ill-posed. In case the problem is ill-posed, one looks for a least

residual norm (LRN) solution which is the least squares solution of the convex

quadratic problem

(P ) min{‖Tx− y‖2 : x ∈ K}.

Let Sy denote the solution set of (P ) which is closed and convex. It is well known

that

Sy 6= ∅ ⇔ P
T (K)

(y) ∈ T (K).

Problem (3.12) has a solution if this feasibility condition is satisfied.
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Theorem 3.9. The following statements are equivalent.

(i) (feasibility condition)

x̂ is a solution of problem (P ) : x̂ ∈ Sy.

(ii) (Euler condition)

x̂ satisfies the variational inequalities

〈T ∗(T x̂− y), x̂− x〉 ≤ 0, x ∈ K, (3.13)

where T ∗ denotes the adjoint of T.

(iii) (fixed point condition)

x̂ satisfies the fixed point equation

x̂ = PK(x̂− λT ∗(T x̂− y)), (3.14)

for any scalar λ > 0.

It can be seen that for 0 < λ < 2
‖T‖2 , the map

x −→ PK(x− λT ∗(Tx− y))

is non-expansive. Since the viscosity solution x̃ of the constrained linear inverse

problem (3.12) is the minimum-norm element of the set Sy of solutions of the

minimization problem (P ), the problem of finding the viscosity solution of (3.12)

is equivalent to the one of finding the minimum-norm fixed point of the non-

expansive map

x −→ PK(x− λT ∗(Tx− y)).

This motivates the consideration of the minimum-norm fixed point of a non-

expansive map T : K → K, given that Fix(T ) 6= ∅,

find x̃ ∈ Fix(T ), ‖x̃‖2 = min{‖x‖2 : x ∈ Fix(T )}. (3.15)

In the framework of Hilbert spaces, let us consider the implicit scheme (3.2)

of Browder as well as the explicit scheme (3.5) of Halpern under condition (3.8).

If 0 ∈ K, then by Theorem 3.5 and Theorem 3.6, it is clear that both these

schemes converge to the unique minimum-norm fixed point of T . If 0 /∈ K, both

these iterations fail. In this case, in Yao and Xu[30] the following alternative for

Browder’s scheme

xǫ = PK((1− ǫ)Txǫ)

and the following alternative

xn+1 = PK((1 − ǫn)Txn), n ∈ N

for the Halpern’s scheme were considered. It was shown that both these schemes

converge to the unique minimum-norm fixed point of T. Natural generalizations



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

VISCOSITY APPROXIMATION METHODS FOR MINIMIZATION . . . 71

of Theorem 3.5 and Theorem 3.6 to minimum-norm fixed points of T are given in

[30].

Finally, let us mention that except for a few results in the beginning, we have

not attempted to give detailed proofs of any of the theorems given here, keeping

in view the expected survey nature of this article.
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Abstract. Subdivision of an edge, addition of an edge, the splitting opera-

tion (H. Fleischner [1990])and vertex splitting operation (P. Slater [1974]) are

well known operations on graphs and have important applications. We con-

sider generalizations of these operations and related graph results to binary

matroids.

1. Introduction

First we take a review of some graph theoretic operations, related results and

their applications. We then provide basic concepts in matroid theory and later on

concentrate on generalizations of these graph theoretic results to matroids.

The connectivity k(G) of a graph G is the minimum number of vertices whose

removal results in a disconnected or trivial graph. The graph G is n-connected if

k(G) ≥ n. Subdivision of an edge means replacing an edge of a graph by a path of

length two. Addition of an edge means adding an edge between two non adjacent

vertices of a graph.

Hedetniemi [8] classified 2-connected graphs in terms of the above two opera-

tions. He proved the following theorem.

Theorem 1.1 ([8]). Let G be a nontrivial graph that is not a bridge. Then G is

2-connected if and only if G is a loop or can be obtained from a loop by a finite

sequence of subdivisions and edge additions.

Slater [23] specified the notion of n-vertex splitting operation on graphs in the

following way: Let G be a graph and u be a vertex of G with deg u ≥ 2n− 2. Let

H be the graph obtained from G by replacing u by two adjacent vertices u1 and
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u2, and if x is adjacent to u in G, written x adj u, then make x adj u1 or x adj u2

(but not both) such that deg u1 ≥ n and deg u2 ≥ n. The transition from G to

H is called an n-vertex splitting operation (see Figure 1).
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Figure 1

Note

that if G is connected then the new graph H is connected. We have the following

theorem.

Theorem 1.2 ([23]). If G is n-connected and H arises from G by n-vertex split-

ting, then H is n-connected.

The following theorems provide characterizations of classes of 1-connected

and 2-connected graphs in terms of the 1-vertex, and 2-vertex splitting operations

respectively.

Theorem 1.3 ([23]). The class of 1-connected graphs is the class of graphs ob-

tained from K2 by finite sequences of edge addition and 1-vertex splitting.

Theorem 1.4 ([23]). The class of 2-connected graphs is the class of graphs ob-

tained from K3 by finite sequences of edge addition and 2-vertex splitting.

Slater [24], proved that the class of n-connected graphs can be generated from

Kn+1 using n-vertex splitting operation together with some other operations. The

sum of two graphs G1 = (V1, E1) and G2 = (V2, E2), denoted by G1 +G2, is the

graph whose vertex set is V1 ∪ V2 and edge set consists of E1 ∪ E2 and all edges

joining every vertex of V1 to every vertex of V2. For n ≥ 4 the wheel Wn is defined

to be the graph K1 + Cn−1 where K1 is the complete graph with one vertex and

Cn−1 is a cycle with n− 1 vertices.

r
rr
r r

r
Figure 2 : W6

Tutte [26] provided the following property of 3-connected graphs.

Theorem 1.5. For a 3-connected simple graph the following are equivalent.
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(1) For every edge e, neither G \ e nor G/e is both simple and 3-connected.

(2) G is a wheel with at least four vertices.

In the following theorem, Tutte gave the constructive characterization of 3-

connected graphs.

Theorem 1.6 ([26]). A graph is 3-connected if and only if G is a wheel or can

be obtained from a wheel by a sequence of operations of edge addition and 3-vertex

splitting.

A walk in a graph G is a list v0, e1, v1, ..., ek, vk of vertices and edges such that,

for 1 ≤ i ≤ k, the edge ei has end vertices vi−1 and vi. A trail is a walk with no

repeated edge. v0 and vk are the end vertices of the walk. A walk or trail is closed

if its end-vertices are the same.

A graph is Eulerian if it has a closed trail containing all edges. In other words,

a graph is Eulerian if it contains a closed walk that traverses each edge exactly

once. Eulerian graphs form an important class of graphs. One can find several

applications of Eulerian graphs in literature (see [6]). For terminology concerning

graphs, we refer to [6, 7].

Several characterizations of Eulerian graphs have been given by mathemati-

cians. The following classic characterization of Eulerian graphs due to Euler is

well known.

Theorem 1.7. A connected graph is Eulerian if and only if all its vertices have

even degree.

A bond in a graph G is a minimal disconnecting set of edges of the graph. It

is not difficult to show that every vertex of a graph has even degree if and only if

every bond has even cardinality. Therefore the above theorem can be restated as

follows.

Theorem 1.8. A connected graph is Eulerian if and only if every bond has even

cardinality.

Shank [13] characterized Eulerian graphs in terms of the number of subsets of

their spanning trees. In fact, he proved the following theorem.

Theorem 1.9 ([13]). A connected graph G is Eulerian if and only if the number

of subsets of E(G) each of which is contained in a spanning tree of G is odd.

r r r rr r r r
r r r r

1 2

3

1

3

1 2

3

2

G T1
T2 T3

Figure 3: A graph G and its spanning trees
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Let G be a complete graph on three vertices and E(G) = {1, 2, 3}. T1, T2 and

T3 are the spanning trees of G (see Figure 3). The subsets of E(G) each of which

is contained in a spanning tree of G are φ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}.

Total number of sets is 7, an odd number.

Toida [25] characterized the class of Eulerian graphs in terms of the number

of cycles of a graph containing each edge of the graph. Indeed, he proved the

following result.

Theorem 1.10 ([25]). A connected graph G is Eulerian if and only if every edge

of G lies on an odd number of cycles.

We observe that a connected graph is Eulerian if and only if its edge set

can be partitioned into cycles. Bondy and Helberstan [2] provided the following

characterization of Eulerian graphs.

Theorem 1.11 ([2]). A graph is Eulerian if and only if the edge set has an odd

number of cycle partitions.

Fleischner [6] defined the splitting operation on graphs in the following way:

Let G be a connected graph and let v be a vertex of degree at least three in G. If

x = vv1 and y = vv2 are two edges incident at v, then splitting the pair x, y from

v results in a new graph Gx,y obtained from G by deleting the edges x and y, and

adding a new vertex vx,y adjacent to v1 and v2 . The transition from G to Gx,y is

called the splitting operation. For practical purpose, we also denote the new edges

vx,yv1 and vx,yv2 in Gx,y by x and y, respectively. Note the the edges x and y

form a bond of Gx,y. The graph G can be retrieved from Gx,y by identifying the

vertices v and vx,y. Figure 4 explicitly demonstrates this construction.

q q

q q

q q

q q

q q q

v1

v2

v1

v2

v
v

x

y

x

yvx,y

G Gx,y

✲

Figure 4: Graph and its splitting

Fleischner used splitting operation to characterize Eulerian graphs. In fact,

he proved the following theorem.

Theorem 1.12 ([6]). A graph G is Eulerian if and only if G can be transformed

into a cycle C through repeated applications of the splitting procedure on vertices

of degree exceeding two.

In the following proposition, we characterize the cycles of the graph Gx,y in

terms of the cycles of the graph G.
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Proposition 1.1 ([11]). A subset C of edges of Gx,y forms a cycle of Gx,y if and

only if C satisfies one of the following conditions:

(1) C is a cycle of G containing both x and y or neither.

(2) C = C1 ∪ C2 where C1 and C2 are edge disjoint cycles of G with x ∈ C1,

y ∈ C2 such that C1 ∪ C2 contains no cycle of Type (1).

In other words, the proposition characterizes the splitting operation in terms

of the cycles of the graphs. This proposition will be useful for extending the

splitting operation from graphs to binary matroids.

Remark 1.1. We observe that the graph Gx,y has one additional vertex than the

graph G viz. the vertex vx,y; x and y are the only edges incident at this vertex.

Consequently, the incidence matrix of Gx,y has one extra row(corresponding to

vx,y) than the incidence matrix of G. The entries in this row are zero everywhere

except in the columns corresponding to the edges x and y where it takes the value

1.

The splitting operation on a connected graph may not yield a connected graph.

Fleischner provided a sufficient condition for the splitting operation to preserve

the connectedness of the graph. Splitting Lemma is an useful tool in graph theory.

Splitting Lemma 1.1 ([6]). Let H be a connected bridgeless graph. Suppose

v ∈ V (H) with d(v) > 3 and x, y, z are the edges incident at v. Form the graphs

Hx,y and Hx,z by splitting away the pairs x, y and x, z respectively, and assume

that x and z belong to different blocks if v is a cut vertex of H. Then either Hx,y

or Hx,z is connected and bridgeless. In particular if v is a cut vertex, then Hx,z

has this property. Finally, if B ⊆ H is a block and x, y, z are edges in B then both

Hx,y and Hx,z are connected

r r r
rrr r

r r r
r

r r r
r r r

H
x x

y y

z z
Hx,y

x z

y

Hx,z

Figure 5: Illustration of the Splitting Lemma

The above graph theoretic results can be extended to the matroids. Matroids

are common generalizations of graph theoretic properties and linear algebraic prop-

erties. They have basic links to lattices, codes and projective geometry, and are of

fundamental importance in combinatorial optimization. Their applications extend

into electrical engineering and statics. For terminology in matroid theory, we refer

to [10].

2. Basics of Matroid Theory

Matroids can be defined in many different but equivalent ways. Here we

consider the two approaches - the Independent sets approach and the circuits

based approach.
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2.1. Independent sets and circuits. A matroid M is an ordered pair (E, I)

consisting of a finite set E and a collection I of subsets of E satisfying

(1) φ ∈ I

(2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I

(3) If I1 and I2 are in I and |I1| < |I2|, then there is an element e of I2 − I1

such that I1 ∪ e ∈ I.

The members of I are called the Independent sets of M . E is the ground set

of M . A base of M is a maximal independent set. All bases of M have same

number of elements. The number of elements in a basis of M is known as the rank

of M and is denoted by r(M). The dependent sets of M are subsets of E that

are not independent. A circuit of M is a minimal dependent set. We denote by

I(M), B(M) and C(M), respectively the set of independent sets, set of bases and

the set of circuits of M . E(M) will denote the ground set of M .

A matroid M is also defined as a pair (E, C), where E is a finite set and C is

a collection of nonempty subsets of E satisfying

(1) No member of C contains another member properly.

(2) If C1 and C2 are distinct members of C and e ∈ C1 ∩ C2, then there is a

member C3 of C such that C3 ⊆ (C1 ∪ C2)− e.

Members of C are called circuits of M.

If I(M) is known then C(M) can be determined easily viz. identify dependent

sets and then choose minimal ones. On the other hand if C(M) is known then

I(M) viz. those subsets of E each of which contains no member of C(M). If the

set of bases of M is known then the set of independent sets can be determined viz.

those subsets of E(M) each of which is contained in some basis of M .

2.2. Matroids associated to graphs and matrices. We can associate a ma-

troid to a graph. Let G be a graph and E be the set of edges of G. Let C be the

set of edge sets of cycles of G. Then C is the set of circuits of a matroid on E. This

matroid is called the cycle matroid of G and is denoted by M(G).

Example 2.1. Consider the graph G as shown in Figure 6.

r

r

r❜✒✑
✓✏

e1

e5

e2

e3e4

Figure 6 : Graph G

Then

E(M(G)) = {e1, e2, e3, e4, e5}
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and

C(M(G)) = {{e3}, {e1, e4}, {e1, e2, e5}, {e2, e4, e5}}

A matroid can also be associated to a matrix. Let A be an m×n matrix over

a field F , E be the set of column labels of A and I be the set of subsets X of E for

which the set of columns labelled by X is linearly independent in the vector space

V (m,F ). Then (E, I) is a matroid. This matroid is called the vector matroid of

A and it is denoted by M [A].

Example 2.2. Let A be the matrix

1 2 3 4 5

A =

[
1 0 0 1 1

0 1 0 0 1

]

over the field R of real numbers. Then

E(M [A]) = {1, 2, 3, 4, 5}

and

I = {φ, {1}, {2}, {5}, {1, 2}, {1, 5}, {2, 4}, {2, 5}, {4, 5}}.

The set of circuits of this matroid is

C = {{3}, {1, 4}, {1, 2, 5}, {2, 4, 5}.}

Two matroids M1 and M2 are isomorphic, if there exists a bijection f from

E(M1) to E(M2) such that for all X ⊆ E(M1), the set f(X) is independent in M2

if and only if X is independent in M1. Such a bijection f is called an isomorphism

from M1 to M2. M1 is isomorphic to M2 is written as M1
∼= M2. For example,

the cycle matroid M(G) in Example 2.1 is isomorphic to the vector matriod M [A]

of Example 2.2. The bijection from E(M(G)) to E(M [A]) is f(ei) = i for i =

1, 2, · · · , 5.

A matroid M is said to be graphic if M ∼= M(G) for some graph G. For

example, the cycle matroid of a graph is graphic. An example of a non-graphic

matroid is as follows. Let E = {1, 2, 3, 4} and C(M) = {X⊆E: |X | =3}. Then

M = (E, C) is a non-graphic matroid.

Let M be a matroid on E with set of bases B. Then the set

B′ = {E − B : B ∈ B} is a set of bases of a matroid on E. This matroid is called

dual of M and is denoted by M∗. The circuits of M∗ are called the cocircuits of

M . If M = M(G) then circuits of M∗ are the bonds (or cut sets) of G. A matroid

M is said to be cographic if its dual M∗ is graphic, i. e. M∗ = M(G) for some

graph G. For example, the matroid M(K5) is graphic but not cographic.

The Fano matroid, denoted by F7, is the matroid defined on the set E =

{1, 2, 3, 4, 5, 6, 7},whose bases are all 3-element subsets ofE except {1, 2, 4}, {1, 3, 6},
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4 56
Figure 7

7

{2, 6, 7}, {4, 5, 6}, {1, 5, 7}, {3, 4, 7}, and {2, 3, 5}. In fact, these seven subsets of E

and their complements form the set of circuits of this matroid. F7 may be repre-

sented geometrically by the Figure (see Fig. 7). The elements of the ground set

are shown by the points in the plane. If the three elements form a circuit then

they are collinear. Note that the rank of F7 is 3 and the matroid is neither graphic

nor cographic.

If a matroid M is isomorphic to the vector matroid of a matrix A over a field

F, then M is said to be representable over F and A is called a representation for

M over F. A matroid is called binary if it is representable over GF (2). Several

characterizations of binary matroids are known (see [10]). Equivalently, a matroid

M is binary if symmetric difference of any number of circuits of M is a union of

disjoint circuits of M . Fano-matroid F7 is reprentable over GF (2). The following

matrix gives a representation of F7 over GF (2).

1 2 3 4 5 6 7

A =



1 0 0 1 0 1 1

0 1 0 1 1 0 1

0 0 1 0 1 1 1




2.3 Minors of Matroids

Let M = (E, I) be a matroid and X ⊂ E. Then deletion of X from M is a matroid

M \ X = (E − X, I ′) where I ′ = {Y ⊆ E − X : Y ∈ I}. Contraction of X in

M is defined in the following way. Let X0 be a maximal independent subset of X

in M . Then a contraction of X in M is the matroid M/X = (E −X, I”) where

I” = {Y ⊆ E −X : Y ∪X0 ∈ I}. Matroids obtained from a given matroid M by

sequence of deletions and contractions of subsets of E(M) are called as minors

of M . Minors are useful in characterizing various classes of matroids.

2.4 Connectivity in matroids

A matroid M is said to be connected if for every pair x, y of elements of E(M),

there exists a circuit ofM containing both x and y. The higher Connectivity of the

matroids is defined in terms of the separations of the ground set of the matroid.

Let k be a positive integer. Then, for a matroid M , a partition (X,Y ) of E is a

k-separation if
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min{|X |, |Y |} ≥ k, and r(X) + r(Y )− r(M) ≤ k − 1.

If M has a k-separation, then M is called k-separable. If M is k-separable for

some k, then the connectivity λ(M) of M is min{j : M is j-separable}; otherwise

we take λ(M) to be ∞. If n is an integer exceeding one, we shall say that M is

n-connected if λ(M) ≥ n.

It is well known that a graph is Eulerian if and only if its edge set can be

partitioned into cycles. Considering this property, Welsh [28] defined a matroid

M to be Eulerian if its ground set is a disjoint union of circuits of M . It is known

that a graph is bipartite if andonly if every cycle is of even length. We define a

matroid M tobe bipartite if every circuit has even cardinality.

3. Generalizations of Graph results to matroids

In this section, we consider the generalizations of the graph theoretic results

discussed in the first section to matroids. The operations of subdivision of an

edge of a graph is extended to matroids in the following way. A matroid M is a

series extension of a matroid N if M has a 2-element cocircuit {x, y} such that

the contraction M/x of x from M is N . Also the operation of addition of an edge

to a graph is extended to matroids as follows: A matroid M is a single element

extension of a matroid N if M has an element e such that the deletion of e from

M is N . This extension is non-trivial if e is neither a loop nor a coloop of M .

Shikare and Waphare [21] generalized Hedetniemi’s characterization of two

connected graphs (Theorem 1.1) to matroids. In fact, they proved the fololwing

theorem.

Theorem 3.1. Let M be a nonempty matroid that is not a coloop. Then M is

connected if and only if M is a loop, or can be obtained from a loop by a sequence

of operation each consisting of non-trivial single element extension or a series

extension.

The term wheel is used for the graph Wr and its cycle matroid M(Wr). The

whirl of rank r, Wr is a matroid whose ground set is E(Wr) and whose bases

consists of the rim together with all edge sets of spanning trees of Wr. Tutte [27]

extended Theorem 1.5 to matroids. The corresponding result is stated by Theorem

3.2.

Theorem 3.2 ([27]). Let M be a 3−connected matroid with at least one element.

Then following statements are equivalent.

(1) For every element e of M , neither M \ e nor M/e is 3-connected.

(2) M has rank at least three and is isomorphic to a wheel or a whirl.

Welsh [28] extended the classic characterization of Eulerian graphs viz. The-

orem 1.7 to binary matroids. He proved the following theorem.
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Theorem 3.3 ([28]). A binary matroid is Eulerian if and only if the dual matroid

is bipartite.

The result is not true if the matroid is non binary.

Shikare and Raghunathan [20] generalized Shank’s characterization of Eulerian

graphs viz. Theorem 1.9 to binary matroids.

Theorem 3.4 ([18]). A binary matroid M is Eulerian if and only if the number

of independent sets of M is odd.

Shikare [15] extended Theorems 1.10 and 1.11 to binary matroids. In fact, he

proved the following theorems.

Theorem 3.5 ([15]). A binary matroid M on a set E is Eulerian if and only if

every element of E is contained in odd number of circuits of M .

Theorem 3.6 ([15]). A binary matroid M is Eulerian if and only if its ground

set can be partitioned into circuits of M in an odd number of ways.

We wish to extend results concerning splitting operation on graphs to binary

matroids. In particular, we wish to generalize Theorem 1.12 and Splitting Lemma

1.1 to binary matroids. So the first step in this direction is to generalize notion of

the splitting operation to binary matroids. Proposition 1.1 and Remark 1.1 play

crucial role in this matter.

Raghunathan et. al. [11] defined splitting operation for binary matroids in

the following way: Let M = (E, C) be a binary matroid on a set E together with

the set C of circuits and let x, y ∈ E.

Let C0={C ∈ C: x, y ∈ C, or x, y /∈ C}, and C1={C1 ∪C2 : C1, C2 ∈ C, C1 ∩C2 =

φ, x ∈ C1, y ∈ C2, and C1 ∪ C2 contains no member of C0}.

Let C′ = C0 ∪ C1. Then the pair (E, C′) is a binary matroid. We denote this

matroid by Mx,y and say that Mx,y has been obtained from M by splitting the

pair of elements x, y. Moreover, the transition from M to Mx,y is called a splitting

operation. We note that an arbitrary circuit of Mx,y contains either both x and

y, or neither.

The splitting operation can also be defined in terms of the matrices represent-

ing the matroids over GF (2). This provides more elegant apporach to the splitting

operation.

Let M be a binary matroid on a set E, and let A be a matrix that represents

M over GF (2). Suppose that x, y ∈ E. Let Ax,y be the matrix obtained from A

by adjoining an extra row with zeros everywhere except in the columns of x and

y where it takes value 1. Let Mx,y be the vector matroid of the matrix Ax,y. The

transition from M to Mx,y is called a splitting operation. The matroid Mx,y is

referred as the splitting matroid.
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Raghunathan et. al. [11] extended Fleischner’s characterization of Eulerian

graphs (Theorem 1.12) to binary matroids as follows.

Theorem 3.7 ([10]). A binary matroid on a set E is Eulerian if and only if M can

be transformed by repeated applications of the splitting operation into a matroid in

which E is a circuit.

It is shown that if M has rank k and |E| = n then the minimum number of

splitting operations required in the process is n− (k + 1).

Shikare and G. Azadi [18] characterized the bases of the splitting matroidMx,y

in terms of the bases of the original matroid M . Indeed, they proved the following

theorem.

Theorem 3.8. . Let M = (E, C) be a binary matroid and x, y ∈ E. Let B be the

set of all bases of M and

Bx,y = {B ∪ {α} : B ∈ B, α ∈ E − B, such that the unique circuit contained in

B ∪ {α}, contains exactly one of x and y}. Then Bx,y is the set of bases of Mx,y.

When specialized to graphs, we obtain the following result.

Corollary. Let G be a connected graph and x and y be adjacent edges of G

with common vertex v. Assume that x and y belong to different blocks if v is a

cut vertex of G. Let T be a spanning tree of G and g /∈ E(T ). Then T ∪ g is a

spanning tree of Gx,y if and only if the fundamental cycle of G formed by g and

T contains either x or y.

Allan Mills [9] described the cocircuits of the matroid Mx,y in terms of the

cocircuits of the original matroid M . His results are stated below.

Theorem 3.9. . If {x} is a cocircuit of M and y is not, then the cocircuit of

Mx,y consists of {x}, {y} and the sets in the following collections.

(1) {C∗ − {x} : C∗ is a cocircuit of M containing {x} properly }; and

(2) {C∗ ∈ C∗(M) : x /∈ C∗ and C∗ is the only cocircuits of M contained in

C∗ ∪ {x}}.

Theorem 3.10. . If {x, y} does not contain a cocircuit of M , then {x, y} and

each non-empty set in the following collections is a cocircuit of Mx,y.

(1) {C∗ − {x, y} : C∗ ∈ C∗(M) and C∗ contains {x, y} properly }

(2) {C∗ : C∗ ∈ C∗(M) and C∗ does not contain a Type (1) set }

(3) {C∗∆{x, y} : C∗ ∈ C∗(M) and C∗ contains exactly one of x and y and does

not contain a Type (1) set }.

The splitting operation on a connected binary matroid, in general, need not

yield a connected binary matroid. The following theorems provide conditions for

the splitting operation to preserve connectedness of the matroid M .
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Theorem 3.11 ([16]). Let M be a 4-connected binary matroid on a set E with at

least nine elements and x, y ∈ E(M). Then the matroid Mx,y is connected.

Corollary. The splitting operation on an n-connected (n ≥ 4) binary matroid

with at least nine elements yields a connected binary matroid.

Theorem 3.12 ([3]). Let M be a 3-connected binary matroid and x, y ∈ E(M).

Suppose that every cocircuit Q of M containing {x, y} has size at least 4, and Q

contains no circuit of size 2. Then Mx,y is connected.

If M is a binary matroid and x, y ∈ E(M) then the splitting of the dual

matroid M∗ with respect to {x, y}, in general, may not be same as the dual of the

the splitting matroid Mx,y. Dhotre [4] provided conditions under which these two

matroids will be same. Two elements x and y of a matroid M are in series in M

if {x, y} is a cocircuit of M .

Theorem 3.13 ([5]). Let M be a binary matroid and let x, y ∈ E(M). Then

M∗
x,y = (Mx,y)

∗ if and only if x and y are in series and {x, y} is a circuit of M .

Corollary. Let M be a binary connected matroid with at least 3 elements. Then

M∗
x,y 6= (Mx,y)

∗ for every pair {x, y} of E(M).

The splitting operation on a graphic matroid may not yield a graphic ma-

troid. Luis Goddyn, Simon Fraser University, Canada in 1996 raised the following

Problem: Determine precisely those graphs G which have the property that the

splitting operation on the cycle matroid M(G) by every pair of edges yields a

graphic matroid.

Shikare andWaphare [22] solved this problem by proving that there are exactly

four minor-minimal graphs that do not have this property. In fact, they proved

the following theorem.

Theorem 3.14 ([22]). The splitting operation, by any pair of elements, on a

graphic matroid yields a graphic matroid if and only if the cycle matroid of the

corresponding graph has no minor isomorphic to the cycle matroid of any of the

following four graphs.

q q

q

q

q

q

q

q
q

q

q

q

q

q q
q
q

q
q
q

q

The forbidden graphs for graphic matroids

The splitting operation on a cographic matroid, in general, may not yield a co-

graphic matroid. Borse et. al. [4] provided a necessary and sufficient condition

for the splitting operation to yield a cographic matroid from a cographic matroid.
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Theorem 3.15 ([4]). The splitting operation, by any pair of elements, on a co-

graphic matroid yields a co-graphic matroid if and only if the cycle matroid of the

corresponding graph has no minor isomorphic to any of the five matroids M(Hi)

for i = 1, 2 and M∗(Hi) for i = 3, 4, 5 where Hi are the graphs as shown in the

following Figure.

♣ ♣
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♣
♣ ♣

♣

♣
♣
♣♣ ♣

♣
♣

♣
♣♣ ♣

♣
♣

♣
♣♣ ♣

♣
♣

♣

♣

♣

♣
H1 H2 H3 H4 H5

Azadi [1] extended the notion of the n-vertex splitting operation on graphs

to binary matroids. The corresponding operation on matroids is called element

splitting operation. This operation is defined in terms of the matrices representing

the matroids. Let M be a binary matroid on a set E and let A be a matrix over

GF(2) that represents M. Suppose that T is a subset of E(M). Let AT be the

matrix that is obtained by adjoining an extra row to A with this row being zero

everywhere except in the columns corresponding to the elements of T where it

takes the value 1, and then adjoining an extra column (corresponding to a) with

this column being zero everywhere except in the last row where it takes the value

1. Suppose MT be the vector matroid of the matrix AT . The transition from M to

MT is called the element splitting operation. Several properties of this operation

have been explored in [1, 17].

We would like to mention that the splitting operation and the element splitting

operation have been defined to binary matroids as extensions of the correspond-

ing operations on graphs. It will be a great achievement if one can define these

operations to arbitrary matroids and explore their properties.
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Abstract. During the investigation of heat flow in 1807, Joseph Fourier

came up with the idea that the graph of any function on a bounded interval

can be obtained as a linear superposition of sines and cosines.

If f is a periodic function of one real variable of period 2π, then we can

think f as a function on the circle group i.e. additive group of reals modulo

integer multiples of 2π. Fourier series live on circle group T . The Fourier

analysis of the real line (i.e., the Fourier transform) was introduced at about

the same time as Fourier series. But it was not until the mid-twentieth century

that Fourier analysis on R
N came to existence. Meanwhile, abstract harmonic

analysis (i.e., the harmonic analysis of locally compact abelian groups) had

developed a life of its own. And the theory of Lie group/ non abelian group

representations provided a natural crucible for noncommutative harmonic

analysis.

We discuss Fourier transform on Nilpotent Lie groups and representations

of some classes of non-abelian locally compact groups. Some important results

regarding Plancherel formula, Uncertainty Principles and Potential theory

will be presented.

1. Fourier Series

There are several natural phenomena that are described by periodic functions.

The position of a planet in its orbit around the sun is a periodic function of time; in

Chemistry, the arrangement of molecules in crystals exhibits a periodic structure.

The theory of Fourier series deals with periodic functions. We begin with the

concept of Fourier Series.

Definition 1.1. A function f(t) is said to have a period T or to be periodic with

period T if for all t, f(t + T ) = f(t) where T is a positive constant. The least

subjclass[2010]Primary 43A40, Secondary 43A77,22E65.

keywords and phrases : Fourier Series, Fourier Transform, Lie groups, representations, Plan-
cherel Theorem, Potential Theory.

* The text of the 23rd V. Ramaswami Aiyar Memorial Award Lecture delivered at the 78th An-
nual Conference of the Indian Mathematical Society held at Banaras Hindu University, Varana-
si - 221 005, UP, during the period January 22 - 25, 2013.
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t

−T T

value of T > 0 is called the principal period or the fundamental period or simply

the period of f(t)

Suppose f(x) has the period 2π and

F (t) := f(ωt) := f(
2π

T
t).

then F has the period T . Let a function f be declared on the interval [0, T ). The

periodic expansion of f is defined by the formula

f̃(t) =



f(t), for 0 ≤ t < T ,

f̃(t− T ), for all t ∈ R,

Let f be continuous on I = [−π, π]. Suppose that the series a0

2 +

∞∑
n=1

(ancosnx+

bnsinnx) converges uniformly to f for all x ∈ I. Then

an =
1

π

∫ π

−π

f(t) cos ntdt for n = 0, 1, 2, . . . (1)

bn =
1

π

∫ π

−π

f(t) sin ntdt, forn = 0, 1, 2, . . . (2).

The numbers an and bn are called the Fourier coefficients of f . When an and bn

are given by (1) and (2), the trigonometric series is called the Fourier series of the

function f . Below is an example of an arbitrary function which we approximate

with Fourier series of various lengths. As you can see, the ability to mimic the

behavior of the function increases with increasing series length, and the nature of

the fit is that the ”spikier” elements are fit better by the higher order function
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In mathematics, the question of whether the Fourier series of a function con-

verges to the given function is researched by a field known as classic harmonic

analysis, a branch of pure mathematics. For most engineering uses of Fourier

analysis, convergence is generally simply assumed without justification. However,

convergence is not necessarily given in the general case, and there are criteria

which need to be met in order for convergence to occur.

Example 1.1. (1) The Fourier series of the function f(x) = x, −π ≤ x ≤ π, is

given by f(x) ∼ 2(sin(x)− sin(2x)
2 + . . . ).

(2) The Fourier series of the function

f(x) =



0, −π ≤ x ≤ 0,

π, 0 ≤ x ≤ π,

is given by f(x) ∼ π
2 + 2(sin(x) + sin(3x)

3 + . . . ).

(3) The Fourier series of the function

f(x) =



−π

2 , −π ≤ x ≤ 0,

π
2 , 0 ≤ x ≤ π,

is given by f(x) ∼ π
2 + 2(sin(x) + sin(3x)

3 + . . . ).

Remark 1.1. We defined the Fourier series for functions which are 2π-periodic, one

would wonder how to define a similar notion for functions which are L-periodic.

Assume that f(x) is defined and integrable on the interval [−L,L]. Set F (x) =

f(Lx
π
). The function F(x) is defined and integrable on [−π, π]. Consider the
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Fourier series of F (x)

F (x) = f(
Lπ

π
) ∼

a0
2

+

∞∑
n=1

(ancosnx+ bnsinnx).

Using the substitution t = Lx
π
, we obtain the following definition

Definition 1.2. Let f(x) be a function defined and integrable on [−L,L]. The

Fourier series of f(x) is

f(t) ∼ a0 +

∞∑
n=1

(an cosn
πt

L
+ bn sinn

πt

L
),

where

a0 =
1

2π

∫ π

−π

f(
Lx

π
) cos nxdx =

1

2L

∫ L

−L

f(x) cos (n
πx

L
)dx,

an =
1

π

∫ π

−π

f(
Lx

π
) cos nxdx =

1

L

∫ L

−L

f(x) cos (n
πx

L
)dx,

bn =
1

π

∫ π

−π

f(
Lx

π
) sin nxdx =

1

L

∫ L

−L

f(x) sin (n
πx

L
)dx,

for n ≥ 1.

Example 1.2. The Fourier series of the function

f(x) =



0, −2 ≤ x ≤ 0,

x, 0 ≤ x ≤ 2,

is given by f(x) ∼ 1
2 +

∞∑
n=1

[
2

n2π2
((−1)n − 1)cosn

πx

2
+

2

nπ
(−1)n+1sinn

πx

2
].

Using Euler’s identities eiθ = cos θ + i sin θ, the Fourier series of f(x) can be

written in complex form as

f(x) =

∞∑
n=−∞

cne
inx,

where cn = 1
2π

∫ π

−π
f(x)e−inxdx and c0 = 1

2a0, cn = 1
2 (an − ibn), and c−n =

1
2 (an + ibn), n = 1, 2, . . . . In what sense does the series on the right converge, and

if it does converge, in what sense is it equal to f(x)? These questions depend on the

nature of the function f(x). Considering functions f(x) defined on R which satisfy

a reasonable condition like
∫∞

−∞ |f(x)|dx < ∞ or
∫∞

−∞ |f(x)|2dx < ∞. For an

integrable function x(t), define the Fourier transform by X(ω) =
∫∞

−∞ x(t)e−iωtdt

for every real number ω. The independent variable t represents time, the transform

variable ω represents angular frequency. Other notations for this same function are

x̂(ω) and F (ω). The function is complex-valued in general. If X(ω) is is defined as
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above, and x(t) is sufficiently smooth, then it can be reconstructed by the inverse

transform:

x(t) =
1

√
2π

∫ ∞

−∞

X(ω)eiωtdω

for every real number t. Let’s see how we compute a Fourier Transform: consider

a particular function f(x) defined as

f(x) =



1, |x| ≤ 1,

0, otherwise,
.

Its Fourier transform is:

F (u) =

∫ ∞

−∞

f(x)e−2πxudx

=

∫ 1

−1

xe−2πxudx

= −
1

2πiu
(e2πui − e−2πui)

=
sin2πu

πu
.

In this case F (u) is purely real, which is a consequence of the original data being

symmetric in x and −x.

2. Fourier Transform- Gaussian

The Fourier transform of a Gaussian function f(x) = e−ax2

is given by

FX [e−ax2

](k) =

∫ ∞

−∞

e−ax2

e−2πxkdx

=

∫ ∞

−∞

e−ax2

[cos(2πxk) − i sin(2πxk)]dx

=

∫ ∞

−∞

e−ax2

cos(2πxk)dx − i

∫ ∞

−∞

e−ax2

sin(2πxk)dx

The second integrand is odd, so integration over a symmetrical range gives 0.The

value of the first integral is given by Abramowitz and Stegun, so

FX [e−ax2

](k) =

√
π

a
e−π2k2/a,

a Gaussian transforms to another Gaussian. The Fourier transform of the Gaussian

function is another Gaussian:

Note that the width sigma is oppositely positioned in the arguments of the expo-

nentials. This means the narrower a Gaussian is in one domain, the broader it

is in the other domain. The Fourier transform can also be extended to the space
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integrable functions defined on

F : L1(Rn) → C(Rn),

where L1(Rn) = {f : R
n → C|

∫
Rn |f(x)|dx < ∞} and C(Rn) is the space of

continuous functions on R
n. In this case the definition usually appears as f̂(w) =∫

Rn f(x)e
−iωxdx, where ω ∈ R

n and ω.x is the inner product of the two vectors ω

and x.

One may now use this to define the continuous Fourier transform for compactly

supported smooth functions, which are dense in L2(Rn). We now summarize the

properties of f ∈ L1(Rn).

(1) f̂ is continuous and ‖f̂‖∞ ≤ ‖f‖1.

(2) If f is radial in the sense that there is a function F on [0,∞) such that

f(x) = F (|x|) then f̂ is radial.

(3) Let Th denote the translation by h ∈ R
n, i.e., Th(f(x)) = f(x + h) then

T̂hf(ξ) = eihξ f̂(ξ) and for a nice function 1
xj
Thf = Th.

(4) (Riemann Lebsegue Lemma) f̂ ∈ C0(R
n).

(5) (Plancheral) If f is in L2(Rn) then f̂ ∈ L2(Rn) and
∫
Rn |f(x)|2dx =

1
(2π)n

∫
Rn |f̂(ξ)|2dξ
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These result were known about locally compact abelian groups and about compact

groups till 1960. Thus it was natural to look for a common generalization of these

two quite different groups abelian and compact.

Grosser, Moskowitz, Mosak, Kaniuth, Leptin , Ludwig and their co-workers

looked at compactness conditions in topological groups.

[CR] [Am] [NF] [Her] [Um] [SSS] [T1] [Type I]

[EB]

[PG]
[IN]= [KSIN] [MAP] [CCR]

[FC] = [KV×FC] [SIN]

[FD] [FIA]

[Tak] [Moore]= [TakF]

[Nil]

[Z]

[K] [A] [D]

General Locally Compact Groups

[A]-Abelian groups

[K]-Compact groups

[D]-Discrete groups

[Z]-Central groups

[Nil]-Nilpotent groups

[Tak]-[MAP ]
⋂
[FD]

[MAP ]-groups having enough finite dimensional irreducible representations to sep-

arate points.

[FD]- groups having relatively compact commutator subgroup.

[FC]-groups such that the closure of each conjugacy class is compact.
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[SIN ]-groups such that every neighborhood of the identity contains a compact

neighborhood which is invariant under all inner automorphisms.

[IN ]-groups such that closure of each conjugacy class is compact.

[PG]-if for each compact neighborhoodW of the identity there is an integer p such

that m(Wn) = O(np).

[EB]- any compact neighborhood of the identity satisfies m(Wn) = O(tn) for all

t > 1.

For other classes of non-abelian groups, the reader can refer [12]. Among sev-

eral properties of locally compact group, we briefly mention three of these viz

Plancheral Formula, Uncertainty Principle and Potential theory.

2.1. Plancheral Formula. The classical Plancheral theorem proved in 1910 by

Michel Plancheral can be stated as follows:

Let f ∈ L2(R) and define φn : R → C for n ∈ N by

φn(y) =
1

√
2π

∫ n

−n

f(x)eiyxdx.

The sequence φn is cauchy in L2(R) and we write φ = lim
n→∞

φn.

Define ψn : R → C by

ψn(y) =
1

√
2π

∫ n

−n

φ(y)e−iyxdy.

The sequence ψn is Cauchy in L2(R) and we write ψ = lim
n→∞

ψn. Then ψ = f

a.e, and
∫
R
|f(x)|2dx =

∫
R
|φ(y)|2dy. This theorem is true in various forms for any

locally compact abelian groups.

Work on the Plancherel Formula for non-abelian groups began in earnest in

the late 1940s. There were two distinct approaches. The first, for separable, locally

compact, unimodular groups, was pursued by Mautner, Segal , and others. The

second, for semisimple Lie groups, was followed by Gelfand-Naimark, and Harish-

Chandra, along with others. Segal’s paper and Mautner’s paper led eventually to

the following statement.

Let G be a separable unimodular, type I group, and let dx be a fixed Haar

measure on G. There exists a positive measure µ on Ĝ (determined uniquely up

to a constant that depends only on dx) such that, for f ∈ L1(G)
⋂
L2(G), π(f) is

a Hilbert-Schmidt operator for µ-almost all π ∈ Ĝ, and∫
G

|f(x)|2dx =

∫
Ĝ

‖π(f)‖2HSdµ(x).

Here, of course, Ĝ denotes the set of equivalence classes of irreducible unitary

representations of G. At about the same time, Harish-Chandra stated the follwing

theorem in his paper Plancheral Formula for complex semisimple connected Lie
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groups. Let G be a connected, complex, semisimple Lie group. Then for f ∈

C∞
c (G).

f(1) = lim
H→0

∏
α∈P

DαDα[e
ρ(H)+ρ(H)

∫
K×N

f(ueHnu−1)dudn].

Explanation of notation can be seen in [4]. Explicit Plancherel formulas can be

obtained for groups like SL(2,C), SL(2,R), Reductive groups over Qp, GL(n;Qp),

semi direct product of groups, group extension, central groups.

2.2. Uncertainty Principle. The uncertainty principle is partly a description of

a characteristic feature of quantum mechanical systems, partly a statement about

the limitations of one’s ability to perform measurements on a system without dis-

turbing it, and partly a meta-theorem in harmonic analysis that can be summed up

as follows. A non-zero function and its Fourier transform cannot both be sharply

localized.

1. Heisenberg’s inequality. Heisenberg’s inequality gives the precise quanti-

tative formulation of the uncertainty principle. Heisenberg’s Inequality for the

functions on R
n. If f ∈ L2(Rn) and a, b ∈ R

n then∫
|x− a|2|f(x)|2dx

∫
|ξ − b|2|f̂(ξ)|2dξ ≥

n2‖f‖42
16π2

.

Heisenberg’s inequality says that if f is highly localized, then f̂ cannot be concen-

trated near a single point. But it does not preclude f from being concentrated in

a small neighborhood of two or more widely separated points. In fact, the latter

phenomenon cannot occur either, and it is the object of local uncertainty inequal-

ities to make this precise. Heisenberg Uncertainty Inequality has been proved for

the spaces like

• Heisenberg Group

• Symmetric spaces of non-compact type (Price and Sitaram)

• Locally compact Abelian groups (Hogan)

• Infinite dimensional abstract Wiener space (Lee)

2. Benedick’s Theorem Qualitative Uncertainty Principle If we think of

concentration in terms of f living entirely on a set of finite measure, then we have

the following beautiful result of Benedicks: Let f be a non-zero square integrable

function on R. Then the Lebesgue measures of the sets {x : f(x) 6= 0} and

{y, f̂(y) 6= 0} cannot both be finite.

• J.A. Hogan (in 1988) proved that the QUP holds for a non-compact and

non-discrete abelian locally compact group G with connected component

of the identity G0 if and only if G0 is non-compact.

• J.A. Hogan (in 1993) proved that an infinite compact group satisfies the

QUP if and only if it is connected.
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• T. Matolcsi and J. Szucs (in 1973) proved that the weak QUP holds for

every locally compact abelian group.

• Echterhoff, Kaniuth and Kumar (1991) proved that QUP holds for several

lower dimensional nilpotent Lie groups and Weyl extension of Abelian

groups.

• G. Kutyniok (in 2003) proved that a compact group G satisfies the weak

QUP precisely when the quotient group G
G0

is abelian.

• E. Kaniuth (in 2009) proved that a group G which is neither compact nor

discrete and having finite dimensional irreducible representations satisfies

the QUP if and only if G0 is non-compact.

3. Hardy’s Theorem The rate at which a function decay at infinity can also

be considered a measure of concentration. The following elegant result of Hardy’s

states that both f and f̂ cannot be very rapidly decreasing: Suppose f is a mea-

surable function on R such that

|f(x)| ≤ Ae−απx2

and

|f̂(y)| ≤ Be−βπy2

for some positive constants A,B, α, β then, if

(1) aβ > 1,then f must necessarily be a zero function a.e.

(2) aβ < 1, then there are infinitely many linearly independent functions

(3) aβ = 1, then f(x) = ce−apx2 for some constant c.

During the past fourteen years, there has been much effort to prove Hardy-like

theorems for various classes of non-abelian connected Lie groups. Specifically,

analogues of Hardy’s theorem have been established for the following classes of

groups

• The n-dimensional Euclidean motion group

• Cartan motion groups

• Abelian groups with noncompact connected component

• Non-compact connected semi-simple Lie groups G with finite centre

• SL(2;R)

• All semi-simple Lie groups G with finite center

• All non-compact semi-simple Lie groups

• The Heisenberg groups and for general simply connected nilpotent Lie

groups.

• Connected nilpotent Lie groups with non- compact centre

• Exponential solvable Lie groups with non trivial centre



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

FROM FOURIER SERIES TO HARMONIC ANALYSIS . . . 97

4. Cowling Price Theorem Let f : Rn → C be measurable. Suppose for some

k, 1 ≤ k ≤ n.

(i)

∫
Rn

epaπx
2
k |g(x1, . . . , x̂k, . . . , xn)|

p|f(x1, . . . , xn)|
pdx1dx2 . . . dxn <∞,

(ii)

∫
Rn

eqbπy
2
k |g(y1, . . . , ŷk, . . . , yn)|

p|f̂(y1, . . . , yn)|
pdy1dy2 . . . dyn <∞,

where a, b > 0, g, h : Rn−1 → C are measurable with g ≥ α > 0, h ≥ β > 0, α, β

are constants, 1
g
∈ Lp(Rn−1), 1

p
+ 1

p′
= 1, 1

h
∈ Lq(Rn−1), 1

q
+ 1

q′
= 1. If ab ≥ 1,

then f = 0 almost everywhere.

Analogues of Cowling Price have been established for the following classes of

groups.

• Heisenberg group

• Non-compact Riemannian symmetric spaces (Ray Sarkar)

• Non-compact connected semi-simple Lie groups

• Semi-simple Lie groups (Ebata, et. al.)

• Simply connected nilpotent Lie group

• Two-step nilpotent Lie groups (Ray)

• Threadlike nilpotent Lie Groups (Myself Bhatta)

Theorem 1 (Beurling’ Theorem (1991)). For f ∈ L1(R),∫
R

∫
R

|f(x)||f̂(y)|e2π|xy|dxdy <∞,

then f = 0 almost everywhere.

Generalizations of these results have been obtained for a variety of locally

compact groups like

• Heisenberg group

• Motion group

• Non-compact connected semi-simple Lie groups

• Connected nilpotent Lie groups

• Simply connected nilpotent Lie group

3. Potential theory on Stratified Lie Groups

The fundamental role of stratified Lie groups in analysis was envisaged by E.

M. Stein [13] in his address at the Nice International Congress of Mathematicians

in 1970. Since then, there has been a tremendous development in the analysis

of stratified Lie groups also known as Carnot group. Indeed, Carnot groups ap-

pear as tangent spaces of sub-Riemannian manifolds and they find applications

in many settings: mechanics, control theory, geometric theory of several complex

variables, curvature problems for CR-manifolds, diffusion processes. The theory of
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sub-elliptic operators on stratified Lie groups is very interesting and has been at-

tracting mathematicians. The Potential Theory related to sub-Laplacians ∆G has

been investigated in the recent literature: see the paper by Trudinger & Wang [17]

where several results of Potential Theory are established for a class of quasilin-

ear subelliptic operators including sub-Laplacians; see also [14, 15, 16] where fully

nonlinear Hessian operators are treated; see also Labutin [11] for the study of sub-

harmonic functions related to this last class of operators; see the papers Bonfiglioli

and Lanconelli [1, 2, 3] in which potential-theoretic results and applications are

established in the very framework of stratified groups.

3.1. Homogeneous Carnot groups and stratified groups.

• A Lie group on R
n is a pair G = (Rn, ◦) where ◦ is a binary operation

on R
n such that the group operations are smooth. The notation G will be

reserved for the Lie algebra of G.

• Examples :

(1) The usual addition structure of Rn turns it into a Lie group.

(2) On R
3, define the group operation by

(x1, x2, x3)(y1, y2, y3) = (x1 + y1 + x3y2, x2 + y2, x3 + y3).

(3) On R
4, define group operation by

(x1, x2, x3, x4)(y1, y2, y3, y4) = (x1+y1+x4y2+
1

2
x24y3, x2+y2+x4y3, x3+y3, x4+y4).

• Let (Rn, ◦) be a Lie group equipped with a family {δλ}λ>0 of automor-

phisms of the form

δλ(x
(1), x(2), . . . , x(r)) = (λx(1), λ2x(2), . . . , λrx(r))

where x(i) ∈ R
Ni for i = 1, . . . , r and N1 + N2 + . . . + Nr = N . For

1 ≤ i ≤ N1, let Zi be vector field of G agreeing with ∂
∂xi

at the origin. If

the Lie algebra generatted by Z1, . . . , ZN1
is whole of G then G is called a

homogeneous Carnot group.

• A stratified group H is a connected and simply connected Lie group whose

Lie algebra h admits a stratification h = V1 ⊕ V2 ⊕ . . . ⊕ Vr such that

[V1, Vi−1] = Vi for 2 ≤ i ≤ r and [V1, Vr] = 0.

• The Lie algebra of a stratified group can admit more than one stratifica-

tions.

• Let H be a stratified group and V = (V1, . . . , Vr) be a fixed stratification

of the Lie algebra h. We say that a basis B of h is adapted to V if

B = (E
(1)
1 , . . . , E

(1)
N1

; . . . ;E
(r)
1 , . . . , E

(r)
Nr

)

and (E
(i)
1 , . . . , E

(i)
Ni

) is a basis for Vi.
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• If (V1, . . . , Vr) is a stratification of the algebra of H and dim (V1) = m, we

say that H as step r and has m generators.

• The following result shows that above definitions are well-posed

Suppose that (V1, . . . , Vr) and (Ṽ1, . . . , Ṽr̃) be any two stratifications of the

algebra of H then r = r̃ and dim(Vi) =dim(Ṽi) for every r. Moreover the

algebra of H is a nilpotent Lie algebra of step r.

• The number Q =
r∑

i=1

idim(Vi) is independent of the choice of stratification

and is termed as the homogeneous dimension of H.

• A homogeneous Carnot group is a stratified group and conversely given a

stratified group H, there exists a homogeneous Carnot group H
∗ which is

isomorphic to H.

• The Heisenberg Group

On R
2n+1, define the group operation as

(x, y, t).(u, v, s) = (x+ u, y + v, t+ s+ 2(y.u− x.v)), x, y, u, v ∈ R
n, s, t ∈ R.

With the above operation, R2n+1 becomes a Lie group denoted by Hn. Hn

is a homogeneous Carnot group with the following dilation structure. For

r > 0 define δr on Hn as

δr(x, y, t) = (rx, ry, r2t).

• On R
4 define ◦ as

x ◦ y =




x1 + y1

x2 + y2

x3 + y3 +
1
2 (y2x1 − y1x2)

x4 + y4 +
1
2 (y3x1 − y1x3) +

1
12 (x1 − y1)(y2x1 − y1x2)


 .

(R4, ◦) is a homogeneous Carnot group with the dilations

δr(x1, x2, x3, x4) = (rx1, rx2, r
2x3, r

3x4).

3.2. Sub-Laplacians of a Stratified Group.

• Let H be a stratified group. The second order differential operator

L =

m∑
j=1

X2
j

is referred to as a sub-Laplacian on H, if there exists a stratification h =

V1 ⊕ V2 ⊕ . . .⊕ Vr such that X1, . . . , Xm is a basis of V1.

• The sub-Laplacian on the Heisenberg group H1 given by

∆0 = (∂x1
)2 + (∂x2

)2 + 4(x21 + x22)(∂x3
)2 + 4x2∂x1,x3

− 4x1∂x2,x3

is known as the Kohn Laplacian.
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• The sub-Laplacian is a hypoelliptic operator.(A differential operator D

is called hypoelliptic if for any distribution u, Du = f implies u is C∞

whenever f is C∞)

3.3. The Fundamental Solution for a Sub-Laplacian.

• Let D be a differential operator. A distribution u is said to be fundamental

solution for D if Du = δ where δ is the Dirac distribution.

• For N ≥ 3 the fundamental solution of the usual Laplacian in R
N is

cN |x|2−N while the fundamental solution in R
2 is log|x|.

• One of the most striking analogies between L and the classical Laplacian is

that for Q ≥ 3, L possesses a fundamental solution Γ of the form Γ = d2−Q

where d is a symmetric homogeneous norm on G.

Homogeneous Norms

• Let G be a Carnot group. A function d : G → [0,∞) is a homogeneous

norm on G if

(1) d(δλ(x)) = λd(x) for every λ > 0 and x ∈ G;

(2) d(x) > 0 iff x 6= 0

Moreover, we say that d is symmetric if

(3) d(x−1) = d(x) for every x ∈ G.

• Example: Define

|x|G =
( r∑
j=1

|x(j)|
2r!
j

) 1
2r!

Then |x|G is a homogeneous norm on G, smooth away from the origin.

• On any Carnot group G the map x 7→ |Log(x)|G is a symmetric homoge-

neous normon G smooth away from the origin.

• (Equivalence of the homogeneous norms) Let d be a homogeneous norm

on G then there exists a constant c > 0 such that

c−1|x|G ≤ d(x) ≤ c|x|G ∀ x ∈ G

Fundamental solution for Lie groups on R
N

• Let L be a sub-Laplacian on a homogeneous Carnot group G(Q > 2) then

there exists a unique fundamental solution Γ for L satisfying the following:

1. Γ ∈ C∞(RN − {0});

2. Γ ∈ L1
loc(R

N ) and vanishes at infinity.

3. (Symmetry of Γ) The fundamental solution Γ of L satisfies

Γ(x−1) = Γ(x) ∀x ∈ G− {0}

4.(δλ homogeneity of Γ) Γ is δλ-homogeneous of degree 2−Q i .e.

Γ(δλ(x)) = λ2−QΓ(x) ∀x ∈ G− {0}.
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5. Γ(x) > 0 ∀x ∈ G− {0}.

4. Green Function

L Green Function

• Given a differential operator L, if there exists, for each y a distribution

G(x, y) satisfying LG(x, y) = δ(y − x) then it is called Green function for

the operator L. A solution to the differential equation

Lu = f for some suitable f

can be given by

u(x) =

∫
G(x, y)f(y)dy

• For L = d/dx on R, the heaviside function given by

H(x, y) =



1 y ≥ x

0 y < x

is a Green’s function.

5. The Mean Value Formulas

The mean value formulas have got a wide application in the theory of Dirichlet

Problem and in Integral Geometry. For the stratified Lie groups, mean value

formulas were obtained by Lanconelli in 1990.

Surface Mean Value Formula

Let L be a sub-Laplacian and d be a gauge on a Stratified Lie group G. For

x ∈ G and r > 0 define the d ball as

Bd(x, r) = {y ∈ G : d(x−1y) < r}.

Theorem 2. Let O be an open subset of G and u be harmonic on O. Then

u(x) = Mr(u)(x) =
(Q− 2)γ

rQ−1

∫
∂Bd

K(x, z)u(z)dz,

where the kernel K depends upon the gradient of d and γ is volume of K in the

second variable over the surface of Bd. Q denotes the homogeneous dimension of

G.

Solid Mean Value Formula

• u(x) = Mr(u)(x)
ν
rQ

∫
Bd(x,r)

Ψ(x, y)u(y)dy, where the kernel function Ψ

again depends on gradient of d. ν is average of Ψ.

Converse of Mean Value Theorems



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

102 AJAY KUMAR

Theorem 3. Let L be a sub-Laplacian on a stratified Lie group G and d be an

L-gauge.Let u be a continuous function on an open subset O of G. If one of the

following is satisfied

(i) u(x) = Mr(u)(x) for every x ∈ O and for all r > 0 such that ball of radius

r around x is in O.

(ii) u(x) =Mr(u)(x) for every x ∈ O and for all r > 0 such that ball of radius r

around x is in O.

Then u ∈ C∞(O) and Lu = 0.

Harnack Inequality

Obtained in various contexts. First in for the Heisenberg group in 1969 by Bony.

Later by Franchi and Lanconelli (1982, 83), and Gutierrez and Lanconelli (2003).

Theorem 4 (Harnack Inequality). Let Ω be an open subset of G and u : Ω → R

be a non-negative smooth harmonic function. Then

sup
Bd(x0,r)

u ≤ c inf
Bd(x0,r)

u,

for each x0 in Ω and suitably chosen r > 0. The constant c depends on u, r, x0

and Ω.

The Dirichlet Problem

The Dirichlet problem asks to find a harmonic function whose continuous extension

to the boundary of the domain coincides with a prescribed continuous function on

the boundary. In case of domains in C, the Perron method gives existence of the

solution of the Dirichlet problem and hence well posedness of the problem. We

will give here the descriprion of Perron family in the case of Stratified Lie group.

Subharmonic and Superharmonic Functions

Definition 5.1. Let Ω be an open subset of G, u : Ω → [−∞,∞) be an upper

semicontinuous function finite in a dense subset of Ω. u is called subharmonic if

it satisfies

u(x) ≤ Mr(x) for all x ∈ G, r > 0.

Definition 5.2. Let Ω be an open subset of G, u : Ω → (−∞,∞] be a lower

semicontinuous function finite in a dense subset of Ω. u is called superharmonic if

it satisfies

u(x) ≥ Mr(x) for allx ∈ G, r > 0.

Perron Method As in the case of classical potential theory, the Perron family

for an open subset Ω of G can be defined.

Theorem 5 (Fundamental theorem of Perron families). Let Ω be open in G and

F be a Perron family then u = inf F is harmonic in Ω.
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6. Examples

We now discuss some examples and illustrate some of the ideas discussed above

with these examples.

6.1. Some Simple Examples.

• On R
4 define ◦ as

x ◦ y =




x1 + y1

x2 + y2

x3 + y3 + y1x2

x4 + y4 + y1x
2
2 + 2x2y3


 ,

and define dilations as

δλ(x1, x2, x3, x4) = (λx1, λx2, λ
2x3, λ

3x4).

(R4, ◦) with the family δλ of dilations becomes a homogeneous Carnot

group.

• On R
4, define ∗ as

ξ ∗ η =




ξ1 + η1

ξ2 + η2

ξ3 + η3

ξ4 + η4 + 2η1ξ2 − η2ξ1


 .

The decomposition of Lie algebra is

g1 ⊕ g2 = span{Z1, Z2, ∂ξ3} ⊕ span{∂ξ4},

where

Z1 = ∂ξ1 + 2ξ2∂ξ4 ,

Z27 = ∂ξ2 − 2ξ1∂ξ4 .

6.2. The Heisenberg Group. A Classic Example:

The Heisenberg Group I

• Consider the set of matrices of the form

0 x t+ 2x.y

0 0 y

0 0 0


 , x, y, t ∈ R.

The set with matrix multiplication forms a group called the Heisenberg

group(of three dimensions). If x is replaced by the row vector x and y

by the column vector y for x,y ∈ R
n then we get the 2n+ 1 dimensional

Heisenberg group.
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• The Heisenberg Group can also be defined on the set Cn × R

The multiplication being:

(z, t) · (ζ, s) = (z + ζ, t+ s+ 2Im z · ζ̄), ∀ (z, t), (ζ, s) ∈ C
n × R.

• with this operation and usual C∞ structure on C
n×R, this group becomes

a Lie group denoted by Hn.

• If z = x + iy and x1, x2, . . . , xn, y1, y2, . . . , yn are real coordinates on Hn,

we set

Xj =
∂

∂xj
+ 2yj

∂

∂t

Yj =
∂

∂yj
− 2xj

∂

∂t

T =
∂

∂t

Then X1, X2, . . . , Xn, Y1, Y2, . . . , Yn, T form a basis for the Lie algebra

of Hn.

The Heisenberg Group II

• The Lie algebra hn of Hn can be expressed as

hn = vn ⊕ zn,

where zn is span of T and vn is that generated by X1, X2, . . . , Xn, Y1,

Y2, . . . , Yn. This gives a stratification of hn.

• The canonical sub-Laplacian on Hn is given by

L0 =

n∑
i=1

(X2
j + Y 2

j ).

• The fundamental solution for L0 with pole at the identity was given by

Folland in the form

ge([z, t]) = c
(
|z|4 + t2

)−n

2 ,

c is a normalization constant.

The Kelvin Transform on Hn

• On Hn − {0}, define h as

h([z, t]) =

[
−

z

|z|2 − it
,−

t

|z|4 + t2

]

• The Kelvin transform of f defined on Hn − {0} is given by

Kf = c−1ge.f ◦ h

This transform, as in Euclidean case, sends harmonic functions to har-

monic functions.
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• Explicit expressions of Green’s function and Poisson kernel for a class of

polyradial fucnctions are known in case of the Heisenberg group.

6.3. Another Interesting Class of Examples. H-type Groups I

• H-type groups were first introduced by Kaplan in 1980 as a generalization

of the Heisenberg group.

• Let n be a real Lie algebra equipped with an inner product, which can be

writetn as an orthogonal direct sum,

n = v⊕ z,

where [v, v] ⊆ z and [v, z] = [z, z] = 0. Define the linear mapping J : z →

End(v) by the formula

〈JZX,X
′〉 = 〈Z, [X,X ′]〉 ∀ Z ∈ z, X,X ′ ∈ v.

n is called a Lie algebra of H-type if

J2
Z = −|Z|2I.

• A Lie connected and simply connected Lie group is called H-type if its Lie

algebra is of H-type.

H-type Groups II

• A Lie group of H-type is said to satisfy the J2 condition if for every pair

of orthogonal vectors Z,Z ′ ∈ z and X ∈ v, there exists Z ′′ ∈ z such that

JZJZ′X = JZ′′X.

• There is a nice Kelvin transform defined on H-type groups which satisfy

J2 condition.

HM Groups

Definition 6.1. Let g be a Lie algebra and let z be its center. We say that g is

HM type if it admits a vector space decomposition g = g1 ⊕ g2 with [g1, g2] ⊆ g2

and g2 ⊆ z with the additional property that for every 0 6= η ∈ g∗2, the bilinear

form Bη(X,X
′) = η([X,X ′]) is non degenrate.

A Model Two Step Group

• Consider (n+p) dimensional space Rn×R
p and an element of this will be

written as (x1, . . . , xn, t1 . . . , tp). We often use the pair (x, t) to denote an

element of Rn × R
p where x will denote the tuple (x1, . . . , xn) and t will

denote the tuple (t1, . . . , tp). On this space, we define a binary operation

∗ as

(x, t) ∗ (x′, t′) = (x+ x′, t+ t′ +
∑
j,k

aαjkx
′
jxk),
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where, for each α, (aαjk) is an antisymmetric matrix. Clearly, the operation

∗ turns Rn×R
p into a Lie group, denoted asN with the usual C∞ structure

on R
n × R

p.

• Define vector fields Xj ’s as follows

Xj =
∂

∂xj
+

p∑
α=1

n∑
k=1

aαjkxk
∂

∂tα
, 1 ≤ j ≤ n

. The vector fields Xj’s and Tα = ∂
∂tα

form a basis for the Lie algebra n

of N . It can be easily seen that the brackets of n are given by

[Xj , Xk] = 2
∑
α

aαjk
∂

∂tα
,

and all other brackets are trivial. It now follows that the group N is a

two step nilpotent Lie group. If we assume that p ≤ n(n − 1)/2 then the

vector fields Xj ’s and their first brackets generate the Lie algebra n of

N .The operator

∆ =
1

2

n∑
j=1

X2
j ,

is the canonical sub-Laplacian on N . From [6], this operator is hypoellip-

tic. A fundamental solution for ∆ with pole at identity is given by the

integral

G(x, t) =

∫
Rp

V

f q
,

where V is a solution of a generalized transport equation and f is a solution

of a generalized Hamilton-Jacobi equation. q = n
2 + p− 1.

7. Open problems

Some open problems

• Determining analytic hypoellipticity for groups of higher order of nilpo-

tency.

• To find a fundamental solution for the sub-Laplacian on a Filiform group

where the operator is known to be not analytic hypoelliptic.(Let h be a Lie

algebra and h ⊃ h1 ⊃ h2 . . . be its lower central series. h is called Filiform

if dim hk = dim h− k for 3 ≤ k ≤ dim h)

• Finding Poisson Kernel on H-type groups without the J2 condition and

non polarizable groups.

• Generalizing Kelvin transform to groups beyond the class ofH-type groups

with J2 condition.
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TOPOLOGICAL COMBINATORICS-

THE KNESER CONJECTURE†

SATYA DEO*

Abstract. The proof of Kneser Conjecture given by L. Lovász is believed

to have laid the foundations of Topological Combinatorics. In this expository

paper, we present three distinct proofs of the Kneser Conjecture, each of

which essentially uses the Bousruk-Ulam theorem of algebraic topology. We

also discuss various generalizations of this conjecture along with the methods

employed in their proofs.

1. Introduction

The Kneser conjecture, which we explain below, concerns with a simple prob-

lem of Combinatorics. We start with a finite set and consider all of its subsets

of a given uniform size. Then we partition this collection of subsets into a fixed

number of classes and ask whether any of those classes admits a pair of disjoint

sets. More precisely, let X be a set having 2n+ k elements, n ≥ 1, k ≥ 0. Let Σn

be the collection of all n-sets of X , i.e., those subsets of X which have n-elements.

Note that in Σn, we can obviously find two n-sets A and B such that A ∩B = φ.

Now here is a question :

Question: If we decompose Σn into two or more than two disjoint classes, then

can we find a class Ki such that Ki has a pair of disjoint n-sets of X?. May or

may be not!

To illustrate it by a simple example, let us consider the set X = {1, 2, 3, 4, 5}

and its 2-subsets Σ2. Then

Σ2 = {{1, 2}, {1, 3}, · · ·{1, 5}, {2, 3}, {2, 4}, {2, 5}, · · · , {4, 5}}.
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31, 2013.

2010 AMS Subject Classification: 05-02, 55-02, 55N05.

Key words and phrases: Kneser conjecture, Borsuk-Ulam theorem, n-connectedness, Chro-

matic number of a graph

* Research supported by the DST (Govt of India) Research Grant sanction letter number SR/

S4/ MS: 567/09 dated 18.02.2010, and also by the NASI Platinum Jubilee Fellowship-2013.

c© Indian Mathematical Society, 2014 .

109



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

110 SATYA DEO

We can decompose Σ2 into 3-classes as (Here 5 = 2.2 + 1):

K1 = {{1, 2}, {1, 3}, {1, 4}, {1, 5}}

K2 = {{2, 3}, {2, 4}, {2, 5}}

K3 = {{3, 4}, {3, 5}, {4, 5}}

Then note that none of the Ki’s has a pair of disjoints sets. But if we decompose

Σ2 into two disjoint classes K1 and K2, then we can verify that at least one of

them will have a pair of disjoints 2-sets. M. Kneser in the year 1955 made the

following conjecture (see [9]):

Kneser Conjecture : Suppose |X | = 2n + k, and Σn =
(
2n+k

n

)
denotes the

set of all n-subsets of X . Decompose Σn into k + 1 disjoint classes. Then there is

a class Ki which has a pair of disjoint sets.

Remark 1.1. The above conjecture reminds one the following version of the Borsuk-

Ulam Theorem (Lusternik-Schnirelman Theorem): Decompose Sn as the union of

n + 1 closed subsets C1, C2 · · · , Cn+1. Then there is a set Ci which has a pair of

antipodal points.

Remark 1.2. The Kneser Conjecture can obviously be stated as follows:

If Σn is decomposed into r disjoint classes where r ≤ k + 1, then at least one of

them will have a pair of disjoint subsets.

Remark 1.3. The Kneser Conjecture is not true if Σn is decomposed into k + 2

disjoint classes. An example is already given above, but for a general example,

let X = {1, 2, · · · , 2n + k} and Σn be the set of all n-subsets of X . Define the

class Ki = all n-subsets whose first member is i, 1 ≤ i ≤ k + n + 1. Then

K1,K2, · · · ,Kk,Kk+1 and Kk+2 ∪ Kk+3 ∪ · · · ∪ Kk+n+1 are the k + 2 disjoint

subsets of Σn and there is no Ki which contains a pair of disjoint n-sets !!

Proof. Note that for each i = 1, 2, · · · k+1, any pair of n-sets in the class Ki always

intersect viz. they have the index i in common. However, in Kk+2 ∪Kk+3 ∪ · · · ∪

Kk+n+1, note that any two n-sets in any of the Kk+i, 2 ≤ i ≤ n+1 are not disjoint

by definition. In case they are in different Kk+i1 ,Kk+i2 , i1 6= i2, then also they

must have something in common, otherwise the total number of elements in X

must be

k + 1 + n+ n = 2n+ k + 1 > 2n+ k,

a contradiction. �

2. The Method of Lovász

Verifying the conjecture for small values of n and k indicates the possibility of

the conjecture being true in general, but we need a proof for arbitrary values of n

and k. No proof of this was available for a long period of time until in 1978 when
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L. Lovász gave a proof using the ideas of algebraic topology, in an unexpected

manner. Here is the approach adopted by L.Lovász in his seminal paper (see[11]).

Let us define a graph GKn,k, called the Kneser graph associated to Σn, as

follows :

• Vertices are n-subsets of X i.e., the elements of Σn

• Two vertices A and B ∈ Σn will form an edge provided A ∩B = φ.

Let us color the vertices of the above graph so that the two vertices of an edge have

different colors. If we prove that the minimum number of colors required to color

the graph GKn,k is k + 2, then that will mean that if we color the vertices using

only k+1 colors i.e., we divide Σn into k+1 disjoint sets, then there is a member of

the partition which will have an edge (A,B) in it, i.e., A∩B = φ. In other words,

the Kneser conjecture will be proved if we can show that the Chromatic Number

χ(GKn,k) of the Kneser graph GKn,k is k + 2. Thus, a proof of the conjecture

was translated into a coloring problem of a graph. In fact, the Kneser conjecture

for X = {1, 2, · · · , 2n + k} is equivalent to proving that χ(GKn,k) is k + 2, i.e.,

GKn,k is not k + 1 colorable.

In 1978, Lovász proved the above result viz., that the graph GKn,k is not

(k + 1)-colorable. However, the proof uses the homotopical connectivity of the

simplicial complex related to the Kneser graph GKn,k and an important gener-

alized version of the Borsuk-Ulam Theorem of Algebraic Topology. This proof

has given rise to a lot of good mathematics known as Topological Combinatorics.

The subject matter of Topological Combinatorics usually arises in the following

manner. Given a problem of combinatorics, we define a simplicial complex which

converts the problem of combinatorics into a problem of algebraic topology. There

are then powerful tools of algebraic topology like the homotopy theory, homol-

ogy and cohomology theory, obstruction theory etc., which present themselves

naturally in tackling that problem. Very often we are successful in solving these

problems, which in turn solves the original problem of combinatorics. The com-

binatorial problems studied and resolved in this fashion constitute the subject

matter of topological combinatorics. L. Lovász was the first person to invent this

method for proving the Kneser conjecture. By now a large number of problems

of combinatorics have been successfully attacked using this method. We will deal

with Lovász’s method in the last Section of this paper because it is somewhat

technical and difficult to immediately see its correctness. In section 3, we review

the Borsuk-Ulam theorem itself in its various forms. In Section 4, we present the

second proof (of 1978) and the third proof (of 2002) of the Kneser conjecture,

which are short and use only the Borsuk-Ulam theorem and nothing else from

algebraic topology.
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3. Borsuk-Ulam Theorem

As we will see, the basic result for proving the Kneser conjecture, besides other

results, is the Borsuk-Ulam theorem of algebraic topology. It is, therefore, very

desirable that we understand this theorem and its several variants well before we

embark upon different proofs of the Kneser conjecture. Let us recall that the two

points x1, x2 of the standard n− sphere Sn are said to be antipodal points if they

are diametrically opposite to each other, i.e., x2 = −x1. The sphere Sn admits a

homeomorphism h : Sn → Sn such that h(x) = −x.. This map defines a natural

free action of the multiplicative group G = {−1, 1} on Sn, which is called the

antipodal action on Sn. A topological space X which admits a free G− action, is

called an antipodality space. A map f : Sm → Sn is called an antipodal map if it

preserves the antipodal points, i.e., f(−x) = −f(x) ∀x ∈ Sm.

Theorem 3.1. The following statements are equivalent:

(1) There exists no continuous antipodal map f : Sn → Sn−1 for any n ≥ 1.

(2) (Borsuk-Ulam Theorem-continuous version) For any continuous map f :

Sn → Rn, there is a pair of antipodal points x,−x ∈ Sn such that f(x) =

f(−x).

(3) (Lusternik-Schnirelmann Theorem-closed version) Given any n+ 1 closed

subsets F1, F2, · · ·Fn+1 which cover Sn, there exists some member Fi which

has a pair of antipodal points.

(4) (Lusternik-Schnirelmann Theorem-open version) Given any n+1 open sets

U1, U2, · · ·Un+1 which cover Sn, there exists some member Ui which has a

pair of antipodal points.

(5) (Lusternik-Schnirelmann Theorem-mixed version) Given any n+1 subsets

G1, G2, · · ·Gn+1 which cover Sn and each of which is either open or closed

in Sn, there exists some Gi which has a pair of antipodal points.

(6) (Antipodal on boundary version)There is no continuous map f : Dn →

Sn−1 which is antipodal on the boundary of Dn.

(7) For any antipodal map f : Sn → Rn, there exists a point x ∈ Sn such that

f(x) = 0.

Most proofs of Borsuk-Ulam Theorem use tools of algebraic topology like

degree of a map, the homotopy groups or homology-cohomology groups of a space

and the product structure in cohomology (see for example [5], [15] or [8]). It must

be remarked, however, that there is also a combinatorial proof of the Borsuk-Ulam

theorem which uses Tucker’s Lemma, and that Lemma is well-known to have a

combinatorial proof (see [12]).
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Proof. We will assume the Borsuk Ulam Theorem viz. (2) (see [5, p. 183]),

and prove that the rest of the statements are all equivalent to the Borsuk-Ulam

Theorem.

(1)⇒(2): If (2) is not true, then ∀x ∈ Sn, f(x) 6= f(−x). Hence the map

g : Sn → Sn−1 defined by g(x) = f(x)−f(−x)

|f(x)−f(−x)| is continuous and antipodal, a

contradiction.

(2)⇒ (3): Let F1, F2, · · ·Fn+1 be a closed cover of Sn. For any i, 1 ≤ i ≤ n, the

distance function d(x, Fi) : S
n → R is a continuous function. Hence the map f :

Sn → Rn defined by f(x) = (d(x, F1), d(x, F2), · · · , d(x, Fn)) is continuous. Hence

by (2), there is an x0 such that f(x0) = f(−x0), i.e., d(x0, Fi) = d(−x0, Fi), ∀i ≤

n. Now if x0 ∈ Fi for some i, then since Fi is closed, d(x0, Fi) = 0 = d(−x0, Fi),

which means both x0,−x0 ∈ Fi and (3) is proved. Otherwise d(x0, Fi) > 0, ∀i ≤ n,

which means x0,−x0 6∈ Fi. Since F1, F2, · · ·Fn+1 is a cover of Sn, we find that

both x0,−x0 are in Fn+1. This proves (3).

(3)⇒ (1): If (1) is not true, then there exists a continuous antipodal map,

say f : Sn → Sn−1. Let us consider Sn−1 as the boundary of an n−simples ∆n

so that origin is at the center of the simplex. Then observe that ∆n has n + 1

faces and the radial projection from the origin will give us n+1 closed subsets, say

F1, F2, · · · , Fn+1 covering Sn−1. Clearly, none of these closed sets has a pair of an-

tipodal points. Therefore, since f is antipodal, f−1(F1), f
−1(F2), · · · , f

−1(Fn+1)

is a collection of n+ 1 closed subsets of Sn such that none of these has a pair of

antipodal points, i.e., (3) is not true.

(3)⇒ (4): Let U1, U2, · · ·Un+1 be an open cover of Sn. Suppose λ is a Lebesgue

number for the above covering. This means ∀x ∈ Sn, the closed ball B(x, λ) around

x will be contained in Ui for some i. Since Sn is compact, there is a finite number

of such balls B(x, λ), x ∈ Sn covering Sn. For each i, we choose all such balls

which are contained in Ui. Let Fi denote the union of such balls. Then Fi ⊂ Ui

for each i, and F1, F2, · · ·Fn+1 cover Sn. Hence by (3). there exists an Fi which

has a pair of antipodal points. But this means Ui has a pair of antipodal points.

(4)⇒ (5): Let G1, G2, · · · , Gn+1 be a covering of Sn in which each Gi is either

a closed set or an open set. To prove (5), we proceed by induction on the number

k of closed subsets in the given covering {Gi}. If k = 0, then all of the Gi’s are

open and the result follows from (4). Suppose 0 < k < n+ 1 and assume that the

result is true when there are k − 1 number of closed subsets in Gi. Fix a closed

subset F in Gi and suppose F does not contain a pair of antipodal points. Hence

its diameter will be less that 2, i.e., diam(F ) = 2− ǫ for some ǫ > 0. Define a set

U = {x ∈ Sn|d(x, F ) < ǫ/2}.
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Figure 1

Then U is an open set and {G1, ..., F̂ ..., Gn+1} ∪ {U} is a cover of Sn with n+ 1

sets, of which exactly k− 1 are closed and the remaining are open sets. Hence, by

the induction hypothesis, some set in the above cover contains a pair of antipodal

points. By construction, U cannot contain a pair of antipodal points and therefore

some set in the original covering must contain a pair of antipodal points. This

completes the proof.

(5)⇒ (3): Obvious.

(2)⇒ (7): By (2), there exists a pair of antipodal points x,−x such that

f(x) = f(−x). Since f is antipodal, f(−x) = −f(x) and so 2.f(x) = 0, i.e.,

f(x) = 0.

(7)⇒ (1): If (1) is not true then there exists a continuous antipodal map

f : Sn → Sn−1. But this map is also an antipodal map Sn → Rn having no zero,

i.e., (7) is not true.

(6)⇒ (1): If (1) is not true, then there is a continuous map f : Sn → Sn−1

which is antipodal. Observe that we can consider Sn as the union of two hemi-

spheres H+ and H− which have Sn−1 as the common boundary (See Fig 1.).

Also, there is the projection homeomorphism h : H+ → Dn defined by

h(x1, ...., xn+1) = (x1, ..., xn)

which is identity on the boundary Sn−1 of Dn. Hence the map f0h−1 is continuous

map from Dn → Sn−1 which is antipodal on the boundary Sn−1, contradicting

(6).

(1)⇒ (6): Suppose (6) is not true. Then there is a continuous map g : Dn →

Sn−1 which is antipodal on the boundary Sn−1 of Dn. We can now use the

homeomorphism h : H+ → Dn defined above (see Fig 1.) to construct a map

f : Sn → Sn−1 as follows:

f(x1, ...xn+1) =

{
g(h(x1, ....., xn+1)) if xn+1 ≥ 0,

−g(h(x1, ....., xn+1)) if xn+1 ≤ 0.
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Then f is continuous because its restriction on the two closed hemispheres are

continuous and they match on the common boundary. Clearly, f is also antipodal

from Sn → Sn−1, a contradiction to (1). �

C.T.Yang [17] has given an interesting generalization of the Borsuk-Ulam the-

orem using the index theory (see [6]). A special case of that theorem, which is

analogous to (1), was utilized by Lovász in proving the Kneser conjecture.

Theorem 3.2. (Antipodality version) Let X be a (n−1)-connected compact Haus-

dorff space admitting a free Z2-action. Then there is no continuous antipodal map

X → Sn−1.

It is interesting to point out here that the Borsuk-Ulam theorem is related to

the Brouwer’s fixed point theorem [16]. We have

Theorem 3.3. The Borsuk-Ulam theorem implies the Brouwer’s fixed point the-

orem.

Proof. Let Dn be an n-disk and f : Dn → Dn be a continuous map. Suppose f

has no fixed points. Then we can define a map g : Dn → Sn−1 as follows: For any

x ∈ Dn, draw the line segment joining f(x) to x and produce the segment so that it

meets the boundary Sn−1 of Dn in a unique point, say g(x). Then g is continuous

and is identity on Sn−1. Since the identity map on Sn−1 is antipodal, we can use

part (6) to conclude that the Borsuk-Ulam is not true, a contradiction. �

A proof avoiding algebraic topology of the above theorem is given in [16]

Immediately after the proof of Kneser conjecture by Lovász in the year 1978,

I. Bárány gave a short and simple proof of the Kneser conjecture, which appeared

in the same volume of the same journal as that of Lovász [11]. The proof given by

Bárány used a variant of the Borsuk-Ulam theorem and a combinatorial Lemma

due to D.Gale, already proved in 1956. He did not make any use of algebraic

topology other than the well-known Lusternik-Schnirelman theorem (open version,

Theorem 3.1(4)) equivalent to the Borsuk-Ulam Theorem. For the following we

refer to Fig 2.

Lemma 3.1 (David Gale(1956)). Given 2n+k points, n ≥ 1, k ≥ 0 in a set S, we

can place these points on the standard k−dimensional sphere Sk in such a manner

that any open hemisphere around the point x ∈ Sk contains at least n points of the

set S.

Since Gale’s Lemma can be proved using elementary linear algebra, Bárány’s

proof of the Kneser conjecture confirmed the Lovász’s proof of Kneser conjecture,
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Figure 2

specially because the Lovász’s proof was somewhat complicated and assumed fa-

miliarity with the concepts of Algebraic Topology rather well.

The Second Proof- due to I. Bárány :

Proof. Let us consider the sphere Sk. Because of a Lemma due to Gale, we can

place the points of X = {1, 2, · · · , 2n + k} on Sk such that any open hemisphere

contains at least n-points of the set X . Let us now decompose the n-sets of X

into k + 1 disjoint classes say, K0,K1, · · · ,Kk. Now for each i, define the set

θi = {x ∈ Sk | the open hemisphere centered at x contains

at least one point from the class Ki}

If x ∈ θi, it is easy to see that there is a small neighborhood of x such that all points

of that neighborhood are in θi. Hence θi is an open set of Sk for i = 0, · · · , k. If

x ∈ Sk, then there is a open hemisphere (by Gale’s Lemma) around x (see Figure

2) which contains some n-set from X and that n-set is in some class Ki. Hence

x ∈ θi. This means {θi | i = 0, · · · , k} is an open cover of Sk. Hence by the

Borsuk-Ulam Theorem (Lusternik-Schnirelman theorem-open version), some open

set θi must contain a pair of antipodal points, say x and −x. Then, by definition,

there is a n-set from the class Ki which lies in the hemisphere around x and also

there is a n-set from the same class Ki which lies in the hemisphere around −x.

Then clearly there is a pair of disjoint n-sets in the class Ki. �

Here is yet another proof of the Kneser conjecture given by an undergraduate

student of USA which is as easy as the proof of Bárány, but it does not use the

Gale’s Lemma. It actually uses the well-known idea of a set of points in the

Euclidean space being in general position and the Borsuk-Ulam Theorem (mixed

version) only so that it is simpler.

The Third Proof- due to J. Green:
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Proof. We start with the set X having 2n + k points and place them on the

sphere Sk+1 in general position. This can obviously be done. Now partition the

set of n-subsets of X into k + 1 disjoint classes, say K1,K2, · · · ,Kk+1. For each

i, 1 ≤ i ≤ k + 1, let Ui denote the set of all those points x ∈ Sk+1 such that the

open hemisphere H(x) centered at x, contains an n-subset from Ki (see Figure

2). This crucial definition of Ui is due to I. Bárány used in the second proof given

earlier. Then, by a small perturbation of H(x), one can easily see that Ui is an

open set of Sk+1. Hence F = Sk+1 \ (U1 ∪ U2 ∪ ... ∪ Uk+1) is a closed set. Note

that if x ∈ F , then H(x) cannot contain any (n + i)-set for i ≥ 0, otherwise,

it will contain an n-set from X , and will be in some Ui. Thus, the collection

{F,U1, · · · , Uk+1} of k+2 sets is a covering of Sk+1 by closed or open sets. Hence,

by the mixed version of the Lusternik-Schnirelman Theorem proved earlier, one

of the members of the above collection contains a pair of antipodal points, say

x0,−x0. Now observe that F cannot contain such a pair because otherwise H(x0)

and H(−x0), each will contain fewer than n points from the set of 2n+ k points.

This will mean the remaining points, whose number would be at least k + 2, will

lie on the great circle Sk of Sk+1. But this will mean that the set of 2n + k on

Sk+1 are not in general position, a contradiction. Hence both x0 and −x0 will lie

in Ui for some i. Therefore H(x0) and H(−x0) both contain n-subset from the

same class Ki and these are obviously disjoint. This completes the proof of the

Kneser Conjecture. �

4. The First Proof- due to L.Lovász

In this Section we are now going to briefly present the first original proof of

the Kneser Conjecture given by L.Lovász in 1978. As pointed out earlier, though

the proof is somewhat complicated and uses freely several concepts of algebraic

topology (neither Gale’s Lemma nor the idea of general position), yet it is quite

instructive and has already proved its enormous power in tackling other problems

of combinatorics. Let us go back to Section 2. Observe that we have already

converted the Kneser Conjecture into a problem of Graph theory. We associated

a graph, called Kneser Graph Gn,k, with the set of all n-sets of the set X , and

then found that proving the Kneser conjecture is equivalent to showing that the

Chromatic Number of this graph χ(Gn,k) is exactly k + 2. Lovász accomplished

this as follows:

He proved the Kneser conjecture in the following two steps:

(1) With any given graph G, Lovász associated a simplicial complex N(G),

called the nbd complex of G, and proved that if N(G) is (k− 1)-connected

in the sense of homotopy, then G cannot be (k + 1)-colorable.

(2) He proved that the nbd complex N(Gn,k) of the Kneser graph Gn,k is

(k − 1)-connected.
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We now explain the topological ideas used by Lovasz. We begin with the

following

Definition 4.1. For any graph G = (V,E), let us define a simplicial complex

N(G), called the neighborhood complex (nbd complex) of G, whose vertices are the

vertices of G and a set A of vertices forms a simplex if all the elements of A have

a common neighbor, i.e., ∃ v ∈ V such that for all a ∈ A, (v, a) is an edge in G(see

Fig 3.)
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Figure 3

Examples: In the last example of a complete graph G = K4 on 4 vertices,

we easily see that the nbd complex N(G) is the boundary of a 3-simplex, i.e.,

N(G) ≃ S2.

Example 4.1. More generally, let us take a complete graph G = Kk+1 on k + 1

vertices {0, 1, 2, · · · , k} = V . Then every proper subset of V is a simplex in N(G).

In other words, subsets of V having all but one element, will be simplices of N(G).

Therefor the simplicial complex N(G) can be identified with boundary complex

of the simplex ∆k =< 0, 1, 2, · · · , k >. Since ||∂∆k|| ≃ Sk−1, we find that a

neighborhood complex need not be simply connected, even k-connected for any

k ≥ 1.
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Theorem 4.1. The neighborhood complex N(KGn,k) is (k − 1)-connected

Proof. Consider the set of all n-subsets of S where |S| = 2n+k. Define a simplicial

complex K as follows: (1) Vertices are all n-sets of S. (ii) The (m + 1)-tuple

(A0, · · · , Am) forms a simplex of K iff |A0 ∪ · · · ∪ Am| ≤ n + k. Then, clearly

K is a simplicial complex, and what is interesting is that this simplicial complex

K is exactly the neighborhood complex N(GKn,k) of the Kneser graph GKn,k.

To see this observe that the vertices A0, A1, · · · , Am of a m-simplex of K have a

common neighborhood viz., the complement of the union ∪m
0 Ai and hence forms

a simplex in N(GKn,k). The converse is also easily see to be true. Hence we find

that K = N(GKn,k).

Now we will prove that the space |K| of the simplicial complex K is a (k− 1)-

connected. By the simplicial approximation theorem, it suffices to show that any

simplicial map f : Sr → |K| is null-homotopic, ∀r ≤ k−1. In other words, we must

show that (k− 1) -skeleton K0 of K is null-homotopic in |K|. This will be proved

by induction on numbers |S|, where n+ k ≤ |S| ≤ 2n+ k. When |S| = n+ k, the

simplicial complex K is indeed a simplex and the result is trivial.

Now assume that |S| > n+k. Let us introduce another simplicial complex K ′

as follows: (i) vertices are exactly the vertices of K (ii) the set (A0, · · · , Am) is a

simplex of K ′ iff |A0 ∪· · ·∪Am| < n+k. Then |K ′| is a closed subcomplex of |K|.

Claim 1. The simplicial complex |K0| can be deformed into |K ′| in |K|. To prove

this we will define a simplicial map ψ : |K0| → |K ′| such that for any simplex

A = (A0, · · · , Am) in K0 ψ(A) is contained in the simplex of K ′ spanned by all

n-subsets of A0 ∪ · · · ∪Am.

This means there is a straight line homotopy in |K| joining the points of |A| with

those |ψ(A)|. The definition of ψ is by induction on dim(A). If dim(A) = 0, then

A is vertex of K, we put ψ(A) = A, and ψ(A) ∈ K ′. Assume now that dim(A) > 0

and ψ is defined on the boundary b(A) complex of the complex Cl(A) such that

ψ(A) ∈ K ′. Now consider the subcomplex K ′
A induces by K ′ on the set of vertices

of A. Clearly, ψ(A) lies in K ′
A by induction and K ′

A is (k − 1)− connected by

the original induction hypothesis. Hence this map can be continuously extended

to the whole of Cl(A) and the required condition remains valid. This proves our

claim that |K0| can be deformed into |K ′| in |K|.

Claim 2. The simplicial complex |K ′| is null homotopic in |K|.

Let u, v ∈ S. We define a map φu,v : K ′ → K ′. If X is a vertex of K ′ we put

φuv(X) =

{
(X − {u}) ∪ {v} if u ∈ X, v /∈ X

X, otherwise.

Then we observe that φ is a simplicial : If A = (A0, · · · , Am) is a simplex in K ′,

then φuv(A) = (φuv(A0), · · · , φuv(Am)) is also a simplex in K ′. This is so because
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if u /∈ A0 ∪ · · · ∪ Am or v ∈ A0 ∪ · · · ∪Am, then

φuv(A0), · · · , φuv(Am) ⊆ A0 ∪ · · · ∪ Am,

and if u ∈ A0 ∪ · · · ∪ Am and v /∈ A0 ∪ · · · ∪ Am, then

φuv(A0), · · · , φuv(Am) ⊂ (A0 ∪ · · · ∪ Am − {u}) ∪ {v}

In both cases

|φuv(A0), · · · , φuv(Am)| ≤ |A0 ∪ · · · ∪ Am| ≤ n+ k − 1

Since Ā ∪ φuv(Ā) is contained in the simplex spanned by all n-sets of A0 ∪ · · · ∪

Am ∪ {v}, there is a straight line homotopy joining points of Ā to the points of

φuv(Ā). Since S is a finite set, u, v can be allowed to vary over all pairs in S so

that we have a finite composition

φupu1
φupu2

· · ·φupup−1
φup−1u1

· · ·φu2u1

which maps every vertex X of K ′ into the vertex {u1, · · ·un} of K. This implies

that the inclusion map K ′ → K is homotopic to a constant map i.e., |K ′| is

null-homotopic.

Since |K0| can be deformed into |K ′| and |K ′| is null-homotopic in |K|, we find

that |K0| is null-homotopic in K. Thus K = N(GKn,k) is (k − 1)-connected. �

The most fundamental result proved by Lovaz is the following:

Theorem 4.2. Let G be any graph. If the neighborhood graph N(G) of G is

(k − 1)-connected, then G is not (k + 1)-colorable.

Proof. Let G = (V,E) be a finite graph. Let 2V denote the collection of all subsets

of V . Define a map ν : 2V → 2V as follows:

ν(A) = the set of all common neighbours of all elements of A

= {v ∈ V | v(a) ∈ E(G), ∀a ∈ A}

Let N1(G) denote the barycentric subdivision of the neighbourhood graph N(G)

of G. Then the above map induces a map ν : N1(G) → N1(G) as follows: Any

vertex of N1(G), which is a simplex of N(G), is just an element A = {a1, · · · , ap}

of 2V . Then ν(A) is also in 2V . Note that ν(A) will have at least one common

neighborhood, say v1. There may be more, say, v2, · · · , vp. The {v1, · · · , vp} has a

common neighbors, viz., every element of A. The {v1, · · · , vp} is a simplex ofN(G)

and hence is a point of N1(G). Furthermore, ν reverses inclusions i.e., A1 ⊆ A2 ⊆

· · · ⊆ Ap implies ν(A1) ⊇ ν(A2) ⊇ · · · ⊇ ν(Ap) This means ν : N1(G) → N1(G)

is indeed a simplicial map. Note that ν(ν(A)) ⊇ A and the containment may be

proper, e.g.,
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1 3

2

Figure 4

ν(1) = {2}

ν(2) = {1, 3}

ν2(1) ) (1)

Now we select the set L(G) of those points of N1(G) which are fixed under the

map ν, i.e.,

L(G) = {A ∈ N1(G) | ν
2(A) = A}.

Then L(G) is a subcomplex of N1(G). In the simple case of a complete graph on

3 vertices, let us see the complexes N(G), N1(G), L(G) (see Fig. 6, Fig. 7)

Let us take a complete graph G on 3 vertices.Then G = N(G).(Fig. 5)

G=

1

32

Figure 5

The barycentric subdivision N1(G) of N(G) is given in Fig. 6.

N (G)1 =

1

2 3

12 23

123

Figure 6

Hence ||L(G)|| ≃ S1. In fact, this is true in general i.e., If G = Kk+1 is the

complete graph on k + 1 vertices, then G = N(G), ||N1(G)|| = ||N(G)|| and

||L(G)|| ≃ Sk−1.
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L(G)=

Figure 7

Also ν : L(G) → L(G) is a free involution on L(G) i.e., ν2 = Identity on L(G).

Hence (|L(G)|, ν) is an antipodality space and we can talk of Z2-index indZ2
|L(G)|.

We have

Proposition 4.1. |L(G)| is a deformation retract of |N1(G)| = |N(G)|. �

Thus our assumption that N(G) is (k − 1)-connected implies that |L(G)| is

(k − 1)-connected. This means ([12, Prop. 5.3 (v) p. 96])

IndZ2
|L(G)| ≥ k.

To prove Theorem 4.2, let us suppose that G admits a (k + 1)-colouring. This

means there is a graph homomorphism

f : G→ Kk+1

Here Kk+1 denotes the complete graph on k + 1 vertices. Then we can now

show that f induces a Z2-map |L(G)| → |L(Kk+1)|. But |L(Kk+1)| ≈ Sk−1 (see

Example 4.1). This implies IndZ2
|L(G)| ≤ k − 1, a contradiction. Hence G can

not be k + 1 colorable. ✷.

Remark 4.1. As proved above, the assumption that G admits a (k + 1)-colouring

implies that we have a continuous map |L(G)| → Sk−1 where |L(G)| is a (k − 1)-

connected antipodality space. This violates the Borsuk-Ulam Theorem 3.2 (an-

tipodality version) and proves the Lovász’s Theorem directly. We don’t have to

introduce the concept of Z2-index as in the above proof. We did this simply be-

cause the index Theorem can be generalized to p-groups for any prime p that is

used in proving further generalizations of Kneser conjecture.

In the year 1973 Paul Erdös proposed the following generalization of the Kneser

conjecture:

Let us take a set X having (tn+ (t− 1)k) elements. When t = 2, the set has

2n+ k elements, when t = 3, the set X has 3n+2k elements, and so on. Then we

can decompose the set X into k+1 disjoint classes such that at least one class has

“t pairwise disjoint sets” instead of “a pairwise disjoint sets”? This generalized

conjecture has also been proved by Alon, Frankl and Lovász in 1986 (see [1]) as

follows :
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Theorem 4.3. Let n, t ≥ 1 and k ≥ 0. Suppose a set X has (tn + (t − 1)k)

elements and the set Σn of its n-sets are decomposed into k + 1 disjoint classes.

Then, there is a class which contains “t pairwise disjoint n-sets”.

The above theorem was further generalized by K. S. Sarkaria by using the

topological method of “deleted join” discovered by himself in [14]. Let us see what

is this generalization. A collection K of n-subsets is said to be pairwise disjoint if

the intersection of any two members of K is empty. More generally, suppose j > 1

is a positive integer. Then we say that K is j-wise disjoint if the intersection of

any j members of K is empty, “pairwise” is now “2-wise”. Now we have

Theorem 4.4. (Sarkaria) Let X be a set having N elements such that N(j−1)−

1 ≥ k(p−1)+p(n−1). If X is decomposed into k+2 disjoint classes of n-subsets of

X, then there exists a class having p members whose elements are j-wise disjoint.

When we take j = 2, we get the Erdös conjecture. When j = p = 2, we get

the Kneser conjecture. Thus the above theorem of Sarkaria includes the above

conjectures and much more!

It is remarkable to point out that the proofs of above theorems are all topo-

logical and analogous to the Lovász’s proof of the Kneser conjecture. They can

be found in the given references [1] and [14], where the basic ideas of proofs have

been nicely formulated using equivariant topology.
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RECENT ADVANCES IN THE THEORY OF

HARMONIC UNIVALENT MAPPINGS IN THE

PLANE*

OM P. AHUJA

Abstract. Planar harmonic univalent mappings have long been used in the

representation of minimal surfaces. Such mappings and related functions have

applications in the seemingly diverse fields of Engineering, Physics, Electron-

ics, Medicine, Operational Research, Aerodynamics, and other branches of

applied mathematical sciences. That is why; the theory of harmonic univa-

lent mappings has become a very popular research topic in recent years. The

aim of this expository article is to present recent advances in the theory of

the planar harmonic univalent and related mappings with emphasis on re-

cent results, conjectures and open problems and, in particular, to look at the

harmonic analogues of the theory of analytic univalent functions in the unit

disk.

1. Introduction

Harmonic mappings or harmonic functions, are critical components in the so-

lutions of numerous physical problems, such as the flow of water through an under-

ground aquifer, steady-state temperature distribution, electrostatic field intensity,

the diffusion of, say, salt through a channel. As early as 1920s, the differential

geometers used harmonic mappings in the representation of minimal surfaces. For

example, the properties of minimal surfaces such as Gauss curvature can be stud-

ied through these harmonic mappings. Such mappings and related functions have

also applications in the seemingly diverse fields of Engineering, Physics, Electron-

ics, Medicine, Operational Research, Aerodynamics, and other branches of applied

* The text (expanded version) of the invited talk delivered at the 79th Annual Conference of the

Indian Mathematical Society held at Rajagiri School of Engineering and Technology, Rajagiri V

alley, Kakkanad, Dist. Ernakulam, Cochin - 682 039, Kerala, during the period December 28 -

31, 2013.
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Key words and phrases: Harmonic mappings or functions, orientation or sense-preserving ha

rmonic functions, open problems and conjectures, univalent functions, conformal mappings, geo

metric function theory, harmonic Koebe mapping, harmonic starlike functions, harmonic convex

functions, convex in one direction, convex in orthogonal directions, connections with Fourier se

ries, connections with hypergeometric functions, biharmonic mappings, fully starlike and convex

harmonic mappings.

c© Indian Mathematical Society, 2014 .
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mathematical sciences. For results and some of the related references, one may

refer to [40], [48], [49], [53], [55].

Harmonic univalent mappings have attracted the serious attention of com-

plex analysts only recently after the appearance of a basic paper by Clunie and

Sheil-Small [32] in 1984. These researchers laid the foundation for the study of

harmonic univalent mappings over the unit disk as a generalization of analytic

univalent functions. Interestingly, almost at the same time, a famous Bieberbach

conjecture posed in 1916 by L. Bieberbach [19] on the size of the moduli of the

Taylor coefficients, was affirmatively settled by Louiz de Branges in 1985; see [23].

Although analogues of the classical growth and distortion theorems, covering

theorems, and coefficient estimates are known for suitably normalized subclasses

of harmonic univalent mappings, still many fundamental questions and conjectures

remain unresolved in this area. There is a great expectation that the harmonic

Koebe function will play the extremal role in many of these problems, much like

the role played by the Koebe function in the classical theory of analytic univalent

functions; see for example, [10], [36], [39].

Since there are several survey articles and books ([9], [20], [34], [35], [38])

on harmonic mappings and related areas, we shall make a selection of the results

relevant to our precise objective. The purpose of this article is to survey some of the

recent advances in the theory of harmonic mappings. We first give basic important

definitions, results and classes of harmonic mappings in Section 2. We next give

brief survey of the family S; that is, conformal mappings or the theory of analytic,

univalent, and normalized functions in the open unit disk. In sections 4 and 5, we

briefly survey subclasses of harmonic mappings and outstanding open problems,

conjectures and some recent advances in new areas. Section 6 covers different

methods of constructing new harmonic mappings. In Sections 7 to 9, we give

some recent advances in areas of fully starlike and fully convex harmonic functions,

and connections of harmonic mappings with the Fourier series and hypergeometric

functions. In Section 10, we briefly survey biharmonic mappings. Since it is not

possible to cover all areas of research in harmonic mappings in this short survey,

we close this paper with some of the areas of research topics in the theory of

harmonic mappings and related areas.

2. Preliminary: definitions and basic results

Let G be a domain of the complex plane C. Twice continuously differentiable

function f(z) = u + iv, z = x + iy is called a harmonic mapping (or harmonic

function) of G if it satisfies the Laplace’s equation

∇f = 4
∂2f

∂z∂z̄
=

∂2f

∂x2
+

∂2f

∂y2
= 0 (2.1)



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

THEORY OF HARMONIC UNIVALENT MAPPINGS IN THE PLANE 127

Recall that f = u + iv is a harmonic mapping in G if and only if u and v are

real harmonic in G; but not necessarily conjugates in G. For example, the function

f(z) = u(x, y)+ iv(x, y) = (x2 − y2)+ i2xy is complex-valued harmonic because u

and v satisfy Laplace’s equation.The following two figures explain uses of harmonic

mappings.

Figure 1. Harmonic map defined on an annulus

http://en.wikipedia.org/wiki/Harmonic mapping.

Theorem 2.1 ([32], [34]). If f is a harmonic mapping of a complex region G, then

the following equations are equivalent representations of f

(a) f(z) = h(z) + g(z),

(b) f(z) = Re{h(z) + g(z)}+ iIm{h(z)− g(z)}, (2.2)

(c) f(z) = {h(z)− g(z)}+ 2Re(g(z))

where h and g are analytic functions in G.

Remark 2.1. Representations (a), (b) and (c) are not unique.
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Remark 2.2. If G is a simply connected domain, then h and g are single-valued

analytic functions. On the other hand, if G is not a simply connected domain,

then h and g may be multiple-valued functions. Unless otherwise stated, G is a

simply connected domain in this paper. In the former case, the function h is called

the analytic part of f , and g is called the co-analytic part of f .

Example 2.1 ([32], [34]). A harmonic mapping

f(z) = z +
1

2
z̄2 = h(z) + g(z)

can be written as f(z) = Re{h(z) + g(z)}+ iIm{h(z)− g(z)}, where

h(z) = z and g(z) =
1

2
z2.

Figure 3: Image of the unit disk under the function in 2.1.

Example 2.2 ([32], [34]). A harmonic mapping

L(z) = h(z) + g(z) =
z − 1

2z
2

(1− z)2
−

1
2 z̄

2

(1− z̄)2
= Re{

z

1− z
}+ iIm{

z

(1− z)2
} (2.3)

is a right half-plane mapping; see Figure 4.

A subject of considerable importance in harmonic mappings is the Jacobian

Jf of a function f = u + iv, defined by Jf (z) = ux(z)vy(z) − uy(z)vx(z). Or, in

terms of fz and fz̄, we have

Jf (z) = |fz(z)|
2 − |fz̄(z)|

2 = |h′(z)|2 − |g′(z)|2 (2.4)

Figure 4: Image of the open unit disk under the function in Example 2.2
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When Jf is positive in G, the harmonic mapping f is called orientation-

preserving or sense-preserving in G. An analytic univalent function is a special

case of an orientation-preserving harmonic univalent function. For analytic

functions h, it is well-known that Jh(z) 6= 0 if and only if h is locally

univalent at z. For harmonic function we have the following useful result due

to Lewy [56].

Theorem 2.2. A harmonic mapping f is locally univalent at any point z in G if

and only if Jacobian Jf (z)is non-zero.

In view of this Lewy’s Theorem, harmonic univalent mappings are either sense-

preserving (or orientation preserving) with Jf (z) > 0, or sense-reversing with

Jf (z) < 0 for every point z in G. Clunie and Sheil-Small in 1984 [32] made the

following important observation.

Theorem 2.3 ([32]). A function f is locally univalent and sense-preserving in G

if and only if Jf (z) > 0 in G; equivalently,

|w(z)| =

∣∣∣∣ g
′(z)

h′(z)

∣∣∣∣ < 1, or |g′(z)| < |h′(z)| in G. (2.5)

Definition 2.1. The meromorphic function w given by w(z) = g′(z)/h′(z) is

called the second dilatation(or dilatation) of f .

Note that the harmonic mappings with dilatation w(z) ≡ 0 are precisely the

conformal mappings. More generally, it is easy to see that harmonic mappings

with constant dilatation w(z) ≡ α have the form f = h + αh for some analytic

locally univalent function h.

Instead of taking any simply connected domain G in the plane, there is no

essential loss of generality in taking the open unit disk △ = {z : |z| < 1} as the

domain of definition. From now onwards, unless it is otherwise stated, we assume

that a function f is a harmonic mapping defined on △ ⊂ C onto a domain Ω, with

△ 6= C. If g(0) = 0, then the representations of f in (2.2) are unique and can be

expanded in a series

f(reiθ) = g(reiθ) + h(reiθ) =

∞∑
−∞

Cn(f)r
|n|einθ (0 ≤ r ≤ 1), (2.6)

where g and h can be written as power series representations given by

g(z) =

−1∑
n=−∞

Cn(f)z
n, h(z) =

∞∑
n=0

Cn(f)z
n.

In order to streamline these representations, if we use normalization conditions

C0(f) = 0 and C1(f) = 1 then we can write a harmonic mapping f defined on △
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as

f(z) = h(z) + g(z) = z +

∞∑
n=2

anz
n +

∞∑
n=1

bnzn (2.7)

where an = Cn(f)(n ≥ 2) and bn = C−n(f)(n ≥ 1).

Let H be the family of all harmonic mappings of the form f = h+ g, where

h(z) = z +

∞∑
n=2

anz
n, g(z) =

∞∑
n=1

bnz
n, z ∈ △, |b1| < 1 (2.8)

are analytic functions in △. There are following three main subclasses of the

family H

SH = {f ∈ H : f is univalent and sense-preserving in△} (2.9)

S0
H = {f : f ∈ SH and fz = b1 = 0} (2.10)

S = {f : f = h+ g ∈ SH and g(z) = 0}

= {h : h is analytic, univalent, h(0) = 0, andh′(0) = 1 in∆} (2.11)

The class S is well-known for over 100 years. There are thousands of research

articles, surveys, and monographs on family S and related to family S. It is

also well-known that the family SH is a natural generalization of the family S.

Though the subclasses S0
H and S are compact, but SH is not compact [32]. The

first two classes were discovered by Clunie and Sheil-Small in 1984 [32]. Since

S ⊂ S0
H ⊂ SH ⊂ H , these inequalities raise the following research problems:

(a) What properties of S are true for the families S0
H and SH?

(b) What concepts and results for S be extended to S0
H and SH?

(c) What properties of the families S0
H and SH don’t hold in S?

Since a harmonic function may not be analytic, we get serious challenges, open

problems, conjectures, and exciting results in the Theory of Harmonic Mappings.

3. Brief story of the family S (1907 – 1984)

The theory of univalent functions is largely related to family S. It is well-

known that S is a compact subset of the locally convex linear topological space

of all analytic normalized functions defined on ∆ with respect to the topology of

uniform convergence on compact subsets of ∆. The Koebe function

k(z) =
z

(1− z)2
= z +

∞∑
n=2

nzn, z ∈ ∆. (3.1)

and its rotations are extremal for many problems in S. Note that k(∆) is the

entire complex plane minus the slit along the negative real axis from −∞ to −1/4.

For the family S, we have the following powerful and fascinating result which was

discovered in 1907 by Koebe [54]:
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Theorem 3.1. There exists a positive constant c such that

{w : |w| ≤ c} ⊂ h(∆) ∀h ∈ S.

But, this interesting result did not find many applications until Bieberbach

[19] in 1916 proved that c = 1/4. More precisely, he proved that the open disk

|w| < 1/4 is always covered by the map of ∆ of any function h ∈ S. Interestingly,

the one-quarter disk is the largest disk that is contained in k(∆), where k is the

Koebe function given by (3.1). In the same paper, Bieberbach also observed the

following

Conjecture 3.1. Bieberbach. If h ∈ S is any function given by (2.8) , then

|an| ≤ n, ∀n ≥ 2. (3.2)

furthermore, |an| = n for all n for the Koebe function k defined by (3.1) and its

rotations.

Note 3.1. Conjecture 3.1 may now be called as a special case of de Branges The-

orem after the name of L. de Branges who settled this conjecture in 1984 and

published paper in 1985 [23].

Failure to settle the Bieberbach conjecture until 1984 led to the introduction

and investigation of several subclasses of S. An important subclass of S, denoted

by S∗, consists of the functions that map ∆ onto a domain starshaped with respect

to the origin. Another important subclass of S is the family K of convex functions

that map ∆ onto a convex domain. Furthermore, a function h, analytic in ∆, is

said to be close-to-convex in ∆, h ∈ C, if h(∆) is a close-to-convex domain; that

is, if the complement of h(∆) can be written as a union of non-crossing half-lines.

It is well-known that K ⊂ S∗ ⊂ C ⊂ S. We remark that various subclasses of

these classes have been studied by many researchers including the author; see for

example in [10], [36], [39].

Various attempts to prove or disprove the Bieberbach conjecture gave rise to

eight major conjectures which are related to each other by a chain of implications;

see for example, [10], [36], and [39]. Many powerful new methods were developed

and a large number of related problems were generated in attempts to prove these

conjectures, which were finally settled in mid 1984 by Louis de Branges [23]. For

a historical development of the Bieberbach Conjecture and its implications on

univalent function theory, one may refer to the survey by the author in [10], and

[11].

4. Subclasses of harmonic univalent mappings

Analogous to well-known subclasses of the family S, there are several subclasses

of the families SH and S0
H ; see, for example, [9], [22], [32], [34], [35], [64], [70],
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[75], [78]. A sense-preserving (or orientation-preserving) harmonic mapping f ∈

SH(f ∈ S0
H) is in the class S∗

H (S∗
H respectively) if the range f(∆) is starlike with

respect to the origin. A function f ∈ S∗
H (or f ∈ S∗0

H ) is called a harmonic starlike

mapping in ∆. Likewise a function f defined in ∆ belongs to the class KH(K0
H)

if f ∈ SH(or f ∈ S0
H respectively) and if f(∆) is a convex domain. A function

f ∈ KH(or f ∈ K0
H)is called a harmonic convex in ∆. See [9], [32], [35], and [36]

for definitions, analytical conditions and results for these classes.

Similar to the subclass C of S, let CH and C0
H denote the subsets, respectively,

of SH and S0
H such that for any f ∈ CH or C0

H , f(∆) is a close-to-convex domain.

Recall that a domain G is close-to-convex if the complement of G can be written

as a union of non-crossing half-lines. There are several papers on CH and its

subclasses in last few years; for example, see [22], [34], [64], [70], [75], and [78].

Comparable to the positive order α(0 ≤ α < 1) in the subclasses S∗ and K of

S, Jahangiri [50] and [51] defined and denoted the corresponding subclasses of the

functions which are harmonic starlike of order α and harmonic convex of order

α, respectively, by S∗
H(α) and KH(α). Note that S∗

H(0) = S∗
H and KH(0) = KH .

Also, note that whenever the co-analytic parts of each f = h + g, that is g, is

zero, then S∗
H(α) ≡ S∗(α) and KH(α) = K(α), where S∗(α) and K(α) are the

subclasses of the family S which consist of functions, respectively, of starlike of

order α and convex of order α. See, for example, [10].

A domain G is convex in the direction θ if every line parallel to the line z = teiθ

has either connected or empty intersection with G. If θ = 0, the domain is convex

in the horizontal direction or real axis ; denote it by CHD. On the other hand, if

θ = π/2, the domain is convex in a vertical direction or imaginary axis ; denote it

by VHD.

Figure 5: CHD and VHD

We next recall analogous concept of convolution for family S in case of har-

monic mappings.

Definition 4.1. The convolution of two complex-valued harmonic functions

fi(z) = z +

∞∑
n=2

ainz
n +

∞∑
n=1

binz
n, |bin | < 1, i = 1, 2 (4.1)



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

THEORY OF HARMONIC UNIVALENT MAPPINGS IN THE PLANE 133

is given by

f1(z) ∗ f2(z) = (f1 ∗ f2)(z) = z +

∞∑
n=2

a1na2nz
n +

∞∑
n=1

b1nb2nz
n. (4.2)

This convolution formula reduces to the famous Hadamard product defined

for family S if the co-analytic parts of f1 and f2 are zero. Many researchers have

recently introduced and studied several subclasses of the families of H; for example,

see [4], [5], [6], [7], [8], [18], [22], [25], [41], [52], [64], [65], [66].

5. Old and new open problrms and conjectures

Before we survey some old and new research problems and conjectures, let

us first recall analytic Koebe function and analogous harmonic Koebe mapping.

Recall that the Koebe function given by (3.1) is univalent in ∆, its range is convex

in the horizontal direction, k ∈ S, and it maps the unit disk onto the entire plane

minus the real interval (−∞,−1/4]. However, the harmonic Koebe function k0

given by

k0(z) = Re

(
z + (1/3) z3

(1− z)3

)
+ iIm

(
z

(1− z)2

)

=
z − (1/2)z2 + (1/6)z3

(1− z)3
+

(1/2)z2 + (1/6)z3

(1− z)3

(5.1)

is univalent and sense-preserving in ∆ and, in fact, k0 ∈ S0
H . The function k0 maps

the unit disk onto the entire complex plane minus the real interval (−∞,−1/6].

For detailed study of the harmonic Koebe mapping k0, one may visit [35, Section

5.3] and [32].

Unlike for the family S, there is no overall positive lower bound for |f(z)|

depending on |z| when f ∈ SH . It is so because, for example, z+ εz ∈ SH for all ε

with |ε| < 1. However, using an extremal length method, Clunie and Sheil-Small

[32] discovered the following interesting result analogous to the distortion property

for functions in the family S.

Theorem 5.1. If f ∈ S0
H , then

|f(z)| ≥
|z|

4(1 + |z|)2
(z ∈ ∆).

In particular,

{w ∈ C : |w| <
1

16
} ⊂ f(∆) ∀ f ∈ S0

H . (5.2)

The result in Theorem 5.1 is non-sharp.

Harmonic Koebe function given by (5.1) suggests that the 1/16 radius in (5.2)

may be improved to 1/6.
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Conjecture 5.1. [32] {w ∈ C : |w| < 1
6} ⊂ f(∆) ∀ f ∈ S0

H .

This conjecture is true for close-to-convex functions in C0
H(see [21]). Clunie

and Sheil-Small [32] posed the following Harmonic Bieberbach Conjecture for the

family S0
H :

Conjecture 5.2. If f = h+ g ∈ S0
H is given by (2.8), then

‖an| − |bn‖ ≤ n

|an| ≤
(2n+ 1)(n+ 1)

6
, |bn| ≤

(2n− 1)(n− 1)

6
, (n = 2, 3, · · · ). (5.3)

Equality occurs for f = k0 given by (5.1).

For f = h + g ∈ S0
H , we have |g′| ≤ |h′|(z ∈ ∆). In particular, it follows

that |b2| ≤ 1/2. Conjecture 5.2 was proved for the functions in the class S∗0
H , and

when f(∆) is convex in one direction ([32], [75]). The results also hold if all the

coefficients of f in S∗0
H are real [32]. It was proved in [78] that this conjecture is

also true for f ∈ C0
H . Later on, Sheil-Small [75] proposed the following harmonic

analogue of the Bieberbach conjecture.

Conjecture 5.3. If f(z) = z +
∞∑

n=2
anz

n +
∞∑
n=1

a−nzn ∈ SH , then

|an| <
2n2 + 1

3
(|n| = 2, 3, · · · ). (5.4)

Open Problem 5.1 [32]. For f ∈ S0
H , find the best possible bound for |a2|. It is

conjectured that |a2| ≤ 5/2.

In [32], it was discovered that |a2(f)| < 12, 173, ∀ f ∈ SH . This result was

improved to |a2(f)| < 57.05, ∀ ∈ S0
H in [75]. These bounds were further improved

to |a2(f)| < 49 for S0
H in [35]. On the other hand, Conjecture 5.3 was proved for

the class C̃H . where C̃H denotes the closure of CH [32]. The researchers in [78]

improved Conjecture 5.2 and Conjecture 5.3 for f ∈ CH and f ∈ C0
H . They also

proposed to rewrite the following harmonic analogue of the Bieberbach conjecture.

Conjecture 5.4. If f(z) = z +
∞∑

n=2
anz

n +
∞∑
n=1

bnzn ∈ SH , then

(a) ‖an| − |bn‖ ≤ (1 + |b1|)n (n = 2, 3, · · · )

(b) |an| ≤
(n+ 1)(2n+ 1)

6
+ |b1| ≤

(n− 1)(2n− 1)

6
(n = 2, 3, · · · )

(c) |bn| ≤
(n− 1)(2n− 1)

6
+ |b1| ≤

(n+ 1)(2n+ 1)

6
(n = 2, 3, · · · )

Since |b1| < 1 the above conjecture may be rewritten as
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Conjecture 5.5. If f(z) = z +
∞∑

n=2
anz

n +
∞∑
n=1

bnzn ∈ SH , then

(a) ‖an| − |bn‖ < 2n (n = 2, 3, · · · )

(b) |an| <
2n2 + 1

3
(n = 2, 3, · · · )

(c) |bn| <
2n2 + 1

3
(n = 2, 3, · · · )

Mocanu in [62] posed the following conjecture

Conjecture 5.6. If h and g are analytic functions on ∆, with h′(0) 6= 0, that satisfy

g′(z) = zh′(z) (5.5)

that is, dilation w = z, and

Re{1 + z
h′′(z)

h′(z)
} > −

1

2
(5.6)

for all z ∈ ∆, then the harmonic mapping f = h+ g is univalent in ∆.

Recently, Bshouty and Lyzzaik [22] proved the conjecture by establishing the

following stronger result.

Theorem 5.2. If f = h + g is a harmonic mapping of ∆, with h′ 6= (0) that

satisfies (5.5) and (5.6) for all z ∈ ∆, then f ∈ CH .

In [22], it is shown by an example that the inequality (5.6) is best possible.

These authors also offered the following

Open problem 5.2. Find sufficient conditions on h that would lead to the

univalence of harmonic mappings f = h+ g of ∆ that satisfies the condition (5.5).

Next we note that a function

L(z) = h(z)+g(z) =
z − (1/2) z2

(1− z)2
+

(
−(1/2)z2

(1− z)2

)
= Re

(
z

1− z

)
+iIm

(
z

(1− z)2

)

(5.7)

is in K0
H and it maps ∆ onto the half plane; see [35]. Moreover, parallel to a

well-known coefficient bound theorem of family S, we have

Theorem 5.3. [32]. If f ∈ K0
H , then for n = 1, 2, ... we have

‖an| − |bn‖ ≤ 1, |an| ≤
(n+ 1)

2
, |bn| ≤

(n− 1)

2
,

The results are sharp for the function f = L given by (5.7).

In view of the sharp coefficient bounds given for functions in K0
H in Theorem

5.3, we may take f1, f2 ∈ K0
H and define f1∗f2 by (4.2). Clunie and Sheil-Small [32]

showed that if ϕ ∈ K and f = h+g ∈ KH , then f ∗(ϕ+aϕ) = h∗ϕ+ag ∗ ϕ, |a| ≤ 1,
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is a univalent mapping of ∆ onto a close-to-convex domain. They raised the

following

Open Problem 5.3 Which complex-valued harmonic functions ϕ have the prop-

erty that ϕ ∗ f ∈ KH ∀ f ∈ KH?

In [41], the researcher constructed some examples in which the property of

convexity is preserved for convolution of certain convex harmonic mappings. On

the other hand, the researchers in [42] obtained integral means of extreme points of

the closures of univalent harmonic mappings onto the right half plane {w : Rew >

−1/2} and onto the one-slit plane C\(−∞, a], a < 0.

It is of interest to determine the largest disk |z| < r in which all the members

of one family possess properties of those in another. For example, all functions

in KH are convex in |z| <
√
2 − 1; that is, the radius of convexity of f in KH is

√
2 − 1; see [71]. It is known [71] that {w : |w| < 1/2} ⊂ f(∆) ∀ f ∈ K0

H . It is

also a known fact [75] that f ∈ CH , then f is convex for |z| < 3 −
√
8. However,

analogous to the radius problem for the family S and its subclasses, nothing much

is known for SH , S0
H and some of their subclasses. For example

Open Problem 5.4 [35]. Find the radius of starlikeness for starlike mappings in

SH .

Open Problem 5.5 [35]. Find the radius of convexity for harmonic isomorphism

of ∆.

Conjecture 5.7. [73]. If f = h + g ∈ SH , then the radius of univalence of h is

1/
√
3.

Sheil-Small [75] conjectured that for f ∈ SH , the radius of convexity is 3−
√
8.

It is known [32] that the radius of convexity for close-to-convex mappings in SH

is 3−
√
8; also see [71].

Michalski [58] introduced and settled coefficient conjectures and obtained other

estimates for new subclasses of SH and S0
H that are convex in two orthogonal

directions. Motivated by this paper, the author [4] employed the shear construction

method and connected S and SH by using four different subclasses of harmonic

mappings that are convex in any two orthogonal directions.

In another research area, harmonic mappings make contact with partial dif-

ferential equations and the well-developed theory of quasi-conformal mappings.

Some researchers have made efforts to find an appropriate harmonic analogue of

the Riemann’s Mapping Theorem related to the harmonic univalent mappings; for

example, see [35], [44]. Though some forms of extensions of Riemann’s mapping

theorem do exist if dilatation is restricted or the term onto is interpreted in weaker

sense. However, the question of uniqueness has not been fully settled.

Open Problem 5.6 What is the exact analogue of the Riemann Mapping Theo-

rem for harmonic mappings?
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Corresponding to the neighborhood problem and duality techniques for the

family S, Nezhmetdinov [66] studied problems related to the family S0
H . For

several other recent problems and conjectures in planar harmonic mappings, one

may refer to the article by Bshouty and Lyzzaik in [21].

6. Construction methods and advances in harmonic mappings

In this section, we first give four construction methods for constructing new

harmonic mappings. First important technique is ‘Shear Construction Method’

that depends on the following famous result.

Theorem 6.1. (see [32]). If f = h+g is a harmonic and locally univalent function

in ∆ then

(1) F = h − g ∈ S and F (∆) is convex in horizontal (or real) axis if and only if

f = h+ g is univalent and convex in the same direction,

(2) F = h + g ∈ S and F (∆) is convex in the imaginary axis if and only if

f = h+ g is univalent and convex in the same direction.

Observe that the domain is convex if and only if it is convex in every direction.

Thus a harmonic mapping f = h + g has a convex range if and only if the range

of every rotation eiθf is convex in horizontal direction for 0 ≤ θ < 2π. Therefore,

e−iθf and e−iθh − eiθ are convex in the direction of the real axis. It, therefore,

follows that the function h− ei2θg is convex in the direction of the line teiθ, t ∈ R

In view of these observations; Theorem 6.1 gives the following generalized version

of shear construction theorem.

Theorem 6.2. [4] [58]. A harmonic and locally univalent function f = h + g

is univalent mapping of ∆ onto a domain convex in the direction of the line z =

teiθ, 0 ≤ θ < π, t ∈ R, if and only if h− ei2θg is a conformal univalent mapping of

∆ onto a domain convex in the same direction.

Theorem 6.1 provides “Shear construction method” to construct new harmonic

mappings with prescribed dilatation. The word “shear” means to cut a function;

similar to “shearing” a sheep to get its wool. This theorem gives the following

steps to construct new harmonic univalent mappings.

Step 1 : Suppose F is an analytic univalent function convex in real direction.

Step 2 : Set F = h− g and suppose w is analytic in ∆ with w = g′/h′ and |w| < 1

Step 3 : Find h and g by solving partial differential equations

(i)h′ − g′ = F ′, and (ii)wh′ − g′ = 0

with normalization h(0) = F (0) and g(0) = 0.

Step 4 : Find harmonic shear function f using the relationship

f(z) = h(z) + g(z) = h− g + 2Re(g(z)).
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Then f ∈ S0
H by Theorem 6.1.

Remark 6.1. The requirement of a dilatation with |w(z)| < 1 in step 2 guarantees

the local univalence of the harmonic mapping f constructed from a given analytic

univalent mapping. Also, it is easy to show that the Jacaboian Jf of f = h+ g is

positive by the univalence of h− g; see [35].

Example 6.1. [32]. Set Koebe function

k(z) =
z

(1− z)2
= h(z)− g(z) andw(z) = z = g′(z)/h′(z).

Recall that the Koebe function k(z) in the family S is convex in real axis.

Solve the differential equations

h′(z)− g′(z) =

(
z

(1− z)2

)′

(z ∈ ∆)

g′(z)− zh′(z) = 0

with the boundary conditions h(0) = g(0) = 0. Applying the shear construction

method, we obtain the harmonic Koebe function k0 given by (5.1). This function

k0 maps ∆ univalently onto the entire complex plane minus the real slit −∞ <

t ≤ −1/6.

Another method of constructing new harmonic mappings was developed re-

cently by Muir [59]. Motivated by this new method, the author, Ravichandran

and Nagpal [13] have introduced the following operator

Definition 6.1. If f is a function in family S, then define

Tλp[f ] =
Dλf + pz(Dλf)′

1 + p
+

Dλf − pz(Dλf)′

1 + p
, z ∈ ∆, p > 0, λ ≥ 0, (6.1)

where

(Dλf)(z) =
z

(1− z)λ+1
∗ f, λ ≥ 0 (6.2)

is the Ruscheweyh derivative of f.

The operator Dλf for λ ≥ 0 was studied by the author and Silverman in [15]

and [16]. The operator Tλ,p defined in (6.1) generalizes the following well-known

operators

T0,1

[
z

1− z

]
=

1

2

(
z

1− z
+

z

(1− z)2

)
+

1

2

(
z

1− z
−

z

(1 − z)2

)
, (6.3)

T0,p

[
z

1− z

]
=

1

p+ 1

(
z

1− z
+ p

z

(1− z)2

)
+

1

p+ 1

(
z

1− z
− p

z

(1− z)2

)
, (6.4)

T0,p[f ] =
1

p+ 1
(f + pzf ′) +

1

p+ 1
(f − pzf ′). (6.5)
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The operators (6.3), (6.4), (6.5) were studied, respectively, in [32], [60], and [58].

For p > 0 and λ ≥ 0, the operator

Tp[Vλ] =
Vλ + pzV ′

λ

p+ 1
+

Vλ − pzV ′
λ

p+ 1
. (6.6)

where

Vλ(z) =

(
λz

λ+ 1

)
2F1(1, 1− λ; 2 + λ;−z) (6.7)

introduced and studied in [73] appears to have the same structure as the operator

Tλ,p[f ] defined by (6.1). In [58], the following problems are raised.

Open problem 6.1. Find a subset of family K so that f ∈ K ⇒ T0,p[F ] ∈ S∗
H .

Open problem 6.2. Find a subset of family M ⊂ DCP so that f ∈ M ⇒

T0,p[f ] ∈ K(a), where DCP is the set of direction convexity preserving functions.

We next describe the third method of constructing harmonic mappings that

depends on the following result deduced from a theorem in [32].

Corollary 6.1. If h is analytic convex and w = g′/h′is analytic with |w| < 1 in

∆, then f = h+ g ∈ SH .

Example 6.2. [34]. Suppose

h(z) = z −
1

4
z2, w(z) =

g′(z)

h′(z)
= e(z+1)/(z−1).

It is easy to check that h is convex analytic in ∆. Then

g(z) =

∫
h′(z)w(z)dz =

∫
(1−

1

2
z)e(z+1)/(z−1)dz =

1

4
(z − 1)2e(z+1)/(z−1).

Therefore, it follows that

f(z) = h(z) + g(z) = z −
1

4
z2 −

1

4
(z − 1)2e(z̄+1)/(z̄−1) ∈ SH .

Figure 6: Image of open unit disk under function f in Example 6.2

We next give fourth method of constructing harmonic mappings. This method

uses the following theorem by Pommerenke [67].
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Lemma 6.1. Let F be an analytic function in ∆ with F (0) = 0 and F ′(0) = 1

and suppose

ϕ(z) =
z

(1 + zeiθ)(1 + ze−iθ)
, θ ∈ R. (6.8)

If

Re

(
zF ′(z)

ϕ(z)

)
> 0, ∀ z ∈ ∆, (6.9)

then F is convex in the direction of real axis.

Example 6.3 ([34]). Suppose

F (z) = h(z)− g(z) =
z

1− z
+

1

2
e(z+1)/(z−1)

with dilatation w(z) = e(z+1)/(z−1). Then

F ′(z) = h′(z)− g′(z) =
z

(1− z)2
(1− e(z+1)/(z−1))

Using θ = π in (6.8) gives

ϕ(z) =
z

(1 − z)2
.

Then

Re

[
zF ′(z)

ϕ(z)

]
= Re

[
1− e(z+1)/(z−1)

]
> 0.

By Lemma 6.1, F (z) = h(z)−g(z) is convex in the direction of real axis. Shearing

h-g with dilatation

w(z) =
g′

h′
= e

z+1

z−1

and normalizing, we get

h(z) =

∫
1

(1− z)2
dz =

z

1− z
, g(z) = −

1

2
e(z+1)/(z−1).

Figure 7: Image of open unit disk under function in Example 6.3
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Therefore it follows that

f(z) = h(z) + g(z) =
z

1− z
−

1

2
e

z+1

z−1 ∈ SH .

Note that shearing method does not always help to get closed form of h.

Another current research area of interest is to connect subclasses of harmonic

mappings and minimal surfaces; for example, see [70], [79].

It is a common strategy to construct new functions with a given property to

take the linear combination of two functions with the same property. But, there

are examples in the literature to show that that the linear combination of two

univalent functions may not be univalent. We first give the following result that

determines whether a function f maps onto a domain convex in the direction of

the imaginary axis.

Lemma 6.2 ([46]). Suppose f is analytic and non-constant in ∆. Then

Re
(
(1− z2)f ′(z)

)
≥ 0 (z ∈ ∆) (6.10)

if and only if

(A) f is univalent in ∆;

(B) f is convex in the direction of the imaginary axis;

(C) there exists two points z′nand z′′n converging to z = 1, and z = −1, respec-

tively, such that

lim
n→∞

Re(f(z′n)) = sup
|z|<1

Re(f(z)),

lim
n→∞

Re(f(z′′n)) = sup
|z|<1

Re(f(z)).
(6.11)

Using Lemma 6.2, Dorff [34] proved the following sufficient condition for the

linear combination of two harmonic univalent mappings in ∆.

Theorem 6.3. Let f1 = h1 + g1, f2 = h2 + g2 be harmonic univalent mappings

convex in the imaginary direction and w1 = w2. If f1, f2, satisfy the conditions

given by (6.11), then f3 = tf1 + (1 − t)f2 (0 ≤ t ≤ 1) is univalent and convex in

the direction of the imaginary axis.

In [77], researchers derived several sufficient conditions of the linear combi-

nations of harmonic univalent mappings that are univalent and convex in the

direction of the real axis. Nagpal and Ravichandran [65] employed a different

methodology to construct subclasses of SH from some subfamilies of S.

There are several concepts and results for harmonic mappings that were re-

cently extended from the corresponding known results for the classical family S; for

example, Schwarzian derivative of an analytic tool in complex analysis, in general,

and for family S, in particular; for example, see [29], [30], [68]. In [29], Chuaqui,

Peter, and Osgood offered a definition of Schwarzian derivative that applies more
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generally to the theory of harmonic mappings. Their definition of the Schwarzian

derivative S(f) of a harmonic mapping f is given in terms of the metric ds = ρ|dz|,

for some positive function ρ of the associated minimal surface K = −ρ−2∇(log ρ),

where∇ denotes the Laplacian operator defined in (2.1). These researchers defined

and gave the geometric derivation and properties of the formula

S(f) = 2{(log ρ)zz − ((log ρ)z)
2
} (6.12)

For several other areas related to harmonic univalent mappings, one may refer

to [45], [47], [59], [60]. We close this section by looking at the following relationship

between the univalence of harmonic mapping f = h+ g and its analytic factor h.

Theorem 6.4 ([31]). If h : ∆ → C is an analytic univalent function, then there

exists c > 0 such that every harmonic mapping f = h+ g with dilatation |w| < c

is univalent in ∆ if and only if h(∆)is a linearly connected domain.

For c = 1 and h convex, we have the following important result.

Corollary 6.2. If h is analytic and convex in ∆, then every harmonic mapping

of the form f = h+ g with |g′| < |h′| is univalent in ∆.

In [32], the researchers found the conditions under which the harmonic map-

pings F = h+ eiθg remain univalent for all θ ∈ [0, 2π].

7. Fully starlike and fully convex harmonic mappings

Let∆r = {z ∈ C : |z| < r} for each 0 < r < 1. If f is in family S and

f(∆) is a convex (starlike) domain, then for each 0 < r < 1, f(∆) is also convex

(respectively, starlike) domain. But, the next example shows that the hereditary

property of convex analytic mappings does not generalize to harmonic mappings.

Example 7.1 ([35]). The harmonic half-plane mapping L defined by (5.7) is a

mapping of ∆ onto the half-plane Re{w} > −1/2. But, L(∆r) is not convex for

every r in the interval (
√
2 − 1, 1) Similarly, starlikeness is also not a hereditary

property for harmonic mappings.

Motivated by Example 7.1, Chuaqui, Duren and Osgood [29] introduced the

notions of fully starlike harmonic and fully convex harmonic mappings that do

inherit the properties of starlikeness and convexity respectively. The positive order

α(0 ≤ α < 1) was studied by Nagpal and Ravichandran [63].

Definition 7.1 ([63]). A harmonic mapping f of ∆ with f(0)=0 is called fully

starlike of order α(0 ≤ α < 1) if it maps every circle |z| = r < 1 in one-to-one

manner onto a curve that bounds a domain starlike with respect to the origin

satisfying
∂

∂θ
(arg f(reiθ)) > α, 0 ≤ θ < 2π, 0 < r < 1. (7.1)
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If α = 0, then f is fully fully harmonic starlike, see [29].

Definition 7.2 ([29]). A harmonic mapping f of ∆ is called full convexity of

order α (0 ≤ α < 1) if it maps every circle |z| = r < 1 in one-to-one manner onto

a convex curve satisfying

∂

∂θ
(arg

(
∂

∂θ
f(reiθ)

)
) > α, 0 ≤ θ < 2π, 0 < r < 1. (7.2)

If α = 0, then f is fully harmonic convex ; see [29].

Remark 7.1. In particular, f(z) 6= 0 for 0 < |z| < 1.

The following results give characterizations of fully harmonic convex and fully

harmonic starlike functions in ∆.

Theorem 7.1 ([29]). Let f(z) = h(z) + g(z) be a locally univalent orientation

preserving harmonic mapping of ∆. Then f is fully convex if and only if

|zh′(z)|2Re

{
1 +

zh′′(z)

h′(z)

}
≥

|zg′(z)|2Re

{
1 +

zg′′(z)

g′(z)

}
+Re{z3[h′′(z)g′(z)− h′(z)g′′(z)]}

for all z in ∆. If f(0) = 0, then f is fully starlike if and only if f(z) 6= 0 for

0 < |z| < 1 and

|h(z)|2Re

{
zh′(z)

h(z)

}
≥ |g(z)|2Re

{
zg′(z)

g(z)

}
+Re{z[h(z)g′(z)− h′(z)g(z)]}

for all z ∈ ∆.

The following theorem adapts an observation by the Sheil-Small [75] to the

context of fully convex and fully starlike mappings.

Theorem 7.2 ([29]). Let h, g, H, and G be analytic functions in ∆ related by

zH ′(z) = h(z), zG′(z) = −g(z), z ∈ ∆.

Then a harmonic mapping f = h+ g is fully starlike if and only if F = H +G is

fully convex.

According to the Rado’- Kneser-Choquet theorem (see, [35]), a fully convex

harmonic mapping is necessarily univalent in ∆. However; the following example

shows that a fully starlike harmonic mapping need not be univalent.

Example 7.2 ([29]). Using Theorem 7.2, it is straight forward to show that the

harmonic half-plane mapping L defined by (5.7) has a Jacobian J(z) > 0 for

|z| < 2−
√
3 but J(−2+

√
3)vanishes. Thus f = h+ g is not univalent in any disk

|z| < r with r > 2−
√
3. On the other hand, using Theorem 7.2 and function L, it
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is straightforward analysis to show (see, [29, page 140]) that fully starlike mapping

need not be univalent in any disk |z| < r of radius larger than

2−
√
3

√
2− 1

= 0.646 · · ·

Open Problem 7.1 If f = h+ g is any fully harmonic starlike (convex) mapping

defined in ∆, then verify or get different results for Conjecture 5.4 and Conjecture

5.5.

Nagpal and Ravichandran [63] determined the bounds for the radius of full

starlikeness of order α(0 ≤ α < 1) well as the radius of full convexity of order

α(0 ≤ α < 1) for certain families of univalent harmonic mappings.

Open Problem 7.2 Find the exact radius of starlikness of order α(0 ≤ α < 1)

for S∗
H ,KH and CH

For α = 0, Nagpal and Ravichandran [63] found the following

Theorem 7.3. Suppose f = h+ g ∈ SH . Then

(1) f ∈ KH ⇒ f is fully starlike in atleast |z| < 4
√
2− 5

(2) f ∈ CH ⇒ f is fully starlike in atleast |z| < 3−
√
8

(3) f ∈ S∗
H ⇒ f is fully starlike in atleast |z| <

√
2− 1

These authors also found many other interesting bounds and radius prob-

lems. For example, they observed that Figure 8 is the image of the subdisk

|z| <
√
(7
√
7− 17)/2 under the mapping L given by (5.7).

Figure 8: Image of subdisk under mapping L

Conjecture 7.1 ([63]). If f ∈ K0
H , and α(0 ≤ α < 1), then f is fully starlike of

order α(0 ≤ α < 1) in |z| < r1 where r1 = r1(α) is given by

r1(α) =




√
1 + 8α− (1 + 2α)

2α
if 0 < α < 1,

√
7
√
7− 17

2
ifα = 0.
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Conjecture 7.2 ([63]). If f = K0
H then f is fully convex of order α(0 ≤ α ≤ 1) in

|z| < r2 where r2 = r2(α) is the positive root of the equation p(r, u0) = 0 in (0, 1)

with

p(r, u) = 1−6r2+r4+12r2u2−4r(1+r2)u3−α[1+(2u2−3){4u(1+r2)−6r}r+r4]

and

u0 =
r(1 + α)−

√
α(1 + 2α)(1 + r4) + (1 + 4α+ 5α2)r2

(1 + r2)(1 + 2α)

For α = 0,this conjecture was confirmed (see [71]).

8. Connection with Fourier series

In this section, we briefly mention about recent interest in the interplay be-

tween Fourier series and harmonic mappings of the open unit disk, with particular

emphasis on connections with the topology of curves. Without going in details, we

outline steps that lead to step functions on the unit circle and harmonic extension

of function f defined on the unit circle to the open disk ∆.

Suppose p and q are any two polynomials and let f(z) = p(z) + q(z). Then f

is a harmonic function. We may write

f(z) = q(z) + p(z) =

∞∑
n=0

bnz
n +

∞∑
n=0

anz
n.

Note that f(z) = p(z) + p(z) = 2Re(p(z)). Locally, an analytic function p(z)

can be uniformly approximated by polynomials. Suppose bn = c−n,an = cn, c0 =

b0 + a0, z = reit. Then

f(reit) =

−1∑
−∞

cnr
ne−int +

∞∑
0

cnr
neint =

∑
−∞<n<∞

cnr
|n|eint (8.1)

In fact, (8.1) is what we noticed in (2.6). We assume that the coefficients

vanish for large values of n. Take r = 1. Then

f(eit) =
∑

−∞<n<∞

cnz
int (8.2)

Right side of (8.2) is the Fourier series of f(eit) in the complex form. The right

side can be expressed in the following Trigonometric polynomial

f(eit) =
∑

−∞<n<∞

cn(cosnt+ i sinnt) (8.3)

Let T = {z ∈ C : |z| = 1} be the unit circle on a complex plane C. Consider

a step function f : T → C.defined by

f(eit) = ck (tk−1 < t < tk, 1 ≤ k < n), t0 < t1 < t2 < · · · < tn = t0 + 2π.
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The harmonic extension of f to ∆ is defined by

f(z) =
1

2π

2π∫

0

[
Re

1 + ze−it

1− ze−it

]
f(eit)dt (8.4)

and takes the form = h(z) + g(z). where h and g are analytic in ∆ and g(0) = 0.

In [74], Sheil-Small explored topological properties of the harmonic extension

f defined in (8.4). Connection of harmonic univalent mappings and Fourier series

is almost a new research area.

9. Connections with hypergeometric functions

S. Ramanujan’s Notebooks and his later work have motivated many researchers

to make use of generalized hypergeometric functions in many areas of research.

But, it was surprising to discover the use of hypergeometric functions in the proof

of Bieberbach conjecture by L. de Branges [23]. This discovery has prompted

renewed interests in these classes of functions [61], [72]. However, connections

between the theory of harmonic univalent functions and hypergeometric functions

are relatively new. But, we first recall some basic definitions and notations for

hypergeometric functions.

Let a, b, c be complex numbers with c 6= 0,−1,−2,−3, · · · Then the Gauss

hypergeometric function written as 2F1(a, b; c; z) or simply as F (a, b; c; z) is defined

by

F (a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n(1)n

(9.1)

where (λ)n is the Pochhammer symbol defined by

(λ)n = Γ(λ+ n)/Γ(λ) = λ(λ + 1) · · · (λ+ n1) for n = 1, 2, 3, · · · , · · · and (λ)0 = 0

(9.2)

Since the hypergeometric series in (9.1) converges absolutely in ∆, it follows that

F (a, b; c; z) defines a function which is analytic in ∆, provided that c is neither

zero nor a negative integer. Recall that in terms of Gamma function, we are led

to the well-known Gauss’s summation theorem: If Re(c− a− b) > 0, then

F (a, b; c; z) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
, c 6= 0,−1,−2, · · · (9.3)

In particular, the incomplete beta function, related to the Gauss hypergeometric

function,ϕ(a, c; z), is defined by

ϕ(a, c; z) = zF (a, 1; c; z) =

∞∑
n=0

(a)n
(c)n

zn+1, z ∈ ∆, c 6= 0,−1,−2, · · · (9.4)

It has an analytic continuation to the z-plane cut along the positive real axis from

1 to ∞. Note that ϕ(a, 1, z) = z/(1 − z)a. Moreover, ϕ(2, 1, z) = z/(1 − z)2 is

the Koebe function given by (3.1). The hypergeometric series in (9.4) converges
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absolutely in ∆ and thus ϕ(a, c; z) is analytic function in ∆, provided that c is

neither zero nor a negative integer. For further information about hypergeometric

functions, one may refer to [76].

Driver and Duren in [37] used shears construction method to construct har-

monic shears of regular polygons of order n in terms of hypergeometric functions.

For any two normalized hypergeometric functions zF (a1, b1; c1; z) and zF (a2, b2;

c2; z), the author in [7] defined Hohlov-type harmonic convolution operator

∧ ≡ ∧
a1, b1, c1

a1, b1, c1
: H → H

by

∧f = f ∗̃
(
zF (a1, b1; c1; z) + zF (a2, b2; c2; z)

)

= h ∗ zF (a1, b1; c1; z) + g ∗ zF (a2, b2; c2; z)

for any function f = h+ g in H . We observe that

∧

(
a1, 1, a1

a2, 1, a2

)
f(z) = f(z) = f(z)∗̃

(
z

1− z
+

(
z

1− z

))

is the identity mapping and

∧

(
−m,−m, c

−m,−m, c

)
f(z) = f(z)∗̃

(
z +

m+1∑
n=2

{(−m)n−1}
2

(c)n−1 (1)n−1
zn +

m+1∑
n=2

{(−m)n−1}
2

(c)n−1 (1)n−1
zn

)

is a polynomial operator. In the same paper, the author also defines harmonic

convolution incomplete beta operator I : H → H by

I

(
b1, c1

b2, c2

)
f ≡ L(f) = f ∗̃(ϕ1 + ϕ2) = h ∗ ϕ1 + g∗ϕ2

where ϕ1 and ϕ2 are incomplete beta functions given by

ϕ1(z) = ϕ(b1, c1; z) = zF (1, b1, c1; z), ϕ2(z) = ϕ(b2, c2; z) = zF (1, b2, c2; z).

Open Problem 9.1 Under what restrictions on the complex parameters, the

harmonic convolution operators ∧ : H → H : and I : H → H map various

subclasses of SH and S0
H respectively, into various subclasses of SH and S0

H .

In [7], [8], and [9], the author establishes some important connections between

various subclasses of H, S0
H or SH by applying the convolution hypergeometric

operators ∧ and I. We next define harmonic integral operator
∏

: H → H by

∏
(f)(z) =

∏[
a1, b1, c1

a2, b2, c2

]
(f)(z)

= h(z) ∗

z∫

0

F (a1, b1; c1; t)dt + σg(z) ∗

z∫

0

F (a2, b2; c2; t)dt
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Example 9.1. The operators

∏[
a1, 2, a1

a2, 2, a2

]
(f)(z) = f(z) = f(z)∗̃

(
z

1− z
+

z

1− z

)

and

∏[
−m,−m, c

−m,−m, c

]
(f)(z)

= f(z) = f(z)∗̃

(
z +

m+1∑
n=2

{(−m)n−1}
2

(c1)n−1 (1)n
zn +

m+1∑
n=2

{(−m)n−1}
2

(c1)n−1 (1)n
zn

)

are examples of harmonic integral operators. The author studied several properties

of the operator
∏

in [6].

There are several published papers that connect (or use) hypergeometric and

other special functions and harmonic univalent (or multivalent) mappings; for

example, see [5], [12], [14], [17].

10. Landau’s theorem, biharmonic and polyharmonic mappings

Biharmonic mappings have several applications in physical situations in Fluid

Dynamics, Elasticity, Engineering and Biology; see [43], [53], and [55]. In Geomet-

ric Function Theory, use of biharmonic and polyharmonic mappings is new; there

are only a few papers from 2005 to 2013. In [1], Abdulhadi, Abu Muhanna, and

Khour introduced and studied biharmonic mappings; also, see [2], [3], [27], [33].

Definition 10.1. A four times continuously differentiable function F = u + iv

in domain D is said to be biharmonic if the Laplacian of F is harmonic in a

domain D. Every biharmonic mapping F in a simply connected domain D has the

representation

F (z) = |z|2G+K (10.1)

where G and K are some complex-valued harmonic mappings in D.

Note that harmonic mappings G and K in (10.1) can be expressed as

G = g1 + g2, K = k1 + k2 (10.2)

where g1, g2, k1, k2 are analytic functions in D. The following example shows that

if G is univalent, it does not follow that F is univalent.

Example 10.1 ([1]). Let G(z) = zez + 0.4 + 0.2i and F (z) = r2G(z) Then G is

univalent in |z| < 0.8; but F is not univalent.

The researchers in [1] showed that a biharmonic mapping F given by (10.1)

is locally univalent in ∆ if G is starlike and K is orientation preserving. In [3]
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these authors extended Landau’s Theorem to bounded biharmonic mappings of

∆. Also, see [2], [3], [27], [33].

Ponnusami and Qiao [69] studied polynomial approximation and fully har-

monic functions for biharmonic mappings. In another paper [68], they explored

the properties of the Schwarzian derivative, integral means, and the affine and

linear invariant families of biharmonic mappings. Also, see papers in [27], [80]].

Definition 10.2 ([26]). . A 2 p (p ≥ 1) times continuously differentiable complex-

valued function F = u+iv in a domain D is p-harmonic if F satisfies the p-harmonic

equation

∇pF = ∇(∇p−1)F = 0, (10.3)

where ∇ represents the complex operator defined in (2.1).

It is also known (see [26], [57]) that a mapping F is p-harmonic or polyharmonic

in a simply connected domain D if and only if F has the representation

F (z) =

p∑
k=1

|z|2(k−1)Gp−k+1(z), (10.4)

where each Gp−k+1 is harmonic, i.e.,∇Gp−k+1(z) = 0 for k ∈ {1, 2, · · · , p}. These

researchers got several properties of p-harmonic mappings; also, see [28] and [57].

11. Some old and new research areas in theory of harmonic

mappings

The theory of harmonic univalent mappings is very vast and applicable branch

of mathematics. It is not possible to survey all the recent developments in various

research areas in this survey. That is why, many challenging open problems,

conjectures, and emerging areas in the theory of harmonic univalent mappings

and related functions could not be included in this survey; however, the following

is a short list of some old and new research areas.

1. Harmonic mappings and minimal surfaces

2. Coefficient estimates and conjectures

3. Properties of special subclasses of harmonic univalent and related mappings

4. Growth, distortion, and covering theorems

5. Harmonic univalent mappings with non-positive coefficients

6. Meromorphic harmonic mappings

7. Multivalent harmonic mappings

8. Subordination problems in harmonic context

9. Harmonic Polynomials

10. Extremal problems in harmonic context

11. Special functions and harmonic mappings

12. Constructions of new harmonic mappings
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13. Multiply connected domains

14. Inner mapping radius in harmonic context

15. Hardy space and integral means in harmonic context

16. Curvature problems and Boundary behavior in harmonic context

17. Inverse problems in harmonic context

18. Using harmonic mappings in Fourier Series or vice versa

19. Connections between harmonic and minimal surfaces

20. Harmonic mappings connected to quasi-conformal mappings

21. Riemann mapping theorem in harmonic context

22. Landau’s theorem, Biharmonic and polyharmonic mappings

23. Connections with quasiconformal mappings

24. Connections with the Schwarzian derivatives

In 2007, European Science Foundation Research Program initiated a special project

entitled, “Harmonic and Complex Analysis and its Applications” (HCAA); for ex-

ample, see http://org.uib.no/hcaa/ . The main idea of this project is to establish

a fruitful cooperation between two scientific communities: analysts with a broad

background in Complex and Harmonic Analysis, and Mathematical Physics, and

specialists in Physics and Applied Sciences. This project is a multidisciplinary

program at the crossroads of mathematics and mathematical physics, mechanics

and applications that proposes a set of coordinated actions for advancing in Har-

monic and Complex Analysis and for increasing its applications to challenging

scientific problems. Particular topics which will be considered by this Program in-

clude Conformal and Quasiconformal Mappings, Potential Theory, Banach Spaces

of Analytic Functions and their applications to the problems of Fluid Mechan-

ics, Conformal Field Theory, Hamiltonian and Lagrangian Mechanics, and Signal

Processing.

12. Conclusion

In this article, we have made an attempt to present recent developments in

the theory of harmonic mappings in the plane. We have been compelled to omit

a number of related areas and interesting problems. However, we hope that this

article may serve as a useful guide for new researchers in the theory of planar

harmonic mappings and related areas. This article may also be useful to pure and

applied mathematicians working in several diverse areas.

Acknowledgement The author wishes to thank the referee for his/her helpful

suggestions.
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Abstract. Wallis discovered in 1655 a marvelous infinite product for Pi.

Around eighty years later, Euler developed the product representation for

the sine function which generalized Wallis formula. Basing on these, Sondow

and Huang derived few such products recently. Their paper motivated the

author to discover three general formulae which generate infinite classes of

such products and to derive a number of algebraic irrational-free infinite

products for π. In the process, he also derives a new product expansion for

sinπx.

§ 1

Infinite products for Pi entered into mathematics with the following formula

given in 1593 by the French mathematician Francois Viete (1540-1603)

2

π
=

√
1

2
.

√
1

2
+

1

2

√
1

2
.

√√√√1

2
+

1

2

√
1

2
+

1

2

√
1

2
· · · . (1)

However, (1) is practically useless for evaluating Pi as it involves computation

of increasingly complex algebraic irrationals.

John Wallis (1616-1703), England’s most influential mathematician before

Newton, discovered, sometime during the first half of 1655, his celebrated infi-

nite product for Pi that appeared in his Arithmetica infinitorum [6]:

4

π
=

3.3

2.4
.
5.5

4.6
.
7.7

6.8
... =

∞∏
n=1

(2n+ 1)2

2n(2n+ 2)
. (2)

Euler (1707-1783) came up with the product expansion of the sine function [1]

which can be rewritten for x 6= ±nπ, n ∈ N, as

x

sinx
=

π2

(π2 − x2)
.

4π2

(4π2 − x2)
.

9π2

(9π2 − x2)
· · · . (3)
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(3) yields some important numerical product expansions for special values of

x. Euler [2] gives three examples: = π
2 ;

π
4 ;

π
6 . He obtains a product akin to (2)

π

2
=

2.2

1.3
.
4.4

3.5
.
6.6

5.7
... =

∞∏
n=1

(2n)2

(2n− 1)(2n+ 1)
. (4)

Euler pointed out at another place [3] that there is no difference, in whatever order

the individual factors in this product are set out, provided none are left out. So

by taking some number from the beginning, the remainder can be set out in order,

just as

π

2
=

2

1
×

2.4

3.3
.
4.6

5.5
.
6.8

5.5
.
8.10

5.5
.etc

π

2
=

2.4

1.3
×

2.6

3.5
.
4.8

5.7
.
6.10

7.9
.
8.12

9.11
.etc

π

2
=

2

3
×

2.4

1.5
.
4.6

3.7
.
6.8

5.9
.
8.10

7.11
.etc

π

2
=

2.4

3.5
×

2.6

1.7
.
4.8

3.9
.
6.10

5.11
.
8.12

7.13
.etc

Surprisingly, Jonathan Sondow and Huang Yi [5] have given Euler’s product

for x = π
8 as their formula (8) and his product for x = π

3 as their formula (12).

Further, what they prove as their general formula (13) is a straightforward case of

x = π
k
deduced from (3). However, they have found a nice product for 2

2 =
∞∏
n=1

(8n− 6)(8n− 4)(8n− 4)(8n− 2)

(8n− 7)(8n− 5)(8n− 3)(8n− 1)
. (5)

Using (5), they thus deduced from (3) a new product akin to (2)

π

4
=

2.6.8.8

3.5.7.9
.
10.14.16.16

11.13.15.17
.
18.22.24.24

19.21.23.25
... =

∞∏
n=1

(8n− 6)(8n− 2)(8n)(8n)

(8n− 5)(8n− 3)(8n− 1)(8n+ 1)
.

(6)

If we divide (6) by (5), we get

π

8
=

∞∏
n=1

(2n)2(8n− 7)

(2n− 1)2(8n+ 1)
. (7)

(7) suggests

General Formula I:

π

m
=

∞∏
n=1

(2n)2(mn−m+ 1)

(2n− 1)2(mn+ 1)
, m ∈ N. (8)

General Formula I.1:

mπ

4
=

∞∏
n=1

(2n)2(mn+ 1)

(2n+ 1)2(mn−m+ 1)
, m ∈ N. (8.1)
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I present two proofs of (8) here. The first (more constructive) proof deals with

even and odd m separately while the second (very brief) does it for all m at once.

To evaluate the general class of infinite products, I follow the method (using the

Gamma function) described in [7]. If k is a positive integer and a1+a2+ ...+ak =

b1 + b2 + ...+ bk and n+ bj 6= 0, then

∞∏
n=0

(n+ a1) · · · (n+ ak)

(n+ b1) · · · (n+ bk)
=

k∏
m=1

Γ(bm)

Γ(am)
.

Further, Γ(x)Γ(1 − x) = π
sinπx

. Armed with these two results, now I take up the

first proof.

Proof A. Let m = 2k. I now construct a product and compute its value.

∞∏
n=1

(2kn− k)(2kn− k)

(2kn− 2k + 1)(2kn− 1)
=

∞∏
n=0

(2kn+ k)(2kn+ k)

(2kn+ 1)(2kn+ 2k − 1)

=
∞∏

n=0

(n+ 1
2 )(n+ 1

2 )

(n+ 1
2k )(n+ 1− 1

2k )
=

Γ( 1
2k )Γ(1 −

1
2k )

Γ(12 )Γ(
1
2 )

=
π/ sin π

2k

π
=

1

sin π
2k

. (9)

Putting x = π/2k in (2) and using (9), we obtain

π

2k
= sin

π

2k

∞∏
n=0

(2kn)2

(2kn− 1)(2kn+ 1)

=
∞∏

n=0

(2kn)2

(2kn− 1)(2kn+ 1)
/

∞∏
n=0

(2kn− k)2

(2kn− 2k + 1)(2kn− 1)

=

∞∏
n=1

(2kn)2

(2kn− k)2
(2kn− 2k + 1)(2kn− 1)

(2kn− 1)(2kn+ 1)
=

∞∏
n=1

(2n)2

(2n− 1)2
(2kn− 2k + 1)

(2kn+ 1)

=
∞∏

n=1

(2n)2

(2n− 1)2
(mn−m+ 1)

(mn+ 1)
.

This gives the required result.

For odd m, we take an indirect route. Let m be odd and let

P =

∞∏
n=1

(2n)2(mn−m+ 1)

(2n− 1)2(mn+ 1)
. (a)

By the established even case, one gets

π

2m
=

∞∏
n=1

(2n)2(2mn− 2m+ 1)

(2n− 1)2(2mn+ 1)
.
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An application of the property Γ(1 + x) = xΓ(x) of the Gamma function gives

π

2mP
=

∞∏
n=1

(2n)2(2mn− 2m+ 1)

(2n− 1)2(2mn+ 1)
/

∞∏
n=1

(2n)2(mn−m+ 1)

(2n− 1)2(mn+ 1)

=

∞∏
n=1

{
(2mn− 2m+ 1)(mn+ 1)

(2mn+ 1)(mn−m+ 1)
} =

∞∏
n=0

{
(2mn+ 1)(mn+m+ 1)

(2mn+ 2m+ 1)(mn+ 1)
}

=
∞∏

n=0

(n+ 1
2m )(n+ 1 + 1

m
)

(n+ 1 + 1
2m )(n+ 1

m
)
=

Γ(1 + 1
2m )Γ( 1

m
)

Γ( 1
2m )Γ(1 + 1

m
)
=

1
2mΓ( 1

2m )Γ( 1
m
)

Γ( 1
2m ) 1

m
Γ( 1

m
)
=

1

2
.

Therefore P = π
m
, and our assertion for odd m is proved as well, completing the

proof. �

Proof B: Let m be either even or odd and let

P =

∞∏
n=1

(2n)2(mn−m+ 1)

(2n− 1)2(mn+ 1)
. (b)

We now compute the quotient (4)/( b), i.e.,

π

2P
=

∞∏
n=1

(2n)2

(2n− 1)(2n+ 1)
/

∞∏
n=1

(2n)2(mn−m+ 1)

(2n− 1)2(mn+ 1)

=

∞∏
n=1

{
(2n)2(2n− 1)2(mn+ 1)

(2n− 1)(2n+ 1)(2n)2(mn−m+ 1)
}

=

∞∏
n=1

{
(2n− 1)(mn+ 1)

(2n+ 1)(mn−m+ 1)
} =

∞∏
n=0

{
(2n+ 1)(mn+m+ 1)

(2n+ 3)(mn+ 1)

=

∞∏
n=0

(n+ 1
2 )(n+ 1 + 1

m
)

(n+ 3
2 )(n+ 1

m
)

=
Γ(32 )Γ(

1
m
)

Γ(12 )Γ(1 +
1
m
)

=

√
π

2 Γ( 1
m
)

√
π 1

m
Γ( 1

m
)
=

m

2
.

∴ P =

∞∏
n=1

{
(2n)2(mn−m+ 1)

(2n− 1)2(mn+ 1)
=

π

2
.
2

m
=

π

m
.

This completes the proof. �

Multiplication of (8) and (8.1) gives (4) squared proving (8.1). We deduce the

following product using (2), (4) and (8.1).

General Formula I.2:

π

2m
=

∞∏
n=1

2n(2n+ 2)(mn−m+ 1)

(2n− 1)(2n+ 1)(mn+ 1)
, m ∈ N. (8.2)

§ 2

I shall now derive some new algebraic irrational-free infinite products for π.
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On putting x = π
3 in (3), we get

2π

3
√
3
=

∞∏
n=1

(3n)2

(3n− 1)(3n+ 1)
. (10)

Letting x = π
6 in (3) yields

π

3
=

∞∏
n=1

(6n)2

(6n− 1)(6n+ 1)
. (11)

We thus obtain, on dividing (10) by (11),

2
√
3
=

∞∏
n=1

(6n− 1)(6n+ 1)

(6n− 2)(6n+ 2)
. (12)

We have this product for
√
3

√
3 =

∞∏
n=1

(6n− 4)(6n− 2)

(6n− 5)(6n− 1)
. (13)

One may easily verify (13)

∞∏
n=1

(6n− 4)(6n− 2)

(6n− 5)(6n− 1)
=

∞∏
n=0

(6n+ 2)(6n+ 4)

(6n+ 1)(6n+ 5)
=

∞∏
n=0

(n+ 1
3 )(n+ 2

3 )

(n+ 1
6 )(n+ 5

6 )
=

Γ(16 )Γ(1 +
5
6 )

Γ(13 )Γ(
2
3 )

=
sin π

6

sin π
3

=
√
3.

Hence (12) and (13) multiplied with (10) will respectively generate

4π

9
=

5.6.6.7

4.4.8.8
.
11.12.12.13

10.10.14.14
.
17.18.18.19

16.16.20.20
... =

∞∏
n=1

(6n− 1)(6n)2(6n+ 1)

(6n− 2)2(6n+ 2)2
. (14)

2π

3
=

2.6.6

1.5.8
.
8.12.12

7.11.14
.
14.18.18

13.17.20
... =

∞∏
n=1

(6n− 4)(6n)2

(6n− 5)(6n− 1)(6n+ 2)
. (15)

Note that in the product to follow all terms after the first cancel and hence

1

2
=

∞∏
n=1

(8n− 7)(8n+ 2)

(8n− 6)(8n+ 1)
. (16)

Hence the product (5)× (16) gives

1 =

∞∏
n=1

(8n− 4)(8n− 4)(8n− 2)(8n+ 2)

(8n− 5)(8n− 3)(8n− 1)(8n+ 1)
. (17)

I derived the next product through (7)/(17)

π

8
=

∞∏
n=1

(8n)2(8n− 7)(8n− 5)(8n− 3)(8n− 1)

(8n− 4)4(8n− 2)(8n+ 2)
. (18)

Let us now consider Euler’s product for x = π
4
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π

2
√
2
=

4.4

3.5
.
8.8

7.9
.
12.12

11.13
... =

∞∏
n=1

(4n)2

(4n− 1)(4n+ 1)
. (19)

We can transform it into

3π

8
√
2
=

4.8

5.7
.
8.12

9.11
.
12.16

13.15
... =

∞∏
n=1

4n(4n+ 4)

(4n+ 1)(4n+ 3)
. (20)

Now we have two products for
√
2. The first is due to Euler [2]

√
2 =

2.2

1.3
.
6.6

5.7
.
10.10

9.11
... =

∞∏
n=1

(4n− 2)2

(4n− 3)(4n− 1)
. (21)

(21) put in (20) yields a product which approaches π from above

3π

8
=

2.2.4.8

1.3.5.7
.
6.6.8.12

5.7.9.11
.
10.10.12.16

9.11.13.15
... =

∞∏
n=1

(4n− 2)24n(4n+ 4)

(4n− 3)(4n− 1)(4n+ 1)(4n+ 3)
.

(22)

The next product is obtained through division of (4) by (19)

√
2 =

3.5

2.6
.
7.9

6.10
.
11.13

10.14
... =

∞∏
n=1

(4n− 1)(4n+ 1)

(4n− 2)(4n+ 2)
. (23)

(23) together with (20) gives a product which approaches π from below

3π

8
=

3.4.8

2.6.7
.
7.8.12

6.10.11
.
11.12.16

10.14.15
... =

∞∏
n=1

(4n− 1)4n(4n+ 4)

(4n− 2)(4n+ 2)(4n+ 3)
. (24a)

Note that 12 is a common factor in every numerator/denominator. Hence (24a)

reduces to a formula where the numerator and the denominator are co-prime:

3π

8
=

8

7
.
56

55
.
176

175
.
400

399
.
760

759
.
1288

1287
.
2016

2015
· · · =

∞∏
n=1

{ 4
3 (4n

3 + 3n2 − n)}

{ 4
3 (4n

3 + 3n2 − n)} − 1
. (24b)

(24b) is a special case of

General Formula II:

(
m− 1

m
)

π
√
m

1

sin π√
m

=

∞∏
n=1

(mn− 1)mn(n+ 1)

(
√
mn− 1)(

√
mn+ 1)(mn+m− 1)

. (25)

Proof.
∞∏
n=1

(mn− 1)mn(n+ 1)

(
√
mn− 1)(

√
mn+ 1)(mn+m− 1)

=
∞∏

n=0

(mn+m− 1)(mn+m)(n+ 2)

(
√
mn+

√
m− 1)(

√
mn+

√
m+ 1)(mn+ 2m− 1)

=

∞∏
n=0

(n+ 1− 1
m
)(n+ 1)(n+ 2)

(n+ 1− 1√
m
)(n+ 1 + 1√

m
)(n+ 2− 1

m
)
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=
Γ(1 − 1√

m
)Γ(1 + 1√

m
)Γ(2− 1

m
)

Γ(1− 1
m
)Γ(1)Γ(2)

=
Γ(1 − 1√

m
) 1√

m
Γ( 1√

m
)Γ(1 + 1− 1

m
)

Γ(1− 1
m
)Γ(1)Γ(2)

=
Γ(1 − 1√

m
) 1√

m
Γ( 1√

m
)(1 − 1

m
)Γ(1− 1

m
)

Γ(1− 1
m
)Γ(1)Γ(2)

=
Γ(1 − 1√

m
) 1√

m
Γ( 1√

m
)(1 − 1

m
)

1.1

= Γ(1 −
1

√
m
)Γ(

1
√
m
)

1
√
m
(
m− 1

m
)

=
π

sin π√
m

1
√
m
(
m− 1

m
)

= (
m− 1

m
)

π
√
m

1

sin π√
m

.

This completes the proof. �

Setting x = π
8 and x = 3π

8 respectively in (3), we get Euler’s products

π

4
√
2−

√
2
=

8.8

7.9
.
16.16

15.17
.
24.24

23.25
· · · . (26)

3π

4
√
2−

√
2
=

8.8

5.11
.
16.16

13.19
.
24.24

21.27
· · · . (27)

As
√
2 =

√
2−

√
2 ×

√
2 +

√
2, Jonathan Sondow and Huang Yi [5] discovered a

fine decomposition of Euler’s product for

√
2 =

∞∏
n=1

(8n− 6)2(8n− 2)2

(8n− 7)(8n− 5)(8n− 3)(8n− 1)

recorded in (21)

√
2−

√
2 =

2.6

3.5
.
10.14

11.13

18.22

19.21
... =

∞∏
n=1

(8n− 6)(8n− 2)

(8n− 5)(8n− 3)
. (28)

√
2 +

√
2 =

2.6

1.7
.
10.14

9.15
.
18.22

17.23
... =

∞∏
n=1

(8n− 6)(8n− 2)

(8n− 7)(8n− 1)
. (29)

Using (17) and their 6-factor product (10), I deduced this 3-factor product

π

2
√
2 +

√
2
=

4.2.8

5.3.5
.
8.10.16

9.11.13
.
12.18.24

13.19.21
... =

∞∏
n=1

(4n)(8n− 6)(8n)

(4n+ 1)(8n− 5)(8n− 3)
. (30)
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Combining (29) and (30), I derived a 5-factor irrational-free product comparable

to (4)

π

2
=

4.2.2.6.8

5.1.3.5.7
.
8.10.10.14.16

9.9.11.13.15
.
12.18.18.22.24

13.17.19.21.23
...

=

∞∏
n=1

(4n)(8n− 6)(8n− 6)(8n− 2)(8n)

((4n+ 1)(8n− 7)(8n− 5)(8n− 3)(8n− 1)
.

(31)

§ 3

The only other algebraic irrational-free formula generated by (25) is

35π

108
=

6.12.35

5.7.71
.
12.18.71

11.13.107
.
18.24.107

17.19.143
...

=

∞∏
n=1

6n(6n+ 6)(36n− 1)

(6n− 1)(6n+ 1)(36n+ 35)
.

(32)

Melnikov [4] gives alternative expansion of the sine function in his formula (12)

sinx =
2x

π

∞∏
n=1

(
1 +

4x2 − π2

(1 − 4n2)π2

)
. (33)

By putting x = π
6 in (33), we get

∞∏
n=1

(6n− 1)(6n+ 1)

(6n− 3)(6n+ 3)
=

3

2
. (34)

Hence (32)× (34) yields

35π

72
=

2.4.35

1.3.71
.
4.6.71

3.5.107
.
6.8.107

5.7.143
... =

∞∏
n=1

2n(2n+ 2)(36n− 1)

(2n− 1)(2n+ 1)(36n+ 35)
. (35)

Let us divide (35) by (4) to obtain

35

36
=

∞∏
n=1

(n+ 1)(36n− 1)

n(36n+ 35)
. (36)

Multiply (35) by the general formula I (case m = 1), i.e., π =
∏∞

n=1
(2n)2.n

(2n−1)2.(n+1)

35π

36
=

∞∏
n=1

(2n)2

(2n− 1)2
(36n− 1)

(36n+ 35)
. (37)

(37) gives a clue to

General Formula III:
(
m− 1

m

)
π =

∞∏
n=1

(2n)2

(2n− 1)2
(mn− 1)

(mn+m− 1)
, m ∈ N. (38)

Proof. If we divide (38) by (8), we get

(m− 1) =

∞∏
n=1

(mn− 1)(mn+ 1)

(mn−m+ 1)(mn+m− 1)
. (39)
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If we establish (39), that would prove (38). Let us compute the R.H.S. of (39),

i.e.,

∞∏
n=0

(mn+m− 1)(mn+m+ 1)

(mn+ 1)(mn+ 2m− 1)
=

∞∏
n=0

(
n+ 1− 1

m

) (
n+ 1+ 1

m

)
(
n+ 1

m

) (
n+ 2− 1

m

)

=
Γ( 1

m
)(1− 1

m
)Γ(1− 1

m
)

Γ(1− 1
m
) 1
m
Γ( 1

m
)

=
(1 − 1

m
)

1
m

= (m− 1).

This completes the proof. �

We thus deduce from (25) and (38)

sin
π

√
m

=
1

√
m

∞∏
n=1

4n(mn2 − 1)

m(n+ 1)(2n− 1)2
. (40)

In fact, we can also deduce from Euler’s product expansion for sinπx by employing

the case m = 1 of (8), the following expansion valid for all real x

sinπx = x

∞∏
n=1

4n(n2 − x2)

(n+ 1)(2n− 1)2
. (41)

On setting x = π
10 in (3), we derive the following infinite product involving the

numbers π and ϕ, which represents the golden ratio 1+
√
5

2 :

πϕ = 5
∞∏
n=1

(10n)2

(10n− 1)(10n+ 1)
. (42)

Interestingly, πϕ represents the area of the annulus between two concentric

circles - the unit circle and the outer circle having radius ϕ. Using the case m = 10

in (8), dividing (42) by the resulting quantity and doing a little manipulation, I

found a beautiful infinite product for Phi:

2ϕ =

∞∏
n=1

(10n− 5)2

(10n− 9)(10n− 1)
. (43)

Acknowledgement: The author wishes to thank his corresponding friend Mr.

Hwang Chien-lih of Taiwan for sharing (without proof) his finding of the general

formula I on author’s query about m = 10 case. Incidentally, it was discovered by

the author independently of Hwang’s result.
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Abstract. In this paper, employing the common (E.A) property, we

prove a common fixed point theorem for weakly compatible mappings

via an implicit relation in intuitionistic fuzzy metric space. Our results

generalize the results of S. Kumar [11] and C. Alaca, D. Turkoglu and C.

Yildiz [2].

1. Introduction

In 1986, Jungck [8] introduced the notion of compatible maps for a pair of

self mappings. However, the study of common fixed points of non-compatible

maps is also very interesting (see [16]). Aamri and El. Moutawakil [1] general-

ized the concept of non-compatibility by defining the notion of property (E.A)

and in 2005, Liu, Wu and Li [13] defined common (E.A) property in met-

ric spaces and proved common fixed point theorems under strict contractive

conditions. Jungck and Rhoades [9] initiated the study of weakly compati-

ble maps in metric spaces and showed that every pair of compatible maps is

weakly compatible but reverse is not true. In the literature, many results have

been proved for contraction maps satisfying property (E.A) in different set-

tings such as probabilistic metric spaces [5, 7]; fuzzy metric spaces [12, 15];

intuitionistic fuzzy metric spaces [11]. Atanassov [3] introduced and studied

the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets [19] and

later there has been much progress in the study of intuitionistic fuzzy sets [4].

In 2004, Park [17] defined the notion of intuitionistic fuzzy metric space with

the help of continuous t-norms and continuous t-conorms as a generalization

of fuzzy metric space due to George and Veeramani [6]. Fixed point theory

2010 Mathematics Subject Classification : 47H10, 54H25.

Key words and phrases : Weakly compatible mappings, common (E. A) property, Impli-

cit relation.

c© Indian Mathematical Society, 2014 .
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has important applications in diverse disciplines of mathematics, statistics, en-

gineering, and economics in dealing with problems arising in: Approximation

theory, potential theory, game theory, mathematical economics, etc. In this

paper, employing the common (E.A) property, we prove a common fixed point

theorem for weakly compatible mappings via an implicit relation in intuitionis-

tic fuzzy metric space. Our results generalize the results of S. Kumar [11] and

C. Alaca, D. Turkoglu and C. Yildiz [2].

2. Preliminaries

The concepts of triangular norms (t-norms) and triangular conorms (t-

conorms) were originally introduced by Menger [14] in study of statistical metric

spaces as follows.

Definition 2.1 ([18]). A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is a contin-

uous t-norm if ∗ satisfies the following conditions

(i) ∗ is commutative and associative,

(ii) ∗ is continuous,

(iii) a ∗ 1 = a for all a ∈ [0, 1],

(iv) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 2.2 ([18]). A binary operation ⋄ : [0, 1]× [0, 1] → [0, 1] is a contin-

uous t-conorm if ⋄ satisfies the following conditions

(i) ⋄ is commutative and associative,

(ii) ⋄ is continuous,

(iii) a ⋄ 0 = a for all a ∈ [0, 1],

(iv) a ⋄ b ≤ c ⋄ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

C. Alaca, D. Turkoglu and C. Yildiz [2] using the idea of intuitionistic

fuzzy sets, defined the notion of intuitionistic fuzzy metric space with the help

of continuous t-norm and continuous t-conorms as a generalization of fuzzy

metric space due to Kramosil and Michalek [10] as follows.

Definition 2.3 ([2]). A 5-tuple (X,M,N, ∗, ⋄) is said to be an intuitionistic

fuzzy metric space if X is an arbitrary set, ∗ is a continuous t-norm, ⋄ is a

continuous t-conorm and M,N are fuzzy sets on X2 × [0,∞) satisfying the

following conditions

(i) M(x, y, t) +N(x, y, t) ≤ 1 for allx, y ∈ X and t > 0,

(ii) M(x, y, 0) = 0 for all x, y ∈ X ,

(iii) M(x, y, t) = 1 for all x, y ∈ X and t > 0 if and only if x = y,

(iv) M(x, y, t) =M(y, x, t) for all x, y ∈ X and t > 0,

(v) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s) for all x, y, z ∈ X and s, t > 0,

(vi) for all x, y ∈ X , M(x, y, .) : [0,∞) → [0, 1] is left continuous,
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(vii) limt→∞M(x, y, t) = 1 for all x, y ∈ X and t > 0,

(viii) N(x, y, 0) = 1 for all x, y ∈ X ,

(ix) N(x, y, t) = 0 for all x, y ∈ X and t > 0 if and only if x = y,

(x) N(x, y, t) = N(y, x, t) for all x, y ∈ X and t > 0,

(xi) N(x, y, t) ⋄N(y, z, s) ≥ N(x, z, t+ s) for all x, y, z ∈ X and s, t > 0,

(xii) for all x, y ∈ X , N(x, y, .) : [0,∞) → [0, 1] is right continuous,

(xiii) limt→∞N(x, y, t) = 0 for all x, y ∈ X .

We say (M,N) is an intuitionistic fuzzy metric space on X . The functions

M(x, y, t) and N(x, y, t) denote the degree of nearness and the degree of non-

nearness between x and y w. r. t. t respectively.

Remark 2.1 ([2]). Every fuzzy metric space (X,M, ∗) is an intuitionistic fuzzy

metric space of the form (X,M, 1 −M, ∗, ⋄) such that t-norm ∗ and t-conorm

⋄ are associated as x ⋄ y = 1− ((1 − x) ∗ (1− y)) for all x, y ∈ X .

Remark 2.2 ([2]). In an intuitionistic fuzzy metric space (X,M,N, ∗, ⋄),M(x, y, .)

is non-decreasing and N(x, y, .) is non-increasing for all x, y ∈ X .

Alaca, Turkoglu and Yildiz [2] introduced the following notions:

Definition 2.4 ([2]). Let (X,M,N, ∗, ⋄) be an intuitionistic fuzzy metric space.

Then a sequence {xn} in X is said to be

(i) convergent to a point x ∈ X if, for all t > 0, limn→∞M(xn, x, t) = 1 and

limn→∞N(xn, x, t) = 0,

(ii) Cauchy sequence if, for all t > 0 and p > 0, limn→∞M(xn+p, xn, t) = 1

and limn→∞N(xn+p, xn, t) = 0.

Definition 2.5 ([2]). An intuitionistic fuzzy metric space (X,M,N, ∗, ⋄) is

said to be complete if and only if every Cauchy sequence in X is convergent.

Example 2.1 ([2]). LetX = { 1

n
: n = 1, 2, 3, ...}∪{0} and let ∗ be the continuous

t-norm and ⋄ be the continuous t-conorm defined by a ∗ b = ab and a ⋄ b =

min{1, a + b} respectively, for all a, b ∈ [0, 1]. For each t > 0 and x, y ∈ X ,

define (M,N) by

M(x, y, t) =
t

t+ |x− y|
, N(x, y, t) =

|x− y|

t+ |x− y|
.

Clearly, (X,M,N, ∗, ⋄) is a complete intuitionistic fuzzy metric space.

Definition 2.6 ([1]). A pair of self mappings (T, S) of a intuitionistic fuzzy

metric space (X,M,N, ∗, ⋄) is said to satisfy the property (E.A) if there exist

a sequence {xn} in X such that

limn→∞Txn = limn→∞Sxn = z in X

.
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Example 2.2. Let X = [0,∞). Let (X,M,N, ∗, ⋄) be the intuitionistic fuzzy

metric space as in Example 2.8. Define T, S : X → X by Tx = x

5
and Sx = 2x

5

for all x ∈ X . Clearly, for sequence {xn} = { 1

n
}, T and S satisfies property

(E.A).

Definition 2.7 ([13]). Two pairs (A,S) and (B, T ) of self mappings of an

intuitionistic fuzzy metric space (X,M,N, ∗, ⋄) are said to satisfy the common

(E.A) property if there exist two sequences {xn} and {yn} in X such that

limn→∞Axn = limn→∞Sxn = limn→∞Byn = limn→∞Tyn = z

for some z ∈ X .

Example 2.3. Let X = [−1, 1] and (X,M,N, ∗, ⋄) be the intuitionistic fuzzy

metric space as in Example 2.8. Define self mappings A,B, S and T on X as

Ax = x

3
, Bx = −x

3
, Sx = x, and Tx = −x for all x ∈ X . Then with sequences

{xn} = { 1

n
} and {yn} = {−1

n
} in X , one can easily verify that

limn→∞Axn = limn→∞Sxn = limn→∞Byn = limn→∞Tyn = 0.

Therefore, pairs (A,S) and (B, T ) satisfy the common (E.A.) property.

Definition 2.8 ([9]). A pair of self mappings (T, S) of an intuitionistic fuzzy

metric space (X,M,N, ∗, ⋄) is said to be weakly compatible if they commute

at coincidence points, i.e., if Tu = Su for some u ∈ X , then TSu = STu.

3. Main results

Implicit relations play important role in establishing of common fixed point

results. Let M6 be the set of all continuous functions φ : [0, 1]6 → R and

ψ : [0, 1]6 → R satisfying the following conditions

(A) φ(u, v, u, v, v, u) ≥ 0 imply u ≥ v for all u, v ∈ [0, 1],

(B) φ(u, v, v, u, u, v) ≥ 0 imply u ≥ v for all u, v ∈ [0, 1],

(C) φ(u, u, v, v, u, u) ≥ 0 imply u ≥ v for all u, v ∈ [0, 1],

(D) ψ(u, v, u, v, v, u) ≤ 0 imply u ≤ v for all u, v ∈ [0, 1],

(E) ψ(u, v, v, u, u, v) ≤ 0 imply u ≤ v for all u, v ∈ [0, 1],

(F) ψ(u, u, v, v, u, u) ≤ 0 imply u ≤ v for all u, v ∈ [0, 1].

Example 3.1. Define φ, ψ : [0, 1]6 → R as

φ(t1, t2, t3, t4, t5, t6) = t1 − φ1(min{t2, t3, t4, t5, t6})

where φ1 : [0, 1] → [0, 1] is an increasing and a continuous function such that

φ1(s) > s for all s ∈ (0, 1), and

ψ(t1, t2, t3, t4, t5, t6) = t1 − ψ1(max{t2, t3, t4, t5, t6}),
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where ψ1 : [0, 1] → [0, 1] is increasing and a continuous function such that

ψ1(k) < k for all k ∈ (0, 1). Clearly, φ and ψ satisfy all conditions (A), (B),

(C), (D), (E) and (F).

We begin with following observation.

Lemma 3.1. Let A,B, S and T be self mappings of a intuitionistic fuzzy metric

space (X,M,N, ∗, ⋄) satisfying the following

(1) the pair (A,S) or (B, T ) satisfies the property (E.A.),

(2) for any x, y ∈ X, φ and ψ in M6 and for all t > 0,

φ
(M(Ax,By, t) + minM(Sx,By, t),M(Ax, Ty, t)

2
,

M(Sx, T y, t),M(Sx,Ax, t),M(Ty,By, t),

M(Sx,By, t),M(Ty,Ax, t)
)
≥ 0

and

ψ
(N(Ax,By, t) + maxN(Sx,By, t), N(Ax, Ty, t)

2
,

N(Sx, T y, t), N(Sx,Ax, t), N(Ty,By, t),

N(Sx,By, t), N(Ty,Ax, t)
)
≤ 0.

(3) A(X) ⊆ T (X) or B(X) ⊆ S(X).

Then the pairs (A,S) and (B, T ) share the common (E.A.) property.

Proof. Suppose that the pair (A,S) satisfies property (E.A.), then there exist

a sequence {xn} in X such that limnAxn = limnSxn = z for some z ∈ X .

Since A(X) ⊆ T (X), hence for each {xn}, there exist {yn} in X such that

Axn = Tyn. Therefore limnAxn = limnSxn = limnTyn = z. Now we claim

that limnByn = z. In fact, applying inequality (2) on x = xn, y = yn, we

obtain

φ
(M(Axn, Byn, t) +min{M(Sxn, Byn, t),M(Axn, T yn, t)}

2
,M(Sxn, T yn, t),

M(Sxn, Axn, t),M(Tyn, Byn, t),M(Sxn, Byn, t),M(Tyn, Axn, t)
)
≥ 0

and

ψ
(N(Axn, Byn, t) +max{N(Sxn, Byn, t), N(Axn, T yn, t)}

2
, N(Sxn, T yn, t),

N(Sxn, Axn, t), N(Tyn, Byn, t), N(Sxn, Byn, t), N(Tyn, Axn, t)
)
≤ 0

which on making n→ ∞ reduces to
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φ
(M(z, limnByn, t) +min{M(z, limnByn, t),M(z, z, t)}

2
,M(z, z, t),

M(z, z, t),M(z, limnByn, t),M(z, limnByn, t),M(z, z, t)
)
≥ 0,

φ
(
M(z, limnByn, t), 1, 1,M(z, limnByn, t),M(z, limnByn, t), 1

)
≥ 0;

and

ψ
(N(z, limnByn, t) +max{N(z, limnByn, t), N(z, z, t)}

2
, N(z, z, t),

N(z, z, t), N(z, limnByn, t), N(z, limnByn, t), N(z, z, t)
)
≤ 0,

ψ
(
N(z, limnByn, t), 0, 0, N(z, limnByn, t), N(z, limnByn, t), 0

)
≤ 0.

By using (A) and (D), we haveM(z, limnByn, t) ≥ 1 andN(z, limnByn, t) ≤ 0,

and therefore, limnByn = z. Hence,

limnAxn = limnSxn = limnByn = limnTyn = z

for some z ∈ X . Hence, the pairs (A,S) and (B, T ) share the common (E.A.)

property. �

Theorem 3.1. Let A,B, S and T be self mappings of a intuitionistic fuzzy

metric space (X,M,N, ∗, ⋄) satisfying the conditions (2) and

(4) the pair (A,S) and (B, T ) share the common (E.A.) property,

(5) S(X) and T (X) are closed subsets of X.

Then the pairs (A,S) and (B, T ) have a point of coincidence each. Moreover,

A,B, S and T have a unique common fixed point provided both the pairs (A,S)

and (B, T ) are weakly compatible.

Proof. In view of (4), there exist two sequences {xn} and {yn} in X such that

limnAxn = limnSxn = limnByn = limnTyn = z

for some z ∈ X . As S(X) is a closed subset of X , therefore, there exists a point

u ∈ X such that z = Su. We claim that Au = z. By (2), take x = u, y = yn,

φ
(M(Au,Byn, t) +min{M(Su,Byn, t),M(Au, Tyn, t)}

2
,M(Su, T yn, t),

M(Su,Au, t),M(Tyn, Byn, t),M(Su,Byn, t),M(Tyn, Au, t)
)
≥ 0

and

ψ
(N(Au,Byn, t) +max{N(Su,Byn, t), N(Au, Tyn, t)}

2
, N(Su, T yn, t),

N(Su,Au, t), N(Tyn, Byn, t), N(Su,Byn, t), N(Tyn, Au, t)
)
≤ 0
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which on making n→ ∞ reduces to

φ
(M(Au, z, t) +min{M(z, z, t),M(Au, z, t)}

2
,M(z, z, t),M(z, Au, t),

M(z, z, t),M(z, z, t),M(z, Au, t)
)
≥ 0,

φ(M(Au, z, t), 1,M(z, Au, t), 1, 1,M(z, Au, t))≥ 0

and

ψ
(N(Au, z, t) +max{N(z, z, t), N(Au, z, t)}

2
, N(z, z, t), N(z, Au, t),

N(z, z, t), N(z, z, t), N(z, Au, t)
)
≤ 0,

ψ(N(Au, z, t), 0, N(z, Au, t), 0, 0, N(z, Au, t))≤ 0.

By using (A) and (D), we haveM(Au, z, t) ≥ 1 and N(Au, z, t) ≤ 0. Therefore,

Au = z = Su, which shows that u is a coincidence point of the pair (A,S).

Since T (X) is also a closed subset of X , therefore limnTyn = z in T (X) and

hence there exists v ∈ X such that Tv = z = Au = Su. Now, we show that

Bv = z. By using inequality (2), take x = u, y = v, we have

φ
(M(Au,Bv, t) +min{M(Su,Bv, t),M(Au, Tv, t)

2
,M(Su, T v, t),

M(Su,Au, t),M(Tv,Bv, t),M(Su,Bv, t),M(Tv,Au, t)
)
≥ 0,

φ
(M(z,Bv, t) +min{M(z,Bv, t),M(z, z, t)

2
,M(z, z, t),

M(z, z, t),M(z,Bv, t),M(z,Bv, t),M(z, z, t)
)
≥ 0,

φ
(
M(z,Bv, t), 1, 1,M(z,Bv, t),M(z,Bv, t), 1) ≥ 0;

and

ψ
(N(Au,Bv, t) +max{N(Su,Bv, t), N(Au, Tv, t)

2
, N(Su, T v, t),

N(Su,Au, t), N(Tv,Bv, t), N(Su,Bv, t), N(Tv,Au, t)
)
≤ 0,

ψ
(N(z,Bv, t) +max{N(z,Bv, t), N(z, z, t)

2
, N(z, z, t),

N(z, z, t), N(z,Bv, t), N(z,Bv, t), N(z, z, t)
)
≤ 0,

ψ
(
N(z,Bv, t), 0, 0, N(z,Bv, t), N(z,Bv, t), 0

)
≤ 0.

By using (B) and (E), we have

M(z,Bv, t) ≥ 1, N(z,Bv, t) ≤ 0

which gives Bv = z = Tv showing that v is a coincidence point of the pair

(B, T ). Since the pairs (A,S) and (B, T ) are weakly compatible and Au =
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Su,Bv = Tv, therefore, Az = ASu = SAu = Sz,Bz = BTv = TBv = Tz.

Again, by using inequality (2), take x = z, y = v, we have

φ
(M(Az,Bv, t) +min{M(Sz,Bv, t),M(Az, T v, t)

2
,M(Sz, T v, t),

M(Sz,Az, t),M(Tv,Bv, t),M(Sz,Bv, t),M(Tv,Az, t)
)
≥ 0,

φ
(M(Az, z, t) +min{M(Az, z, t),M(Az, z, t)

2
,M(Az, z, t),

M(Az,Az, t),M(z, z, t),M(Az, z, t),M(z, Az, t)
)
≥ 0,

φ(M(Az, z, t),M(Az, z, t), 1, 1,M(Az, z, t),M(Az, z, t))≥ 0;

and

ψ
(N(Az,Bv, t) +max{N(Sz,Bv, t), N(Az, T v, t)

2
, N(Sz, T v, t),

N(Sz,Az, t), N(Tv,Bv, t), N(Sz,Bv, t), N(Tv,Az, t)
)
≤ 0,

ψ
(M(Az, z, t) +max{N(Az, z, t), N(Az, z, t)

2
, N(Az, z, t),

N(Az,Az, t), N(z, z, t), N(Az, z, t), N(z, Az, t)
)
≤ 0,

ψ(N(Az, z, t), N(Az, z, t), 0, 0, N(Az, z, t), N(Az, z, t))≤ 0.

By using (C) and (F), we have

M(Az, z, t) ≥ 1 and N(Az, z, t) ≤ 0.

Therefore, Az = z = Sz. Similarly, one can prove that Bz = Tz = z. Hence,

Az = Bz = Sz = Tz, and z is common fixed point of A,B, S and T.

Uniqueness: Let z and w be two common fixed points of A,B, S and T , then

by using inequality (2), we have

φ
(M(Az,Bw, t) +min{M(Sz,Bw, t),M(Az, Tw, t)

2
,M(Sz, Tw, t),

M(Sz,Az, t),M(Tw,Bw, t),M(Sz,Bw, t),M(Tw,Az, t)
)
≥ 0,

φ
(M(z, w, t) +min{M(z, w, t),M(z, w, t)

2
,M(z, w, t),

M(z, z, t),M(w,w, t),M(z, w, t),M(w, z, t)
)
≥ 0,

φ(M(z, w, t),M(z, w, t), 1, 1,M(z, w, t),M(w, z, t)) ≥ 0;

and

ψ
(N(Az,Bw, t) +max{N(Sz,Bw, t), N(Az, Tw, t)

2
, N(Sz, Tw, t),

N(Sz,Az, t), N(Tw,Bw, t), N(Sz,Bw, t), N(Tw,Az, t)
)
≤ 0,
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ψ
(N(z, w, t) +max{N(z, w, t), N(z, w, t)

2
, N(z, w, t), N(z, z, t),

N(w,w, t), N(z, w, t), N(w, z, t)
)
≤ 0,

ψ(N(z, w, t), N(z, w, t), 0, 0, N(z, w, t), N(w, z, t)) ≤ 0.

By using (C) and (F), we have M(z, w, t) ≥ 0 and N(z, w, t) ≤ 0. This gives

z = w. �

By choosing A,B, S and T suitably, one can derive corollaries involving

two or more mappings. As a sample, we deduce the following natural result for

a pair of self mappings by setting B = A and T = S in the above theorem.

Corollary 3.1. Let A and S be self mappings of an intuitionistic fuzzy metric

space (X,M,N, ∗, ⋄) satisfying the following:

(6) the pair (A,S) satisfies the property (E.A.),

(7) for any x, y ∈ X, φ and ψ in M6 and for all t > 0,

φ
(M(Ax,Ay, t) +min{M(Sx,Ay, t),M(Ax, Sy, t)

2
,M(Sx, Sy, t),

M(Sx,Ax, t),M(Sy,Ay, t),M(Sx,Ay, t),M(Sy,Ax, t)
)
≥ 0,

and

ψ
(N(Ax,Ay, t) +max{N(Sx,Ay, t), N(Ax, Sy, t)

2
, N(Sx, Sy, t),

N(Sx,Ax, t), N(Sy,Ay, t), N(Sx,By, t), N(Sy,Ax, t)
)
≤ 0,

(8) S(X) is a closed subset of X.

Then, A and S have a point of coincidence each. Moreover, if the pair (A,S)

is weakly compatible, then A and S have a unique common fixed point.

The following example illustrates Theorem 3.3.

Example 3.2. Let (X,M,N, ∗, ⋄) be an intuitionistic fuzzy metric space where

X = [0, 2) and define φ, ψ : [0, 1]6 → R as

φ(t1, t2, t3, t4, t5, t6) = t1 − φ1(min{t2, t3, t4, t5, t6})

where φ1 : [0, 1] → [0, 1] is increasing and a continuous function such that

φ1(s) > s for all s ∈ (0, 1); and

ψ(t1, t2, t3, t4, t5, t6) = t1 − ψ1(max{t2, t3, t4, t5, t6})

where ψ1 : [0, 1] → [0, 1] is increasing and a continuous function such that

ψ1(k) < k for all k ∈ (0, 1).
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Clearly, φ and ψ satisfy all conditions (A), (B), (C), (D), (E) and (F). De-

fine A,B, S and T by Ax = Bx = 1, Sx = 1 if x ∈ Q, Sx = 2

3
otherwise; Tx = 1

if x ∈ Q, Tx = 1

3
otherwise. Let M(x, y, t) = t

t+|x−y| , N(x, y, t) = |x−y|
t+|x−y| for

all x, y ∈ X = [0, 2) and t > 0. Then for the sequences {xn} = { 1

n
} and

{yn} = {−1

n
} in X , one observes that limnAxn = limnSxn = limnByn =

limnTyn = 1 ∈ X . This shows that pairs (A,S) and (B, T ) share the common

(E.A.) property. Now, for verifying condition (2), take x ∈ Q, y ∈ Q; we have

φ
(M(Ax,By, t) +min{M(Sx,By, t),M(Ax, Ty, t)

2
,M(Sx, T y, t),

M(Sx,Ax, t),M(Ty,By, t),M(Sx,By, t),M(Ty,Ax, t)
)
≥ 0,

φ
(M(1, 1, t) +min{M(1, 1, t),M(1, 1, t)

2
,M(1, 1, t),M(1, 1, t),

M(1, 1, t),M(1, 1, t),M(1, 1, t)
)
≥ 0,

φ(
1 + 1

2
, 1, 1, 1, 1, 1) ≥ 0, φ(1, 1, 1, 1, 1, 1) ≥ 0, 0 ≥ 0,

1− φ1(min{1, 1, 1, 1, 1})≥ 0, 1− φ1(1) ≥ 0, 1−
√
1 ≥ 0;

and

ψ
(N(Ax,By, t) +max{N(Sx,By, t), N(Ax, Ty, t)

2
, N(Sx, T y, t),

N(Sx,Ax, t), N(Ty,By, t), N(Sx,By, t), N(Ty,Ax, t)
)
≤ 0,

ψ
(N(1, 1, t) +max{N(1, 1, t), N(1, 1, t)

2
, N(1, 1, t), N(1, 1, t),

N(1, 1, t), N(1, 1, t), N(1, 1, t)
)
≤ 0,

ψ(
0 + 0

2
, 0, 0, 0, 0, 0) ≤ 0, ψ(0, 0, 0, 0, 0, 0) ≤ 0, 0 ≤ 0,

0− ψ1(max{0, 0, 0, 0, 0}) ≤ 0, 0− ψ1(0) ≤ 0, 0−
√
0 ≤ 0,

which is true, hence condition (2) is verified for x ∈ Q, y ∈ Q. Similarly, we

verify condition (2) for other cases. Thus, all the conditions of Theorem 3.3

are satisfied and x = 1 is the unique common fixed point of A,B, S and T .
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NUMBERS OF TWO KINDS
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Abstract. In this paper, we are concerned with generalized Cauchy

numbers of two kinds. We first establish some identities for the above

generalized Cauchy numbers. We further discuss the log-convexity or

log-concavity of generalized Cauchy numbers under some conditions.

1. Introduction

Cauchy numbers of the first kind an and Cauchy numbers of the second

kind bn are defined by (see [5])

an =

1∫

0

(x)ndx, bn =

1∫

0

〈x〉ndx,

where

(x)n =



x(x − 1) · · · (x− n+ 1) n ≥ 1,

1, n = 0;

〈x〉n =



x(x + 1) · · · (x+ n− 1) n ≥ 1,

1, n = 0.

Cauchy numbers of two kinds play important roles in many subjects such as

approximate integrals, difference-differential equations, and combinatorics (see

[2, 9, 10, 13]). For example, Cauchy numbers of two kinds are related to Stir-

ling numbers, and Cauchy numbers appear in the Laplace summation formula

(the Laplace summation formula is analogues to the Euler-Maclaurin formula).

Hence the properties of Cauchy numbers deserve to be studied. In [13, 18 -

20], many properties of {an} and {bn} are discussed. For example, several

new identities relating Cauchy numbers with Stirling, Bernoulli and harmonic

numbers are established in [13]. In this paper, we are interested in generalized

2010 Mathematics Subject Classification. 05A19, 05A20, 11B68, 11B73.

Key words: Cauchy numbers, Stirling numbers, log-convexity, log-concavity, unimodality.
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Cauchy numbers of two kinds, and discuss their properties.

We first give the definitions of generalized Cauchy numbers of two kinds.

Definition 1.1. Let f = (f0, f1, · · · fn, · · · ) be a sequence of nonnegative in-

tegers. Generalized Cauchy numbers of the first kind c
[1]

f (n) and generalized

Cauchy numbers of the second kind c
[2]

f (n) are defined by

c
[1]

f (n) =

1∫

0

(x|f)ndx, c
[2]

f (n) =

1∫

0

〈x|f〉ndx,

where

(x|f)n =



(x − f0)(x − f1) · · · (x− fn−1), n ≥ 1,

1, n = 0;

〈x|f〉n =



(x + f0)(x + f1) · · · (x+ fn−1), n ≥ 1,

1, n = 0.

It is clear that c
[1]

f (n) = an and c
[2]

f (n) = bn, when f = (0, 1, 2, · · · , n, · · · ).

Some other definitions and notations will be used in this paper.

Definition 1.2. For a sequence of nonnegative integers f = (f0, f1, · · · , fn, · · · ),

the generalized Stirling numbers of the first kind sf (n, k) and the generalized

Stirling numbers of the second kind Sf (n, k) are defined by

n∑
k=0

sf (n, k)x
k = (x|f)n,

n∑
k=0

Sf (n, k)(x|f)n = xn.

When f = (0, 1, 2, · · · , n, · · · ), sf (n, k) and Sf (n, k) become Stirling numbers of

the first kind s(n, k) and S(n, k), respectively. For some properties of sf (n, k)

and Sf (n, k), see [16, 17].

Definition 1.3. Let {zn} ≥ 0 be a sequence of nonnegative numbers. {zn} ≥ 0

is called log-convex (or log-concave) if z2n ≤ zn−1zn+1(or zn−1zn+1 ≤ z2n) for

all n ≥ 1.

Definition 1.4. If z0 ≤ z1 · · · ≤ zm−1 ≤ zm ≥ zm+1 ≥ · · · for somem, {zn}n≥0

is called unimodal, and m is called a mode of the sequence.

The object of this paper is to discuss some properties of {c
[1]

f (n)} and

{c
[2]

f (n)}. The main results of this paper can be summarized as follows: In
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Section 2, we establish some identities for c
[1]

f (n)(c
[2]

f (n)) and derive general-

ized Stirling numbers of two kinds sf (n, k)(Sf (n, k)). In Section 3, we mainly

discuss the log-convexity (log-concavity) of generalized Cauchy numbers of two

kinds under some conditions.

Throughout this paper,σ
[1]

f (n) = (−1)nc
[1]

f (n) for n ≥ 0.

2. Some Identities for Generalized Cauchy Numbers of Two Kinds

In this section, we give some identities for generalized Cauchy numbers of

two kinds. Cauchy numbers of two kinds {an} and {bn} satisfy that (see [5])

an =

n∑
k=1

(−1)k−1(n)kan−k

k + 1
, bn =

n∑
k=1

(n)kbn−k

k + 1

Now we derive some recurrence relations for {c
[1]

f (n)} and {c
[2]

f (n)}.

Theorem 2.1. For n ≥ 1, generalized Cauchy numbers of two kinds {c
[1]

f (n)}

and {c
[2]

f (n)}. satisfy that

c
[1]

f (n+ 1) =

(
pf (n)

pf (n− 1)
− fn

)
c
[1]

f (n) +
fn−1pf(n)

pf (n− 1)
c
[1]

f (n− 1), (2.1)

c
[2]

f (n+ 1) =

(
qf (n)

qf (n− 1)
+ fn

)
c
[2]

f (n)−
fn−1qf (n)

qf (n− 1)
c
[2]

f (n− 1), (2.2)

where

pf (n) =

1∫

0

x(x|f)ndx, qf (n) =

1∫

0

x〈x|f〉ndx,

Proof. For n ≥ 1, one can verify that

c
[1]

f (n+ 1) = pf (n)− fnc
[1]

f (n),

c
[2]

f (n+ 1) = qf (n) + fnc
[2]

f (n).

Then we have

c
[1]

f (n+ 1) + fnc
[1]

f (n)

pf (n)
=

c
[1]

f (n) + fn−1c
[1]

f (n− 1)

pf (n− 1)

c
[2]

f (n+ 1)− fnc
[2]

f (n)

qf (n)
=

c
[2]

f (n)− fn−1c
[2]

f (n− 1)

qf (n− 1)

Hence (2.1)–(2.2) hold. �
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Recall the following identities for Cauchy and Stirling numbers of two kinds

(see [5]):

n∑
k=0

s(n, k)

k + 1
= an, (2.3)

n∑
k=0

c(n, k)

k + 1
= bn, (2.4)

where c(n, k) = (−1)n+ks(n, k). Now we establish some identities for general-

ized Cauchy numbers and generalized Stirling numbers.

Theorem 2.2. For generalized Cauchy numbers and generalized Stirling num-

bers, we have

n∑
k=0

sf (n, k)
1

k + 1
= c

[1]

f (n), (2.5)

n∑
k=0

sf (n, k)
(−1)n+k

k + 1
= c

[2]

f (n), (2.6)

n∑
k=0

Sf(n, k)c
[1]

f (k) =
1

n+ 1
, (2.7)

n∑
k=0

Sf (n, k)(−1)kc
[2]

f (k) =
(−1)n

n+ 1
. (2.8)

Proof. It follows from the definitions of generalized Cauchy numbers and

generalized Stirling numbers that (2.5) – (2.8) hold. �

Remark 2.1. We note that (2.5) and (2.6) generalizes (2.3) and (2.4), respec-

tively.

3. Log-Convexity (Log-Concavity) of Generalized Cauchy

Numbers of two kinds

Log-concavity and log-convexity are important properties of combinato-

rial sequences and they are fertile sources of inequalities. The log-convexity

or log-concavity of a sequence can help us obtaining its growth rate and as-

ymptotic behavior. Unimodal and log-concave (log-convex) sequences often

appear in many other subjects such as algebra, geometry, statistics, quantum

physics, white noise theory, probability and mathematical biology. For some

applications of the log-convexity or log-concavity of a sequence, see for instance

[1, 3, 4, 7, 8, 11, 15]. In [20], the log-convexity of Cauchy numbers of the sec-

ond kind {bn} is proved. In this section, we mainly discuss the log-convexity

or log-concavity of generalized Cauchy numbers of two kinds according to the
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properties of f = (f0, f1, · · · , fn, · · · ). Now we state and prove the main results

of this section.

Lemma 3.1. For generalized Cauchy numbers of the second kind c
[2]

f (n) and

its derived sequence qf (n), we have

1

2
c
[2]

f (n) ≤ qf (n) ≤ c
[2]

f (n)

Proof. From the definition of generalized Stirling numbers of the first kind,

we can get
n∑

k=0

sf (n, k)(−1)n+kxk = 〈x|f〉n,

and sf (n, k)(−1)n+k ≥ 0 for the definition of 〈x|f〉n. Let gn,k = sf (n, k)(−1)n+k,

c
[2]

f (n) =

1∫

0

n∑
k=0

gn,kx
k dx =

n∑
k=0

gn.k
k + 1

and

qf (n) =

n∑
k=0

gn,k
k + 2

.

Clearly
1

2(k + 1)
≤

1

k + 2
≤

1

k + 1
, for 0 ≤ k ≤ n,

thus we get the desired inequality. �

Theorem 3.1. For generalized Cauchy numbers of the second kind {c
[2]

f (n)}, {c
[2]

f (n)}

is log-convex if f = (f0, f1, · · · , fn, · · · ) satisfies fn ≥ 1

2
+ fn−1 for n ≥ 1.

Proof. Applying the definition of log-convexity (log-concavity), we discuss

the log-convexity (log-concavity) of {c
[2]

f (n)}. For n ≥ 1, we can verify that

(
c
[2]

f (n)
)2

−c
[2]

f (n−1) c
[2]

f (n+1) =




1∫

0

〈x|f〉ndx




2

−

1∫

0

〈x|f〉n−1dx

1∫

0

〈x|f〉n+1dx.

As fn ≤ x+ fn ≤ 1 + fn for 0 ≤ x ≤ 1 and n ≥ 0,
(
c
[2]

f (n)
)2

− c
[2]

f (n− 1)c
[2]

f (n+ 1)

≤

1∫

0

(1 + fn−1)〈x|f〉ndx

1∫

0

〈x|f〉n−1dx−

1∫

0

〈x|f〉n−1dx

1∫

0

(x+ fn)〈x|f〉ndx

=

1∫

0

〈x|f〉n−1dx

1∫

0

〈x|f〉n(1 + fn−1 − x− fn)dx
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= c
[2]

f (n− 1)
(
(1 + fn−1 − fn)c

[2]

f (n)− qf (n)
)

≤ c
[2]

f (n− 1)(
1

2
+ fn−1 − fn) c

[2]

f (n),

and hence the proof. �

We note that bn = c
[2]

f (n), where f = (0, 1, 2, · · · , n, · · · ). From Theorem 3.1,

we can immediately prove that the sequence of Cauchy numbers of the second

kind {bn} is log-convex.

Now we discuss the log-convexity (log-concavity) of {c
[2]

f (n)} when fn(n ≥

0) is a constant. We first recall a lemma.

Lemma 3.2. (Davenport-Pólya Theorem) [6, 12]. If both {xn} and {yn} are

log-convex, then so is their binomial convolution

ωn =

n∑
k=0

(
n

k

)
xkyn−k, n = 0, 1, 2, · · · .

Theorem 3.2. For n ≥ 0, ℓ is a nonnegative integer, assume that fn = ℓ,

where ℓ is a constant. Then {c
[2]

f (n)} is log-convex.

Proof. For ℓ = 0, c
[2]

f (n) = 1/(n + 1). Clearly, {c
[2]

f (n)} is log-convex. For

ℓ > 0,

c
[2]

f (n) =

n∑
k=0

(
n

k

)
ℓn−k

k + 1

It is easy to verify that {ℓk} and {1/(k + 1)} are log-convex. From the

Davenport-Pólya Theorem, we know that {c
[2]

f (n)} is log-convex. �

Theorem 3.3. Suppose that f = (f0, f1, · · · , fn, · · · ) satisfies fn ≥ 1 for n ≥ 0.

Then {σ
[1]

f (n)} is log-convex if f = (f0, f1, · · · , fn, · · · ) satisfies fn ≥ 1 + fn−1

for n ≥ 1.

Proof. For n ≥ 1, we can verify that(
σ
[1]

f (n)
)2

− σ
[1]

f (n− 1)σ
[1]

f (n+ 1)

=




1∫

0

〈−x|f〉ndx




2

−

1∫

0

〈−x|f〉n−1dx

1∫

0

〈−x|f〉n+1dx

≤




1∫

0

〈−x|f〉ndx




2

− (fn − 1)

1∫

0

〈−x|f〉n−1dx

1∫

0

〈−x|f〉ndx

=

1∫

0

〈−x|f〉ndx

1∫

0

〈−x|f〉n−1(−x+ fn−1 − fn + 1)dx.
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�

For the remainder of this section, we discuss the unimodality of {1/c
[2]

f (n)} and

{1/σ
[1]

f (n)} under some conditions.

Theorem 3.4. For f = (f0, f1, · · · , fn, · · · ), there exists m ≥ 1 such that

fk = 0 for 0 ≤ k ≤ m and fk ≥ 1 for k ≥ m+1. Then {1/c
[2]

f (n)} is unimodal,

and its single peak is in m+ 1.

Proof. It is evident that c
[2]

f (0) = 1 and

c
[2]

f (k) =

1∫

0

xkdx =
1

k + 1

for 1 ≤ k ≤ m+1. This indicates that {c
[2]

f (k)}0≤k≤m is monotonic decreasing.

For k ≥ m+ 1,

c
[2]

f (k)− c
[2]

f (k + 1) =

1∫

0

〈x|f〉k (1− x− fk) dx < 0.

This means that {c
[2]

f (k)}k≥m+1 is monotonic increasing. Hence {1/c
[2]

f (n)}

is unimodal, and its single peak is in m+1. Then {1/c
[2]

f (n)} is unimodal, and

its single peak is in m+ 1. �

Theorem 3.5. For f = (f0, f1, · · · , fn, · · · ), there exists m ≥ 1 such that

fk = 1 for 0 ≤ k ≤ m and fk ≥ 2 for k ≥ m + 1. Then {1/σ
[1]

f (n)} is

unimodal, and its single peak is in m+ 1.

The proof of Theorem 3.5 is similar to that of Theorem 3.4, and is omitted

here.

4. Conclusions

We have established the connection between generalized Cauchy numbers

and generalized Stirling numbers and have further discussed the log-convexity

(log-concavity) of generalized Cauchy numbers. When n → ∞, the asymptotic

values of Cauchy numbers of two kinds are (see [5]):

an
n!

∼
(−1)n+1

n(In n)2
,

bn
n!

∼
1

Inn
, n → ∞.

The future work is to study the asymptotic approximation of generalized Cauchy

numbers of two kinds.
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Abstract. This article not only proves the existence of a p-sylow sub-

group in symmetric group Sn but rather focus on to give an inductive

method to construct it for any prime p and positive integer n.

1. Introduction

Most of the work done is inspired by the book [1]. In first section we

introduce the terminologies and notations used throughout. We also prove a

preliminary result as given in proposition 2.1 (see [1, page 102] and [2, page

84]). Section 2 deals with the construction of p-sylow subgroup in Spk (c.f. [1,

2.12.2]). In the last section we describe the general method for constructing a

p-sylow subgroup in Sn for any positive integer n.

2. Notation and Preliminaries

Throughout this article, p stands for a prime and n for natural number.

We denote the symmetric group of degree n by Sn. We will often refer reader

to the following result of [1, page 102],

Proposition 2.1. Let p be a prime and n be a positive integer. Then the power

of p which exactly divides n! is given by[
n

p

]
+

[
n

p2

]
+

[
n

p3

]
+ · · ·

where [x] is the greatest integer ≤ x for any real x > 0.

Proof. If n < p, then p 6 | n!. Suppose n > p. By division algorithm, there exist

t, r such that n = tp+ r where 0 ≤ r < p. We write out n! as

n! = 1 · 2 · · · · p · (p+ 1) · · · (2p) · (2p+ 1) · · · (tp) · (tp+ 1) · (tp+ 2) · · · (tp+ r)

Notice that there are t factors that are divisible by p in n! namely: p, 2p, 3p, · · · tp.

It follows that the power of p which exactly divides n! is same as that of p

2010 Mathematics Subject Classification: Primary 20B35; Secondary 20D20.

Key words and phrases : symmetric group, p-sylow subgroup
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which exactly divides (tp)!. Hence it suffices to prove the result for n = tp. We

now consider the t factors

p · 2p · 3p · 4p · · · tp = pt · t!

Since t < n, induction on n will imply that the power of p which exactly

divides n! is

t+ (power of pwhich exactly divides t!) = t+

([
t

p

]
+

[
t

p2

]
+

[
t

p3

]
+ · · ·

)

=

[
n

p

]
+

[
n

p2

]
+

[
n

p3

]
+ · · ·

�

Let xk denote power of p which exactly divides pk!. The following corollary is

an immediate consequence of proposition 2.1.

Corollary 2.1. Let p be a prime and k be a positive integer. Then the power

of p which exactly divides pk! is given by

xk = pk−1 + pk−2 + · · ·+ p+ 1

Definition 2.1. Let G be a finite group of order n. For a prime p, a subgroup

of order pm in G is said to be a p-sylow subgroup if pm| n but pm+1 6 | n.

Remark 2.1. In view of what we have done above, we notice that order of a

p-sylow subgroup

(1) in Spk is pxk , where xk = pk−1 + pk−2 + · · ·+ p+ 1.

(2) in Sn is pt, where t =
[
n

p

]
+
[

n

p2

]
+
[

n

p3

]
+ · · · .

3. Construction of a p-sylow subgroup in Spk

In this section we inductively construct a p-sylow subgroup in group of

permutations Spk on pk-symbols as given in [1, 2.12.2]. We state this in the

following theorem:

Theorem 3.1. Construct a p-sylow subgroup in Spk .

Proof. By the remark 2.1, the order of p-sylow subgroup in Spk is pxk .We apply

induction on k. If k = 1 then xk = 1. So we have a p-sylow subgroup namely

the subgroup generated by the p-cycle (1, 2, 3, · · · , p). Suppose the result is

true for k − 1. We now do it for k.

Let P1 be a p-sylow subgroup of order pxk−1 that we have constructed in

Spk−1 . Consider a permutation τ ∈ Spk defined by

τ = τ1τ2τ3 · · · τpk−1 ,

where for each j, τj =

(
j, pk−1 + j, 2pk−1 + j, · · · , (p− 1)pk−1 + j

)
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We see that τ is a product of pk−1 distinct p-cycles. This implies that ◦(τ) = p.

Since Spk−1 can be regarded as a subgroup of Spk by treating the elements of

Spk−1 as permutations that fix all j > pk−1, then P1 can be thought as a

subgroup in Spk of order pxk−1 . Let us define

Pi+1 = τ iP1τ
−i for i = 1, 2, 3, · · · , (p− 1).

Notice that P1, P2, · · · , Pp all are subgroup of Spk of same order pxk−1 such

that the elements in Pi influence only the following set of pk−1 numbers:

{
(i − 1)pk−1 + 1, (i− 1)pk−1 + 2, (i− 1)pk−1 + 3, · · · , ipk−1

}
.

This says that elements in distinct Pi commute and hence T = P1P2 · · ·Pp is

a subgroup of Spk . Notice that Pi ∩ Pj = {e} if 0 ≤ i 6= j ≤ p. We now claim

that ◦(T ) = pp·xk−1 .

proof of claim: We use inductive argument. Since P1 ∩ P2 = {e}, it follows

from [1, 2.5.1] that ◦(P1P2) = p2·xk−1 . We know that any element in subgroup

P1P2 influences only the following numbers:

{
1, 2, · · · , pk−1, pk−1 + 1, pk−1 + 2, · · · , 2pk−1

}

and any element in P3 influences only the following numbers:

{
2pk−1 + 1, 2pk−1 + 2, · · · , 3pk−1

}
.

This yields P1P2∩P3 = {e}. By the use of [1, 2.5.1] again, we have ◦(P1P2P3) =

p3·xk−1 . This inductive process will prove our claim.

From definition of p-cycle τj , we see that

τj /∈ Pi for all i = 1, 2, · · · , p & j = 1, 2 · · ·pk−1

⇒ any product of τj /∈ Pi for all i = 1, 2, · · · , p

Let t ∈ T = P1P2 · · ·Pp be any element. Then t will be of the form:

t = t1t2 · · · tp,

for some t1, t2, · · · , tp with ti ∈ Pi, so each ti influences only the following

numbers:

{
(i − 1)pk−1 + 1, (i− 1)pk−1 + 2, (i− 1)pk−1 + 3, · · · , ipk−1

}
.

Therefore τ = τ1τ2τ3 · · · τpk−1 and t cannot have same cycle decomposition.

Hence τ /∈ T . Now since PiPj = PjPi for 0 ≤ i 6= j ≤ p, we have

τT τ−1 = τ(P1P2 · · ·Pp)τ
−1 = P2P3 · · ·P1 = T.

Let P be the subgroup of Spk generated by the element τ and T , that is

P = {τ it : t ∈ T and 1 ≤ i ≤ p}.



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

188 FAHED ZULFEQARR

We determine the order of P . It is

◦(P ) = ppxk−1+1 = pp·(p
k−2

+p
k−1

+···+p+1)+1 = pp
k−1

+p
k−2

+···+p+1 = pxk

Hence P is indeed a p-sylow subgroup in Spk . �

4. Construction of a p-sylow subgroup in Sn

In this section we generalize the inductive method adopted above for con-

structing p-sylow subgroup of the symmetric group Sn on n-symbols for any

positive integer n. We state this in the following theorem:

Theorem 4.1. Construct a p-sylow subgroup in Sn.

Proof. (Construction of p-sylow subgroup in Sn)

Case-1: If n < p, there is no p-sylow subgroup in Sn.

Case-2: If n = p then we have a p-sylow subgroup namely subgroup generated

by the p-cycle (1, 2, 3, · · · , p).

Case-3: Now if n > p, then by division algorithm there exist integers t & r

such that

n = tp+ r where 0 ≤ r ≤ p− 1.

For 0 < r < p− 1, this is not hard to see that the order of p-sylow subgroup in

Sn is same as that of p-sylow subgroup in Spt. Also since a p-sylow subgroup

in Spt can be regarded as a p-sylow subgroup in Sn, it is therefore sufficient to

prove the result for n = tp.

The case when n is a multiple of p, we decompose n into the following

form:

n = tkp
k + tk−1p

k−1 + · · ·+ t2p
2 + t1p for some k, tj

with k > 0 and 0 ≤ tj ≤ p− 1 for all j = 0, 1, 2, · · · , k.

Subcase-1: We now construct a p-sylow subgroup in Sn when n = tpk with

0 < t < p. Since[
tpk

p

]
+

[
tpk

p2

]
+

[
tpk

p3

]
+ · · ·+

[
tpk

pk

]
= t

(
pk−1 + pk−2 + · · ·+ p+ 1

)
= txk

then it follows that the order of p-sylow subgroup in Sn is ptxk .

If k = 1 then n = tp then the order of p-sylow subgroup is pt. Consider

the following subgroups:

P1 = subgroup generated by the p-cycle (1, 2, 3, · · · , p)

P2 = subgroup generated by the p-cycle (p+ 1, p+ 2, p+ 3, · · · , 2p)

...

Pt = subgroup generated by the p-cycle

(
(t− 1)p+ 1, (t− 1)p+ 2, · · · , tp

)
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Clearly each Pi is a subgroup of order p in Stp such that PiPj = PjPi for

all i, j. Therefore it follows that P = P1P2 · · ·Pt is a subgroup of order pt in

Stp.

Now if k > 1 then n = tpk and the order of p-sylow subgroup is ptxk .

Consider the following t-plies each with pk elements:

{1, 2, · · · , pk}, {pk+1, pk+2, · · · , 2pk}, · · · , {(t−1)pk+1, (t−1)pk+2, · · · , tpk}

We use theorem 3.1 to construct t number of p-sylow subgroups P1, P2, · · · , Pt

in Spk with respect to each pile of pk numbers. That is for i = 1, 2, 3, · · · , t,

Pi = a p-sylow subgroup in the symmetric group Spk on numbers

(i− 1)pk + 1, (i − 1)pk + 2, (i− 1)pk + 3, · · · , ipk.

Notice that ◦(Pi) = pxk . Since all Pi can be treated as a subgroup of Stpk

influencing only disjoint set of numbers, this yields that Pi ∩ Pj = {e} and

PiPj = PjPi for all 0 ≤ i 6= j ≤ p. Hence it follows that P = P1P2 · · ·Pt is a

subgroup in Stpk with order

◦(P ) = pxk · pxk · · · pxk (t-times) = ptxk .

Hence P is the required p-sylow subgroup in Stpk .

Subcase-2: When n = t1p
k + t2p

k−1, 0 ≤ t1, t2 < p. We now construct a

p-sylow subgroup in Sn. Let P1 be a p-sylow subgroup in St1pk that we have

just constructed above. Notice that ◦(P1) = pt1xk . Consider the symmetric

group St2pk−1 with t2p
k−1 symbols as

t1p
k + 1, t1p

k + 2, t1pk + 3, · · · , t1p
k + t2p

k−1.

Let P2 be the p-sylow subgroup in St2pk−1 that we can construct using above

procedure as adopted for P1. Also notice that ◦(P2) = pt2xk−1 . We now treat

P1 and P2 as a subgroups in Sn where n = t1p
k + t2p

k−1. Since the elements

in P1 and P2 influence only disjoint subsets of numbers

{1, 2, 3, · · · , t1p
k} & {t1p

k + 1, t1p
k + 2, t1pk + 3, · · · , t1p

k + t2p
k−1}

respectively then P = P1P2 is a subgroup of Sn such that

◦(P ) = pt1xk · pt2xk−1 = pt1xk+t2xk−1

which is the order of p-sylow subgroup in Sn.

In this way, we can construct a p-sylow subgroup in Sn where n = t1p
k +

t2p
k−1 + t3p

k−3 by taking the product of a p-sylow subgroup in St1p
k+t2p

k−1

and a p-sylow subgroup in St3p
k−3 . Hence in general we can construct a p-sylow

subgroup in any Sn with n = t1p
k + t2p

k−1 + · · ·+ tk−1p
2 + tkp. �
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Abstract. General formulas are given to eliminate (N − 1)th and (N −

2)th power terms in a polynomial equation of degree N , where N is any

integer greater than two. The formulas obviate the need to determine the two

unknowns of quadratic Tschirnhaus transformation involving cumbersome

algebraic manipulations, each time a polynomial equation of newer degree is

encountered. These formulas are derived through mathematical induction,

by studying the cases of cubic equation, quartic equation, quintic equation,

and the sextic equation.

1. Introduction

In 1683, Ehrenfried Walther von Tschirnhaus introduced a polynomial trans-

formation, which he claimed, will eliminate all intermediate terms in a polynomial

equation of any degree, thereby reducing it into a binomial form from which roots

can be easily extracted [1]. Thus the cubic and the quartic equations were re-

duced to binomial forms using quadratic and cubic Tschirnhaus transformations

respectively [2, 3].

However in the case of quintic equation, several workers struggled without any

success to reduce it to the binomial form. In 1786, Bring could reduce the quintic

equation x5 + ax4 + bx3 + cx2 + dx+ e = 0 to the form y5 +Ay +B = 0, using a

quartic Tschirnhaus transformation y = x4 + fx3+ gx2+ hx+ j. It seems Bring’s

work got lost in the archives of University of Lund. Unaware of Bring’s work,

Jerrard (1859) also arrived at the same form of quintic equation, which is now

referred as Bring-Jerrard quintic equation [4].

Finally, it was left to Abel (1826) and later Galois (1832) to prove conclusively

that the polynomial equations of degree five and above cannot be solved in radi-

cals – the reason why the Tschirnhaus transformation could not eliminate all the

intermediate terms in a quintic equation [5].

2010 Mathematics Subject Classification : 11C08, 12E05.

Key words and phrases: Quadratic Tschirnhaus transformation, mapping of polynomials.
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It is well-known that for a polynomial equation of degree N in x, such as:

xN + aN−1x
N−1 + aN−2x

N−2 + ... + a1x + a0 = 0, one can use linear transfor-

mation, x = y − (aN−1/N), to remove (N − 1)th power term. However no such

straightforward formula (or a set of formulas) is available to remove both (N−1)th

and (N − 2)th power terms from polynomial equations. Conventionally, a qua-

dratic Tschirnhaus transformation is used to remove these terms. The method

involves determination of two unknowns in the quadratic Tschirnhaus transforma-

tion, through tedious algebraic manipulations, each time a polynomial equation of

newer degree is encountered.

In this paper a set of general formulas is derived for removing the (N − 1)th

and (N−2)th power terms from a polynomial equation of degree N (where N > 2),

obviating the pain of going through cumbersome algebraic manipulations each time

a polynomial equation of newer degree is encountered. We derive these formulas

for the cases of cubic equation, quartic equation, quintic equation, and sextic

equation, and then generalize these findings using mathematical induction.

2. Case 1: cubic equation

Consider the following cubic equation

x3 + a2x
2 + a1x+ a0 = 0, (2.1)

where a0, a1, and a2 are coefficients in (2.1). Let us define a quadratic Tschirnhaus

transformation by

x2 = 2b1x+ b0 + y, (2.2)

where b0 and b1 are two unknowns to be determined, and y is a new variable.

Solving the quadratic equation (2.2), two solutions of x are obtained as

x = b1 ±
√
b2
1
+ b0 + y.

We use one of the above two solutions, say

x = b1 +
√
b2
1
+ b0 + y, (2.3)

in the given cubic equation (2.1) to eliminate x from it. This results in an expres-

sion in new variable y as follows

(
b1 +

√
b2
1
+ b0 + y

)3

+ a2

(
b1 +

√
b2
1
+ b0 + y

)2

+a1

(
b1 +

√
b2
1
+ b0 + y

)
+ a0 = 0.

(2.4)
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Expanding above expression leads to

b31 + 3b21

√
b2
1
+ b0 + y + 3b1(b

2

1 + b0 + y) + (b21 + b0 + y)
√
b2
1
+ b0 + y +

a2

(
b21 + 2b1

√
b2
1
+ b0 + y + b21 + b0 + y

)
+ a1

(
b1 +

√
b2
1
+ b0 + y

)

+a0 = 0 (2.5)

and we rearrange it such that all square-root terms are kept on one side as shown

below

4b31 + 3b0b1 + a2(2b
2

1 + b0) + a1b1 + a0 + (3b1 + a2)y

= −

√
b2
1
+ b0 + y

(
4b21 + 2a2b1 + b0 + a1 + y

)
.

(2.6)

Now squaring equation (2.6) and rearranging it in descending powers of y results

in the transformed cubic equation in y as

y3 + c2y
2 + c1y + c0 = 0, (2.7)

where the coefficients, c0, c1, and c2, are given by

c0 = (b21 + b0)(4b
2

1 + 2a2b1 + b0 + a1)
2 − [4b31 + 3b0b1 + a2(2b

2

1 + b0) + a1b1 + a0]
2,

c1 = 4a1b
2

1 + (2a1a2 − 6a0 − 4a2b0)b1 + 3b20 + (4a1 − 2a22)b0 + a21 − 2a0a2

c2 = 3b0 − 2a2b1 + 2a1 − a22. (2.8)

Our aim is to force the coefficients c1 and c2 to vanish and then find expressions

for the unknowns b0 and b1 in terms of coefficients of given cubic equation (2.1).

Therefore equating c2 to zero results in the following expression for b0

b0 = (2a2b1 − 2a1 + a22)/3. (2.9)

Using (2.9) we eliminate b0 from the expression for c1 given in (2.8), and then

equate c1 to zero. This leads us to a quadratic equation in b1 as shown below

[4a1 − (4a22/3)]b
2

1 + [(14a1a2/3)− 6a0 − (4a32/3)]b1

+(4a1a
2

2/3)− 2a0a2 − (a21/3)− (a42/3) = 0.
(2.10)

Solving (2.10) we determine b1, and from the relation (2.9) the remaining unknown

b0 is determined. With these values the y2 and y terms in cubic equation (2.7)

vanish, leading to the following binomial cubic in y

y3 + c0 = 0. (2.11)
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2.1. Remarks. Let f(X) = X3+a2X
2+a1X+a0, where ai’s are indeterminates.

Let L be the splitting field of f , K = Q(w, a0, a1, a2), where w denotes the non-

trivial cube root of unity, and x — a root of f . Then L/K is a Galois extension of

degree 6. If D is the discriminant of f , then L = K[
√
D, x]. We have L/K[

√
D]

is a cyclic Galois extension of degree 3 and since L contains w, L = K[
√
D, y]

where y3 belongs to K[
√
D]. Since x satisfies a polynomial of degree 3, y is a

polynomial in x of degree at most 2.

3. Case 2: quartic equation

Consider the following quartic equation

x4 + a3x
3 + a2x

2 + a1x+ a0 = 0, (3.1)

where a0, a1, a2, and a3 are coefficients in (3.1). We use the solution (2.3) of the

quadratic Tschirnhaus transformation (2.2) for eliminating x from the quadratic

equation (3.1) as shown below(
b1 +

√
b2
1
+ b0 + y

)4

+ a3

(
b1 +

√
b2
1
+ b0 + y

)3

+a2

(
b1 +

√
b2
1
+ b0 + y

)2

+ a1

(
b1 +

√
b2
1
+ b0 + y

)
+ a0 = 0.

(3.2)

Further expanding (3.2) leads to following expression

b41 + 4b31

√
b2
1
+ b0 + y + 6b21(b

2

1 + b0 + y)

+4b1(b
2

1 + b0 + y)
√
b2
1
+ b0 + y + (b21 + b0 + y)2

+a3[b
3

1 + 3b21

√
b2
1
+ b0 + y + 3b1(b

2

1 + b0 + y) + (b21 + b0 + y)
√
b2
1
+ b0 + y ]

+a2(2b
2

1 + b0 + y) + 2a2b1

√
b2
1
+ b0 + y + a1b1 + a1

√
b2
1
+ b0 + y + a0 = 0. (3.3)

As in the cubic case, we rearrange (3.3) by segregating all square-root terms on

one side as follows

y2 + (8b21 + 2b0 + 3a3b1 + a2)y +

8b41 + 8b0b
2

1 + b20 + 4a3b
3

1 + 3a3b0b1 + 2a2b
2

1 + a2b0 + a1b1 + a0 =

−

√
b2
1
+ b0 + y

[
(4b1 + a3)y + 8b31 + 4b0b1 + 4a3b

2

1 + 2a2b1 + a3b0 + a1
]
. (3.4)

Squaring (3.4) and rearranging terms in descending powers of y results in a quartic

equation in y

y4 + c3y
3 + c2y

2 + c1y + c0 = 0, (3.5)

where c0, c1, c2, and c3 are the coefficients in (2.15) given by
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c0 = (8b41 + 8b0b
2

1 + b20 + 4a3b
3

1 + 3a3b0b1 + 2a2b
2

1 + a2b0 + a1b1 + a0)
2

−(b21 + b0)(8b
3

1 + 4b0b1 + 4a3b
2

1 + 2a2b1 + a3b0 + a1)
2,

c1 = 2(8b21 + 3a3b1 + 2b0 + a2)(8b
4

1 + 8b0b
2

1 + b20 + 4a3b
3

1 + 3a3b0b1 + 2a2b
2

1

+a2b0 + a1b1 + a0)− 2(4b1 + a3)(b
2

1 + b0)(8b
3

1 + 4b0b1 + 4a3b
2

1 + 2a2b1

+a3b0 + a1)− (8b31 + 4b0b1 + 4a3b
2

1 + 2a2b1 + a3b0 + a1)
2,

c2 = 4a2b
2

1 + (2a2a3 − 6a1)b1 + a22 + 2a0 − 2a1a3 + (6a2 − 3a23 − 6a3b1)b0 + 6b20

and

c3 = 4b0 + 2a2 − a23 − 2a3b1. (3.6)

At present we are interested in the expressions for c2 and c3, since these coefficients

are to be equated to zero. Equating c3 to zero, we get an expression for b0 as

b0 = (2a3b1 − 2a2 + a23)/4. (3.7)

We eliminate b0 from the expression for c2 given in (3.6) using (3.7) and then

equate c2 to zero. This results in a quadratic equation in b1 as shown below

[4a2 − (3a23/2)]b
2

1 + [5a2a3 − 6a1 − (3a33/2)]b1 + 2a0 + (3a2a
2

3/2)

−(a22/2)− 2a1a3 − (3a43/8) = 0.
(3.8)

Notice that b1 and b0 get determined from (3.8) and (3.7) respectively for the

condition c2 = c3 = 0. Thus the transformed quartic (3.5) in y has no y2 and y3

terms as is seen from

y4 + c1y + c0 = 0. (3.9)

4. Case 3: quintic equation

Let us consider the following quintic equation

x5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0 = 0, (4.1)

where a0, a1, a2, a3, and a4 are its coefficients. As above, using (2.3), we eliminate

x from the quintic (4.1) resulting in the following expression in y

(5b1 + a4)y
2 + (20b31 + 10b0b1 + 8a4b

2

1 + 2a4b0 + 3a3b1 + a2)y + b51

+10b31(b
2

1 + b0) + 5b1(b
2

1 + b0)
2 + a4b

4

1 + 6a4b
2

1(b
2

1 + b0) + a4(b
2

1 + b0)
2

+a3b
3

1 + 3a3b1(b
2

1 + b0) + a2b
2

1 + a2(b
2

1 + b0) + a1b1 + a0 =

−

√
b2
1
+ b0 + y{y2 + [10b21 + 2(b21 + b0) + 4a1b1 + a3]y + 5b41 + 10b21(b

2

1 + b0)

+(b21 + b0)
2 + 4a4b

3

1 + 4a4b1(b
2

1 + b0) + 3a3b
2

1 + a3(b
2

1 + b0) + 2a2b1 + a1} (4.2)
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Squaring equation (4.2) and rearranging terms in descending powers of y, we obtain

a quintic equation in y as follows

y5 + c4y
4 + c3y

3 + c2y
2 + c1y + c0 = 0, (4.3)

where c0, c1, c2, c3, and c4 are coefficients of quintic (4.3). Since our aim is to

make c3 and c4 vanish, we focus on the expressions for these coefficients. The

coefficient c4 is expressed as

c4 = 5b0 + 2a3 − a24 − 2a4b1. (4.4)

Now equating c4 to zero we get an expression for b0 as

b0 = (2a4b1 − 2a3 + a24)/5. (4.5)

The expression for c3 is obtained as

c3 = 4a3b
2

1 + (2a3a4 − 6a2)b1 + a23 + 2a1 − 2a2a4

+(8a3 − 4a24 − 8a4b1)b0 + 10b20.
(4.6)

Eliminating b0 from (4.6), using (4.5), and then equating c3 to zero leads to the

following quadratic equation in b1

[4a3 − (8a24/5)]b
2

1 + [(26a3a4/5)− 6a2 − (8a34/5)]b1

+2a1 + (8a3a
2

4/5)− (3a23/5)− 2a2a4 − (2a44/5) = 0.
(4.7)

Note that b1 determined from (4.7) and b0 from (4.5) for the condition c3 = c4 = 0

renders the following quintic equation (4.3) in y to have no y3 and y4 terms

y5 + c2y
2 + c1y + c0 = 0. (4.8)

5. Case 4: sextic equation

Now consider the following sextic equation

x6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0 = 0, (5.1)

where a0, a1, a2, a3, a4, and a5 are its coefficients. The technique as in the previous

cases transforms a sextic equation (5.1) in x to the following sextic equation in y

y6 + c5y
5 + c4y

4 + c3y
3 + c2y

2 + c1y + c0 = 0, (5.2)

where c0, c1, c2, c3, c4, and c5 are the coefficients of sextic equation (5.2). We

wish to make the coefficients c4 and c5 zero. The coefficient c5 is expressed as

c5 = 6b0 + 2a4 − a25 − 2a5b1. (5.3)

Equating c5 to zero, we obtain an expression for b0 as

b0 = (2a5b1 − 2a4 + a25)/6. (5.4)
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The coefficient c4 is obtained as

c4 = 4a4b
2

1 + (2a4a5 − 6a3)b1 + a24 + 2a2 − 2a3a5

+(10a4 − 5a25 − 10a5b1)b0 + 15b20.
(5.5)

Equating c4 to zero and eliminating b0 from (5.5) using (5.4), we obtain the fol-

lowing quadratic equation in b1

[4a4 − (5a25/3)]b
2

1 + [(16a4a5/3)− 6a3 − (5a35/3)]b1

+2a2 + (5a4a
2

5/3)− (2a24/3)− 2a3a5 − (5a45/12) = 0.
(5.6)

Since b1 and b0 are determined from (5.6) and (5.4) respectively with the condition

c4 = c5 = 0, the sextic equation (5.2) in y has no y4 and y5 terms as shown in the

following

y6 + c3y
3 + c2y

2 + c1y + c0 = 0. (5.7)

6. Discussion

Now we shall analyze the expressions so far obtained for b0 and b1, the co-

efficients of quadratic Tschirnhaus transformation (2.2), for the cases of cubic,

quartic, quintic, and sextic equations. The expressions (2.9), (3.7), (4.5) and

(5.4), for b0 indicate that a general formula for b0 for a polynomial equation of

degree N (where N > 2) can be written as:

b0 =
1

N

(
2aN−1b1 + a2N−1 − 2aN−2

)
. (6.1)

Observing the expressions (2.10), (3.8), (4.7) and (5.6) for quadratic equations

in b1, for the cases of cubic, quartic, quintic, and sextic equations, we note that

following is the general formula for the quadratic equation in b1 for a polynomial

equation of degree N (N > 2)
[
4aN−2 −

(2N − 2)a2
N−1

N

]
b21 +

[
(6N − 4)aN−2aN−1

N
− 6aN−3 −

(2N − 2)a3
N−1

N

]
b1 + 2aN−4

+
(2N − 2)aN−2a

2
N−1

N
− 2aN−3aN−1 −

(N − 2)a2
N−2

N
−

(N − 1)a4
N−1

2N
= 0 (6.2)

Observe that for N = 3, we encounter a−1 in (6.2), implying it is coefficient of x−1;

as such this term is absent in a polynomial equation, hence a−1 = 0. The above

general formulas [(6.1) and (6.2)] for b0 and b1 derived through mathematical in-

duction will obviate the need to determine these unknowns each time a polynomial

equation of newer degree is encountered. Let us solve one numerical example to

illustrate the utility of these formulas.
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7. A numerical example

Consider the quartic equation

x4 + 5x3 + 10x2 + 10x+ 4 = 0 (7.1)

to be transformed to a quartic equation in y with no y2 and y3 terms, using qua-

dratic Tschirnhaus transformation (2.2). The quadratic equation in b1, obtained

from (6.2) with N = 4, is given by

2.5b21 + 2.5b1 − 1.375 = 0.

Solving above quadratic equation, we obtain two values for b1 as 0.394427191 and

−1.394427191, and the corresponding two values of b0 determined from (6.1) for

N = 4 are 2.236067977 and −2.236067977. Using the expressions given in (3.6),

we determine two values each of c0 and c1, corresponding to two values of b0 and

b1. Accordingly we obtain two transformed quartic equations in y which have no

y2 and y3 terms as shown below.

y4 − 32.89968944y− 14.7531884 = 0 (7.2)

corresponding to b1 = 0.394427191, and

y4 − 0.700310562y+ 0.273188404 = 0 (7.3)

corresponding to b1 = −1.394427191. Now the issue is, which of the two quartics

[(7.2) or (7.3)] is the true transformed version of the quartic (7.1). The only way

is to decide through numerical calculations by finding the roots [of (7.2) or (7.3)],

which are related to the roots of (7.1) through expression (2.3).

We determine one root of (7.2) as −0.4472135955; and using (2.3) correspond-

ing value of x is determined as 1.788854382. However this is not the root of (7.1).

Therefore the quartic (7.2) cannot be the transformed version of (7.1).

One root of (7.3), evaluated as 0.4472135955, gives a corresponding value of x

as −1, using (2.3). This (x = −1) happens to be a root of (7.1). Remaining three

roots of (7.3) also yield correct roots of (7.1) through the transformation (2.3).

Hence, we conclude that (7.3) is the true transformed version of quartic equation

(7.1).

Thus the quadratic Tschirnhaus transformation yields two transformed equa-

tions, of which one will be true transformed version; however this (true version)

can be found out only by numerical methods [4].

8. Conclusions

The paper proves the existence of general formulas for the two unknowns of

quadratic Tschirnhaus transformation, which are obtained through mathematical

induction. These formulas can be used to eliminate the second and the third terms



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

GENERAL FORMULAS FOR REMOVING THE SECOND AND THE THIRD TERM · · · 199

in a polynomial equation of any degree greater than two.
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Abstract. In this paper, we give some parametric solutions of the Dio-

phantine equation A4 + nB3 + C2 = D4 such that we can get infinitely

many primitive and non-trivial integral solutions for (A,B, C,D). For

the sake of completeness, we will include solutions in which A,B, C and

D have a common factor.

1. Introduction

Dem’janenko [1] gave the parametric solution of

x4 − y4 = z4 + t2, (1.1)

where x, y, z and t are integer variables. Basing on (1.1), Noam Elkies [3] has

disproved Euler’s conjecture [2] for fourth powers that at least four positive

integral fourth powers are required to sum to an integral fourth power, except

for the trivial case y4 = y4. But, the Diophantine equation

A4 + nB3 + C2 = D4, (1.2)

where n is any non-zero integer has not been considered yet. Hence, in this

paper, we want to give the parametric solutions of (1.2) such that we can get

infinitely many primitive and non-trivial integral solutions for (A,B,C,D). To

get the primitive solutions of (1.2), we assume that gcd(A,B,C,D) = 1. For

the sake of completeness, we will include solutions in which A,B,C and D have

a common factor.

2. Main Results

To find some parametric solutions of (1.2) we need the following lemma

Lemma 2.1. For any pair of integers p and q, there is an algebraic identity

(2p2 − q2)4 + 16pq(2p2 + 2pq + q2)3

+ (4pq(2p2 + 2pq + q2))2 = (2p2 + 4pq + q2)4.
(2.1)

2010 Mathematics Subject Classification : 11D41, 11D72.
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Proof. In a modified form, (2.1) is same as

(2p2 + 4pq + q2)4 − (2p2 − q2)4

= 16pq(2p2 + 2pq + q2)3 + (4pq(2p2 + 2pq + q2))2,
(2.2)

which can be easily verified. Thus, from (2.2) we get (2.1). �

Now, based on Lemma 2.1, we have the following theorem:

Theorem 2.1. If m,n, t are non-zero integers and gcd(2mn, t) = 1, the Dio-

phantine equation A4 + nB3 + C2 = D4 has infinitely many non-trivial and

primitive solutions of the form (A,B,C,D) = {(32n2m6 − t6), 4mt(32n2m6 +

8nm3t3 + t6), 16nm3t3(32n2m6 + 8nm3t3 + t6), (32n2m6 + 16nm3t3 + t6)}.

Proof. To prove Theorem 2.1 we have to establish that

(32n2m6 − t6)4 + n(4mt(32n2m6 + 8nm3t3 + t6))3

+ (16nm3t3(32n2m6 + 8nm3t3 + t6))2

= (32n2m6 + 16nm3t3 + t6)4.

(2.3)

Take p = 4nm3, q = t3 in (2.1) to get (2.3). To ensure that the solutions for

(A,B,C,D) are primitive, we take gcd(2mn, t) = 1. For gcd(2mn, t) ≥ 2, we

will get solutions of (1.2) in which A,B,C and D have a common factor. �

Theorem 2.2. If m,n, t are non-zero integers and gcd(2m,nt) = 1, the Dio-

phantine equation A4 + nB3 + C2 = D4 has infinitely many non-trivial and

primitive solutions of the form (A,B,C,D) = {(32m6 − n2t6), 4mt(32m6 +

8nm3t3 + n2t6), 16nm3t3(32m6 + 8nm3t3 + n2t6), (32m6 + 16nm3t3 + n2t6)}.

Proof. The condition gcd(2m,nt) = 1 will make both n and t to be odd integers.

To prove Theorem 2.2 we need to prove that

(32m6 − n2t6)4 + n(4mt(32m6 + 8nm3t3 + n2t6))3

+ (16nm3t3(32m6 + 8nm3t3 + n2t6))2

= (32m6 + 16nm3t3 + n2t6)4.

(2.4)

Take p = 4m3, q = nt3 in (2.1) to get (2.4). To ensure that the solutions for

(A,B,C,D) are primitive, we take gcd(2m,nt) = 1. For gcd(2m,nt) ≥ 2, we

will get solutions of (1.2) in which A,B,C and D have a common factor. �

The referee of this note found other three parametric solutions of (1.2) as

(i) (A,B,C,D) = {a3n,−na4, b2, b};

(ii) (A,B,C,D) = {a,−nb2, n2b3, a};

(iii) (A,B,C,D) = {(8n4t6 − 1), 4nt2, 64n6t9, (8n4t6 + 1)}.
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The present paper does not give a complete solution of the title equation. There

may still exist other parametric solutions which the readers may wish to find

out.
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Abstract. The object of the present paper is to study Kenmotsu manifolds

admitting W2−curvature tensor and quasi-conformal curvature tensor.

1. Introduction

In 1958, Boothby and Wong [2] studied odd dimensional manifolds with con-

tact and almost contact structures from topological point of view. Sasaki and

Hatakeyama [14] re-investigated them using tensor calculus in 1961. S. Tano [19]

classified connected almost contact metric manifolds whose automorphism groups

possess the maximum dimension. For such a manifold Mn, the sectional curvature

of plane sections containing ξ is a constant, say c. If c > 0, Mn is homogeneous

Sasakian manifold of constant sectional curvature. If c = 0, Mn is the product

of a line or a circle with a Kaehler manifold of constant holomorphic sectional

curvature. If c < 0, Mn is warped product space R×f C
n. In 1972, K. Kenmotsu

studied a class of contact Riemannian manifold and call them Kenmotsu manifold

[9]. He proved that if Kenmotsu manifold satisfies the condition R(X,Y ).R = 0,

then the manifold is of negative curvature -1, where R is the Riemannian curvature

tensor of type (1, 3) and R(X, Y) denotes the derivation of the tensor algebra at

each point of the tangent space. Recently, Kenmotsu manifolds have been studied

by several authors such as De [5], Sinha and Shrivastava [18], Jun, De and Pathak

[8], De and Pathak [4], De, Yildiz and Yaliniz [6], Özgur and De [11], Chaubey

and Ojha [3], Singh, Pandey and Pandey ([15], [16] [17]) and many others. In the

present paper we have studied some curvature conditions on Kenmotsu manifolds.

In section 2, some preliminary results regarding Kenmotsu manifold are recalled.

Section 3 is devoted to study of W2-recurrent Kenmotsu manifolds. In section

4, we have studied W2 − φ−recurrent Kenmotsu manifolds. Section 5 deals with

example of W2 − φ−recurrent Kenmotsu manifolds. In the last section, we have

studied quasi-conformally φ-recurrent Kenmotsu manifolds.
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Key words and phrases: Kenmotsu manifold, W2-curvature tensor, quasi-conformal curvat-

ure tensor, Einstein manifold, φ-recurrent.

c© Indian Mathematical Society, 2014 .

205



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

206 R. N. SINGH, M. K. PANDEY AND S. K. PANDEY

2. Preliminaries

If on an odd dimensional differentiable manifold M2n+1 of differentiability

class Cr+1, there exists a vector valued real linear function φ, a 1-form η, the

associated vector field ξ and the Riemannian metric g satisfying

φ2X = −X + η(X)ξ, (2.1)

η(φX) = 0, (2.2)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.3)

for arbitrary vector fields X and Y , then (M2n+1, g) is said to be an almost

contact metric manifold [1] and the structure (φ, ξ, η, g) is called an almost contact

metric structure to M2n+1. In view of equations (2.1), (2.2) and (2.3), we have

η(ξ) = 1, (2.4)

g(X, ξ) = η(X), (2.5)

φ(ξ) = 0. (2.6)

An almost contact metric manifold is called Kenmotsu manifold [9] if

(∇Xφ)(Y ) = −g(X,φY )ξ − η(Y )φX, (2.7)

(∇Xξ) = X − η(X)ξ, (2.8)

(∇Xη)(Y ) = g(X,Y )− η(X)η(Y ), (2.9)

where ∇ is the Levi-Civita connection of g. Also, the following relations hold in

Kenmotsu manifold [4], [6], [8]

R(X,Y )ξ = η(X)Y − η(Y )X, (2.10)

R(ξ,X)Y = −R(X, ξ)Y = η(Y )X − g(X,Y )ξ, (2.11)

η(R(X,Y )Z) = η(Y )g(X,Z)− η(X)g(Y, Z), (2.12)

S(X, ξ) = −2nη(X), (2.13)

Qξ = −2nξ, (2.14)

where Q is the Ricci operator, i.e. g(QX, Y ) = S(X,Y ) and

S(φX, φY ) = S(X,Y ) + (n− 1)η(X)η(Y ), (2.15)
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for arbitrary vector fields X , Y , Z on M2n+1.

A Kenmotsu manifold M2n+1 is said to be η-Einstein if its Ricci tensor S is of the

form

S(X,Y ) = λ1g(X,Y ) + λ2η(X)η(Y ), (2.16)

for arbitrary vector fields X and Y, where λ1 and λ2 are smooth functions on

M2n+1.

The W2-curvature tensor of type (0, 4) is defined by

′W2(X,Y, Z, U) = ′R(X,Y, Z, U) +
1

n− 1
[g(X,Z)S(Y, U)− g(Y, Z)S(X,U)],

(2.17)

where ′R is a Riemannian curvature tensor of type (0, 4) defined by ′R(X,Y, Z, U) =

g(R(X,Y )Z,U) and S is the Ricci tensor of type (0, 2).

For a (2n + 1)-dimensional (n > 1) almost contact metric manifold the W2-

curvature tensor is given by [12]

W2(X,Y )Z = R(X,Y )Z +
1

2n
[g(X,Z)QY − g(Y, Z)QX ]. (2.18)

The W2-curvature tensor for a Kenmotsu manifold is given by

W2(X,Y )ξ = [η(Y )X − η(X)Y ] +
1

2n
[η(X)QY − η(Y )QX ], (2.19)

η(W2(X,Y )ξ) = 0, (2.20)

W2(ξ, Y )Z = −W2(Y, ξ)Z = η(Z)Y +
1

2n
η(Z)QY, (2.21)

η(W2(ξ, Y )Z) = −η(W2(Y, ξ)Z) = 0, (2.22)

and

η(W2(X,Y )Z) = 0. (2.23)

The notion of the quasi-conformal curvature tensor C̃ was introduced by Yano

and Sawaki [20]. They defined the quasi- conformal curvature tensor by

C̃(X,Y )Z = aR(X,Y )Z + b[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY ]−
r

n
{

a

n− 1
+ 2b}[g(Y, Z)X − g(X,Z)Y ],

where a and b are constants such that ab 6= 0, R is the Riemannian curvature

tensor, S is the Ricci tensor, Q is the Ricci operator and r is the scalar curvature

of the manifold. If a = 1 and b = − 1

n−2
, then above equation takes the form

C̃(X,Y )Z =R(X,Y )Z −
1

n− 2
[Ric(Y, Z)X −Ric(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY ] +
r

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ]

= C(X,Y )Z,
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where C is the conformal curvature tensor [20]. Thus the conformal curvature

tensor C is a particular case of the quasi -conformal curvature tensor C̃.

For a (2n + 1)-dimensional (n > 1) almost contact metric manifold the quasi-

conformal curvature tensor is given by [20]

C̃(X,Y )Z = aR(X,Y )Z + b[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY ]−
r

(2n+ 1)
{
a

2n
+ 2b}[g(Y, Z)X − g(X,Z)Y ].

(2.24)

Putting X = ξ in equation (2.24) and using equations (2.11) and (2.13), we get

C̃(ξ, Y )Z = −C̃(Y, ξ)Z =[a+ 2nb+
r

(2n+ 1)
(
a

2n
+ 2b)][η(Z)Y − g(Y, Z)ξ]

+ b[S(Y, Z)ξ − η(Z)QY ].

(2.25)

Again, put Z = ξ in equation (2.24) and using equations (2.10) and (2.13), we get

C̃(X,Y )ξ =[a+ 2nb+
r

(2n+ 1)
(
a

2n
+ 2b)][η(X)Y − η(Y )X ]

+ b[η(Y )QX − η(X)QY ].
(2.26)

Now, taking the inner product of equations (2.24), (2.25) and (2.26) with ξ, we

get

η(C̃(X,Y )Z) = [a+ 2nb+
r

(2n+ 1)
(
a

2n
+ 2b)][g(X,Z)η(Y )− g(Y, Z)η(X)]

+ b[S(Y, Z)η(X)− S(X,Z)η(Y )],

(2.27)

η(C̃(ξ, Y )Z) = −η(C̃(Y, ξ)Z) =[a+ 2nb+
r

(2n+ 1)
(
a

2n
+ 2b)][η(Z)η(Y )− g(Y, Z)]

+ b[S(Y, Z) + η(Y )η(Z)]

(2.28)

and

η(C̃(X,Y )ξ) = 0 (2.29)

respectively.

3. W2-recurrent Kenmotsu manifolds

Definition 3.1. A non-flat Riemannian manifoldM2n+1 is said to beW2-recurrent

if its W2-curvature tensor satisfies the condition

∇W2 = A⊗W2, (3.1)

where A is a non-zero 1-form.
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Definition 3.2. A (2n + 1)−dimensional (n > 1) Kenmotsu manifold is said to

be W2-semisymmetric [7] if it satisfies R(X,Y ).W2 = 0, where R(X, Y) is the

derivation of the tensor algebra at each point of the tangent space and W2 is the

W2-curvature tensor of Kenmotsu manifold.

Theorem 3.1. A W2-recurrent Kenmotsu manifold is W2-semisymmetric.

Proof: We define a function f2 = g(W2,W2) on M2n+1, where the metric g is

extended to the inner product between the tensor fields. Then we have

f(Y f) = f2A(Y ).

This can be written as

Y f = f(A(Y )), (f 6= 0). (3.2)

From above equation, we have

X(Y f)− Y (Xf) = {XA(Y )− Y A(X)−A([X,Y ])}f.

Since the left hand side of above equation is identically zero and f 6= 0 on M2n+1.

Then

dA(X,Y ) = 0, (3.3)

i.e. 1-form A is closed.

Now from

(∇Y W2)(Z,U)V = A(Y )W2(Z,U)V,

we have

(∇X∇Y W2)(Z,U)V = {XA(Y ) +A(X)A(Y )}W2)(Z,U)V. (3.4)

In view of equations (3.3) and (3.4) , we have

(R(X,Y ).W2)(Z,U)V = [2dA(X,Y )]W2)(Z,U)V

= 0.
(3.5)

This completes the proof.

Lemma 3.1 ([21]). A W2-semisymmetric Kenmotsu manifold is locally isometric

to the hyperbolic space Hn(−1).

In view of theorem (3.1) and lemma (3.2), we have a theorem as

Theorem 3.2. A W2-recurrent Kenmotsu manifold is locally isometric to the

hyperbolic space Hn(−1).
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4. W2 − φ -recurrent Kenmotsu manifolds

Definition 4.1. A Kenmotsu manifold M2n+1 is said to be locally W2 − φ-

symmetric if the relation

φ2((∇UW2)(X,Y )Z) = 0, (4.1)

holds for all vector fields X, Y, Z, U orthogonal to ξ.

Definition 4.2. A Kenmotsu manifold M2n+1 is said to be W2 − φ-recurrent if

and only if there exists a 1-form A such that

φ2((∇UW2)(X,Y )Z) = A(U)W2(X,Y )Z, (4.2)

for all vector fields X, Y, Z, U. Here X, Y, Z, U are arbitrary vector fields not

necessarily orthogonal to ξ.

Theorem 4.1. A W2−φ-recurrent Kenmotsu manifold is an η-Einstein manifold.

Proof: By virtue of equations (2.1) and (4.2), we have

−(∇UW2)(X,Y )Z + η((∇UW2)(X,Y )Z)ξ = A(U)W2(X,Y )Z, (4.3)

i.e.

−g((∇UW2)(X,Y )Z, V ) + η((∇UW2)(X,Y )Z)η(V ) = A(U)g(W2(X,Y )Z, V ).

(4.4)

From equation (2.18), we have

g((∇UW2)(X,Y )Z, V ) = g((∇UR)(X,Y )Z, V ) +
1

2n
[g(X,Z)(∇US)(Y, V )

− g(Y, Z)(∇US)(X,V )].
(4.5)

Now, from equations (2.18), (4.4) and (4.5), we have

− g((∇UR)(X,Y )Z, V ) + η((∇UR)(X,Y )Z, V )η(V )−
1

2n
[g(X,Z)(∇US)(Y, V )

− g(Y, Z)(∇US)(X,V )] +
1

2n
[g(X,Z)(∇US)(Y, ξ)− g(Y, Z)(∇US)(X, ξ)]η(V )

= A(U)g(R(X,Y )Z, V ) +
1

2n
A(U)[g(X,Z)S(Y, V )− g(Y, Z)S(X,V )].

(4.6)

Let {ei}, i = 1, 2, ..., 2n+ 1 be an orthonormal basis of the tangent space at any

point of the manifold. Putting X = V = ei in above equation and summing over

i, 1 ≤ i ≤ 2n+ 1, we get

− (
2n+ 1

2n
)(∇US)(Y, Z) +

2n+1∑
i=1

η(∇UR)(ei, Y )Z)η(ei) +
dr(U)

2n
g(Y, Z)

= A(U)S(Y, Z) +
1

2n
A(U)[S(Y, Z)− rg(Y, Z)] + η(Z)[g(Y, U)− η(U)η(Y )].

(4.7)
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Now putting Z = ξ in the second term of above equation and denoting it by L

which is of the form

L = g((∇UR)(ei, Y )ξ, ξ)g(ei, ξ).

In this case L vanishes. Namely, we have

g((∇UR)(ei, Y )ξ, ξ) = g(∇UR(ei, Y )ξ, ξ) − g(R(∇Uei, Y )ξ, ξ)

− g(R(ei,∇UY )ξ, ξ)− g(R(ei, Y )∇Uξ, ξ)
(4.8)

at p ∈ M. In local co-ordinates ∇Uei = U jΓh
jieh, where Γh

ji are the Christoffel

symbols. Since {ei} is an orthonormal basis, the metric tensor gij = δij , δij is the

Kronecker delta and hence the Christoffel symbols are zero. Therefore ∇Uei = 0.

Since R is skew-symmetric, we have

g(R(ei,∇UY )ξ, ξ) = 0. (4.9)

Using equation (4.9) and ∇Uei = 0 in equation (4.8), we get

g((∇UR)(ei, Y )ξ, ξ) = g(∇UR(ei, Y )ξ, ξ)− g(R(ei, Y )∇Uξ, ξ). (4.10)

In view of g(R(ei, Y )ξ, ξ) = g(R(ξ, ξ)ei, Y ) = 0 and (∇Ug) = 0, we have

g(∇UR(ei, Y )ξ, ξ) + g(R(ei, Y )ξ,∇Uξ) = 0, (4.11)

which implies

g((∇UR)(ei, Y )ξ, ξ) = −g(R(ei, Y )ξ,∇Uξ)− g(R(ei, Y )∇Uξ, ξ).

Since R is skew-symmetric, we have

g((∇UR)(ei, Y )ξ, ξ) = 0. (4.12)

Replacing Z = ξ in equation (4.7) and using equations (2.4), (2.5), (2.13) and

(4.12), we get

−(
2n+ 1

2n
)(∇US)(Y, ξ) = −(2n+ 1)A(U)η(Y )−

r

2n
A(U)η(Y )

−
dr(U)

2
η(Y ) + g(Y, U)− η(Y )η(U).

(4.13)

Now, we have

(∇US)(Y, ξ) = ∇US(Y, ξ)− S(∇UY, ξ)− S(Y,∇Uξ),

which on using equations (2.8) and (2.13) takes the form

(∇US)(Y, ξ) = −[S(Y, U) + 2ng(Y, U)]. (4.14)

Form equations (4.13) and (4.14), we have

(
2n+ 1

2n
)S(Y, U) + (2n+ 1)g(Y, U) = −(2n+ 1)A(U)η(Y )

−
r

2n
A(U)η(Y )−

dr(U)

2
η(Y ) + g(Y, U)− η(Y )η(U).

(4.15)
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Now replacing Y by φY and U by φU in above equation and using equations (2.2),

(2.3) and (2.15), we get

S(X,U) = λ1g(X,U) + λ2η(X)η(U), (4.16)

where λ1 = −4n
2

4n+1
and λ2 = −2n

2

2n+1
are constant. This shows that M2n+1 is an

η−Einstein manifold. �

Lemma 4.1 ([9]). If in an η-Einstein Kenmotsu manifold of the form

S(X,Y ) = λ1g(X,Y ) + λ2η(X)η(Y ),

either λ1 or λ2=constant, then the manifold reduces to an Einstein manifold.

Thus in view of theorem (4.1) and lemma (4.2), we have a corollary as

Corollary 4.1. A W2 −φ-recurrent Kenmotsu manifold is an Einstein manifold.

Theorem 4.2. A locally W2 − φ-recurrent Kenmotsu manifold is an Einstein

manifold.

Proof: Consider a W2 − φ-recurrent Kenmotsu manifold. Then by virtue of

equations (2.1) and (4.2), we have

−(∇UW2)(X,Y )Z + η((∇UW2)(X,Y )Z)ξ = A(U)W2(X,Y )Z. (4.17)

Putting Z = ξ in above equation and using equation (2.20), we get

−(∇UW2)(X,Y )ξ = A(U)W2(X,Y )ξ, (4.18)

which gives

− [(∇UR)(X,Y )ξ +
1

2n
{g(X,U)QY − g(Y, U)QX

+ η(U)η(Y )QX − η(U)η(X)QY }] = A(U)[R(X,Y )ξ

+
1

2n
{η(X)QY − η(Y )QX}].

(4.19)

Now, in view of equations (2.9) and (2.10), we have

(∇UR)(X,Y )ξ = g(X,U)Y − g(Y, U)X −R(X,Y )U. (4.20)

Using equation (4.20) in equation (4.19), we get

− [g(X,U)Y − g(Y, U)X −R(X,Y )U +
1

2n
{g(X,U)QY − g(Y, U)QX

+ η(U)η(Y )QX − η(U)η(X)QY }] = A(U)[R(X,Y )ξ

+
1

2n
{η(X)QY − η(Y )QX}].

(4.21)

If X, Y, and U are orthogonal to ξ, then we have

R(X,Y )U = g(X,U)Y − g(Y, U)X +
1

2n
{g(X,U)QY − g(Y, U)QX}. (4.22)
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Taking inner product of above equation with Z, we get

R(X,Y, U, Z) = g(X,U)g(Y, Z)− g(Y, U)g(X,Z)

+
1

2n
{g(X,U)S(Y, Z)− g(Y, U)S(X,Z)}.

(4.23)

Putting Y = U = ei and summing over i, 1 ≤ i ≤ 2n+ 1, we get

S(X,Z) = −ng(X,Z), (4.24)

which shows that M2n+1 is an Einstein manifold. This completes the proof. �

By virtue of equations (4.23) and (4.24), we have

R(X,Y, U, Z) =
1

2
[g(X,U)g(Y, Z)− g(Y, U)g(X,Z)]. (4.25)

Thus in view of above equation, we have a corollary as

Corollary 4.2. A locally W2 − φ-recurrent Kenmotsu manifold is of constant

curvature.

5. Example of W2-φ - recurrent Kenmotsu manifolds

We consider 3-dimensional manifold M3 = {(x, y, z) ∈ R
3 | z 6= 0}, where

(x, y, z) are standard coordinates of R3. The vector fields

e1 =
x

z

∂

∂x
, e2 =

y

z

∂

∂y
, e3 =

∂

∂z
(5.1)

are linearly independent at each point of M3. Let g be the Riemannian metric

defined by

g(e1, e1) = 1, g(e1, e2) = 0, g(e1, e3) = 0, g(e2, e2) = 1, g(e2, e3) = 0, g(e3, e3) = 1.

(5.2)

Let η the 1-form defined by η(X) = g(X, ξ) for any vector field X. Let φ be the

(1, 1)-tensor field defined by

φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0. (5.3)

Then by using the linearity of φ and g, we have φ2X = −X + η(X)ξ, with ξ = e3.

Further, g(φX, φY ) = g(X,Y ) − η(X)η(Y ) for any vector fields X and Y .

Hence for e3 = ξ, the structure (φ, ξ, η, g) defines an almost contact structure on

M3. Let ∇ be the Levi-Civita connection with respect to the metric g, then we

have

[e1, e2] = 0, [e1, e3] =
1

z
e1, [e2, e3] =

1

z
e2. (5.4)

The Riemannian connection ∇ of the metric g is given by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]),
(5.5)

which is known as Koszul’s formula.
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Koszul’s formula yields

∇e1e1 = −
1

z
e1, ∇e1e2 = 0, ∇e1e3 =

1

z
e1 + e2

∇e2e1 = 0, ∇e2e2 = −
1

z
e2, ∇e2e3 =

1

z
e2 − e1

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

(5.6)

We observe that the manifold satisfies the condition ∇Xξ = X−η(X)ξ, for e3 = ξ.

Hence M3(φ, ξ, η, g) is 3-dimensional Kenmotsu manifold. By using the above

results, we can easily obtain the non-vanishing components of the curvature tensor

as follows

R(e1, e3)e3 =
1

z2
e1, R(e3, e1)e3 = −

1

z2
e1,

R(e2, e3)e3 =
1

z2
e2, R(e3, e2)e3 = −

1

z2
e2.

(5.7)

The definition of Ricci tensor in 3-dimensional manifold M3 implies

S(X,Y ) =
3∑

i=1

g(R(ei, X)Y, ei), (5.8)

which on using equation (5.7), gives

S(e1, e1) = 0, S(e1, e2) = 0, S(e1, e3) = 0,

S(e2, e2) = 0, S(e2, e3) = 0, S(e3, e3) =
2

z2
.

(5.9)

In view of equations (2.18), (5.7) and (5.9), we have

W2(e1, e3)e3 =
1

z2
e1 −

1

2
Qe1,W2(e3, e1)e3 = −

1

z2
e1 +

1

2
Qe1,

W2(e2, e3)e3 =
1

z2
e2 −

1

2
Qe2,W2(e3, e2)e3 = −

1

z2
e2 +

1

2
Qe2.

(5.10)

The vectors {e1, e2, e3} forms a basis of M3 and so any vector X can be

expressed as X = a1e1 + a2e2 + a3e3, where ai ∈ R
+, i = 1, 2, 3. By virtue of

equations (5.6), (5.7) and (5.10), we have

(∇XW2)(e1, e3)e3 = −
a1
z3

e1 +
a1
2z

Qe1 (5.11)

Applying φ2 on both sides of above equation and using equations (5.3) and (5.10),

we get

φ2((∇XW2)(e1, e3)e3) = A(X)W2(e1, e3)e3, (5.12)

where A(X) = a1

z
is a non-vanishing 1-form. This shows that there exists a

W2 − φ−recurrent Kenmotsu manifold of dimension 3.
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6. Quasi-conformally φ - recurrent Kenmotsu manifolds

Definition 6.1. AKenmotsu manifoldM2n+1 is said to be locally quasi-conformally

φ-symmetric if the relation

φ2((∇U C̃)(X,Y )Z) = 0, (6.1)

holds for all vector fields X, Y, Z, U orthogonal to ξ.

Definition 6.2. A Kenmotsu manifold M2n+1 is said to be quasi-conformally

φ-recurrent if and only if there exists a 1-form A such that

φ2((∇U C̃)(X,Y )Z) = A(U)C̃(X,Y )Z, (6.2)

for all vector fields X, Y, Z, U. Here X, Y, Z, U are arbitrary vector fields not

necessarily orthogonal to ξ.

Theorem 6.1. A quasi-conformally φ−recurrent Kenmotsu manifold M2n+1 is

an η−Einstein manifold.

Proof: By virtue of equations (2.1) and (6.2), we have

−((∇U C̃)(X,Y )Z) + η((∇U C̃)(X,Y )Z)ξ = A(U)C̃(X,Y )Z. (6.3)

Taking inner product of above equation with V, we get

−g((∇U C̃)(X,Y )Z, V ) + η((∇U C̃)(X,Y )Z)η(V ) = A(U)g(C̃(X,Y )Z, V ). (6.4)

In view of equation (2.24), we have

g((∇U C̃)(X,Y )Z, V ) = ag((∇UR)(X,Y )Z, V ) + b{(∇US)(Y, Z)g(X,V )

− (∇US)(X,Z)g(Y, V ) + (∇US)(X,V )g(Y, Z)− (∇US)(Y, V )g(X,Z)}

−
dr(U)

(2n+ 1)
(
a

2n
+ 2b)[g(Y, Z)g(X,V )− g(X,Z)g(Y, V )].

(6.5)

From equations (6.4) and (6.5), we have

− ag((∇UR)(X,Y )Z, V ) + aη((∇UR)(X,Y )Z)η(V )− b{(∇US)(Y, Z)g(X,V )

− (∇US)(X,Z)g(Y, V ) + (∇US)(X,V )g(Y, Z)− (∇US)(Y, V )g(X,Z)}

+ b{(∇US)(Y, Z)η(X)− (∇US)(X,Z)η(Y ) + (∇US)(X, ξ)g(Y, Z)

− (∇US)(Y, ξ)g(X,Z)}η(V ) +
dr(U)

(2n+ 1)
(
a

2n
+ 2b)[g(Y, Z)g(X,V )− g(X,Z)g(Y, V )]

−
dr(U)

(2n+ 1)
(
a

2n
+ 2b)[g(Y, Z)η(X)− g(X,Z)η(Y )] = aA(U)g(R(X,Y )Z, V )

+ bA(U){S(Y, Z)g(X,V )− S(X,Z)g(Y, V ) + g(Y, Z)S(X,V )− g(X,Z)S(Y, V )}

−
r

(2n+ 1)
(
a

2n
+ 2b)A(U)[g(Y, Z)g(X,V )− g(X,Z)g(Y, V )].

(6.6)
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Let {ei}, i = 1, 2, ..., 2n+ 1 be an orthonormal basis of the tangent space at any

point of the manifold. Putting X = V = ei in above equation and summing over

i, 1 ≤ i ≤ 2n+ 1, we get

− (a+ 2b(n− 1))(∇US)(Y, Z) + a

2n+1∑
i=1

η((∇UR)(ei, Y )Z)η(ei)

+ b[2n{g(Z,U)η(Y ) + g(Y, U)η(Z)− 2η(Y )η(Z)η(U)}

− g(Y, Z)dr(U)] +
dr(U)

(2n+ 1)
(
a

2n
+ 2b)[(2n− 1)g(Y, Z) + η(Y )η(Z)]

= (a+ b(2n− 1))S(Y, Z)A(U) + bA(U)rg(Y, Z)−
r

(2n+ 1)
(
a

2n
+ 2b)2nA(U)g(Y, Z).

(6.7)

Replacing Z = ξ in equation (6.7) and using equations (2.4), (2.5), (2.13) and

(4.12), we get

− (a+ 2b(n− 1))(∇US)(Y, ξ) + b[2n{g(Y, U)− η(Y )eta(U)} − η(Y )dr(U)]

+
dr(U)

(2n+ 1)
(
a

2n
+ 2b)2nη(Y ) = (a+ b(2n− 1))S(Y, ξ)A(U)

+ bA(U)rη(Y )−
r

(2n+ 1)
(
a

2n
+ 2b)2nA(U)η(Y ).

(6.8)

Now, using equation (4.14) in above equation, we get

(a+ 2b(n− 1))[S(Y, U) + 2ng(Y, U)] + 2nb{g(Y, U)− η(Y )eta(U)} − bη(Y )dr(U)

+
dr(U)

(2n+ 1)
(
a

2n
+ 2b)2nη(Y ) = −2n(a+ b(2n− 1))η(Y )A(U)

+ bA(U)rη(Y )−
r

(2n+ 1)
(
a

2n
+ 2b)2nA(U)η(Y ).

(6.9)

Now replacing Y by φY and U by φU in above equation and using equations

(2.2),(2.3) and (2.15) we get

S(Y, U) = λ1g(Y, U) + λ2η(Y )η(U), (6.10)

where λ1 = −2nb−2n(a+2b(n−1))

a+2b(n−1)
and λ2 = 2nb

a+2b(n−1)
are constants. This shows that

M2n+1 is an η-Einstein manifold. �

Now, in view of lemma (4.2) and theorem (5.1), we have a corollary as

Corollary 6.1. A quasi-conformally φ−recurrent Kenmotsu manifold M2n+1 is

an Einstein manifold.

Theorem 6.2. A locally quasi-conformally φ−recurrent Kenmotsu manifold M2n+1

is an Einstein manifold.
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Proof: By virtue of equations (2.1) and (6.1), we have

−(∇U C̃)(X,Y )Z + η((∇U C̃)(X,Y )Z)ξ = 0. (6.11)

Replacing Z = ξ in above equation, we get

−(∇U C̃)(X,Y )ξ + η((∇U C̃)(X,Y )ξ)ξ = 0. (6.12)

Now, from equation (2.24), we have

(∇U C̃)(X,Y )ξ = a(∇UR)(X,Y )ξ + b[(∇US)(Y, ξ)X − (∇US)(X, ξ)Y

+ η(Y )(∇UQ)X − η(X)(∇UQ)Y ]−
dr(U)

(2n+ 1)
{
a

2n
+ 2b}[η(Y )X − η(X)Y ].

(6.13)

Also, in view of equation (4.20), we have

(∇UR)(X,Y )ξ = g(X,U)Y − g(Y, U)X −R(X,Y )U.

Taking the inner product of above equation with ξ, we get

η((∇UR)(X,Y )ξ) = 0. (6.14)

From equations (6.13) and (6.14), we have

η((∇U C̃)(X,Y )ξ) = 0. (6.15)

Now, using equation (6.15) in equation (6.12), we get

a(∇UR)(X,Y )ξ + b{(∇US)(Y, ξ)X − (∇US)(X, ξ)Y + η(Y )(∇UQ)(X)

− η(X)(∇UQ)(Y )} −
dr(U)

(2n+ 1)
(
a

2n
+ 2b)[η(Y )X − η(X)Y ] = 0.

(6.16)

If X, Y are orthogonal to ξ, then above equation takes the form

a(∇UR)(X,Y )ξ + b{(∇US)(Y, ξ)X − (∇US)(X, ξ)Y } = 0, (6.17)

which on using equations (4.14) and (4.20), gives

aR(X,Y )U = (a+ 2nb){g(X,U)Y − g(Y, U)X} − b{S(Y, U)X − S(X,U)Y }.

(6.18)

Taking the inner product of above equation with V, we get

aR(X,Y, U, V ) = (a+ 2nb){g(X,U)g(Y, V )− g(Y, U)g(X,V )}

− b{S(Y, U)g(X,V )− S(X,U)g(Y, V )}.
(6.19)

Putting X = V = ei in above equation and summing over i, 1 ≤ i ≤ 2n + 1, we

get

S(Y, U) = −2ng(Y, U), (6.20)

which shows that M2n+1 is an Einstein manifold. This completes the proof. �
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Now, using equation (6.20) in equation (6.19), we get

R(X,Y, U, V ) = −[g(Y, U)g(X,V )− g(X,U)g(Y, V )]. (6.21)

Thus we have a corollary as

Corollary 6.2. A locally quasi-conformally φ−recurrent Kenmotsu manifold M2n+1

is a manifold of constant curvature -1, i.e. M2n+1 is locally a hyperbolic space.
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Abstract. We complete a proof of a theorem that was inspired by an Indian

Olympiad problem, which gives an interesting characterization of a prime

number p with respect to the binomial coefficients
(

n

p

)

. We also derive a

related result which generalizes the theorem in one direction.

1. Introduction and Motivation

Problem 1.1. 7 divides
(
n
7

)
− ⌊n

7
⌋, ∀n ∈ N.

The above appeared as a problem in the Regional Mathematical Olympiad,

India in 2003. Later in 2007, a similar type of problem was set in the undergraduate

admission test of Chennai Mathematical Institute, a premier research institute of

India where 7 was replaced by 3.

This became the basis of the following

Theorem 1.1 ([3], Saikia-Vogrinc). A natural number p > 1 is a prime if and

only if
(
n
p

)
− ⌊n

p
⌋ is divisible by p for every non-negative n, where n > p + 1 and

the symbols have their usual meanings.

Proof of Theorem 1.1

In [3], the above theorem is proved. The authors give three different proofs,

however the third proof is incomplete. We present below a completed version of

that proof.

Proof. First we assume that p is prime. Now we consider n as n = ap + b where

a is a non-negative integer and b an integer 0 ≤ b < p. Obviously,⌊
n

p

⌋
= ⌊

ap+ b

p
⌋ ≡ a (mod p). (1.1)

2010 AMS Subject Classification : 11A07, 11A41, 11A51, 11B50, 11B65, 11B75.

Key words and phrases: prime moduli, binomial coefficients, floor function.
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Now let us calculate
(
n
p

)
(mod p).

(
n

p

)
=

(
ap+ b

p

)

=
(ap+ b) · (ap+ b− 1) · · · (ap+ 1) · ap · (ap− 1) · · · (ap+ b− p+ 1)

p · (p− 1) · · · 2 · 1

=
a · (ap+ b) · (ap+ b− 1) · · · (ap+ 1) · (ap− 1) · · · (ap+ b− p+ 1)

(p− 1) · (p− 2) · · · 2 · 1

=
aX

(p− 1)!

where X = (ap+ b) · (ap+ b− 1) · · · (ap+ 1) · (ap− 1) · · · (ap+ b− p+ 1).

We observe that there are (p− 1) terms in X and each of them has one of the

following forms,

(a) ap+ r1, or

(b) ap− r2

where 1 ≤ r1 ≤ b and 1 ≤ r2 ≤ (p− 1− b).

Thus any two terms from either (a) or (b) differs by a number strictly less than p

and hence not congruent modulo p. Similarly, if we take two numbers - one from

(a) and the other from (b), it is easily seen that the difference between the two

would be r1 + r2 which is at most (p− 1) (by the bounds for r1 and r2); thus in

this case too we find that the two numbers are not congruent modulo p. Thus the

terms in X forms a reduced residue system modulo p and so, we have,

X ≡ (p− 1)! (mod p). (1.2)

Thus, using (1.2) we obtain

(
n

p

)
= a

X

(p− 1)!
≡ a(mod p). (1.3)

So, (1.1) and (1.3) together gives

⌊
n

p

⌋
≡

(
n

p

)
(mod p). (1.4)

This proves forward implication.

To prove the reverse implication, we adopt a contrapositive argument meaning

that if p were not prime (that is composite) then we must construct an n such

that (1.4) does not hold. So, let q be a prime factor of p. We write p as p = qxk,

where (q, k) = 1. In other words, x is the largest power of q such that qx|p but

qx+1 6 | p (in notation, qx||p). By taking, n = p+ q = qxk + q, we have

(
p+ q

p

)
=

(
p+ q

q

)
=

(qxk + q)(qxk + q − 1) . . . (qxk + 1)

q!
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which after simplifying the fraction equals (qx−1k+ 1) (q
xk+q−1)...(qxk+1)

(q−1)!
. Clearly,

(qxk + q − 1) . . . (qxk + 1) ≡ (q − 1)! 6≡ 0 (mod qx). Therefore,

(qxk + q − 1) . . . (qxk + 1)

(q − 1)!
≡ 1 (mod qx)

and (
p+ q

p

)
≡ qx−1k + 1 (mod qx).

On the other hand, obviously⌊
p+ q

p

⌋
=

⌊
qxk + q

qxk

⌋
≡ 1 (mod qx).

Now, since (q, k) = 1, it follows that qx−1k + 1 6≡ 1 (mod qx). So we conclude,(
p+ q

p

)
6≡

⌊
p+ q

p

⌋
(mod qx). (1.5)

So, p ∤ (
(
p+q
p

)
− ⌊p+q

p
⌋), for if p|(

(
p+q
p

)
− ⌊p+q

p
⌋), then since qx|p, we would have

qx|(
(
p+q
p

)
− ⌊p+q

p
⌋), a contradiction to (5). Thus,

(
p+q
p

)
6≡ ⌊p+q

p
⌋ (mod p). Hence

we are through with the reverse implication too.

This completes the proof of Theorem 1.1. �

2. Another simple result

We state and prove the following simple result which generalizes one part of

Theorem 1.1

Theorem 2.1. For n = ap+ b = a(k)p
k + b(k), we have

(
a(k)p

k + b(k)
pk

)
−

⌊
a(k)p

k + b(k)

pk

⌋
≡ 0 (mod p)

with p a prime, 0 ≤ b(k) ≤ pk − 1 and k a positive integer such that 1 ≤ k ≤ l,

where

n = a0 + a1p+ . . .+ akp
k + ak+1p

k+1 + . . .+ alp
l

and for k ≥ 1

a(k) = ak + ak+1p+ . . .+ alp
l−k

and

b(k) = a0 + a1p+ . . .+ ak−1p
k−1.

.

The proof of this follows from the reasoning of the proof of Theorem 1.1

although there are some subtleties. In particular, we have

a = a(1) = a1 + a2p+ . . .+ alp
l−1
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and

b = b(0) = a0.

For k = 0, we set the convention that a(0) = n = a0+a1p+ . . .+alp
l and b(0) = 0.

Notice that Theorem 2.1 is obviously true for k = 0. But the case k = 0 doesn’t

correspond really to a power of p where p is a prime.

Proof: We have (
n

pk

)
=

(
a(k)p

k + b(k)
pk

)

=
(a(k)p

k
+ b(k)) · (a(k)p

k
+ b(k) − 1) · · · (a(k)p

k
+ 1) · a(k)p

k · (a(k)p
k − 1) · · · (a(k)p

k
+ b(k) − pk

+ 1)

pk · (pk − 1) · · · 2 · 1

=
a(k) · (a(k)p

k
+ b(k)) · (a(k)p

k
+ b(k) − 1) · · · (a(k)p

k
+ 1) · (a(k)p

k − 1) · · · (a(k)p
k
+ b(k) − pk

+ 1)

(pk − 1) · (pk − 2) · · · 2 · 1
.

Thus we obtain

(pk − 1)!

(
n

pk

)
= a(k)

(
b∏

r=1

(a(k)p
k + r)

) 
pk−1−b∏

r=1

(a(k)p
k − r)


 .

Or a(k)p
k+r ≡ r (mod pk) and a(k)p

k−r ≡ −r ≡ pk−r (mod pk) with 0 < r < pk.

It follows(
b∏

r=1

(a(k)p
k + r)

)
pk−1−b∏

r=1

(a(k)p
k − r)


 ≡

(
b∏

r=1

r

)
pk−1−b∏

r=1

(pk − r)


 (mod pk).

Since(
b∏

r=1

r

) 
pk−1−b∏

r=1

(pk − r)


 =

(
b∏

r=1

r

) 
 pk−1∏

r=b+1

r


 =

pk−1∏
r=1

r = (pk − 1)!

we have (
b∏

r=1

(a(k)p
k + r)

) 
pk−1−b∏

r=1

(a(k)p
k − r)


 ≡ (pk − 1)! (mod pk).

We can notice that,

(pk − 1)! = q(p− 1)! p1+p+...+pk−1−k

with gcd(p, q) = 1 and because ordp((p
k − 1)!) = 1+ p+ . . .+ pk−1 − k. Therefore

we have

a(k)c(k)p
k(pk−1) + (pk − 1)!

{
a(k) −

(
n

pk

)}
= 0.

Equivalently

a(k)c(k)p
k(p−1)(1+p+...+pk−1

) + q(p− 1)! p1+p+...+pk−1−k

{
a(k) −

(
n

pk

)}
= 0.

Dividing the above equation by p1+p+...+pk−1−k we have

q(p− 1)!

{
a(k) −

(
n

pk

)}
+ a(k)c(k)p

k+(k(p−1)−1)(1+p+...+pk−1
) = 0.
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Thus

q(p− 1)!

{
a(k) −

(
n

pk

)}
≡ 0 (mod pk).

Since if m ≡ n (mod pk) implies m ≡ n (mod p) (the converse is not always true),

we also have

q(p− 1)!

{
a(k) −

(
n

pk

)}
≡ 0 (mod p).

As q(p− 1)! with gcd(p, q) = 1 and p are relatively prime, we get(
n

pk

)
− a(k) ≡ 0 (mod p).

We finally have (
n

pk

)
≡

⌊
n

pk

⌋
(mod p).

�

Theorem 2.2. Let p be a prime number, let k be a natural number and let x be

a positive integer such that

x ≡ r (mod pk)

with 0 ≤ r < pk. Denoting q = ⌊ x
pk ⌋ the quotient of the division of x by pk, if

there exists s ∈ N⋆ for which

⌊
x

pks
⌋ = qs

then we have

x ≡ r (mod pks).

Proof: Given p a prime number, let x be a positive integer such that x ≡ r

(mod pk) with 0 ≤ r < pk. Denoting q = ⌊ x
pk ⌋, we assume that there exists s ∈ N⋆

for which

⌊
x

pks
⌋ = qs.

If k = 0, the result is obvious since for all integers x, r, we have x ≡ r (mod 1).

In the following, we assume that k ∈ N⋆.

Then, we have

x = qpk + r

and

x = qspks + r′

with 0 ≤ r′ < pks. It comes that

qpk + r = qspks + r′.

So (s ∈ N⋆)

qspks − qpk = r − r′ ≥ 0.
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Since 0 ≤ r < pk, we have

0 ≤ r − r′ < pk.

Moreover, rewriting the equality qspks − qpk = r − r′ as

qpk(qs−1pk(s−1) − 1) = r − r′

we can notice that pk|r− r′. Since 0 ≤ r− r′ < pk, it is only possible if r− r′ = 0

and so

r = r′.

From the equality x = qspks + r′, we deduce that

x ≡ r (mod pks).

�

A consequence of the Theorem 2.2 is that if an integer y is congruent to a

positive integer x modulo pk such that x ≡ r (mod pk), provided the conditions

stated in the Theorem 2.2 are fulfilled, we have also y ≡ r (mod pks).

It can be verified easily that the product
(∏b

r=1
(a(k)p

k + r)
)

(∏pk−1−b
r=1

(a(k)p
k − r)

)
contains the term (a(k)p

k)p
k−1 = ap

k−1

(k)
pk(p

k−1). The term

(a(k)p
k)p

k−1 is the only term in pk(p
k−1) which appears in the decomposition of

this product into sum of linear combination of powers of p. Notice also that the

number k(pk − 1) is the greatest exponent of p in this product when we decom-

pose this product into sum of linear combination of powers of p (like a polynomial

expression in variable p). Afterwards, we write ap
k−1

(k)
as c(k) in order to simplify

the notation. Thus, the quotient of the division of this product by pk(p
k−1) is

c(k) = ap
k−1

(k)
.

So, from the Theorem 2.2, we can now write

(
b∏

r=1

(a(k)p
k + r)

) 
pk−1−b∏

r=1

(a(k)p
k − r)


 = c(k)p

k(pk−1) + (pk − 1)!.
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K. N. DARJI

(Received : 27 - 10 - 2013 ; Revised : 27 - 04 - 2014)

Abstract. Here, it is observed that (Λ1,Λ2)∗BV (p(n), [a1, b1]× [a2, b2],B),

the class of functions of bounded p(n)− (Λ1,Λ2)∗− variation from [a1, b1]×

[a2, b2] into a commutative unital Banach algebra B, is a commutative unital

Banach algebra with respect to the pointwise operations and the generalized

variation norm.

1. Introduction

The notion of bounded variation has undergone generalizations in several

directions. It is known that, when equipped with certain natural norms involv-

ing the generalized variation, linear spaces of functions of generalized bounded

variation become Banach spaces (see [2, 9, 10]). Recently, it is proved that

(Λ1, ...,ΛN )∗BV (p)(ΠN
i=1σi,B), the class of functions of bounded p−(Λ1, ...,ΛN )∗−

variation from ΠN
i=1σi into a commutative unital Banach algebra B, is a Banach

space, where σi are non-empty compact subsets of R, for i = 1 to N . In many

cases, the norms are also submultiplicative, and so the function spaces carries

the additional structure of commutative unital Banach algebras with respect to

pointwise multiplication of the functions. Berkson and Gillespie [4] proved that

BVH([a1, b1]× [a2, b2],C), the class of complex valued functions of bounded varia-

tion (in the sense of Hardy) over [a1, b1]× [a2, b2], is a commutative unital Banach

algebra with respect to the pointwise operations and the variation norm. General-

izing this result, here, it is proved that (Λ1,Λ2)∗BV (p(n), [a1, b1]× [a2, b2],B), the

class of functions of bounded p(n)− (Λ1,Λ2)∗−variation from [a1, b1]× [a2, b2] into

a commutative unital Banach algebra B, is a commutative unital Banach algebra

with respect to the pointwise operations and the generalized variation norm.

In the sequel, ϕ(n) is a real sequence such that ϕ(1) ≥ 2, ϕ(n) → ∞ as n → ∞

and L is the class of non-decreasing sequences Λ = {λi}
∞
i=1 of positive numbers

such that
∑

i
1
λi

diverges.

2010 Mathematics subject classification: 47B40, 26B30, 26A45, 46A04.

Keywords and phrases : commutative unital Banach algebra, functions of generalized boun-

ded variation.
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2. THE CLASS ΛBV (p(n), [a, b],B)

Definition 2.1. For given Banach algebra B, Λ = {λi}
∞
i=1 ∈ L and 1≤p(n)↑ p as

n→ ∞ (1 ≤ p ≤ ∞), we say that a function f from an interval I = [a, b] into B is

of bounded p(n)− Λ−variation relative to ϕ (that is, f ∈ ΛBV (p(n), I,B)) if

VΛp(n)
(f, I,B) =

sup

n ≥ 1

sup

{Ii}

{
VΛp(n)

(f,B, {Ii}) : δ{Ii} ≥
b− a

ϕ(n)

}
< ∞,

where {Ii} = {[si−1, si]} is a finite collection of non-overlapping subintervals in I,

δ{Ii} =
inf

1 ≤ i ≤ m
| si − si−1 |

and

VΛp(n)
(f,B, {Ii}) =

(
m∑
i=1

‖f(Ii)‖
p(n)
B

λi

)1/p(n)

,

in which f(Ii) = f(si)− f(si−1).

In Definition 2.1, if λi =1, for all i, one gets the class BV (p(n), I,B); if

p = ∞, one gets the class ΛBV (p(n) ↑ ∞, I,B); and if p(n) = p, for all n,

(1 ≤ p < ∞) one gets the class ΛBV (p)(I,B). For B = C, we omit writing C, the

class ΛBV (p(n), I,B) reduces to the class ΛBV (p(n), I) [8, Definition 1.1, p.215]

We prove the following theorem.

Theorem 2.1. Let B be a commutative unital Banach algebra. The class

ΛBV (p(n), [a, b],B) is a commutative unital Banach algebra with respect to the

pointwise operations and the variation norm:

‖f‖ = ‖f‖∞ + VΛp(n)
(f, [a, b],B), f ∈ ΛBV (p(n), [a, b],B).

For p(n) = p, for all n, Theorem 2.1 gives the result [10, Corollary 2.7, p.183]

as a particular case.

Proof of Theorem 2.1. Let {fk} be any Cauchy sequence in ΛBV (p(n), [a, b],B).

Then it converges uniformly to some function say f on I = [a, b]. For any finite

collection of non-overlapping subintervals {Ii} in I, we get

VΛp(n)
(fk,B, {Ii}) ≤ VΛp(n)

(fk − fl,B, {Ii}) + VΛp(n)
(fl,B, {Ii})

≤ VΛp(n)
(fk − fl, I,B) + VΛp(n)

(fl, I,B).

This implies,

VΛp(n)
(fk, I,B) ≤ VΛp(n)

(fk − fl, I,B) + VΛp(n)
(fl, I,B)

and

|VΛp(n)
(fk, I,B)− VΛp(n)

(fl, I,B)| ≤ VΛp(n)
(fk − fl, I,B) → 0 as k, l → ∞.
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Hence, {VΛp(n)
(fk, I,B)}

∞
k=1 is a Cauchy sequence in R and it is bounded by some

constant say M > 0. Therefore

VΛp(n)
(f,B, {Ii}) = lim

k→∞
VΛp(n)

(fk,B, {Ii})

≤ lim
k→∞

VΛp(n)
(fk, I,B) ≤ M < ∞.

Thus, f ∈ ΛBV (p(n), I,B).

Since {fk} is a Cauchy sequence, for any ǫ > 0 there exists n0 ∈ N such that

VΛp(n)
(fk − fl,B, {Ii}) < ǫ, for all k, l ≥ n0.

Letting l → ∞ and taking supremum on the both sides of the above inequality,

we get VΛp(n)
(fk − f, I,B) ≤ ǫ, for all k ≥ n0.

Thus, ‖fk − f‖ → 0 as k → ∞.

Hence, (ΛBV (p(n), I,B), ‖.‖) is a Banach space.

For any f, g ∈ ΛBV (p(n), I,B),

m∑
i=1

‖fg(si)− fg(si−1)‖
p(n)
B

λi

=
m∑
i=1

‖f(si)g(si)− f(si−1)g(si) + f(si−1)g(si)− f(si−1)g(si−1)‖
p(n)
B

λi

=

m∑
i=1

‖g(si)(f(si)− f(si−1)) + f(si−1)(g(si)− g(si−1))‖
p(n)
B

λi

≤

m∑
i=1

(‖g‖∞‖f(si)− f(si−1)‖B + ‖f‖∞‖g(si)− g(si−1)‖B)
p(n)

λi

=

m∑
i=1

(
‖g‖∞‖f(si)− f(si−1)‖B

λ
1/p(n)
i

+
‖f‖∞‖g(si)− g(si−1)‖B

λ
1/p(n)
i

)p(n)

≤ [(

m∑
i=1

‖g‖
p(n)
∞ ‖f(si)− f(si−1)‖

p(n)
B

λi

)1/p(n)

+ (
m∑
i=1

‖f‖
p(n)
∞ ‖g(si)− g(si−1)‖

p(n)
B

λi

)1/p(n)]p(n)

= [‖g‖∞(

m∑
i=1

‖f(si)− f(si−1)‖
p(n)
B

λi

)1/p(n)

+ ‖f‖∞(

m∑
i=1

‖g(si)− g(si−1)‖
p(n)
B

λi

)1/p(n)]p(n)

≤ [‖g‖∞ VΛp(n)
(f, I,B) + ‖f‖∞ VΛp(n)

(g, I,B)]p(n).
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Thus,

‖fg‖ = ‖fg‖∞ + VΛp(n)
(fg, I,B)

≤ ‖f‖∞ ‖g‖∞ + ‖g‖∞ VΛp(n)
(f, I,B) + ‖f‖∞ VΛp(n)

(g, I,B)

≤ (‖f‖∞ + VΛp(n)
(f, I,B))(‖g‖∞ + VΛp(n)

(g, I,B))

= ‖f‖ ‖g‖.

This completes the proof of Theorem 2.1.

3. THE CLASS (Λ1,Λ2)∗BV (p(n), [a1, b1]× [a2, b2],B)

Let f be a function from R
2 = I1 × I2 into a Banach algebra B, where

I1 = [a1, b1] and I2 = [a2, b2]. Then

f(I1 × I2) = f(I1, b2)− f(I1, a2) = f(b1, b2)− f(a1, b2)− f(b1, a2) + f(a1, a2).

Definition 3.1. For given Banach algebra B,
∧

= (Λ1,Λ2), where Λk = {λk
i }

∞
i=1 ∈

L, for k = 1, 2, and 1 ≤p(n)↑ p as n→ ∞ (1 ≤ p ≤ ∞), we say that a function f

from R
2 = I1 × I2 = [a1, b1] × [a2, b2] into B is of bounded p(n) −

∧
−variation

relative to ϕ (that is, f ∈
∧
BV (p(n),R2,B)) if

V∧

p(n)
(f,R2,B)

=
sup

n ≥ 1

sup

{I1i × I2j }

{
V∧

p(n)
(f,B, {I1i × I2j }) : δ{I

1
i × I2j } ≥

(b1 − a1) (b2 − a2)

ϕ(n)

}

< ∞,

where {I1i } = {[si−1, si]} and {I2j } = {[tj−1, tj ]} are finite collections of non-

overlapping subintervals in I1 and I2 respectively,

V∧

p(n)
(f,B, {I1i × I2j }) =


 m∑

i=1

r∑
j=1

‖f(I1i × I2j )‖
p(n)
B

λ1
i λ2

j




1/p(n)

and

δ{I1i × I2j } =
inf

i, j
| (si − si−1)× (tj − tj−1) | .

If f ∈
∧
BV (p(n),R2,B) is such that the marginal functions

f(a1, .) ∈ Λ2BV (p(n), I2,B) and f(., a2) ∈ Λ1BV (p(n), I1,B) then f is said to be

of bounded p(n) −
∧∗

− variation over R
2 relative to ϕ (that is,

f ∈
∧∗

BV (p(n),R2,B)).

If f ∈
∧∗

BV (p(n),R2,B) then f is bounded and each of the marginal func-

tions f(., t) ∈ Λ1BV (p(n), I1,B) and f(s, .) ∈ Λ2BV (p(n), I2,B), where t ∈ I2

and s ∈ I1 are fixed.
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Note that, if p(n) = p, for all n, (1 ≤ p < ∞) the classes
∧
BV (p(n),R2,B)

and
∧∗ BV (p(n),R2,B) reduce to the classes

∧
BV (p)(R2,B) and

∧∗ BV (p)(R2,B)

respectively. For B = C, we omit writing C, the classes
∧
BV (p(n),R2,B) and∧∗ BV (p(n),R2,B) reduce to the classes

∧
BV (p(n),R2) and

∧∗ BV (p(n),R2)

respectively.

We prove the following theorem.

Theorem 3.1. Let B be a commutative unital Banach algebra. The class∧∗
BV (p(n), [a1, b1]× [a2, b2],B) is a commutative unital Banach algebra with re-

spect to the pointwise operations and the variation norm :

‖f‖ = ‖f‖∞ + V∧

p(n)
(f, [a1, b1]× [a2, b2],B) + VΛ1

p(n)
(f(., a2), [a1, b1],B)

+ VΛ2
p(n)

(f(a1, .), [a2, b2],B), f ∈
∧

∗BV (p(n), [a1, b1]× [a2, b2],B).
(3.1)

For p(n) = p, for all n, Theorem 3.1 generalize the result [10, Corollary 3.7,

p.185]

Proof of Theorem 3.1.

Let {fk}
∞
k=1 be a Cauchy sequence in

∧∗ BV (p(n), [a1, b1] × [a2, b2],B). Then it

converges uniformly to some function say f . From Theorem 2.1, we get

lim
k→∞

VΛ1
p(n)

((fk(., a2)− f(., a2)), I
1,B) = 0 (3.2)

and

lim
k→∞

VΛ2
p(n)

((fk(a1, .)− f(a1, .)), I
2,B) = 0. (3.3)

Now, for any {I1i ×I2j }, where {I
1
i } and {I2j } are finite collections of non-overlapping

subintervals in I1 and I2 respectively,

V∧

p(n)
(fk,B, {I

1
i × I2j }) ≤ V∧

p(n)
(fk − fl,B, {I

1
i × I2j }) + V∧

p(n)
(fl,B, {I

1
i × I2j })

≤ V∧

p(n)
(fk − fl,R

2,B) + V∧

p(n)
(fl,R

2,B).

This implies,

V∧

p(n)
(fk,R

2,B) ≤ V∧

p(n)
(fk − fl,R

2,B) + V∧

p(n)
(fl,R

2,B)

and

|V∧

p(n)
(fk,R

2,B)− V∧

p(n)
(fl,R

2,B)| ≤ V∧

p(n)
(fk − fl,R

2,B) → 0 as k, l → ∞.
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Hence, {V∧

p(n)
(fk,R

2,B)}∞k=1 is a Cauchy sequence in R and it is bounded by

some constant say M > 0. Therefore

V∧

p(n)
(f,B, {I1i × I2j }) =


 m∑

i=1

r∑
j=1

‖f(I1i × I2j )‖
p(n)
B

λ1
i λ2

j




1/p(n)

= lim
k→∞


 m∑

i=1

r∑
j=1

‖fk(I
1
i × I2j )‖

p(n)
B

λ1
i λ2

j




1/p(n)

≤ lim
k→∞

V∧

p(n)
(fk,R

2,B) ≤ M < ∞.

This together with (3.2) and (3.3) imply f ∈
∧∗

BV (p(n),R2,B). Moreover,

V∧

p(n)
(fk − f,B, {I1i × I2j }) =


 m∑

i=1

r∑
j=1

‖(fk − f)(I1i × I2j )‖
p(n)
B

λ1
i λ2

j




1/p(n)

= lim
l→∞


 m∑

i=1

r∑
j=1

‖(fk − fl)(I
1
i × I2j )‖

p(n)
B

λ1
i λ2

j




1/p(n)

≤ lim
l→∞

V∧

p(n)
(fk − fl,R

2,B) → 0 as k → ∞.

This together with (3.2) and (3.3) imply (
∧∗ BV (p(n),R2,B), ‖.‖) is a Banach

space.

For any f, g ∈
∧∗

BV (p(n),R2,B),

m∑
i=1

r∑
j=1

‖(fg)(si, tj)− (fg)(si, tj−1)− (fg)(si−1, tj) + (fg)(si−1, tj−1)‖
p(n)
B

λ1
i λ2

j

=
m∑
i=1

r∑
j=1

‖Sij
1 + Sij

2 + Sij
3 + Sij

4 + Sij
5 + Sij

6 + Sij
7 + Sij

8 + Sij
9 + Sij

10‖
p(n)
B

λ1
i λ2

j

,

where

Sij
1 = [f(si, tj)− f(si, tj−1)− f(si−1, tj) + f(si−1, tj−1)] g(si−1, tj−1),

Sij
2 = [g(si, tj)− g(si, tj−1)− g(si−1, tj) + g(si−1, tj−1)] f(si, tj),

Sij
3 = [f(a1, tj)− f(a1, tj−1)] [g(si, a2)− g(si−1, a2)],

Sij
4 = [f(a1, tj)− f(a1, tj−1)] [g(si−1, a2) + g(si, tj−1)− g(si, a2)− g(si−1, tj−1)],

Sij
5 = [f(a1, tj−1) + f(si, tj)− f(a1, tj)− f(si, tj−1)] [g(si, a2)− g(si−1, a2],
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Sij
6 = [f(a1, tj−1) + f(si, tj)− f(a1, tj)− f(si, tj−1)] [g(si−1, a2) + g(si, tj−1)

g(si−1, tj−1)− g(si, a2)] ,

Sij
7 = [f(si, a2)− f(si−1, a2)] [g(a1, tj)− g(a1, tj−1)],

Sij
8 = [f(si, a2)− f(si−1, a2)] [g(a1, tj−1) + g(si−1, tj)− g(a1, tj)− g(si−1, tj−1)],

Sij
9 = [f(si−1, a2) + f(si, tj)− f(si−1, tj)− f(si, a2)] [g(a1, tj)− g(a1, tj−1)]

and

Sij
10 = [f(si−1, a2) + f(si, tj)− f(si−1, tj)− f(si, a2)] [g(a1, tj−1) + g(si−1, tj)

− g(a1, tj)− g(si−1, tj−1)].

Thus,

m∑
i=1

r∑
j=1

||Sij
1 + Sij

2 + Sij
3 + Sij

4 + Sij
5 + Sij

6 + Sij
7 + Sij

8 + Sij
9 + Sij

10||
p(n)
B

λ1
i λ2

j

≤

m∑
i=1

r∑
j=1

(
||Sij

1 ||B

(λ1
i λ2

j )
1/p(n)

+
||Sij

2 ||B

(λ1
i λ2

j)
1/p(n)

+
||Sij

3 ||B

(λ1
i λ2

j )
1/p(n)

||Sij
4 ||B

(λ1
i λ2

j )
1/p(n)

+
||Sij

5 ||B

(λ1
i λ2

j )
1/p(n)

+
||Sij

6 ||B

(λ1
i λ2

j )
1/p(n)

||Sij
7 ||B

(λ1
i λ2

j )
1/p(n)

+
||Sij

8 ||B

(λ1
i λ2

j)
1/p(n)

+
||Sij

9 ||B

(λ1
i λ2

j )
1/p(n)

||Sij
10||B

(λ1
i λ2

j )
1/p(n)

)p(n)

≤ [(

m∑
i=1

r∑
j=1

||Sij
1 ||

p(n)
B

(λ1
i λ2

j )
)1/p(n) + (

m∑
i=1

r∑
j=1

||Sij
2 ||

p(n)
B

(λ1
i λ2

j)
)1/p(n)

+ (
m∑
i=1

r∑
j=1

||Sij
3 ||

p(n)
B

(λ1
i λ2

j )
)1/p(n) + (

m∑
i=1

r∑
j=1

||Sij
4 ||

p(n)
B

(λ1
i λ2

j )
)1/p(n)

+ (

m∑
i=1

r∑
j=1

||Sij
5 ||

p(n)
B

(λ1
i λ2

j )
)1/p(n) + (

m∑
i=1

r∑
j=1

||Sij
6 ||

p(n)
B

(λ1
i λ2

j )
)1/p(n)

+ (

m∑
i=1

r∑
j=1

||Sij
7 ||

p(n)
B

(λ1
i λ2

j )
)1/p(n) + (

m∑
i=1

r∑
j=1

||Sij
8 ||

p(n)
B

(λ1
i λ2

j )
)1/p(n)

+ (

m∑
i=1

r∑
j=1

||Sij
9 ||

p(n)
B

(λ1
i λ2

j )
)1/p(n) + (

m∑
i=1

r∑
j=1

||Sij
10||

p(n)
B

(λ1
i λ2

j )
)1/p(n)]p(n)

≤ [‖g‖ V∧

p(n)
(f,R2,B) + ‖f‖ V∧

p(n)
(g,R2,B)

+ VΛ2
p(n)

(f(a1, ·), I
2,B)VΛ1

p(n)
(g(·, a2), I

1,B)

+ VΛ2
p(n)

(f(a1, ·), I
2,B) V∧

p(n)
(g,R2,B) + V∧

p(n)
(f,R2,B)VΛ1

p(n)
(g(·, a2), I

1,B)
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+ V∧

p(n)
(f,R2,B)V∧

p(n)
(g,R2,B) + VΛ1

p(n)
(f(·, a2), I

1,B)VΛ2
p(n)

(g(a1, ·), I
2,B)

+ VΛ1
p(n)

(f(·, a2), I
1,B)V∧

p(n)
(g,R2,B) + V∧

p(n)
(f,R2,B)VΛ2

p(n)
(g(a1, ·), I

2,B)

+ V∧

p(n)
(f,R2,B)V∧

p(n)
(g,R2,B)]p(n).

In view of the Theorem 2.1, we have

‖fg‖

= ‖fg‖∞ + V∧

p(n)
(fg,R2,B) + VΛ1

p(n)
(fg(., a2), I

1,B) + VΛ2
p(n)

(fg(a1, .), I
2,B)

≤ ‖f‖∞ ‖g‖∞ + ‖g‖∞ VΛ1
p(n)

(f(., a2), I
1,B) + ‖f‖∞ VΛ1

p(n)
(g(., a2), I

1,B)

+ ‖g‖∞ VΛ2
p(n)

(f(a1, .), I
2,B) + ‖f‖∞ VΛ2

p(n)
(g(a1, .), I

2,B)

+ ‖g‖ V∧

p(n)
(f,R2,B) + ‖f‖ V∧

p(n)
(g,R2,B)

+ VΛ2
p(n)

(f(a1, ·), I
2,B)VΛ1

p(n)
(g(·, a2), I

1,B)

+ VΛ2
p(n)

(f(a1, ·), I
2,B)V∧

p(n)
(g,R2,B)

+ V∧

p(n)
(f,R2,B) VΛ1

p(n)
(g(·, a2), I

1,B)

+ VΛ1
p(n)

(f(·, a2), I
1,B) VΛ2

p(n)
(g(a1, ·), I

2,B)

+ VΛ1
p(n)

(f(·, a2), I
1,B)V∧

p(n)
(g,R2,B)

+ V∧

p(n)
(f,R2,B) VΛ2

p(n)
(g(a1, ·), I

2,B) + 2V∧

p(n)
(f,R2,B) V∧

p(n)
(g,R2,B)

≤ 2(‖f‖∞ + V∧

p(n)
(f,R2,B) + VΛ1

p(n)
(f(., a2), I

1,B) + VΛ2
p(n)

(f(a1, .), I
2,B))

(‖g‖∞ + V∧

p(n)
(g,R2,B) + VΛ1

p(n)
(g(., a2), I

1,B) + VΛ2
p(n)

(g(a1, .), I
2,B))

= 2‖f‖ ‖g‖.

This completes the proof of Theorem 3.1.

Remark 3.1. As it is known from the theory of Banach algebras, the norm (3.1)

can always be replaced by an equivalent norm ||| · ||| on
∧∗

BV (p(n),R2,B) such

that

|||fg||| ≤ |||f ||| |||g|||, f, g ∈
∧

∗BV (p(n),R2,B). (3.4)

In fact, given f ∈
∧∗

BV (p(n),R2,B), consider the linear continuous opera-

tor Tf from
∧∗

BV (p(n),R2,B) into itself defined by Tf(g) = f · g whenever

g ∈
∧∗

BV (p(n),R2,B). Then the operator norm |||f ||| = ‖Tf‖ = sup{‖f ·

g‖; ‖g‖ = 1} is the desired norm on
∧∗ BV (p(n),R2,B) satisfying (3.4) and

‖f‖ ≤ |||f ||| ≤ 2‖f‖ for all f ∈
∧∗

BV (p(n),R2,B).
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Tatva Institute of Technological Studies,

Modasa, Sabarkantha, Gujarat, India.
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BOOK-REVIEW

TITLE : CYCLIC MODULES AND STRUCTURE OF THE RINGS.

By S. K. Jain, Ashish K. Srivastava and Askar A. Tuganbaev;

Oxford University Press; 2012; Hard cover, x+220 pages;

ISBN No. 978 - 0 - 19 - 966451 - 1 ;

Library of Congress Control Number - 2012942048.

Reviewer : SERGIO R. LÓPEZ-PERMOUTH.

Cyclic modules are the stuff all other modules are made out of . Every module

M over a unital ring R is the sum of all of its cyclic submodules. It is to be expected

then that properties possessed by all right modules would have a strong influence

on the structure of all other modules and consequently on those aspects of the

structure of the ring that are determined by its category of modules. This is the

philosophical backbone of much research on Rings and Modules going back to the

1960s. The match that lit this fire was Barbara Osofsky’s tour-de-force theorem in

her 1966 doctoral dissertation showing that if all cyclic right modules are injective

then the ring is semisimple artinian.

While many times a module theorist may ask what happens when all mod-

ules share certain property, the problems grow in difficulty significantly when the

requirements is made only of cyclic modules. Such considerations are the central

topic of the monograph “Cyclic Modules and the Structure of Rings” by Jain, Sri-

vastava and Tuganbaev. Modifications of this line of research can be obtained by

asking for more modules (say, fur example, for all finitely generated modules) to

satisfy the property of asking for fewer ones (say, proper cyclic or simple modules)

to do so. Those various related thoughts intertwine throughout the text.

Research monographs are an important part of the mathematical literature,

When a topic has been studied for a considerable length of time, the results may

already be abundant and scattered throughout the literature; the need then arises

for a central place where information about the specific questions around the

topic may easily be found. The question would then remain about the way in

which all of this aggregated information will be delivered. One possibility is to

simply list results and include a few proofs in more or less the same way that they

appear elsewhere in the literature. When this approach is taken, the authors of

the monograph can idiosyncratically choose which proofs to include and they are

——————-

c© Indian Mathematical Society, 2014
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also free to make decisions regarding the depth of the discussions they will high-

light. A different approach would be to revisit the topic trying to give a self-

contained (modulo some clearly stated prerequisites) logical exposition of the con-

cepts and results about the subject in a way in which a person approaching the

material for the first time can reasonably become acquainted with it in a pro-

gressively meaningful way. The book under review is of the monographic nature

described at the beginning of the paragraph. I visited various spots in the text,

looking for proofs that I distinctly remember as being particularly challenging to

understand when I first met them in the original references, to see if there was

any clarity gained by reading them in the context of the new book. I found very

little gain from that perspective. On the other hand, from the monographic point

of view, the book is very well-written and presents a sizable chunk of the ring and

module theory developed since the late 1960s to the present under the umbrella

of “rings characterized by the properties of their cyclic modules.”

The book focuses on results that characterize the structure of rings over which

all cyclic modules or all proper cyclic modules satisfy given finiteness conditions

or homological properties. Cyclic right modules over unital rings are precisely the

quotients of the right regular module (the ring itself thought of as a right module)

by right ideals, It thus makes sense to set aside first some time to look at prop-

erties of rings in terms of the ring theoretic properties of their ring homomorphic

images, that is to say, the quotients of the ring by two-sided ideals. Mostly, the

defining conditions are imposed explicitly only on proper homomorphic images

(that is on quotients modulo non-zero ideals) and only occasionally on the ring

itself. The properties :onsidered in this first part of the book include rings all of

whose proper factor rings are Artinian, rings all of whose proper factor rings are

perfect, nonprime rings all of whose proper factor rings are von Neumann regular;

commutative rings all of whose proper factor rings are self-injective, and rings with

the restricted minimum condition.

The core of the book is devoted to module-theoretic properties of quotients

of the right regular module. Sometimes, the net cast is widened by requiring

only that proper cyclic modules share a given property. By proper cyclic in this

context, sometimes the requirement is not only that the right ideal to be modded

out be non-zero but actually that the quotient obtained upon modding out be

not isomorphic to R itself. A highlight along this direction is the theory of PCI

rings (proper cyclics are injective) which are not semisimple artinian; this is in

clear contrast with the Osofsky mentioned above. This part of the book includes

sections on rings over which every proper cyclic module is Artinian, rings over

which every proper cyclic module is perfect, rings over which every cyclic module

is injective rings over which every cyclic module has the property that complement

submodules are direct submodules; rings over which every proper cyclic module is

injective, etc. Sometimes, the range of the cyclics under consideration is reduced

to only the simple modules; such is the case, for example, when V-rings (i.e. rings

over which every simple module is injective) and their generalizations are conside-
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red. Other topics include rings for which the injective hull of every cyclic module

is Sigma-injective, rings over which every cyclic module is quasi-injective (or con-

tinuous); rings over which every cyclic module is Sigma-injective, etc. The book

closes with a topic that is only tangentially related to the central purpose of the

monograph, namely, the last chapter deals with the structure certain rings as de-

termined by properties of their one-sided ideals. That final section still manages

to include several interesting results and is a valuable addition.

Sergio R. López-Permouth.

321 Morton Hall, Department of Mathematics,

Ohio University, Athens, OH 45701, USA.

E-mail : lopez@ohio.edu
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REPORT ON IMS SPONSORED LECTURES

The details of the IMS Sponsored Lectures/Popular Talks held is as under :

1. Speaker: Mahan Mj.

(Ram Krishna Mission Vivekanand University,

Belur, Kolkata)

Title of the Lecture: Low dimensional projective groups.

Day and Date: Monday, Jan 27, 2014 at 4:00 pm.

Venue : H. R. I. Auditorium, Allahabad.

Organizer: Prof. Satya Deo.

NASI Senior Scientist, Harish-Chandra Research

Institute Chhatnag Road, Jhusi, Allahabad-

211 019, India.

Abstract : Fundamental groups of smooth projective varieties are called

projective groups. We shall discuss (cohomological) conditions on dimension

that force such a group to be the fundamental group of a Riemann surface.

2. Speaker: C. S. Bagewadi.

(Department of Mathematics,

Kuvempu University, Shimoga)

Title of the Lecture: Differential Geometry.

Day and Date: Monday, October 04, 2013 at 3:00 pm.

Venue : R. L. Science Institute, Belgaum. Karnataka.

Organizer: Dr. (Smt.) S. N. Banasode.

P.G. Studies in Mathematics,

R. L. Science Institute, Belgaum. Karnataka.

Abstract : Differential Geometry is a mathematical discipline that uses the

technique of differential calculus and Integral Calculus as well as Linear Algebra

and Multi-Linear Algebra to study problems in Geometry. Since the late 19 cen-

tury Differential Geometry has grown into a field concerned more generally with

geometric structures on Differential Manifolds. Instead of Calculus an axiomatic

treatment of Differential Geometry is build via Sheaf Theory and Sheaf Co ho-

mology using Vector Sheafs in place of bundles based on arbitrary Topological

Space.

————–

Indian Mathematical Society, 2014.
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79
th

IMS CONFERENCE : A BRIEF REPORT

The 79th Annual Conference of the Indian Mathematical Society was held at

the Rajagiri School of Engineering and Technology, Rajagiri Valley, Kakkanad,

Cochin - 682 039 (Kerala), during December 28 - 31, 2014 under the Presidentship

of Prof. Geetha S. Rao, Retd. Professor, Ramanujan Institute of Advanced Study

in Mathematics, University of Madras, Chepauk, Chennai - 600 060 (TN), India.

The conference was attended by more than 270 delegates from all over the country.

The inaugural function of the Conference, held in the morning of December 28,

was presided over by Prof. Geetha S. Rao, President of the Society. The Confer-

ence was inaugurated by Prof. K. V. Thomas, Minister of Agriculture and Minister

of State in the Ministry of Consumer Affairs, Food and Public Distribution, Govt.

of India. Rev. Fr. Dr. Antony Kariyil CMI, Director, RSET, offered a warm wel-

come to the delegates. The General Secretary of IMS, Prof. N. K. Thakare spoke

about the Indian Mathematical Society and on behalf of the Society expressed his

sincere and profuse thanks to the host for organizing the Conference. He released

IMS publications and also reported about (i) A. Narasinga Rao Memorial Prize

and (ii) P. L. Bhatnagar Memorial Prize - the details of these Prizes are given

later on. Prof. Satya Deo, Editor, JIMS, Prof. Ambat Vijayakumar, CUSAT and

Dr Babu Paul, IAS also addressed the delegates.

Three renowned mathematicians of Kerala - Prof. K.S.S. Nambooripad, Prof.

R. Sivaramakrishnan and Prof. T. Thrivikraman were honoured by the Rajagiri

School of Engineering and Technology, during the inaugural ceremony.

Prof. Geetha S. Rao delivered her Presidential address (General) on “The

universal appeal of Mathematics”. The inaugural function ended with a vote of

thanks by the Local Organizing Secretary, Dr. Vinod Kumar P. B.

The Academic Sessions of the conference began with the Presidential Technical

Address by Prof. Geetha S. Rao, the President of the Society, on “A New Tool

in Approximation Theory” which was presided over by Prof. N. K. Thakare, the

senior most past president of the Society present in the Conference.

One Plenary Lecture, Five Memorial Award Lectures and Four Invited Lec-

tures were delivered by eminent mathematicians during the conference. Besides

this, there were Five symposia on various topics of mathematics.

A Paper Presentation Competition for various IMS and other prizes was held

(without parallel sessions) in which 14 papers were presented. The result of this

Competition is declared in the Valedictory Function and appears later on in this
245
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report. In all 90 research papers were accepted for presentation during the Con-

ference including 14 research papers for the Paper Presentation Competitions for

various Prizes

A Cultural Programme was also arranged in the evening of December 29, 2013.

The conference was supported by the NBHM, DST, CSIR, and the management

of the Rajagiri School (through its UGC unassigned grant).

The Annual General Body Meeting of the Indian Mathematical Society was

held at 12.15 p.m. on January 31, 2013 in the Seminar Hall-1 of the RSET,

which was followed by the Valedictory Function in which the IMS and other prizes

were awarded to the winners of the Paper Presentation Competition. It was also

announced that Prof. S. G. Dani, (Department of Mathematics, IIT Bombay,

Powai, Mumbai) will be the next President of the Society with effect from April

1, 2014 and that the next Annual Conference of the Society will be held at the

Indian School of Mines, Dhanbad, during December 2014 with Prof. S. P. Tiwari,

Head, Department of Applied Mathematics, Indian School of Mines, Dhanbad, as

the Local Organizing Secretary.

The details of the academic programme of the Conference are as follows.

Details of the Plenary Lecture:

Prof. M. Ram Murty (Queen’s Research Chair and Head, Department of

Mathematics and Statistics, Queen’s University, Ontario, Canada) delivered a Ple-

nary Lecture on “Ramanujan and the Zeta function”. This Lecture was given in

honour of Prof. V. M. Shah who served the IMS for nearly thirty years in various

capacities.

Details of the Memorial Award Lectures:

1. The 27th P. L. Bhatnagar Memorial Award Lecture was delivered by Dr. Indira

Narayanaswamy (Aeronautical Development Agency, Bangalore) on “Mathe-

matics in Tejas Design: Configuration to Flight Testing”.

2. The 24th V. Ramaswami Aiyar Memorial Award Lecture was delivered by Prof.

M. M. Shikare (University of Pune, Pune) on “Generalizations of some graph-

theoretic results to matroids”.

3. The 24th Srinivasa Ramanujan Memorial Award Lecture was delivered by Prof.

D. P. Patil (IISc, Bangalore) on “ Burnside Algebras of Finite Groups”.

4. The 24th Hansraj Gupta Memorial Award Lecture was delivered by Prof. Ajit

Iqbal Singh (ISI, New Delhi) on “How permutations, partitions, projective repre-

sentations and positive maps entangle well for Quantum Information Theory”.

5. The 11th Ganesh Prasad Memorial Award Lecture was delivered by Prof. D. V.

Pai ( IIT, Gandhinagar) on “Viscosity approximation methods for minimization

and fixed point problems - a relook”.
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1. A. Narasinga Rao Memorial Prize.

This prize for 2011 was not recommended by the Committee appointed for the

purpose, and hence is not awarded to any one.

2. P. L. Bhatnagar Memorial Prize.

For the year 2013, this prize is presented jointly to Mr. Sagnik Saha (Kolkata)

and Mr. Shubham Sinha (New Delhi), the top scorers from the Indian Team with

28 points each at the 54th International Mathematical Olympiad held during July

18-26, 2013 at Santa Marta, Colombia.

3. Various prizes for the Paper Presentation Competition:

A total of 14 papers were received for Paper Presentation Competition for Six

IMS Prizes, AMU Prize and VMS Prize. There were 11 entries for six IMS prizes,

02 entries for the AMU prize and 01 entry for the VMS prize.

Prof. Satya Deo (Chairperson), Prof. J. R. Patadia, Prof. B. N. Waphare,

Prof. M. A. Sofi and Prof. P. K. Jain were the judges. Following is the result for

the award of various prizes :

IMS Prize - Group-1: 07 Presentations. Prize is awarded to:

Aparna Lakshmanan S. (Kerala).

IMS Prize - Group-2: 01 Presentation. Prize not awarded.

IMS Prize - Group-3 : No presentation.

IMS Prize - Group-4: Prize not awarded.

IMS Prize - Group-5: No presentation.

IMS Prize - Group-6: 01 Presentation. Prize not awarded.

AMU Prize : 02 Presentations. Prize not awarded.

V M Shah Prize : 01 Presentation. Prize is awarded to :

Abhijit Banerji, Kalyani University (W. B.).

Details of Invited Lectures delivered :

1. R. N. Mohapatra, Florida, USA on “ Riesz bases, Frames and Eraser”.

2. Gangadhar Hiremath, North Carolina, USA on “ Metrization, diagonal prop-

erties and invariance”.

3. Om Ahuja, Ohio, USA on “Recent Developments in the theory of Harmonic

univalent mappings in the plane”.

4. M. Wasadikar, Aurangabad (M.S.) on “Graphs derived from rings and ordered

structures”.
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Details of the Symposia organized :

1. On “Differential manifolds and related areas”.

Convener: Manjusha Majumdar (Calcutta).

Speakers :

1. Manjusha Majumdar (Calcutta).

2. A. Sheikh (Burdwan University).

3. Bhattacharyya (Jadavpur University).

4. S. K. Srivastava ( Gorakhpur University)

2. On “Srinivasa Ramanujan’s work”

Convener: K. Srinivasa Rao (Retd. Prof. IMSC, Chennai).

Speakers :

1. Arun Verma (IIT Roorkee, Utharakhand).

2. Ahmad Ali (B. B. D. University, Lucknow).

3. A. K. Agarwal (Punjab University, Chandigarh).

4. K. Srinivasa Rao (Retd. Prof. IMSC, Chennai).

3. On “Advances in Ordered Structures and Enumeration”

Convener: S. K. Nimbhorkar, (Aurangabad).

Speakers :

1. V. V. Joshi (Pune),

2. Y. M. Borse (Pune),

3. S. K. Nimbhorkar (Aurangabad),

4. N. Bhavale (Pune).

4. On “Topology and Applications”.

Convener: Satya Deo, HRI, Allahabad.

Speakers :

1. Kashyap Rajeevsarathy (IISER, Bhopal).

2. Mahender Singh (IISER, Mohali).

3. Satya Deo (HRI, Allahabad).

5. On “Graph Theory and Applications”.

Convener: A. Vijayakumar (Cochin Uni. of Sc. and Tech.)

Speakers :

1. B. N. Waphare (Pune),

2. S. Arumugum (Kalaslingam),

3. Ms. A. Anuradha (NIT, Trichy),
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4. Balaraman Ravindran ( IITM, Chennai)

5. G. Sethuraman (Anna University, Chennai).

———

Vinod Kumar P. B.,

Department of Mathematics, Rajagiri School of Engineering and Technology,

Rajagiri Valley, Kakkanad, Cochin - 682 039 (Kerala).
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