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ON THE DIVISION BY 5 OF PERIODS OF
ELLIPTIC FUNCTIONS AND THE EXISTENCE OF

AN OUTER-AUTOMORPHISM OF S6
∗

R.Sridharan

Introduction

The systematic study of division of periods of elliptic functions undertaken

by Abel [[1]] in the nineteenth century has its implicit origin in the well-known

and centuries’ old problem of the ancient Greeks whether a regular heptagon

can be inscribed in a circle with ruler and compass alone, which was solved

in a spectacular way by Gauss. As is well-known, Gauss, the prince among

mathematicians, in his great work Disquisitiones Arithmeticae, published in

1801, ( [[4]], an English translation, we quote sometimes from) solved a much

more general question in Section 7 of this book by showing that a necessary

and sufficient condition that a regular n sided polygon can be inscribed in a

circle with ruler and compass alone is that n must be of the form 2rp1 . . . pt,

where r ≥ 0 is any integer and pi, primes of the form 22m

+ 1 for m ≥ 0.

In fact, in March 30, 1797, as a student, Gauss had already shown that

the next prime p after 5 for which a regular p-sided polygon can be inscribed

in the above mentioned manner in a circle is p = 17 and he did explicitly

achieve such a construction! While introducing in section 7, entitled Equations

Defining Sections of Circle of his book, which deals with the proof of his general

theorem, he made the following rather cryptic statement “The principles of the

theory which we are going to explain actually extend much farther than we will

indicate (for they can be applied not only to circular functions, but just as well

to other transcendental functions, e.g. to those which depend on the integral∫
dx√
1−x4

)”. Towards the end of this section, he adds a warning against any

one attempting to achieve “geometric” constructions for sections other than

∗ The text of the Presidential Address (Technical) delivered at the 76th Annual Conference

of the Indian Mathematical Society held at the Sardar Vallabhbhai National Institute of

Technology (SVNIT), Surat - 395 007, Gujarat, during the period December 27 - 30, 2010.

c© Indian Mathematical Society, 2011.
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2 R.Sridharan

the ones suggested by his theory (e.g, sections into 7,11,13,19 etc parts) and so

spend his time uselessly.

The “principle” Gauss used to prove his beautiful theorem for the circle

can be roughly described in retrospect as “Galois Theory of Cyclotomic Exten-

sions”.

Abel, then a young mathematician, who read the book of Gauss was first

bemused by Gauss’ remark that a similar theorem holds for transcendental

functions associated to the integrals like
∫

dx√
1−x4

. Of course, it did not take

very much long for this genius to understand what Gauss had in mind, namely

that a theorem similar to that for a circle can be proved for the Lemniscate

curve given by the equation (x2 +y2)2 = x2−y2, whose arc length turns out to

be (as is easily seen by using the polar equation r2 = cos 2θ for the curve) the

integral
∫

dr√
1−r4 . Incidentally, the Lemniscate curve can once again be traced

back to the Greeks (especially to Eudoxus), who considered such a curve on

the 2-sphere and the curve had been called the Hippopede (“horseshoe”). This

curve was rediscovered by the Bernoulli brothers in the seventeenth century and

who, as was usual with them, had unending quarrels between them regarding

priorities!

The Lemniscate curve became an object of intense study for the mathemati-

cians of the seventeenth and eighteenth centuries. The Italian mathematician

Fagnano spent his life time studying various properties of this curve (At his

wish, this curve was engraved on his tomb stone). Fagnano proved in particular

that the arc length of this curve can be bisected with ruler and compass (which

work came to the notice of Euler in Germany, who proved that Fagnano’s re-

sult can be generalised to an addition theorem for the so-called elliptic integrals

which paved the way to a systematic study of “elliptic integrals” by Legendre,

but both of them missed the point that “inverting” such integrals led to new

transcendental functions called elliptic functions, a remarkable discovery due

independently to Abel and Jacobi, and due independently, also to Gauss, much

earlier than them!). Fagnano also proved that the arc of the lemniscate can be

divided into 5 equal parts in a similar manner. Gauss, who never published

much of his work had in fact in a note ( [[5]], entry 62, March 21, 1797) in his

diary (which was published only 30 years after his death) also mentions the

possibility of division into 5 equal parts of the Lemniscate curve. But by the

time Gauss’s diary was published, Abel and Jacobi had already defined ellip-

tic functions and worked extensively on various aspects of these functions. In

particular, Abel had proved that under the same conditions on the integer n
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ON THE DIVISION BY 5 OF PERIODS OF ELLIPTIC FUNCTIONS AND · · · 3

that Gauss had for the division of the circle into n equal parts, the Lemniscate

can be also divided into n equal parts!

Abel, in a series of papers in the Crelle journal systematically developed

the theory of elliptic functions ; taking up in one of his papers the question

of division of periods, he deduced in particular that for the elliptic function

associated with inverting the integral
∫

dx√
1−x4

, division by an integer n is pos-

sible if n is of the form 2rp1 . . . pt with pi = 22mi
+ 1 prime for all i, the same

condition that Gauss had given for the division of the circle. (It is incidentally

worth remarking in this context that the Italian mathematician G.Libri who

was a contemporary of Abel, continuing to work on the problem of division

of the Lemniscate into equal parts, started by Fagnano and trying to extend

it on the lines of Fagnano, submitted a paper to the Paris Academy, which,

according to Libri, was placed next to that of Abel, and was ignored! His paper

was published in the Crelle later [[8]]). Abel in his researches also proved that,

in general, the problem of division by n of periods of elliptic functions leads to

algebraic equations over Q which in general are not even solvable by radicals

for n ≥ 5.

G.Halphen, in the third of his three volumes on Traité des fonctions ellip-

tiques et de leurs applications, this last volume being published posthumously

in Paris in 1891 [[6]], discusses the question of division of periods of elliptic

functions by primes and in particular, the problem in full detail for p = 5, 7, 11

(which are in some sense special, though we shall not explain here why!) In

particular, in chapter I of his third volume, he discusses the question of division

by 5 of periods of the Weierstrass elliptic function ℘ and shows (as was in fact

done by Brioschi earlier) that if
℘′(z)2 = 4℘(z)3 − g2℘(z)− g3,

the problem of division of its periods depends on the solutions of the sixth

degree equation

x6 − 5g2x
4 − 40g3x

3 − 5g2
2x

2 − 8g2g3x− 5g2
3 = 0,

and a quadratic equation. If one denotes by α, one of the roots of the above,

and α0, α1, α2, α3, α4, the rest, Halphen obtains by a non trivial and lengthy

computation, the polynomial equation

x5 +
10

3
x3 + 5x− 8

3
g3

√
J − 1 = 0,

(where J =
g3
2

∆ , ∆ denoting the discriminant 4g3
2−27g2

3 of the cubic 4x3−g2x−
g3), whose roots β0, β1, β2, β3, β4 are given by

βi = ααi + αi+1αi+4 + αi+2αi+3
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4 R.Sridharan

(the indices to be read mod 5), which is the so-called Brioschi-resolvent of this

sixth degree polynomial. (We note incidentally that P.Gordan in a beautiful

paper reduced the “general” equation of the 5th degree to the above Brioschi

normal form by solution of linear and quadratic equations - unlike Brioschi who

had used a cubic equation (cf [[10]] for a recasting and appreciation of Gordan’s

work)

The first section of this article is devoted to the derivation of the sixth degree

equation mentioned above (though by a method not exactly that of G.Halphen,

but based on ( [[9]], p. 234)) and the second section gives a brief statement of

the result leading to the Brioschi resolvent of degree 5.

The final section of this article which is perhaps the only, hopefully new

contribution of this article is the construction of an outer-automorphism of S6

by a rather wild guess, motivated by the definition of βi defined by Halphen.

In fact, denoting the symmetric group on 6 symbols denoted by ∞, 0, 1, 2, 3, 4,

we define a map φ on the set of transpositions (∞, i), 0 ≤ i ≤ 4 with values in

S6 by setting φ((∞, i)) = (∞, i)(i+ 1, i+ 4)(i+ 2, i+ 3), (i being read modulo

5) and show that φ can be extended to an automorphism of S6 by using a

description, more generally of any Sn (due to G.E. Moore), by generators and

relations (cf [[2]]).

In a lighter vein, I would like to confess that when I look back at the introduc-

tion, the Marathi aphorism, included in the introduction of the Vākyapadīya

of Bhartrhari edited with explanatory notes by the renowned scholars K.V.

Abhyankar and V.P.Limaye and published in the “Poona University Sanskrit

Series” comes to my mind. These erudite scholars, while comparing the size of

the actual text with the total size of their appendices say that they hope that

it does not illustrate the Marathi proverb which when translated into Sanskrit

reads a½� q� mA/, p� zq, k� cA nA<yvlEMbn, (in English, meaning “The man is

just thumb high, but has a beard reaching up to his navel”). I am afraid that

this proverb applies more fittingly to the present article when one compares

the mathematical contents of this article with the length of the introduction!

Acknowledgements

First and foremost I take this opportunity to record my gratitude and indebt-

edness to Nivedita, who, with her usual generosity, came forward to transform

my scribble to a readable beautiful computer manuscript. I am also very thank-

ful to Vijayalakshmi for her kind help in incorporating some of my last minute

changes. I am thankful to the Indian Mathematical Society for inviting me

to give this Presidential “technical” lecture during their annual meeting held



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

ON THE DIVISION BY 5 OF PERIODS OF ELLIPTIC FUNCTIONS AND · · · 5

in Surat in December 2010. I am thankful to Prof. Patadia, but for whose

gentle behest, this article would never have come into existence and to Raja

Sridharan for his patient help during my writing of this article.

1. A sixth degree polynomial equation associated to the division of

periods of elliptic functions

Let ℘ denote the Weierstrass elliptic function which is a doubly periodic

meromorphic function with the R-linearly independent periods ω1, ω2 defined

by

℘(z) =
1

z2
+
∑
ω 6=0

(
1

(z − ω)
2 −

1

ω2

)
,

where the summation is over all elements ω of the form m1ω1 +m2ω2 ; m1,m2

not both zero. The problem of division by 5 of the periods ω is just the study

of the values of ℘(z) for z = m1ω1+m2ω2

5 . We recall that the pair (℘(z), ℘′(z)),

z ∈ C parametrizes the elliptic curve in the plane given by the equation

y2 = 4x3 − g2x− g3,

where g2, g3 are explicit complex numbers defined in terms of the periods ω1, ω2.

We do not need their explicit definition and so do not bother to write them

down. In view of the periodicity of ℘, if we exclude the case m1 = m2 = 0 which

corresponds to the “point at∞” of the above curve, the values 0 ≤ mi ≤ 4 give

rise to 24 values of ℘
(
m1ω1+m2ω2

5

)
, of which once again, due to the fact that

℘ is an even function of z (as is obvious), there are only 12 distinct values. If

we denote by ω any typical period, it is clear that in order to determine these

12 values, it is enough to determine the (distinct) values of ℘
(
ω
5

)
and ℘

(
2ω
5

)
.

Let us set x = ℘
(
ω
5

)
+℘

(
2ω

5

)
and x′ = ℘

(
ω
5

)
℘
(

2ω
5

)
. The values of ℘

(
ω
5

)
and

℘
(

2ω
5

)
are then determined by the quadratic equation

y2 − xy + x′ = 0.

We will show that x is determined by the 6th degree equation

x6 − 5g2x
4 − 40g3x

3 − 5g2
2x

2 − 8g2g3x− 5g2
3 = 0,

and x′ from the equation (for such an x) by

x3 − 6xx′ +
1

2
g2x+ g3 = 0.

The fact that x satisfies the required sixth degree equation is proved as

follows :

We recall the duplication formula for the function ℘ which can be written

as

℘(2z) =
(℘2(z) + 1

4g2)2 + 2g3℘(z)

4℘3(z)− g2℘(z)− g3
,
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6 R.Sridharan

which comes from the relation ℘(2z) = −2℘(z) + 1
4

(
℘′′(z)
℘′(z)

)2

and some simpli-

fication. This tells us that

x = ℘
(ω

5

)
+ ℘

(
2ω

5

)
= ℘

(ω
5

)
+

(℘2(ω
5 ) + 1

4g2)2 + 2g3℘(ω
5 )

4℘3(ω
5 )− g2℘(ω

5 )− g3

= y +
(y2 + 1

4g2)2 + 2g3y

4y3 − g2y − g3

with y = ℘
(
ω
5

)
However, this equation between x and y is satisfied if y is also replaced by

y = ℘
(

2ω
5

)
. In other words, ℘

(
2ω
5

)
is also a root of the same equation since

x = ℘
(

2ω
5

)
+ ℘

(
ω
5

)
= ℘

(
4ω
5

)
+ ℘

(
2ω
5

)
by the periodicity and evenness of ℘.

Hence the polynomial(
y2 +

1

4
g2

)2

+ 2g3y + (y − x)
(
4y3 − g2y − g3

)
is divisible by the polynomial y2 − yx+ x′. If we divide the above polynomial

by y2−yx+x′, the resulting remainder, which is a linear polynomial in y must

therefore have both its coefficient of y and the constant term zero. This gives

by a computation, the following equations

x3 − 6xx′ +
1

2
g2x+ g3 = 0 . . . (∗)

5x′2 − x′(x2 − 1

2
g2) + g3x+

g2
2

16
= 0 . . .(∗∗)

Eliminating x′ in (**), using (*), we get the equation

x6 − 5g2x
4 − 40g3x

3 − 5g2
2x2 − 8g2g3x− 5g2

3 = 0

Given any root of the above equation (whose roots are distinct for general

g2 and g3), we can get x′ from (*) and finally, y = ℘
(
ω
5

)
or ℘

(
2ω
5

)
are then

the two distinct roots of the quadratic equation

y2 − xy + x′ = 0

giving the desired 12 distinct values.

We reiterate that G.Halphen gives a slightly different method of arriving at

the 6th degree equation above. We use the method given in the book of Molk

and Tannery ( [[9]] p. 233), correcting incidentally a few misprints (which indeed

were rather troublesome) in their proof.

We note incidentally that if g3 = 0, the equations above reduce to the quartic

equation x4 − 5g2x
2 − g2

2 = 0 and a quadratic equation. For instance, for the

special value g2 = 1
4 , this shows that the division of the Lemniscate curve into
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ON THE DIVISION BY 5 OF PERIODS OF ELLIPTIC FUNCTIONS AND · · · 7

5 equal parts can be achieved by ruler and compass alone. (This is essentially

the proof Abel gives in his paper. In general, the sixth degree equation is not

solvable by radicals.)

2. The Brioschi quintic associated to the sixth degree equation of

the previous section

Motivated by the work of Kronecker, Brioschi in fact wrote down a resolvent

of degree 5 for the sixth degree equation of the earlier section. G.Halphen, in

his third volume on elliptic functions constructs (partly influenced by Brioschi’s

work) the Brioschi resolvent. The resolvent is in fact the following polynomial

of degree 5 given by

f(x) = x5 − 10

3
x3 + 5x− 8

3

√
J − 1,

where J =
g3
2

∆ (∆ denoting the discriminant of the cubic polynomial 4x3 −
g2x − g3, is the absolute invariant of the elliptic curve y2 = 4x3 − g2x − g3).

We do not include Halphen’s proof here, since it is quite lengthy, and since in

any case we are not going to use it in the rest of the article. We would however

like to remark that P.Gordan in a remarkable paper proved that the general

equation of the fifth degree can always be brought to the remarkable normal

form (all whose coefficients except the constant term, being rational constants)

only by quadratic and linear substitutions (cf [[10]] for a “modern” version of

his beautiful proof).

We shall need as a vague motivation for the next section, the transformation

of the roots of the sixth degree equation used by Halphen to get the Brioschi

normal form, which we describe now. We denote by α, α0, α1, α2, α3, α4 the

(distinct) roots of the sextic. By an intricate analysis, Halphen proves that if

we define βi, 0 ≤ i ≤ 4, by setting

βi = ααi + αi+1αi+4 + αi+2αi+3,

(where the indices i are read modulo 5), the βi are indeed the roots of the

Brioschi quintic. As we remarked, his proof (modelled essentially after Brioschi’s)

is quite intricate and lengthy. Perhaps, it is possible to simplify Halphen’s

proof, but we are not in a position to do so now.

3. An outer automorphism of S6

Let us denote by ∞, 0, 1, 2, 3, 4 six distinct symbols and consider the group

of bijections of these elements which is an S6. Our aim in this section is to

construct an automorphism of S6 which is outer, i.e. is not given by conjugation

by any element of S6. Since any conjugation must take any transposition
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8 R.Sridharan

to another, it would be enough to exhibit an automorphism which takes a

transposition to a product of (here, in fact three) distinct transpositions. (It is

a remarkable property of the number 6 that it is the only natural number for

which the number of transpositions (which is 15) is the same as the number of

permutations which are product of three disjoint transpositions!) The group S6

is thus indeed the only symmetric group which admits outer automorphisms.

This amazing result goes back to O. Hölder ( [[7]], p.343). In fact, the group

of all automorphisms of S6 is 1440, there being only one non trivial conjugate

class of outer automorphisms of S6.

To construct such an automorphism, we first define a map φ on the set of

transpositions of the form (∞, i), 0 ≤ i ≤ 4, with values in S6, defined by

φ((∞, i)) = (∞, i)(i+ 1, i+ 4)(i+ 2, i+ 3),

where the indices are to be read modulo 5.

We shall show that φ can be extended to an automorphism of S6 and this is

the required automorphism (Note that the definition of φ comes from a rather

naive imitation of the βi in terms of the αi). Once the extension of φ has been

guaranteed, it is rather immediate that this extension which we shall continue

to denote by φ must be injective since its kernel has to be either the identity

subgroup of S6 which is what we want, or S6 or A6; both the latter possibilities

are impossible since the image of φ cannot obviously reduce to identity, nor

can it reduce to a subgroup of two elements, which is once again clear. Since

φ is injective, it should be surjective!

The crucial point is therefore to check that φ admits (indeed a unique)

extension to an endomorphism of S6. In order to prove this, we first denote

by γ the transposition (∞, 0) and γi, 0 ≤ i ≤ 3, the transpositions (i, i + 1)

(the indices being as usual always read modulo 5). Obviously γ, γi, 0 ≤ i ≤ 3

generate S6. The relations among these five elements are given by the following

• γ2 = γ2
i = 1 for 0 ≤ i ≤ 3

• γiγj = γjγi for 0 ≤ i < j − 1 ≤ 3

• γγi = γiγ for 1 ≤ i ≤ 3

• (γγ0)3 = 1

• (γiγi+1)3 = 1 for 0 ≤ i ≤ 3

This is a trivial checking which we shall not give. We define φ(γi), 0 ≤ i ≤ 3

by forcing multiplicativity of φ. Indeed, we have for i 6= j (i < j say)

(i, j) = (∞, i)(∞, j)(∞, i),

so that, φ should be defined by
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ON THE DIVISION BY 5 OF PERIODS OF ELLIPTIC FUNCTIONS AND · · · 9

φ((i, j)) = φ((∞, i))φ((∞, j))φ((∞, i))

= (∞, i)(i+ 1, i+ 4)(i+ 2, i+ 3)(∞, j)(j + 1, j + 4)(j + 2, j + 3)

(∞, i)(i+ 1, i+ 4)(i+ 2, i+ 3),

so that with j = i+ 1, we have, in particular

φ((i, i+ 1)) = (∞, i+ 3)(i, i+ 4)(i+ 1, i+ 2).

Explicitly, one then has

φ((0, 1)) = (∞, 3)(0, 4)(1, 2)

φ((1, 2)) = (∞, 4)(0, 1)(2, 3)

φ((2, 3)) = (∞, 0)(1, 2)(3, 4)

φ((3, 4)) = (∞, 1)(0, 4)(2, 3)

Setting γ′ = φ((∞, 0)) and γ′i = φ((i, i+ 1)) for 0 ≤ i ≤ 3, we show that γ′

and γ′i satisfy the relations which should be the same as among the γ and γi

and this would finish the proof that φ indeed extends to an endomorphism of

S6, provided we grant the result of G.E Moore referred to in the introduction.

We do not check all the relations since it would be a rather tedious task both

to write and to read. We shall check some sample relations. The conditions

γ′2 = γ′2i = 1 are clear. For instance γ′20 = φ((0, 1))2 = (∞, 3)(0, 4)(1, 2)(∞, 3)

(0, 4)(1, 2) = 1 holds trivially since the R.H.S = ((∞, 3)(0, 4)(1, 2))2 = id.

We check for example (γ′γ′0)3 = 1. In fact γ′γ′0 = (∞, 0)(1, 4)(2, 3)(∞, 3)

(0, 4)(1, 2) = (1, 3, 0)(∞, 2, 4) is the product of two 3 cycles and hence we are

through. Similarly,

γ′γ′1 = (∞, 0)(1, 4)(2, 3)(∞, 4)(0, 1)(2, 3)

= (0, 4)(1,∞)

γ′1γ
′ = (∞, 4)(0, 1)(2, 3)(∞, 0)(1, 4), (2, 3)

= (1,∞)(0, 4).

which are the same!

For 0 ≤ i < j − 1 ≤ 3, it is easily checked that γ′iγ
′
j = γ′jγ

′
i, which are both

products of disjoint transpositions.

For any i, with 0 < i ≤ 3, γ′iγ
′
i+1 is the product of the (disjoint) 3-cycles

(∞, i, i+ 2) and (i+ 1, i+ 4, i+ 3) and hence (γ′iγ
′
i+1)3 = 1.

Indeed, one can check all the other required relations between the γ′, γ′i,

where 0 ≤ i ≤ 3 and this proves that φ does indeed admit an extension as an

endomorphism of S6 to S6. This finishes the proof. We end however with the

following remarks.
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4. Remarks

1. We note that the transpositions γ0, γ1, γ2, γ3 generate a subgroup of S6

which fixes the symbol ∞ and hence is in particular a non-transitive

subgroup of S6. However γ′0, γ
′
1, γ
′
2, γ
′
3 by their very definition are easily

seen to generate a subgroup of S6 isomorphic to S5 which is transitive

on the symbols ∞, 0, 1, 2, 3, 4. This illustrates the general principle

that if an automorphism of S6 takes a non-transitive subgroup onto a

transitive subgroup, then it cannot be inner!

2. The existence of outer automorphisms of S6 is quite an ubiquitous

phenomenon and occurs in various contexts. I end this article by re-

ferring very briefly and sketchily to one such. In a paper [[11]] of G.

van der Geer, where he discusses a certain compactification of the quo-

tient space S∗2 = S2/Γ2(2), where S2 is the Siegel upper-half space of

degree 2 and Γ2(2) = ker(Sp(4,Z) → Sp(4,Z/2)); he shows that the

1-dimensional boundary components correspond bijectively to totally

isotropic 1-dimensional subspaces of F4
2 equipped with the standard

skew symmetric form and the 0-dimensional boundary components cor-

respond bijectively to 2-dimensional isotropic subspaces. The group

Sp(4,F2) operates on six maximal sets of five disjoint 1-dimensional

boundary components and this action establishes an isomorphism of

Sp(4,F2) with S6. Curiously enough, the configuration of the bound-

ary components given on p.324 of his paper has already been considered

in a different connection by Tutte (in 1958), namely, in connection with

the cycle structure of S6 and has been called the Tutte graph by H.S.M.

Coxeter in [[3]] (Lect 7, p.153). This graph is related to the existence of

outer automorphisms of S6.
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A QUESTION OF MODELS∗

SHIVA SHANKAR

1. Introduction

I am grateful for this opportunity to speak here.

I am going to speak about a question that arises in our attempt to construct

a model for some phenomenon in the natural world or of an engineering sys-

tem. This question resembles in form the following basic question in algebraic

geometry:

Let A =C[X1, . . . , Xn], i ⊂ A an ideal, and let V(i) be the variety of i in

Cn (i.e. the set of common zeros of all the polynomials in i). The question

is: if i and j are two ideals, when is V(i) = V(j)? The answer is the Hilbert

Nullstellensatz which states that V(i) = V(j) if and only if
√
i =
√
j.

Instead, suppose thatA =C[D1, . . . , Dn], the ring of constant coefficient par-

tial differential operators, where Dj = 1
ı
∂
∂xj

, ı =
√
−1. Given p(D) in A, a dis-

tribution f in D′ is a zero of p(D) if p(D)f = 0. Let BD′(p) = {f ∈ D′|p(D)f =

0} be the set of all its zeros, in other words the kernel of the A-module map

p(D) : D′ → D′. More generally, instead of D′, one can consider zeros in some

A-submodule F of D′. Even more generally, given p(D) = (p1(D), . . . , pk(D))

in Ak, let BF (p) be the kernel of the A-module map p(D) : Fk → F given by

p(D)f =
∑
j pj(D)fj , where f = (f1, . . . , fk) is in Fk. Given a submodule P

ofAk, BF (P) = ∩p∈PBF (p) is the set of common zeros in F of all the p(D) in P.

∗ The text of the twenty fourth P.L. Bhatnagar Memorial Award Lecture delivered at the

76th Annual Conference of the Indian Mathematical Society held at the Sardar Vallabhbhai

National Institute of Technology (SVNIT), Surat - 395 007, Gujarat, during the period

December 27 - 30, 2010.

c© Indian Mathematical Society, 2011.
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14 SHIVA SHANKAR

The question I wish to address is: given two submodules P and Q of Ak,

when is BF (P) = BF (Q)? This is the Nullstellensatz problem for systems of

PDE [7].

2. Models

To explain the meaning of this question, I must first say a few words about

models and the class of models that a theory focuses its attention on.

A model is a picture of reality, and the closer it is to reality the better the

picture it will be, and the more effective will be the theory that describes this

model. A model seeks to represent a certain phenomenon or system whose

attributes are certain qualities that are changing with space, time etc. The

closest we can get to this reality, this phenomenon, is to take all possible

variations of the attributes of the phenomenon, itself, as the model. This

collection, considered all together in our minds, is, in engineering parlance, the

behaviour of the phenomenon or the system [10]. Paraphrasing Wittgenstein,

one might even declare that the behavior is all that is the case!

A priori, any evolution of these attributes could perhaps have occured, but

the laws of the system prescribe those evolutions that actually do. I shall

consider behaviours described by local laws, i.e. laws expressed by differential

equations (here by local I mean that the variation of the attributes of the

phenomenon at a point depends on the values of the attributes in arbitrarily

small neighbourhoods of the point, and not on points far away).

This is a familiar situation in physics, mathematics and engineering. For

instance:

1. Planetary motion. A priori, the earth could perhaps have traversed

any trajectory around the sun, but Kepler’s laws restrict it to travel an

elliptic orbit, sweeping equal areas in equal times, and such that the

square of the period of revolution is proportional to the cube of the

major semi-axis. Kepler’s laws are of course local, namely Newton’s

equations of motion.

2. Magnetic fields. A priori, any function B could perhaps have been a

magnetic field, but in fact must satisfy the law that there do not exist

magnetic monopoles in the universe. This law is also local:

div B = 0

3. Complex analysis. Complex analysis studies those functions which ad-

mit a convergent power series about each point. This is the law that

defines the subject.
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A QUESTION OF MODELS 15

This law is again local, viz. the Cauchy-Riemann equations.

As it is impossible to list every possible evolution of the attributes of a

phenomenon - usually there are infinitely many - we instead list the laws the

phenomenon satisfies - usually these can be effectively listed. This list of laws

is a model of the phenomenon, a more concise and efficient model than a listing

of every instance of the phenomenon. An important case when all laws can be

generated by a finite list is when the phenomenon is linear and shift invariant.

Such behaviours arise as kernels of maps given by systems of constant coefficient

differential operators, and are therefore also called differential kernels.

Thus suppose that the attributes of a system are described by some k-tuple

of smooth functions, f = (f1, . . . , fk), fj : Rn → C. Then a law the system

obeys is a partial differential operator p(D) = (p1(D), . . . , pk(D)) such that

p(D)f =
∑
pj(D)fj = 0. In other words a law is an operator p(D) : (C∞)k →

C∞, and to say that f obeys this law is to say that p(D)f = 0, or that f is a

zero of p(D). The phenomenon itself is

B =
⋂

all laws p

{f |p(D)f = 0}

the common zeros of all the laws governing the phenomenon.

Shift-invariance implies that p(D) belongs to the ring A =C[D1, . . . , Dn] of

constant coefficient partial differential operators on Rn. Linearity implies that

the totality of laws the system obeys is the submodule P of Ak generated by

all the laws p(D). Thus the sum of two laws is a law, and differentiating a law

further is again a law. As A is Noetherian, all these laws are generated by a

finite number of laws. If they be l in number, then writing these l laws as rows

of a matrix gives an operator

P (D) : (C∞)k −→ (C∞)l

whose kernel is precisely the behaviour of the system.

There is nothing very special about the A-module C∞, and I shall more

generally consider phenomena whose attributes are elements in the A-modules

D′, C∞, the space S ′ of temperate distributions, the Schwartz space S, the

spaces E ′ and D of compactly supported distributions and smooth functions,

and certain spaces of periodic functions.

The meaning of the Nullstellensatz problem is now clear: given two sets of

laws, expressed by the submodules P and Q of Ak, when are they models for

the same phenomenon? In other words, when is BF (P) = BF (Q)?



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

16 SHIVA SHANKAR

3. Algebraic Structure

The answer to the above Nullstellensatz question for PDE depends on the A-

module structure of the space F . For the spaces D′, C∞ and S ′, this description

is the Fundamental Principle of Malgrange-Palamodov which I now explain.

This result states that every image (D′)k P (D)−→ (D′)l is also a kernel, in fact

the kernel of (D′)l Q(D)−→ (D′)m, where the m rows of Q(D) generate all the

relations between the rows of P (D). Thus the sequence

(D′)k P (D)−→ (D′)l Q(D)−→ (D′)m

is exact.

The Fundamental Principle answers the solvability question for systems of

PDE: given g in (D′)l, is there an f in (D′)k such that P (D)f = g? The

principle asserts - yes, if and only if Q(D)g = 0 [1,5].

Example: Consider the curl operator

curl =

 0 −ıDz ıDy

ıDz 0 −ıDx

−ıDy ıDx 0


where Dx = 1

ı
∂
∂x etc. All the relations between its rows is generated by

(ıDx, ıDy, ıDz). Thus curl f = g is solvable for a given g in (D′)3 if and only if

div g = 0. This is just the exactness of the sequence

(D′)3 curl−→ (D′)3 div−→ D′ (3.1)

Similarly the relations between the rows of the gradient operator (ıDx, ıDy, ıDz)
t

are generated by the rows of curl. Then again by the Fundamental Principle

grad f = g is solvable for a given g in (D′)3 if and only if curl g = 0. It similarly

follows that div f = g can be solved for every g, so that

D′ grad−→ (D′)3 curl−→ (D′)3 div−→ D′ → 0

is exact. �

I wish to emphasise the role played by the space F where the solutions are

located (lest it be thought that this is a problem in algebra). For instance it

turns out that not only is (1) exact, but that also its restriction to D

D3 curl−→ D3 div−→ D
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A QUESTION OF MODELS 17

is exact. Now, as the columns c1(D), c2(D), c3(D) of curl are A-dependent, i.e.

as Dxc1(D)+Dyc2(D)+Dzc3(D) = 0, the D′ image of curl is also the D′ image

of the operator crl = (c1(D), c2(D)) given by the first two columns of curl. For

suppose g is in D′. Let f in D′ be such that ıDzf = g (by the Fundamental

Principle there is such an f - indeed if p(D) is nonzero, then there is always

an f such that p(D)f = g - which is to say that D′ is a divisible A-module).

Hence c3(D)g = c3(D)ıDzf = −(ıDxc1(D) + ıDyc2(D))f = c1(D)(−ıDxf) +

c2(D)(−ıDyf), which is in the image of the operator crl.

In other words, the sequence

(D′)2 crl−→ (D′)3 div−→ D′

is also exact. On the other hand its restriction to D

D2 crl−→ D3 div−→ D

is not exact [9].

In the above I used the Fundamental Principle in the simplest situation,

that for a single PDE. It asserted the surjectivity of D′ p(D)−→ D′, viz. that

D′ is a divisible A-module. So is C∞ - this is the basic existence theorem

of Ehrenpreis-Malgrange. The space S ′ of temperate distributions is also a

divisible A-module - this is a famous result of Hörmander- Lojasiewicz, and in

particular it implies the existence of fundamental solutions that are temperate.

But the Fundamental Principle says much more: the sequence Fk P (D)−→
F l Q(D)−→ Fm is identical to the sequence HomA(Ak,F)

P (D)−→ HomA(Al,F)
Q(D)−→

HomA (Am,F), and to say this is exact when Am Qt(D)−→ Al P
t(D)−→ Ak is exact

is to say that F is an injective A-module. Indeed, D′ and C∞ are injective

cogenerators, whereas S ′ is injective although not a cogenerator. On the other

hand S, E ′ and D are not injective, not even divisible A-modules. Instead, S
is a flat A-module while E ′ and D are faithfully flat [2,4,5,9].

I also consider the following spaces of periodic functions: let T be the torus

Rn/2πZn. The space C∞(T) := C∞(Rn/2πZn) of smooth functions on it is

a Fréchet space, and also a topological A-module. For positive integers N1

dividing N2, the space Rn/2πN2Zn is a covering space of Rn/2πN1Zn, and

the natural A-module morphism C∞(Rn/2πN1Zn) → C∞(Rn/2πN2Zn) iden-

tifies the first space with a closed subspace of the second. Define C∞(PT) :=

lim
→
C∞(Rn/2πNZn); it is a strict direct limit of Fréchet spaces and is a locally

convex bornological and barrelled topological vector space. The elements of A
act continuously on it, so that C∞(PT) is also a topological A-module. It turns
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18 SHIVA SHANKAR

out that elements of C∞(PT) can be considered as functions on the inverse

limit PT := lim
←

Rn/2πNZn , which is a compact topological group called the

protorus.

Finally, let C∞(T)[x1, . . . , xn] and C∞(PT)[x1, . . . , xn] be subalgebras of

C∞(Rn) obtained by adjoining the coordinate functions x1, . . . , xn. These are

not injective A-modules themselves (unless n = 1) but because they contain

(dense) injective submodules we can solve the Nullstellensatz problem for these

algebras [3].

4. The category of differential kernels

The above results on PDE, homological algebraic in nature, originate with

an observation of Malgrange, that the differential kernel BF (P) is isomorphic

as an A-module to HomA(Ak/P,F) (see below). This implies that there is a

category of differential kernels somewhat like the category of affine varieties,

and that some of the questions about the latter can be carried over to questions

about the former. A most basic fact about the category of affine varietes is that

there is a duality between this category and the category of finitely generated

nilpotent-free C-algebras, namely the Hilbert Nullstellensatz. The question I

have asked is the corresponding statement for differential kernels.

So let R = EndA(F) be the A-algebra of all A-linear endomorphisms of F .

Then F is an R-module via rf = r(f) for f in F , in fact F is an A-R bimodule.

IfM is an A-module, the A-module HomA(M,F) is also an A-R bimodule by

setting rφ = r ◦ φ (composition).

There is now (as in the category of affine varieties) a contravariant functor

HomA( ,F) : A−Mod −→ R−Mod

M 7→ HomA(M,F)

M φ→ N 7→ HomA(N ,F)
◦φ→ HomA(M,F)

The canonical A-isomorphism HomA(Ak,F) ' Fk is also an R-isomorphism,

hence

HomA(Ak/P,F) ' BF (P)

φ 7→ (φ(e1), . . . , φ(ek))

is also an A-R isomorphism (the ei s are the images of the standard basis of

Ak in Ak/P).

Thus, there is a contravariant functor between differential kernels in F and

the full subcategory of finitely generated A-modules.

By a fundamental result of Oberst [4] this functor establishes a categorical

duality when F is D′ or C∞ (more precisely he shows that D′ and C∞ are large
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A QUESTION OF MODELS 19

injective cogenerators). This raises the

Question: Which is the sub-family of finitely generated A-modules that is in

duality (via the above functor) with differential kernels in other spaces? This

is, once again, the question:

What is the equivalent of the Hilbert Nullstellensatz for systems of PDE?

5. The Nullstellensatz for systems of PDE

Let P be a submodule of Ak, and F an A-module. Let P̄F be the submodule

of Ak consisting of all those p(D) whose kernel (in F) contains BF (P). Clearly

this submodule contains P, and in fact is the largest submodule of Ak whose

kernel in F equals BF (P). Call this submodule the Willems closure of P in

F . Call P closed with respect to F if it equals its closure. This is completely

analogous to the familiar Galois correspondence between ideals and varieties.

The notion of closure here is the analogue of the radical of an ideal, and its

calculation is the analogue of the Hilbert Nullstellensatz.

The calculation of this closure for the spaces of Section 3 is:

Theorem 5.1. [3,7,8]: (i) Every submodule P is closed with respect to D′ or

C∞ (this is the Fundamental Principle together with the cogenerator property).

(ii) Let P =
⋂t
j=1Qj be an irredundant primary decomposition of P in Ak,

where Qj is pj-primary. Suppose that the affine varieties V(p1), . . . ,V(ps) con-

tain real points (i.e. intersect Rn) and that V(ps+1), . . . ,V(pt) do not. Then

the Willems closure of P with respect to S ′ is
⋂s
j=1Qj, so that P is closed

with respect to S ′ if and only if the variety of every associated prime of Ak/P
contains real points.

(iii) In the notation of (ii), suppose that the affine varieties V(p1), . . . ,V(ps)

contain integral points (respectively rational points) and that V(ps+1), . . . ,V(pt)

do not. Then the Willems closure of P with respect to C∞(T)[x1, . . . , xn] (re-

spectively C∞(PT)[x1, . . . , xn]) is
⋂s
j=1Qj, so that P is closed with respect to

C∞(T)[x1, . . . , xn] (respectively C∞(PT)[x1, . . . , xn]) if and only if the variety of

every associated prime of Ak/P contains integral (respectively rational) points.

(iv) Let π : Ak → Ak/P be the canonical projection. Then the closure of P
with respect to S, E ′ or D is π−1(T (Ak/P)), where T (Ak/P) is the submodule

of torsion elements of Ak/P. Thus P is closed with respect to any of these

spaces if and only if Ak/P is torsion free (or equivalently if and only if P is

0-primary).
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[1] Hörmander, L., An Introduction to Complex Analysis in Several Variables, 3rd edn,

North Holland, Amsterdam, 1990.
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1. Fuchsian Groups

A Kleinian groupG is a discrete subgroup of PSL2(C) = Mob(Ĉ) = Isom(H3).

This gives us three closely intertwined perspectives on the field:

(1) Studying discrete subgroups G of the group of Mobius transformations

Mob(Ĉ) emphasizes the Complex Analytical/Dynamic aspect.

(2) Studying discrete subgroups G of PSL2(C) emphasizes the Lie group/

matrix group theoretic aspect.

∗This is the text of the 21st Srinivas Ramanujan Memorial Award Lecture deliv-

ered at the 76th Annual Conference of the Indian Mathematical Society held at the Sardar

Vallabhbhai National Institute of Technology (SVNIT), Surat - 395 007, Gujarat, during the

period December 27 - 30, 2010.

© Indian Mathematical Society, 2011.
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22 MAHAN MJ

(3) Studying discrete subgroups G of Isom(H3) emphasizes the Hyperbolic

Geometry aspect.

We shall largely emphasize the third perspective. Since G is discrete, we can

pass to the quotient M3 = H3/G. Thus we are studying hyperbolic structures

on 3-manifolds.

In order to obtain some examples, we first move one dimension down and

look at discrete subgroups G of the group of Mobius transformations Mob(∆) =

Mob(H) of the unit disk (which is conformally equivalent to the upper half

plane). These are called Fuchsian Groups, and were discovered by Poincare.

The natural metric of constant negative curvature on the upper half plane is

given by ds2 = dx2+dy2

y2 . This is called the hyperbolic metric. The resulting

space is denoted as H2.

The associated conformal structure is exactly the complex structure on H =

{z ∈ C : Im(z) > 0}. It turns out that orientation preserving isometries

of H2 are exactly the conformal automorphisms of H2. The boundary circle

S1 compactifies ∆. This has a geometric interpretation. It codes the ‘ideal’

boundary of H2, consisting of asymptote classes of geodesics. The topology on

S1 is induced by a metric which is defined as the angle subtended at 0 ∈ ∆.

The geodesics turn out to be semicircles meeting the boundary S1 at right

angles.

We now proceed to construct an example of a discrete subgroup of Isom(H2).

The genus two orientable surface can be described as a quotient space of an oc-

tagon with edges labelled a1, b1, a
−1
1 , b−11 , a2, b2, a2−1, b−12 , where the boundary

has the identification induced by this labelling. In order to construct a metric

of constant negative curvature on it, we have to ensure that each point has a

small neighborhood isometric to a small ball in H2. To ensure this it is enough

to do the above identification on a regular hyperbolic octagon (all sides and all

angles equal) such that the sum of the interior angles is 2π. To ensure this, we

have to make each interior angle equal 2π
8 . The infinitesimal regular octagon at

the tangent space to the origin has interior angles equal to 3π
4 . Also the ideal

regular octagon in H2 has all interior angles zero. See figure below.
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Hence by the Intermediate value Theorem, as we increase the size of the

octagon from an infinitesimal one to an ideal one, we shall hit interior angles

all equal to π
4 at some stage. The group G that results from side-pairing trans-

formations corresponds to a Fuchsian group, or equivalently, a discrete faithful

representation of the fundamental group of a genus 2 surface into Isom(H2).

We let ρ denote the associated representation.

2. Kleinian Groups

We now move back to H3. The hyperbolic metric is given by ds2 = dx2+dy2+dz2

z2

on upper half space. Note that the metric blows up as one approaches z = 0.

Equivalently we could consider the ball model, where the boundary S2 = Ĉ
consists of ideal end-points of geodesic rays as before. The metric on Ĉ is given

by the angle subtended at 0 ∈ H3.

Since Isom(H2) ⊂ Isom(H3), we can look upon the discrete group G we

constructed above also as a discrete subgroup of Isom(H3).

In the above picture two things need to be observed.

1) the orbit G.o accumulates on the equatorial circle. This is called the limit

set ΛG.

2) The complement of ΛG consists of two round open discs. On each of these

disks, G acts freely (i.e. without fixed points) properly discontinuously, by con-

formal automorphisms. Hence the quotient is two copies of the ‘same’ Riemann

surface (i.e. a one dimensional complex analytic manifold). The complement

Ĉ \ ΛG = ΩG is called the domain of discontinuity of G.

We proceed with slightly more formal definitions.

Suppose that G is abstractly isomorphic to the fundamental group of a finite

area hyperbolic surface Sh, and ρ : π1(Sh)→ PSL2(C) is a representation with

image G. Suppose further that ρ is strictly type-preserving, i.e. g ∈ π1(Sh) rep-

resents an element in a peripheral (cusp) subgroup if and only ρ(g) is parabolic.

In this situation we shall refer to G as a surface Kleinian group. A recurring

theme in the context of finitely generated, infinite covolume Kleinian groups is
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that the general theory can be reduced to the study of surface Kleinian groups.

Equivalently, we study the representation space Rep(π1(Sh), PSL2(C)).

Regarding G as a subgroup of Mob(Ĉ), the dynamics of the action of G on

Ĉ emerges. The limit set ΛG of G is defined to be the set of accumulation

points of the orbit G.o in Ĉ for some (any) o ∈ H3. The limit set is the locus

of chaotic dynamics of the action of G on C. The complement Ĉ \ΛG = ΩG is

called the domain of discontinuity of G.

On the other hand regarding G as a subgroup of Isom(H3), we obtain a

quotient hyperbolic 3-manifold M = H3/G with fundamental group G.

A major problem in the theory of Kleinian groups is to understand the

relationship between the dynamic and the hyperbolic geometric de-

scriptions of G.

2.1. Degenerate Groups. The Ahlfors-Bers simultaneous Uniformiza-

tion Theorem states that given any two conformal structures τ1, τ2 on a sur-

face, there is a discrete subgroup G of Mob(Ĉ) whose limit set is topologically

a circle, and whose domain of discontinuity quotients to the two Riemann sur-

faces τ1, τ2. See figure below.

The limit set is a quasiconformal map of the round circle. These (quasi

Fuchsian) groups can be thought of as deformations of Fuchsian groups (Lie

group theoretically) or quasiconformal deformations (analytically). Ahlfors and

Bers proved that these are precisely all quasiconvex surface Kleinian groups.

The convex hull CHG of ΛG is the smallest closed convex subset of H3

invariant under G. It can be constructed by joining all pairs of points on the

limit set by bi-infinite geodesics and iterating this construction. The quotient

of CHG by G, which is homeomorphic to Sh × [0, 1], is called the Convex core

CC(M) of M = H3/G.

The ‘thickness’ of CC(M) for a quasi Fuchsian surface Kleinian group, mea-

sured by the distance between Sh × {0} and Sh × {1} is a geometric measure

of the complexity of the quasi Fuchsian group G.

The most intractable examples of surface Kleinian groups are obtained as

limits of quasi Fuchsian groups. In fact, it has been recently established by
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Minsky et al. [15] [3] that the set of all surface Kleinian groups (or equivalently

all discrete faithful representations of a surface group in PSL2(C)) are given

by quasiFuchsian groups and their limits. This is known as the Bers density

conjecture.

To construct limits of quasi Fuchsian groups, one allows the thickness of the

convex core CC(M) to tend to infinity. There are two possibilities:

a) Let only τ1 degenerate. i.e. I → [0,∞) (simply degenerate case)

b) Let both τ1, τ2 degenerate, i.e. I → (−∞,∞) (doubly degenerate case)

Thurston’s Double Limit Theorem [27] says that these limits exist. A

fundamental question in relating the geometric and dynamic aspects of

Kleinian groups is the following.

Question 2.1. (Thurston) How does the limit set behave for the limiting man-

ifold?

In the doubly degenerate case the limit set is all of Ĉ.

In the next section we outline our approach and solution to this problem.

3. Extensions of Maps to Ideal Boundaries

Starting with [19], [18] and [16], we investigated the following question:

Question 3.1. Let G be a hyperbolic group in the sense of Gromov acting

freely and properly discontinuously by isometries on a hyperbolic metric space

X. Does the inclusion of the Cayley graph i : ΓG → X extend continuously to

the (Gromov) compactifications?

A positive answer to Question 3.1 gives us a precise handle on Question

2.1. In this generality the question first appears in [17] (see also the Geometric

Group Theory Problem List [4]). As of date no counterexample is known.

However, special cases of Question 3.1 have been raised earlier in the context

of Kleinian groups.

•1 In Section 6 of [7] (now published as [8]), Cannon and Thurston propose the

following.

Conjecture 3.2. Suppose a surface group π1(S) acts freely and properly dis-

continuously on H3 by isometries. Then the inclusion ĩ : S̃ → H3 extends

continuously to the boundary.

The authors of [7] point out that for a simply degenerate group, this is

equivalent to asking if the limit set is locally connected.

•2 In [12], McMullen makes the following more general conjecture:
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Conjecture 3.3. For any hyperbolic 3-manifold N with finitely generated fun-

damental group, there exists a continuous, π1(N)-equivariant map

F : ∂π1(N)→ Λ ⊂ S2
∞

where the boundary ∂π1(N) is constructed by scaling the metric on the Cayley

graph of π1(N) by the conformal factor of d(e, x)−2, then taking the metric

completion. (cf. Floyd [10])

In [22] and [26] we provide a complete positive answer to both Conjectures

3.2 and 3.3.

As a consequence we also establish in [22] the following Theorem which

proves a long-standing conjecture in the theory of Kleinian groups [1] [7].

Theorem 3.4. Connected limit sets of finitely generated Kleinian groups are

locally connected.

In the next subsection, after describing the history of these problems, we

shall give more details about the structure of limit sets and their relation to

the geometry of surface Kleinian groups.

3.1. History and Solution of the Problem. In [1], Abikoff (1976) claimed

to prove that limit sets of simply degenerate surface Kleinian groups were never

locally connected. Thurston and Kerckhoff found a flaw in his proof in about

1980.

The first major result that started this entire program was Cannon and

Thurston’s result [7] for hyperbolic 3-manifolds fibering over the circle with

fiber a closed surface group.

Let M be a closed hyperbolic 3-manifold fibering over the circle with fiber

F . Let F̃ and M̃ denote the universal covers of F and M respectively. Then F̃

and M̃ are quasi-isometric to H2 and H3 respectively. Now let D2 = H2 ∪ S1∞
and D3 = H3 ∪ S2∞ denote the standard compactifications. In [7] Cannon and

Thurston show that the usual inclusion of F̃ into M̃ extends to a continuous

map from D2 to D3. This was extended to Kleinian surface groups of bounded

geometry without parabolics by Minsky [13].

An alternate approach (purely in terms of coarse geometry ignoring all local

information) was given by the author in [19] generalizing the results of both

Cannon-Thurston and Minsky. We proved the Cannon-Thurston result for

hyperbolic 3-manifolds of bounded geometry without parabolics and with freely

indecomposable fundamental group. A different approach based on Minsky’s

work was given by Klarreich [11].

Bowditch [6] [5] proved the Cannon-Thurston result for punctured surface

Kleinian groups of bounded geometry. In [25] we gave an alternate proof
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of Bowditch’s results and simultaneously generalized the results of Cannon-

Thurston, Minsky, Bowditch, and those of [19] to all 3 manifolds of bounded

geometry whose cores are incompressible away from cusps. The proof has the

advantage that it reduces to a proof for manifolds without parabolics when the

3 manifold in question has freely indecomposable fundamental group and no

accidental parabolics.

In the expository paper [24] we give our proof of the results of Cannon and

Thurston [7], Minsky [13], and Bowditch [6] using the ideas of [19] and [25].

In [14] Minsky established a bi-Lipschitz model for all punctured torus

Kleinian groups. McMullen [12] proved the Cannon-Thurston result for punc-

tured torus groups, using Minsky’s model for these groups [14].

In [21] we identified a large-scale coarse geometric structure involved in the

Minsky model for punctured torus groups (and called it i-bounded geome-

try). i-bounded geometry can roughly be regarded as that geometry of ends

where the boundary tori of Margulis tubes have uniformly bounded diameter.

We gave a proof for models of i-bounded geometry. In combination with the

methods of [25] this was enough to bring under the same umbrella all known re-

sults on Cannon-Thurston maps for 3 manifolds whose cores are incompressible

away from cusps.

In [20] we further generalized possible geometries allowing us to push our

techniques through to establish the Cannon-Thurston property.

In the mean time, in the proof of the celebrated Ending Lamination Con-

jecture, Minsky [15] and Brock-Canary-Minsky [3] established a bi-Lipschitz

model for all surface Kleinian groups.

In [22], we used the Minsky model of [15] to prove that all hyperbolic 3-

manifolds homotopy equivalent to a surface satisfy the conditions imposed in

the geometries dealt with in [20]. This establishes the Cannon-Thurston prop-

erty for all surface Kleinian groups and proves Conjecture 3.2. It follows that

surface Kleinian groups have locally connected limit sets. Combining this result

with a reduction Theorem of Anderson and Maskit [2], we prove that connected

limit sets of finitely generated Kleinian groups are locally connected (Theorem

3.4). Finally in [26] we extend the techniques of [22] to cover handlebody groups

and prove Conjecture 3.3.

We then gave explicit descriptions of the boundary identifications of [22] in

terms of ending laminations in [23] and [9]. This finally yields a rather complete

and satisfactory solution to Question 2.1.
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C∗-ALGEBRAS, UNIFORM BANACH ALGEBRAS
AND A FUNCTIONAL ANALYTIC META

THEOREM∗

SUBHASH J. BHATT

Abstract: C∗-algebras and uniform Banach algebras exhibit certain struc-

tural analogy inspired by the C∗-property and the square property of

their respective norms. This is further reflected in analogies between

hermitian Banach ∗-algebras and Banach algebras commutative modulo

the radical, between ∗-regular Banach ∗-algebras and regular commuta-

tive Banach algebras, between Banach ∗-algebras with unique C∗-norm

and commutative Banach algebras with unique uniform norm and be-

tween Frechet ∗-algebras with a C∗-enveloping algebra and commutative

Frechet Q-algebras.These are discussed.

1. Introduction

Prof. Hans Raj Gupta, ex-honorary Professor of Mathematics, Panjab Uni-

versity, Chandigarh contributed significantly towards development of teaching

and research in India. His outstanding research in Number Theory has been

reported in more than 150 papers published in scientific journals and four

monographs. With a deep sense of appreciation and regards to Prof. Gupta,

the present lecture (and the subsequent paper based on the lecture) is being

2000 Mathematics Subject Classification. Primary 46Hxx, 46Lxx; Secondary 43Axx.

Key words and phrases: C∗-algebras, uniform Banach algebras, Harmonic Analysis, Com-

plex Analysis.

The work was carried out under UGC-SAP-DRS Programme F.510/3/DRS/2009(SAP-II)

to the Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar. Thanks

are due to Dr. H.V. Dedania and Dr. P.A. Dabhi for carefully reading the manuscript.
∗This is the text of the 21st Hans Raj Gupta Memorial Award Lecture delivered

at the 76th Annual Conference of the Indian Mathematical Society held at the Sardar Val-

labhbhai National Institute of Technology (SVNIT), Surat - 395 007, Gujarat, during the

period December 27 - 30, 2010.

c© Indian Mathematical Society, 2011.
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offered in this 76th IMS Conference, held at SVNIT, Surat. We shall be dealing

with the following two objects in Functional Analysis.

(I) Let H be a Hilbert space. Let B(H) be the vector space of all bounded

linear operators on H. It is an algebra with composition as multiplication,

carries operator adjoint as a natural involution, and carries the operator norm

as the natural norm. A C∗-algebra is a norm closed involutive subalgebra of

B(H).

(II) Let X be a compact Hausdorff space. Let C(X) be the vector space

of all continuous complex valued functions on X necessarily bounded. It is an

algebra with pointwise multiplication and carries the sup norm ‖ · ‖∞. A uni-

form Banach algebra (uB- algebra) is a norm closed (not necessarily involutive)

subalgebra of C(X).

Thus a C∗-algebra is necessarily involutive, not necessarily commutative;

a uB-algebra is necessarily commutative, not necessarily involutive. These

two classes of algebras have developed along two different directions; the C∗-

algebras proceeded charting the non-commutative real analytical universe, the

uB-algebras proceeded along the commutative complex analytical world. Both

have their different philosophies and methodologies. In spite of this, it appears

that there is some structural analogy between these two classes of algebras.

The purpose of the present paper is to uncover this by formulating a meta

theorem and searching for supports for this.

A meta theorem is a theorem on theorems; and the following is what Stefan

Banach, who was immortalized by his espaces de type (B), has to say, in a

rather suggestive way, about meta theorems.

“A mathematician is a person who can find analogies between theorems; a

better mathematician is one who can see analogies between proofs and the best

mathematician can notice analogies between theories. One can imagine that

the ultimate mathematician is one who can see analogies between analogies.”

(quoted by the reviewer Prof. Maria Jesus de la Puente (Madrid) in review

No. 1185.14053 Zentalblatt MATH. of the paper: Viro Oleg, “From the six-

teenth Hilbert problem to tropical geometry”, Jpn. J. Math. (3)3, No.2, (2008)

185-214)

We begin with the following.

Definition 1.1. A Banach algebra (A, ‖ · ‖) is a linear associative algebra A

over complex scalars equipped with a norm ‖ · ‖ such that (A, ‖ · ‖) is a Banach

space and the norm satisfies the norm inequality ‖xy‖ ≤ ‖x‖‖y‖ for all x, y in

A; i.e., the norm is sub multiplicative.
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In the absence of a multiplicative identity in A, there is a standard procedure

for adjoining identity to A getting a unital algebra Ae in which A is imbedded

as an ideal of codimension 1 [65],[63]. It is well known that Gelfand and his

collaborators Naimark, Raikov, Silov, Ditkin contributed significantly in the

initial period and put the theory on solid foundation begining with 1941. The

influence of Gelfand has been so much that even after almost 30 years, Bonsall

and Duncan in their famous text [33] greatly resisted themselves calling these

algebras Gelfand Algebras.

However it is less known that the first paper on Banach algebras was written

by Nagumo [73]. Nagumo formally defined a metric ring and initiated the

investigation of its analytical aspect, viz. its general linear group consisting of

invertible elements. Simultaniously Yoshida published two papers [85] on the

same aspect. The work of Nagumo and Yoshida was acknowledged by Mazur

in his famous note [69] announcing what is now known as the Gelfand-Mazur

Therorem. Then came up Gelfand’s announcements of his results on Banach

algebras [54]. The work of Gelfand appears to have been inspired by his theses

supervisor Kolmogorov [55]. Full length paper appeared as [56] in 1941. And

the rest is a history. The book [57] (which is in fact a compilation of original

papers) exhibits the spirit of the masters who created the theory. The books

[67, 78, 73, 33, 44, 74, 75] have been standard comprehensive expositions of

general theory of Banach Algebras at respective times; where as [87, 65, 63]

are texts, the last recent one also containing a large number of carefully chosen

exercises.

The highly economical proofs by Gelfand of Mazur’s Theorem mentioned

above and of Wiener’s Theorem on absolutely convergent Fourier series are

often cited as the first success of Banach Algebras.

As stated by Bonsall and Duncan [33], the axioms of a Banach algebra are

happily chosen; they are simple enough to include so many examples from

Function Theory, Linear Operator Theory, Harmonic Analysis and Mathemat-

ical Physics; at the same time, they are tight enough to support a rich and

exciting theory. A characteristic feature of Banach algebras is a rich interplay

between Algebra and Analysis. As Rickart [78] put it, Banach Algebra is a

subject with its head in algebra and feet in analysis.

There are two classes of Banach algebras that have been extensively studied

ultimately resulting into well developed disciplines themselves.

(a) Uniform Banach Algebras (uB-algebras) : A uB-algebra is a Ba-

nach algebra (A, ‖ · ‖) such that the norm satisfies the square property ‖x2‖ =
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‖x‖2 for all x in A. By the Gelfand Theory for commutative Banach alge-

bras, a uB-algebra is concretely realized as a uniformly closed subalgebra of

C0(X), the sup norm Banach algebra of all continuous complex valued func-

tions vanishing at infinity on a locally compact Hausdorff space X with point

wise operations. Traditionally a uB-algebra is assumed to contain a multi-

plicative identity, in which case it is realized as a uniformly closed subalgebra

containing the constant function 1 of the algebra of all continuous functions

on a compact Hausdorff space. We cite [53, 66, 82] as references for uniform

Banach algebras.

(b) C∗-algebras : A Banach ∗-algebra is a Banach algebra (A, ‖ · ‖) with

an involution x ∈ A → x∗ ∈ A which is a conjugate linear continuous anti

automorphism of period 2. A Banach ∗-algebra is a C∗-algebra if the norm

satisfies the C∗-property ‖x∗x‖ = ‖x‖2 for all x in A. One of the corner

stone of the theory is the Gelfand-Naimark Theorem which characterizes a C∗-

algebra A as an operator norm closed ∗-subalgebra of the C∗-algebra B(H) of

all bounded linear operators on a Hilbert space H with the operator norm and

the operator adjoint as the involution. There are several excellent books on

Operator Algebras; we mention [49, 50, 83, 77].

The uB-algebras and the C∗-algebras have developed independently with

different objectives. The uB-algebras, which are commutative, have aimed at

recapturing and advancing the classical theory of functions in abstract func-

tional analytic set up; and they have considerably succeeded in recapturing

holomorphy [59]. Thus uB-algebras constitute Function Theory without The-

ory of Functions. On the other hand, the development of C∗-algebras, they

being non-commutative in general, has been inspired by Linear Operator The-

ory in Hilbert Space, Mathematical Formulation of Quantum Theory as well

as Infinite Dimensional Group Representation Theory. The C∗-algebras have

resulted in providing new perspectives to much of classical mathematics like

measure theory, topology, geometry; and have become a vehicle for uncovering

much of the noncommutative universe including volatile fields like Noncom-

mutative Integration (Von Neumann algebras), Noncommutative Probability,

Noncommutative Topology and Noncommutative Geometry.

Notwithstanding the differences in the philosophies as well as the method-

ologies in the study of these classes of Banach algebras, the apparent similarity

in the defining conditions of norms on them, viz. ‖x2‖ = ‖x‖2 in case of the

uniform norm and ‖x∗x‖ = ‖x‖2 in case of the C∗-norm suggest the following.
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META THEOREM : There exists a structural analogy between (certain,

and not all, aspects of) C∗-algebras and uB-algebras; and this extends to analo-

gies between the following pairs of algebras.

(1) hermitian Banach ∗-algebras and Banach algebras commutative modulo

the radical;

(2) C∗-unique Banach ∗-algebras and Banach algebras with unique uniform

norm;

(3) ∗-regular Banach ∗-algebras and regular commutative Banach algebras;

(4) topological ∗-algebras with a C∗-enveloping algebra and commutative

topological Q-algebras.

In fact this list might continue. Several theorems supporting this meta

theorem can be listed, formulated, and proved. The purpose of the present

paper is to illuminate this and to discuss some questions it leads to. This idea

was initially formulated in [7],[8]; and developed in subsequent papers. This is

certainly not intended to be a survey on this theme. It should be stressed that

the analogy discussed here is different from the well established point of view

that C∗-algebras are the non commutative C(X) algebras.

2. Structure of semi norms

(2.1) From the very begining, there were efforts to examine whether the

defining axioms of C∗-algebra can be further weakened. Initially symmetry was

assumed in the definition of a C∗-algebra, the redundancy of which was achieved

leading to Shirali-Ford Theorem asserting that a Banach ∗-algebra is symmetric

iff it is hermitian. A Banach ∗-algebra (A, ‖ · ‖) is a C∗-algebra if ‖x∗x‖ =

‖x‖‖x∗‖ holds for all x ∈ A [33]. Araki and Elliot [2] showed that ‖xy‖ ≤
‖x‖‖y‖, ‖x∗‖ = ‖x‖ for all x, y follow from other axioms for C∗-algebras.

The efforts towards weakening the conditions on a C∗-norm resulted into the

following due to Sebestyen [70],[81]. A linear semi norm on an algebra A is a

non-negative real valued function on A such that p(x+ y) ≤ p(x)p(y), p(λx) =

|λ|p(x) for all x, y in A, all λ in the complex scalars C. If A is involutive, then

p is ∗− invariant if p(x∗) = p(x) for all x ∈ A. Further p is sub multiplicative

if p(xy) ≤ p(x)p(y) for all x, y in A.

Theorem 2.1. [81] Let p be a linear semi norm on an involutive algebra A

such that p satisfies the C∗-property p(x∗x) = p(x)2 for all x ∈ A. Then p is

sub multiplicative and ∗-invariant.

Can a similar theorem be formulated for a uniform semi norm? Let p be a

linear semi norm on an algebra A. Then p has square property if for all x in

A, p(x2) = p(x)2. Then p is sub multiplicative if A is commutative [11], or if
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A is a Banach algebra, not necessarily commutative [6]. The following noble

result along this line was proved independently in [46] as well as in [62], the

one in the latter case is in little more general case; the methods in both cases

are different.

Theorem 2.2. Let p be a linear semi norm on an algebra A having the square

property. Let N(p) = {x ∈ A : p(x) = 0}. Then p is sub multiplicative and the

quotient algebra A/N(p) is commutative.

Does Theorem 2.1 hold if the C∗-property is replaced by the condition that

p(x∗x) = p(x∗)p(x) for all x ∈ A? Can Theorem 2.2 be improved in case of
∗-algebras; e.g., assuming the square property only for all normal elements?

Also notice that any two C∗-semi norms on a ∗-algebra are equal, if they are

equivalent; analogously any two uniform semi norms on an algebra are equal,

if they are equivalent.

(2.2) The following determines all C∗-semi norms and all uniform semi

norms.

Theorem 2.3. (A)[4] Let A be a Banach ∗-algebra. Let π(C∗(A)) be the

primitive ideal space of the enveloping C∗-algebra C∗(A) of A. Let p be a semi

norm on A. Then p is a C∗-semi norm iff p is of the form pγ(.) for a closed

subset γ of π(C∗(A)), where pγ(x) = sup{‖x̂(P ) = x+ P‖ : P ∈ γ}.
(B)[9] Let A be a Banach algebra. Let 4(A) be the Gelfand space of A. Let

p be a uniform semi norm on A. Then p is of the form pK(.) for a closed subset

K of 4(A), where pK(x) = sup{|φ(x)| : φ ∈ K}.

3. Spectral radius r and Ptak spectral function s

(3.1) [33] Undoubtedly the most important concept in Banach algebras is

spectrum. The spectrum spA(x) of an element x ∈ A consists of all complex

numbers λ ∈ C such that (λ1− x) is not invertible in A or in Ae, the algebra

obtained by adjoining identity to A, according as A has identity or not. It is

a fundamental result that spA(x) is a nonempty compact set in the complex

plane,with the result, the spectral radius rA(x) := sup{|λ|, λ ∈ spA(x)} = r(x)

(say) is well defined and finite. In the case of a Banach ∗-algebra A, the Ptak

function s(x) := r(x∗x)1/2, x ∈ A, is known to play an important role.The

complete C∗-norm on a C∗-algebra A is algebraically determined as ‖x‖ = s(x)

and is thus unique; analogously the complete uniform norm on a uB-algebra

A is algebraically determined as ‖x‖ = r(x), and is unique. Thus the ana-

lytical structure in each of a C∗-algebra and a uB-algebra is completely al-

gebraically determined; where as in case of a general Banach algebra A, a
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connection between algebra and topology is revealed by the spectral radius for-

mulie r(x) = lim ‖xn‖1/n = inf p(x), p varying over all unital norms equivalent

to the complete norm.

(3.2) This raises an interesting problem. Can we algebraically characterize

those algebras that are Banach algebras with some norm? A semi simple al-

gebra is a Banach algebra with some norm if and only if it is a homomorphic

image of a Banach algebra [14]; and by a celebrated theorem due to Johnson,

the topology of a semi simple Banach algebra is uniquely determined [33]. Of

course, an algebra is normable iff it admits a radially bounded absolutely con-

vex multiplicative sub semigroup [33], with the result, unlike a vector space,

not every algebra is normable [44]. A Q-normed algebra is a normed algebra in

which the quasi-regular elements form an open set; these algebras admit almost

all algebraic niceties of Banach algebras. An algebra is Q-normable iff it admits

a radially bounded absolutely convex multiplicative sub semigroup consisting

of quasi-regular elements [74]. A spectral semi norm on an algebra A is a semi

norm p such that r(x) ≤ p(x) for all x ∈ A. A spectral algebra is an algebra

A to gather with a spectral semi norm. Palmer [74, 75] has exhibited that

very many aspects of general theory of Banach algebras carry over to this large

class of algebras. Spectral algebras, in particular C∗-spectral algebras, ensure

spectral invariance which is closely linked with closure under appropriate func-

tional calculi [25],[26]. These properties manifest the differential structure in a

C∗-algebra [27].

(3.3) The deeper influence of the functions r and s on the structure of a

Banach algebra is revealed by the following.

Theorem 3.1. [33, 7](A) (Ptak) Let A be a Banach ∗-algebra.

(i) The function s has C∗-property s(x∗x) = s(x)2 for all x ∈ A.

(ii) s is a linear semi norm iff s is (weakly) sub additive iff A is hermitian.

In this case, s is a spectral semi norm and it turns out that s = m the Gelfand-

Naimark semi norm, which is the greatest C∗-semi norm.

(B)[33, 3] Let A be a Banach algebra.

(i) The spectral radius r has the square property r(x2) = r(x)2 for all x ∈ A.

(ii) (Aupetit-Zemanek) r is a linear semi norm iff r is (weakly) sub additive

iff A/radA is commutative. In this case, r is a spectral semi norm and it turns

out that r is the greatest uniform semi norm.

(3.4) The following shows that these uniquely determine r and s giving their

intrinsic characterizations.
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Theorem 3.2. [15] Let p be a spectral linear semi norm on a Banach algebra

A.

(a) If p satisfies the square inequality, then p is equivalent to r, kerp = radA

and A/radA is commutative. If p has square property, then p = r.

(b) Let A be a ∗-algebra. If p satisfies the C∗-inequality, then p is equivalent

to s, kerp = sradA and A is hermitian. If p has C∗- property, then p = s.

Several interesting questions arise from this comparison. The Aupatit-

Zemanek spectral characterizations of commutativity [3] further states that

for a Banach algebra (A, ‖ · ‖), A/radA is commutative iff r is uniformly con-

tinuous on A iff r is Lipschitzian on A iff r is (weakly) sub multiplicative on

A. Further if A has identity, then above hold iff there is a neighbourhood V

of identity and c > 0 such that |r(x) − r(y)| ≤ c‖x − y‖ for all x, y in V iff r

is (weakly) sub additive on V iff r is (weakly) sub multiplicative on V . Anal-

ogously does it hold that a Banach ∗-algebra A is hermitian iff s is uniformly

continuous on A iff s is uniformly continuous on some neighbourhood of identity

iff s is Lipschitzian on A? Notice that if A is hermitian, then s is sub multi-

plicative; and further, if the involution is isometric, then |s(x)−s(y)| ≤ ‖x−y‖
for all x, y in A; but the converse does not hold [7]. The submultiplicativity

of s fails to imply the hermiticity. The disc algebra A(D) with the involu-

tion f∗(z) = f(z−)−, z ∈ D, provides an example. We refer to [3] for more

commutativity criteria whose hermiticity analogues can be sought.

(3.5) The functions r and s are just two examples of intrinsically defined

spectral functions on a Banach algebra A. Some other spectral functions are the

following [7]. Let En(A) consists of all sub multiplicative norms on A equivalent

to the given complete norm; Eun(A) = {p ∈ En(A) : p(1) = 1}; and if A is

involutive with continuous involution, Eun∗(A) = {p ∈ Eun(A) : p(x∗) = p(x)

for all x }.
s′(x) = lim sup(s(xn)1/n),

k(x) = inf{p(x) : p ∈ Eun∗(A)},
k′(x) = lim sup(k(xn)1/n)

rP (x) = inf{p(x): p is a sub multiplicative norm on A }, called the permanent

radius of x,

sP (x) = rP (x∗x)1/2, the permanent Ptak function

m(x) = the Gelfand - Naimark pseudo norm (the greatest C∗ -semi norm),

m′(x) = limm(xn)1/n

ν(x) = the numerical radius of x;

ν′(x) = lim sup(ν(xn)1/n)

sν(x) = ν(x∗x)1/2;
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s′ν(x) = lim sup(sν(xn)1/n)

Several other such intrinsic spectral functions can be constructed. Much of

the general theory of Banach algebras constitute inter-relations between the

algebraic-topological structure of A and analytical properties of such spectral

functions. A less known spectral radius formula is r(x) = k′(x) for all x ∈ A
[7]. Given a Banach algebra (A, ‖ · ‖), r ≤ ν ≤ ‖ · ‖, (1/e)‖x‖ ≤ ν(x) ≤ ‖x‖.
What are the Banach algebras in which ν is sub multiplicative?

(3.6) For a Banach algebra A, let Nr = {x ∈ A : r(x) = 0} the quasi-

nilpotent elements of A. Then radA ⊂ Nr; and the following discusses when the

equality occurs. Analogously, in a Banach ∗-algebra A, m′(x) ≤ m(x) ≤ s(x)

for all x; hence Ns := {x ∈ A : s(x) = 0} ⊂ sradA = {x ∈ A : m(x) =

0} ⊂ N ′m := {x ∈ A : m′(x) = 0}. Let K ′m := {x = h + ik : h = h∗, k =

k∗,m′(h) = 0 = m′(k)}; Kr := {x = h+ ik : h = h∗, k = k∗, r(h) = 0 = r(k)};
Ns′ := {x ∈ A : s′(x) = 0}.

Theorem 3.3. (A) [3] Let A be a Banach algebra. Then Nr is closed under

addition iff Nr is closed under multiplication iff Nr = radA.

(B) [7] Let A be a Banach ∗-algebra with continuous involution. Then the

following hold.

(1) K ′m = sradA.

(2) N ′m is closed under addition iff N ′m is closed under multiplication iff

N ′m = sradA.

(3) If Ns is closed under addition, then Ns is a closed ∗-ideal of A; Ns = Kr;

and radA ⊂ Ns ⊂ sradA.

(4) If N ′s is closed under addition, then N ′s = Kr; and if radA = Nr, then

N ′s is a ∗-subalgebra of A and radA = Nr ⊂ N ′s ⊂ Ns ⊂ sradA.

(5) If A is commutative, then s = s′; and if further N ′s is closed under

addition, then N ′s = sradA.

(C) There exists a Banach ∗-algebra A for which Ns is a closed ∗-ideal, but

Ns 6= sradA.

(D) There exists a Banach ∗-algebra A for which Ns = sradA, but A is not

hermitian.

If N ′s is closed under addition, is it a closed ∗-ideal of A? If Ns is closed

under multiplication, is it closed under addition? Does lim s(xn)1/n exist for

all x in A? The following brings out the role of s′ and m′ in combining the two

ends of our meta theorem viz. hermiticity and commutativity modulo radical.

Theorem 3.4. [7] Let A be a Banach ∗-algebra.

(I) The following are equivalent.
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(1) A is hermitian and A/sradA is commutative.

(2) s is a uniform semi norm on A.

(3) s′ is a C∗-semi norm on A.

(4) s′ is a uniform semi norm on A.

(5) m = s′.

(6) r = m.

(7) r = s.

(8) A/radA is commutative and hermitian.

(II) The following are equivalent.

(1) A is hermitian.

(2) s′ = r.

(3) m′ = s′.

(4) m′ = r.

(5) s(x) = r(x) for all normal elements x.

(6) m′(x) = s′(x) for all hermitian elements x.

(7) m′(x) = r(x) for all normal elements x.

(8) m′(x) = r(x) for all hermitian elements x.

This raises several issues that are believed to be unsettled.

Characterize Banach ∗-algebras satisfying any of the following four state-

ments: (i) s′ is sub additive.(ii) s′ is uniformly continuous. (iii) s′ is Lips-

chitzian. (iv) s′ = s. Let A be a Banach ∗-algebra. Then for all x ∈ A,

r(x) = k′(x); and if x is normal, then r(x) = k(x)[7]. Further m = k iff s = k

iff k is a C∗-semi norm iff k has C∗-property. Also, A is hermitian iff s = k

for all normal elements. Let A be hermitian. Is s = k? Let A/sradA be com-

mutative; is r = k? Note that r = k iff k has square property; and this forces

A/sradA to be commutative [7].

4. Linear topological properties

(4.1) The presence of the ring structure together with sub multiplicativity of

norm on the underlying Banach space structure in a Banach algebra A is likely

to simplify the linear topological structure of A; and the envisaged analogy

between the C∗-algebras and the uB-algebras should also get reflected in their

Banach space properties. The following illustrates this.

Theorem 4.1. (A) Let (A, ‖ · ‖) be a C∗-algebra.

(i) If A is reflexive, then A is finite dimensional.

(ii)[49](Kadison) Let φ : A → B be a unital linear isometry between C∗-

algebras. Then φ(x2) = φ(x)2 for all x; φ is hermitian and φ is a Jordan

isomorphism.
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(iii)([28] If A (not necessarily assumed complete in ‖ · ‖ neither assumed

unital) is a pre-Hilbert space, then A is isomorphic C.

(B) Let (A, ‖ · ‖) be a uB-algebra.

(i) (P.G.Dixon) If A is reflexive, then A is finite dimensional.

(ii)[73] Let φ : A → B be a unital linear isometry between uB-algebras.

Then φ(x2) = φ(x)2 for all x; φ is a Jordan isomorhism, and hence is an

isomorphism.

(iii)[86] If A (not necessarily assumed complete in ‖ · ‖ or unital) is a pre-

Hilbert space, then A is isomorphic to C.

A normed division algebra (A, ‖ · ‖) over reals is isomorphic to the reals R
or the complex numbers C or the quarternions H. This is the noble Gelfand-

Mazur Theorem comparable in nobility with say Lioville Theorem in Complex

Analysis. In fact stronger versions of (iii) of above hold.

Theorem 4.2. (A) [86] Let A be a real algebra. Let ‖ · ‖ be a Pythagorean

norm on A. Then A is isomorphic to R or C or H if either of the following

hold. (a) A has identity 1, ‖1‖ = 1, ‖x2‖ ≤ ‖x‖2 for all x in A; or (b)

‖x2‖ = ‖x‖2 for all x in A.

(B) [28]Let A be a real ∗-algebra with a Pythagorean norm ‖ · ‖.Then A is

isomorphic to R or C or H if either of the following hold. (a) A has identity

1; ‖1‖ = 1; ‖x∗x‖ ≤ ‖x‖2 for all x; and for any x in A, x∗x = 0 implies x = 0:

or (b) ‖x∗x‖ = ‖x‖2 for all x in A.

(4.2) We consider the extreme points of the unit ball. Let (A, ‖ · ‖) be a

Banach algebra. Let S = {x ∈ A : ‖x‖ ≤ 1} be the unit ball in A. Let extS

be the set of all extreme points of S. Then S has extreme points if either A

has identity or A is the dual of a Banach space (Krein-Milmann); however the

converse does not hold. In case of C∗-algebras, one has the following.

Theorem 4.3. Let A be a C∗-algebra.

(i)[80] S has an extreme point iff A has identity. Then x ∈ extS iff (1 −
x∗x)S(1− xx∗) = 0.

(ii)[45] (Russo-Dye-Palmer) S = co(extS) = co(U(A)), U(A) denoting the

unitary group of A.

There ought to be a uB-algebra analogue of this.

(4.3) (the second dual) It is a well known construction [33] due to Arens that

the second dual space A∗∗ of a Banach algebra A becomes a Banach algebra

with two distinct multiplications each of which extends, through the canonical

imbedding, the multiplication of A. The algebra A is Arens regular if both

these Arens products coincide.
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Theorem 4.4. A C∗-algebra is Arens regular; and A∗∗ is isomorphic to W ∗(A)

the W ∗-algebra generated by A.

Is a uB-algebra Arens regular having second dual isomorphic to a dual uB-

algebra? The uB-algebras that are duals of Banach algebras are analogues of

W ∗-algebras in the present frame work; they do not seem to have been studied

systematically. Notice that a closed subalgebra of an Arens regular Banach

algebra is Arens regular, hence a uB-algebra is Arens regular.

(4.4) (Dunford-Pettis Property) A Banach space E has DP-property if every

weakly compact operator on E is compact. The commutative C∗-algebra C(X)

has DP-property; the C∗-algebra K(H) of compact operators on an infinite di-

mensional Hilbert space fails to have DP. The C∗-subalgebras and the quotient

C∗-algebras of a C∗-algebra with DP have DP.

Theorem 4.5. [38]The following are equivalent in a C∗-algebra A.

(i) A has DP.

(ii) The dual A∗ has DP.

(iii) For some closed ideal I of A, both I and A/I have DP.

(iv) Every irreducible representation of A is finite dimensional.

(v) The second dual A∗∗ is a type I W ∗-algebra.

We do not know a uB-algebra analogue of this.

5. Unitization

(5.1) Let A be any algebra. Let Ae = A
⊕

C1 be the algebra obtained by

adjoining identity to A - an abstract one-point compactification. If ‖ · ‖ is any

(semi)norm on A, its natural extension to Ae is the l1- (semi)norm ‖(x, λ)‖1 =

‖x‖+ |λ|. However if ‖ · ‖ is a C∗-(semi)norm or a uniform (semi) norm, then

‖ · ‖1 need not be a C∗-(semi)norm or a uniform (semi)norm respectively. Then

one considers the operator seminorm on Ae defined as ‖(x, λ)‖op = sup{(‖(x+

λ)y‖ : ‖y‖ ≤ 1)}. The following is a folklore.

Theorem 5.1. (A) If ‖ · ‖ is a C∗-norm on A, then ‖ · ‖op is a C∗-norm on

Ae and ‖ · ‖op|A = ‖ · ‖. If (A, ‖ · ‖) is a C∗-algebra, then (Ae, ‖ · ‖op) is a

C∗-algebra.

(B) If ‖ · ‖ is a uniform norm on A, then ‖ · ‖op is a uniform norm on Ae and

‖ · ‖op|A = ‖ · ‖. If (A, ‖ · ‖) is a uB-algebra, then (Ae, ‖ · ‖op) is a uB-algebra.

Of course, these are very elementary matters; however certain issues do not

seem to be clear.

(a) Given a Banach algebra (A, ‖ · ‖), which are all sub multiplicative norms

|.| on Ae that extend the given norm ‖ · ‖? All such norms necessarily satisfy
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‖ · ‖op ≤ |.| ≤ ‖ · ‖1. However ‖ · ‖op need not be a norm; even if it is a norm,

it need not be complete. Also, ‖ · ‖op|A need not coincides with ‖ · ‖. When

‖ · ‖op|A = ‖ · ‖, the ‖ · ‖ on A is called regular ; if ‖ · ‖op|A is equivalent to ‖ · ‖,
then ‖ · ‖ is weakly regular. The following gives some idea on this.

Theorem 5.2. Let (A, ‖ · ‖) be a Banach algebra.

(1) [16] The semi norm ‖ · ‖op is a norm on Ae iff the left annihilator lanA

= 0, where lanA = {x ∈ A : xA = 0}. Thus if ‖ · ‖op is a norm on Ae for one

norm ‖ · ‖, then |.|op is a norm on Ae for all norms |.|.
(2) [16] The norm ‖ · ‖op is complete on Ae iff ‖ · ‖ is weakly regular iff ‖ · ‖op

is equivalent to ‖ · ‖1 on Ae.

(3) [58] If ‖ · ‖ is regular, then ‖(x, λ)‖op ≤ ‖(x, λ)‖1 ≤ 6e‖(x, λ)‖op for all

(x, λ) in Ae.

(b) It is interesting to look for properties of A which are not shared by Ae.

Here are two instances. If a Banach algebra (A, ‖ · ‖) is a Hilbert space, Ae is

never a Hilbert space. If A admits an orthogonal basis [61], Ae never admits

an orthogonal basis.

(5.2) Taking multipliers of a non unital Banach algebra A constitute another

process of adjoining identity - an abstract Stone - Cech compactification. If A

is a C∗-algebra, then its multiplier algebra M(A) is the maximal C∗-algebra

with 1 in which A sits as an essential ideal; and in any faithful representation

of A on a Hilbert space, M(A) is realized as the idealizer of A. On the other

hand, multiplier algebra of a uB-algebra does not seem to have been studied in

details, probably because traditionally a uB-algebra is always assumed to be

unital.

6. Characterizations

(6.1) A Banach ∗-algebra (A, ‖ · ‖) is C∗-equivalent if there exists a C∗-

norm on A equivalent to ‖ · ‖. Analogously a Banach algebra (A, ‖ · ‖) is uB-

equivalent if there exists a uniform norm on A equivalent to ‖ · ‖. The following

illustrates our point of view. For numerical range theory in Banach algebras,

we refer to [34],[35].

Theorem 6.1. (A) A unital Banach *-algebra (A, ‖ · ‖) is C∗- equivalent iff A

is hermitian and for some c > 0, ‖h‖ ≤ cr(h) for all h = h∗ in A iff for some

c > 0, ‖x‖ ≤ cs(x) for all x ∈ A iff there exists c > 0 such that ‖x‖2 ≤ c‖x∗x‖
for all x ∈ A iff the set {eih : h = h∗} is bounded iff s(x) = ν(x) for all x.

Further (A, ‖ · ‖) is a C∗-algebra iff A is hermitian and the numerical range

V (A, ‖ · ‖, h) = cosp(h) for all h = h∗ in A.
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(B) A Banach algebra (A, ‖ · ‖) is uB-equivalent iff for some c > 0, ‖x‖ ≤
cr(x) for all x iff for some c > 0, ‖x‖2 ≤ c‖x2‖ for all x in A iff V (A, ‖ · ‖, x) =

cosp(x) for all x ∈ A iff ‖ex‖ = r(ex) for all x iff ν has the square property iff

V (A, ‖ · ‖, a2) ⊂ {z2 : z ∈ V (A, ‖ · ‖, a)} for all a.

A couple of remarks are in order.

(i) By a result of Bjork [32], given a commutative semi simple Banach algebra

(A, ‖ · ‖), if there exists a number q < 1 and a positive integer n ≥ 2 such that

‖xn‖ ≤ qn‖x‖r(x)n−1 for all x ∈ A, then A is uB-equivalent. Is it true that a

Banach ∗-algebra (A, ‖ · ‖) is C∗-equivalent if for some q < 1, some n ≥ 2, it

holds that ‖xn‖ ≤ qn‖x‖s(x)n−1 for all x ∈ A?

(ii) By a result of Cuntz [42], a Banach ∗-algebra A is C∗-equivalent if for

each h = h∗ in A, the closed subalgebra Ch generated by h is C∗-equivalent.

Let A be a Banach algebra such that for each x ∈ A, the closed subalgebra

Cx generated by x is uB-equivalent. Is A uB-equivalent? We refer to [47] for

a collection of results on characterizations of C∗-algebras, the uB-analogues of

some of which could be asked for.

(iii) The numerical radius ν in a Banach algebra (A, ‖ · ‖) satisfies ν(xn) ≤
n!(e/n)nν(x)n for all x and for all n. If A is a C∗-algebra, then ν(xn) ≤ ν(x)n;

and if A is a uB-algebra, then ν(xn) = ν(x)n for all n and for all x. Let

(A, ‖ · ‖) be a Banach algebra satisfying the numerical radius power inequality

ν(xn) ≤ ν(x)n for all x and for all n. Is A a uB-algebra? Further if A is a

Banach∗-algebra, is A a C∗-algebra?

(6.2) The following transparently describes the analogy between the struc-

tures of a C∗-algebra and of a uB-algebra. A locally convex algebra is an algebra

A with a Hausdorff topology τ such that A is a locally convex space in which

the ring multiplication is separately continuous. Let B(τ) be the collection of

all closed, bounded absolutely convex idempotent sets in A. If A is involutive,

let B∗(τ) consists of B in B(τ) such that B is ∗-closed.

Theorem 6.2. [8] (A)Let A be a unital ∗-algebra. Let τ be a Hausdorff topology

on A. The following (I) and (II) are equivalent.

(I) A satisfies the following.

(1) A is a complete locally convex algebra with continuous involution

(2) A is a Q -algebra.

(3) A is an algebra with continuous inversion.

(4) A is hermitian.

(5) The collection B∗(τ) admits greatest member (say B) under inclusion.

(II) There exists a norm ‖ · ‖ on A such that ‖ · ‖ determines the topology

of A; (A, ‖ · ‖) is a C∗-algebra; and B = {x ∈ A : ‖x‖ ≤ 1}.



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

C∗-ALGEBRAS, UNIFORM BANACH ALGEBRAS AND A FUNCTIONAL . . . 45

(B) Let A be a unital algebra. Let τ be a Hausdorff topology on A. The

following (I) and (II) are equivalent.

(I) A satiesfies the following.

(1) A is a complete locally convex algebra.

(2) A is a Q- algebra.

(3) A is an algebra with continuous inversion.

(4) The collection B(τ) admits a greatest member (say B) under inclusion.

(II) There exists a norm ‖ · ‖ on A such that ‖ · ‖ determines the topology τ

on A; (A, ‖ · ‖) is a uB-algebra; and B = {x ∈ A : ‖x‖ ≤ 1}.

The above theorem is a companion to Kolmogorov Theorem regarded as

the first theorem about locally convex spaces [79] stating that a topological

vector space is normable iff it is locally convex and locally bounded. It follows

that a Banach ∗-algebra A is C∗-equivalent iff the collection B∗(τ) has greatest

member under inclusion; analogously a commutative Banach algebra is uB-

equivalent iff the collection B(τ) has greatest member.

In spite of this, the structural analogy between C∗-algebras and uB-algebras

fails also in certain aspects. We aim to discuss some of these with a view to

uncover refined versions of the analogy.

7. Non-uniqueness of incomplete norms

(7.1) The analogy between C∗-algebras and uB-algebras fail dramatically

regarding the existence of incomplete norms. Let (A, ‖ · ‖) be a C∗-algebra. Let

|.| be any norm (not necessarily complete) on A having C∗-property |x∗x| =

|x|2 for all x. Then ‖ · ‖ = |.| = s. On the other hand, let (B, ‖ · ‖) be a

uB-algebra. If |.| is any complete uniform norm on B, then ‖ · ‖ = |.| = r.

There can be non-uniform complete norms on B other than ‖ · ‖; e.g. on

C(X),‖f‖ = sup{|x(s) +x(t)|/2 + |x(s)−x(t)|/2 : s, t ∈ X} defines a complete

Banach algebra norm, distinct from the sup norm. On the other hand, B can

admit in-complete uniform norms other than ‖ · ‖. On the disc algebra A(D)

consisting of functions continuous on the closed unit disc D and analytic in its

interior U , which is a uB-algebra with norm ‖f‖∞ = sup{|f(z)| : z ∈ D}, the

norms |.|r, 0 < r < 1, |f |r = sup{|f(z)| : 0 < |z| < r} are all distint incomplete

uniform norms on A(D). A C∗-algebra (A, ‖ · ‖) has minimum property (MP)in

the sense that ‖ · ‖ ≤ |.| for any algebra norm |.|; where as a uB-algebra need

not have MP as is exhibited by the disc algebra A(D).

(7.2) Thus some topological or algebraic conditions are required on (B, ‖ · ‖)
so that |.| = ‖ · ‖ holds. If |.| is a spectral uniform norm on B, then ‖ · ‖ = |.|.
The following illustrates this in the case of C(X) the existence or non-existence
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of norms on which has been an intricate problem; part 3(i) is a solution by Dales

of the famous problem of Kaplansky; see [44].

Theorem 7.1. (1) Let |.| be any algebra norm on C(X) for an infinite compact

space X. Then ‖ · ‖∞ ≤ |.|.
(2) Let |.| be any linear norm on C(X).

(a) If |.| satisfies the C∗-inequality or |.| is a C∗-norm, then respectively |.|
is equivalent to the sup norm ‖ · ‖∞ or |.| = ‖ · ‖∞.

(b) If |.| satisfies the square inequality or |.| is a uniform norm, then respec-

tively |.| is equivalent to ‖ · ‖∞ or |.| = ‖ · ‖∞.

(c) If the norm |.| is unital |1| = 1 and has the absolute value property

||x|| = |x| for all x (respectively absolute value inequality), then |.| = ‖ · ‖∞
(respectively |.| is equivalent to ‖ · ‖∞).

(3) On C(X), there exists norms |.| such that either of the following hold.

(i) |.| is an algebra norm not equivalent to ‖ · ‖∞.

(ii) |.| is a Banach algebra norm, |1| = 1, |.| 6= ‖ · ‖∞.

(7.3) This suggests to consider the following class of Banach algebras.

Definition 7.2. A Banach algebra (A, ‖ · ‖) has unique uniform norm property

(UUNP) if it admits exactly one uniform norm.

Notice that (A, ‖ · ‖) admits a greatest uniform semi norm ‖x‖∞ = sup{|φ(x)| :
φ ∈ 4(A)} ≤ r(x) ; and ‖ · ‖∞ is a norm iff r is a norm iff A is semi simple

and commutative iff A admits a uniform norm. In general, ‖ · ‖∞ = r iff A is

commutative modulo the radical. One may wonder if there is an analogy be-

tween C∗-algebras and uB-algebras with UUNP. This suggests looking to more

general Banach algebras with UUNP; a non-commutative involutive analogue

of which is the following.

Definition 7.3. A Banach ∗-algebra (not necessarily commutative) (A, ‖ · ‖)
has unique C∗-norm property (UC*NP) if it admits exactly one C∗-norm.

A Banach ∗-algebra (A, ‖ · ‖) admits greatest C∗-semi norm (Gelfand-Naimark

pseudo norm) m(x) = sup ‖π(x)‖, π varying over all non-degenerate ∗- repre-

sentations on Hilbert spaces; m(x) ≤ s(x); and m is a norm iff A is ∗-semisimple

(need not be hermitian) iff A admits a C∗-norm. Further A is hermitian iff

m = s.

The UUNP is of recent origin [17],[18]; though UC*NP has been considered

in the literature [4] in connection with the following

Definition 7.4. Let (A, ‖ · ‖) be a Banach ∗-algebra having Prim(C∗(A)) as

the primitive ideal space (with the hull - kernel topology) of the enveloping
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C∗-algebra C∗(A). The algebra A is ∗-regular if given a closed subset F of

Prim(C∗(A)) and P not in F, there exists x ∈ A such that {x̂(Q) = x + Q :

Q ∈ F} = {0}, x̂(P ) = x+ P 6= 0.

The property ∗-regularity corresponds to the familiar (Silov) regularity [63]

in commutative Banach algebras.

Definition 7.5. Let (A, ‖ · ‖) be a commutative Banach algebra having the

Gelfand space 4(A) with the Gelfand topology. Then A is called regular if

given a (Gelfand) closed subset F of 4(A) and an φ not in F , there exists

x ∈ A such that {ψ(x) : ψ ∈ F} = {0} and φ(x) 6= 0.

Notice that a ∗-semi simple ∗-regular, not necessarily commutative, Banach
∗-algebra has UC∗NP [4]. A commutative semi simple Banach algebra has

UUNP if it is regular [17]; and it is regular iff the Gelfand topology coincides

with the hull kernel topology on 4(A). A commutative ∗-semi simple Banach
∗-algebra is regular iff it is hermitian and ∗-regular [4]; where as it has UUNP

iff it is hermitian and has UC∗NP [18].

(7.4) All these suggest to expect a structural analogy between Banach ∗-

algebras with UC∗NP and Banach algebras with UUNP; as well as between ∗-

regular Banach ∗-algebras and commutative regular Banach algebras. However

given a commutative Banach algebra A and a (not necessarily commutative)

Banach ∗-algebra B, one must keep in mind the following intrinsic differences

between them that can affect the desired similarities. The enveloping uB-

algebra U(A) of A is the Hausdorff completion of A in the spectral radius;

analogously the enveloping C∗-algebra C∗(B) of B is the Hausdorff completion

of A in the greatest C∗-semi norm m.

(i) The algebra C∗(B) has UC∗NP; where as U(A) need not have UUNP.

(ii) The algebra C∗(B) is ∗-regular;where as U(A) need not be regular.

(iii) The algebra A is inverse closed in U(A); where as B need not be inverse

closed in C∗(B), unless it is hermitian.

(iv) The algebra A is unital iff U(A) is unital; this is not necessarily true for

B and C∗(B). The paper [4] contains an example of a commutative non-unital

B such that C∗(B) is unital.

(v) The space Prim(C∗(B)) is identified with the space of irreducible ∗-

representations, up to equivalence, of B on Hilbert spaces; where as the space

4(A) is identified with the space of all irreducible, up to similarity, repre-

sentations of A on vector spaces. An irreducible representation π of A is a
∗-representation iff the corresponding φ in 4(A) is hermitian.
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(vi) Every closed ideal of C∗(A) has ∗-semi simple quotient;where as not

every closed ideal of U(A) has semi simple quotient.

(7.5) With this, we continue exploring the meta theorem further.

Theorem 7.6. (A)[4] Let A be a ∗-semisimple Banach ∗-algebra. The following

are equivalent.

(1) A has UC∗NP.

(2) Given a proper closed subset F of PrimA, there exists x ∈ A such that

x 6= 0; {x̂(P ) : P ∈ F} = {0}.
(3) Every set of ∗-uniqueness for A in Prim(C∗(A)) is dense in Prim(C∗(A)).

(4) For every proper closed subset F of the space FacC∗(A) of factor repre-

sentations of C∗(A), there exist x ∈ A such that x 6= 0, {x̂(P ) : P ∈ F} = {0}
(5) Every A-separating set in Prim(C∗(A)) is C∗(A) - separating.

(6) Every faithful ∗-representation of A can be extended to a faithful ∗-

representation of C∗(A).

(7) A subset D of Prim(C∗(A)) is dense in Prim(C∗(A)) iff ψ(D) is dense

in the space Prim∗(A) of primitive ideals of A. Here ψ(P ) = P ∩ A for all

P ∈ Prim(A).

(8) For any non-zero closed ∗-ideal I of C∗(A), I ∩A 6= {0}.
(B) [18] Let A be a semi simple commutative Banach algebra. The following

are equivalent.

(1) A has UUNP.

(2) U(A) has UUNP; and every A -separating subset of 4(U(A)) is also

U(A) separating.

(3) U(A) has UUNP; and any closed subset F in 4(U(A)) which is a set of

A - uniqueness, is also a set of U(A)-uniqueness.

(4) U(A) has UUNP; and for any non-zero semi simple closed ideal I of

U(A), I ∩A 6= {0}.

In view of the complexity of the norm behavior of a uB-algebra as compared

to that in a C∗-algebra, the property UUNP turns out to be more stringent

than UC∗NP. In fact, UUNP arises in the investigation of spectral properties of

a commutative Banach algebras A associated with incomplete algebra norms

[17]. Properties closely related with UUNP in this context are the spectral

extension property (SEP) and unique semi simple norm property (USNP)[17].

The algebra A has SEP if for any algebra norm ‖.‖ on A, r(x) ≤ ‖x‖ for all

x ∈ A; i.e. ‖.‖ is a Q-norm; where as A has USNP if A admits exactly one,

up to equivalence, semi simple norm. A norm is semi simple if it results into

a semi simple algebra upon completion. The following exhibits their relevance

with UUNP and further explains why UUNP is more stringent.
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Theorem 7.7. [17] Let A be a semi simple commutative Banach algebra. The

following are equivalent.

(1) The algebra A has UUNP.

(2) Every semi simple norm on A is spectral.

(3) The spectral radius r is minimum semi simple norm on A.

(4) The Silov boundary ∂(A) is the smallest closed set of uniqueness for A.

(5) Given a closed set F ⊂ 4(A), ∂(A) not containing in F , there exists

x ∈ A such that r(x) > 0 and φ(x) = 0 for all φ ∈ F .

(6) Every multiplicative linear functional in ∂(A) admits a multiplicative

linear extension to any semi simple super algebra of A.

(7) For all x ∈ A, r(x) = inf{rAp
(x) : p is a semi simple norm on A }, Ap

being the completion of A in p.

Thus UUNP is equivalent to semi simple SEP. The spectral properties USNP

and SEP make sense in non commutative Banach algebras also. What is the

non commutative analogue of above theorem? A commutative Banach algebra

A has USNP iff A has UUNP and A is uB- equivalent. Further a commutative

A has SEP iff A has UUNP and rs = rp. It is an open problem whether

UUNP implies SEP [18]. The following brings out a curious feature associated

with UUNP and UC∗NP. This was discovered first in case of Beurling algebra

L1(G,ω) in [21] as well as in weighted measure algebra [22].

Theorem 7.8. [43] (A) Let A be a semi simple commutative Banach algebra.

Then A admits either only one uniform norm or an infinite number of uniform

norms.

(B) Let A be a ∗-semi simple commutative Banach ∗-algebra. Then A admits

either only one C∗-norm or an infinite number of C∗-norms.

Does above (B) hold for non commutative Banach ∗-algebras? Note that

for a non abelian locally compact group G, in general the non commutative

Banach ∗-algebra L1(G) admits at least two C∗- norms viz. one coming from

the group C∗ - algebra C∗(G) and the other from the reduced group C∗-algebra

C∗r (G).

(7.6) The following exhibits the analogy between ∗-regularity in non com-

mutative Banach ∗-algebras and regularity in commutative Banach algebras. It

also put UUNP in proper perspective in general theory of commutative Banach

algebras.

Theorem 7.9. (A) [4] Let A be a ∗-semi simple Banach ∗- algebra. The

following are equivalent.

(1) A is ∗-regular.
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(2) For any closed set F in Fac(C∗(A)) (= the space of factor representa-

tions of C∗(A)) and any I ∈ Fac(C∗(A)), I not in F , there exists x ∈ k(F )

such that x is not in I.

(3) The map ψ : Prim(C∗(A)) → Prim∗(A),ψ(I) = I ∩ A is a homeomor-

phism.

(4) For any m-closed ideal I of C∗(A), I ∩A is dense in A.

(5) For any m- closed ideal I of A,A/I has UC∗NP (respectively is ∗-regular).

(6) For any m - closed ideal I of C∗(A), A/I ∩A has UC∗NP (respectively

is ∗-regular).

(B)[18] Let A be a semi simple commutative Banach algebra. The following

are equivalent.

(1) A is regular.

(2) U(A) is regular and for any semi simple ideal I of A, A/I has UUNP.

(3) U(A) is regular and for any semi simple ideal I of U(A),

I = k(h(A ∩ I)).

Further, each of above is implied by the following.

(4) U(A) is regular and for any semi simple ideal I of U(A), A∩ I is dense

in I.

If U(A) is an N -algebra in the sense of Silov ( i.e. every closed ideal gives

semi simple quotient),then (1) implies (4).

Though regularity is an analogue of ∗-regularity, it is more restrictive. A

C∗-algebra is ∗-regular; where as a uB-algebra need not be regular. In a com-

mutative Banach algebra (in particular a uB-algebra) A, the structure space

4(A) is very large containing all irreducible vector space representations as

compared to Prim(C∗(A)) in case of a Banach ∗-algebra. This also results

into the Silov boundary ∂(A) many a times properly contained in 4(A), a phe-

nomena that can support analytic structure, hence making available several

incomplete uniform norms. Analogous situation does not arise in a C∗-algebra.

This leads to refined notions of regularity.

Definition 7.10. Let A be a semi simple commutative Banach algebra.

(1) A is weakly regular if given a proper closed set F in 4(A), there exists

x in A such that x 6= 0, φ(x) = 0 for all φ ∈ F .

(2) A is U -regular if given a closed set F in 4(A) and φ ∈ ∂(A), φ not in

F ; there exist x ∈ A such that φ(x) 6= 0 and ψ(x) = 0 for all ψ ∈ F .

The following brings out their role.

Theorem 7.11. [18] Let A be a semi simple commutative Banach algebra.

(1) A is weakly regular iff ∂(A) = 4(A) and A has UUNP.
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(2) A has UUNP iff A is weakly U -regular in the sense that given any closed

set F ⊂ 4(A) having ∂(A)∩ (4(A) \F ) 6= φ, there exists x 6= 0 in A such that

ψ(x) = 0.

(3) Let A be a Banach ∗-algebra. Then A is weakly regular iff A is hermitian

and has UC∗NP iff A is hermitian and has UUNP.

Thus U -regularity sharply corresponds to ∗-regularity; and UUNP corre-

sponds to weak ∗-regularity (defined analogously to weak regularity) which is

UC∗NP in the light of Theorem 7.6. This leads to the following questions.

Is U(A) U -regular for any A? Is it true that A is U -regular iff for any semi

simple closed ideal I of U(A), I ∩ A is dense in I iff for any semi simple r -

closed (i.e. closed in the complete uniform norm on U(A)) ideal I of A, A/I has

UUNP (respectively is U -regular) iff for any semi simple closed ideal I of U(A),

the quotient A/A ∩ I has UUNP (respectively is U -regular? For behaviour of

UUNP and UC∗NP, as well as of regularity and ∗-regularity with respect to

sub algebra, ideals and quotients, we refer to [18],[4].

8. Relevance to Harmonic Analysis and Complex Analysis

(8.1)[18] Let G be a locally compact abelian group. The commutative Ba-

nach ∗-algebra L1(G) is regular, hence has UUNP. The measure algebra M(G)

has UUNP iff M(G) is hermitian iff M(G) is regular iff G is discrete. Let

M00(G) consist of µ in M(G) whose Fourier - Stieltjes transforms vanish off

the dual group; where as M0(G) consists of µ in M(G) the restriction of whose

Fourier - Stieltjes transforms to the dual group define continuous functions

vanishing at infinity on the dual group. These are closed convolution sub alge-

bras of M(G); and L1(G) ⊂ M00(G) ⊂ M0(G) ⊂ M(G). For non discrete G,

M00(G) has UUNP; and M0(G) fails to have UUNP. The convolution Banach

algebras DecM(G) and DM(G) consisting of measures µ ∈M(G) defining de-

composable convolution operators respectively on M(G) and L1(G) both have

UUNP.

(8.2) Let G be non abelian. Then G is called C∗-unique if the non commu-

tative Banach ∗-algebra L1(G) has UC∗NP. A C∗-unique G is amenable; and

a connected G is amenable iff L1(G) has exactly one C∗-norm that is invariant

under isometric ∗-automorphisms of L1(G) [37].We refer to [75] and references

there in for C∗-unique and ∗-regular locally compact groups.

(8.3) The UUNP acquires a greater significance in the context of Harmonic

Analysis on locally compact abelian groups and semigroups with weights. A

weight function on a locally compact abelian group G is a continuous function

ω : G→ R such that for all s,t in G, (i) ω(s) > 0 and (ii) ω(s+ t) ≤ ω(s)ω(t).
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Then ω(s) presumably represents the frequency or size of s in G. The Beurl-

ing algebra is the convolution Banach algebra of measurable functions fon G

such that ‖f‖ω :=
∫
G
|f(s)|ω(s)dλ < ∞, λ denoting the Haar measure on

G. It is semi simple [19]; though in the non abelian case, this is not known.

A generalized character is a continuous homomorphism from G to the multi-

plicative group of non zero complex numbers. Let H(G) be the space of all

generalized characters with compact open topology. By [20], if G is compactly

generated, then H(G) is a locally compact abelian group with the operation

α(g) + β(g) = α(g)β(g) for all g ∈ G; H(G) coincides with the dual group

Ĝ iff G is compact; and with G to be second countable or discrete, H(G)
∼= 4(Cc(G)) the Gelfand space of the convolutin algebra of continuous func-

tions with compact supports and with the inductive topology. The Gelfand

space of L1(G,ω) is the space H(G,ω) of ω - bounded generalized characters

on G. Generally, in the case of Euclidean groups, the part of H(G,ω) not in

the dual group Ĝ is a source of analyticity; hence non uniqueness of uniform

norm. By [20],[21], L1(G,ω) is regular iff L1(G,ω) has UUNP iff L1(G,ω)

has minimum uniform norm. For a symmetric weight ω, L1(G,ω) is a Banach
∗-algebra; and by [43], it has UUNP iff it has UC∗NP. The weighted measure

algebra M(G,ω) consists of Radon measures µ on G such that ωµ ∈ M(G).

Then FS(µ) : H(G,ω) → C, FS(µ)(α) =
∫
α(s)dµ(s) defines the generalized

Fourier - Stieltjes transform of µ ∈ M(G,ω). By [22], M(G,ω) has UUNP iff

G is discrete and L1(G,ω) has UUNP iff M(G,ω) is regular. The convolution

subalgebra M00(G,ω) is regular iff it has UUNP iff L1(G,ω) has UUNP; where

as it is believed that M0(G,ω) has UUNP iff G is discrete and L1(G,ω) has

UUNP. For a non abelian locally compact groups G, the UC∗NP as well as
∗-regularity for the non commutative Beurling algebra L1(G,ω) have not been

investigated in details. So is the case with commutative Beurling algebras on

abelian semi groups. Here is a glimpse of what could be happening there. Each

of the Banach algebras L1(R+, ω) and l1(Z+, ω) does not have UUNP for any

weight ω [18].

(8.4) Harmonic Analysis on groups G (and on semigroups S) with weights

have several interesting aspects; e.g. (i) generalization of Analysis on G to

Analysis on (G,ω), considering the latter as an intrinsic object; (ii) discovering

the influence of ω on the analysis on G; (iii) developing new tools, e.g. for

some ω, Lp(G,ω) could be a Banach algebra; as well as (iv) discovering further

intimate relation with Complex Analysis. We illustrate (iv) by exhibiting how

the complex analytic structure of the planner disc and the annulus can be

abstractly functional analytically recaptured - an example in Function Theory
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with out Theory of Function. For each k ∈ N, let ωk : Z → R+ be a weight

sequence on the integers Z. Let ω = {ωk} and let l1(Z, ω) = ∩l1(Z, ωk) a

Frechet algebra with topology defined by the sequence of norms ‖ · ‖ωk
, ‖f‖ωk

=
∑
n |f(n)|ωk(n). This discrete Beurling - Frechet algebra can be abstractly

characterized. A Laurent series generated Frechet algebra is a Frechet m-convex

algebra A with a defining sequence of semi norms {pk} such that (i) A is

topologically generated by {x, x−1} for some x in A; and (ii) any y in A can be

expressed as y =
∑
n∈Z λnx

n with
∑
|λn|pk(xn) < ∞ for each k ∈ N. It has

unique expression property if the expression in (ii) is unique.

Theorem 8.1. [24] A Laurent series generated Frechet algebra with unique

expression property is homeomorphically isomorphic to a discrete Beurling -

Frechet algebra l1(Z, ω) on the integers Z defined by a sequence of weights.

This leads to the following characterizations of several Banach and Frechet

algebras associated with an annulus T (r2, r1) = {z ∈ C : r2 < |z| < r1}. A

uniform Frechet algebra (uF-algebra) is a Frechet algebra whose topology is

defined by a sequence of uniform semi norms.

Theorem 8.2. [24] Let A be a Laurent series generated Frechet algebra with

unique expression property and having Laurent series generator x. Let pk(.) be

a sequence of sub multiplicative semi norms defining the topology of A.

(1) If spA(x) is open subset of C, then A is isomorphic to the uF-algebra

H(T (r2, r1)), 0 ≤ r2 < r1 ≤ ∞, of functions holomorphic in the open annulus

T (r2, r1) and with compact open topology. Further

(1a) 0 < r2 iff 0 belongs to the interior of the complement of spA(x); and

(1b) r1 <∞ iff spA(x) is bounded.

(2) If the int(spA(x)) is empty, then A is isomorphic to the Wiener Frechet

algebra W (Tr, ω) consisting of continuous functions f on Tr = {z ∈ C : |z| = r}
such that ‖f‖ωk

:=
∑
n∈Z |F (fr)(n)|ωk(n) < ∞ for a sequence {ωk} of weight

functions on Z. Here F (fr)(n) denote the Fourier coefficients of fr(z) = f(rz).

Further assume the following.

(2a) There exists M1 > 0, M2 > 0 and a sequence {mk}of natural numbers

such that M1(1 + |n|)mk ≤ pk(xn) ≤M2(1 + |n|)mk for all n;

(2b) For some n0,{pk(xn0)} is bounded.

Then A is isomorphic to the Frechet algebra C∞(T) of the C∞-functions on

the unit circle T.

(3) If for all k, pk(xn) = pk(x)n(n ≥ 0) and pk(xn) = pk(x−1)−n(n ≤ 0),

then A is isomorphic to any of the Frechet algebras H(T (r2, r1)) or H(T [r2, r1))
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or H(T (r2, r1]) or the Banach algebra H(T [r2, r1]). Further if spA(x) is com-

pact, then A is isomorphic to the Banach algebra H(T [r2, r1]) consisting of

functions continuous on the closed annulus T [r2, r1] and holomorphic in its

interior T (r2, r1).

(4) If A is a uF-algebra, then A is isomorphic to H(T (r2, r1)).

Above theorem recaptures the classical complex analysis of Laurent series

representations. We consider an analogue of Taylor series representations. A

power series generated Frechet algebra is a Frechet m-convex algebra with

a defining sequence of semi norms {pk} such that A is topologically gener-

ated by some x and each y in A can be expressed as y =
∑
n∈N λnx

n with∑
|λn|pk(xn) <∞.

Theorem 8.3. [29] Let A be a power series generated Frechet algebra of power

series having unique expression property.

(1) Then A is isomorphic to either the algebra of all power series in one

indeterminate or to the semi group Beurling - Frechet algebra l1(Z+, ω) =

∩l1(Z+, ωk) for a sequence {ωk} of weights on Z+.

(2) Either spA(x) is totally disconnected or A is isomorphic to l1(Z+, ω).

(3) Assume that spA(x) is not totally disconnected and that A is semi sim-

ple.Then the following hold.

(3a) Let A be a Q-algebra.Suppose that the following hold.

(i) There exists M1 > 0, M2 > 0 and a sequence {mk}of natural numbers

such that M1(1 + |n|)mk ≤ pk(xn) ≤M2(1 + |n|)mk for all n in Z+;

(ii) For some n0,{pk(xn0)} is bounded.

Then A is isomorphic to the Frechet algebra A∞(T) consisting of C∞-

functions on the unit circle having all negative Fourier coefficients zero.

(3b)Assume that A is not a Q-algebra. Then A is isomorphic to the holo-

morphic function algebra H(U) of the open disc U or to the entire function

algebra E both with the compact open topology depending on whether spA(x) is

bounded or unbounded respectively.

It should be of interest to look to multivariate analogues of these.

(8.5) [18] In view of the possible failure of UUNP in Banach algebras having

Gelfand spaces with analytic structure, it is instructive to have examples of vari-

ents of holomorphic function algebras having UUNP. For z = (z1, z2, ....., zn) ∈
Cn,let |z|∞ = max(|z1|, ......, |zn|), |z|2 = (|z1|2 + ...... + |zn|2)1/2. Let 4n =

{z ∈ Cn : |z|∞ < 1} be the open poly disc and Bn = {z ∈ Cn : |z|2 < 1} be

the open unit ball. Then the poly disc algebra A(4n) consisting of functions
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continuous on 4n that are holomorphic in 4n, the ball algebra A(Bn) consist-

ing of functions continuous on Bn that are holomorphic in Bn, as well as the

algebras H∞(4n) and H∞(Bn) consisting of bounded holomorphic functions

all with respective sup norms are all Banach algebras that fail to have UUNP.

The following are their variants constructed by thickening the Silov boundary.

Let 0 < r < 1. Let 4nr = {z ∈ Cn : |z|∞ < r}, Bnr = {z ∈ Cn : |z|2 < r}. Each

of the sup norm Banach algebras Ar(4n) = {f ∈ C(4n : f is holomorphic in

4nr },Ar(Bn) = {f ∈ C(Bn : f is holomorphic in Bnr },H∞r (4n) = {f ∈ Cb(4n)

: f is holomorphic in 4nr }, and H∞r (Bn) = {f ∈ Cb(Bn) : f is holomorphic in

Bnr } have UUNP; and non of them is even weakly regular.

9. Some other instances

(9.1) We consider some other instances wherein the analogy between C∗-

algebras and uB-algebras fail. Whenever this happens, it is most likely to

happen with a uB-algebra with an analytic structure in its Gelfand space; and

in such cases, additional assumptions on a uB-algebra like regularity or UUNP

pushing it away from analyticity may be required to obtain results analogous

to those for C∗-algebras. The following illustrates this.

Theorem 9.1. [23] (A) Let A be a non unital C∗-algebra. Then each element

of A is a topological devisor of zero.

(B) Let A be a regular non unital uB-algebra. Then each element of A is a

topological devisor of zero.

Theorem 9.2. (A) Let A be a C∗-algebra. If A is an integral domain, then A

is isomorphic to C.

(B) [18] Let A be a uB-algebra with UUNP. If A is an integral domain, then

A is isomorphic to C.

Notice that the disc algebra A(D) is a uB-algebra that is an integral domain,

and it does not have UUNP.

(9.2) These classes of algebras behave distinctly also with respect to bounded

approximate identity (bai).

Theorem 9.3. (A) A C∗-algebra admits a bai.

(B) A uB-algebra need not admit a bai.

Indeed, let A = A(D) be the disc algebra.Let B = {f ∈ A(D) : f(0) = 0}.
The functional φ, φ(f) = f ′(0) is continuous on B. Let (eα) be a bai for B.

Now g(z) = z is in B. Hence g = lim geα gives 0 = (geα)′(0) = φ(geα) →
φ(g) = g′(0) = 1. Let A be a non-unital uB-algebra having UUNP. Does it

admit a bai?
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(9.3) Curiously enough, C∗-algebras and uB-algebras behave distinctly with

respect to quotient.

Theorem 9.4. (A) Let A be a C∗-algebra. Let I be a closed ideal of A.Then

I is a ∗-ideal; the quotient algebra A/I is ∗-semi simple; and with the quotient

norm, it is a C∗-algebra.

(B) Let A be a uB - algebra. Let I be a closed ideal of A. The quotient

algebra A/I may fail to admit a uniform norm.

Again in the disc algebra A(D), let I = {f ∈ A(D) : f(0) = f ′(0) = 0} a

closed ideal. Then the quotient A(D)/I is the algebra algebraically generated

by {1, x} satisfying x2 = 0. Thus the quotient fails to admit a uniform norm;

in fact, it is not semi simple. Suppose A is a uB-algebra, if necessary, having

UUNP. Let I be a semi simple closed ideal in A. Is A/I with quotient norm a

uB-algebra?

This phenomenon is related with the variety structure of these two classes

of algebras. A variety of Banach algebras [48] is a class of Banach algebras

that is closed under taking closed subalgebras, quotients by closed ideals, l∞ -

sum and images under isometric isomorphisms. The class of C∗-algebras form

a variety; where as the class of uB -algebras do not form a variety. Interestingly

enough, the class Q - of quotients of uB - algebras do form a variety contained

in the variety of operator algebras (i.e. Banach algebras isomorphic to closed

subalgebras of B(H)); and not every commutative operator algebra is quotient

of a uB - algebra. This suggests to examine whether there exists a structural

analogy between C∗-algebras and quotients of uniform Banach algebras. Not

much seem to be known about this.

The properties ∗-regularity and UC∗NP, as well as regularity and UUNP, do

not behave well with respect to quotients. Let A be a ∗-semi simple Banach
∗-algebra. Let I be a ∗-ideal of A. If A is ∗-regular (respectively C∗- unique),

then I is ∗-regular (respectively C∗-unique); and if I is γ-closed, then A/I is
∗-regular. However A/I need not be C∗-unique, even if A is C∗-unique. Also,

there exists A and I such that both I and A/I are C∗-unique, but A is not

C∗-unique [4]. Now let A be a commutative Banach algebra and I be a closed

ideal. If A is regular, then both I and A/I are regular; however if A has

UUNP, A/I need not have UUNP. Indeed let 4r = {z ∈ C : |z| ≤ r}. Let

A = {f ∈ C(42) : f ∈ H(int41)} a uB - algebra with sup norm; and I =

{f ∈ A : f = 0 on 41}. Then A has UUNP, but A/I is the disc algebra which

admits infinitely many uniform norms.

(9.4) Spectral invariance is another aspect where both these classes of Ba-

nach algebras behaves distinctly.
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Theorem 9.5. (A) Let B be a closed ∗-subalgebra of a C∗-algebra A. Then

for any x ∈ B, spB(x) = spA(x).

(B) A closed sub algebra B of a uB-algebra A need not be spectrally invariant

in A.

The above is exhibited by A = C(T), B = A(T) = {f ∈ C(T) : f has analytic

extension in the open unit disc U }.
Is spectral invariance achieved in a closed sub algebra with UUNP of a uB-

algebra with UUNP?

(9.5) With respect to tensor product, C∗-algebras and uB-algebras behave

differently, and that too in a singular way.

Theorem 9.6. (A) Let A and B be C∗-algebras. Let A
⊗
B be their algebraic

tensor product.

(1) Any C∗-norm on A
⊗
B is a cross-norm.

(2) The ∗-algebra A
⊗
B need not have UC∗NP.

(B) [18] Let A and B be uB-algebras. Let A
⊗
B be their algebraic tensor

product.

(1) Not every uniform norm on A
⊗
B is a cross-norm.

(2) The algebra A
⊗
B has UUNP if both A and B have UUNP.

For C∗-algebras A and B, the failure of C∗- uniqueness for A
⊗
B gave

rise to the theory of nuclear C∗-algebrtas. A C∗-algebra A is nuclear if for

any C∗-algebra B, A
⊗
B has UC∗NP. Nuclear C∗-algebras have turned out

to be a most important class of C∗-algebras. The following shows that in the

definition of nuclearity, replacing UC∗NP by the stronger property ∗-regularity

does not produce a new class of C∗-algebras.

Theorem 9.7. [60] (1) Let A be a C∗-algebra. Then A is nuclear iff A
⊗
B

is ∗-regular for all C∗-algebras B.

(2) Let A and B be C∗-algebras. Then A
⊗
B is ∗-regular iff A

⊗
B has

UC∗NP and the completion A
⊗

αB in the minimum C∗-norm α has Tomiyama

property (F).

Property (F) : The set of all product states φ
⊗
ψ where φ and ψ are pure

states of A and B respectively separates the closed ideals of A
⊗

αB.

Theorem 9.8. (A) [60] Let A and B be ∗-semi simple Banach ∗-algebras.

(1) A
⊗
B has UC∗NP iff A, B and C∗(A)

⊗
C∗(B) have UC∗NP.

(2) A
⊗
B is ∗-regular iff A, B and C∗(A)

⊗
C∗(B) are ∗-regular.

(B) Let A and B be semi simple commutative Banach algebras. Let α be a

sub multiplicative norm on A
⊗
B such that the completion A

⊗
αB is semi

simple.
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(1)[18] A
⊗
B has UUNP iff each of A and B has UUNP. In this case,

A
⊗

αB has UUNP.

(2) [84] Let α dominates the injective cross norm λ. The A
⊗

αB is regular

iff A and B are regular.

It should be noted that for semi simple commutative Banach algebras, the

completion A
⊗

αB may fail to be semi simple, though A
⊗
B is semi simple.

(9.6)(4.2.25,p473,[74]) Here is a surprising tensor product characterization

of uniform Banach algebras. Let A be a Banach algebra. Let m : A
⊗
A→ A

be the multiplication map m(x⊗y) = xy. Let λ denote the injective cross norm

on A
⊗
A. Then A is called injective (respectively geometrically injective) if

m induces a continuous (respectively contractive) linear map A
⊗

λA → A.

Geometric injectivity of A is equivalent to the statement that A
⊗

λB is a

Banach algebra for any Banach algebra B.

Theorem 9.9. (1) An injective Banach algebra is isomorphic to an operator

algebra (i.e. a closed, not necessarily involutive, sub algebra of B(H) for some

Hilbert space H).

(2) A geometrically injective Banach algebra is isomorphic to a uniform

Banach algebra.

Is there an analogous characterization of C∗-algebras?

10. Automatic Continuity

(10.1) Automatic continuity [44] is a fascinating aspect of Banach and Frechet

algebras. The most basic result is that a multiplicative linear functional on a

Banach algebra is continuous. A corner stone of the theory is B.E.Johson’s the-

orem stating that a semi simple Banach algebra admits a unique complete norm

topology. The following slightly recasted version of known results illustrates

the meta theorem in the context of automatic continuity.

Theorem 10.1. (A) (1)[78] Let A be a Banach ∗-algebra. If A admits a C∗-

norm, then A admits a unique complete norm topology.

(2) [83] Let A be a Banach ∗-algebra. Let B be a Banach ∗-algebra that

admits a C∗-norm. Let φ : A→ B be a ∗-homomorphism.Then φ is continuous.

(3) [83] Let A be a C∗-algebra. Let B be a Banach ∗-algebra. Let φ : A→ B

be a one one ∗-homomorphism (not necessarily onto). Then ‖φ(x)‖ ≥ ‖x‖ for

all x.

(B) (1) Let A be a Banach algebra that admits a uniform norm. Then A

admits a unique complete norm topology.
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(2) Let A be a Banach algebra. Let B be a Banach algebra that admits a

uniform norm. Let φ : A→ B be a homomorphism. Then φ is continuous.

(3) [31] Let A be a weakly regular uB-algebra. Let B be a Banach algebra.

Let φ : A→ B be a one one homomorphism. Then ‖φ(x)‖ ≥ ‖x‖ for all x.

In above (B)(3), the assumption of weak regularity can not be omitted. Let

A = A(D) the disc algebra. For 0 < r < 1, let B = C(Tr) the algebra of

all continuous functions on Tr = {z ∈ C : |z| = r}. Let φ : A → B be the

restriction map φ(f) = f |Tr
. The algebra A is not weakly regular. Can we

replace weak regularity by the UUNP? The reference [44] is an encyclopedic

treatise on automatic continuity a closer examination of which may illuminate

the theme of the present paper further.

11. Frechet ∗-algebras with a C∗-enveloping algebra and

commutative Frechet Q - algebras

(11.1) Let A be a Frechet ∗-algebra. Let E(A) be the enveloping σ-C∗-

algebra of A constructed as follows [10]. Let R(A) be the collection of all

(continuous) bounded operator ∗-representations π : A → B(Hπ). Let R′(A)

consists of all topologically irreducible π in R(A). Let K(A) be the collection

of all continuous ∗-semi norms on A. For p ∈ K(A), let Rp(A) consist of all

π ∈ R(A) such that for some k = kπ > 0, it holds that ‖π(x)‖ ≤ kp(x) for all

x; and R′p(A) = Rp(A) ∩ R′(A). Let rp(x) = sup{‖π(x)‖ : π ∈ Rp(A)}. Then

rp is a C∗-semi norm; and E(A) is the Hausdorff completion of A in the family

of C∗-semi norms {rp : p ∈ K(A)}. Then A is an algebra with a C∗-enveloping

algebra if E(A) is a C∗-algebra.

On the other hand, given a commutative Frechet algebra B, let 4(B) be

the Gelfand space consisting of all continuous complex homomorphisms on

B. For each p ∈ Kp(B), let 4p(B) be the collection of all φ in 4(B) such

that|φ(x)| ≤ p(x) for all x ∈ B. Let |x|p = sup{|φ(x)| : φ ∈ 4p(A)}. Then

the enveloping uniform Frechet (uF) - algebra U(B) of B is the Hausdorff

completion of B in the family of uniform semi norms |.|p, p ∈ Kc(B).

The following describes a structural analogy between these two classes of

algebras, which is a reflection of previous considerations.

Theorem 11.1. (A) [10],[12] Let A be a Frechet algebra.Let {pα} be a sequence

of semi norms defining the topology of A.The following are equivalent.

(1) A is an algebra with a C∗-enveloping

(2)A admits a greatest (automatically continuous) C∗-semi norm.

(3) The set Pc(A) consisting of all continuous positive linear functionals f

satisfying, for some α, |f(x)| ≤ pα(x) for all x ∈ A, is equicontinuous.



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

60 SUBHASH J. BHATT

(4) The set Bc(A) of all extreme points of Pc(A) is equicontinuous.

(5) (in the commutative case)The hermitian Gelfand space4h(A) is equicon-

tinuous.

(6) Every ∗-representation of A on a Hilbert space maps A necessarily into

bounded operators.

(B) [9] Let A be a commutative Frechet algebra.The following are equivalent.

(1) A is a Q-algebra.

(2) A admits a greatest continuous uniform semi norm.

(3) The Gelfand space 4(A) is equicontinuous (equivalently compact).

(4) The Frechet algebra U(A) is a Banach algebra.

An involutive topological Q - algebra is an algebra with a C∗-enveloping

algebra, though the converse does not hold. It is believed that a hermitian

Frechet algebra with a C∗-enveloping algebra is a Q-algebra. Notice that

a hermitian Frechet algebra in which each self adjoint element has bounded

spectrum is necessarily a Q-algebra [10]. Let A be a Frechet ∗-algebra. For

x ∈ A, let the hermitian spectrum sphA(x) of x consists of all complex num-

bers λ such that for every irreducible ∗-representation (π,Hπ) of A, the op-

erator −λ−1π(x) is not quasi regular in B(Hπ). The hermitian spectral ra-

dius of x is rh(x) = sup{|λ| : λ ∈ sphA(x)}; and the hermitian Ptak function

is shA(x) = rhA(x∗x)1/2. A Banach ∗-algebra is hermitian iff for all x ∈ A,

sphA(x) = spA(x).

Theorem 11.2. (A) [30] Let A be a Frechet ∗-algebra. The following are

equivalent.

(1)A is an algebra with a C∗-enveloping algebra.

(2) There exists a continuous semi norm p on A and k > 0 such that rh(x) ≤
kp(x) for all x.

(3) The number 0 is an interior point of {x ∈ A : π(x) is quasi regular in

B(Hπ) for every irreducible ∗-representation (π,Hπ)}.
(B) [9] Let A be a commutative Frechet algebra.The following are equivalent.

(1) A is a Q - algebra.

(2) There exists a continuous semi norm p and a k > 0 such that r(x) ≤
kp(x) for all x.

(3) The number 0 is an interior point of the set of all quasi regular elements

of A.

A uF -algebra is a uB-algebra iff it is a Q-algebra; similarly a σ−C∗-algebra

is a C∗-algebra iff it is a Q-algebra.
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(11.2)A uF - algebra is commutative; and is realized as an inverse limit of

a sequence of uB-algebras. A σ − C∗- algebra is a Frechet ∗-algebra whose

topology is defined by a sequence of C∗-semi norms. It is realized as an inverse

limit of a sequence of C∗-algebras. Thus at the level of Frechet algebras, σ−C∗-
algebras corresponds to uF-algebras in the present consideration. The uF-

algebras have provided the correct frame work for capturing complex analytic

structure. This is exhibited by the following, which is a companion to Theorems

8.2 and 8.3. A uF -algebra is a strongly uniform algebra if for each kernel ideal

I, the quotient A/I is a uF - algebra with the quotient topology. The part (I)

of the following is essentially due to Kramn.

Theorem 11.3. [59] (I) Let A be a uniform Frechet algebra.

(1) Assume that A is strongly uniform; the Gelfand space 4(A) is locally

compact;and that there exists an integer n ∈ N such that for each φ ∈ 4(A),

the Chevally dimension of φ in 4(A) dimφ4(A) = n <∞. Then 4(A) can be

given the structure of an n-dimensional Stein space so that A is homeomorphi-

cally isomorphic, via the Gelfand map, to the algebra H(4(A)) of holomorphic

functions on 4(A) with compact open topology.

(2) Let A be strongly uniform and a Schwartz space. Let 4(A) be locally

compact and connected. Then A is homeomorphically isomorphic to H(X) for

a Stein manifold X iff there is n ∈ N such that for each φ ∈ 4(A), ker φ is

locally topologically n-generated.

(3) Let 4(A) be locally compact and connected. Then A is homeomorphically

isomorphic to H(X) for a Riemann surface X iff ker φ is a principle ideal for

all φ ∈ 4(A).

(II) Let A be a semi simple commutative Frechet algebra.

(1) If A is rationally singly generated, and if the Silov boundary of A is

empty, then A is homeomorphically isomorphic to H(G) for an open subset G

in the complex plane.

(2) If A is singly generated; the Silov boundary of A is empty; and if for each

X ∈ A, its image under Gelfand transform is unbounded; then Ais homeomor-

phically isomorphic to the algebra H(C) of all entire functions on the complex

plane C.

A very important problem in Frechet algebras is the Michael Problem :

Is every multiplicative linear functional on a Frechet algebra (equivalently on

a uF-algebra) is continuous? A heroic effort [51] to solve this problem has

led discovering its close connection with the deep Poincare-Fatau-Bieberbach

phenomemon in Several Complex Variables. Notice that every ∗ representation

of a Frechet ∗-algebra into bounded Hilbert space operators is continuous.
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(11.3) The determination of real smooth structure has turned out to be a

difficult problem. LetM be a compact differential manifold. Let C∞(M) be the

algebra of smooth functions on M with the topology of uniform convergence

on M of functions and all their derivatives.The algebra C∞(M) determines

M ; and vice versa. The algebra C∞(M) is a Frechet algebra (not a uniform

Frechet algebra) sitting as a dense ∗-subalgebra of the C∗-algebra C(M). It

is not known when is a commutative Frechet algebra isomorphic to C∞(M);

though Allan Connes has recently obtained the following characterization of

C∞(M) in terms of geometric data involving a spectral triple. A spectral triple

(A,H,D) consists of a (unital) ∗-algebra A of bounded linear operators on a

Hilbert space H togather with a (generally unbounded) self adjoint operator

D on H such that (1) for all a ∈ A, the commutator [D, a] is bounded; and (2)

for each λ not in the spectrum of D, (λ1−D) has compact inverse. In Allain

Connes philosophy [41, 52], a spectral triple represents a non commutative

Riemannian geometric data.

Theorem 11.4. [39] Let (A,H,D) be a spectral triple with A commutative sat-

isfying the five axioms of Non-commutative Geometry [40](in a slightly stronger

form). Then there exists a compact oriented smooth manifold M such that

A = C∞(M).

(11.4) This brings us to the formalism of Non commutative Differential

Topology and Noncommutative Geometry [41, 52]. In the light of the funda-

mental Gelfand - Naimark Theorems on C∗-algebras, a non commutative unital

C∗-algebra A represents a topological data - a virtual non commutative com-

pact space, virtual in the sense the underlying space can not be represented in

the language of set theory; non commutative in the sense that it is represented

as a non commutative algebra. In analogy with the pair (C∞(M), C(M)), a

differential structure on such a space is expected to be specified by a dense ∗-sub

algebra of A which is a Frechet algebra admitting smoothness properties like

spectral invariance, K - theory isomorphism, closure under appropriate func-

tional calculi,derivation structure etc. On one hand, several concrete smooth

subalgebras of specific C∗-algebras have been greatly analyzed; on the other

hand, there have been efforts to develop a general theory of smooth sub alge-

bras of C∗ -algebras [36],[64],[27]. This may take us too far away into a terrain

that is uncharted, at least from the point of view of the present paper.

References

[1] Allan,G.R., A note on B∗-algebras, Proc. Cambridge Phil. Soc. 61(1965) 29-32.

[2] Araki, H. and Elliot, G. On the definition of C∗-algebras, Publ. RIMS 9(1973) 93-112.



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

C∗-ALGEBRAS, UNIFORM BANACH ALGEBRAS AND A FUNCTIONAL . . . 63

[3] Aupetit, B., Proprietes spectrale des algebrea de Banach, Lecture Notes in Mathematics

Vol. 735, Springer Verlag, 1975.

[4] Barnes, B. A., The properties ∗-regularity and uniqueness of C∗-norms on general ∗-

algebras, Trans. American Math. Soc. 279(1983) 841-859.

[5] Barnes, B. A., Ideal and representation theory of the L1-algebra of a group with poly-

nomial weight, Colloq. Math. XLV (2) (1981) 301-315.

[6] Bhatt, S. J., A seminorm with square property on a Banach algebra is submultiplicative,

Proc. American Math. Soc. 117(1993) 435-438.

[7] Bhatt, S. J., Some remarks on hermitian Banach ∗-algebras, Indian Jr. Pure Appl.

Math. 26(2)(1995) 131-142.

[8] Bhatt, S. J., Norm free characerizations of C∗-algebras and uniform Banach algebras,

Bull. Polish Acad. Sci. 45(1996) 117-121.

[9] Bhatt, S. J., Uniform seminorms on topological algebras, Math. Today, 10(1992) 3-10.

[10] Bhatt, S. J., Topological ∗-algebras with C∗-enveloping algebras, Proc. Indian Acad. Sci.

Math. Sci. 111(2010) 65-94.

[11] Bhatt, S. J. and Karia, D. J., Uniqueness of the uniforn norm with an application to

toplogical algebras,Proc. American Math. Soc. 116(1992) 499-503.

[12] Bhatt, S. J. and Karia, D. J., Topological algebras with C∗-enveloping algebras, Proc.

Indian Acad. Sci.(Math. Sci.) 111(2004) 65-94.

[13] Bhatt, S. J. and Dedania, H. V., On spectral redius and Ptak’s spectral function in

Banach algebras, Indian Jr. Pure. Appl. Math. 27(6)(1996) 551-556.

[14] Bhatt, S, J. and Dedania, H. V., On a problem of H.G.Dales in a Banach algebra, Math.

Today 11(A) (1993) 29-34.

[15] Bhatt, S, J. and Dedania, H. V., On spectral radious and Ptak spectral function on

Banach algebras, Indian Jr. Pure Appl. Math. 27(6)(1996) 551-556.

[16] Bhatt, S, J. and Dedania, H. V., Uniqueness of the uniform norm and adjoining identity

in Banach algebras, Proc. Indian Acad. Sci. (Math. Sci.) 105 (1995) 405-409.

[17] Bhatt, S, J. and Dedania, H. V., Banach algebras with unique uniform norm, Proc.

American Math. Soc. 124(1996) 579-584.

[18] Bhatt, S, J. and Dedania, H. V., Banach algebras with unique uniform norm II, Studia

Math. 147(2002) 211-235.

[19] Bhatt, S, J. and Dedania, H. V., A Beurling algebra is semi simple : an elementary

proof, Bull. Austrialian Math. Soc. 66(2002) 91-93.

[20] Bhatt, S, J. and Dedania, H. V., A note on generalized characters, Proc. Indian Acad.

Sci. (Math. Sci.) 115(2005) 437-444.

[21] Bhatt, S, J. and Dedania, H. V., Beurling algebras and the uniform norm, Studia Math.

160(2)(2009) 179-183.

[22] Bhatt, S, J. and Dedania, H. V., Measure algebras and the uniform norms, Studia

Math. 177(2)(2006) 133-139.

[23] Bhatt, S, J. and Dedania, H. V., Banach algebras in which every element is atopological

devisor of zero, Proc. American Math. Soc. 123(1995) 735-739.

[24] Bhatt, S. J., Dedania H. V. and Patel, S. R., Frechet algebras with a Laurent series

generator and the annulua algebra, Bull. Australian Math. Soc. 65(2004) 371-383.

[25] Bhatt, S. J., Inoue A. and Ogi, H., Unbounded C∗-seminorms and unbounded C∗-

spectral algebras, Jr. Operator Theory 45(2001) 53-80.



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

64 SUBHASH J. BHATT

[26] Bhatt, S. J., Inoue A. and Ogi, H., Spectral invarience, K-theory isomorphism and

differential structure in C∗-algebras, Jr. Operator Theory 49(2003) 389-405.

[27] Bhatt, S. J., Inoue A. and Ogi, H., Differential structure in C∗-algebras, Jr. Operator

Theory 66(2)(2011) 301-334.

[28] Bhatt, S. J., Karia, D. J., Kulkarni, S. H., and Simpi, M.,A note on Gelfand-Mazur

Theorem, Proc. American math. Soc. 126(1998) 2999-3005.

bibitemBhDePa Bhatt, S. J., Dedania, H. V. and Patel, S. R., Frechet algebras with

Laurent series generator and the annulus algebras, Bull. Austrialian Math. Soc. 65(2002)

371-383.

[29] Bhatt, S. J., and Patel, S. R., On Frechet algebras of power series, Bull. Australian

Math. Soc. 66(2002) 135-148.

[30] Bhatt, S. J., Fragoulopoulou, M., Inoue, A. and Karia, D. J., Hermitian spectral theory,

automatic continuity and topological algebras with a C∗-enveloping algebra, Jr. Math.

Anal. Appl. 331(2007) 69-90.

[31] Bedda, A., Bhatt, S. J. and Oudaded, M., On automatic continuity of homomorphisms,

Proc. American Math. Soc. 128(2000) 1039-1046.

[32] Bjork, J. E., Pacific Jr. Math. 40(1972) 279-284.

[33] Bonsall, F. F., and Duncan, J., Complete Normed Algebra, Springer-Verlag, Berlin, 1973

[34] Bonsall, F. F., and Duncan, J., Numerical Ranges of operators on normed linear spaces

and of elements of normed algebras, London Math. Soc. Lecture Note Series Vol. 2,

Cambridge Univ. Press, 1971.

[35] Bonsall, F. F., and Duncan, J., Numerical Ranges II, London Math. Soc. Lecture Notes

Series 10, Cambridge Univ. Press, 1973.

[36] Blackadar, B. and Cuntz, J., Differential Banach algebra norms and smooth subalgebras

of C*-algebras, Jr. Operator Theory 26(1991) 255-282.

[37] Boidol, J., Group algebras with a unique C∗-norm, Jr. Functional Anal. 56(1984) 220-

232.

[38] Chu, C.-H., Iochum, B. and Watanabe, S. C*-algebras with the Dunford-Pettis Property

in Function Spaces (Ed. K.Jarosz) Marcel Dekker, Inc. (1992) 67-70.

[39] Connes, Alain, On the spectral characterization of manifolds, preprint.

[40] Connes, Alain, Gravity coupled with matter and foundation of noncommutative geom-

etry, Comm. Math. Phys. 1995.

[41] Connes, Alain, Noncommutative Geometry, Academic Press, 1994.

[42] Cuntz, J., C∗-equivalent Banach ∗-algebras, Jr. Functional Anal. 1977.

[43] Dabhi, P. A. and Dedania, H. V., On the uniqueness of the uniform norm and C∗-norm,

Studia Math. 191(3)(2009) 263-270.

[44] Dales, H. G., Automatic Continuity, London Math. Soc. Monograph New3 Series Vol.

24, Clerebdon Press, Oxford, 2000.

[45] Davidson, K. R., C*-algebras by examples, Texts and Readings in Mathematics 11,

Hindustan Book Agency 1976.

[46] Dedania, H. V., A seminorm with square property is automatically submultiplicative,

Proc. Indian Acad. Sci. Math. Sci.

[47] Doran, R.S. and Belfi, Charecterizations of C∗-algebras.

[48] Dixon, P. G., Varieties of Banach algebras, Quart. J. Math. Oxford (2) 27(1976) 481-

487.

[49] Dixmier, J., C∗-algebras, North Holland,Amsterdam, 1982.



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

C∗-ALGEBRAS, UNIFORM BANACH ALGEBRAS AND A FUNCTIONAL . . . 65

[50] Dixmier, J., Von Neumann, Algebras, North Holland 1981.

[51] Dixon, P. G. and Esterle, J., Michael Problem and the Poincare-Fatau-Bieberbach phe-

nomenon, Bull. American Math. Soc. 15(1986) 127-187.

[52] Figueroa, H., Gracia-Bondia, J. M., Varilly, J., Elements of Noncommutative Geometry,

Birkhauser, 2000.

[53] Gamelin, T. W., Uniform Algebras, Prentice Hall, Engelwood Cliffs, N.J. 1969.

[54] Gelfand, I. M., On normed rings I,II,III, Doklady 23(1939) 430-432; 25(1939) 570-572;

25(1939) 573-574.

[55] Gelfand, I.M. and Kolmogorov, A. N., On rings of continuous functions on topological

spaces, Doklady 22(1939) 1-15.

[56] Gelfand, I. M., Normarte rings, Math. Sbornik 51(1941).

[57] Gelfand, I. M., Raikov, D. and Shilov, G., Commutative Normed Rings, Chelsea Publ.

Co., New York, 1964.

[58] Gaur, A. K. and Kovarik, Z., Norms on the unitization of Banach algebras, Proc. Amer-

ican Math. Soc. 117(1993) 111-113.

[59] Goldmann, Uniform Frechet Algebras, North Holland.

[60] Hauenschild, W., Kaniuth E. and Vogt, A., ∗-regularity and uniqueness of C∗-norms

for tensorproduct of ∗-algebras, Jr. Functional Analysis 89(1990) 137-149.

[61] Hussain, T., Orthogonal Bases, Marcel Dekker.

[62] Jorma, A., On locally pseudoconvex square algebras,Publ. Matematiques, 39(1995) 89-

93.

[63] Kaniuth, E., A Course in Commutative Banach Algebras, Graduate Text in Mathemat-

ics, Springer Verlag, 2009.

[64] Kissin, E. and Shulman, J., Differential properties of some dense subalgebras of C*-

algebras, Proc. Edinberg Math. Soc. 37(1994) 399-422.

[65] Larsen, R., Banach Algebras, Marcel Dekkar, 1972.

[66] Leibovitz, G. M., Lectures on Complex Function Algebras, Scot Foresman and Co.,

Illinois, 1970.

[67] Loomis, L. H., Abstract Harmonic Analysis, D. Van Nostrand Publ. Co. 1960.

[68] Luecking, D. H. and Rubel, L. A., Complex Analysis A Functional Analysis Ap-

proach,Universotext, Springer-Verlag, New York Berlin Heidelberg Tokyo 1984.

[69] Mazur, S., Sur les annaux lineares, C. R. Acad. Sci. Paris 207(1938) 1025-1027.

[70] Magyor, L.A. and Sebestyen, Z., On the definition of C∗-algebras, Canadian Jr. Math.

37(4)(1985) 664-681.

[71] Nagumo, Mitio, Einge analytische Untersuchungen in linearen metrische ringen, Japan

Jr. Math. 13(1936) 61-80.

[72] Naimark, M. A., Normed Rings, P. Noorhoff, Groningen, Netharlands, 1964.

[73] Nagasawa, M., Isomorphismsbetween commutative Banach algebras with applications to

rings ofanalytic functions, Kodai Math. Seminar Reports 11(1959) 182-188.

[74] Palmer, T. W., Banach Algebras and General Theory of ∗-algebras, Vol. I : Algebras

and Banach Algebras, Cambridge Univ. Press, Cambridge, 1994.

[75] Palmer, T. W., Banach Algebras and General Theory of ∗-algebras, Vol.II : ∗-algebras,

Cambridge Univ. Press, Cambridge, 2001.

[76] Palmer, T. W., spectral algebras, Rockey Mountain Jr. Math. 22(1992) 293-327.

[77] Pederson, G. K., C*-algebras and automorphism groups, London Math. Soc. Monograph,

First Series Vol. 14, Academia press, London 1979.



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

66 SUBHASH J. BHATT

[78] Rickart, C. E., General Theory of Banach Algebras, D. Van Nostrand 1960.

[79] Rudin, W., Functional Analysis, Mac Graw Hill Publ. Co. 1973.

[80] Sakai, S., C*-and W*-algebras, Springer Verlag, Berlin Heidelberg New York, 1971.

[81] Sebestyn, Z., Every C∗-seminorm is automatically submultiplicative, Perood. Math.

Hungar. 10(1979) 1-8.

[82] Stout, E. L., The Theory of Uniform Algebras, Bogden and Quigly, Inc. New York 1971.

[83] Takesaki, M., Theory of Operator Algebras I, Springer Verlag, New York Heidelberg

Berlin, 1979.

[84] Tomiyama, J., Tensorproducts of commutative Banach algebras, Tohoku Math. J.

12(1960) 147-154.

[85] Yoshida, K., On the group embeded in metric complete group, Japan Jr. Maths. 13(1936)

7-26; 459-472.

[86] Zalar, B., On Hilbert space with multiplication , Proc. American Math. Soc. 123(1995)

1497-1501.

[87] Zelazko, W., Banach Algebras, Elsevier, 1973.

Notes added in proof

(1) In connection with theorem 5.2, Palmer[74] has noted, in the review

of [58], that the universal constant 6e can be improved to 1 + 2e. this

can be further improved 3 by a recent result due to Arhippainen and

Muller, “Norms on unitization on Ba- nach algebras revisited,” Acta

Math. Hunger. 114 (3)(2007) 201-204.

(2) By [16] A commutative Banach algebra A has UUNP if the unitization

A has UUNP. On the other hand Barnes[4] has claimed that given a

non unital Banch ∗ algebra B having UC∗NP, Be has C∗NP iff C∗(B)

does not have identity, and he has applied this to construct an example

of B having UC∗NP such that Be does not have UC∗NP. On the other

hand Dabhi and Dedania [43] proved that a non unital commutative B

has UC∗NP iff Be has UC∗NP. This is proved for a not necessarily

commutative B, recently by Dedania and Kanani, “A non unital *-

algebra has UC*NP iff its unitization has UC∗NP”, preprint, showing

a gap in the arguments of Barnes. All these give more insight in to the

modest looking process of unitization.

(3) The following illustrates (8.4)(iii), Yu. N. Kuznetsova, G. Molitor

Brown, “Harmonic analysis of weighted Lp algebras”, arXiv:1103.3610v1
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A HASSE PRINCIPLE FOR QUADRATIC FORMS∗

V. SURESH

Let k be any field with char (k) 6= 2. A quadratic form q over k is a homo-

geneous polynomial of degree 2 with coefficients in k. For a given quadratic

form

q =
∑

1≤i≤j≤n

aijXiXj , aij ∈ k,

we attach a symmetric matric

S(q) =


a11 a12/2 . a1n/2

. a22 . a2n/2

. . . .

. . . ann

 .

We say that q is non-degenerate if the determinant of S(q) is non-zero. We say

that two quadratic forms q1 and q2 are isometric if there exists a non-singular

matric A with coefficients in k such that

S(q2) = AS(q1)At.

Since char(k) 6= 2, given a quadratic form q over k, we can find a non-

singular matric A such that the matrix AS(q)At is a diagonal matrix. Hence

every quadratic form over k is isometric to a quadratic form q(X1, · · · , Xn) =

a1X
2
1 + · · · + anX

2
n, with ai ∈ k. Such a q is called a diagonal form and it is

denoted by <a1, · · · , an>. From the definition it follows that a diagonal form

<a1, · · · , an > is non-degenerate if and only if all ai’s are non-zero. If q is a

quadratic form in n variables, then n is also called the dimension of q.

Given two quadratic forms q1(X1, · · · , Xn) and q2(Y1, · · ·Ym), we define

their orthogonal sum as the quadratic form q(Z1, · · ·Zn+m) = q1(Z1, · · · , Zn)+

q2(Zn+1, · · · , Zn+m). The orthogonal sum of q1 and q2 is denoted by q1 ⊥ q2.

∗ The text of the invited Lecture delivered at the 76th Annual Conference of the In-

dian Mathematical Society held at the Sardar Vallabhbhai National Institute of Technology

(SVNIT), Surat - 395 007, Gujarat, during the period December 27 - 30, 2010.

c© Indian Mathematical Society, 2011.

67



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

68 V. SURESH

We say that a quadratic form q is isotropic over k if there exists a non-zero

vector x = (x1, · · ·xn) ∈ kn such that q(x) = 0. If q is not isotropic, then it

is called anisotropic. For example the quadratic form q1(X,Y ) = X2 + Y 2 is

anisotropic over the field of real numbers R and the quadratic form q2(X,Y ) =

X2−Y 2 is isotropic over any field. The quadratic form X2−Y 2 is denoted by

H and is called the hyperbolic plane.

A classical theorem of Witt asserts that every quadratic form q is isometric

to qan ⊥ H ⊥ · · · ⊥ H, where qan is anisotropic and it is uniquely determined

by q.

Thus to study the isometry classes of quadratic forms over a given field k,

it is enough to study the isometry classes of anisotropic quadratic forms.

If k is a p-adic field or more generally a complete discrete valuated field,

then it is easy to see when a given form is anisotropic over k. The classical

Hasse-Minkowski theorem gives a method to determine when a given form over

a number field is anisotropic.

In this article we explain this classical Hasse-Minkowski theorem and also

the recent developments. We refer the reader to ([2], [4], [7]) for the theory of

quadratic forms.

Hasse-Minkowski theorem

Let C be the field of complex numbers. Let q be a quadratic form over C

in at least 2 variables. Then it is easy to see that q is isotropic over C.

Let R be the field of real numbers. Then it is easy to see that every non-

singular quadratic form q over R is isometric to q =< ±1, · · · ,±1 >. The

quadratic form q is isotropic if and only if there is at least one positive 1 and

one negative 1.

Let F be a finite field of characteristic not equal to 2. Let q be a quadratic

form over F. Then it is not difficult to see that if the dimension of q is at least

3, then q is isotropic.

Let Q be the field of rational numbers and p a prime number. Let m be

a non-zero integer. Then we can write m = prm1 for some r ≥ 0 and m1 an

integer which is not divisible by p. Let vp(m) = r. We define a metric |·|p on

Q as follows : ∣∣∣m
n

∣∣∣
p

=

(
1

p

)vp(m)−vp(n)

The completion of Q with respect to the metric | · |p is denoted by Qp and

Qp is also a field. Let Zp = {a ∈ Qp : | a |p≤ 1}. Then Zp is an integral
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domain with field of fractions Qp. Any element of Zp can be written as

a0 + a1p+ a2p
2 + a3p

3 + · · ·

with ai ∈ {0, 1, · · · , p − 1}. There is a unique maximal ideal mp = pZp of Zp

and Zp/mp is the finite field Fp with p elements.

Using the fact that every quadratic form over a finite field in at least 3

variables is isotropic and Hensell’s Lemma it follows that every quadratic form

over Qp in at least 5 variables is isotropic.

Let q be a quadratic form over Q. We know that Q ⊂ R and Q ⊂ Qp for

all p. Suppose that q is isotropic over Q, then it is isotropic over R and Qp

for all p. To decide whether a quadratic form is isotropic over Q or not is very

difficult. The Hasse-Minowski’s theorem gives a method to determine whether

a quadratic form q over Q is isotropic or not. We have the following

Theorem 1. (Hasse-Minkowski) A quadratic form over Q is isotropic if and

only if it is isotropic over Qp for all p and over R.

A number field is a finite extension of either Q. There is a similar result for

number fields also.

Let q be a quadratic form over Q. Then q is isometric to <m1, · · · ,mn>,

for some mi ∈ Z. Suppose the dimension of q is at least 5. Then we know that

q is isotropic over Qp for all p. If some mi = 0, then q is isotropic. Assume

that mi 6= 0 for all i. To check q is isotropic or not it is enough to check over

Qp for all p and over R. Since n ≥ 5, q is isotropic over Qp for all p. Thus it

is enough to check over R. We know that q is isotropic over R if and only if

mi > 0 and mj < 0 for some i and j. Hence q is isotropic over Q if and only

if mi > 0 and mj < 0 for some i and j.

Complete discrete valuated fields

Let K be a complete valuated field (for example Qp), R its ring of integers

(e.g. Zp) and k its residue field (e.g. Fp). Assume that the characteristic of k

in not equal to 2. Let π ∈ R be a parameter. Then every element in K∗ can

be written as πru for some integer r and unit u in R. For any unit u ∈ R, let

u denote its image in k.

Let q be a quadratic form over K. If q is not non-degenerate, then q is

isotropic. Assume that q is non-degenerate. Then q is isometric to

<u1, · · · , ur>⊥<v1π, · · · , vsπ>

for some units ui, vj ∈ R. Since R is a complete discrete valuation ring and the

char(k) 6= 2, q is isotropicK if and only if either<u1, · · · , ur> or<v1, · · · , vs>
is isotropic over k.
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Thus if we know when a form is isotropic over k, we can say when a form is

isotropic over K. If every quadratic form in at least n + 1 variables over k is

isotropic, then, every quadratic form in at least 2n+ 1 variables over F has a

non-trivial zero.

Hasse principle for rational function fields

It is interesting to look for a Hasse principle (local-global principle) for

isotropy of quadratic forms over function fields. This has deep consequences.

Let F be a field and Ω be a set of discrete valuations of F . For v ∈ Ω, let Fv

denote the completion of F at v.

We say that quadratic forms over F satisfy Hasse Principle with respect to

Ω if every quadratic form q over F which is isotropic over Fv for all v ∈ Ω, is

isotropic over F .

Let k be a field and F = k(t) be the rational function field in one variable

over F . Let Ωk be the set of all discrete valuations of F which are trivial on

k. Elements of Ωk correspond to monic irreducible polynomials in k[t] and
1
t . For v ∈ Ωk, we have Fv = `((π)), where ` = κ(v) is the residue field at

v. i.e. if v corresponds to a monic irreducible polynomial p(t) ∈ k[t], then

κ(v) = k[t]/(p(t)) and if v corresponds to 1
t then κ(v) = k.

Let q be a quadratic form over k(t).

1) Suppose dim(q) = 2. After scaling, we may assume that q =< 1,−f(t)>,

for some f(t) ∈ k[t]. For any field F (of characteristic not 2), a quadratic form

<1,−λ> is isotropic if and only if λ is a square in F . Thus q =<1,−f(t)> is

isotropic if and only if f(t) ∈ k(t)∗2. It is not difficult to see that f(t) ∈ k(t)∗2

if and only if f(t) ∈ k(t)∗2v for all v ∈ Ωk. In particular q is isotropic over k(t)

if and only if q is isotropic over k(t)v for all v ∈ Ωk.

2) Suppose dim(q) = 3. After scaling, we may assume that q =<1,−f(t),−g(t)>,

f(t), g(t) ∈ k(t)∗.

Let F be any field of characteristic not equal to 2 and λ, µ ∈ F ∗. We have

a quaternion algebra H = H(λ, µ): i2 = λ, j2 = µ, ij = −ji. We know that

q =< 1,−λ,−µ> is isotropic if and only if the quaternion algebra H(λ, µ) is

isomorphic to the matrix algebra M2(F ).

Suppose that q =< 1,−f(t),−g(t)> is isotropic over k(t)v for all v ∈. Let

H = H(f(t), g(t)). Then H ⊗ k(t)v ' M2(k(t)v) for all v ∈ Ωk. There are

methods to show that in this case H 'M2(k(t)). In particular q is isotropic.

Thus Hasse principle holds for 2 and 3 dimensional forms over k(t) with

respect to Ω.
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There are examples due to Rowen-Sivatski-Tignol of rank 6 quadratic forms

over Qp(t) which are anisotropic over Qp(t), but isotropic over Qp(t)v for all

v ∈ ΩQp
(cf. [1]).

In fact let q =<−a,−p, ap, t, a(p− t),−at(p− t)>, where a ∈ Z∗
p is a non-

square and p is an odd prime( e.g. p = 3 and a = −1). Then q is anisotropic

over Qp(t), but isotropic over Qp(t)v for all v ∈ ΩQp
. Thus Hasse Principle

fails for 6-dimensional forms over Qp(t) with respect to ΩQp .

The set ΩQp misses all discrete valuations of Qp(t) extending the p-adic

valuation on Qp. Let Ω be the set of all discrete valuations of Qp(t).

Theorem 2. (Colliot - Thélène - Parimala - Suresh) Hasse principle holds for

quadratic forms over F = k(t) with respect to Ω.

As we have seen above for dimension 3 quadratic forms, given isotropic vec-

tors over each completion we do not produce an isotropic vector over Qp(t).

However we use various techniques from Brauer groups, Galois groups, arith-

metic geometry and patching techniques which were developed in last 60 years.

u-invariant

In 1953 Kaplansky defined an invariant attached to a field k, called the

u-invariant, denoted by u(k), as

u(k) = sup { dim(q) | q anisotropic quadratic form over k }.

As we mentioned above u(C) = 1, u(R) = ∞, u(F) = 2 for a finite field F

and u(Qp) = 4. In fact for any finite extension k of Qp, u(k) = 4.

Let k be a field and k((t)) the field of Laurent power series. Since k((t)) is

a complete discrete valuated field, if u(k) = N , then u(k((t))) = 2N (Hensel’s

Lemma).

A theorem of Tsen-Lang asserts that u(C((X1))((X2)) · · · ((Xn))) = 2n and

u(F((X1))((X2)) · · · ((Xn))) = 2n+1, for a finite field F.

Question. Does u(k) <∞ imply u(k(t)) <∞?

This problem is open and seems to be very difficult for general fields. Let

us look at the fields which are of interest from the point of view of Number

Theory.

Kaplansky conjectured that If k is a p-adic field, then u(k(t)) = 8. Since

u(k) = 4, it is easy to see that u(k(t)) ≥ 8

Till late 90’s it was not even known whether u(Qp(t)) is finite. Let K be a

finite extension of Qp(t). We have the following :

Merkurjev (1997) : p 6= 2, u(K) ≤ 26.

Hoffmann-Van Geel(1997): p 6= 2, u(K) ≤ 22.
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Parimala-Suresh (1998): p 6= 2, u(K) ≤ 10.

Theorem 3. (Parimala - Suresh (2007)) Let K/Qp(t) be a finite extension.

If p 6= 2, then u(K) = 8.

The proof of the above theorem uses many results from Brauer groups, Galois

cohomology groups and Witt groups. The above theorem for Qp(t) can also

be deduced from the Hasse principle which we have mentioned before.
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Abstract: In this article we try to explore the relation between real

conjugacy classes and real characters of finite groups at more refined level.

This refinement is in terms of properties of groups such as strong reality

and total orthogonality. In this connection we raise several questions and

record several examples which have motivated those questions.

1. Introduction

Let G be a finite group. It is a basic statement in the character theory of

finite groups that the number of irreducible complex characters is same as the

number of conjugacy classes in G. Further this statement can be refined to

the number of real irreducible characters being equal to the number of real

conjugacy classes. However it is very well known that the real characters come

from two kinds of representations: orthogonal and symplectic [21, Section 13.2

Prop. 39]. Schur himself explored this topic and now this is very closely related

to Schur index computation. In last 10 years the computation of Schur indices

have been almost completed for finite groups of Lie type (for example see [6]).

In this article we raise the question to further divide real conjugacy classes

in two parts as to match the sizes of partitions with the number of orthogonal

characters and symplectic ones. In section 2 we give basic definitions and ask
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several questions concerning relations between conjugacy classes and charac-

ters. In section 3 we define Schur indices of a representation. In section 4 we

define canonical involution on a group algebra and mention known results on

its restriction to the simple components. In the following section we provide

examples which provide strength to the questions raised earlier. This is the

main objective of this article. In the section 6 we mention the Lie algebra

defined for a group algebra which makes use of real conjugacy classes. Re-

sults mentioned in this article are either calculations using computer algebra

system GAP or have been collected from various sources related to real conju-

gacy classes. Some of the questions raised in this article are already known to

experts (for example see [7]).

2. Conjugacy Classes vs. Representations for a group

Let G be a group. An element g ∈ G is called real if there exists t ∈ G

such that tgt−1 = g−1. An element g ∈ G is called involution if g2 = 1. An

element g ∈ G is called strongly real if it is a product of two involutions in G.

Further notice that if an element is (strongly) real then all its conjugates are

(strongly) real. Hence reality (i.e. being real) and strong reality are properties

of conjugacy classes. The conjugacy classes of involutions and more generally

strongly real elements are obvious examples of real classes. However converse

need not be true.

Example 2.1. Take G = Q8, the finite quaternion group. Then we see that

iji−1 = j−1 hence j is real but it is not strongly real.

A representation of a group G is a homomorphism ρ : G→ GL(V ) where V

is a vector space over a field k. The representation ρ is called irreducible if V

and {0} are the only subspaces W of V satisfying ρ(G).W ⊆W . Let V ∗ denote

the dual vector space of V . The dual representation of ρ is the representation

ρ∗ : G → GL(V ) given by ρ∗(g) = tρ(g−1), where tρ(g−1) is the transpose of

ρ(g−1). To a representation ρ its associated character χ : G→ k is defined by

χ(g) = trace(ρ(g)). In this section we only consider complex representations

(i.e. k = C). It is a classical theorem that the number of conjugacy classes

in G is equal to the number of irreducible complex characters [21, Section 2.5

Theorem 7]. A theorem due to Brauer [13, Chapter 23] asserts that the number

of real conjugacy classes is same as the number of irreducible real characters

(i.e. the complex characters which take real values only).

Let ρ : G→ GL(V ) be an irreducible complex representation of G and χ be

the associated character. If χ takes a complex value then the representation

ρ is not isomorphic to its dual ρ∗ and the vector space V can not afford a
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G-invariant non-zero bilinear form. If χ is real then ρ ∼= ρ∗ and in this case V

admits a non-zero G-invariant bilinear form. This form can be either symmetric

or skew-symmetric depending on whether (V, ρ) is defined over R or not (see

[21, Section 13.2]). Equivalently the image of G sits inside On in the first case

and inside Sp2n in the second case. To each character χ one associates Schur

indicator υ(χ) which is defined as follows:

υ(χ) =
1

|G|
∑
g∈G

χ(g2).

In fact υ(χ) = 0,±1 and υ(χ) = 0 if and only if χ is not real, υ(χ) = 1 if χ is

orthogonal and symplectic otherwise [21, Prop. 39]. Hence the real characters

come in two classes: orthogonal type and symplectic type. This gives a natural

division of real characters. We now have following questions:

Question 2.2. Let G be a finite group.

(1) Can we naturally divide real conjugacy classes of G in two parts so

that the number of one part is same as the number of orthogonal rep-

resentations (we are specially interested in groups of Lie type)?

(2) Is it true that if a group G has no symplectic character (i.e. all self-dual

representations are orthogonal) then all real elements are strongly real

and vice versa?

A careful look at the examples in section 5 will suggest that these questions

are indeed interesting to ask.

We now restrict our attention to those groups in which all elements are real.

Such groups are called real or ambivalent. Tiep and Zalesski classify all real

finite quasi-simple groups in [26]. For real groups all characters are real valued.

Two interesting subclasses of the real groups are the following:

• Subclass in which all elements are strongly real. Groups belonging to

this class are called strongly real groups.

• Subclass in which all characters are orthogonal. Groups belonging to

this class are called totally orthogonal or ortho-ambivalent.

An element g ∈ G is called rational if g is conjugate to gi whenever g and gi

generate the same subgroup of G. A group is called rational if every element

of g is rational.

Theorem 2.3. ([21] 13.1-13.2). A group G is rational if and only if all its

characters are Q-valued.

In fact, the number of isomorphism classes of irreducible representations of

G over Q is same as the number of conjugacy classes of cyclic subgroups of G.
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Example 2.4. Let G = Sn, the symmetric group. Then every element of G is a

product of two involutions and hence strongly real. It is also totally orthogonal.

All its character are integer valued. In fact, it is a rational group.

Example 2.5. The group Q8 has four 1-dimensional representation which are

orthogonal and one symplectic representation. This group is neither strongly

real nor totally orthogonal.

Let us denote the class of finite groups which are real by R, the class of real

groups which have their Sylow 2-subgroup Abelian by S, the class of strongly

real groups by SR and the class of totally orthogonal groups by T O. Then

using the results of [27] and [1] we have the following:

S ⊂ SR ⊂ R and S ⊂ T O ⊂ R.

In particular they prove that if G is real then it is generated by its 2-elements

and if G is totally orthogonal then it is generated by involutions. In view of

above relations we ask the following question:

Question 2.6. Find the class SR ∩ T O.

We know that the class SR ∩ T O contains S. The containment though, is

far from being equality. The dihedral group D4 of order 8 is strongly real as

well as totally orthogonal but its Sylow 2-subgroup, which is D4 itself, is not

Abelian.

It is therefore natural to ask which strongly real groups are totally orthogonal

and vice versa. We have made many calculations using GAP and it seems the

class SR ∩ T O is very close to the class T O, though SR and T O are not

identical. There is a group of order 32 which is strongly real but not totally

orthogonal. This group G has the following properties:

(1) It is not simple. It has normal subgroups of all plausible orders −2, 4,

8 and 16.

(2) Exponent of G is 4.

(3) Derived subgroup of G of order 2.

(4) The group G is a semidirect product of C2 × Q8 and C2. Here C2

denotes the cyclic group of order 2 and Q8 denotes the quaternion

group of order 8.

(5) This group has one 4-dimensional character and sixteen 1-dimensional

characters. The 4-dimensional character assumes non-zero value only

on one non-identity conjugacy class.

(6) It is an extra-special group of order 32.
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It is worth noting that this is the only group of order 63 or smaller which is

strongly real and not totally orthogonal. All totally orthogonal groups till this

order are strongly real.

3. Schur Indices of groups

Let G be a finite group. Let k be a field such that char(k) does not divide

|G|. The group algebra of G over k is

kG =

∑
g∈G

αgg : αg ∈ k


with operations defined as follows:∑

g∈G
αgg +

∑
g∈G

βgg =
∑
g∈G

(αg + βg)g

α

∑
g∈G

αgg

 =
∑
g∈G

ααgg

∑
g∈G

αgg

 ·(∑
h∈G

βhh

)
=
∑
t∈G

∑
g∈G

αgβg−1t

 t

It is a classical result of Maschke that kG is a semisimple algebra. Hence by

using Artin- Wedderburn theorem one can write it as a product of simple matix

algebras over division algebras, i.e.,

kG ∼= Mn1(D1)× · · · ×Mnr (Dr)

where Di’s are division algebras over k with center, say Li, a finite field exten-

sion of k. We know that Di over Li is of square dimension, say m2
i . Further

each simple component Mni
(Di) corresponds to an irreducible representation

of G over k. The number mi is called the Schur index of the corresponding

representation. One can write 1 = e1 + · · · + er using above decomposition

where ei’s are idempotents. In fact,

ei =
χi(1)

|G|
∑
g∈G

χi(g
−1)g.

where χi is the character of the representation corresponding to Mni(Di). For

this reason often the Schur index is denoted as mk(χi). The following are

important questions in the subject:

Question 3.1. (1) Find out Schur indices mk(χi) and Li for the represen-

tations of a group G.

(2) Determine the division algebras Di appearing in the decomposition.
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The problem of determining Schur indices for groups of Lie type has been

studied extensively in the literature notably by Ohmori [17, 18], Gow [8, 9],

Turull [24] and Geck [6]. Geck also gives a table of the all known results on

page 21 in [6]. However answer to the second question is much more difficult,

e.g., Turull does it for SLn(q) in [24]. The group algebra is well studied over

field k = C,R,Q or Fq. For example, CG ∼= Mn1
(C)× · · · ×Mnr

(C), as there

is only one finite dimensional division algebra over C which is C itself (so is

over Fq). Moreover the simple components in this decomposition correspond

to a finite dimensional representation of G over C. However in the case of R
we know that the finite dimensional division algebras over R are R, H and C
hence the corresponding Schur index is 1; 2 or 1 respectively. In this case,

RG ∼=Mn1
(R)× · · · ×Mnl

(R)×Mnl+1
(H)× · · ·Mnl+s

(H)×

Mnl+s+1
(C)× · · · ×Mnl+s+p

(C).

In particular we see that the irreducible representations of G are of three kinds

which are called orthogonal, symplectic and unitary as they can afford a sym-

metric bilinear form, an alternating form or a hermetian form respectively.

These correspond to the Schur indicator υ(χ) (defined in section 2) being 1,

−1 or 0 respectively. Hence the question of calculating Schur indices over R is

related to determining the types of representations: orthogonal, symplectic or

unitary.

4. Canonical Involution on the Group Algebra

One can define an involution σ on kG as follows:

σ(
∑

αgg) 7→
∑

αgg
−1.

This involution is called the canonical involution. We can define a symmetric

bilinear form T : kG × kG → k by T (x, y) = tr(lxσ(y)) where lx is the left

multiplication operator on kG and tr denotes its trace. We note that tr(le) = n

and tr(lg) = 0 for g 6= e. Hence the elements of group G form an orthogonal

basis and the form T ' n < 1, 1, · · · , 1 >. The following result is proved in [20]

(chapter 8 section 13): If the form n < 1, 1, · · · , 1 > is anisotropic over k (for

example k = R or Q) the involution σ restricts to each simple component of

kG. In fact, in the case (ref. [2] theorem 2) G is real the involution σ restricts

to each simple component of kG.

In general if kG ∼= A1×A2× · · · ×Ar and k = C then either σ restricts to a

component Ai or it is a switch involution on Ai×Aj where Ai ∼= Aj . However

when k = R the involution σ restricts to each component Ai, say σi, and is of

either first type or second type. It is of the first type when Ai is ∼= Mn(R) or
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Mm(H) and of the second type when the component is isomorphic to Ml(C).

Moreover when we tensor this with C the first type gives the component over

C the one to which σ restricts and the second type over R gives the one which

correspond to the switch involution over C.

Let us assume now that the canonical involution σ restricts to all components

of kG, i.e., (kG, σ) ∼=
∏
i(Ai, σi) where Ais are simple algebras over k with

involution. For example, this happens when k = R or when G is real. Algebras

with involution (A, σ) have been studied in the literature (see [14]) extensively

for its connection with algebraic groups. They are of two kinds: involution

of the first kind is one which restricts to the center of A as identity and the

involution of second kind restrict to the center of A as order 2 element. Further

the involution of the first kind are of two types called orthogonal type and

symplectic type the second kind is also called unitary type.

A group is called ortho−ambivalent with respect to a field k if the canonical

involution σ restricts to all of its simple components as orthogonal involution

(of first kind). The following results are proved in the thesis of Zahinda (ref.

[29] Chapter 2): An ortho-ambivalent group is necessarily ambivalent and in

fact it is totally orthogonal (see Proposition 2.4.2 in [29]). The notion of ortho-

ambivalence over k is equivalent to ortho-ambivalence over C. Further the

question that which 2 groups are ortho-ambivalent is analysed.

5. Some Examples

Here we write down some examples and some GAP calculations we did.

5.1. Symmetric and Alternating Groups. Conjugacy classes in Sn are

in one-one correspondence with partitions of n. Every conjugacy class in Sn

is strongly real and hence real. All characters of Sn are real and moreover

orthogonal.

Let g ∈ An. Then if ZSn(g) ⊂ An then gSn = gAn ∪ (xgx−1)An where x is

an odd permutation. In case ZSn(g) 6⊂ An then gSn = gAn . In [19], Parkinson

classified real elements in An. Let n = n1 + n2 + · · ·+ nr be a partition and C

be a conjugacy class corresponding to that in Sn contained in An. Then, C is

non-real in An if and only if

(1) each ni distinct,

(2) each ni odd and

(3) 1
2 (n− r) is odd.

And hence the number of conjugacy classes in An is equal to the number of

real even partitions + twice the number of non-real even partitions. In fact

(see [3, 19], An is ambivalent if and only if n = 1, 2, 5, 6, 10, 14.
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For example in the case of n = 7, the partitions are given by 17, 152, 143,

1322, 1223, 132, 223, 34, 25, 124, 16, 7, 125, 134, 123.Out of which 17, 143, 1322, 132,

223, 124, 7, 125 correspond to elements in A7. By above criteria the only non-

real class corresponds to the partition 7. Hence there are 7 real conjugacy

classes in A7 out of total 7 + 2.1 = 9 conjugacy classes. Using GAP we verified

following statements about A7.

(1) All but one conjugacy classes are real.

(2) All real conjugacy classes are strongly real.

(3) All real characters are orthogonal.

We summarise some GAP calculations below for An:

n total real classes st real orthogonal symplectic unitary

classes characters characters characters

5 5 5 5 5 0 0

6 7 7 7 7 0 0

7 9 7 7 7 0 2

8 14 10 10 10 0 4

9 18 16 16 16 0 2

10 24 24 24 24 0 0

14 72 72 72 72 0 0

In [23] section 3, Suleiman proved that in alternating groups an element is

real if and only if it is strongly real. Moreover in An every real character is

orthogonal, i.e., the Schur index of An is 1. This follows from a work of Schur

which is quoted in a paper of Turull (see [25], Theorem 1.1). This result of

Schur says that the Schur index of every ireducible representation of An (for

each n) is 1. Thus An has no symplectic characters. Hence for An,

|strongly real classes| = |real classes| = |real characters| = |orthogonal characters|.

Here the first equality is from Suleiman, second is obvious and third one is

the Schur index computation by Schur himself.

Now one can ask similar questions for the covers of these groups namely S̃n

and Ãn. We summarise some GAP calculations below for Ãn:

n total real classes st real orthogonal symplectic unitary

classes characters characters characters

4 7 3 2 2 1 4

5 9 9 2 5 4 0

We summarise some GAP calculations below for S̃n:
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n total real classes st real orthogonal symplectic unitary

classes characters characters characters

4 8 6 6 6 0 2

5 12 8 6 7 1 4

Here we see an example of group, say the Schur cover of A5 for which there

are only 2 strongly real classes and all 9 real classes, while it has 5 orthogonal

characters and remaining 4 symplectic ones.

5.2. GLn(q). The group GLn(q) has the property that all real elements are

strongly real (ref. [28]). It doesn’t have irreducible symplectic representations,

i.e., all self-dual irreducible representations are orthogonal ([5] Theorem 4). In

[11] and [12] the precise number of the real elements are calculated. In [16],

Macdonald gives an easy way to enumerate conjugacy classes.

Theorem 5.1 (Macdonald). Conjugacy classes in GLn(q) are in one-one cor-

respondance with a sequence of polynomials u = (u1, u2, · · · ) satisfying:

(1) a partition of n, υ = 1n12n2 · · · , i.e., |υ| =
∑
i ini = n,

(2) ui(t) = anit
ni + · · ·+ a1t+ 1 ∈ Fq[t] for all i with ani 6= 0.

Hence the number of conjugacy classes in GLn(q) is∑
{υ:|υ|=n}

cυ =
∑

{υ:|υ|=n}

∏
ni>0

(qni − qni−1).

Theorem 5.2 ([11]). Real conjugacy classes in GLn(q) are in one-one corre-

spondance with a sequence of polynomials u = (u1, u2, · · · ) satisfying:

(1) a partition of n, υ = 1n12n2 · · · , i.e., |υ| =
∑
i ini = n,

(2) ui(t) = anit
ni + · · ·+ a1t+ 1 ∈ Fq[t] for all i with ani 6= 0.

(3) ui(t) self-reciprocal.

Hence the number of real conjugacy classes in GLn(q) is∑
{υ:|υ|=n}

∏
ni>0

nq,ni

where nq,ni
is the number of polynomials ui(t) of above kind of degree ni over

field Fq.
Hence in GLn(q) the number of strongly real elements is same as the number

of orthogonal characters.

5.3. SL2(q). In this case if q is even all q+1 classes are real as well as strongly

real. If q is odd, there are exactly 2 strongly real classes. In the case q ≡
1 (mod 4) all q + 4 classes are real and if q ≡ 3 (mod 4) only q out of q + 4

are real (in fact, exactly unipotent ones are not real). Hence we can say that
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the groups SL2(q) are ambivalent if and only if q is a sum of (at most) two

squares.

In the case q is even all characters are orthogonal. However if q is odd there

is always a symplectic character. One can refer to the calculations of Schur

indices in [22] Theorem 3.1. Hence one can conclude that the group SL2(q) is

ortho-ambivalent if and only if q is even.

5.4. SLn(q). The real and strongly real classes are calculated in [11]. Turull

calculated Schur indices of characters of SLn(q) in [24] over Q and also deter-

mined the division algebras appearing in the decomposition of group algebra.

The following is known from the work of Ohmori, Gow, Zelevinsky, Turull,

Geck etc. For the group SLn(q) if n is odd or n ≡ 0 (mod 4) or |n|2 > |p− 1|2
then all real characters are orthogonal. In the case 2 ≤ |n|2 ≤ |p − 1|2 there

are symplectic representations.

5.5. Orthogonal Group. In [28], Wonenburger proved that every element

of orthogonal group is a product of two involutions. Hence these groups are

strongly real. In [10], Gow proved (Theorem 1) that all characters of On(q) are

orthogonal.

6. The Lie Algebra L(G)

Since kG is an associative algebra we can define [x, y] = xy−yx which makes

it a Lie algebra. The subspace L(G) generated by ĝ = {g − g−1|g ∈ G} is Lie

subalgebra. This Lie algebra associated to a finite group is studied in [4] and

called Plesken Lie algebra. They prove,

Theorem 6.1. The Lie algebra L(G) admits the decomposition:

L(G) ∼=
⊕
χ∈R

o(χ(1))⊕
⊕
χ∈H

sp(χ(1))⊕
⊕
χ∈C

′
gl(χ(1))

where the sums are over different kind of irreducible characters (with obvious

meaning) and the last sum is ′ed meaning we have to take only one copy of

gl(χ(1)) for χ and χ−1.

They also prove that the Lie algebra L(G) is semisimple if and only if G has

no complex characters and every character of degree 2 is of symplectic type,

i.e., G is ambivalent and every non-linear character is symplectic. They also

classify when L(G) is simple.



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

REAL ELEMENTS AND SCHUR INDICES OF A GROUP 83

7. Group Algebra and Real Characters

We have RG a group algebra with involution σ which restricts to each simple

component of it. On one hand we see that Z(RG) = ⊕gRcg where sum on the

right hand side is over conjugacy classes and cg =
∑
t∈G g

t and on other hand

we have Z(RG) ∼= ⊕Z(Mn(D)) ≡ ⊕χ∈RR⊕χ∈CC⊕χ∈HR. We know that center

of a semisimple algebra is an étale algebra and σ restricts to it. In fact, in the

first situation we have Z(RG) ≡ ⊕g∼g−1Rcg ⊕ (Rcg ⊕ Rcg−1) where on the

first component σ restricts as trivial involution and on the second component

it becomes as a switch involution (hence of the second kind). In the second

isomorphism we know that σ restricts to the trivial map on the R and H
components and is of the second kind on C components. Hence counting the

components where σ restricts as first kind gives us the number of real conjugacy

classes is same as the number of real plus symplectic representations.

However applying the same trick to QG doesn’t give the corresponding result

regarding rational representations. As it will also count the odd degree field

extensions of Q. It will be interesting to find such a proof.
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THE ELEMENT SPLITTING OPERATION FOR
GRAPHS, BINARY MATROIDS AND ITS

APPLICATIONS ∗

M. M. SHIKARE

Abstract: The element splitting operation is a useful technique in graph

theory and has important applications. We take the review of these re-

sults. This operation can be extended from graphs to binary matroids.

The formulation of this operation in binary matroids is considered here.

We highlight few significant properties of this operation in matroids and

give some of its applications.

1. The Element Splitting Operation On Graphs (Slater [10])

Let G be a graph and u be a vertex of G with deg u ≥ 2n − 2. Let H be

the graph obtained from G by replacing u by two adjacent vertices u1 and u2,

and if x is adjacent to u in G, written x adj u, then make x adj u1 or x adj u2

(but not both) such that deg u1 ≥ n and deg u2 ≥ n. The transition from G

to H is called an “n-element splitting operation”.
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Figure 1. Graph G and its splitting

Key words and phrases: Graph, splitting operation, binary matroid, graphic matroid.
∗The text of the invited Lecture delivered at the 76th Annual Conference of the In-

dian Mathematical Society held at the Sardar Vallabhbhai National Institute of Technology

(SVNIT), Surat - 395 007, Gujarat, during the period December 27- 30, 2010.

c© Indian Mathematical Society, 2011.
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86 M. M. SHIKARE

Let T = {x1, x2, ..., xh}, the set of edges incident at u1. We denote H by GT .

Note that if G is connected then the new graph is connected.

The connectivity of a graphG is the minimum number of vertices whose removal

results in a disconnected or a trivial graph. A gragh is n-connected if its

connectivity is at least n.

Theorem 1.1. [10] If G is n-connected and H arises from G by n-element

splitting, then H is n-connected.

The n-connected graphs (n ≥ 1) can be characterized in terms of the element

splitting operation. Addition of an edge in a graph means adding an edge

between two non-adjacent vertices. Subdivision of an edge means replacing the

edge by a path of length two.

Now consider the classes of 1-connected, 2-connected, and 3-connected graphs.

Theorem 1.2. [10] The class of 1-connected graphs is the class of graphs

obtained from K2 by finite sequences of edge addition and 1-element splitting.

Hedetniemi [5] proved the following constructive characterization of the two

connected graphs.

Theorem 1.3. A graph is 2-connected if and only if it can be obtained from

K3 by a finite sequence of subdivisions, vertex additions and edge additions.

Slater [10] obtained the following result.

Theorem 1.4. The class of 2-connected graphs is the class of graphs obtained

from K3 by finite sequences of edge addition and 2-element splitting.

Tutte [15] characterized 3-connected graphs in terms of edge additions and 3-

element splitting. For n ≥ 4 the wheelWn is defined to be the graphK1+ Cn−1.

Theorem 1.5. [15] A graph is 3-connected if and only if G is a wheel or

can be obtained from a wheel by a sequence of operations of edge addition and

3-element splitting.

The following figure shows that the graph G can be obtained from W5 using

the above two operations.

Slater [10], proved that the class of 3-connected graphs is the class of graphs

obtained from K4 by finite sequence of edge addition, 3-element splitting and

3-line splitting. Further, he gave classification of 4-connected graphs in terms

of 4-element splitting and some other operations (see[10]).
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Figure 2. Illustration for Tutte’s theorem

2. Basic Concepts in Matroid Theory

We generalize the notion of the element splitting operation on graphs to

binary matroids. The study of matroids is a branch of discrete mathematics

with basic links to graphs, lattices, codes and projective geometry. They are of

fundamental importance in combinatorial optimization and their applications

extend into electrical engineering and statics. Matroids can be defined in many

different but equivalent ways (see [7]).

A matroid M is an ordered pair (E, I) consisting of a finite set E and a

collection I of subsets of E satisfying

(1) φ ∈ I
(2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I
(3) If I1 and I2 are in I and |I1| < |I2|, then there is an element e of I2 − I1
such that I1 ∪ e ∈ I.

If M is a matroid (E, I), then M is called a matroid on E. The members

of I are called the independent sets of M , and E is the ground se of M . A

maximal independent set in M is called a basis of M . A subset of E that is

not in I is called dependent. A minimal dependent set in M will be called a

circuit of M .
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We can associate matroids to matrices and graphs in the following ways. Let

A be an m× n matrix over a field F, and E be the set of column labels of A.

Let I be the set of subsets X of E for which the set of columns labelled by X

is linearly independent in the vector space V (m,F ). Then (E, I) is a matroid.

This matroid is called the vector matroid of A and it is denoted by M [A]. Let

E be the set of edges of a graph G and let I = {X ⊆ E(G)|X is cycle free }.
Then the pair (E(G), I) is a matroid. This matroid is called the cycle matroid

of G and is denoted by M(G).

Two matroids M1 and M2 are isomorphic, written M1
∼= M2, if there is

a bijection ψ from E(M1) to E(M2) such that, for all X ⊆ E(M1), ψ(X) is

independent in M2 if and only if X is independent in M1.

If a matroid M is isomorphic to the vector matroid of a matrix A over a field

F, then M is said to be representable over F and A is called a representation

for M over F. A matroid M is said to be binary if it is representable over the

field GF (2). A matroid M is called graphic if M is isomorphic to the cycle

matroid of a graph.

Let M = (E, I) be a matroid and X ⊆ E. Then the matroid M\X =

(E −X, I ′) where I ′ = {Y | Y ⊆ E −X, Y ∈ I} is called the deletion of X

from M. If X ⊆ E and B0 is a maximal independent subset of X. Then the

matroid M/X = (E −X, I ′) where I ′ = {Y | Y ⊆ E −X, Y ∪ B0 ∈ I} is

called the contraction of X from M.

A minor of M is a matroid obtained from it by a sequence of deletions and

contractions of subsets of E(M). A matroid M is said to be connected if for

every pair of distinct elements of E(M), there is a circuit containing both.

The operations of subdivision of an edge and addition of an edge have been

extended to matroids as follows: A matroid M is a single element extension of a

matroid N if M has an element e such that M \ e = N. M is a series extension

of N if M has a 2-elemnt cocircuit {x, y} such that M/x is N. Shikare and

Waphare [13] extended Hedetniemi’s theorem on graphs to matroids. Indeed,

they proved the following theorem.

Theorem 2.1. [13] Let M be a nonempty matroid that is not a coloop. Then

M is connected if and only if M is a loop or can be obtained from a loop by a

sequence of operations each consisting of a single-element extension or a series

extension.

3. Element Splitting operation for binary matroids [1]

The element splitting operation for binary matroids is defined in terms of

the matrices representing the matroids.
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Let M be a binary matroid on aset E and let A be a matrix over GF (2) that

represents M. Suppose that T is a subset of E(M). Let AT be the matrix that

is obtained by adjoining an extra row to A with this row being zero everywhere

except in the columns corresponding to the elements of T where it takes the

value 1, and then adjoining an extra column (corresponding to a) with this

column being zero everywhere except in the last row where it takes the value

1. Suppose MT be the vector matroid of the matrix AT . The transition from

M to MT is called the element splitting operation.

Proposition 3.1. (i) Let r(M) denote the rank of M. Then r(MT ) = r(M)+

1.

(ii) Suppose T and U are two subsets of E. Then (MT )U = (MU )T .

(iii) If T and U are disjoint subsets of E then (M \ U)T = (MT ) \ U .

4. Bases of the Matroid MT

The following theorem characterizes the bases of the matroid MT in terms

of the bases of the matroid M .

Theorem 4.1. [1] A subset B′ of E is a base of MT if and only if one of the

following two conditions hold:

(1) B′ = B ∪ {a} where B is a base of M .

(2) B′ = B∪α where B is a base of M , α ∈ E −B and the fundamental circuit

of M contained in B ∪ {α} contains an odd number of elements of T .

The element splitting operation may not preserve the connectedness of the

binary matroid M . In the following theorem, we provide a sufficient condition

for the splitting operation to preserve the connectedness of the matroid.

Theorem 4.2. Let M be a connected binary matroid on a set E and T ⊆ E

such that there is a circuit of M containing an odd number of elements of T .

Then the matroid MT is connected.

5. The Element splitting operation on Graphic matroids

The element splitting operation on a graphic matroid may not yield a graphic

matroid. For |T | = 2, Dalvi, Borse and Shikare [2] proved the following theo-

rem.

Theorem 5.1. The element splitting operation, by any pair of elements, on a

graphic matroid yields a graphic matroid if and only if it has no minor isomor-

phic to M(K4) where K4 is the complete graph on 4 vertices.
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1. Introduction

In 1998, Khan and Abukhammash [2] defined Hermite polynomials of two

variables Hn(x, y) suggested by S.F. Ragab’s Laguerre polynomials of two vari-

ables, as follows:

Hn(x, y) =

[n
2 ]∑

r=0

n!(−y)rHn−2r(x)

r!(n− 2r)!
(1.1)

The definition (1.1) is equivalent to the following explicit representation of

Hn(x, y):

Hn(x, y) =

[n
2 ]∑

r=0

[n
2−r]∑
s=0

(−n)2r+2s(2x)n−2r−2s(−y)r(−1)s

r!s!
(1.2)

The generating function for Hn(x, y) is as follows:

exp(2xt− (y + 1)t2) =
∞∑
n=0

Hn(x, y)tn

n!
(1.3)

c© Indian Mathematical Society, 2011.

91



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
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We consider the modified form of Hermite polynomials (MHP) Hα
n (x) de-

fined by the generating function

exp(αxt− t2) =
∞∑
n=0

Hα
n (x)tn

n!
, (1.4)

from which Hα
n (x) can be obtained in terms of the following series

Hα
n (x) = n!

[n
2 ]∑

r=0

(−1)r(αx)n−2r

r!(n− 2r)!
(1.5)

Now we consider MHP of two variables defined as follows:

Hα,β
n (x, y) = n!

[n
2 ]∑

r=0

(−βy)rHα
n−2r(x)

r!(n− 2r)!
(1.6)

from which the following generating function for Hα,β
n (x, y) can be obtained:

exp(αxt− (1 + βy)t2) =
∞∑
n=0

Hα,β
n (x, y)tn

n!
. (1.7)

It may be noted that for α = 2, β = 1 MHP of two variables Hα,β
n (x, y)

reduces to Hermite polynomials of two variables Hn(x, y) due to Khan and

Abukhammash [2]. Thus, we obtain

H2,1
n (x, y) = Hn(x, y) (1.8)

Next we consider MHP of three variables defined as follows:

Hα,β,γ
n (x, y, z) = n!

[n
3 ]∑

r=0

(γz)rHα,β
n−3r(x, y)

r!(n− 3r)!
, (1.9)

The generating function for Hα,β,γ
n (x, y, z) is

∞∑
n=0

Hα,β,γ
n (x, y, z)tn

n!
= exp

(
αxt− (βy + 1)t2 + γzt3

)
(1.10)

Some other generating function for Hα,β,γ
n (x, y, z) are as follows

1.
∞∑
n=0

(C)n
Hα,β,γ
n (x, y, z)tn

n!
= (1− αxt)−CF 3,0,0

0,0,0

[
(C, 2, 3, 2) :: − : − ;

− :: − : − ;

− −βyt2

(1− αxt)2
, − t2

(1− αxt)2
,

γzt3

(1− αxt)3

]
(1.11)

2.
∞∑
n=0

Hα,β,γ
n+k (x, y, z)tn

n!
= exp

[
αxt− (1 + βy)t2 + γzt3

]
×Hα,β,γ

k

(
x− 2(1 + βy)t

α
+

3γzt2

α
, y − 3γzt

β
, z

)
(1.12)
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3.
∞∑

s,n=0

Hα,β,γ
n+r+s(x, y, z)t

nus

s!n!
=

exp
[
αxt− 2(1 + βy)ut+ 3γzu2t+ 6γzuvt− (1 + βy)t2 + γzt3

]
× exp

[
αxu− 2(1 + βy)uv + 3γzt2u− (1 + βy)u2 + γzu3

]
×
∞∑
r=0

Hα,β,γ
r

(
x− 2(1 + βy)t

α
+

3γzt2

α
+

3γzu2

α
,

y − 3γzu

β
− 3γzt

β
, z

)
(1.13)

and the partial diferential equation for Hα,β,γ
n (x, y, z) is(

x
∂

∂x
− 2(1 + βy)

α2

∂2

∂x2
− 3γz

αβ

∂2

∂x∂y
− n

)
Hα,β,γ
n (x, y, z) = 0 (1.14)

In this paper we consider the modified Hermite polynomials (MHP) of sev-

eral variables. Section 2 deals with some special properties of three variables

modified Hermite polynomials (3VMHP). Section 3, gives the relationship of

3VMHP with modified Legendre plynomials. Finally in Section 4, some con-

cluding remarks are given.

2. Special Properties of 3VMHP Hα,β,γ
n (x, y, z)

I.
∞∑
n=0

Hα,β,γ
n ((x1 + x2 + x3), y, z)

=
n∑
r=0

(n−r)∑
s=0

n!Hα,β,γ
n−r−s (x1, y, z)H

α,β,γ
r (x2, y, z)H

α,β,γ
s (x3,−y,−z)

(n− r − s)!r!s!
(2.1)

II. Hα,β,γ
n (x, (y1 + y2 + y3), z)Hα

k (2x)

=
n∑
r=0

(n−r)∑
s=0

n!Hα,β,γ
n−r−s (x, y1, z)H

α,β,γ
r (x, y2, z)H

α,β,γ
s (x, y3,−z)

(n− r − s)!r!s!
(2.2)

III. Hα,β,γ
n (x, y, (z1 + z2 + z3))

=

n∑
r=0

(n−r)∑
s=0

n!Hα,β,γ
n−r−s (x, y, z1)Hα,β,γ

r (x, y, z2)Hα,β,γ
s (−x,−y, z3)

(n− r − s)!r!s!
(2.3)
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IV.Hα,β,γ
n (x, y, z)

=

[n2 ]∑
k=0

[n−3r
2 ]∑

r=0

n!Hα,β,γ
n−3r−2k(1, y, z)xn−3r−2k(1 + βy)k(x2 − 1)k

[
γz(1− x3)

]r
(n− 3r − 2k)! k! r!

(2.4)

V.Hα,β,γ
n (λx, y, z) =

n∑
k=0

n!Hα,β,γ
n−k (x, y, z)(αx)k(λ− 1)k

(n− k)! k!

(2.5)

VI.Hα,β,γ
n (x, λy, z) =

[n2 ]∑
k=0

n!Hα,β,γ
n−2k (x, y, z) (1− λ)k(βy)k

(n− 2k)! k!

(2.6)

VII.Hα,β,γ
n (x, y, λz) =

[n3 ]∑
k=0

n!Hα,β,γ
n−3k (x, y, z) (λ− 1)k(γz)k

(n− 3k)! k!

(2.7)

VIII.Hα,β,γ
n (λx, µy, θz)

=

n∑
r=0

[n−3r
2 ]∑

r=0

n!Hα,β,γ
n−3r−2s (x, y, z)Hα,β,γ

r ((λ− 1)x, (µ− 1)y, (θ − 1)z)

(n− 3r − 2s)! k!
(2.8)

3. Relationship with Legendre Polynomials

Curzon [1] in 1913, obtained many relations connecting the Hermite polyno-

mials Hn(x) and the Legendre polynomials Pn(x) with n usually not restricted

to be integral. One of the simplest of his relation in which n is to be an integer

is [3]

Pn(x) =
2

n!
√
π

∫ ∞
0

exp(−t2)tnHn(xt)dt (3.1)

In 1998 Khan and Abukhammash extended this relation to two variables as

follows [2]

Pn(x, y) =
2

n!
√
π

∫ ∞
0

exp(−t2)tnHn(xt,
y

t2
)dt (3.2)
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which in terms of modified Hermite polynomials can be defined as follows

Pα,βn (x, y) =
α

n!
√
π

∫ ∞
0

exp(−t2)tnHα,β
n (xt,

βy

t2
)dt (3.3)

where Pα,βn (x, y) is the Modified Legendre polynomial of two variables.

These polynomials Pα,βn (x, y) can be defined as

Pα,βn (x, y) =

[n2 ]∑
r=0

(−βy)r

r!
Pαn−2r(x) (3.4)

Since by (1.9)

Hα,β,γ
n (x, y, z) =

[n
3 ]∑

r=0

n! (rz)r Hα,β
n−3r(x, y)

r! (n− 3r)!

We have

α

n!
√
π

∫ ∞
0

exp(−t2)tnHα,β,γ
n

(
xt,

βy

t2
,
γz

t3

)
dt

=
α

n!
√
π

∫ ∞
0

exp(−t2)tn
[n
3 ]∑

r=0

n!
(γz
t3

)r
Hα,β
n−3r

(
xt,

βy

t2

)
dt

=

[n
3 ]∑

r=0

(γz)r

r!

α

(n− 3r)!
√
π

∞∫
0

e−t
2

tn−3rHα,β
n−3r

(
xt,

βy

t2

)
dt

=

[n
3 ]∑

r=0

(γz)r

r!
Pα,βn−3r(x, y) using (3.3)

Thus we obtain

Pα,β,γn (x, y, z) =
α

n!
√
π

∞∫
0

exp(−t2)tnHα,β,γ
n

(
xt,

βy

t2
,
γz

t3

)
dt (3.5)

where Pα,β,γn (x, y, z) is the Modified Legendre’s polynomial of three variables.

These polynomials Pα,β,γn (x, y, z) can be defined as

Pα,β,γn (x, y, z) =

[n
3 ]∑

r=0

(γz)r

r!
Pα,βn−3r(x, y) (3.6)

For α = 2, β = γ = 1, Eq. (3.5) gives

Pn(x, y, z) =
2

n!
√
π

∞∫
0

e−t
2

tnHn

(
xt,

y

t2
,
z

t3

)
dt (3.7)

where Pn(x, y, z) are Legendre’s polynomials of three variables.
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These polynomials Pn(x, y, z) can be defined as

Pn(x, y, z) =

[n
3 ]∑

r=0

zr

r!
Pn−3r(x, y) (3.8)

Now we obtain the expansion of three variable MHP as follows:

Since

exp(αxt) = exp((1 + βy)t2) exp(−γzt3)
∞∑
n=0

Hα,β,γ
n (x, y, z)tn

n!

It follows that

exp
(
αxt− (1 + βy)t2 + γzt3

)
=

∞∑
n=0

Hα,β,γ
n (x, y, z)tn

n!

or,

∞∑
n=0

(αxt)n

n!
=

∞∑
n=0

(1 + βy)nt2n)

n!

∞∑
n=0

(−γz)nt3n

n!

∞∑
n=0

Hα,β,γ
n (x, y, z)tn

n!

=

∞∑
n,r,s=0

Hα,β,γ
n (x, y, z)(1 + βy)s(−γz)rtn+2s+3r

n!r!s!

=
∞∑
n=0

[n
3 ]∑

r=0

[n−3r
2 ]∑
s=0

Hα,β,γ
n−2s−3r(x, y, z)(1 + βy)s(−γz)rtn

(n− 2s− 3r)!r!s!

Equating the coefficient of tn, we get

xn =

[n
3 ]∑

r=0

[n−3r
2 ]∑
s=0

n!Hα,β,γ
n−2s−3r(x, y, z)(1 + βy)s(−γz)r

αn(n− 2s− 3r)!r!s!
(3.9)

4. Concluding Remarks

In this paper we have obtained many interesting results of modified Hermite

polynomials of three variables. Here we extend modified Hermite polynomials

of three variables to four variables.

We define modified Hermite polynomials of four variables by series as follows:

Hα,β,γ,δ
n (x, y, z, w) =

[n
4 ]∑

r=0

n! (δw)r Hα,β,γ
n−4r (x, y, z)

r! (n− 4r)!
(4.1)

Now consider the sum

∞∑
n=0

Hα,β,γ,δ
n (x, y, z, w)tn

n!
=

∞∑
n=0

[n
4 ]∑

r=0

(δw)r Hα,β,γ
n−4r (x, y, z)tn

n! (n− 4r)!
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=
∞∑
n=0

∞∑
r=0

(δw)r Hα,β,γ
n (x, y, z)tn+4r

n!r!

=
∞∑
n=0

Hα,β,γ
n (x, y, z)tn

n!

∞∑
r=0

(δw)r t4r

r!

= exp (αxt− (1 + βy) t2 + γzt3) exp(δwt4)

Therefore we obtain the generating relation for four variables modified Her-

mite polynomials
∞∑
n=0

Hα,β,γ,δ
n (x, y, z, w)

tn

n!
= exp

[
αxt− (1 + βy)t2 + γzt3 + δwt4

]
(4.2)
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Abstract: In this paper, the criteria of stability and boundedness are

established for product impulsive delay differential system. The sufficient

conditions have been obtained using piecewise continuous Lyapunov func-

tion with Razumikhin technique.

1. Introduction

The impulsive delay differential systems are a natural generalization of func-

tional differential systems without impulses and of impulsive ordinary differen-

tial systems without delay. They are adequate mathematical models of various

real processes and phenomena, characterized by the fact that their state changes

by jumps and by the dependence of the process on its history at each moment

of time. Since time delay exists in many fields of our society such as control

technology, communication networks and biological population management,

significant progress has been made in the theory of impulsive delay differential

systems in the recent years (see [6, 9, 11] and references therein). Stability

and boundedness of impulsive differential systems have been studied by many

authors during last few years [1-4, 6-11].

There are some delay differential systems which cannot be solved though they

represent physical phenomenon; and there are many occasions when we need

to study their qualitative behavior such as stability and boundedness. In such

cases, Lyapunov-Razumikhin Technique helps us in studing the qualitative be-

havior of impulsive systems without actually solving them. So, the technique

has been successfully used by many authors to study the stability of impulsive

2000 Mathematics Subject Classification. 34D99, 34A37, 34K45, 37C75.

Key words and phrases: Impulsive delay differential system, Lyapunov function, Eventual

stability, Asymptotic stability, Boundedness, Razumikhin technique.
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100 BHANU GUPTA AND SANJAY K. SRIVASTAVA

functional differential systems [4,6,10].

The aim of this paper is to establish the criterion of uniform eventual stability,

uniform asymptotic stability and boundedness for product impulsive delay dif-

ferential system. The sufficient conditions have been obtained using Lyapunov-

Razumikhin Technique. The paper is organized as follows. Section 2 introduces

some preliminary definitions and notations. In section 3, sufficient conditions

for uniform eventual stability and uniform asymptotic stability of impulsive

delay differential system have been established. In section 4, we establish some

sufficient conditions for boundedness of solutions of impulsive delay differential

systems.

2. Preliminaries

Let R be set of reals and R+ = [0,∞). Let Rn and Rm be n and m di-

mentional Euclidean spaces. Set PC(R+,Rn) = {x : R+ → Rn : x is con-

tinuous function except at t = tk ∈ R+ and x(t+k ), x(t−k ) exists in Rn with

x(t+k ) = x(tk)} and PC(R+,Rm) = {y : R+ → Rm : y is continuous function

except at t = tk ∈ R+ and y(t+k ), y(t−k ) exists in Rm with y(t+k ) = y(tk)}.
For any x ∈ PC(R+,Rn), define the sup-norm ‖x‖ = sups∈R+

| x(s) |, where

| . | is a norm in Rn and similarly for y ∈ PC(R+,Rm). Then PC(R+,Rn)

and PC(R+,Rm) are Banach spaces. Let τ > 0 be a given constant and

PC([−τ, 0],Rn) and PC([−τ, 0],Rm) be linear spaces equipped with the norm

‖.‖ defined as ‖φ‖ = sup−τ≤s≤0 ‖φ(s)‖.
Consider the following impulsive delay differential system

x
′
(t) = f(t, xt) + g(t, yt), t 6= tk,

y
′
(t) = h(t, xt, yt), t 6= tk,

∆x|t=tk = Ak(xt−k
) +Bk(yt−k

), (2.1)

∆y|t=tk = Ck(xt−k
, yt−k

), k = 1, 2, 3, ..., n

(x(t0), y(t0)) = (φ1, φ2),

where f : R+ × PC([−τ, 0],Rn) → Rn, g : R+ × PC([−τ, 0],Rm) → Rn, h :

R+ × PC([−τ, 0],Rn) × PC([−τ, 0],Rm) → Rm, Ak : PC([−τ, 0],Rn) →
Rn, Bk : PC([−τ, 0],Rm) → Rn, Ck : PC([−τ, 0],Rn) × PC([−τ, 0],Rm) →
Rm, φ1 ∈ PC([−τ, 0],Rn), φ2 ∈ PC([−τ, 0],Rm),∆x(t) = x(t)−x(t−), ∆y(t) =

y(t) − y(t−), xt, xt− ∈ PC([−τ, 0],Rn) and yt, yt− ∈ PC([−τ, 0],Rm) are de-

fined as xt(s) = x(t+s), xt−(s) = x(t−+s), yt(s) = y(t+s), yt−(s) = y(t−+s)

for −τ ≤ s ≤ 0 respectively.

A function (x(t), y(t)) ∈ PC(R+,Rn) × PC(R+,Rm) is called the solution of

system (2.1) if it satisfies the system (2.1). In general, the solution (x(t), y(t))
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of (2.1) is piecewise right-continuous function with the point of discontinuity

of first kind i.e. if solution hits the hypersurface at t = tk, k ∈ N then the

following relations are satisfied:

x(t+k ) = x(tk) and y(t+k ) = y(tk), k ∈ N.

Throughout the article, we assume that the following conditions hold.

(i) f, g, h,Ak, Bk, Ck, k ∈ N satisfy all the sufficient conditions for the global

existence and uniqueness of solutions for t ≥ t0.

(ii) 0 ≤ t0 < t1 < t2 < ... < tk < ... with tk →∞ as k →∞.

Definition 2.1. A function V : R+×Rn×Rm → R+ is said to belong to class

V0 if

(i) V is continuous in each of the sets [tk−1, tk)× Rn × Rm;

(ii) V (t, x, y) is locally Lipschitizian in all x ∈ Rn and y ∈ Rm and V (t, 0, 0) = 0

for t ∈ R+;

(iii) For each (t, x, y) ∈ [tk−1, tk)×Rn×Rm, we have lim(t,x,y)→(t−k ,x,y) V (t, x, y) =

V (t−k , x, y).

Definition 2.2. Given a function V : R+ × Rn × Rm → R+, the upper right

hand derivative of V with respect to system (2.1) is defined as

D+V (t, ζ(0), η(0)) = lim
s→0+

1

s
{V (t+ s, ζ(0) + s(f(t, ζ) + g(t, η)), η(0) +

sh(t, ζ, η))− V (t, ζ(0), η(0))},

for (t, ζ, η) ∈ R+ × PC([−τ, 0],Rn)× PC([−τ, 0],Rm).

Definition 2.3. The zero solution of system (2.1) is said to be uniformly

eventually stable if for ε > 0, ∃ δ = δ(ε) > 0 and λ = λ(ε) > 0 such that

‖x(t) + y(t)‖ < ε for ‖φ1 + φ2‖ < δ and t ≥ t0 ≥ λ(ε).

Definition 2.4. The zero solution of system (2.1) is said to be uniformly

asymptotically stable if it is uniformly stable and for any ε > 0, ∃ δ > 0 and

T = T (ε) > 0 such that ‖φ1 + φ2‖ < δ implies ‖x(t) + y(t)‖ < ε for t ≥ t0 + T.

Definition 2.5. The system (2.1) is said to be uniformly bounded if ∀ α >

0, ∃ β = β(α) > 0 such that ‖φ1 + φ2‖ < α implies ‖x(t) + y(t)‖ < β for all

t ≥ t0, t0 ∈ R+.

Definition 2.6. The system (2.1) is said to be quasi-uniformly ultimately

bounded if ∀α > 0, ∃ B > 0 and T = T (α) > 0 such that ‖φ1 + φ2‖ < α

implies ‖x(t) + y(t)‖ < B, ∀ t ≥ t0 + T, t0 ∈ R+.

Definition 2.7. The system (2.1) is said to be uniformly ultimately bounded

if definitions 2.5 and 2.6 hold together.
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We define the following notations:

K = {w ∈ C(R+,R+) : w is strictly increasing and w(0) = 0}.

K1 = {φ ∈ C(R+,R+) : φ is increasing and φ(s) < s for s > 0}.

S1(ρ) = {x ∈ Rn : ‖x‖ < ρ, ρ > 0}.

S2(ρ) = {y ∈ Rm : ‖y‖ < ρ, ρ > 0}.

3. Stability

In this section, we shall present some sufficient conditions for the uniform

eventual stability and uniform asymptotic stability for the impulsive differential

problem (2.1).

Theorem 3.1. Assume that there exist a function V ∈ V0, a, b ∈ K and

ψ ∈ K1 such that

(i) b(‖x+ y‖) ≤ V (t, x, y) ≤ a(‖x+ y‖) for (t, x, y) ∈ R+ × Rn × Rm;

(ii) D+V (t, ζ(0), η(0)) ≤ g(t)w(V (t, ζ(0), η(0))) for all t ∈ [tk−1, tk), k ∈ N,

whenever V (t+ s, ζ(s), η(s)) ≤ ψ−1(V (t, ζ(0), η(0))) for s ∈ [−τ, 0];

(iii) V (tk, ζ(0) +Ak(ζ) +Bk(η), η(0) +Ck(ζ, η)) ≤ ψ(V (t−k , ζ(0), η(0))), k ∈ N;

(iv) There exist a constant A > 0 such that
∫ tk
tk−1

g(s)ds < A and
∫ ψ−1(µ)

µ
ds
w(s) ≥

A for any µ > 0, k ∈ N and τ ≤ tk − tk−1 ≤ α, α is a constant.

Then the zero solution of system (2.1) is uniformly eventually stable.

Proof. Let ε > 0 be given. Choose δ = δ(ε) > 0, λ(ε) > 0 such that δ <

a−1(ψ(b(ε))).

We shall prove that ‖φ1 + φ2‖ < δ implies ‖x(t) + y(t)‖ < ε, ∀ t ≥ t0 ≥ λ(ε).

Let ν(t) = V (t, x(t), y(t)). We shall prove that

ν(t) ≤ ψ−1(a(δ)), t ∈ [tk−1, tk), k ∈ N. (3.1)

Firstly, we shall show that

ν(t) ≤ ψ−1(a(δ)), t ∈ [t0, t1). (3.2)

Clearly, ν(t0) = V (t0, φ1, φ2) ≤ a(‖φ1 + φ2‖) ≤ a(δ) < ψ−1(a(δ)).

If (3.2) is not true, then there exist some t̄ ∈ (t0, t1) such that

ν(t̄) > ψ−1(a(δ)) > a(δ) ≥ ν(t0 + s), s ∈ [−τ, 0].

From the continuity of ν(t) in [t0, t1), there exist some t∗ ∈ (t0, t̄) such that

ν(t∗) = ψ−1(a(δ)),

ν(t) > ψ−1(a(δ)), t∗ < t ≤ t̄, (3.3)

ν(t) ≤ ψ−1(a(δ)), t0 + s < t ≤ t∗, s ∈ [−τ, 0]
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and there also exist t̂ ∈ [t0, t
∗) such that

ν(t̂) = a(δ),

ν(t) ≥ a(δ), t̂ < t ≤ t∗. (3.4)

Then, we obtain for any t ∈ [t̂, t∗],

ν(t+ s) ≤ ψ−1(a(δ)) ≤ ψ−1(ν(t)), s ∈ [−τ, 0],

by condition (ii), we get

D+ν(t) ≤ g(t)w(ν(t)) for t ∈ [t̂, t∗].

Integrating in [t̂, t∗], we get∫ ν(t∗)

ν(t̂)

du

w(u)
≤

∫ t∗

t̂

g(t)dt ≤
∫ t1

t0

g(t)dt < A. (3.5)

On the other hand, from (3.3), (3.4) and condition (iv), we have∫ ν(t∗)

ν(t̂)

du

w(u)
=

∫ ψ−1(a(δ))

a(δ)

du

w(u)
≥ A. (3.6)

This is a contradiction to the inequality (3.5). So inequality (3.2) holds i.e.

(3.1) is true for k = 1.

Now assume that (3.1) holds for k = 1, 2, ...,m, i.e.

ν(t) ≤ ψ−1(a(δ)), t ∈ [tk−1, tk), k = 1, 2, ...,m. (3.7)

We shall prove that (3.1) holds for k = m+ 1, i.e.

ν(t) ≤ ψ−1(a(δ)), t ∈ [tm, tm+1). (3.8)

On contrary, suppose that (3.8) is not true. From(iii) and (3.7), we have

ν(tm) ≤ ψ(ν(t−m)),

< ψ(ψ−1(a(δ))),

= a(δ). (3.9)

We define

t̄ = inf{t ∈ [tm, tm+1) : ν(t) > ψ−1(a(δ))}.

From (3.9), t̄ 6= tm. By continuity of ν(t) in the interval [tm, tm+1), we have

ν(t̄) = ψ−1(a(δ)), (3.10)

ν(t) ≤ ψ−1(a(δ)), tm < t ≤ t̄.

From (3.9), we have

ν(tm) < a(δ) < ψ−1(a(δ)) = ν(t̄),
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which implies that there exist some t∗ ∈ (tm, t̄) such that

ν(t∗) = a(δ)

and

ν(t∗) ≤ ν(t) ≤ ν(t̄), t ∈ [t∗, t̄].

Then t+ s ∈ [tm−1, t̄] for t ∈ [t∗, t̄] and s ∈ [−τ, 0], since τ ≤ tk − tk−1 ≤ α.
From (3.7), we get for t ∈ [t∗, t̄],

ν(t+ s) ≤ ψ−1(a(δ)) = ψ−1(ν(t∗)) ≤ ψ−1(ν(t)), s ∈ [−τ, 0].

Then by condition (ii), we get

D+ν(t) ≤ g(t)w(ν(t)),

which leads to a contradiction as discussed above. Therefore (3.1) holds for

k = m+1. Hence, by method of induction, the result (3.1) is true and we have,

ν(t) ≤ ψ−1(a(δ)) < b(ε), t ≥ t0 ≥ λ(ε).

By (i), we have

‖x+ y‖ ≤ b−1(ν(t)) < b−1(b(ε)) = ε, t ≥ t0 ≥ λ(ε).

Thus, the zero solution of (2.1) is uniformly eventually stable. �

Theorem 3.2. Let all the conditions of Theorem 3.1 be satisfied except (iv),

which is replaced by

(v) r = supk∈N{tk − tk−1} < ∞, M1 = supt≥0

∫ t+r
t

g(s)ds < ∞ and M2 =

infq>0

∫ q
ψ(q)

ds
w(s) > M1.

Then, the zero solution of (2.1) is uniformly asymptotically stable.

Proof. Obviously, the conditions of Theorem 3.2 imply the conditions of The-

orem 3.1 hold, so the impulsive delay differential system (2.1) is uniformly

eventually stable and hence uniformly stable.

This implies that given η > 0,∃ δ > 0 such that ψ−1(a(δ)) < b(η) and

‖φ1 + φ2‖ < δ implies ‖x(t) + y(t)‖ < η for t ≥ t0.
Moreover,

ν(t) ≤ ψ−1(a(δ)) < b(η), t ≥ t0 + s, s ∈ [−τ, 0], (3.11)

where ν(t) = V (t, x(t), y(t)).

Let t ≥ t0, t ∈ [tm−1, tm) for some m ∈ N. Let ε > 0 and assume without loss

of generality that ε < η.

Define M = M(ε) = sup{ 1
w(s) : ψ(b(ε)) ≤ s ≤ a(η)} and note that 0 < M <∞.

For b(ε) ≤ q ≤ a(η), we have

ψ(b(ε)) ≤ ψ(q) < q ≤ a(η), so M2 ≤
∫ q
ψ(q)

ds
w(s) ≤ M(q − ψ(q)), from which we

obtain



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

STABILITY AND BOUNDEDNESS OF IMPULSIVE DELAY . . . 105

ψ(q) ≤ q − M2

M < q − d, where d = d(ε) > 0 is chosen such that d < M2−M1

M .

Let N = N(ε) be the smallest positive integer for which a(η) < b(ε) +Nd and

define T = T (ε) = r+(N −1)(r+ τ), we shall prove that ‖φ1 +φ2‖ < δ implies

‖x(t) + y(t)‖ < ε for t ≥ t0 + T.

Given 0 < A ≤ a(η) and j ∈ N, we shall show that

(a) if ν(t) ≤ A for t ∈ [tj − τ, tj), then ν(t) ≤ A for t ≥ tj ;
(b) if in addition A ≥ b(ε), then ν(t) ≤ A− d for t ≥ tj .
Firstly, we prove (a).

If (a) does not hold, then there exist some t ≥ tj such that ν(t) > A.

Let

t∗ = inf{t ≥ tj : ν(t) > A}.

Thus t∗ ∈ [tk, tk+1) for some k ∈ N, k ≥ j. By (iii), ν(tk) ≤ ψ(ν(t−k )) ≤
ψ(A) < A, then t∗ ∈ (tk, tk+1).

Moreover, ν(t∗) = A and ν(t) ≤ A for t ∈ [tj − τ, t∗].
Let

t̄ = sup{t ∈ [tk, t
∗] : ν(t) ≤ ψ(A)}.

As ν(t∗) = A > ψ(A), then t̄ ∈ [tk, t
∗], ν(t̄) = ψ(A) and ν(t) ≥ ψ(A) for

t ∈ [t̄, t∗].

Thus for t ∈ [t̄, t∗], s ∈ [−τ, 0], we have ψ(ν(t+ s)) ≤ ψ(A) ≤ ν(t),

that is, ν(t+ s) ≤ ψ−1(ν(t)). Then by (ii), the following inequality holds:

D+ν(t) ≤ g(t)w(ν(t)).

Integrating in [t̄, t∗], we get∫ ν(t∗)

ν(t̄)

du

w(u)
≤

∫ t∗

t̄

g(u)du ≤
∫ tk+1

tk

g(u)du ≤M1.

On the other hand ∫ ν(t∗)

ν(t̄)

du

w(u)
=

∫ A

ψ(A)

du

w(u)
≥M2 > M1,

which is a contradiction to above inequality and so (a) holds. Next, we prove

(b).

Assume for the sake of contradiction that there exist some t ≥ tj , such that

ν(t) > A− d.

Then define r1 = inf{t ≥ tj : ν(t) > A − d} and k ≥ j be chosen so that

r1 ∈ [tk, tk+1).

Since b(ε) ≤ A ≤ a(η), then ψ(A) < A− d.

So from (a) and condition (iii), we have ν(tk) ≤ ψ(ν(t−k )) ≤ ψ(A) < A− d.
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Thus r1 ∈ (tk, tk+1). Moreover ν(r1) = A− d and ν(t) ≤ A− d for t ∈ [tk, r1).

Let

r̄ = sup{t ∈ [tk, r1) : ν(t) ≤ ψ(A)}.

As ν(r1) = A − d > ψ(A) ≥ ν(tk), then r̄ ∈ [tk, r1], ν(r̄) = ψ(A) and ν(t) ≥
ψ(A) for t ∈ [r̄, r1].

Thus for t ∈ [r̄, r1], s ∈ [−τ, 0], we have ψ(ν(t + s)) ≤ ψ(A) ≤ ν(t), that is,

ν(t+ s) ≤ ψ−1(ν(t)). Then by (ii), the following inequality holds:

D+ν(t) ≤ g(t)w(ν(t))

Integrating in [r̄, r1], we get ∫ ν(r1)

ν(r̄)

du

w(u)
≤M1.

But on the other hand∫ ν(r1)

ν(r̄)

du

w(u)
=

∫ A−d

ψ(A)

du

w(u)
=

∫ A

ψ(A)

du

w(u)
−
∫ A

A−d

du

w(u)
.

Since b(ε) ≤ A ≤ a(η), we have ψ(b(ε)) ≤ ψ(A) < A− d ≤ a(η).

Thus 1
w(u) ≤M for A− d ≤ u ≤ A. So, we get∫ ν(r1)

ν(r̄)

du

w(u)
≥M2 −

∫ A

A−d
Mdu = M2 −Md > M2 +M1 −M2 = M1.

This is a contradiction, so (b) holds. Now we define the indices k(i) for i =

1, 2, ..., N as follows. Let k(1) = m and for i = 2, ..., N, let k(i) be chosen

such that tk(i)−1 < tk(i−1) + τ ≤ tk(i) . Then from condition (v), we have

tk(1) = tm ≤ tm−1 + r ≤ t0 + r and for i = 2, ..., N,

tk(i) ≤ tk(i)−1 + r < tk(i−1) + τ + r. Combining these inequalities, we get

tk(N) ≤ t0 + r + (r + τ)(N − 1) = t0 + T.

Next we claim that for each i = 1, 2, ..., N, ν(t) ≤ a(η)− id for t ≥ tk(i) .
Since by (3.11), ν(t) ≤ b(η) ≤ a(η) for t ∈ [t0 − τ, tk(1)), then by setting

A = a(η) in our argument proved in (b), we get ν(t) ≤ a(η) − d for t ≥ tk(1) ,

which establish the base case.

We now proceed by induction and assume ν(t) ≤ a(η)−jd for t ≥ tk(j) for some

1 ≤ j ≤ N−1. Let A = a(η)−jd, then b(ε) ≤ A ≤ a(η). Since tk(j) ≤ tk(j+1)−τ ,

then ν(t) ≤ A for t ∈ [tk(j+1) − τ, tk(j+1)) and so ν(t) ≤ A− d = a(η)− (j + 1)d

for t ≥ tk(j+1) . So our claim is proved by induction.

When j = N − 1, we get ν(t) ≤ a(η)−Nd < b(ε), t ≥ tk(N) .

Since t0 + T ≥ tk(N) , by condition (i), we get ‖x(t) + y(t)‖ ≤ ε, t ≥ t0 + T .

Thus, the impulsive delay differential system (2.1) is uniformly asymptotically

stable. �
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4. Boundedness

In this section, we shall present some sufficient conditions for boundedness

of impulsive differential problem (2.1).

Theorem 4.1. Assume that there exist a function V ∈ V0, a, b, c ∈ K such

that

(i) b(‖x+ y‖) ≤ V (t, x, y) ≤ a(‖x+ y‖) for (t, x, y) ∈ R+ × Sc1(ρ)× Sc2(ρ);

(ii) D+V (t, ζ(0), η(0)) ≤ −c(‖x(t) + y(t)‖) for all t ∈ [tk−1, tk), k ∈ N, when-

ever V (t + s, ζ(s), η(s)) ≤ P (V (t, ζ(0), η(0))) for s ∈ [−τ, 0] where P (u) is

continuous function on R+, non-decreasing in u and P (u) > u for u > 0;

(iii) V (t+k , ζ(0) +Ak(ζ) +Bk(η), η(0) + Ck(ζ, η)) ≤ V (t−k , ζ(0), η(0)), k ∈ N.
Then the system (2.1) is uniformly bounded.

Proof. Let α ≥ ρ be given. Choose β = β(α) > 0 so that β > max{α, b−1(a(α))}.
Let t0 ∈ R+. Consider the solution (x(t, t0, φ1, φ2), y(t, t0, φ1, φ2)) of (2.1) with

‖φ1 + φ2‖ < α and let ν(t) = V (t, x(t), y(t)). Clearly, ‖x(t0) + y(t0)‖ =

‖φ1 + φ2‖ < α < β.

Claim: ‖x(t) + y(t)‖ < β, t ≥ t0.

If this is not true, then there exist some solution (x(t), y(t)) of (2.1) with

‖φ1 + φ2‖ < α and t∗ > t0 such that

‖x(t∗) + y(t∗)‖ ≥ β.

Then there exist s1, s2, t0 ≤ s1 < s2 ≤ t∗ such that

‖x(s1) + y(s1)‖ ≥ α, ‖x(s−1 ) + y(s−1 )‖ ≤ α, ‖x(s−2 ) + y(s−2 )‖ ≥ β

and

‖x(t) + y(t)‖ < β, ‖x(t) + y(t)‖ ≥ α, s1 < t < s−2 . (4.1)

Firstly, we show

ν(s+
1 ) < b(β).

If s1 6= tk, then ‖x(s−1 ) + y(s−1 )‖ = α and by (i),

ν(s−1 ) ≤ a(‖x(s−1 ) + y(s−1 )‖) = a(α) < b(β).

If s1 = tk for some k, then ‖x(s−1 ) + y(s−1 )‖ ≤ α and

ν(s−1 ) ≤ a(‖x(s−1 ) + y(s−1 )‖) ≤ a(α) < b(β).

Thus by (iii), ν(s+
1 ) < b(β). Next, we wish to show that

ν(t+) < b(β), t ∈ [s1, s2]. (4.2)

Suppose that this is not true and let

µ = inf{s1 ≤ t ≤ s−2 : ν(t+) ≥ b(β)}.
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We discuss two cases:

(A) µ 6= tk, k = 1, 2, ....

Since ν(t) is continuous at µ,

ν(µ) = b(β).

Thus for h > 0 with | h | small enough that the inequality

ν(µ+ h) > b(β)

holds, which implies that

D+ν(µ) = lim
h→0+

sup
1

h
[ν(µ+ h)− ν(µ)] ≥ 0. (4.3)

It is clear from the choice of µ that P (ν(µ)) > ν(µ) ≥ ν(µ+ s), s ∈ [−τ, 0].

Thus from (ii) and (4.1), we get

D+ν(µ) ≤ −c(‖x(µ) + y(µ)‖) ≤ −c(α) < 0,

which contradicts (4.3).

(B) µ = tk for some k = 1, 2, ....

We must have ν(t+k ) = b(β). In fact, if ν(t+k ) > b(β), then by (iii), ν(t−k ) > b(β).

Since ν(t) is right continuous at tk, it follows that there exist µ1 > tk such that

ν(µ1) ≥ b(β), which contradicts the choice of µ.

Now for h > 0 with | h | small enough so that tk + h ∈ (tk, tk+1),

ν(tk + h) > b(β),

i.e.

ν(µ+ h) > b(β).

Therefore,

D+ν(µ) = lim
h→0+

sup
1

h
[ν(µ+ h)− ν(µ)]

≥ lim
h→0+

sup
1

h
[ν(tk + h)− ν(tk)] ≥ 0. (4.4)

Since P (ν(µ)) > ν(µ) > ν(µ+ s), s ∈ [−τ, 0],

we obtain, using (ii),

D+ν(µ) ≤ −c(‖x(µ) + y(µ)‖) ≤ −c(α) < 0,

which contradicts (4.3). Therefore (4.2) holds. On the other hand, using (i),

we obtain

ν(s−2 ) ≥ b(‖x(s−2 ) + y(s−2 )‖) ≥ b(β),

which contradicts (4.2). Thus ‖x(t) + y(t)‖) < β, t ≥ t0.
Hence the system (2.1) is uniformly bounded. �



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

STABILITY AND BOUNDEDNESS OF IMPULSIVE DELAY . . . 109

Theorem 4.2. Suppose that all the conditions of Theorem 4.1 hold except (ii)

which is replaced by

(iv) D+V (t, ζ(0), η(0)) ≤ M − c(‖x(t) + y(t)‖ for all t ∈ [tk−1, tk), k ∈ N,

whenever V (t + s, ζ(s), η(s)) ≤ P (V (t, ζ(0), η(0))) for s ∈ [−τ, 0] where P (u)

is continuous function on R+, non-decreasing in u and P (u) > u for u > 0.

Then the system (2.1) is uniformly ultimately bounded.

Proof. Firstly, we prove uniform boundedness of the system (2.1).

Let ρ > 0 be sufficiently large that

M − c(ρ) < 0.

Let α > max{ρ, c−1(M)} be given. Choose β > max{α, b−1(a(α))} for any t0 ∈
R+ and ‖φ1 +φ2‖ < α. Clearly, ‖φ1 +φ2‖ < α ≤ β. Let ν(t) = V (t, x(t), y(t)).

Now, suppose that there exist a solution x(t) = x(t, t0, φ1, φ2), y(t) = y(t, t0, φ1,

φ2) of (2.1) with ‖φ1 + φ2‖ < α and t∗ > t0 such that

‖x(t∗) + y(t∗)‖ ≥ β.

Then there exist s1, s2, t0 ≤ s1 < s2 ≤ t∗ such that

‖x(s1) + y(s1)‖ ≥ α, ‖x(s−1 ) + y(s−1 )‖ ≤ α, ‖x(s−2 ) + y(s−2 )‖ ≥ β

and

‖x(t) + y(t)‖ < β, ‖x(t) + y(t)‖ ≥ α, s1 ≤ t < s−2 . (4.5)

We can easily prove as in the Theorem 4.1 that

ν(s+
1 ) < b(β)

Next, we show that

ν(t+) < b(β), t ∈ [s1, s2]. (4.6)

Suppose that this is not true and let

σ = inf{s1 < t ≤ s−2 : ν(t+) ≥ b(β)}.

We discuss two cases:

(A) σ 6= tk, k = 1, 2, ..., we can see that

ν(σ) = b(β) and D+ν(σ) ≥ 0. (4.7)

Also, there exist an s∗1 ∈ (s1, s2] such that

ν(s) ≤ P (ν(σ)), s∗1 ≤ s ≤ σ.

Since ‖x(σ) + y(σ)‖ ≥ α, we get by (iv),

D+ν(σ) ≤ M − c(‖x(σ) + y(σ)‖) ≤M − c(α)

< M − c(max{ρ, c−1(M)}) = M −max{c(ρ),M} ≤ 0,
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which is a contradiction to (4.7).

(B) σ = tk for some k = 1, 2, ....

We get a contradiction by the similar argument as in the proof of Theorem 4.1.

Thus (4.6) is true. On the other hand, using (i), ν(s−2 ) ≥ b(‖x(s−2 )+y(s−2 )‖) ≥
b(β).

Thus ‖x(t) + y(t)‖ < β, t ≥ t0 for any solution (x(t), y(t)) of (2.1) with ‖φ1 +

φ2‖ < α and system (2.1) is uniformly bounded. The uniform boundedness of

system (2.1) means that there exist a positive number B such that for each

t0 ∈ R+,

‖φ1 + φ2‖ < α implies ‖x(t) + y(t)‖ < B, t ≥ t0. (4.8)

Now we consider the solution (x(t), y(t)) of (2.1) with ‖φ1 +φ2‖ < α where α is

arbitrary number and α > ρ. Then there exist a positive number β = β(α) >

max{B, b−1(a(α))} such that ‖x(t) + y(t)‖ < β, t ≥ t0.

Let P : R+ → R+ be a continuous, nondecreasing function on R+ and P (u) > u

for u > 0. We set

λ = inf{P (u)− u : b(B) ≤ u ≤ b(β)}.

Then

P (u) > u+ λ as b(B) ≤ u ≤ b(β) (4.9)

and we choose an integer N such that

b(B) + (N − 1)λ > b(β). (4.10)

Choose T = Nλ/c(ρ) and define

tm = t0 +m
λ

c(ρ)−M
, m = 0, 1, 2, ..., N. (4.11)

Then tN = t0 + T . We shall show that

‖x(t) + y(t)‖ < B, t ≥ t0 + T. (4.12)

Suppose that this is not true, then there exist a t∗ > t0 +T such that ‖x(t∗) +

y(t∗)‖ ≥ B. In view of (4.8),

‖x(t) + y(t)‖ ≥ ρ, t ∈ [t0, t
∗]. (4.13)

Claim:

ν(t) < b(β), t ∈ [t0, t
∗]. (4.14)

Suppose this is not true and let

ξ = inf{t0 ≤ t ≤ t∗ : ν(t) ≥ b(β)}.
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If ξ 6= tk, k = 1, 2, ... then by definition of ξ, ν(ξ) = b(β). Thus for h > 0 with

| h | small enough, the inequality ν(ξ + h) ≥ b(β) holds and so

D+ν(ξ) = lim
h→0+

sup
1

h
[ν(ξ + h)− ν(ξ)] ≥ 0. (4.15)

It is clear form the choice of ξ that P (ν(ξ)) > ν(ξ) ≥ ν(s), t0 ≤ s ≤ ξ and

from (4.13), we have | x(ξ) + y(ξ) |> ρ. Then from (iv), we have

D+ν(ξ) ≤M − c(‖x(ξ) + y(ξ)‖) ≤M − c(ρ) < 0,

which contradicts (4.15).

If ξ = tk for some k = 1, 2, ..., then by the same argument as in the proof of

theorem 4.1, we get a contradiction. Thus (4.14) holds. We next show that

ν(t) < b(B) + (N −m− 1)λ, t ∈ [tm, t
∗], m = 0, 1, 2, ..., N − 1. (4.16)

We prove it by induction. From (4.10) and (4.14), we have ν(t) < b(B) + (N −
1)λ, t ∈ [t0, t

∗],

which shows that the result holds for m = 0.

Suppose result holds for some integer m, 0 ≤ m < N − 1, that is,

ν(t) < b(B) + (N −m− 1)λ, t ∈ [tm, t
∗]. (4.17)

Firstly, we shall show that there exist t̂ ∈ [tm, tm+1] such that

ν(t̂) < b(B) + (N −m− 2)λ. (4.18)

If this is not true, then

ν(t) ≥ b(B) + (N −m− 2)λ, t ∈ [tm, tm+1]. (4.19)

By (4.14) and (4.19),

b(B) ≤ ν(t) ≤ b(β) t ∈ [tm, tm+1]. (4.20)

We consider two cases:

(A) t 6= tk, k = 1, 2, ..., for all t ∈ [tm, tm+1]. Using (4.9), (4.17) and (4.19), we

obtain

P (ν(t)) ≥ ν(t) + λ ≥ b(B) + (N −m− 1)λ

> ν(s), tm ≤ s ≤ t, t ∈ [tm, tm+1].

By (4.13), we see that ‖x(t) + y(t)‖ ≥ ρ for t ∈ [tm, tm+1] ⊂ [t0, t
∗]. Thus, it

follows from (iv) that

ν(t) ≤ ν(tm)−
∫ tm+1

tm

[c(‖x(s) + y(s)‖)−M ]ds

< b(B) + (N −m− 1)λ− (c(ρ)−M)[tm+1 − tm]

≤ ν(tm+1),
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which is a contradiction.

(B) There exist tki ∈ [tm, tm+1] for ki ∈ {1, 2, ..., k, ...}, i = 1, 2, ...l; l ≥ 1.

By (4.9), (4.17) and (4.19),

P (ν(t)) ≥ ν(t) + λ ≥ b(B) + (N −m− 1)λ

> ν(s), tm ≤ s ≤ t, t ∈ [tm, tm+1].

Since ‖x(t) + y(t)‖ ≥ ρ for t ∈ [tm, tm+1] and by (iv), we have∫ tm+1

tm

D+ν(s)ds ≤ −
∫ tm+1

tm

[c(‖x(s) + y(s)‖ −M ]ds

≤ −(c(ρ)−M)[tm+1 − tm] = −λ. (4.21)

From (iii), we have

ν(t−ki)− ν(t+ki) ≥ 0, i = 1, 2, ..., l (4.22)

Therefore,∫ tm+1

tm

D+ν(s)ds =

∫ tm+1

tkj

D+ν(s)ds+

∫ tkj

tkj−1

D+ν(s)ds+ ...

+

∫ tk2

tk1

D+ν(s)ds+

∫ tk1

tm

D+ν(s)ds

≥ ν(tm+1)− ν(tm). (4.23)

In view of (4.17), (4.19), (4.22) and (4.23), we have

ν(tm+1) ≤ ν(tm)− λ < b(B) + (N −m− 1)λ− λ ≤ ν(tm+1),

which is a contradiction and therefore there exist a t̂ ∈ [tm, tm+1] such that

(4.18) holds.

Now we shall show that (4.18) implies

ν(t) < b(B) + (N −m− 2)λ, t̂ ≤ t ≤ t∗, t̂ ∈ [tm, tm+1].

Suppose this is not true and let

η = inf{t̂ ≤ t ≤ t∗ : ν(t) ≥ b(B) + (N −m− 2)λ}.

We can obtain a contradiction by the same argument as in the proof of inequal-

ity (4.14). Hence we have

ν(t) < b(B) + (N −m− 2)λ, t ∈ [tm+1, t
∗].

By induction we see that (4.16) is true for any m = 0, 1, 2, ..., N−1. Therefore,

we obtain

ν(t) < b(B), t ∈ [tN−1, t
∗]. (4.24)
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On the other hand, using (i),

ν(t∗) ≥ b(‖x(t∗) + y(t∗)‖) ≥ b(B),

which contradicts (4.24). Therefore, the system (2.1) is a uniformly ultimately

bounded. The proof is completed. �
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AND ITS APPLICATIONS
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Abstract: In the present note, we proved a theorem on a newly defined

absolute summability method of an infinite series. Some well known re-

sults are the special case of our theorem.

1. Introduction

It is well known that H. Bor did the pioneering work in the study of
∣∣N, pn∣∣k

and
∣∣N, pn; δ

∣∣
k

summability methods of an infinite series. For the parameter

δ ≥ 0, Bor [2], extended
∣∣N, pn∣∣k to

∣∣N, pn; δ
∣∣
k

summability. Later on, Suila-

man [9] extended
∣∣N, pn∣∣k to

∣∣N, pn, φn∣∣k summability, for the sequence (φn)

of positive real constants. He has also shown that, if φn = Pn

pn
, the

∣∣N, pn, φn∣∣k
summability becomes

∣∣N, pn∣∣k but
∣∣N, pn; δ

∣∣
k

summability cannot be reduces

from
∣∣N, pn, φn∣∣k. We introduced a parameter τ ≥ 0 and defined a new summa-

bilty method
∣∣Np, φn; τ

∣∣
k

of infinite series.

Let
∑∞
n=0 an be a given infinite series with (sn) as the sequence of its partial

sums. Let (pn) be a sequence of positive real numbers such that

Pn =
n∑
v=0

pv →∞, as n→∞, (P−i = p−i = 0, i ≥ 1).

The sequence - to - sequence transformation tn = 1
Pn

∑n
v=0 pvsv defines the

sequence (tn) of the (N, pn) means of the sequence (sn), generated by the

2000 Mathematics Subject Classification. 40A05, 40D15, 40F05.

Key words and phrases: Infinite series; Absolute summability methods, Summability fac-

tors, Almost increasing sequence.
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sequence of coefficients (pn). We say that the series
∑∞
n=0 an is summable∣∣Np, φn; τ

∣∣
k
, k ≥ 1 and τ ≥ 0, if

∞∑
n=1

φτk+k−1n |tn − tn−1|k <∞,

where (φn) be any sequence of positive real constants.

Remarks:

1. For τ = 0, the summability
∣∣Np, φn; τ

∣∣
k

reduces to
∣∣N, pn;φn

∣∣
k

summa-

bility due to Sulaiman [9].

2. For τ = 0 and φn = Pn

pn
, the summability

∣∣Np, φn; τ
∣∣
k

reduces to∣∣N, pn∣∣k summability due to Bor [2].

3. For φn = Pn

pn
, the summability

∣∣Np, φn; τ
∣∣
k

reduces to
∣∣N, pn; τ

∣∣
k

summa-

bility due to Bor [2].

4. For τ = 0, φn = n, and for all n, the summability
∣∣Np, φn; τ

∣∣
k

reduces

to |R, pn|k summability due to Bor [1].

5. For φn = n and for all n, the summability
∣∣Np, φn; τ

∣∣
k

reduces to

|R, pn; τ |k, summability due to Sulaiman [8].

6. For φn = Pn

pn
and pn = 1 for all n, the summability

∣∣Np, φn; τ
∣∣
k

reduces

to |C, 1; τ |k summability which on substituting τ = 0 becomes |C, 1|k
due to Flett [7].

2. Main Result

The aim of this paper is to prove a new result by considering
∣∣Np, φn; τ

∣∣
k

summability. In fact, we prove the following result.

Theorem A : Let (pn) be a sequence of positive numbers such that

Pn = O(npn) as n→∞. (2.1)

If (Xn) be an almost increasing sequence and the sequence (λn) and (βn) are

such that

|∆λn| ≤ βn (2.2)

βn → 0 as n→∞ (2.3)

∞∑
n=1

nXn |βn| <∞ (2.4)

|λn|Xn = O(1), n→∞. (2.5)

m∑
n=1

φτk+k−1n

(
pn
Pn

)k
|sn|k = O(Xm) as m→∞ (2.6)
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and
∞∑

n=v+1

(
Pn
pn

)τk−1
1

Pn−1
= O

[(
Pv
pv

)τk
1

Pv

]
. (2.7)

where (φn) be a sequence of positive real constants such that
(
φnpn
Pn

)
is

non-increasing sequence, then the series
∑∞
n=0 anλn is summable

∣∣Np, φn; τ
∣∣
k
,

k ≥ 1 and 0 ≤ τ < 1
k .

3. Lemma [4]

Under the conditions on (Xn), (λn) and (βn) of the Theorem A, the following

conditions holds:

nβnXn = O(1) as n→∞ (3.1)

and
∞∑
n=1

βnXn <∞ (3.2)

4. Proof of the Theorem A

Let (tn) be the sequence of (N, pn) means of the series
∑∞
n=0 anλn, and

tn =
1

Pn

n∑
v=0

pvsv =
1

Pn

n∑
v=0

pv

v∑
i=0

aiλi =
1

Pn

n∑
v=0

(Pn − Pv−1)avλv,

then for n ≥ 1, we get

tn − tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1avλv. (4.1)

Using Able’s transformation to the right hand side of 4.1, we get

tn − tn−1 =
pnsnλn
Pn

− pn
PnPn−1

n−1∑
v=1

pvsvλv +
pn

PnPn−1

n−1∑
v=1

Pvsv∆λv

= tn,1 + tn,2 + tn,3 , say.

Since |tn,1 + tn,2 + tn,3|k ≤ 3k
(
|tn,1|k + |tn,2|k + |tn,3|k

)
.

In order to prove the Theorem A, it is sufficient to show that

∞∑
n=1

φτk+k−1n |tn,z|k <∞, for z = 1, 2, 3.
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We have

m∑
n=1

φτk+k−1n |tn,1|k

=
m∑
n=1

φτk+k−1n

∣∣∣∣pnsnλnPn

∣∣∣∣k
= O(1)

m∑
n=1

φτk+k−1n

(
pn
Pn

)k
|sn|k (|λn|)k−1 |λn|

= O(1)
m∑
n=1

φτk+k−1n

(
pn
Pn

)k
|sn|k |λn| , by (2.5)

= O(1)
m−1∑
n=1

∆ |λn|
n∑
v=1

φτk+k−1v

(
pv
Pv

)k
|sv|k +O(1) |λm|

m∑
n=1

φτk+k−1n

(
pn
Pn

)k
|sn|k

= O(1)
m−1∑
n=1

|∆λn|Xn +O(1) |λm|Xm, by (2.6)

= O(1)
m−1∑
n=1

βnXn +O(1) |λm|Xm, by (2.2)

= O(1) as m→∞, by (3.2) and (2.5)

Again

m+1∑
n=2

φτk+k−1n |tn,2|k

=
m+1∑
n=2

φτk+k−1n

∣∣∣∣∣ −pnPnPn−1

n−1∑
v=1

pvsvλv

∣∣∣∣∣
k

= O(1)
m+1∑
n=2

φτk+k−1n

(
pn

PnPn−1

)k{n−1∑
v=1

pv |sv|λv

}k

= O(1)

m+1∑
n=2

(
φnpn
Pn

)τk+k−1(
Pn
pn

)τk−1
1

Pn−1

{
n−1∑
v=1

pv |sv|k |λv|

}{
1

Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑
v=1

pv |sv|k |λv|
m+1∑
n=v+1

(
φnpn
Pn

)τk+k−1(
Pn
pn

)τk−1
1

Pn−1

= O(1)
m∑
v=1

(
φvpv
Pv

)τk+k−1
pv |sv|k |λv|

m+1∑
n=v+1

(
Pn
pn

)τk−1
1

Pn−1

= O(1)
m∑
v=1

φτk+k−1v

(
pv
Pv

)τk+k−1(
Pv
pv

)τk−1
|sv|k |λv| , by (2.7)
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= O(1)
∑m
v=1 φ

τk+k−1
v

(
pv
Pv

)k
|sv|k |λv|

= O(1) as m→∞, as in case of |tn,1| .

Finally we have,

m+1∑
n=2

φτk+k−1n |tn,3|k

=
m+1∑
n=2

φτk+k−1n

∣∣∣∣∣ pn
PnPn−1

n−1∑
v=1

Pvsv∆λv

∣∣∣∣∣
k

= O(1)
m+1∑
n=2

φτk+k−1n

(
pn

PnPn−1

)k{n−1∑
v=1

pvv |sv| |∆λv|

}k

= O(1)
m+1∑
n=2

(
φnpn
Pn

)τk+k−1(
Pn
pn

)τk−1
1

Pn−1

{
n−1∑
v=1

pv |sv|k (vβv)
k

}{
1

Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m+1∑
n=2

(
φnpn
Pn

)τk+k−1(
Pn
pn

)τk−1
1

Pn−1

{
n−1∑
v=1

pv |sv|k (vβv)
k

}

= O(1)
m∑
v=1

pv |sv|k |(vβv)|
m+1∑
n=v+1

(
φnpn
Pn

)τk+k−1(
Pn
pn

)τk−1
1

Pn−1

= O(1)

m∑
v=1

φτk+k−1v

(
pv
Pv

)k
|sv|k (vβv), by (2.7)

= O(1)
m−1∑
v=1

|∆(vβv)|
v∑
i=1

φτk+k−1i

(
pi
Pi

)k
|si|k +O(1) mβm

m∑
i=1

φτk+k−1i

(
pi
Pi

)k
|si|k

= O(1)
m−1∑
v=1

|∆(vβv)|Xv +O(1)
m−1∑
v=1

Xv |∆(λv+1)|+O(1) mβm Xm,

= O(1)

m−1∑
v=1

v |βv|Xv +O(1)

m−1∑
v=1

βv+1Xv +O(1) mβm Xm,

= O(1) as m→∞, by (2.4), (3.2) and (3.1).

Thus we get
∞∑
n=1

φτk+k−1n |tn,z|k <∞, for z = 1, 2, 3.

Which completes the proof of the Theorem A.

5. Applications

If we consider the special cases, then the following results are the conse-

quences of our Theorem A. We also use the concept that, every increasing
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sequence is almost increasing but converse need not be true [6]

1. If we take τ = 0 in our Theorem A, then the summability
∣∣Np, φn; τ

∣∣
k

reduces to
∣∣N, pn, φn∣∣k and the condition (2.7) reduces to

∞∑
n=v+1

pn
PnPn−1

= O

(
1

Pv

)
, (5.1)

which always holds. In this case, Theorem A reduces to Result 1 as follow.

Result 1. If the sequences (pn), (λn), (βn) , (Xn) and (φn) are as in Theorem

A, satisfying conditions (2.1) to (2.6), then the series
∑∞
n=0 anλn is summable∣∣N, pn, φn∣∣k , k ≥ 1.

2. If we put τ = 0 and φn = Pn

pn
in Theorem A, then the summability∣∣Np, φn; τ

∣∣
k

reduces to
∣∣N, pn∣∣k and the condition (2.6) reduces to

m∑
n=1

(
pn
Pn

)
|sn|k = O(Xm) as m→∞ (5.2)

while the condition (2.7) reduces to (5.1) and the condition that
(
φnpn
Pn

)
is

non-increasing becomes redundant. In this case, Theorem A reduces to Result

2 as follow.

Result 2. (Bor [3]) If the sequences (pn), (λn), (βn) and (Xn) are as in Theo-

rem A, satisfying conditions (2.1) to (2.5) plus (5.2), then the series
∑∞
n=0 anλn

is summable
∣∣N, pn∣∣k , k ≥ 1.

3. If we put φn = Pn

pn
in Theorem A, then the summability

∣∣Np, φn; τ
∣∣
k

reduces

to
∣∣N, pn; τ

∣∣
k

and the condition (2.6) reduces to

m∑
n=1

(
pn
Pn

)τk−1
|sn|k = O(Xm) as m→∞ (5.3)

In this case, Theorem A reduces to Result 3 as follow.

Result 3. If the sequences (pn), (λn), (βn) and (Xn) are as in Theorem A,

satisfying conditions (2.1) to (2.5), (2.7) plus (5.3), then the series
∑∞
n=0 anλn

is summable
∣∣N, pn; τ

∣∣
k
, k ≥ 1, τ ≥ 0 and 0 ≤ τ < 1

k .
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4. If we put φn = n in Theorem A, then the summability
∣∣Np, φn; τ

∣∣
k

reduces

to |R, pn; τ |k and the condition (2.6) reduces to

m∑
n=1

nτk+k−1
(
pn
Pn

)k
|sn|k = O(Xm) as m→∞ (5.4)

In this case, Theorem A reduces to Result 4 as follow.

Result 4. If the sequences (pn), (λn), (βn) and (Xn) are as in Theorem A,

satisfying conditions (2.1) to (2.5), (2.7) plus (5.4), then the series
∑∞
n=0 anλn

is summable |R, pn; τ |k , k ≥ 1 and 0 ≤ τ < 1
k .

5. If we put φn = Pn

pn
, pn = 1 for all values of n in Theorem A, then the

summability
∣∣Np, φn; τ

∣∣
k

reduces to |C, 1; τ |k and the condition (2.6) reduces

to
m∑
n=1

nτk−1 |sn|k = O(Xm) as m→∞ (5.5)

In this case, Theorem A reduces to Result 5 as follow.

Result 5. If the sequences (λn), (βn) and (Xn) are as in Theorem A, satis-

fying conditions (2.2) to (2.5), (2.7) plus (5.5), then the series
∑∞
n=0 anλn is

summable |C, 1; τ |k , k ≥ 1 and 0 ≤ τ < 1
k .

6. If we put τ = 0, φn = Pn

pn
, pn = 1 for all values of n in Theorem A, then the

summability
∣∣Np, φn; τ

∣∣
k

reduces to |C, 1|k and the condition (2.6) reduces to

m∑
n=1

|sn|k

n
= O(Xm) as m→∞ (5.6)

In this case, Theorem A reduces to Result 6 as follow.

Result 6.(Mishra & Srivastava [4]) If the sequences (λn), (βn) and (Xn) are

as in Theorem A, satisfying conditions (2.1) to (2.5) plus (5.6), then the series∑∞
n=0 anλn is summable |C, 1|k , k ≥ 1.
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Abstract: The paper is devoted to the development of specific properties

of curvature tensors, square length of the Ricci tensor if the manifold

satisfies the codazzi type Ricci tensor then it is R-harmonic manifold as

well as Ricci - symmetric.

1. Introduction

Let (Mn, g), n ≥ 3 be a C∞ connected semi-Riemannian manifold and ∇ be its

Levi-Civita connection, the Riemannian curvature R, the Concircular curvature

tensor C, the conharmonic curvature tensor L, the Projective curvature tensor

P and the Conformal curvature tensor C̃ of (Mn, g) are defined by ([1],[2])

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z (1.1)

C(X,Y )Z = R(X,Y )Z − r

n(n− 1)
[g(Y,Z)X − g(X,Z)Y ] (1.2)

L(X,Y )Z = R(X,Y )Z − 1

(n− 2)
[S(Y,Z)X − S(X,Z)Y

−g(X,Z)QY + g(Y,Z)QX] (1.3)

P (X,Y )Z = R(X,Y )Z − 1

(n− 1)
[g(Y,Z)QX − g(X,Z)QY ] (1.4)

C̃(X,Y )Z = R(X,Y )Z − 1

(n− 2)
[S(Y, Z)X − S(X,Z)Y + g(Y,Z)QX

−g(X,Z)QY ] +
r

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ] (1.5)

2000 Mathematics Subject Classification. 53C15, 53C25 and 53C05.

Key words and phrases: ξ-concirculrly flat, ξ-conhormonically flat, cyclic Ricci tensor,

Ricci tensor of codazzi type, R-hormonic manifold.

c© Indian Mathematical Society, 2011.

123



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

124 DHRUWA NARAIN, SUNIL KUMAR YADAV AND SUDHIR KUMAR DUBEY

respectively, where Q is the Ricci operator defined by S(X,Y ) = g(QX,Y ),

S is the Ricci tensor, r = tr Q is the scalar curvature and X, Y , Z ∈ χ(M),

χ(M) being the Lie-algebra of the vector fields of (Mn, g).

In (1989) Matsumota [3] introduced the notion of an LP-Sasakian manifold.

In [4] the authors defined the same notion independently and obtained many

results.

In section 2, we defined LP-Sasakian manifold and review some formulas

and in section 3, the main results of this paper have been obtained.

2. Preliminaries

Let Mn be n-dimensional differentiable manifold with (φ, ξ, η)-structure,

where φ is a (1, 1) tensor field, ξ is a vector field, and η is a 1-form on Mn,

such that

η(ξ) = −1 (2.1)

φ2(X) = X + η(X)ξ (2.2)

φξ = 0, rank(φ) = n− 1, η(φX) = 0 (2.3)

Then Mn admits a Lorntzian metric g, such that

g(φX, φY ) = g(X,Y ) + η(X)η(Y ) (2.4)

and Mn is said to admit a Lorentzian almost para-contact structure (φ, ξ, η, g).

In this case we have

g(X, ξ) = η(X) (2.5)

Φ(X,Y ) = g(X,φY ) = g(φX, Y ) = Φ(Y,X) (2.6)

where ∇ is the covariant differentiation with respect to the Lorentzian metric

g makes a time like unit vector field, that is g(ξ, ξ) = −1.

The manifold Mn equipped with Lorentzian almost para-contact metric

structure (φ, ξ, η, g) is said to be a Lorentzian almost para-contact metric mani-

fold [3]. A Lorentzian almost para-contact metric manifold Mn, equipped with

the structure (φ, ξ, η, g) is called Lorentzian para-contact metric manifold [3],

if

Φ(X,Y ) =
1

2
[(∇Xη)Y + (∇Y η)X] (2.7)

A Lorentzian almost para-contact metric manifold Mn, equipped with the

structure (φ, ξ, η, g) is called LP-Sasakian manifold [3], if

∇Xφ)(Y ) = g(φX, φY )ξ + η(Y )φ2X (2.8)
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In an LP-Sasakian manifold the 1-form η is closed, also in [3] it is proved that if

a n-dimensional (Mn, g) admits a time like unit vector field ξ such that 1-form

η associated to ξ is closed then

∇X∇Y η)Z = g(X,Y )η(Z) + g(X,Z)η(Y ) + 2η(X)η(Y )η(Z) (2.9)

Further, on such LP-Sasakian manifold (Mn, g), the following relations hold

R(X,Y )ξ = η(Y )X − η(X)Y (2.10)

R(X, ξ)ξ = −X − η(X)ξ (2.11)

S(X, ξ) = (n− 1)η(X) (2.12)

S(φX, φY ) = S(X,Y ) + (n− 1)η(X)η(Y ) (2.13)

An LP-Sasakian manifold (Mn, g) is said to be η-Einstein if its Ricci tensor S

is of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ) (2.14)

for any vector fields X, Y , where a, b are functions on Mn ([1],[2]).

In particular if b = 0 then η-Eisntein reduces to Einstein manifold.

Further, since ξ is a killing vector, S and r remain constant under it.

Then ~
ξ
S = 0 and ~

ξ
r = 0, where ~ denotes Lie-derivative.

3. Main Results

Definition 3.1. A differentiable manifold (Mn, g), n ≥ 3 is said to be ξ-

concircularly flat, if C(X,Y )ξ = 0.

Theorem 3.2. Let (Mn, g), n ≥ 3 be an LP-Sasakian manifold Mn is ξ-

concicularly flat if and only if the scalar curvature r = n(n− 1).

Proof. For ξ-Concircularly flat LP-Sasakian manifold Mn, we have from (1.1)

R(X,Y )ξ =
r

n(n− 1)
[g(Y, ξ)X − g(X, ξ)Y ] (3.1)

using (2.5), (2.10) in (3.1), we get(
1− r

n(n− 1)

)
η(Y )X +

(
−1 +

r

n(n− 1)

)
η(X)Y = 0

puttingY = ξ, yields r = n(n− 1).

Conversely, if r = n(n − 1), putting Z = ξ in (1.2) and using (2.10), we get

C(X,Y )ξ = 0.

That is the manifold is ξ-concircularly flat.

This complete the proof of theorem (3.2). �

Definition 3.3. A differentiable manifold (Mn, g), n ≥ 3 is said to be ξ-

conhormonically flat, if L(X,Y )ξ = 0.
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Theorem 3.4. Let (Mn, g), n ≥ 3 be a ξ-conhormonically flat LP-Sasakian

manifold. Then the manifold (Mn, g) is an η-Einstein manifold.

Proof. For ξ-conhormonically flat LP-Sasakian manifold, from (1.3), we have

R(X,Y )ξ =
1

(n− 2)
[S(Y, ξ)X − S(X, ξ)Y − g(X, ξ)QY + g(Y, ξ)QX] , (3.2)

using (2.10),(2.12) and (2.5) in (3.2), we have

QX =

(
1

n− 2

)
X +

(
n

n− 2

)
η(X)ξ

That is manifold Mn is an η-Einstein manifold.

where a = 1
n−2 , b = n

n−2
This complete proof of the theorem (3.4). �

Corollary 3.5. In a ξ-conhormonically flat LP-Sasakian manifold Mn, n ≥ 3

the scalar curvature vanishes.

Theorem 3.6. If ξ-conhormonically flat LP-Sasakian manifold Mn, n ≥ 3

satisfying the cyclic Ricci tensor condition, then the manifold is a space form

or manifold of constant curvature.

Proof. Let ξ-conhormonically flat LP-Sasakian manifold satisfying the cyclic

Ricci tensor condition, then we obtain

(∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) = 0 (3.3)

putting Y = Z = ei in equation(3.3) and taking summation over i, 1 ≤ i ≤ 3,

we get

(∇XS)(ei, ei) + 2(∇eiS)(ei, X) = 0 (3.4)

Now (∇XS)(ei, ei) = ∇XS(ei, ei) − 2S(∇Xei, ei) where r =
∑
i S(ei, ei) and

{ei} is an orthonormal basis, we have ∇Xei = 0, then

(∇XS)(ei, ei) = ∇Xr (3.5)

Since S(X,Y ) = g(QX,Y ) then

(∇ZS)(X,Y ) = g((∇ZQ)X,Y )

putting Y = Z = ei and taking summation over i, 1 ≤ i ≤ 3, we get

(∇eiS)(X, ei) =
1

2
dr(X) (3.6)

using (3.5), 3.6) in (3.4), we get r is constant. This complete the proof of

theorem (3.6). �

From (2.14), we get
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r = an− b and s(ξ, ξ) = b− a (3.7)

where r is the scalar curvature and Q be the symmetric enomorphism of tangent

space at a point corresponding to the Ricci tensor S.

Let l2 be the square length of the Ricci tensor, then from [5]

l2 = S(Qei, ei) (3.8)

where {ei}, i = 1, 2, ....., n be orthonormal basis of the tangent space at the

point.

From (2.14), we get

S(Qeiei) = ar + bδ(ξ, ξ) (3.9)

using (3.7), (3.8) in (3.9), we get

l =
√
a2n+ b2 − 2ab

Theorem 3.7. In a η-Einstein LP-Sasakian manifold the length of the Ricci

tensor S is given by
√
a2n+ b2 − 2ab.

Again form (2.14), we get

S(X, ξ) = (a− b)η(X)

This shows that (a − b) is an eigen value of the Ricci tensor S and ξ is an

eigen vector corresponding to the value (a− b). Suppose V be any vector field

orthogonal to ξ, such that

η(V ) = 0 (3.10)

Also from (2.14), we get

S(X,V ) = ag(X,V ) + η(X)η(V ) (3.11)

From (3.10) and (3.11), we get S(X,V ) = ag(X,V )

This shows that different an eigen value of the Ricci tensor S corresponding to

the eigen vector V .

Theorem 3.8. In a η-Einstein LP-Sasakian manifold the Ricci tensor S has

two distinct eigen values (a− b) and a of which former is simple and latter is

of multiplicity n− 1.
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4. An LP-Sasakian η-Einstein Manifold with Codazzi type of Ricci

tensor.

Again from (2.14), we get

(∇XS)(Y, Z) = b [(∇Xη)(Y )η(Z) + (∇Xη)(Z)η(Y )] (3.12)

By cyclic rotation of (3.12)and using (2.6, (2.7)), we get

(∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) = b {[(∇Xη)Y + (∇Y η)X] η(Z)

[(∇Xη)Z + (∇Zη)X] η(Y ) + [(∇Y η)Z + (∇Zη)Y ] η(X)}

(∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) = 0 (3.13)

This show that an LP-Sasakian η-Einstein manifold has Cyclic Ricci tensor.

Suppose that manifold has Ricci tensor of Codazzi type [8], that is

(∇XS)(Y,Z) = (∇Y S)(X,Z)

then from (3.2), we get (∇XS)(Y, Z) = 0 i.e. ∇S = 0.

Theorem 4.1. If η-Einstein LP-Sasakian manifold has Ricci tensor of Codazzi

type, then manifold is Ricci symmetric.

Corollary 4.2. If η-Einstein LP-Sasakian manifold has Ricci tensor of Co-

dazzi type, then manifold is R-hormonic, i.e. (divR)(X,Y, Z) = 0
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Abstract: In this paper, existence theorems for the first order ordinary

random differential inclusions are proved for convex case of random dif-

ferential inclusion.

1. STATEMENT OF THE PROBLEM

Let (Ω, A, µ) be a complete σ−finite measure space and let R be the real

line. Let P (R) denote the class of all non-empty subsets of R with property

p. Given a closed and bounded interval J = [0, T ] and given two measurable

functions q0, q1 : Ω → R, consider the first order random differential inclusion

(RDI),

x′(t, ω) ∈ F (t, x(t, ω), ω) a.e. t ∈ J
x(0, ω) = q0(ω)

x(a, ω) = q1(ω) if a ∈ R

 (1.1)

for all ω ∈ Ω, where F : J ×R× Ω→ Pp(R).

By a random solution of the RDI (1.1) on J × Ω we mean a measurable

function x : Ω → AC1(J,R) satisfying for each ω ∈ Ω, x′(t, ω) = ν(t, ω) for

some measurable ν : Ω → L1(J,R) such that ν(t, ω) ∈ F (t, x(t, ω), ω) a.e.

t ∈ J , where AC1(J,R) is the space of continuous real-valued functions whose

first derivative is absolutely continuous on J .

In the this paper, we will prove existence result for convex case of first order

random differential inclusions.

2000 Mathematics Subject Classification. 60H25, 47H10.

Key words and phrases: Second order random differential inclusion, existence theorem,

random solution etc.
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2. AUXILIARY RESULTS

Let F : J ×R×R×Ω→ Pp(R) be a multi-valued mapping. Then for only

measurable function x : Ω→ AC1(J,R), let

SF (ω)(x) = {ν ∈M(Ω,M(J,R)) | ν(t, ω) ∈ F (t, x(t, ω), ω) a.e. t ∈ J} (2.1)

and

S1
F (ω)(x) = {ν ∈ L1(Ω,M(J,R)) | ν(t, ω) ∈ F (t, x(t, ω), ω) a.e. t ∈ J} (2.2)

This is our set of selection functions for F on J ×R×Ω. The integral of the

random multi-valued function F is defined as

t∫
0

F (s, x(s, ω), ω)ds =


t∫

0

ν(s, ω)ds : ν ∈ S1
F (ω)(x)


Furthermore, if the integral

t∫
0

F (s, x(s, ω), ω)ds exists for every measurable

function x : Ω→ C(J,R), then we say the multi-valued mapping F is Lebesgue

integrable on J . We need the following definitions in the sequel.

Definition 2.1. A multi-valued mapping F : J × R × Ω → Pcp(R) is called

strong random Caratheodory if for each ω ∈ Ω

(i) (t, ω) 7→ F (t, x, ω) is jointly measurable for each x, y ∈ R, and

(ii) x→ F (t, x, ω) is Hausdorff continuous almost everywhere for t ∈ J .

Again, a strong random Caratheodory multi-valued function F is called strong

L1−Caratheodory if

(iii) For each real number r > 0 there exists a measurable function hr :

Ω→ L1(J,R) such that for each ω ∈ Ω

‖F (t, x, ω)‖P = sup{|u| : u ∈ F (t, x, ω)} ≤ hr(t, ω) a.e. t ∈ J

for all x ∈ R with |x| ≤ r.

Then we have the following lemmas which are well-known in the literature.

Lemma 2.2 (Lasota and Opial). Let E be a Banach space. If dim(E) < ∞
and F : J × E × Ω → Pcp(E) is strong L1−Caratheodory, then S1

F (ω)(x) 6= φ

for each x ∈ E.

Lemma 2.3 (Caratheodory theorem). Let E be a Banach space. If

F : J × E → Pcp(E) is strong Caratheodory, then the multi-valued mapping

(t, x) 7→ F (t, x(t)) is jointly measurable for any measurable E−valued function

x on J .
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3. EXISTENCE RESULT

We employ the following random fixed-point theorem for completely contin-

uous multi-valued mappings in Banach spaces.

Theorem 3.1 (Dhage). Let (Ω,A) be a measurable space, X a separable Ba-

nach space and let Q : Ω×X → Pcp,cv(X) be continuous and condensing multi-

valued random operator. Furthermore, if the set ξ = {u ∈ M(Ω, X) | λ(ω)u ∈
Q(ω)u} is bounded for all measurable functions λ : Ω → R with λ(ω) > 1

on Ω, then Q(ω) has a random fixed point, i.e., there is measurable function

ξ : Ω→ X such that ξ(ω) ∈ Q(ω)ξ(ω) for all ω ∈ Ω.

We consider the following set of hypotheses in the sequel.

(A1) F (t, x, ω) is compact-convex subset of R for all (t, x, ω) ∈ J ×R× Ω.

(A2) F is strong random Caratheodory.

(A3) There exists a measurable function γ : Ω → L1(J,R) with γ(t, ω) > 0

a.e. t ∈ J and a continuous nondecreasing function ψ : R+ → (0,∞)

such that for each ω ∈ Ω

‖F (t, x, ω)‖P ≤ γ(t, ω)ψ(|x|) a.e. t ∈ J

for all x ∈ R.

Theorem 3.2. Assume that the hypotheses (A1)− (A2) hold. Furthermore, if

∞∫
C

dr

ψ(r)
> T‖γ(ω)‖L1 (3.1)

for all ω ∈ Ω, where C = |q0(ω)|+ T |q1(ω)|, then the RDI (1.1) has a random

solution in C(J,R) defined on J × Ω.

Proof. Let X = C(J,R). Define a multi-valued operator Q : Ω ×X → P(X)

by

Q(ω)x = {u ∈M(Ω, X) | u(t, ω) = q0(ω) + q2(ω)t

+

t∫
0

(t− s)ν(s, ω)ds, ν ∈ S1
F (ω)(x)} (3.2)

= (L ◦ S1
F (ω))(x)

where K :M(Ω, L1(J,R))→M(Ω, C1(J,R)) is a continuous operator defined

by

Kν(t, ω) = q0(ω) + q2(ω)t+

t∫
0

(t− s)ν(s, ω)ds. (3.3)
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Clearly, the operator Q(ω) is well defined in view of hypothesis (A2). We shall

show that Q(ω) satisfies all the conditions of Theorem 3.1.

Step I : First, we show that Q is closed valued multi-valued random operator

on Ω × X. Observe that the operator Q(ω) is equivalent to the composition

K ◦ S1
F (ω) of two operators on L1(J,R) , where L :M(Ω, L1(J,R)→ X is the

continuous operator defined by (3.3).

Next, we show that Q(ω) is a multi-valued random operator on X. First,

we show that the multivalued map (ω, x) 7→ S1
F (ω)(x) is measurable. Let

f ∈M(Ω, L1(J,R)) be arbitrary. Then we have

d(f, S1
F (ω)(x)) = inf

{
‖f(ω)− h(ω)‖L1 : h ∈ S1

F (ω)(x)
}

= inf


T∫

0

|f(t, ω)− h(t, ω)|dt : h ∈ S1
F (ω)(x)


=

T∫
0

inf {|f(t, ω)− z| : z ∈ F (t, x(t, ω), ω)} dt

=

T∫
0

d (f(t, ω), F (t, x(t, ω), ω)) dt.

But by hypothesis (A2), the mapping F (t, x(t, ω), ω) is measurable. Now the

function z 7→ d (z, F (t, x, ω)) is continuous and hence the mapping

(t, x, ω, f) 7→ d (f(t, ω), F (t, x(η(t), ω), ω))

is measurable from J×X×Ω×L1(J,R) into R+. Now the integral is the limit

of the finite sum of measurable functions, and so, d(f, S1
F (ω)(x)) is measurable.

As a result, the multi-valued mapping (·, ·)→ S1
F (·)(·) is jointly measurable.

Define the multi-valued map φ on J ×X × Ω by

φ(t, x, ω) = (K ◦ S1
F (ω))(x)(t) =

t∫
0

(t− s)F (s, x(s, ω), ω)ds.

We shall show that φ(t, x, ω) is continuous in t in the Hausdorff metric on R.

Let {tn} be a sequence in J converging to t ∈ J . Then we have

dH(φ(tn, x, ω), φ(t, x, ω))

= dH

 tn∫
0

(tn − s)F (s, x(s, ω), ω)ds,

t∫
0

(t− s)F (s, x(s, ω), ω)ds
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= dH

 tn∫
0

(tn − s)F (s, x(s, ω), ω)ds,

t∫
0

(tn − s)F (s, x(s, ω), ω)ds


+ dH

 t∫
0

(tn − s)F (s, x(s, ω), ω)ds,

t∫
0

(tn − s)F (s, x(s, ω), ω)ds


= dH

∫
J

X[0,tn](s)(t− s)F (s, x(s, ω), ω)ds,

∫
J

X[0,t](s)(t− s)F (s, x(s, ω), ω)ds


+

t∫
0

dH ((tn − s)F (s, x(s, ω), ω)ds, (t− s)F (s, x(s, ω), ω)) ds

=

∫
J

∣∣X[0,tn](s)−X[0,t](s)
∣∣ |(t− s)| ‖F (s, x(s, ω), ω)‖Pds

+

t∫
0

|(tn − s)− (t− s)| ‖F (s, x(s, ω), ω)‖P ds

=

∫
J

∣∣X[0,tn](s)−X[0,t](s)
∣∣T‖F (s, x(s, ω), ω)‖Pds

+

T∫
0

|(tn − s)− (t− s)| ‖F (s, x(s, ω), ω)‖Pds

=

∫
J

∣∣X[0,tn](s)−X[0,t](s)
∣∣ γ(s, ω)ψ(|x(s, ω)|)ds

+

T∫
0

|tn − t| ‖F (s, x(s, ω), ω)‖Pds

=

∫
J

∣∣X[0,tn](s)−X[0,t](s)
∣∣ γ(s, ω)ψ(‖x(ω)‖)ds

+

T∫
0

|tn − t| ‖F (s, x(s, ω), ω)‖Pds

→ 0 as n→∞.

Thus the multi-valued map t 7→ φ(t, x, ω) is continuous and hence, by Lemma

3.2, the map (t, x, ω) 7→
t∫
0

(t − s)F (s, x(s, ω), ω)ds is measurable. Again, since

the sum of two measurable multi-valued functions is measurable, the map
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(t, x, ω) 7→ q0(ω) + q2(ω)t +
t∫
0

(t − s)F (s, x(s, ω), ω)ds is measurable. Con-

sequently, Q(ω) is a random multi-valued operator on [a, b].

Step II : Next, we show that Q(ω) is totally bounded and continuous on

bounded subsets of X for each ω ∈ Ω. Let S be a bounded subset of X. Then

there is real number r > 0 such that ‖x‖ ≤ r for all x ∈ S. First, we show

that Q(ω) is a continuous multi-valued random operator on X. Let {xn} be

a sequence in S converging to a point x. Then by Hausdorff continuity of

the multi-valued mapping F (t, x, ω) in x and by the dominated convergence

theorem, we obtain

lim
n→∞

Q(ω)xn(t) = q0(ω) + q2(ω)t+ lim
n→∞

t∫
0

(t− s)F (s, xn(s, ω), ω)ds

= q0(ω) + q2(ω)t+

t∫
0

lim
n→∞

(t− s)F (s, xn(s, ω), ω)ds

= q0(ω) + q2(ω)t+

t∫
0

(t− s)F (s, x(s, ω), ω)ds

= Q(ω)x(t)

for all t ∈ J and ω ∈ Ω. This shows that Q(ω) is a Hausdorff continuous

multi-valued random operator on X.

Next we show that Q(ω) is totally bounded operator on X for each ω ∈ Ω.

Let {yn(ω)} be a sequence in
⋃
Q(ω)(S) for some ω ∈ Ω. We will show that

{yn(ω)} has a cluster point. This is achieved by showing that {yn(ω)} is uni-

formly bounded and equi-continuous sequence in X.

Case I : First, we show that {yn(ω)} is uniformly bounded sequence. By

the definition of {yn(ω)}, we have νn(ω) ∈ S1
F (ω)(xn) for some xn ∈ S such

that

yn(t, ω) = q0(ω) + q2(ω)t+

t∫
0

(t− s)νn(s, ω)ds, t ∈ J

Therefore,

|yn(t, ω)| ≤ |q0(ω)|+ T |q1(ω)|+
t∫

0

|(t− s)| |νn(s, ω)|ds
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≤ |q0(ω)|+ T |q1(ω)|+
t∫

0

|(t− s)| ‖F (s, xn(s, ω), ω)‖Pds

≤ |q0(ω)|+ T |q1(ω)|+
t∫

0

Tγ(s, ω)ψ(‖xn(ω)‖)

≤ |q0(ω)|+ T |q1(ω)|+ T‖γ(ω)‖L1ψ(r)

for all t ∈ J . Taking the supremum over t in the above inequality yields,

‖yn(ω)‖ ≤ |q0(ω)|+ T |q1(ω)|+ T‖γ(ω)‖L1ψ(r)

which shows that {yn(ω)} is a uniformly bounded sequence in Q(ω)(X).

Next we show that {yn(ω)} is an equi-continuous sequence in Q(ω)(X). Let

t, τ ∈ J . Then, for each ω ∈ Ω, we have

|yn(t, ω)− yn(τ, ω)| =

∣∣∣∣∣∣
t∫

0

(t− s)νn(s, ω)ds−
τ∫

0

k(τ, s, ω)νn(s, ω)ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
t∫

0

(t− s)νn(s, ω)ds−
t∫

0

(τ − s)νn(s, ω)ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
t∫

0

(τ − s)νn(s, ω)ds−
τ∫

0

(τ − s)νn(s, ω)ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
t∫

0

|(t− s)− (τ − s)| |νn(s, ω)|ds

∣∣∣∣∣∣
+

∣∣∣∣∣∣
t∫
τ

|(τ − s)| |νn(s, ω)|ds

∣∣∣∣∣∣
≤

τ∫
0

|(t− s)− (τ − s)| ‖F (s, xn(s, ω), ω)‖Pds

+

∣∣∣∣∣∣
t∫
τ

|(τ − s)| ‖F (s, xn(s, ω), ω)‖Pds

∣∣∣∣∣∣
≤

τ∫
0

|(t− τ)|γ(s, ω)ψ(‖x(ω)‖)ds+

∣∣∣∣∣∣
t∫
τ

Tγ(s, ω)ψ(‖x(ω)‖)ds

∣∣∣∣∣∣
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≤
T∫

0

|(t− τ |γ(s, ω)ψ(r)ds+ |p(τ − ω)− p(τ, ω)|

where p(t, ω) =
t∫
0

|(t − τ |γ(s, ω)ψ(r)ds, From the above inequality, it follows

that

|yn(t, ω)− yn(τ, ω)| → 0 as t→ τ.

This shows that {yn(ω)} is an equi-continuous sequence in Q(ω)(X). Now

{yn(ω)} is uniformly bounded and equi-continuous for each ω ∈ Ω, so it has a

cluster point in view of Arzela-Ascoli theorem. As a result, Q(ω) is a compact

multi-valued random operator on X. Thus Q(ω) is a continuous and totally

bounded and hence completely continuous multi-valued random operator on X.

Step III : Next, we show that Q(ω) has convex values on X for each ω ∈ Ω.

Again, let u1, u2 ∈ Q(ω)x. Then there are ν1, ν2 ∈ S1
F (ω)(x) such that u1(t) =

q0(ω) + q2(ω)t+
t∫
0

(t− s)ν1(s, ω)ds, t ∈ J and u2(t) = q0(ω) + q2(ω)t+
t∫
0

(t−

s)ν2(s, ω)ds, t ∈ J .

Now for any λ ∈ [0, 1]

λu1(t, ω) + (1− λ)u2(t, ω) = λ

q0(ω) + q2(ω)t+

t∫
0

(t− s)ν1(s, ω)ds


+ (1− λ)

q0(ω) + q2(ω)t+

t∫
0

(t− s)ν2(s, ω)ds


= q0(ω) + q2(ω)t+

t∫
0

(t− s) [λν1(s, ω) + (1− λ)ν2(s, ω)] ds.

Since S1
F (ω) has convex values on X, we have that ν(t, ω) = λu1(t, ω) +

(1 − λ)u2(t, ω) ∈ S1
F (ω)(x)(t) for all t ∈ J . Hence, λu1 + (1 − λ)u2 ∈ Q(ω)x

and consequently Q(ω)x is convex for each x ∈ X. As a result, Q(ω) defines a

multi-valued random operator Q : Ω×X → Pcp,cν(X).

Step IV : Finally, we show that the set ξ is bounded. Let u ∈M(Ω, C(J,R))

such that λu(t, ω) ∈ Q(ω)u(t) on J × Ω for all λ > 1. Then there is a ν ∈
S1
F (ω)(u) such that

u(t, ω) = λ−1q0(ω) + q2(ω)t+ λ−1
t∫

0

(t− s)ν(s, ω)ds
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for all t ∈ J and ω ∈ Ω. Therefore,

|u(t, ω)| ≤ |q0(ω) + q2(ω)t|+
t∫

0

|(t− s)| |ν(s, ω)|ds

≤ |q0(ω)|+ T |q1(ω)|+
t∫

0

T‖F (s, u(s, ω))‖Pds

≤ |q0(ω)|+ T |q1(ω)|+
t∫

0

Tγ(s, ω)ψ(|u(s, ω)|)ds

for all t ∈ J and ω ∈ Ω.

Let m(t, ω) = sups∈[0,t] |u(s, ω)|. Then, we have |u(t, ω)| ≤ m(t, ω) for all

(t, w) ∈ J × Ω. Furthermore, there is a point t∗ ∈ [0, t] such that m(t, ω) =

|u(t∗, ω)|. Hence, we have

m(t, ω) = |u(t∗, ω)| ≤ |q0(ω)|+ T |q1(ω)|+
t∫

0

Tγ(s, ω)ψ(|u(s, ω)|)ds

≤ C +

t∫
0

Tγ(s, ω)ψ(m(s, ω))ds

where C = |q0(ω)|+ T |q1(ω)|. Put

w(t, ω) = C +

t∫
0

Tγ(s, ω)ψ(m(s, ω))ds

Differentiating w.r.t. t,

w′(t, ω) = Tγ(t, ω)ψ(m(t, ω))

w(0, ω) = C

}
(3.4)

for all t ∈ J and ω ∈ Ω.

From the above expression, we obtain

w′(t,ω)
ψ(w(t,ω)) ≤ Tγ(t, ω)

w(0, ω) = C

}
(3.5)

Integrating the above inequality from 0 to t,

t∫
0

w′(s, ω)

ψ(w(s, ω))
ds ≤

t∫
0

Tγ(t, ω)ds.
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By change of the variables,

w(t,ω)∫
C

dr

ψ(r)
≤ T‖γ(ω)‖ <

∞∫
C

dr

ψ(r)

Now an application of the mean value theorem yields that there is a constant

M > 0 such that

|u(t, ω)| ≤ m(t, ω) ≤ w(t, ω) ≤M
for all t ∈ J and ω ∈ Ω. Hence by Theorem 3.1, the RDI (1.1), has a random

solution on J × Ω.

This completes the proof. �
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Abstract: The classes TS∗
c (α, β) and TCc(α, β) of starlike and convex

univalent functions of order α(0 ≤ α < 1) and type β(0 < β ≤ 1) with

respect to conjugate points having negative coefficients are considered.

Sharp results concerning coefficients and distortion theorems are proved.

Also it has been shown that these classes are closed under arithmetic

and convex linear combinations. Finally, the radii of starlikeness for the

class TS∗
c (α, β) and convexity for the class TCc(α, β) are derived. The

paper is ended with a remark about the classes TS∗
sc(α, β) and TCsc(α, β)

of starlike and convex functions of order α and type β with respect to

symmetric conjugate points.

1. Introduction

Let T denote the class of those analytic and univalent functions defined in

the unit disk |z| < 1 whose non- zero coefficients from second on, are negative;

that is, an analytic and univalent function f is in T if and only if it can be

expressed as

f(z) = z −
∞∑
n=2

|an|zn.

Let α(0 ≤ α < 1) and β(0 < β ≤ 1) be real numbers. Consider the following

subclasses of T .

2000 Mathematics Subject Classification. Primary 30C45, 30C50, 30C55.

Key words and phrases: Analytic functions, univalent functions, starlike functions, convex

functions, symmetric points,conjugate points and symmetric conjugate points.

c© Indian Mathematical Society, 2011.
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(i) TS∗s (α, β), the class of starlike functions of order α and type β with respect

to symmetric points:∣∣∣∣[ zf ′(z)

f(z)− f(−z)
− 1

]/[
zf ′(z)

f(z)− f(−z)
+ (1− 2α)

]∣∣∣∣ < β,

(ii) TS∗c (α, β), the class of starlike functions of order α and type β with respect

to conjugate points:∣∣∣∣[ zf ′(z)

f(z) + f(z)
− 1

]/[
zf ′(z)

f(z) + f(z)
+ (1− 2α)

]∣∣∣∣ < β,

(iii) TS∗sc(α, β), the class of starlike functions of order α and type β with respect

to symmetric conjugate points:∣∣∣∣[ zf ′(z)

f(z)− f(−z)
− 1

]/[
zf ′(z)

f(z)− f(−z)
+ (1− 2α)

]∣∣∣∣ < β.

Further, f ∈ T is in, the class of convex functions of order α and type β

with symmetric points, if and only if zf ′ ∈ TS∗s (α, β). Similarly, the classes

TCc(α, β) and TCsc(α, β) of convex functions of order α and type β with

respect to, respectively, the conjugate points and symmetric conjugate points

are defined.

The subclasses TS∗s , starlike functions with symmetric points; TS∗c , starlike

functions with conjugate points and TS∗sc, starlike functions with respect to

symmetric conjugate points were introduced and studied in [8], [3], [1], [2], see

also [10], [11], [7], [8], whereas the classes TS∗(α, β) and in TC(α, β), respec-

tively, of starlike and convex functions of order α and type β, were introduced

and studied in Gupta and Jain [4], see also [5].

In an earlier paper [6], we introduced and studied the classes TS∗s (α, β) and

TCs(α, β). In the present paper, the classes TS∗c (α, β), TS∗sc(α, β), TCc(α, β)

and TCsc(α, β) have been studied. The results relating to these classes in

respect of coefficient inequalities, distortion theorems and the other related

findings have been presented. Finally, it has been observed that the results

arrived at for the class TS∗sc(α, β) are exactly the same as for the class TS∗s (α, β)

discussed in [6].

2. Class TS∗c (α, β) and TCc(α, β)

We first discuss the results concerning coefficient inequalities for the classes

TS∗c (α, β)and TCc(α, β).
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Theorem 2.1. A function f(z) = z−
∑∞
n=2 |an|zn is in class TS∗c (α, β) if and

only if
∞∑
n=2

{n(1 + β) + 2(β(1− 2α)− 1)}|an| ≤ β|3− 4α| − 1.

This result is sharp.

Proof. Let |z| = 1. Then∣∣∣zf ′(z)− f(z)− f(z)
∣∣∣− β∣∣∣zf ′(z) + (1− 2α)(f(z) + f(z)

∣∣∣
=

∣∣∣z +
∞∑
n=2

(n− 2)|an|zn
∣∣∣− β∣∣∣(3− 4α)z −

∞∑
n=2

{n+ 2(1− 2α)}|an|zn
∣∣∣

≤ 1− β|3− 4α|+
∞∑
n=2

{n(1 + β) + 2(β(1− 2α)− 1)}|an| ≤ 0.

Hence, by the maximum modulus theorem, f ∈ TS∗c (α, β).

For the converse, assume that∣∣∣∣[ zf ′(z)

f(z) + f(z)
− 1

]/[
zf ′(z)

f(z) + f(z)
+ (1− 2α)

]∣∣∣∣ < β.

Since |Re(z)| ≤ |z|, for all z, we have

Re

{
z +

∑∞
n=2(n− 2)|an|zn

(3− 4α)z −
∑∞
n=2(n+ 2(1− 2α))|an|zn

}
< β.

Choose values of z on the real axis so that zf ′(z)

f(z)+f(z)
is real and then let z → 1,

through real values, we obtain

∞∑
n=2

{n(β + 1) + 2(β(1− 2α)− 1)}|an| − β|3− 4α|+ 1 ≤ 0

which gives the required condition.

Finally, the function

f(z) = z −
∞∑
n=2

β|3− 4α| − 1

n(1 + β) + 2(β(1− 2α)− 1)
zn

is an external function for the theorem. �

Theorem 2.2. A function f(z) = z−
∑∞
n=2 |an|zn is in class TCc(α, β) if and

only if

∞∑
n=2

n{n(1 + β) + 2(β(1− 2α)− 1)}|an| ≤ β |3− 4α| − 1.

This result is sharp.
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Proof. It immediately follows by using Theorem 2.1 and the fact that f ∈
TCc(α, β) if and only if zf ′ ∈ TS∗c (α, β). �

The followings are the distortion results.

Theorem 2.3. If f ∈ TS∗c (α, β), then

r − β|3− 4α| − 1

4β(1− α)
r2 ≤

∣∣∣f(z)
∣∣∣ ≤ r +

β|3− 4α| − 1

4β(1− α)
r2, |z| = r (2.3.1)

and

1− β|3− 4α| − 1

2β(1− α)
r ≤

∣∣∣f ′(z)∣∣∣ ≤ 1 +
β|3− 4α| − 1

2β(1− α)
r, |z| = r. (2.3.2)

Proof. By Theorem 2.1, we have
∞∑
n=2

|an| ≤
β|3− 4α| − 1

4β(1− α)
.

Therefore

|f(z)| ≤ r +
β|3− 4α| − 1

4β(1− α)
r2

and

|f(z)| ≥ r − β|3− 4α| − 1

4β(1− α)
r2,

which combined together verifies (2.3.1).

Further, note that

1− r
∞∑
n=2

n|an| ≤ |f ′(z)| ≤ 1 + r
∞∑
n=2

n|an|.

But, in view of Theorem 2.1, we have
∞∑
n=2

n|an| ≤
β|3− 4α| − 1

4β(1− α)
,

which when used in the above yields (2.3.2). �

Remark 2.4. The bounds in (2.3.1) and (2.3.2) are sharp, since the equalities

are attained for the function:

f(z) = z − β|3− 4α| − 1

4β(1− α)
z2, (z = ±r).

Theorem 2.5. If f ∈ TCc(α, β), then

r − β|3− 4α| − 1

8β(1− α)
r2 ≤

∣∣∣f(z)
∣∣∣ ≤ r +

β|3− 4α| − 1

8β(1− α)
r2, |z| = r (2.4.1)

and

1− β|3− 4α| − 1

4β(1− α)
r ≤

∣∣∣f ′(z)∣∣∣ ≤ 1 +
β|3− 4α| − 1

4β(1− α)
r, |z| = r (2.4.2)
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with equalities for f(z) = z − β|3−4α|−1
8β(1−α) z

2, (z = ±r).

Proof. It follows by using the same technique as in the proof of Theorem 2.3.

�

We shall now prove that the class TS∗c (α, β) is closed under arithmetic mean

and convex linear combinations, and state similar results without proof for the

class TCc(α, β).

Theorem 2.6. If f(z) = z −
∑∞
n=2 |an|zn and g(z) = z −

∑∞
n=2 |bn|zn are in

TS∗c (α, β), then h(z) = z − 1
2

∑∞
n=2 |an + bn|zn is also in TS∗c (α, β).

Proof. The proof follows directly by appealing to Theorem 2.1. In fact, f and

g being in TS∗c (α, β), we have

∞∑
n=2

{n(1 + β) + 2(β(1− 2α)− 1)}|an| ≤ β|3− 4α| − 1 (2.5.1)

and
∞∑
n=2

{n(1 + β) + 2(β(1− 2α)− 1)}|bn| ≤ β|3− 4α| − 1. (2.5.2)

It is sufficient, for h to be a member of TS∗c (α, β), to show

1

2

∞∑
n=2

{n(1 + β) + 2(β(1− 2α)− 1)}|an + bn| ≤ β|3− 4α| − 1,

which follows immediately by the use of (2.5.1) and (2.5.2). �

Theorem 2.7. If f(z) = z −
∑∞
n=2 |an|zn and g(z) = z −

∑∞
n=2 |bn|zn are in

TCc(α, β), then h(z) = z − 1
2

∑∞
n=2 |an + bn|zn is also in TCc(α, β).

Theorem 2.8. Let

f1(z) = z and fn(z) = z − β|3− 4α| − 1

n(1 + β) + 2(β(1− 2α)− 1)
zn, (n = 2, 3, .....).

Then f ∈ TS∗c (α, β) if and only if it can be expressed in the form f(z) =∑∞
n=1 λnfn(z) , where λn ≥ 0 and

∑∞
n=1 λn = 1.

Proof. Let

f(z) =
∞∑
n=1

λnfn(z)

= z −
∞∑
n=2

(β|3− 4α| − 1)λn
n(1 + β) + 2(β(1− 2α)− 1)

zn

= z −
∞∑
n=2

tnz
n.
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Then
∞∑
n=2

{n(1 + β) + 2(β(1− 2α)− 1)

β|3− 4α| − 1

}
tn =

∞∑
n=2

λn = 1− λ1 ≤ 1.

Thus, by Theorem 2.1, f ∈ TS∗c (α, β).

Conversely, suppose f ∈ TS∗c (α, β). Again, by Theorem 2.1, we have

|an| ≤
β|3− 4α| − 1

n(1 + β) + 2(β(1− 2α)− 1)
n = 2, 3, .....

Setting

λn =
n(1 + β) + 2[β(1− 2α)− 1]

β|3− 4α| − 1
|an|, n = 2, 3, .....

and λ1 = 1−
∑∞
n=2 λn , we have

f(z) =

∞∑
n=1

λnfn(z)

which completes the proof. �

Theorem 2.9. Let

f1(z) = z and fn(z) = z − β|3− 4α| − 1

n{n(1 + β) + 2(β(1− 2α)− 1)}
zn, (n = 2, 3, ....).

Then f ∈ TCc(α, β) if and only if it can be expressed in the form f(z) =∑∞
n=1 λnfn(z), where λn ≥ 0 and

∑∞
n=1 λn = 1.

Finally, in this section, we determine the radii of starlikeness and convexity

for the functions in the classes TS∗c (α, β) and TCc(α, β).

Theorem 2.10. Let f ∈ TS∗c (α, β). Then f is starlike in the disc |z| < r =

r(α, β), where

r(α, β) = inf
n

{
n(1 + β) + 2(β(1− 2α)− 1)

n(β|3− 4α| − 1)

} 1
n−1

.

Proof. Noting ∣∣∣∣ zf ′(z)

f(z) + f(z)
− 1

∣∣∣∣ ≤ |z|+∑∞n=2(n− 2)|an||z|n

2(|z| −
∑∞
n=2 |an||z|n)

,

we find that

∣∣∣∣ zf ′(z)

f(z)+f(z)

∣∣∣∣ ≤ 1 for|z| < 1 if

∞∑
n=2

n|an||z|n−1 < 1.

Hence f is starlike if
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|z| ≤
{
n(1 + β) + 2(β(1− 2α)− 1)

n(β|3− 4α| − 1

} 1
n−1

, n = 2, 3, ...

which completes the proof . �

Theorem 2.11. Let f ∈ TCc(α, β). Then f is convex like in the disc |z| <
r = r(α, β), where

r(α, β) = inf
n

{
n(1 + β) + 2(β(1− 2α)− 1)

n2(β|3− 4α| − 1)

} 1
n−1

.

3. Class TS∗sc(α, β)

In this section, we consider the class TS∗sc(α, β) .Given below the coefficient

inequality for this class.

Theorem 3.1. A function f(z) = z −
∑∞
n=2 |an|zn is in class TS∗sc(α, β) if

and only if
∞∑
n=2

{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}|an| ≤ β|3− 4α| − 1.

This result is sharp.

Proof. Let |z| = 1. Then

|zf ′(z)− f(z) + f(−z)| − β|zf ′(z) + (1− 2α)(f(z)− f(−z))|

= |z +
∞∑
n=2

(n− 1 + (−1)n)|an|zn| − β|(3− 4α)z

−
∞∑
n=2

{n+ (1− 2α)(1− (−1)n)}|an|zn|

≤ 1− β(3− 4α) +
∞∑
n=2

{n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)}|an| ≤ 0.

Hence, by the maximum modulus theorem, f ∈ TS∗sc(α, β).

For the converse, assume that∣∣∣∣[ zf ′(z)

f(z)− f(−z)
− 1

]/[
zf ′(z)

f(z)− f(−z)
+ (1− 2α)

]∣∣∣∣ < β.

Since |Re(z)| ≤ |z|, for all z, we have

Re

{
z +

∑∞
n=2(n− 1 + (−1)n)|an|zn

(3− 4α)z −
∑∞
n=2[n+ (1− 2α)(1− (−1)n)]|an|zn

}
< β.

Choose values of z on the real axis so that zf ′(z)

f(z)−f(−z)
is real and letting z → 1,

through real values, we obtain the required condition.
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Finally, the function

f(z) = z −
∞∑
n=2

β|3− 4α| − 1

n(1 + β) + (1− (−1)n)(β(1− 2α)− 1)
zn

is an extremal function for the theorem. �

Remark 3.2. The coefficient inequality for the class TS∗sc(α, β) obtained in

Theorem 3.1 is exactly the same as for the class TS∗s (α, β) obtained in [6].

Consequently, the result concerning distortion, closure property and radius of

starlikeness for the classwhich, infact, are determined by an application of the

coefficient inequality, are the same as those for the class TS∗s (α, β) determined

in [6]; and similarly the results concerning for the class TCs(α, β). For the sake

of brevity, we omit the details.
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Abstract: A linear space P was previously introduced in order to extend

the classical Laplace transform. A convergence structure on P is now

introduced and investigated.

1. Introduction

The Laplace transform has been found to be useful in many areas of ap-

plied mathematics, engineering, and physics. In [1], the Laplace transform was

extended to a space P which is isomorphic to D′0, the space of transformable

distributions of Zemanian [3] whose elements are supported on the interval

[0,∞).

The construction of the space P only requires elementary calculus and clas-

sical Laplace transform theory found in Churchill [2].

In this note, we introduce a convergence structure on P. An Inversion The-

orem and a Uniqueness Theorem are established. We also show that applying

the Laplace transform, differentiation, and multiplying by a polynomial are

continuous operations. In the final section, we show that P is isomorphic to

D′0 by defining a linear bijective bicontinuous map from P onto D′0.

2. Preliminaries

In this section, we give a brief review of the material from [1] that will be

needed in the sequel.

Let A denote the set of all piecewise continuous functions of exponential

growth on (−∞,∞) which vanish on (−∞, 0).

2000 Mathematics Subject Classification. 44A10, 44A40, 46F12.

Key words and phrases: Convergence, Laplace transform, transformable distribution.
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150 DENNIS NEMZER

The convolution of two functions f, g ∈ A is given by

(f ∗ g)(t) =

∫ t

0

f(t− x)g(x)dx.

Let H denote the Heaviside function. That is, H(t) = 1 for t ≥ 0 and zero

otherwise.

For each n ∈ N, we denote by Hn the function H ∗ . . . ∗ H where H is

repeated n times.

Now, the space P is defined as follows.

P =

{
f

Hk
: f ∈ A, k ∈ N

}
Two elements of P are equal, denoted f

Hn = g
Hm , if and only if Hm ∗ f =

Hn ∗ g.

The generalized derivative and multiplication by “t” is defined as follows.

Let F = f
Hk ∈ P. Then,

a) DF := f
Hk+1

b) T • F := −kf
Hk−1 + Tf

Hk , k ≥ 2 and T (t) = tH(t), t ∈ R.

The Laplace transform of F = f
Hk ∈ P is given by

LF (s) = skLf(s), where Lf(s) =

∫ ∞
0

e−stf(t)dt.

The extended Laplace transform satisfies many of the same properties as the

classical Laplace transform.

Let F,G ∈ P, α, β ∈ C, and a ∈ R. Then,

a) L(αF + βG)(s) = αLF (s) + βLG(s)

b) L(DnF )(s) = snLF (s) (n = 0, 1, 2, . . .)

c) L(T • F )(s) = − d
dsLF (s)

d) L(τaF )(s) = e−asLF (s), where F = f
Hk , τaF = τaf

Hk , and τaf(t) =

f(t− a).

3. Convergence

Definition 3.1. A sequence {Fn} ∈ P is said to converge to F ∈ P, denoted

P- lim
n→∞

Fn = F , provided there exist γ ∈ R, k ∈ N, and f, fn ∈ A (n ∈ N) such

that

(i) F = f
Hk , Fn = fn

Hk , n ∈ N
and

(ii) sup
−∞<t<∞

eγt|fn(t)− f(t)| → 0 as n→∞.
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Theorem 3.2. (Unique Limits) Let F,G, Fn ∈ P (n ∈ N). If P- lim
n→∞

Fn = F

and P- lim
n→∞

Fn = G , then F = G.

Proof. Since P- lim
n→∞

Fn = F , there existfn, f ∈ A, k ∈ N, and γ ∈ R such that

Fn =
fn
Hk

, (3.1)

F = f
Hk , and sup

−∞<t<∞
eγt|fn(t)− f(t)| → 0 as n→∞. Thus,

fn → f uniformly on compact sets as n→∞. (3.2)

Now, P- lim
n→∞

Fn = G. Thus, there exist gn, g ∈ A, m ∈ N, and σ ∈ R such that

Fn =
gn
Hm

, (3.3)

G = g
Hm , and sup

−∞<t<∞
eσt|gn(t)− g(t)| → 0 as n→∞. Thus,

gn → g uniformly on compact sets as n→∞. (3.4)

Without loss of generality we may assume m = k + p. Now from (3.1) and

(3.3), gn = fn ∗Hp, n ∈ N. Thus,

g − f ∗Hp = g − fn ∗Hp + fn ∗Hp − f ∗Hp

= g − gn + (fn − f) ∗Hp.

By (3.2), (3.4), and the above, we obtain

g = f ∗Hp.

So,

G =
g

Hm
=

f ∗Hp

Hk ∗Hp
=

f

Hk
= F

�

Theorem 3.3. (Inversion) Let F ∈ P. Then, there exist σ ∈ R and k0 ∈ N
such that for each k ≥ k0,

F = P- lim
n→∞

1
2πiH(t)

∫ γ+in
γ−in e

st LF (s)
sk

ds

Hk
, for any γ > σ.

Proof. Notice that there exists k0 ∈ N such that for each k ∈ N, k ≥ k0, F =
fk
Hk , where fk ∈ C(2)(R)∩A and fk(0) = f ′k(0) = 0. For if F = g

Hm , g ∈ A, then

for each k ≥ m+3, F = g∗Hk−m

Hm∗Hk−m and g∗Hk−m ∈ C(2)(R)∩A, (g∗Hk−m)(0) =

(g ∗Hk−m)′(0) = 0.

Now, let k0 ∈ N as above. For a fixed k ≥ k0, let F = fk
Hk , where fk satisfies

the above conditions and fk(t) = O(eσt) as t→∞.
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For n = 1, 2, . . ., define

gn(t) =
1

2πi
H(t)

∫ γ+in

γ−in
est
LF (s)

sk
ds, where γ > σ. (3.5)

Since fk satisfies the conditions stated at the beginning of the proof, there

exists a constant A > 0 such that∣∣∣∣LF (s)

sk

∣∣∣∣ = |Lfk(s)| ≤ A

|s|2
, Re s ≥ γ. (3.6)

Thus, by (3.5) and (3.6), there exists a constant M > 0 (independent of n)

such that

|gn(t)| ≤Meγt, for all t ∈ R and n ∈ N. (3.7)

Moreover, gn is piecewise continuous on (−∞,∞) and vanishes on (−∞, 0),

thus, gn ∈ A, n ∈ N. By the Inversion Theorem for the classical Laplace

transform [2],

fk(t) = lim
n→∞

gn(t) =
1

2πi
H(t)

∫ γ+i∞

γ−i∞
est
LF (s)

sk
ds, for t ∈ R. (3.8)

Let B > 0. By using (3.6) and (3.8), for |t| ≤ B there exists a constant

C > 0 such that

|gn(t)− fk(t)| ≤ C
∫
|x|>n

dx

x2
.

Thus,

sup
−∞<t<∞

e−(γ+1)t|gn(t)− fk(t)| → 0 as n→∞.

Hence,

F = P- lim
n→∞

Fn, where Fn =
gn
Hk

(n ∈ N).

This establishes the theorem. �

The following Uniqueness Theorem follows directly from the previous Inver-

sion Theorem and Theorem 3.2.

Uniqueness Theorem. Let F,G ∈ P such that LF (s) exists for Re s > σ1

and LG(s) exists for Re s > σ2. If LF (s) = LG(s) on {s : Re s = γ}, where

γ > max{σ1, σ2}, then F = G.

The next theorem shows that applying the Laplace transform, differentia-

tion, and multiplying by a polynomial are continuous operations on P.

Theorem 3.4. Let F, Fn ∈ P (n ∈ N) such that P- lim
n→∞

Fn = F . Then,

a) LFn → LF uniformly on compact sets in some half-plane Re s ≥ α as

n→∞.

b) P- lim
n→∞

DFn = DF.
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c) P- lim
n→∞

Q • Fn = Q • F , where Q is a polynomial.

Proof. Let F, Fn ∈ P (n ∈ N) such that P- lim
n→∞

Fn = F . Parts a) and b) follow

directly from the definitions. Now, by using the definition, it follows that

P- lim
n→∞

T • Fn = T • F . Thus, using this and linearity, part c) follows. �

Examples 3.5. Let f(t) =
∑∞
k=0H(t − k) and fn(t) =

∑n
k=0H(t − k) for

n = 0, 1, 2, . . .. Then for n = 0, 1, 2, . . ..

e−t|f(t)− fn(t)| = e−t
∞∑

k=n+1

H(t− k) ≤ te−t for t ≥ n and zero otherwise.

Let F =
∑∞

k=0 τkH

H and Fn =
∑n

k=0 τkH

H , for n = 0, 1, 2, . . ..

Then, F, Fn ∈ P (n ∈ N) and P- lim
n→∞

Fn = F . So, by part a) of the previous

theorem,

LF (s) = lim
n→∞

LFn(s)

= lim
n→∞

s
n∑
k=0

e−ks

s

=
1

1− e−s
= (1/2) es/2 csch(s/2), for Re s > 0.

4. Transformable Distributions

In this section, we will show that the space P is isomorphic to the space of

transformable distributions supported on the half-line. It is assumed that the

reader is familiar with the theory of distributions [3].

The kth order distributional derivative operator is denoted by Dk. The

following well known facts will be used throughout this section.

For any k, n ∈ N and f ∈ C(R),

a) DkHk = δ.

b) Dk(Hn ∗ f) = DkHn ∗ f = Hn ∗Dkf .

Denote the space of transformable distributions [3] supported on the half-

line [0,∞) by D′0. That is, ν ∈ D′0 if and only if there exist a k ∈ N and

f ∈ A ∩ C(R) such that ν = Dkf . This can be seen by observing that ν ∈ D′0
if and only if there exist σ ∈ R, polynomial Q, and a function g such that g is

analytic in the half-plane Re s > σ, |g(s)| ≤ Q(|s|) for Re s > σ, and ν = Dkf ,

where deg Q = k − 2 and

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
est

g(s)

sk
ds, γ > σ.
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A sequence {νn} in D′0 converges to ν ∈ D′0, denoted νn → ν in D′0, provided

there exist a k ∈ N, ξ ∈ R, and f, fn ∈ A ∩ C(R) (n ∈ N) such that Dkfn =

νn, D
kf = ν and eξtfn → eξtf uniformly on R as n→∞.

By showing that the range of the Laplace transform on P is identical to the

range of the Laplace transform on D′0, it was shown in [1] that P is algebraically

isomorphic to D′0. In this section, we will give an explicit map Λ from P to D′0
and show that Λ is a linear bijective bicontinuous mapping of P onto D′0.

Define a mapping Λ : P → D′0 by Λ( f
Hk ) = Dkf .

Recall that we can assume that f ∈ C(R).

Suppose that f
Hk = g

Hn .

Then,

Hn ∗ f = Hk ∗ g. (4.1)

By applying Dn+k to (4.1), we obtain

Dkf = Dng.

Therefore,

Λ

(
f

Hk

)
= Λ

( g

Hn

)
.

Thus, Λ is well-defined.

Theorem 4.1. Λ is a linear bijective bicontinuous map from P onto D′0.

Proof. Let F = f
Hk , G = g

Hn , λ ∈ C. Then,

Λ(λF +G) = Λ(λf∗H
n + g∗Hk

Hk+n ) = Dk+n(λf ∗Hn + g ∗Hk)

= λDkf ∗DnHn+Dng ∗DkHk = λDkf+Dng = λΛ(F )+Λ(G).

That is, Λ is linear.

Now, suppose Λ(F ) = Λ(G). That is, Dkf = Dng, with n = k + p.

Then,

g = δ ∗ g = DnHn ∗ g = Hn ∗Dng = Hn ∗Dkf = DkHk ∗ (Hp ∗ f)

= δ ∗ (Hp ∗ f) = Hp ∗ f.
Thus,

f

Hk
=

Hp ∗ f
Hp ∗Hk

=
g

Hn
.

That is, Λ is injective.

Since Λ is clearly surjective, only continuity remains to be established.

Let Fn, F ∈ P such that Fn → F in P. That is, Fn = fn
Hk , F = f

Hk (fn, f ∈
A ∩ C(R)) such that eγtfn → eγtf uniformly on R as n→∞. This gives,

Dkfn → Dkf in D′0 as n→∞.

That is, Λ(Fn) = Dkfn → Dkf = Λ(F ) in D′0 as n→∞. Thus, Λ is continuous.



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

EXTENDING THE LAPLACE TRANSFORM II CONVERGENCE 155

Now, suppose νn → ν in D′0 as n→∞. That is, νn = Dkfn, ν = Dkf

(fn, f ∈ A ∩ C(R)) and eξtfn → eξtf uniformly on R as n→∞. That is,

fn
Hk
→ f

Hk
in P as n→∞.

Thus,

Λ−1(νn) = Λ−1(Dkfn) =
fn
Hk
→ f

Hk
= Λ−1(Dkf) = Λ−1(ν) in P as n→∞.

Hence, Λ−1 is continuous and the proof is complete. �
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Abstract: In this paper, we consider the concept of fractional derivative

techniques to obtain the linear generating and the bilinear generating

functions of some of the identities and gives the generalizations.

1. Introduction

In this paper we apply the concept of fractional derivatives to obtain gen-

erating functions. In the process we build up a fractional derivative operator

which play the role of augmenting parameters in the hypergeometric functions

involved. We then employ this operator in identities involving infinite series,

and this exercise culminates in linear as well as bilinear generating functions

for a variety of special functions.

The simplest approach to a definition of a fractional derivative commences

with the formula
dα

dxα
{
eax
}

= Dα
x

{
eax
}

= aαeax, (1.1)

where α is an arbitrary (real or complex) number.

In 1731, Euler extended the derivative formula [9] to the general form

Dµ
x

{
xλ
}

=
Γ(λ+ 1)

Γ(λ− µ+ 1)
xλ−µ, (1.2)

where µ is an arbitrary complex number.

The literature contains many examples of the use of fractional derivatives in

the theory of hypergeometric functions, in solving ordinary and partial differ-

ential equations and integral equations, see for example Banerji and Moshen

[1,2], Banerji Moshen and Binsaad [3], Erdelyi [5], Oldham and Spanier [6],
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Ross [7] and Srivastava and Buschman [8]. Although other methods of solution

are usually available, the fractional derivative approach to these problems often

suggests methods that are not so obvious in a classical formulation.

The following theorems [9] on term-by-term fractional differentiation embod-

ies, in an explicit form, the definition of a fractional derivative of an analytic

function:

Theorem 1.1. If a function f(z), analytic in the disc |z| < p, has the power

series expansion

f(z) =
∞∑
n=0

an z
n, |z| < p, (1.3)

Dµ
z

{
zλ−1 f(z)

}
=
∞∑
n=0

an D
µ
z

{
zλ+n−1

}
=

Γ(λ)

Γ(λ− µ)
zλ−µ−1

∞∑
n=0

an (λ)n
(λ− µ)n

zn, (1.4)

provided that Re (λ) > 0, Re (µ) < 0 and |z| < p.

Theorem 1.2. Under the hypotheses surrounding equation (1.3),

Dµ
z

{
zλ−1 f(z)

}
=
∞∑
n=0

an D
µ
z

{
zλ+n−1

}

=
Γ(λ)

Γ(λ− µ)
zλ−µ−1

∞∑
n=0

an (λ)n
(λ− µ)n

zn, (1.5)

provided that Re (λ) > 0 and |z| < p.

The following fractional derivative formulas are useful in deriving generating

functions :

Dλ−µ
z

{
zλ−1(1− az)−α (1− bz)−β (1− cz)−γ

}
=

Γ(λ)

Γ(µ)
zµ−1 F

(3)
D [λ, α, β, γ; µ; az, bz, cz] (1.6)

Re (λ) > 0, |az| < 1, |bz| < 1, |cz| < 1 ;

Dλ−µ
y

yλ−1(1− y)−α 2F1

 α, β;

γ;

x

1− y




=
Γ(λ)

Γ(µ)
yµ−1 F2 [α, β, λ; γ, µ; x, y] , (1.7)

Re (λ) > 0, |x| + |y| < 1.



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

APPLICATION OF FRACTIONAL CALCULUS TO OBTAIN GENERATING . . . 159

2. LINEAR GENERATING FUNCTIONS

Gegenbauer polynomials of two variables and one parameter are defined by

[4]
∞∑
n=0

Cλn(x, y;α)tn = (α− 2xt+ yt2)−λ (2.1)

Take α = 1 in Eq. (2.1) and consider the identity

(1− 2xt+ yt2)−λ = (1 + yt2)−λ
(

1− 2xt

1 + yt2

)−λ
. (2.2)

To obtain a generating function from identity (2.2), we first rewrite it as

∞∑
n=0

(λ)n
n!

(−1)n(1− 2xt)−λ−n(yt2)n = (1 + yt2)−λ
(

1− 2xt

1 + yt2

)−λ
,

|yt2| < 1,

∣∣∣∣ 2xt

1 + yt2

∣∣∣∣ < 1. (2.3)

Now multiply both sides of Eq. (2.3) by xα−1 and apply the fractional

derivative operator Dα−β
x , we get

Dα−β
x

{ ∞∑
n=0

(λ)n
n!

(−1)n xα−1 (1− 2xt)−λ−n(yt2)n

}

= (1 + yt2)−λDα−β
x

{
xα−1

(
1− 2xt

1 + yt2

)−λ}
. (2.4)

Interchanging the order of differentiation and summation, which is valid

when Re(α) > 0 and |yt2| < |(1− 2xt)|, Eq. (2.4) yields

∞∑
n=0

(−1)n (λ)n
n!

Dα−β
x

{
xα−1 (1−2xt)−λ−n(yt2)n

}

= (1 + yt2)−λDα−β
x

{
xα−1

(
1− 2xt

1 + yt2

)−λ }
Γ(α)

Γ(β)
xβ−1

∞∑
n=0

(−1)n (λ)n
n!

2F1 [λ+ n, α; β; 2xt] (yt2)n

=
Γ(α)

Γ(β)
xβ−1(1+yt2)−λ2F1

[
λ, α; β;

2xt

1 + yt2

]
, |2xt| < min{1, |1+yt2|} (2.5)

or
∞∑
n=0

(−1)n (λ)n
n!

2F1 [λ+ n, α; β; 2xt] (yt2)n = (1+yt2)−λ 2F1

[
λ+ n, α; β;

2xt

1 + yt2

]
.

(2.6)
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Again consider identity (2.3) and multiply both sides by xα−1(1− x)−ρ and

apply the operator Dα−β and then reverse the order of differentiation and

summation, which is valid when Re(α) > 0, we get

∞∑
n=0

(−1)n (λ)n
n!

Dα−β
x

{
xα−1 (1−x)−ρ (1−2xt)−λ−n

}
(yt2)n

= (1 + yt2)−λDα−β
x

{
xα−1(1− x)−ρ

(
1− 2xt

1 + yt2

)−λ}
.

(2.7)

Further assuming that

∣∣∣∣ 2xt

1 + yt2

∣∣∣∣ < 1, and using Theorems 1.1 and 1.2 in Eq.

(2.7), we obtain

∞∑
n=0

(−1)n (λ)n
n!

F1

[
α, ρ, λ+n; β; x, 2xt

]
(yt2)n

= (1 + yt2)−λ F1

[
α, ρ, λ; β; x,

2xt

1 + yt2

]
(2.8)

3. BILINEAR GENERATING FUNCTIONS

In this section, we obtain the bilinear generating functions.

Consider the identity[
(1−

√
xt)(1 +

√
xt) + (1−

√
yt)(1 +

√
yt)
]n

= 2n
[
1− t

2(x+ y)
]n

(3.1)

or
n∑
r=0

(
n

r

)[
(1 +

√
xt)(1−

√
xt)
]r[

(1 +
√
yt)(1−

√
yt)
]n−r

= 2n
[
1− t

2
(x+ y)

]n
or

n∑
r=0

(
n

r

)
(1− xt)r(1− yt)n−r = 2n

[
1− t

2
(x+ y)

]n
(3.2)

Multiplying both sides of Eq(3.2) by xα−1 yγ−1 and apply the fractional

derivative operators Dα−β
x Dγ−δ

y , we obtain

Dα−β
x Dγ−δ

y

{
xα−1yγ−1

[
n∑
r=0

(
n

r

)
(1− xt)r(1− yt)n−r

]}

= Dα−β
x Dγ−δ

y

{
xα−1yγ−1

[
2n
[
1− t

2
(x+ y)

]n]}
or

Dα−β
x Dγ−δ

y

{ ∞∑
r=0

(
n

r

)
xα−1(1− xt)ryγ−1(1− yt)n−r

}
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= 2nDα−β
x xα−1Dγ−δ

y

{
yγ−1

[
1− t

2
(x+ y)

]n}
. (3.3)

Now inter changing the order of differentiation and summation, which is

valid when Re(α) > 0, Re(γ) > 0 Eq. (3.3) yields

n∑
r=0

(
n

r

)
Dα−β
x Dγ−δ

y

{
xα−1(1−xt)ryγ−1(1−yt)n−r

}

= 2nDα−β
x xα−1Dγ−δ

y

{
yγ−1

[
1− t

2
(x+ y)

]n}
or

n∑
r=0

(
n

r

)
Dα−β
x

{
xα−1(1−xt)r

}
Dγ−δ
y

{
yγ−1(1−yt)n−r

}

= 2nDα−β
x xα−1Dγ−δ

y

{
yγ−1

[
1− t

2
(x+ y)

]n}
(3.4)

Now using Theorem 1.1 and 1.2 in Eq. (3.4), we obtain

n∑
r=0

(
n

r

)
Γ(α)

Γ(β)
xβ−1 2F1[−r, α; β; xt]

Γ(γ)

Γ(δ)
yδ−1 2F1[−n+r, γ; δ; yt]

= 2nxβ−1 yδ−1
Γ(α) Γ(γ)

Γ(β) Γ(δ)
F2

[
−n, α, γ; β, δ;

xt

2
,
yt

2

]
.

or

n∑
r=0

(
n

r

)
2F1[−r, α;β; xt] 2F1[−n+r, γ; δ; yt] = 2nF2

[
−n, α, γ; β, δ;

xt

2
,
yt

2

]
.

(3.5)

4. CONCLUDING REMARKS

In Sections 2 and 3, we have obtained some linear and bilinear generating

functions. In this section we obtain the generalization of the generating function

(2.6) and (3.5) in the following form.

Consider the identity (2.3) and multiply both sides by xα−1 and apply the

fractional derivative operators Da1−b1
x . . . D

ap−bq
x , we get

Da1−b1
x . . . Dap−bq

x

{ ∞∑
n=0

(λ)n
n!

(−1)n xα−1(1− 2xt)−λ−n(yt2)n

}

= (1+yt2)−λDa1−b1
x . . . Dap−bq

x

{
xα−1

(
1− 2xt

1 + yt2

)−λ}
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Now by using the already quoted procedure we obtain the following gener-

alization of generating function (2.6)

∞∑
n=0

(−1)n (λ)n
n!

p+1Fq

 λ+ n, a1, · · · , ap;
2xt

b1, · · · , bq;



= (1 + yt2)−λ p+1Fq


λ, a1, · · · , ap;

2xt

1 + yt2

b1, · · · , bq;

 (4.1)

Next consider the identity (3.2) and multiply both sides y xα−1 yγ−1 and

apply the fractional derivative operators Da1−b1
x . . . D

ap−bq
x Dα1−β1

y . . . Dαl−βm
y

we get

Da1−b1
x . . . Dap−bq

x Dα1−β1
y . . . Dαl−βm

y

{ ∞∑
r=0

(
n

r

)
xα−1yγ−1(1− xt)r(1− yt)n−r

}

= Da1−b1
x . . . Dap−bq

x Dα1−β1
y . . . Dαl−βm

y

{
2n xα−1 yγ−1

[
1− t

2
(x+ y)

]n}
.

Again by using the already quoted procedure we obtain the following gen-

eralization of generating relation (3.5)

∞∑
r=0

(
n

r

)
p+1Fq

 −r, (ap);

xt

(bq);

 l+1Fm

 −n+ r, (αl);

yt

(βm);


= 2n p+l+1Fq+β+1

[
−n, (ap), (αl); (bq), (βm);

xt

2
,
yt

2

]
(4.2).
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BILATERAL BASIC HYPERGEOMETRIC SERIES
TRANSFORMATION FORMULA
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Abstract: In this paper, we give an alternative proof of W. N. Bailey’s

2ψ2 bilateral basic hypergeometric series transformation formula.

1. Introduction

As usual for any complex number a, we define

(a)n :=
n−1∏
k=0

(1− aqk)

where q is any complex number and

(a)∞ :=
∞∏
n=0

(1− aqn), |q| < 1.

The basic hypergeometric series r+1ϕr is defined by

r+1ϕr

[
a1, a2, ..., ar+1

b1, b2, ..., br
; z

]
:=

∞∑
n=0

(a1)n(a2)n · · · (ar+1)n
(q)n(b1)n(b2)n · · · (br)n

zn

where, |z| < 1 and a1, a2, · · · , ar+1, b1, b2, · · · , br are arbitrary except that of

course (bj)n 6= 0, 1 6 j 6 r, n ≥ 0. The bilateral basic hypergeometric series

rψr is defined by

rψr

[
a1, a2, ..., ar

b1, b2, ..., br
; z

]
:=

∞∑
n=−∞

(a1)n(a2)n · · · (ar)n
(b1)n(b2)n · · · (br)n

zn,

2000 Mathematics Subject Classification. 33D15.

Key words and phrases: Bilateral basic hypergeometric series, basic hypergeometric series.

c© Indian Mathematical Society, 2011.
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where

∣∣∣∣ b1b2 · · · bra1a2 · · · ar

∣∣∣∣ < |z| < 1 and (a)−m = (−1)mqm(m+1)/2

am(q/a)m
. One of the most

important transformation formula for basic hypergeometric series is the Sear’s

3ϕ2 basic hypergeometric transformation formula [22]:

3ϕ2

[
a, b, c

d, e
;
de

abc

]
=

(e/b)∞(de/ac)∞
(e)∞(de/abc)∞

3ϕ2

[
b, d/a, d/c

d, de/ac
;
e

b

]
. (1.1)

Similarly, one of most interesting summation theorem for bilateral basic hyper-

geometric series is the following Ramanujan’s 1ψ1 summation theorem [21].

1ψ1

[
a

b
; z

]
=

(az)∞(q/az)∞(b/a)∞(q)∞
(z)∞(b/az)∞(q/a)∞(b)∞

, |b/a| < |z| < 1. (1.2)

G. H. Hardy [14, pp. 222,223] described it as “a remarkable formula with many

parameters”. The first published proof of (1.2) appears to by W. Hahn [13]

and M. Jackson [17]. Other proofs have been given by G. E. Andrews [2], [3],

Andrews and R. Askey [4], Askey [5], M. E. H. Ismail [16], N. J. Fine [12], K.

Mimachi [20], K. Venkatachaliengar [7], [25], S. Corteel and J. Lovejoy [10], A.

J. Yee [26] S. H. Chan [9], Z. G. Liu [19], K. W. J. Kadell [18].

Using Ramanujan 1ψ1 summation formula and the q-binomial theorem W.

N. Bailey [6] proved an interesting transformation of the series 2ψ2:

2ψ2

[
a, b

c, d
; z

]
=

(az)∞(d/a)∞(c/b)∞(dq/abz)∞
(z)∞(d)∞(q/b)∞(cd/abz)∞

2ψ2

[
a, abz/d

az, c
;
d

a

]
. (1.3)

Recently K. R. Vasuki [24] has given an alternative proof of this transformation

formula and demonstrated its diverse uses leading to sums of squares theorem,

Lambert series identities related to Dedekind eta functions and q-gamma and

q-beta identities and also C. Adiga and Vasuki [1] have employed (1.3) to de-

duce theorem on representation of a integer as sum of triangular numbers. The

identity (1.3) has also been employed by Denis [11], N. A. Bhagirathi [8], Vasuki

[23] to establish continued fractions of ratios 2ψ2 with its contiguous functions.

Motivated by these in Section 2 of this paper, we give an alternative simple

proof of (1.3) by employing (1.1). Our proof is similar to the proof of (1.2) by

Z. G. Liu[19].

We close this section by recalling the following simple facts of q-shifted facto-

rials, which are required in the next section.

(aqm)−m =
1

(a)m
, (1.4)
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(qm+1)−m =
1

(q)m
, (1.5)

(a)∞ = (a)−m(aq−m)∞, (1.6)(
bq−m

a

)
∞

= (−1)mbma−mq−m(m+1)/2
(aq
b

)
m

(
b

a

)
∞

(1.7)

and

(a)k−m = (a)−m(aq−m)k. (1.8)

2. Proof of (1.3)

For any positive integer m, we consider the series

∞∑
n=−m

(aqm)n(b)n(c)n
(qm+1)n(d)n(e)n

(
de

abc

)n
.

Letting n = k −m in the above series and then employing (1.8), we have

∞∑
n=−m

(aqm)n(b)n(c)n
(qm+1)n(d)n(e)n

(
de

abc

)n

=
(aqm)−m(b)−m(c)−m

(qm+1)−m(d)−m(e)−m

(
de

abc

)−m ∞∑
k=0

(a)k(bq−m)k(cq−m)k
(q)k(dq−m)k(eq−m)k

(
de

abc

)k
. (2.1)

Changing b by bq−m, c by cq−m, d by dq−m and e by eq−m in (1.1), we obtain

3ϕ2

[
a, bq−m, cq−m

dq−m, eq−m
;
de

abc

]
=

(e/b)∞(deq−m/ac)∞
(eq−m)∞(de/abc)∞

3ϕ2

[
bq−m, dq−m/a, d/c

dq−m, deq−m/ac
;
e

b

]
.

(2.2)

Using this in (2.1), and then employing (1.4)-(1.7), we obtain

∞∑
n=−m

(aqm)n(b)n(c)n
(qm+1)n(d)n(e)n

(
de

abc

)n

=
(e/b)∞(de/ac)∞(aq/d)m(d/c)m

(a)m(q/c)m(de/abc)∞(e)∞

∞∑
n=−m

(b)n(d/a)n(dqn/c)n
(qm+1)n(d)n(de/ac)n

(e
b

)n
.

Now, letting m→∞ in the above, we obtain

2ψ2

[
b, c

d, e
;
de

abc

]
=

(e/b)∞(de/ac)∞(aq/d)∞(d/c)∞
(a)∞(q/c)∞(de/abc)∞(e)∞

2ψ2

[
b, d/a

d, de/ac
;
e

b

]
.

Replacing a by de/bcz, b by a, c by b, d by c and e by d in the above, we obtain

(1.3). This completes the proof.
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Abstract: In this paper, a transform involving generalized modified

Struve function in the kernel is extended to a class of (generalized func-

tions) distributions and the properties of a test function space and its

dual are studied. Transformable generalized functions are defined and an

analyticity theorem, inversion theorem and uniqueness theorem are also

proved for the distributional generalized modified Struve transform. It is

shown that several classes of differential equations can be solved with the

help of this distributional generalized modified Struve transform.

1. Introduction

The generalized modified struve transform in classical sense is studied by

Pathak [4]

F (s) = {Fq,a,cf(t)} (s) =

∫ ∞
0

e−qstΩ(a, c; st)f(t)dt (1.1)

under two cases |q| > 1 and |q − 1| > 1 which are based on the following two

integrals by Babister [1,p.120],∫ ∞
0

e−pzzb−1Ω(a, c; kz)dz = Γ(b)p−bB(b, a; c; kp−1), (1.2)

(Re b > 0, Re p > 0, Re p > Re k, |p| > |k|) where B(a, b; c; z) is the nonhomo-

geneous hypegeometric function given by Babister [1,p.167] and∫ ∞
0

e−pzzb−1Ω(a, c; kz)dz = −Γ(b)(p− k)−bB(b, c− a; c;
k

k − p
), (1.3)

2000 Mathematics Subject Classification. 44,46F12.

Key words and phrases: Testing function space, Generalized functions (Distributions),

Generalized modified Struve function, and Generalized modified Struve transform.

c© Indian Mathematical Society, 2011.
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(Re b > 0, Re p > 0, Re p > Re k, |p− k| > |k|), where Ω (a, c; z) is the gener-

alized modified struve function explored by Babister [1, p.96] and is defined as

under:

Ω(a, c; z) = i(2π)−1eiπaΓ(1− a)Γ(c)Γ(1 + a− c)ω, (1.4)

where

ω = i(2−c/π)e−iπ(a+c)ez/2[(1− e2πia)

∫ (1+)

0

ezu/2(1 + u)a−1(1− u)c−a−1du

+{1− e2iπ(c−a)}
∫ (−1+)

0
ezu/2(1 + u)a−1(1− u)c−a−1du].

It satisfies a nonhomogeneous differential equation and, for c = 2a, we have

Ω(a, 2a; z) = Γ(a+ 1/2)(z/4)1/2−aez/2La−1/2(z/2), (1.5)

where Lν(z) is the modified Struve function [see 2,p.38].

By specializing parameters various other particular cases of Ω (a, c; z) have

been obtained by Babister [1, pp.104-107; 113-114].

In this paper a simple generalization of generalized modified Struve trans-

form (1.1) defined in classical sense by

F (s) = Fq,λ,a,c {f(t)} (s) =

∫ ∞
0

(st)λe−qstΩ(a, c; st)f(t)dt (1.6)

where s, q, λ are complex numbers (Re λ > 0) and a, c are constants, is extended

to a certain class of (generalized functions) distributions and the properties of

a test function space and its dual with analyticity theorem are studied. Also

the inversion and uniqueness theorems are proved for the generalized modified

Struve transform of generalized functions. It is shown that several classes of

differential equations can be solved with the help of this generalized modified

Struve transform of generalized functions. We first prove an inversion formula

for (1.6) in the classical sense and define a differential operator and examine

the behavior of the result of its nth operation on the kernel of the transform

(1.6), as this will be needed in our study.

2. Classical Inversion Theorem and Differential Operator

Following is the classical inversion theorem.

Theorem 2.1. Let

Fq,λ,a,c(f) = F (p) =

∫ ∞
0

K(px)f(x)dx, (2.1)

where K(px) = (px)λ exp(−qpx)Ω(a, c; px). Then

1

2
[f(x+) + f(x−)] =lim

T→∞
1

(2πi)

∫ σ+iT

σ−iT
x−sM(s)ψ(s)ds, (2.2)
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where

ψ(s) = [q(λ+1−s)/Γ(λ+ 1− s)].
[
B
(
λ+ 1− s, a; c; q−1

)]−1
, (|q| > 1) (2.3)

= [−(q−1)(λ+1−s)/Γ(λ+1−s)].
[
B
(
λ+ 1− s, c− a; c; (1− q)−1

)]−1
, (|q − 1| > 1)

(2.4)

and

M(s) =

∫ ∞
0

p−sF (p)dp, (2.5)

provided that

i) the integrals
∫∞

0
tσ−1f(t)dt and

∫∞
0
t−sF (t)dt are absolutely convergent

(s = σ + iT, 0 < T <∞),

ii) f(t) is of bounded variation in the neighborhood of point t = x,

iii) f(t) = O(tλ), for small t, Re(λ+ 1− s) > 0, Re(pq) > 0, Re(pq) > Re

p and |q| > 1 or |q − 1| > 1,

iv) K(p0t)f(t) is bounded for t ≥ 0 and Re p > p0 > 0.

Proof. Multiplying both sides of (2.1) by p−s and integrating with respect to

p from 0 to ∞ we get

M(s) =

∫ ∞
0

p−sF (p)dp =

∫ ∞
0

p−sdp

∫ ∞
0

(px)λ exp(−qpx)Ω(a, c; px)f(x)dx

=

∫ ∞
0

xs−1f(x)dx

∫ ∞
0

(px)λ−s exp(−qpx)Ω(a, c; px)d(px). (2.6)

On changing the order of integration, which will be shown to be justified by

evaluating the second integral on the right by means of the formulae 4.158 and

4.159 from Babister [1, §4.17, p.120] as given by (1.3) and (1.4), we obtain the

following respective values of M(s) as follows

M(s) = [q−(λ+1−s).Γ(λ+ 1− s)].
[
B
(
λ+ 1− s, a; c; q−1

)] ∫ ∞
0

xs−1f(x)dx,

(2.7)

(Re(λ+ 1− s) > 0, Req > 1),

= [−(q − 1)−(λ+1−s)Γ(λ+ 1− s)]B
(
λ+ 1− s, c− a; c; (1− q)−1

) ∫ ∞
0

xs−1f(x)dx,

(2.8)

(Re(λ+ 1− s) > 0, Req > 1, |q − 1| > 1).

Thus ∫ ∞
0

xs−1f(x)dx = ψ(s)M(s), (2.9)

where ψ(s) and M(s) have the values given by (2.3), (2.4) and (2.7), (2.8)

respectively. Applying Mellin’s inversion formula to (2.9) we get (2.2) provided

that the conditions given by (1.2) and (1.3) are satisfied. �
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Now since the modulus of the integrand in (2.6) is p−σ exp(−qpx) |Ω(a, c : px)|
|f(x)| and from Babister [1, p. 108, (4.105)], Ω(a, c : x) = O(1) for small values

of x, it follows that the right hand side of (2.6) is absolutely convergent double

integral under the conditions (iii) and (iv) of the Theorem 2.1. Consequently

we may change the order of integration and integrate first with respective to x.

2.1. Differential Operator. Let

u = xλe−qxΩ(a, c;x) = xλe−(q−1)xe−xΩ(a, c;x).

Then,

x−λue(q−1)x = e−xΩ(a, c;x)

and

d

dx

[
x−λue(q−1)x

]
=

d

dx
e−xΩ(a, c;x) = − (c− a)

(c)
e−xΩ(a, c+ 1;x);

as also

dm

dzm
[
e−zΩ(a, c; z)

]
= (−1)m

(c− a)(m)

(c)(m)
e−zΩ(a, c+m; z)

= (−1)m
Γ(c− a+m)Γ(c)

Γ(c− a)Γ(c+m)
e−zΩ(a, c+m; z)

for m = 1, 2, 3, . . . ., by Babister [1, p.103]. Therefore

d

dx
.
d

dx

[
x−λue(q−1)x

]
=

(c− a)(2)

(c)(2)
e−xΩ(a, c+ 2;x)

and

xλe−(q−1)x d

dx

[
d

dx

[
x−λue(q−1)x

]]
=

(c− a)(2)

(c)(2)
xλe−qxΩ(a, c+ 2;x).

Let us define an operator Aλ,q,x by

Aλ,q,xφ(x) = xλe−(q−1)xDx{Dx[x−λe(q−1)xφ(x)]}

= [D2
x + 2[(q − 1)x− λ]x−1Dx + [(q − 1)2x2 − 2λ(q − 1)x+ λ(λ+ 1)]x−2]φ

= x−2
{
x2D2

x + 2[(q − 1)x− λ]xDx + [(q − 1)2x2 − 2λ(q − 1)x+ λ(λ+ 1) ] }φ,
(2.10)

where Dx = D = d/dx. Therefore, we have

Aλ,q,t[(st)
λe−qstΩ(a, c; st)] =

(c− a)(2)

(c)(2)
s2(st)λe−qstΩ(a, c+ 2; st)

and for n = 0, 1, 2, 3, . . .

Anλ,q,t[(st)
λe−qstΩ(a, c; st)] =

(c− a)(2n)

(c)(2n)
s2n(st)λe−qstΩ(a, c+ 2n; st). (2.11)
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For large t,

Anλ,q,t[(st)
λe−qstΩ(a, c; st)] ∼= Γ(c)

Γ(a)

[
(c−a)(2n)

(c)(2n)

]
.s2ne−(q−1)st(st)λ+a−c−2n

and for small t,

Anλ,q,t[(st)
λe−qstΩ(a, c; st)] ∼=

[
(c−a)(2n)

(c)(2n)

]
.s2ne−qst(st)λ

since for large z, Ω(a, c, z ) ∼= Γ(c)
Γ(a)ez(z )

a−c
[1 + O( |z|−1

)] by Erdelyi [2], and

for small z, Ω(a, c; z) ∼= O(1) by Babister [1, p.108, 4.105].

Hence Anλ,q,t[(st)
λe−qstΩ(a, c; st)] < ∞ when Re s > 0, q > 1, Re λ ≥ 0 and

Re c > Re a > 0.

3. Test Function Space Hα,β(I) and Its Dual H ′α,β(I)

Let us define functional ρλ,qα,β,n; n = 0, 1, 2, 3. . . on certain smooth functions

φ(t), (0 < t <∞), by

ρλ,qα,β,n(φ) =sup
0<t<∞

∣∣e−αttβ+2nAnλ,q,tφ(t)
∣∣ . (3.1)

Let Hα,β(I) be the space of all those complex-valued smooth functions φ(t)

defined on I = (0,∞) for which ρλ,qα,β,n(φ) is finite for all n = 0, 1, 2, 3 . . . ,

where α, β are suitably fixed real numbers and λ, a complex number with Re

λ≥ 0, |q| > 1 and |q − 1| > 1. For any complex number γ, we have ρλ,qα,β,n(γφ) =

|γ| .ρλ,qα,β,n(φ) and ρλ,qα,β,n(φ+ ψ) ≤ ρλ,qα,β,n(φ) + ρλ,qα,β,n(ψ), φ ,ψ ∈ Hα,β(I).

Hence ρλ,qα,β,n is a semi norm on Hα,β(I). Again ρλ,qα,β,0(ϕ) = 0 & implies ϕ(t)

is zero element in Hα,β(I). Hence ρλ,qα,β,0 is a norm. Thus the collection{
ρλ,qα,β,n

}∞
n=0

is a countable multinorm on Hα,β(I) equipped with topology gen-

erated by
{
ρλ,qα,β,n

}∞
n=0

.Thus Hα,β(I) is a countably multinormed space.

Lemma 3.1. For every fixed s such that 0 < Re s < α
1−q , |q| > 1 or |q − 1| >

1 and β +Re λ > 0, K(st) ∈ Hα,β(I) where K(st) = (st)λe−qstΩ(a, c; st).

Proof. From (2.11) and (3.1), we have

ρλ,qα,β,nK(st) =sup
0<t<∞

∣∣e−αttβ+2nAnλ,q,tK(st)
∣∣

=sup
0<t<∞

∣∣∣∣e−αttβ+2n (c− a)(2n)

(c)(2n)
sn(st)λe−qstΩ(a, c+ 2n; st)

∣∣∣∣ .
Now, for large t and fixed s we have |st| → ∞ and∣∣∣∣e−αttβ+2n (c− a)(2n)

(c)(2n)
sn(st)λe−qstΩ(a, c+ 2n; st)

∣∣∣∣
=

∣∣∣∣e[−α+(1−q)s]t (c− a)(2n)

(c)(2n)
tβs−n(st)λ+a−c

∣∣∣∣
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which tends to zero as t → ∞ since s is fixed with 0 < Re s < α
1−q , |q| >

1 or |q − 1| > 1 and Re c > Re a > 0. For small t,∣∣∣∣e−αttβ+2n (c− a)(2n)

(c)(2n)
sn(st)λe−qstΩ(a, c+ 2n; st)

∣∣∣∣
=

∣∣∣∣e[−α−qy]ttβ
(c− a)(2n)

(c)(2n)
s−n(st)λ+2n

∣∣∣∣
= a finite number, as t→ 0, since β +Reλ > 0, |q| > 1.

Hence ρλ,qα,β,n[K(st)] < ∞ for n = 0, 1, 2, 3 . . . , which shows that K(st) ∈
Hα,β(I). Thus (I) Members of Hα,β(I) are complex-valued smooth functions

defined on I and Hα,β(I) is a Frechet space. (II) If {φν}∞ν=1 converges in

Hα,β(I) to zero, then for every non-negative integer m {Dmφν}∞ν=1 converges

to zero function uniformly on every compact subset of I, and so Hα,β(I) is

a testing function space satisfying all necessary conditions for it to be such a

space. The collection of all continuous linear functional on Hα,β(I) is called

dual space of Hα,β(I) and is denoted by H
′

α,β(I). Members of H
′

α,β(I) are

(distributions) generalized functions. Since Hα,β(I) is complete, H
′

α,β(I) is

also complete. �

4. Properties of Hα,β(I)

As in Zemanian [5, pp. 32-36], D(I) is a space which contains those complex-

valued smooth functions φ(t) defined on 0 < t < ∞ which have compact

supports and E(I) is the space of all complex-valued smooth functions on I.

We now compare H
′

α,β(I) and Hα,β(I) with D(I) and E(I) and their duals

and list some of the properties:

Property 4.1 From the definition of spaces D(I) and E(I) we see that D(I) ⊂
Hα,β(I) ⊂ E(I). Since D(I) is dense in E(I), it follows that Hα,β(I) is dense

in E(I). Consequently, the restriction of f ∈ H ′

α,β(I) to D(I) is in D
′
(I).

Property 4.2 If 0 <α1< α2 then Hα1,β(I) ⊂ Hα2,β(I) and the topology

of Hα1,β(I) is stronger than the topology induced on it by the topology of

Hα2,β(I). Hence the restriction of any f ∈ H ′

α2,β
(I) to Hα1,β(I) is in H

′

α1,β
(I).

Also convergence in H
′

α2,β
(I) implies convergence in H

′

α1,β
(I).

Property 4.3 Hα,β(I) is a dense subspace of E(I), whatever be the choice of

α and β. Indeed D(I) ⊆ Hα,β(I) ⊆ E(I) and since D(I) is dense in E(I) so in

Hα,β(I).

Moreover, convergence of any sequence in Hα,β(I) implies its convergence in

E(I). E′(I) is a subspace of H
′

α,β(I) for any permissible values of α and β.

Property 4.4 The differential operator trArλ,q,t (r = 1, 2, 3 . . . ) are continuous

linear mapping of Hα,β(I) into itself.
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The adjoint operator Brλ,q,t of trArλ,q,t is a generalized differential operator on

H
′

α,β(I) into H
′

α,β(I) and is defined by
〈
Brλ,q,tf, φ

〉
=
〈
f, trArλ,q,t(φ)

〉
.

5. The Distributional Generalized Modified Struve Transform

We shall call f a generalized modified Struve transformable generalized func-

tion if f is a member of H
′

α,β(I) for some suitably fixed real number β and for

some positive real number α. According to §4, Property 4.2, f is then a

member of H
′

α′,β(I) if for every 0 < α′ < α. This implies that there exists a

positive real number σf (possibly σf = +∞) such that f ∈ H ′

α,β(I) for every

0 < α
1−q < σf and f /∈ H ′

α,β(I) for every 0 < σf <
α

1−q .

Definition 5.1. Let f ∈ H ′

α,β(I) for some fixed real numbers α and β, with

Re s > 0 and β + Re λ > 0. The distributional generalized modified Struve

transformation of generalized function f denoted by F
′
(s) = F

′

q,λ,a,c {f(t)} (s),

is defined by F
′
(s) = F

′

q,λ,a,c {f(t)} (s) = 〈f(t),K(st)〉 whereK(st) = (st)λe−qst

Ω(a, c; st) and s ∈ Ωf where Ωf = {s : 0 < Res < σf ,−π < arg s < π}.

Lemma 5.2. Let α and α′ be real numbers with α < α′, then for q > 1,

Re z ≥ α′, z 6= 0,−π < arg z < π and 0 < t <∞, we have∣∣e−αt(zt)λ+β+2ne−qtzΩ(a, c+ 2n; tz)
∣∣ ≤ C.(1 + zReµ)

where C is constant with respective to t and z and µ = λ+ β + a− c.

Proof. Since z 6=0, and −π < arg z < π, from the series expansion and asymp-

totic properties of generalized modified Struve function, we see that for |z| ≤ 1,

there exist a constant Mλ,a,c independent of z such that∣∣zλ+β+2ne−qzΩ(a, c+ 2n; z)
∣∣ < Mλ,a,c

and another constant Nλ,a,c independent of z such that for |z| > 1∣∣zλ+β+2ne−qzΩ(a, c+ 2n; z)
∣∣ < Nλ,a,c.z

Re(λ+β+a−c).eRe(1−q)z

= Nλ,a,c.z
Reµ.eRe(1−q)z

where µ = λ + β + a − c. Consequently, for Re z > α′ and 0 < t < ∞, there

exist constant Ba,cλ independent of z and x such that∣∣e−αt(zt)λ+β+2ne−qtzΩ(a, c+ 2n; tz)
∣∣ ≤ Bλ,a,c.(1+zReµ)(1+tReµ).e−α−Re(q−1)z

Also for

q > 1, Rez > α′ > α; (1 + tReµ).e−α+Re(1−q)z

is uniformly bounded on 0 < t <∞ by another constant Cλ,a,c and so∣∣e−αt(zt)λ+β+2ne−qtzΩ(a, c+ 2n; tz)
∣∣ ≤ Cλ,a,c.(1 + zReµ).
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This completes the proof of lemma. �

Theorem 5.3. (Analyticity Theorem) Let

F ′(s) = F
′

q,λ,a,c {f(t)} (s) = 〈f(t),K(st)〉 for s ∈ Ωf .

Then F ′q,λ,a,c(s) is analytic function on Ωf and

∂

∂s
F ′q,λ,a,c(s) =

〈
f(t),

∂

∂s
K(s, t)

〉
. (5.1)

Proof. The proof is standard and follows from Zemanian [5]. �

6. Inversion Theorem for the Distributional Generalized Modified

Struve Transform

In this section we establish an inversion formula for the distributional gen-

eralized modified Struve transformation, which determines the restriction to

D(I) of any Struve-transformable generalized function from its generalized

modified Struve transform. From this we will obtain a uniqueness theorem,

which states that two generalized Struve-transformable generalized functions

having the same transformation must have the same restriction to D(I). First

we shall prove some lemmas and theorems which will be used for proving the

main inversion theorem.

Lemma 6.1. The function us−1 as a function of u is a member of Hα,β(I) if

Re s ≥ 1− β and α > 0.

Proof. It is clear that us−1 is differentiable function of u. Consider

sup
0<u<∞

∣∣e−αuuβ+2nAnλ,q,uu
s−1
∣∣

=sup
0<u<∞

∣∣∣∣∣e−αuuβ+2n
2n∑
r=0

2nCr[(q − 1)u− P i]ru−rD2n−rus−1

∣∣∣∣∣
=sup

0<u<∞

∣∣∣∣∣e−αuuβ+2n
2n∑
r=0

2nCr[(q − 1)u− P i]ru−r (s− 1)!

(2n− r − s+ 1)!
us−1−2n+r

∣∣∣∣∣
=sup

0<u<∞

∣∣∣∣∣e−αuuβ+s−1
2n∑
r=0

2nCr[(q − 1)u− P i]r (s− 1)!

(2n− r − s+ 1)!

∣∣∣∣∣ <∞
Therefore ρλ,qα,β,n(us−1) < ∞, under the conditions stated in Lemma for n =

0, 1, 2, 3 . . . �

Lemma 6.2. Let β be suitably fixed real number and f ∈H ′α,β(I), then∫ ∞
0

x−s 〈f(u),K(xu)〉 dx =

〈
f(u),

∫ ∞
0

x−sK(xu)dx

〉
. (6.1)



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

DISTRIBUTIONAL GENERALIZED MODIFIED STRUVE TRANSFORM 179

Proof. By using the technique of Riemann sums and following Zemanian [5],

one can easily prove the result. �

Lemma 6.3. Let

F ′q,λ,a,c(f) = F ′(s) for 0 < Re s < σf ,

let φ ∈ D(I) and set ψ(s) =
∫∞

0
y−sφ(y)dy where s = σ + iT and σ is fixed

such that max (0, 1 − β) < σ < σf . Then for any fixed real number r with

0 < r <∞ ∫ T

−T

〈
f(u), us−1

〉
ψ(s)dT =

〈
f(u),

∫ T

−T
us−1ψ(s)dT

〉
(6.2)

Proof. The proof can be carried on as in Malgonde and Saxena [3] and Zema-

nian [5, §3.5 and pp.65-66]. �

Lemma 6.4. Let α and β be real numbers such that α > 0, β +Re λ ≥ 0 and

fix σ∆Re s such that (1− β) ≤ σ < α/(1− q). Also let φ ∈ D(I). Then

1

π

∫ ∞
0

φ(y)(u/y)σ.
sin(T. log(u/y))

u. log(u/y)
dy converges to φ(u)

in Hα,β(I) as T →∞.

Proof. Setting log(u/y) = t, we will prove that

θT (u) = e−αuuβ+2n(π)−1Anλ,q,u

∫ ∞
−∞

[φ(ue−t)e(σ−1)t − φ(u)]
sin(tT )

t
dt

converges uniformly to zero in 0 < u <∞ as, T →∞ for n = 0, 1, 2, 3 . . . .

Since φ is smooth and is of bounded support, we have by differentiating under

the integral sign θT (u) = I1(u) + I2(u) + I3(u), where

I1(u) = (π)−1e−αu.uβ
∫ −δ
−∞

{
e(σ−1)tu2nAnλ,q,uφ(ue−t)− u2nAnλ,q,xφ(u)

} sin(tT )

t
dt,

and, I2(u) and I3(u) are the same integrals with intervals of integration (−δ, δ)
and (δ,∞) respectively. As in Zemanian [5] we can prove now that I1(u), I2(u)

and I3(u) tend to zero uniformly as r →∞, which proves the lemma. �

Theorem 6.5. (Inversion Theorem) Let

F ′q,λ,a,c(f) = F ′(s) for 0 < Res < σf .

Then in the sense of convergence in D′(I)

f(y) =lim
T→∞ (2πi)−1

∫ σ+iT

σ−iT
y−sM(s)φ(s)ds, (6.3)
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where σ is any fixed real number such that 0 < σ < σf , M(s) = ψ(s) is as

given by (2.7) and (2.8) and

φ(s) =

∫ ∞
0

x−sF ′(x)dx. (6.4)

Proof. Let φ ∈ D(I), and choose real numbers α and β such that α > 0, (β+Re

λ) ≥ 0 and 0 < (1− β) ≤ σ < α/(1− q) < σf . Our object is now to show that

lim
T→∞

〈
(2πi)−1

∫ σ+iT

σ−iT
y−sM(s)φ(s)ds, φ(y)

〉
= 〈f, φ〉 (6.5)

Now the integral on s is a continuous function of y and therefore the left hand

side without the limit notation can be rewritten as:

(2π)−1

∫ ∞
0

φ(y)

∫ T

−T
y−sM(s)φ(s)dTdy.

Since φ(y) is of bounded support and the integrand is a continuous function of

(y, T ), the order of integration may be changed. This yields

(2π)−1

∫ T

−T
M(s)

{∫ ∞
0

x−s 〈f(u),K(xu)〉
}∫ ∞

0

y−sφ(y)dydT

which, by Lemma 6.2, is equal to

(2π)−1

∫ T

−T

〈
f(u), us−1

〉 ∫ ∞
0

y−sφ(y)dydT

provided Re(λ+ 1− s) > 0, Re q > 0, |q| > 1 or |q − 1| > 1 and

(β +Re λ) > (c− a) > 0. By Lemma 6.3,

(2π)−1

∫ T

−T

〈
f(u), us−1

〉 ∫ ∞
0

y−sφ(y)dydT

=

〈
f(u), (2π)−1

∫ T

−T
us−1

∫ ∞
0

φ(y)y−sdydT

〉
.

The order of integration for the repeated integral herein may be changed be-

cause again φ(y) is of bounded support and the integrand is continuous function

of (y, T ). Upon doing this, we obtain〈
f(u), (2π)−1

∫ ∞
0

φ(y)

∫ T

−T
us−1y−sdTdy

〉

=

〈
f(u), (π)−1

∫ ∞
0

φ(y)(u/y)σ.
sin(T log(u/y))

u. log(u/y)
dy

〉
.

The last expression tends to 〈f(u), φ(u)〉 as T →∞ because f ∈ H ′α,β(I) and

according to Lemma 6.4, the testing function in the last expression converges

to φ(u) in Hα,β(I). This completes the proof. �
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Theorem 6.6. (Uniqueness Theorem). Let F ′(s) = F ′q,λ,a,c(f) for 0 < Re

s < σf and G′(s) = F ′q,λ,a,c(g) for 0 < Re s < σg and let F ′(s) = G′(s) for

0 < Re s < min(σf , σg). Then in the sense of equality in D′(I), f = g.

Proof. The proof is trivial and follows from Malgonde and Saxena [3]. �

7. Distributional Solution to a Class of Differential Equations

The distributional generalized modified Struve transform can be used to

solve certain boundary value problems. From Property 4.4, we see that the

operator trArλ,q,t(r = 0, 1, 2, 3...) is a continuous linear mapping of Hα,β(I) into

itself. Its adjoint operator Brλ,q,t is a continuous linear mapping of H
′

α,β(I) into

itself and is defined by 〈
Brλ,q,tf, φ

〉
=
〈
f, trArλ,q,tφ

〉
. (7.1)

So we observe that

F
′

q,λ,a,c{(Brλ,q,t
(c)(2r)

(c− a)(2r)
f)}(s) =

〈
Brλ,q,t

(c)(2r)

(c− a)(2r)
f(t),K(st)

〉
, by (5.1)

=

〈
(c)(2r)

(c− a)(2r)
f(t), trArλ,q,tK(st)

〉
=

〈
f(t),

(c)(2r)

(c− a)(2r)
trArλ,q,t(st)

λe−qstΩ(a, c; st)

〉
=
〈
f(t), (st)λ+re−qstΩ(a, c+ 2r; st)

〉
= F ′q,λ+r,a,c+2r {f(t)} (s)(f)

Thus

F
′

q,λ,a,c [ Brλ,q,t
(c)(2r)

(c− a)(2r)
f ] = F

′

q,λ+r,a,c+2r(f) (7.2)

We can exploit the relation (7.2) to solve a differential equation, with certain

boundary conditions, of course of the type

Brλ,q,t [
(c)(2r)

(c− a)(2r)
f ] = g, (7.3)

where g is a known generalized function belonging to H
′

α,β(I) and is to be

determined. On applying distributional generalized modified Struve transform

to (7.3) and using (7.2), we get F ′q,λ+r,a,c+2r(f)=F ′q,λ,a,c(g) = G(s), say.

Hence f = (F ′q,λ+r,c+2r)
−1[G(s)] which gives a solution of (7.3); where

(F ′q,λ+r,c+2r)
−1[G(s)] =

1

2πi
[
lim
T→∞

∫ σ+iT

σ−iT
ψ(s)M(s)y−sds ] ,

in which ψ(s) is as given by (2.3) and (2.4) and M(s) =
∫∞

0
p−sF ′q,λ,a,c(p)dp ;

s = σ + iT ; σ be a real with σf < σ <∞ and F ′q,λ,a,c(p) = 〈f(t),K(pt)〉.
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Here we have not given the form of Brλ,q,t. However, these can be calculated

by the method of integration by parts. For r = 1, Brλ,q,t is given by

Bλ,q,t(f) = [ (λ+ 1)[λ+ (3/2)]t−1 + [2λ+ (7/2)]D + tD2]f

or

tBλ,q,t(f) = [(λ+1)[λ+(3/2)]+[2λ+(7/2)]tD+t2D2]f = (t−λDt1/2Dtλ+3/2)f

which is the adjoint operator of tArλ,q,t and for r = 1 is given by

tAλ,q,t(f) = {λ[λ+ (1/2)]− [2λ− (1/2)]tD + t2D2}f = (tλ+3/2Dt1/2Dt−λ)f.

Particular Cases. In view of the general nature of the kernel involved in

(1.6), for λ = 0, we have been able to extend theory of the transform (1.1)

and other well-known classical transforms to a certain spaces of (generalized

functions) distributions.

Acknowledgement. The author is thankful to the referee for his useful sug-

gestions to improve the presentation of the paper.
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Abstract: This paper studies a problem in the theory of figurate num-

bers: identifying and investigating those numbers which are polygonal

in two ways - triangular and square. The author has discovered many

identities relating to these and other associated numbers.

The ancient Greeks, particularly the Pythagoreans, linked arithmetic with

geometry thus initiating the theory of figurate numbers. They introduced the

idea of polygonal numbers - numbers represented by evenly spaced dots ar-

ranged symmetrically in the form of triangles, squares, pentagons, etc. The

nth figurate or polygonal number of order g is the non-negative integer given

by fg(n) = n
2 [{(g − 2)(n − 1)} + 2], n = 0, 1, 2, ... Plutarch (1st cent. A.D.)

remarked that every triangular number taken 8 times and then increased by 1

gives a square i.e., 8 ∗ n(n+1)
2 + 1 = (2n+ 1)2. Diophantus (3rd century A.D.)

was interested in the problem of finding the number of ways in which any given

number can be a polygonal number. [3]

I shall identify and examine those numbers which are polygonal in two ways

- triangular
{
n(n+1)

2

}
and square (m2). Here n represents the number of dots

in the side of the equilateral triangle and, m the number of dots in the side of

the square. For example, 36 = 8.9
2 = 62 is such a number represented in two

ways below.

2000 Mathematics Subject Classification. 11B.

Key words and phrases: Polygonal numbers, Pell equation, Pell numbers, Pythagorean

triples, recurrence relations, generating functions, identities.
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*

* *

* * * * * * * * *

* * * * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * * * *

* * * * * * * * * * * * * *

1. Method of Discovery

Euler, in Example I at the end of his paper titled ‘An easy rule for Diophan-

tine problems which are to be resolved quickly by integral numbers’ [1], gives in

brief a method to find these infinitely many numbers. Lafer [4] chooses an

alternative approach. I shall follow Euler and describe his method in some

detail.

Let the nth triangular number Tn = n(n+1)
2 = m2 = Sm be the mth square.

Of the two consecutive numbers n and n+ 1, one is even and the other is odd.

They are necessarily co-prime and so if n is even, then gcd(n2 , n + 1) = 1, or

if n is odd then gcd(n, n+1
2 ) = 1. Whichever of the two numbers is even, it

contains only odd powers of 2.

If n is even, then setting n+ 1 = x2 i.e. n = x2− 1, n2 = y2 i.e. n = 2y2 and

equating n in terms of x and y give:

x2 − 2y2 = 1 (1.1)

Alternately, if n is odd then putting n = x2, (n+ 1)/2 = y2 i.e. n = 2y2− 1

and equating n in terms of x and y lead to:

x2 − 2y2 = −1 (1.2)

In both cases, Tn = (xy)2 = m2 = Sm = Nk. Solutions of Pell equations

(1.1) & (1.2) would give all Nk.

Now, x2 − 2y2 = (x − y
√

2)(x + y
√

2). The underlying idea behind the

method of solution here is that every solution gives a factorization of 1 involving

conjugate surds with
√

2. If the least non-zero positive solution (x1, y1), called

the fundamental solution, is found then that will generate all solutions. (3, 2)

is the fundamental solution of (1.1) and (1, 1) that of (1.2). We see that:

1 = 1k = (−1)2k = ((3− 2
√

2)(3 + 2
√

2))k = ((1−
√

2)(1 +
√

2))2k;

−1 = (−1)(2k−1) = ((1−
√

2)(1 +
√

2))(2k−1)
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Hence, the general solution of (1.1) and that of (1.2) respectively is:

xk + yk
√

2 = (3 + 2
√

2)k = (1 +
√

2)2k (1.3)

xk + yk
√

2 = (1 +
√

2)(2k−1) (1.4)

Combining the even and odd power solutions in (1.3) and (1.4), we get the

single formula for all solutions of (1.1) & (1.2):

xk + yk
√

2 = (1 +
√

2)k (1.5)

We also have the following explicit formulae:

xk =
(1 +

√
2)k + (1−

√
2)k

2
; (1.6)

yk =
(1 +

√
2)k − (1−

√
2)k

2
√

2
. (1.7)

The recurrence relations beginning with x0 = 1, y0 = 0 define them:

xk+1 = 2xk + xk−1 (1.8)

yk+1 = 2yk + yk−1 k ≥ 1 (1.9)

Recurrence relations can be very easily translated into generating functions

and we have:

f(x) =
1 + x

(1− 2x− x2)
= 1 + 3x+ 7x2 + · · · (1.10)

f(y) =
1

(1− 2y − y2)
= 1 + 2y + 5y2 + · · · (1.11)

These Lucas-type formulae involving binomial coefficients are adapted

from Weisstein [6]:

xk =

[ k
2 ]∑

r=0

2r
(
k

2r

)
(1.12)

yk =

[ k+1
2 ]∑

r=1

2r−1
(

k

2r − 1

)
(1.13)

Having computed the values of x and y, we can get the required values of n

and m. For the even values of subscript k of n, we use n = x2 − 1 = 2y2, and

for the odd, we take n = x2 =
√

2y2 − 1. For m, we simply need to multiply

the corresponding values of x and y.
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I found these relations between xk, nk; yk,mk :

(nk+2r−1 − nk)

x2r−1
=

(mk+2r−1 +mk)

y2r−1
= x2k+2r−1;

(nk+2r − nk)

2y2r
=

(mk+2r +mk)

x2r
= y2k+2r

(mk+2r−1 −mk)

x2r−1
= y2k+2r−1;

(mk+2r −mk)

y2r
= x2k+2r

The following explicit formulae for nk and mk are due to Euler:

nk =
(3 + 2

√
2)k + (3− 2

√
2)k − 2

4
; (1.14)

mk =
(3 + 2

√
2)k − (3− 2

√
2)k

4
√

2
. (1.15)

The following recurrence relations, with initial values 0 and 1, are also given

by Euler:

nk+1 = 6nk − nk−1 + 2 (1.16)

mk+1 = 6mk −mk−1, k ≥ 1 (1.17)

These generating functions define them:

f(u) =
(1 + u)

(1− u)(1− 6u+ u2)
= 1 + 8u+ 49u2 + · · · (1.18)

f(v) =
1

(1− 6v + v2)
= 1 + 6v + 35v2 + · · · (1.19)

I derived these Lucas-type formulae involving binomial coefficients from

(1.12) & (1.13):

nk =
k∑
r=1

2r−1
(

2k

2r

)
(1.20)

mk =
k∑
r=1

2r−2
(

2k

2r − 1

)
(1.21)

I also found the following summation formulae:

2

k∑
r=1

nr =

{
k∑
r=1

2r−1
(

2k + 1

2r

)}
− k (1.22)

2
k∑
r=1

mr =

{
k∑
r=1

2r−1
(

2k + 1

2r + 1

)}
+ k (1.23)
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Now we come to the triangular squares. The following formula is straight

forward:

Nk = m2
k =

(
(3 + 2

√
2)k − (3− 2

√
2)k

4
√

2

)2

=
(17 + 12

√
2)k + (17− 12

√
2)k − 2

32

(1.24)

This recurrence relation with initial values 0 and 1 is already known:

Nk+1 = 34Nk −Nk−1 + 2 (1.25)

Plouffe [5] gives this generating function for the square triangular numbers:

f(z) =
(1 + z)

(1− z)(1− 34z + z2)
= 1 + 36z + 1225z2 + · · · (1.26)

A product formula for the kth triangular square is recorded by Weisstein [6]:

Nk = 22k−5
2k∏
n=1

(
3 + cos

nπ

k

)
(1.27)

Since cos(π − θ) = cos(π + θ), and cosπ = −1, cos2π = 1; we have

2k∏
n=k+1

(
3 + cos

nπ

k

)
= 2

k∏
n=1

(
3 + cos

nπ

k

)

Hence, Nk =
(

2k−2
∏k
n=1

(
3 + cosnπk

))2
i.e.,

mk = 2k−2
k∏

n=1

(
3 + cos

nπ

k

)
(1.28)

The above-noted formulae give these values of xk, yk, Tnk
, Smk

and the as-

sociated square triangular numbers Nk:

k xk yk Tnk
= Smk

= Nk

0 1 0 T0 S0 0

1 1 1 T1 S1 1

2 3 2 T8 S6 36

3 7 5 T49 S35 1225

4 17 12 T288 S204 41616

5 41 29 T1681 S1189 1413721

6 99 70 T9800 S6930 48024900

7 239 169 T57121 S40391 1631432881

8 577 408 T332928 S235416 55420693056

9 1393 985 T1940449 S1372105 1882672131025

10 3363 2378 T11309768 S7997214 63955431761796
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The values assumed by yk are known as Pell Numbers which are related to

square triangular numbers:

(yk(yk + yk−1))2 =
{(yk + yk−1)2 − (−1)k} ∗ (yk + yk−1)2

2
, k ≥ 1

There exist infinitely many primitive Pythagorean triples < a, b, c > of posi-

tive integers satisfying a2+b2 = c2. These are given by a = 2st, b = s2−t2, c =

s2 + t2; s, t ∈ Z+, s > t, (s, t) = 1, s 6≡ t ( mod 2). Hatch [2] studied ‘special

triples’ with |a − b| = 1 to uncover connection between them and triangular

squares. Then, s2 − t2 − 2st = ±1⇒ (s+ t)2 − 2s2 = ∓1 giving (1a) & (1b).

One can verify that if < g, g + 1, h > is a special primitive Pythagorean

triple, then so is < 3g+ 2h+ 1, 3g+ 2h+ 2, 4g+ 3h+ 2 >. Beginning with the

primitive triple < 0, 1, 1 >, we successively derive < 3, 4, 5 >,< 20, 21, 29 >,<

119, 120, 169 >, · · · This construction exhausts all such triples. They can also

be obtained from any of the following four relations:

(xkxk−1)2 + {xkxk−1 + (−1)k}2 =

(
x2k−1 + x2k−2

2

)2

; k ≥ 1 (1.29)

(2ykyk−1)2 + {2ykyk−1 − (−1)k}2 = (y2k−1)2; k ≥ 1 (1.30)(
nk − nk−1 − 1

2

)2

+

(
nk − nk−1 + 1

2

)2

=

(
nk + nk−1 + 1

2

)2

; k ≥ 1

(1.31)(
7mk−1 −mk−2 − 1

2

)2

+

(
7mk−1 −mk−2 + 1

2

)2

= (mk −mk−1)2; k ≥ 1, m−1 = −1 (1.32)

It can also be shown that there exist infinitely many primitive Pythagorean

triples having the property a = Tk, b = Tk+1 and c = T(k+1)2 . We saw earlier:

Tx2 is a perfect square for infinitely many values of n = x2. In fact, if <

g, g+ 1, h > forms a Pythagorean triple, then so does < T2g, T2g+1, (2g+ 1)h >

proving the infinity of triangular squares as on putting n = h − g − 1, m =

g − h−1
2 , we get n(n+1)

2 = m2.

2. New Identities: Part A

I studied the triangular squares and the associated numbers and discovered

this relation between neighbouring triangular numbers that are perfect squares:

nk+1 = 3nk + 2 ∗
√

2nk(nk + 1) + 1 (2.1)

nk−1 = 3nk − 2 ∗
√

2nk(nk + 1) + 1 (2.2)
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I deduced from (2.2) the following relation:

2{(nk − nk−1)2 + 1} = (nk + nk−1 + 1)2 (2.3)

I found the following relation between two consecutive squares that are tri-

angular numbers:

mk+1 = 3mk +
√

(8m2
k + 1) (2.4)

mk−1 = 3mk −
√

(8m2
k + 1) (2.5)

We can deduce from (2.5) the following relation:

2(mk −mk−1)2 = (mk +mk−1)2 + 1 (2.6)

I discerned these general recurrence relations regarding nk and mk :

nk+d = {(md+1 −md−1)nk} − (nk−d − 2nd); d ≥ 1. (2.7)

mk+d = {(md+1 −md−1)mk} −mk−d; d ≥ 1. (2.8)

Note: (md+1 −md−1) = 2x2d; 2nd = (x2d − 1).

Thus (1.16) and (1.17) become special cases of (2.7) and (2.8) respectively.

I found identities involving 2k+ 1 number of consecutive values of n and m:

2k∑
j=0

ni+j(−1)j = xk+1.yk(2ni+k + 1) + (−1)kni+k − r; (2.9)

r = 1 if 2k + 1 ≡ 3 (mod 4), r = 0 if 2k + 1 ≡ 1 (mod 4); i ≥ 1, k ≥ 1.

2k∑
j=0

ni+j = (mk +mk+1)ni+k + 2

k∑
j=1

nj , i ≥ 1, k ≥ 1. (2.10)

2k∑
j=0

mi+j(−1)j = 2xk+1.yk(mi+k) + (−1)kmi+k, i ≥ 1, k ≥ 1. (2.11)

2k∑
j=0

mi+j = (mk +mk+1)mi+k, i ≥ 1, k ≥ 1. (2.12)

Putting i =1 in (2.10 ) and (2.12), we get these sum formulae:

2k∑
j=0

n1+j = ( mk+ mk+1) nk+1 + 2
k∑
j=1

nj , k ≥ 1. (2.13)

2k∑
j=0

m1+j = ( mk+ mk+1) mk+1, k ≥ 1. (2.14)

I also discovered general formulae for 2k number of consecutive values of n

and m:
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2k−1∑
j=0

ni+j(−1)
j+1

= mk(ni+k − ni+k−1), i ≥ 1, k ≥ 1. (2.15)

2k−1∑
j=0

ni+j = mk( ni+k−1 + ni+k + 1)− k, i ≥ 1, k ≥ 1. (2.16)

2k−1∑
j=0

mi+j(−1)
j+1

= mk(mi+k − mi+k−1), i ≥ 1, k ≥ 1. (2.17)

2k−1∑
j=0

mi+j = mk(mi+k−1 +mi+k), i ≥ 1, k ≥ 1. (2.18)

Putting i = 1 in (2.16) and (2.18), we get these sum formulae:

2k−1∑
j=0

n1+j = mk(nk + nk+1 + 1)− k, k ≥ 1 (2.19)

2k−1∑
j=0

m1+j = mk (mk +mk+1), k ≥ 1. (2.20)

We could get (2.20) by combining the next two results:

k∑
j=1

m2j−1 = (mk)2, k ≥ 1. (2.21)

Proof. : We can prove it by induction. The identity is obviously true for n=1.

Suppose the identity is true for n=k. Then,
∑k
j=1 m2j−1 = ( mk)

2

Hence,

k+1∑
j=1

m2j−1 =
k∑
j=1

m2j−1 + m2k+1 = ( mk)
2

+ m2k+1

=

(
(3+2

√
2 )

k− (3−2
√

2 )
k

4
√

2

)2

+
(3+2

√
2 )

2k+1− (3−2
√

2 )
2k+1

4
√

2

=
(3+2

√
2 )

2k−2 + (3−2
√

2 )
2k

32
+

(3+2
√

2 )
2k+1− (3−2

√
2 )

2k+1

4
√

2

=
(3+2

√
2 )

2k
+4
√

2(3 + 2
√

2 )
2k+1

32

+
(3−2

√
2 )

2k− 4
√

2(3−2
√

2 )
2k+1

32
− 2

32
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=
(3+2

√
2 )

2k
[1+4

√
2(3 + 2

√
2)]

32

+
(3−2

√
2 )

2k
[1−4

√
2(3−2

√
2]

32
− 2

32

=
(17+12

√
2 )

k
[17+12

√
2]

32
+

(17−12
√

2 )
k
[17−12

√
2]

32
− 2

32

=
(17 + 12

√
2 )

k+1
+(17−12

√
2 )

k+1−2

32
= Nk+1 = ( mk+1)

2

Thus if it is true for n = k then it is true for n = k + 1 also. Hence true for

all n. �

k∑
j=1

m2j = mkmk+1, k ≥ 1 (2.22)

Proof. We prove it by induction again. The result is true for n = 1.

Suppose it is true for n = k. Then,
∑k
j=1 m2j = mkmk+1

Hence,

k+1∑
j=1

m2j =

k∑
j=1

m2j + m2k+2 =mkmk+1 + m2k+2

=
(3+2

√
2 )

k− (3−2
√

2 )
k

4
√

2
∗ (3+2

√
2 )

k+1− (3−2
√

2 )
k+1

4
√

2

+
(3+2

√
2 )

2k+2− (3−2
√

2 )
2k+2

4
√

2

=
(3+2

√
2 )

2k+1−
(
3−2
√

2
)
−(3 + 2

√
2) + (3−2

√
2 )

2k+1

32

+
(3+2

√
2 )

2k+2− (3−2
√

2 )
2k+2

4
√

2

=
(3+2

√
2 )

2k+1 −6 + (3−2
√

2 )
2k+1

32
+

(3+2
√

2 )
2k+2− (3−2

√
2 )

2k+2

4
√

2

=
(3+2

√
2 )

2k+1
+ 4
√

2(3+2
√

2 )
2k+2 −6

32

+
(3−2

√
2 )

2k+1−4
√

2 (3−2
√

2 )
2k+2

32

=
(3+2

√
2 )

2k+1
[1+ 4

√
2
(
3 + 2

√
2
)

]−6

32

+
(3−2

√
2 )

2k+1
[1−4

√
2
(
3− 2

√
2
)

]

32
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=
(3+2

√
2 )

2k+1
[17+ 12

√
2 ]−6 + (3−2

√
2 )

2k+1
[17−12

√
2]

32

=
(3+2

√
2 )

2k+3−6 + (3−2
√

2 )
2k+3

32

=
(3+2

√
2 )

k+1− (3−2
√

2 )
k+1

4
√

2
∗ (3+2

√
2 )

k+2− (3−2
√

2 )
k+2

4
√

2

= mk+1mk+2

Thus if it is true for n = k then it is true for n = k + 1 also. Hence true for

all n. �

I found these interesting sum formulae:

6

[ k−1
2 ]∑
j=0

m2k−4j−1 = mkmk+1, k ≥ 1; [ ] is the greatest integer function.

(2.23)

6
k∑
r=1

m2r = 36

[ k+1
2 ]∑

r=1

m2k−4r+3=mk
2 +mk+1

2 − 1 (2.24)

I found identities expressing n and m in terms of all preceding values:

ni = 5ni−1 + 4
i−2∑
j=1

nj + (2i− 1), i ≥ 1 (2.25)

mi = 5 mi−1 + 4
i−2∑
j=1

mj + 1, i ≥ 1 (2.26)

These identities are more interesting:

m2r−1 = (mr )
2 − (mr−1 )

2
(2.27)

Proof. We can establish it by simply manipulating the defining formula.

R.H.S. =

(
(3+2

√
2 )

r− (3−2
√

2 )
r

4
√

2

)2

−

(
(3+2

√
2 )

r−1− (3−2
√

2 )
r−1

4
√

2

)2

=
(3+2

√
2 )

2r−2 + (3−2
√

2 )
2r

32
− (3+2

√
2 )

2r−2−2 + (3−2
√

2 )
2r−2

32
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=
(3+2

√
2 )

2r−(3+2
√

2 )
2r−2

+ (3−2
√

2 )
2r−(3−2

√
2 )

2r−2

32

=
(3+2

√
2 )

2r−2
[(3+2

√
2 )

2−1] + (3−2
√

2 )
2r−2

[(3−2
√

2 )
2−1]

32

=
(3+2

√
2 )

2r−2
(16 + 12

√
2 ) + (3−2

√
2 )

2r−2
(16−12

√
2 )

32

=
(3+2

√
2 )

2r−2
(4 + 3

√
2 ) + (3−2

√
2 )

2r−2
(4−3

√
2 )

8

=
(3+2

√
2 )

2r−2
(2
√

2+3 ) + (3−2
√

2 )
2r−2

(2
√

2−3)

4
√

2

=
(3+2

√
2 )

2r−1− (3−2
√

2 )
2r−1

4
√

2
= m2r−1

= L.H.S.

�

m2r = mr(mr+1 −mr−1) (2.28)

Proof. We establish it with the help of the method employed above.

R.H.S. =
(3+2

√
2 )

r− (3−2
√

2 )
r

4
√

2

(
(3+2

√
2 )

r+1− (3−2
√

2 )
r+1

4
√

2

− (3+2
√

2)
r−1 − (3−2

√
2)

r−1

4
√

2

)

=
(3+2

√
2)

r−(3−2
√

2)
r

4
√

2

(
(3+2

√
2)

r−1
[(3+2

√
2)

2−1]

4
√

2

− (3−2
√

2)
r−1

[(3−2
√

2)
2−1]

4
√

2

)

=
(3+2

√
2)

r−(3−2
√

2)
r

4
√

2

(
(3+2

√
2)

r−1
(4 + 3

√
2)√

2
− (3−2

√
2)

r−1
(4−3

√
2)√

2

)

=
(3+2

√
2)

r−(3−2
√

2)
r

4
√

2
[(3+2

√
2)

r−1
(2
√

2+3)− (3−2
√

2)
r−1 (

2
√

2−3
)

]

=
(3+2

√
2)

2r−(3−2
√

2)
2r

4
√

2
= m2r

= L.H.S.

�



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

194 AMRIK SINGH NIMBRAN

n2r−1 = (nr − nr−1)
2

(2.29)

Proof.

R.H.S. =

(
(3+2

√
2)

r
+ (3−2

√
2)

r−2

4
− (3+2

√
2)

r−1
+ (3−2

√
2)

r−1−2

4

)2

=

(
(3+2

√
2)

r−(3 + 2
√

2)
r−1

4
+

(3−2
√

2)
r−(3−2

√
2)

r−1

4

)2

=

(
(3 + 2

√
2)

r−1
( 3 + 2

√
2−1)

4
+

(3−2
√

2)
r−1

(3− 2
√

2−1)

4

)2

=

(
(3 + 2

√
2)

r−1
( 1 +

√
2)

2
+

(3−2
√

2)
r−1

(1−
√

2)

2

)2

=
(3 + 2

√
2)

2r−2
(1 +

√
2)

2

4
+

(3−2
√

2)
2r−2

(1−
√

2)
2

4

+ 2 ∗ (3 + 2
√

2)
r−1

( 1 +
√

2)

2
∗ (3−2

√
2)

r−1
(1−

√
2)

2

=
(3 + 2

√
2)

2r−1
+ (3−2

√
2)

2r−1−2

4
= n2r−1

= L.H.S.

�

2(n2r−1+1) = (nr + nr−1 + 1)
2

(2.30)

n2r = (2nr + 1)
2 − 1, r ≥ 1 (2.31)

Proof.

R.H.S. = (2nr + 1)
2 − 1

=

(
2

(3+2
√

2 )
r
+ (3−2

√
2 )

r−2

4
+1

)2

− 1

=

(
(3+2

√
2 )

r
+ (3−2

√
2 )

r−2 + 2

2

)2

− 1

=
(3+2

√
2 )

2r
+ (3−2

√
2 )

2r−2

4
= n2r = L.H.S.

�
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n3r = nr (4nr+3)
2
, r ≥ 1. (2.32)

m3r = mr(2
5mr

2 + 3), r ≥ 1. (2.33)

Proof.

R.H.S. =
(3+2

√
2)

r−(3−2
√

2)
r

4
√

2

32

(
(3+2

√
2)

r−(3−2
√

2)
r

4
√

2

)2

+3


=

1

4
√

2
{(3+2

√
2)

r
−(3−2

√
2)

r
}{(3+2

√
2)

2r
+(3−2

√
2)

2r
+ 1}

=
1

4
√

2
{(3+2

√
2)

3r
−(3−2

√
2)

3r
} = m3r

= L.H.S.

�

I discovered this general identity for m(2n+1)r:

m(2n+1)r=25n mr
2n+1+25(n−1)(2n+1) mr

2n−1

+[(2n+ 1){
n−1∑
k=1

25(n−k−1)
Pk

(k+1)!
mr

2(n−k)−1}],

where the product Pk=
k∏
j=1

2 (n−k) +j−1 (2.34)

I detected some interesting relations between n and m:

ni + ni−2j+1 = 2(mj −mj−1
)(mi−j+1 −mi−j)− 1, j ≥ 1, i ≥ 2j

(2.35)

mi +mi−2j+1 = (mj −mj−1
)(ni−j+1 − ni−j), j ≥ 0, i ≥ 2j (2.36)

ni+j + ni−j = (2nj +1)(3mi −mi−1 )− 1 (2.37)

ni+j − ni−j = 8 mjmi; i > j > 0 (2.38)

mi+2j−1 −mi−2j+1 = 2m2j−1(2ni + 1), j ≥ 0, i ≥ 2j (2.39)

ni = mi + 2
i−1∑
j=1

mj , i ≥ 1 (2.40)
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3. New Identities: Part B

We discussed the numbers n and m till now. I now take up the triangular

squares.

Neighbouring triangular squares can be expressed in terms of each other:

Nk+1 = 6 ∗
√
Nk(8Nk + 1) + 17Nk + 1 (3.1)

Nk−1 = 17Nk − 6 ∗
√
Nk(8Nk + 1) + 1 (3.2)

As Nk is both a square and triangular number, the quantity under the square

root above is an integer. (3.1) and (3.2), which on addition result in (1.2), will

be proved indirectly.

I deduced this relation from (3.2):

{9{8(Nk −Nk−1)}2 + 1} = {8(Nk +Nk−1)+1}2 (3.3)

Proof. We establish it by using definition and the identity to come later with

proof.

R.H.S. =

(
8

(17+12
√

2)
k
+ (17−12

√
2)

k−2

32

+8
(17+12

√
2)

k−1
+ (17−12

√
2)

k−1−2

32
+1

)2

=

(
(17 + 12

√
2)

k−1
( 17 + 12

√
2+1)

4
+

(17−12
√

2)
k−1

(17− 12
√

2+1)

4

)2

= 9

(
(17 + 12

√
2)

k−1
( 3 + 2

√
2)

2
+

(17−12
√

2)
k−1

(3− 2
√

2)

2

)2

= 9

(
(3 + 2

√
2)

2k−1

2
+

(3−2
√

2)
2k−1

2

)2

= 9

{
(3+2

√
2)

2(2k−1)
+2 + (3−2

√
2)

2(2k−1)

4

}

= 9

{
8

(3+2
√

2)
2(2k−1)−2 + (3−2

√
2)

2(2k−1)

32
+1

}

= 9

{
8

(17 + 12
√

2)
2k−1

+(17−12
√

2)
2k−1−2

32
+1

}
= 9

{
8N2k−1 + 1} = 9{8(Nk −Nk−1)

2
+ 1
}

= L.H.S.

�
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This relation can be verified easily using (2.23) & (2.24):

Nk +Nk−1 = 6 ∗
√
NkNk−1 + 1 (3.4)

I discovered this general recurrence relation:

Nk+d= {(m2d+1−m2d−1)Nk}−Nk−d + 2Nd, d ≥ 1. (3.5)

Note: (m2d+1−m2d−1)= 2x4d; 2Nd = 2(md)
2

Thus (1.25) becomes a special case of (3.5).

The following relation holds between four consecutive triangular squares:

Nk+1 −Nk−2 = 35(Nk −Nk−1) (3.6)

We now have identities involving many more consecutive triangular squares:

4k−2∑
j=0

Ni+j(−1)
j

= Mk(16Ni+k+1) +Ni+k; i, k ≥ 1. (3.7)

Mk = 2
∑k
i=1m4i−3; alternatively, Mk = 2

(
N2k−1−

∑k−1
i=1 m4i−1

)
.

4k∑
j=0

Ni+j(−1)
j

= M ′k(16N i+k+1+1) +Ni+k; i, k ≥ 1. (3.8)

M ′k = 2
∑k
i=1m4i−1; alternatively, M ′k = 2(N2k −

∑k
i=1m4i−3).

2k−1∑
j=0

Ni+j(−1)
j+1

= M2k(Ni+k −Ni+k−1), i ≥ 1, k ≥ 2. (3.9)

M2k = Nk−2
∑[ k−2

2 ]
j=0 m2k−4j−3; [ ] denotes the greatest integer function; k ≥ 2.

Alternatively, M2k =
∣∣∣∑k

j=1m2j−1(−1)
j
∣∣∣ ; k ≥ 2.

We have these recursive formulae with M0 = 0 and M2 = 1 for deriving M2k:

M2k+2 = M2k−2 + 32Nk + 2; k ≥ 1.

M4k−2−1= M2k−2∗(m2k+1−m2k−1); k ≥ 2; M4k = M2k ∗ (m2k+1−m2k−1);

k ≥ 2

Putting i = 1 in (3.9) gives the difference of the first 2k triangular squares:

2k−1∑
j=0

N1+j(−1)
j+1

= M2k(N1+k −Nk), i ≥ 1, k ≥ 2. (3.10)

We have these general sum formulae:

2k∑
j=0

N i+j = m2k+1 N i+k + 2
k∑
j=1

Nj , i ≥ 1, k ≥ 1. (3.11)
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2k−1∑
j=0

N i+j = M2k(Ni+k−1 +Ni+k) + 4Nk−1, i ≥ 1, k ≥ 2. (3.12)

Putting i = 1 in the preceding identities gives the sum of first 2k + 1/2k

triangular squares:

2k∑
j=0

N1+j = m2k+1N1+k + 2
k∑
j=1

Nj , k ≥ 1. (3.13)

2k−1∑
j=0

N1+j = {Nk − 2

[ k−2
2 ]∑
j=0

m2k−4j−3}( Nk +Nk+1) + 4Nk−1, k ≥ 2 (3.14)

2k−1∑
j=0

N1+j =

∣∣∣∣∣∣
k∑
j=1

m2j−1(−1)
j

∣∣∣∣∣∣ (Nk +Nk+1)+4Nk−1, k ≥ 2. (3.15)

I found this relation expressing N in terms of all preceding values:

Nk = 33Nk−1 + 32

k−2∑
j=1

Nj + (2k − 1), k ≥ 1 (3.16)

I like these three identities:

N2r−1 = (Nr −Nr−1)
2

(3.17)

Proof.

R.H.S. =

(
(17+12

√
2)
r
+(17−12

√
2)
r−2

32
− (17+12

√
2)
r−1

+(17−12
√

2)
r−1−2

32

)2

=

(
(17 + 12

√
2)
r−1

( 17 + 12
√

2−1)

32
+

(17−12
√

2)
r−1

(17− 12
√

2−1)

32

)2

=

(
(17 + 12

√
2)
r−1

( 4 + 3
√

2)

8
+

(17−12
√

2)
r−1

(4− 3
√

2)

8

)2

=
(17 + 12

√
2)

2r−1
+ (17−12

√
2)

2r−1−2

32
= n2r−1 = L.H.S.

�

N2r = 4Nr(8Nr + 1), r ≤ 1 (3.18)
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Proof.

RHS = 32Nr
2 + 4Nr

= 32

(
(17+12

√
2)
r
+(17−12

√
2)
r−2

32

)2

+ 4

(
(17+12

√
2)
r
+ (17−12

√
2)
r−2

32

)

=

(
(17+12

√
2)

2r
+ (17−12

√
2)

2r
+4 + 2(17+12

√
2)
r
(17−12

√
2)
r

32

−4(17−12
√

2)
r−4(17 + 12

√
2)
r

32

)
+

(
(17+12

√
2)
r
+ (17−12

√
2)
r−2

8

)

=

(
(17+12

√
2)

2r
+ (17−12

√
2)

2r−2

32

)
−

(
(17+12

√
2)
r
+ (17−12

√
2)
r−2

8

)

+

(
(17+12

√
2)
r
+ (17−12

√
2)
r−2

8

)
= N2r= L.H.S.

�

N3r = Nr (32Nr+3)
2
, r ≥ 1. (3.19)

These propositions discovered empirically are not difficult to prove:

(1) N p+1
2 j ≡ 0

(
mod p2

)
↔ p ≡ ±3, ±5 (mod 16), p - odd prime;

(2) N p−1
2 j ≡ 0

(
mod p2

)
↔ p ≡ −1,±7 (mod 16), p - odd prime;

(3) N p−1
4 j ≡ 0

(
mod p2

)
↔ p ≡ 1 (mod 16), p - odd prime.

Proof of (i): If p ≡ ±3, ±5 (mod 16), then p ≡ ±3 (mod 8), so
(

2
p

)
= −1,

where the notation used is the Legendre’s symbol, meaning that 2 is a quadratic

non-residue of p. So, a
n−1
2 ≡ −1 (mod p).

Set α = (3 + 2
√

2) and β = (3 − 2
√

2). Thus with the above notation, αp =

(3 + 2
√

2)
p ≡ 3p + 23p/2 ≡ 3 + 23/2.

(
2

p−1
2

)3
≡ 3 − 23/2 ≡ β (mod p). In the

same way, βp ≡ α (mod p).

Hence, with the formula (1.24) for Nk, we have N p+1
2 j = α

2( p+1
2

j)+β2( p+1
2

j)−2
32 ≡

αpj .αj+βpj .βj−2
32 (mod p) ≡ βj .αj+ αj .βj−2

32 ≡ 2(α.β)j−2
32 ≡ 0 (mod p). Thus

p|N p+1
2 j and Nk being a square, it is divisible by p2.

The other propositions can be similarly proved.

Note: p+1
2 , p−12 , p−14 may not necessarily the smallest subscript. p2 may divide

Nk with smaller subscript k than the noted subscripts but in that case k must
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divide the larger subscript. For example, in case of p = 197, 199 we have
p+1
2 = p−1

2 =99, but 1972 and 1992 both divide N9. Here 9 divides 99.

For j = 0, 1, 2, · · · , triangular squares satisfy these congruences:

N6j ≡ 0 (mod 10) ; N6j+3 ≡ 5 (mod 10);

N6j+1 ≡ N6j+5 ≡ 1 (mod 10); N6j+2 ≡ N6j+4 ≡ 6 (mod 10).

Since N2j+1 ≡ 1 (mod 22) ≡ 1 (mod 32),∴ N2j+1 ≡ 1 (mod 62).

Since N2j ≡ 0 (mod 22) ≡ 0 (mod 32), ∴ N2j ≡ 0 (mod 62).

Since N3j ≡ 0 (mod 52) ≡ 0 (mod 72), ∴ N3j ≡ 0
(
mod 352

)
.

Hence, N6j ≡ 0
(
mod 2102

)
. Further, N6j ≡ 0 (mod 112). ∴ N6j ≡ 0

(
mod 23102

)
.

The above congruences can be checked by invoking the known fact that {Nk}
is periodic modulo every modulus and computing its period say modulo 3; 7;

10; 210, etc.

Acknowledgement: The author sincerely acknowledges his gratitude to the

anonymous referee for providing proof of the proposition (i).
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Abstract: For two nonempty subsets A and B of a metric space (X, d),

we call (A,B) a distance pair or proximinal pair or proximality pair if

there exist a0 ∈ A, b0 ∈ B such that d(a0, b0) = d(A,B) ≡ inf{d(x, y) :

x ∈ A, y ∈ B}. The paper gives some sufficient conditions under which

the pair (A,B) is a distance pair. The underlying spaces are real linear

metric spaces.

Let A and B be two nonempty subsets of a metric space (X, d). If A∩B 6= φ

then d(A,B) ≡ inf{d(x, y) : x ∈ A, y ∈ B} = 0 but the converse need not be

true. More generally, if d(A,B) = r then there does not necessarily exist a pair

of points a ∈ A, b ∈ B such that d(a, b) = r. If such a pair (a, b) ∈ A×B exists

then the pair (A,B) is called a proximinal pair or distance pair or proximality

pair and the points a ∈ A, b ∈ B are called proximinal points. If there exists

at most one pair of proximinal points for A,B then the pair (A,B) is called a

semi-Chebyshev pair. If the pair (A,B) is proximinal as well as semi-Chebyshev

then it is called a Chebyshev pair. For the case, when one of the two sets is

reduced to a single point, the problem of finding proximinal points reduces to

the problem of best approximation. Accordingly, a subset A of X is called a

distance set or proximinal set if (A, {x}) is a distance pair for every element x

of X i.e. there exists a ∈ A such that d(x, a) = d(x,A) ≡ inf{d(x, y) : y ∈ A}.
A is called Chebyshev if such an a is also unique for each x ∈ X. It may

be noted that proximinal points are the points mutually nearest to each other
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Key words and phrases: Proximinal pair, Chebyshev set, nearest point map, approxima-

tively compact, boundly compact and spherically compact sets, strictly and uniformly convex

linear metric spaces.
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202 T. D. NARANG

from the respective sets but converse is in general not true (see [15]). Some

conditions under which the converse is also true have been discussed by Bradley

and Willner [3], Cheney and Goldstein [4] and Pai [15], [16]. The study of

proximinal points was introduced by M. Nicolescu [13](see Singer [22], p.385)

in 1938 and subsequently this study was taken up by E.W.Cheney and A.A.

Goldstein, J.J.Dionisio, V.Klee, G. Köthe, Bor-Luh-Lin, T.D.Narang, D.V.

Pai, Ivan Singer, J.W. Tukey and few others (see the survey article [11] by the

author).

Practical motivation for the consideration of the proximinal points is the

following convex minimization problem (see [14]).

Suppose K1,K2 are disjoint convex sets in a space E and φ : K1×K2 → R+

is a functional which is convex in each individual variable ki, i = 1, 2 (the other

variable being fixed). Then under what conditions, for fixed k∗i , i = 1, 2, the

minimization of φ in each individual variable ensures the minimization of φ in

both the variables k1 and k2. Pai[14] gave an answer to this question for the

case φ(k1, k2) = ‖k1 − k2‖.
The study of distance sets have been used in characterization of reflexivity

of normed linear spaces (A Banach space E is reflexive if and only if for any

bounded closed convex subset A and closed convex subset B of E , (A,B) is a

distance pair - see [7]), finite dimensionality of normed linear spaces (A normed

linear E is finte dimensional if and only if for any two linearly bounded closed

convex subsets A and B of E, (A,B) is a distance pair-see [7]), smoothness of

normed linear spaces (A normed linear space E is smooth if and only if for each

pair A,B of convex subsets of E, proximinal points are the points mutually

nearest to each other-see [15]) and for solution of linear inequalities (see [4]).

This study of distance sets is also related to fixed point theory which is an

indispensable tool for solving the equation Tx = x for a mapping T. If the

fixed point equation Tx = x does not possess a solution then we search for

an element x such that x is in proximity to Tx in some sense. Specifically ,

given non-empty subsets A and B of a metric space (X, d) , a non-self mapping

T : A → B does not necessarily have a fixed point. So , it is desirable to

determine an approximate solution x such that the error d(x, Tx) is minimum.

Since d(x, Tx) ≥ d(A,B), an absolute optimal approximate solution is an ele-

ment x for which the error d(x, Tx) assumes the least possible value d(A,B).

As a result, best proximity pair theorems provide sufficient conditions for the

existence of an optimal approximate solution x, known as a best proximity

point of the mapping T satisfying the condition d(x, Tx) = d(A,B). Interest-

ingly, a best proximity point becomes a fixed points if the mapping T is a self
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mapping. Many best proximity point theorems are available in the literature

(see e.g.[17]-[20],and the references cited therein)

Some sufficient conditions for a pair to be proximinal, semi-Chebyshev and

Chebyshev are available in the literature (see[3], [4], [6]-[14], [22] and [25]).

For characterization of proximinal points, one may refer to [3], [11], [15], [16].

Initiating the study of proximinal points,M. Nicolescu [13] proved the following:

Theorem 1. If A and B are two compact subsets of a metric space (X, d) then

(A,B) is a distance pair.

Proof. By the definition of d(A,B) there exist sequences < an > and < bn >

in A and B respectively such that d(an, bn) → d(A,B). Since A and B are

compact, there are subsequences < ani
>, < bni

> such that < ani
>→ a ∈ A

and < bni
>→ b ∈ B . Then d(a, b) = d(lim ani

, lim bni
) = lim d(ani

, bni
) =

d(A,B).Hence (A,B) is a distance pair. �

Ivan Singer gave a generalization of Theorem 1 (see [22]-Theorem 2.3, p.385)

by taking the sets A and B to be boundedly compact (a set is said to boundedly

compact if each bounded sequence in it has a convergent subsequence) closed

sets but it was shown in [8] that Singer’s generalization is not correct.

The following correct version of Singer’s theorem, which is a generalization

of Theorem 1 was given by the author in [8]:

Theorem 2. If A and B are nonempty subsets of a metric space (X, d), A is

compact and B is boundedly compact closed set then (A,B) is a distance pair.

It may be remarked (see [11]) that if A is compact and B is closed then

(A,B) need not be a distance pair.

Tukey [23] constructed two closed convex subsets A and B of a Hilbert

space such that (A,B) is not a distance pair. Klee [5] showed that in a Hilbert

space there exist two linearly bounded (A subset A of a vector space is linearly

bounded if A intersects each line in a bounded set) closed convex sets A and

B such that (A,B) is not a distance pair. In fact, in every infinite-dimensional

normed linear space E, there exist two linearly bounded closed convex subsets

A and B such that (A,B) is not a distance pair. Consequently, a normed linear

space is finite dimensional if and only if for any two linearly bounded closed

convex subsets A and B, (A,B) is a distance pair. It is easy to see (see [7]) that

in each normed linear space E there exist two locally compact closed convex

subsets A and B such that (A,B) is not a distance pair. However, the following

result concerning distance pairs is well known (see Köthe [6], p.345):
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Theorem 3. Let E ba a normed linear space. If A is weakly compact convex

subset of E and B is a weakly locally compact closed convex subset of E, then

(A,B) is a distance pair.

Proceeding on similar lines, we prove the following theorem on distance pairs

in linear metric spaces by using Schauder’s fixed point theorem:

Theorem 4. Let (E, d) be a strictly convex linear metric space and A a closed

convex locally compact subset of E, B a compact convex subset of E then (A,B)

is a distance pair.

Before proving the result, we recall a few definitions and known results.

A metric space (X, d) is called a linear metric space if (i) X is a linear

space, (ii) addition and scalar multiplication in X are continuous, and (iii) d is

translation invariant i.e. d(x+ z, y + z) = d(x, y) for all x, y, z ∈ X.

A linear metric space (X, d) is said to be locally convex if it has a base of

convex neighbourhoods.

A linear metric space (X, d) is said to be strictly convex [1] if d(x, 0) ≤
r, d(y, 0) ≤ r imply d(x+y

2 , 0) < r unless x = y. x, y ∈ X and r is any positive

real number.

A linear metric space (X, d) is said to be uniformly convex [1] if there

corresponds to each pair of positive numbers (ε, r) a positive number δ such

that if x, y lie in X with d(x, y) ≥ ε, d(x, 0) < r + δ, d(y, 0) < r + δ then

d(x+y
2 , 0) < r.

Clearly, every uniformly convex linear metric space is strictly convex but

converse is not true (see [1]).

Let M be a subset of a metric space (X, d) and x ∈ X. An element m0 ∈M
satisfying d(x,m0) = d(x,M) is called a best approximation to x in M.

The set PM (x) = {m0 ∈ M : d(x,m0) = d(x,M)} is called the set of best

approximinants to x in M. The set M is said to be proximinal if PM (x) 6= φ

for each x ∈ X and is called Chebyshev if PM (x) is exactly singleton for each

x ∈ X. The set-valued map PM is called the nearest point map.

A set M in a metric space (X, d) is said to be

(i) approximatively compact if for every x ∈ X and every sequence < yn >

in M satisfying lim d(x, yn) = d(x,M), there exists a subsequence < yni
>

converging to an element of M.

(ii) spherically compact if for each x ∈ X \M there is a number r > d(x,M)

such that the set {y ∈M : d(x, y) ≤ r} is compact.

(iii) boundedly compact if every bounded sequence in M has a convergent

subsequence.
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Lemma 5. ([21], [24]) In a strictly convex linear metric space each ball is

convex

Proof. Let (X, d) be a strictly convex linear metric space. Firstly, we show that

each closed ball B with centre at the origin i.e. B = {u ∈ X : d(u, 0) ≤ r},
r ≥ 0 in X is convex. Suppose B is not convex. Then there exist x, y ∈ B ,

x 6= y such that (x, y) ∩ BC 6= φ , where BC is complement of B in X. Let

A = {t ∈ (0, 1) : tx+ (1− t)y ∈ BC}. Then A is non-empty open subset of the

real line R. Let B be a component of A. Then there exist , α, β ∈ R such that

α < β and B = (α, β) .Write z1 = αx+ (1− α)y and z2 = βx+ (1− β)y.Then

it is to easy to see that z1 , z2 are distinct points of ∂B (the boundary of B)

and (z1, z2) ∩ B = φ, a contradiction to the strict convexity of X. Hence B is

convex. Thus closed balls with centre at the origin are convex and so the open

balls with centre at the origin are also convex. Since every ball is a translate

of a ball with centre at the origin, the result follows. �

Corollary 6. A strictly convex linear metric space is locally convex.

Lemma 7. [24] In a strictly convex linear metric space every locally compact

closed convex set is a Chebyshev set.

Using Lemma 2, we prove the following:

Lemma 8. If M is a closed convex locally compact subset of a strictly convex

linear metric space (E, d) then the nearest point mapping PM is continuous.

Proof. Suppose xo ∈ E is arbitrary and < xn > is a sequence in E such that

< xn >→ x0. To show < PM (xn) >→ PM (x0). Let ε > 0 be given. Then

there exists a positive integer m0 such that d(xn, x0) < ε for all n,m ≥ m0.

For n ≥ m0,

dn ≡ infy∈M d(xn, y) ≤ d(xn, x0) + infy∈M d(x0, y)

≤ ε+ d0.

Consider

d(x0, PM (xn)) ≤ d(x0, xn) + d(xn, PM (xn))

≤ ε+ dn

≤ d0 + 2ε

for all n ≥ m0. Therefore PM (xn) ∈ B[x0, d0 + 2ε]∩M ≡ C(ε) for all n ≥ m0.

The diameters of these sets C(ε) must tend to zero as ε → 0 for otherwise

there would be a nearest point to x0 in M different from PM (x0) contradicting

Lemma 2. So,PM (xn) ∈ C(ε) converges to PM (x0) = ∩ε>0C(ε) as ε→ 0. �

Proof of Theorem 4: Let PA : B → A and PB : A → B be nearest point

maps. Then by Lemma 3, PA and PB are continuous and so the composite
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map T = PBPA : B → B is continuous. Since B is a compact, convex subset

of the locally convex space E, T has a fixed point b in B by Schauder’s fixed

point theorem i.e. T (b) = b. Then

b = PBPA(b) = PB(a),Where a = PA(b).

Hence d(a, b) = d(PA(b), b) = d(A,B).

Since a boundedly compact closed convex set M in a strictly convex linear

metric space (E, d) is a Chebyshev set (see [2]) and the nearest point map PM

is continuous (see [2]), we have

Theorem 9. Let (E, d) be a strictly convex linear metric space and A a bound-

edly compact closed convex subset of E, B a compact convex subset of E then

(A,B) is a distance pair.

Since a spherically compact convex set M in a strictly convex linear metric

space (E, d) is a Chebyshev set (see [2]) and the nearest point map is continuous

(see [2]), we have

Theorem 10. Let (E, d) be a strictly convex linear metric space and A a

spherically compact convex subset of E, B a compact convex subset of E then

(A,B) is a distance pair.

Since an approximatively compact convex set M in a strictly convex linear

metric space (E, d) is a Chebyshev set (see [2]) and the nearest point map is

continuous (see [2]), we have

Theorem 11. Let (E, d) be a strictly convex linear metric space and A an

approximatively compact convex subset of E, B a compact convex subset of E

then (A,B) is a distance pair.

Since a closed convex subset of a complete uniformly convex linear metric

space is approximatively compact (see [1]) and a uniformly convex linear metric

space is strictly convex, we have

Theorem 12. Let (E, d) be a complete uniformly convex linear metric space

and A a closed convex subset of E, B a compact convex subset of E then (A,B)

is a distance pair.

Note: For Banach spaces, this result was proved by Pai [14].
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[6] Gottfried Köthe, Topological Vector Spaces I, Springer-Verlag, Berlin, (1969).

[7] Lin, Bor-Luh, Distance sets in normed vector spaces, Nieuw Arch. Wisk., 14(1966),

23-30.

[8] Narang, T.D., On distance sets, Indian J. Pure Appl. Math., 7(1976), 1137-1141.

[9] Narang, T.D., On distance and distant sets, Math. Education,17 (1983), 87-88.

[10] Narang, T.D., On proximal pairs, Indian J. Pure Appl. Math., 15(1984), 251-254.

[11] Narang, T.D., On proximal points, J. Scientific Research, 40(1990), 101-118.

[12] Narang, T.D., Some remarks on a paper of Xiubin Xu, Math. Education,25 (1991),

126-128.

[13] Nicolescu, M., Sur la meilleure approximation d’une fonction donnee par las fonctions

dune famille donnee, Bul. Fac. Sti., Cernauti, 12(1938), 120-128.

[14] Pai, D.V., Proximal points of convex sets in normed linear spaces, Yokohama Math. J.,

22(1974), 53-78.

[15] Pai, D.V., A characterization of smooth normed linear spaces, J. Approx. Theory,

17(1976), 315-320.

[16] Pai, D.V., Multioptimum of a convex functional, J. Approx. Theory, 19(1977), 83-99.

[17] Basha, S.Sadiq, Best proximity point theorems generalizing the contraction principal,

Nonlinear Analysis, 74(2011)5844-5850.

[18] Basha, S.Sadiq, Best proximity point theorems, J. Approx. Theory , 163(2011) 1772-

1781.

[19] Basha, S.Sadiq and Veeramani, P., Best proximity pair theorems for multifunctions with

open fibers, J.Approx.Theory 103(2000) 119-129.

[20] Basha, S.Sadiq and Veeramani, P., Best proximity pair theorms, Indian J. Pure Appl.

Math 32(2001) 1237-1240.

[21] Sastry, K.P.R. and Naidu, S.V.R., Convexiety conditions in metric linear spaces, Math.

Seminar Notes 7 (1979) 235-251.

[22] Singer, Ivan, Best Approximation in Normed Linear Spaces by Elements of Linear Sub-

spaces, Springer-Verleg, Berlin (1970).

[23] Tukey, J.W., Some notes on the seperation of convex sets, Portugaliae Math., 3(1942),

95-102.

[24] Vasil’ev, A.I., Chebyshev sets and strong convexity of metric linear spaces, Math. Notes.,

25(1979), 335-340.

[25] Xu, Xiubin, A result on the best proximity pair of two sets, J. Approx. Theory, 54(1988),

322-325.



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

208 T. D. NARANG

T. D. Narang

Department of Mathematics,

Guru Nanak Dev University, Amritsar -143 005, INDIA.

E-mail address: tdnarang1948@yahoo.co.in



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

The Mathematics Student ISSN: 0025-5742

Vol. 80, Nos. 1–4, (2011), pp.209–229

GRAPH THEORETIC MODELS FOR SOCIAL
NETWORKS - A BRIEF SURVEY

S. ARUMUGAM AND B. VASANTHI

(Received : 08-02-2011 ; Revised : 31-12-2011)

Abstract: Graph theory serves as an efficient model in social network

analysis and provides a vocabulary, which consists of several primitive

concepts. Several properties of a social network can be quantified and

measured in terms of graph theoretic parameters. In addition, graph the-

ory gives a representation of a social network as a model, which often helps

researchers to obtain certain patterns sitting in the network that might

otherwise go unnoticed. Another major reason for substantial growth in

Research in Social network Analysis in recent years is the availability of

efficient heuristic algorithms for analyzing large graphs. In this paper we

provide a brief survey of graph theoretic models for representing a social

network, graph theoretic parameters required for analyzing the network

along with specific applications and a case study. We also present the

formal mathematical definitions of the various graph theoretic parame-

ters and a few major results, which are relevant for the study of social

networks.

1. Introduction

Social Network Analysis is a multidisciplinary research area involving So-

cial, Mathematical, Statistical and Computer Sciences. Graph theory, which

is one of the pillars of discrete mathematics, constitutes the central point of

reference of social network analysis. It is universally applicable in modeling

social relationships. Data on social relationships are transformed into graphs

and evaluated by using various graph theoretic parameters. Thus graph theory

forms a basis for functional interdisciplinary approach and linguistic coherence

in the area of Social Network Analysis.
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A social network consists of a set of elements such as individuals, families,

households etc together with a social relationship that exists between the ele-

ments. The following are some examples of typical social networks arising from

relationships between the elements of the network.

• Friendship network

• Network of citations between academic papers

• Collaboration network among scientists

Recent years have witnessed a substantial growth in social network research,

varying from analysis of small groups to networks of very large size. The basic

approach is to create models of social networks, find properties that character-

ize the structure of the networks, ways to measure them and predict behavior

of networks on the basis of the measured structural properties. Modern com-

puter technologies are used to empower social science to do massive surveys on

all kinds of social networks. Researchers look for parameters which will even-

tually lead to a better understanding of how relations work, information flows

and organizations collaborate. Many types of relationships can be revealed by

Social Network Analysis, such as information/knowledge brokers in a network,

information bottlenecks in a network etc. Social network tools are used even

to understand how an epidemic is spreading over a network of people. They

are also used to improve performance, innovation, information flows, relation

buildings etc., in an organization.

In this paper we provide a brief survey of graph theoretic models for repre-

senting a social network, graph theoretic measures required for analyzing the

network along with specific applications and case study. The growth of social

network analysis during the past two decades is so rapid, that it is almost im-

possible to cover all the important concepts in such a small survey. We have

chosen a few concepts which we feel are fundamental in this field.

There is extensive literature on the use of graph models in social networks

and two of the pioneering basic books in this area of study are by Harary et

al. [19] and Wasserman and Faust [40]. Another recent book is by Scott [38].

The book by Easley and Kleinberg [13] gives an extensive coverage of topics in

social network analysis. The book by Cross and Parker [9] is about using the

latest social network theories to improve the networks of organizations. The

recent book by Lewis [29] gives an excellent account of the development of net-

work science along with applications of networks to various disciplines ranging

from computer science, business, public health, internet virus countermeasures,

social network behavior, biology and physics.
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2. Graphs and Directed Graphs

In this section we present some of the basic definitions in graph theory which

are essential for formulating basic network properties. For detailed study of

basics in graph theory we refer to the books Chartrand and Lesniak [7] and

West [41]. A relationship between the elements of a social network is said to be

symmetric if for any two elements x, y in the network, whenever x is related to

y, then y is related to x. In general, a social relationship between the elements

of a social network may or may not be symmetric. For example, collaboration

among scientists is a symmetric relation, whereas a relation such as A goes

to B for help or advice is not symmetric. A social network can be modeled

as a graph or a directed graph, depending on whether the relationship under

consideration is symmetric or not.

Definition 2.1. A graph G consists of a pair (V (G), E(G)) where V (G) is

a non-empty finite set whose elements are called points or vertices or nodes

or actors and E(G) is a set of unordered pairs of distinct elements of V (G).

The elements of E(G) are called lines or edges or links of the graph G. If

{u, v} ∈ E(G), then u and v are called adjacent vertices. We also say that the

edge {u, v} is incident with the vertices u and v. Two edges are called adjacent

edges if they are incident with a common vertex.

Definition 2.2. A directed graph D is a pair (V,A) where V is a finite

nonempty set and the elements of A are ordered pairs of distinct vertices of

V. The elements of A are called arcs. If (u, v) ∈ A, then u is called the initial

vertex and v is called the terminal vertex of the arc (u, v).

There are occasions, when the standard definition of a graph may not serve

as an appropriate model. For example to model a social network in which we

consider more than one relationship between the nodes, we have to allow more

than one edge joining the same pair of nodes. The resulting structure is called

a multigraph and edges joining the same pair of nodes are called multiple edges.

If we associate with each edge of a graph a real number w(e) then G is

called a weighted graph. The number w(e) is called the weight of the edge e.

Weighted graphs occur frequently in applications of graph theory. For example

in a friendship network, the weight of an edge may indicate the intensity of

friendship. In a communication network the weight of an edge may represent

the maintenance cost of the communication link.

It is customary to represent a graph or a directed graph by a diagram. In

the case of a graph each vertex is represented by a small dot and each edge

is represented by a line segment joining the two vertices with which the edge
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is incident. In the case of a directed graph an arc (u, v) is represented by a

directed line segment where the direction is indicated by means of an arrow

from u to v.

If V = {a, b, c, d} and E = {{a, b}, {a, c}, {a, d}}, then G = (V,E) is a graph

with four vertices and three edges. Also D = (V,A) where V = {1, 2, 3, 4}
and A = {(1, 2), (2, 3), (1, 3), (3, 1)} is a directed graph with four vertices and

four arcs. The diagrams of the graph G and the directed graph D are given

in Figures 1(a) and 1(b) respectively. The figure given in 1(c) represents a

multigraph. The vertices 1 and 3 are joined by three edges and the vertices

1 and 2 are joined by two edges. Figure 1(d) represents a weighted graph in

which each edge is assigned a weight.

Figure 1: A graph, a directed graph, a multigraph and a weighted graph

A graph in which any two distinct vertices are adjacent is called a complete

graph. The complete graph on n vertices is denoted by Kn. The graph on n

vertices whose edge set is empty is called the null graph or totally disconnected

graph and is denoted by Kn. A graph G is called a bipartite graph if V can

be partitioned into two disjoint subsets V1 and V2 such that every edge of G

joins a vertex of V1 to a vertex of V2 and (V1, V2) is called a bipartition of G.

If further G contains every edge joining the vertices of V1 to the vertices of V2,

then G is called a complete bipartite graph. If V1 contains m vertices and V2

contains n vertices then the complete bipartite graph G is denoted by Km,n.

Bipartite graphs occur in a natural way in the study of social networks.

For example an affiliation network is represented by a bipartite graph. An

affiliation network consists of two types of nodes, a set of actors and a set of

events and a node representing an actor is joined to a node representing an

event if the actor has participated in the event. Thus in an affiliation network

the set of actors and the set of events form a bipartition. Another example of

an affiliation network consists of members belonging to different professional

societies and a node representing an individual is joined to a node representing

a professional society if the individual is a member of the society. Research

on affiliation network has two major objectives, namely understanding of the

relational structures among actors through their joint involvement in events

and understanding of the relational structures of events attracting common
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participants. For a wide range of applications on affiliation networks we refer

to Chapter 9 of Wasserman and Faust [40].

Examples of a complete graph, a complete bipartite graph and a bipartite

graph representing an affiliation network are given in Figure 2.

Figure 2: Complete graph K5, Complete bipartite graph K4,2 and a bipartite

graph of an affiliation network

Eubank et al. [14] used bipartite graphs to represent a very large realistic

network. In this study the authors considered a social contact network repre-

sented as a bipartite graph with two types of nodes, namely, a set of people

and a set of locations and edge joins a person and a location if the person

visited the location on a particular day. Such networks are useful in the study

of controlling large scale epidemics in urban areas.

Graph theoretic models in social networks arise from data collected from

the members of a social group. We now give an example of a real life social

network arising from a set of data. Data has been collected from a set of 30

students of Kalasalingam University in a Post Graduate class who have already

spent one year together. Each student was asked to provide the list of students

of his class with whom he/she shares his/her personal problems. Clearly the

relation is not symmetric and hence the collected data gives a directed graph

on 30 nodes, which is given in Figure 3.

Figure 3: Sharing of personal problems - A directed graph representation

The analysis of this directed graph in the context of reciprocity in social

networks is given in Section 6.
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There are several fundamental theorems in graph theory which are useful

and relevant for social network analysis. We mention a few such results.

A collection S1, S2, . . . , Sk, k ≥ 1, of finite nonempty sets is said to have a

system of distinct representatives (SDR) if there exists a set {s1, s2, . . . , sk} of

distinct elements such that si ∈ Si.

Hall [17] proved the following theorem.

Theorem 2.3. [17] A collection S1, S2, . . . , Sk, k ≥ 1, of finite sets has a system

of distinct representatives if and only if the union of any j of these sets contains

at least j elements, for each j such that 1 ≤ j ≤ k.

The above theorem is directly related to the following well known Marriage

Problem: Given a set of boys and a set of girls where each girl knows some of

the boys, under what conditions can all girls get married, each to a boy she

knows? It follows from the above theorem that if there are k girls, then the

Marriage Problem has a solution if and only if every subset of j girls (1 ≤ j ≤ k)

collectively know at least j boys.

Another well known theorem, popularly known as the Friendship Theorem

[12] states that in any party in which every pair of people have exactly one

common friend, there is one person who is the friend of all the members in the

party. The resulting graph of the friendship relation consists of some number

of triangles sharing a common vertex.

3. Degrees and Degree Equitable Sets

The degree of a vertex vi in a graph G is the number of edges incident with

vi. The degree of vi is denoted by dG(vi) or deg vi or simply d(vi). A vertex

v of degree 0 is called an isolated vertex. A vertex v of degree 1 is called an

end vertex. For any graph G, we define δ(G) = min{deg v : v ∈ V (G)} and

∆(G) = max{deg v : v ∈ V (G)}. If all the vertices of G have the same degree

r, then δ(G) = ∆(G) = r and in this case G is called a regular graph of degree

r. A regular graph of degree 3 is called a cubic graph. In the case of directed

graphs we have indegree and outdegree for any vertex. The indegree d−(v) of a

vertex v in a digraph D is the number of arcs having v as its terminal vertex.

The outdegree d+(v) of v is the number of arcs having v as its initial vertex.

In the case of graphs the degree of any vertex v indicates the status of v

in the corresponding network. In the case of directed graphs the outdegree

of a vertex indicates the expansiveness or its capacity for sociability and the

indegree represents its popularity or potential for influence or leadership. Hence

in the context of a social network it is significant to collect the set of all vertices
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whose degrees are almost equal. Motivated by this observation Anitha et al.

[3] introduced the concept of degree equitable sets.

Let G = (V,E) be a graph. A subset S of V is called a degree equitable

set if the degrees of any two vertices in S differ by at most one. For example

consider the graph given in Figure 4. Let S1 = {a, d, g, f} and S2 = {b, c, e}.
Clearly every vertex in S1 has degree 1. Also every vertex in S2 has degree 3

or 4 and hence the degrees of any two vertices in S2 differ by at most 1. Thus

both S1 and S2 are degree equitable sets. Further any superset which contains

S1 is not a degree equitable set and in such a case we say that S1 is a maximal

degree equitable set. Similarly S2 is also maximal degree equitable sets. We

observe that S1 has 4 elements and S2 has 3 elements.

The maximum cardinality of a maximal degree equitable set in G is called

the degree equitable number of G and is denoted by De(G). The minimum

cardinality of a maximal degree equitable set in G is called the lower degree

equitable number of G and is denoted by de(G). For the graph G given in Figure

4, de(G) = 3 and De(G) = 4. Several properties of the parameters De(G) and

de(G) are given in Anitha et al. [3]. Anitha [4] in her doctoral thesis also

considered the problem of partitioning the vertex set into the minimum number

of subsets such that each subset is a degree equitable set in G. Such a partition

gives a natural grouping of the actors of a social network such that each subset

is a set of actors having almost equal status in the network.

Figure 4: A graph G with de(G) = 3 and De(G) = 4

Degree equitableness may also be thought of as a measure of cohesiveness.

For example, suppose S is a set of actors in a network containing two actors

u and v with deg u = 5 and deg v = 100. The actor v, because of his high

status in the network, can impose his views on the members of S while actor

u may not even be able to express his views. Thus in an organization if the

leader wants to form a committee for recommending appropriate decisions on

sensitive issues, it is desirable that the committee forms a degree equitable set

in the network.

In a similar way in a directed graph one can define outdegree equitable set

and indegree equitable set and define four parameters, namely, the maximum
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cardinality of an outdegree equitable set, the minimum cardinality of a maximal

outdegree equitable set, the maximum cardinality of an indegree equitable set

and the minimum cardinality of a maximal indegree equitable set. Graph

theoretical investigations of the properties of the above four parameters for

directed graphs, the problem of partitioning the vertex set of a directed graph

into a minimum number of subsets such that each subset is either outdegree

equitable or indegree equitable and applications of these concepts to networks

which are represented as directed graphs are potential areas for further research.

4. Giant Components

The concept of connectedness is basic in the study of social networks. A

path in a network G is a sequence of distinct vertices u1, u2, . . . , uk such that

any two consecutive vertices uiui+1 is an edge of G. We say that the path

connects the vertices u1 and uk. A graph G is said to be connected if every

pair of its nodes are connected. A graph which is not connected has several

connected components. A connected graph and a disconnected graph with five

components are given in Figures 5(a) and 5(b) respectively.

Figure 5: A connected graph and a disconnected graph with 5 components

Identification of connected components in a large network such as collabo-

ration network among scientists leads to interesting internal structure within

components. Again in a large network of datasets, often there exists a con-

nected component that contains a significant fraction of all the vertices. Such

a component is called a giant component. When a network contains a giant

component in most cases it contains only one.

The notion of giant component can be used for analyzing even small net-

works. An interesting example of the role of a giant component in a small

network is considered by Bearman and Moody [5]. This paper deals with

the study of the romantic relationships in an American high school over an

18-month period. The focus of study in this paper is the spread of sexually

transmitted diseases. Surprisingly the graph in this investigation had a single

large component. A student who may have had a single partner during the

period of investigation may be a part of this large component and thus he is

a part of many paths of potential transmission. The tools of social network
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analysis lead to the discovery of the presence of such a large component, which

is otherwise invisible.

We have efficient algorithms in graph theory for partitioning a graph into

connected components. For example, Hopcroft and Tarjan [23] have used the

standard depth-first algorithm (DFS) to find the connected components. Once

all the components are identified, the giant component, if it exists, can be

obtained.

Another concept which is closely related to connected graphs is the concept

of connectivity. A cut vertex of a graph is a vertex whose removal increases

the number of components. A cut edge of a graph is an edge whose removal

increases the number of components. For the graph given in Figure 6, the

vertices 1, 2 and 3 are cut vertices and the edges {1, 2} and {3, 4} are cut

edges. The vertex 5 is not a cut vertex.

Figure 6: Cut vertices and Cut edges

The vertex connectivity and the edge connectivity give a measure of the

extent to which a graph is connected. The vertex connectivity of a graph G is

the minimum number of vertices whose removal results in a disconnected graph

or trivial graph. The edge connectivity λ of G is the minimum number of edges

whose removal results in a disconnected graph.

A cut vertex v in a social network corresponds to an actor whose role in the

network is crucial in the sense that his presence in the network keeps the entire

network as a single unit and in his absence the network breaks into several

connected subgraphs. Moreover in the network any communication between

two actors in two different connected subgraphs of G− v always uses the actor

v as an intermediate vertex. Hence the presence of a cut vertex, especially in

communication networks is rather undesirable, since the failure of this specific

node leads to a collapse in communication between the remaining nodes of the

network. In such a case it is desirable to look into the largest component in

G−v, where communication is still possible. Such considerations lead to other

measures of vulnerability of networks such as toughness, integrity and tenacity.

5. Distance Related Concepts

The distance d(u, v) between two vertices u and v in a connected graph

G is the length of a shortest u-v path in G. The diameter of a connected
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graph G is the maximum distance between two vertices of G and is dented by

diam(G). The eccentricity e(u) of a vertex u in a graph G with vertex set V is

max{d(u, v) : v ∈ V }. Thus the eccentricity of a vertex u is the distance from

u to a vertex which is farthest from u in the graph G. The radius r(G) of G is

min{e(u) : u ∈ V } and any vertex v such that e(v) = r(G) is called a centre

of G. Thus from a central vertex we can reach every other vertex of the graph

G by a path of length at most r(G). A graph G along with the eccentricities

of its vertices is given in Figure 7. The two vertices with eccentricity 3 are the

central vertices of the graph.

Figure 7: Graph with two central vertices

There are several other measures of centrality such as median, centroid etc.,

and these centrality measures have important applications in facility location

problems. Facility location problem deals with the task of choosing a site in

a geographical network subject to some criterion. For example an emergency

facility such as a hospital or fire station must be located at a vertex that will

minimize the response time between the facility and the location of a possible

emergency, which can be any other vertex of the network. Hence such a facility

must be located at a vertex of minimum eccentricity namely, a central vertex.

However for a service facility such as a post office, a shopping mall or a bank,

the location must be such that the average distance that a person serviced by

the facility has to travel is minimized. This is equivalent to minimizing the

total distance from all the other vertices of the network to the service facility.

A vertex v having the property that the sum of the distances from v to all the

other vertices in the network is minimum is called a median vertex, and such a

vertex is the ideal place for locating a service facility.

The concept of distances in large networks has resulted in the discovery of

the Small-World Phenomenon. This is also known as six degrees of separation.

The first experimental study of this notion was performed by Stanley Milgram

and his colleagues and the findings were reported in Milgram [32] and Travers

and Milgram [39]. The aim of their experiment was to test the speculative

idea that people are connected in the global friendship network by a path of

relatively small length. For this purpose they started with a collection of 296

randomly chosen volunteers to try forwarding a letter to a target person. The
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volunteers were asked to forward the letter to someone they knew on a first-

name basis with the same instructions to the successors, in order to eventually

reach the target as quickly as possible. Each letter thus passed through the

hands of a sequence of friends in succession, terminating at the target vertex.

Thus we have a path in the global friendship network. Among the 64 paths

that succeeded in reaching the target, the median length was six. In the above

experiment, the conclusion was arrived at without full knowledge of the global

friendship network. This has been confirmed in settings where we have the full

data on the network structure, see for example, Grossman and Ion [16].

In Mathematics Paul Erdös who has published around 1500 papers in his

career was taken as a central figure in the collaboration network where the

vertices correspond to mathematicians and edges connecting pairs who have

jointly authored a paper. A mathematician’s Erdös number is the distance from

him/her to Erdös in this graph. For example, any mathematician having a joint

paper with Erdös has Erdös number 1. Interestingly most mathematicians have

Erdös number at most 4 or 5. We observe that in graph theoretic terminology,

in the collaboration network of mathematicians, the distance from the node

represented by Erdös to any other mathematician in the network is at most 5.

Even when the collaboration graph was extended by including co-authorship

with other sciences, the Erdös numbers of other scientists are only slightly

larger. Thus the Small-World Phenomenon which was discovered by Milgram

without the full knowledge of the global friendship network has been confirmed

even in a situation where we have full data on the complete network structure.

The network of mathematicians leading to the concept of Erdös number

given above is an example of an academic social network. The problem of se-

lecting most influential nodes in an academic social network based on certain

criterions relevant to academic environment such as number of citations, work-

ing location of authors, cross reference and coauthorship, is another interesting

problem. Several social networks arise in a natural way in this context. A node

in the network is either an author or an article. An edge between two authors

denotes that they have coauthored a research article. An edge between article

and author indicates that the researcher is an author of the article. An edge

between two articles indicates that one of the articles has been cited in the

other article. The problem of identifying most influential researchers in such a

network is an interesting problem, since they are most likely the trend setters

for new innovations. Structural properties of such networks have been inves-

tigated by Newman [34] and Jensen and Neville [24]. A study of the spread

of influence in such networks is reported in Kempe et al. [26] and Domingos
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and Richardson [11]. Liben-Nowell and and Kleinberg [30] attempt to predict

future interactions between actors using the network topology. Junapudi et

al. [25] have discussed methods for identifying most influential nodes using

different relevant criterions.

6. Reciprocity in Directed Graphs

In this section we discuss the concept of reciprocity in directed graphs. Rao

[35] investigated the concept of reciprocity in social networks and marital net-

works, which were constructed using the data collected from the households

of a village in West Bengal in India. Rao and Bandobadyay [37] have given

several measures of reciprocity. Rao [36] has given several methods for stan-

dardising the number of reciprocal pairs in a network, so that the resulting

reciprocity measure can be used for comparing the reciprocities of two different

social networks. Reciprocity refers to the presence of the arc (i, j) when (j, i)

is an arc. If (i, j) is an arc and (j, i) is not, we may call (i, j) a one way or

unreciprocated arc and such arcs usually present hierarchical or patron-client

relationships, whereas reciprocated arcs indicate some sort of balance. For ex-

ample, the social network of a village determined by help relation, where the

vertices are the households and an arc joins i and j if i goes to j for help at

times of crisis gives a directed graph. If the frequency of help is also taken into

account we get a weighted directed graph where the weight of the arc (i, j)

represents the number of times i goes to j for help during a fixed period of

investigation.

We now illustrate the concept of reciprocity with the directed graph given

in Figure 2, which represents the social network constructed using a set of data

collected from 30 students of a post-graduate class of Kalasalingam University

in India. When the data were collected from students, they had already spent

one year together and hence all of them knew each other very well. Each student

was asked to provide the list of students in the class with whom he/she shares

his/her personal problems and the same were cross checked for validation. Since

sharing of personal problems is not a symmetric relation, the above data gives

a directed graph D = (V,A) where the vertex set V is the set of 30 students

and (u, v) is an arc in A if u shares his personal problem with v. The resulting

directed graph is given in Figure 2. The number of arcs in the directed graph is

71 and the number of reciprocal pairs of arcs is 22. Since the maximum number

of arcs in a directed graph on 30 vertices is 30 × 29 = 870, the density of the

directed graph is 71/870 = 0.0815. Among the 30 vertices in the directed graph,

13 vertices represent male students and 17 vertices represent female students.
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The set of male students and the set of female students are respectively M =

{1, 3, 4, 5, 10, 11, 15, 17, 21, 24, 25, 28, 29} and F = V −M. Out of the total of 22

reciprocal pairs of arcs, 7 pairs were between males and 15 pairs were between

females. Interestingly there is no reciprocal pair of arcs between a male and

a female. In fact out of the total of 71 arcs in the directed graph, only 3 arcs

have one end as male and the other end as female, showing that sharing of

personal problems between a male and a female was quite rare. Taking into

account the fact that Kalasalingam University is located in a remote rural area

in the country and the cultural background is such that boys and girls do not

move freely, it is not surprising to note the presence of very few arcs joining

two nodes, one representing a male and the other representing a female. Also

the presence of a higher number of reciprocal pairs in the subnetwork of female

students shows that mutual personal sharing is more frequent among female

students. This is again not surprising and perhaps female students are more

comfortable in sharing their personal problems with their friends in the class

rather than with their parents and relatives at home. The vertex 29 has in-

degree 6 and the vertices 24 and 6 have each in-degree 5, indicating that more

students approach them for personal sharing. Thus the students representing

the nodes 29, 24 and 6 are showing concern to others and are popular within

the group. Interestingly these three nodes have outdegree just 1 or 2. The

vertices 15, 21 and 28 have indegree 0 and all of them have positive outdegrees,

indicating that they go to others for sharing their problems and none comes

to them. Further there is no vertex in the network having both indegree and

outdegree 0, and there is no isolated vertex in the network.

7. Structural Balance in Signed Graphs

In a social network links which indicate relationships such as collaboration,

sharing of information and friendship are positive ties. However in most net-

work settings, there are also negative links that work. Some relations are

friendly while some others are hostile. Interactions between people sometimes

lead to controversy or even outright conflict. In this section we deal with an

important study of structural balance in a network having both positive and

negative links. The concept of structural balance indicates a nice connection

between local and global network properties. This concept captures the way in

which local effects, which involve only a few members, can have global conse-

quences in the whole network.

The principles underlying structural balance have its roots in the theory of

social psychology, initiated by Heider [22]. The concept was generalized and
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extended to signed graphs by Harary [19], Cartwright and Harary [6] and Davis

[10]. If we look at any two vertices in a signed graph the edge between them

maybe positive or negative depending on whether the corresponding members

are friends or enemies. However, when we look at a set of three vertices we

have four possible configurations as given in Figure 8.

Figure 8

Figure 8(a) represents a natural situation in which all the three people are mu-

tual friends. The situation given in Figure 8(c) is also natural in the sense that

it represents two friends having a common enemy. The other two possibilities

introduce some psychological stress or strain in the system. A triangle with

two positive links and one negative link as given in Figure 8(b) corresponds

to a person u who has friends v and w but v and w are enemies. In this sit-

uation u experiences a psychological strain. Similarly in a situation given in

Figure 8(d) all three members are mutual enemies. Based on the above reason

Harary called Figures 8(a), 8(c) as balanced and 8(b), 8(d) as unbalanced. In

the unbalanced situation there is always a course motivating towards change

in one of the ties, leading to balance. Harary [18] generalized the notation of

structural balance for signed graph by proposing the following definition.

A signed graph G is said to be balanced if every cycle in G has an even

number of negative ties. Harary obtained the following nice characterization

for balance in signed graphs.

Theorem 7.1. A signed graph G is balanced if and only if the vertex set V

can be partitioned into two subsets V1 and V2 (one of them may be empty) such

that all ties within V1 and all ties within V2 are positive and all ties between V1

and V2 are negative.

Thus the above notion of balance predicts only dichotomy as its basic social

structure. For example, one interpretation of the above theorem is that a

political system in a country can provide stable governance if there is a two

party system in the country. Davis [10] observed that human groups often

break up into more than two mutually hostile subgroups. He proposed another

concept of balance for signed graphs which we call weakly balanced signed

graph. A signed graph is weakly balanced if there is no cycle with exactly one

negative edge. Thus weak balance imposes less restriction and hence we have
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a broader range of weakly balanced network structure as seen in the following

theorem.

Theorem 7.2. A signed graph is weakly balanced if and only if the vertex set

can be partitioned into two or more subsets such that every positive edge joins

two vertices of the same subset and every negative edge joins two vertices of

two different subsets.

8. Dominating Sets and Structural Equivalence

One of the fastest growing areas within graph theory is the study of dom-

ination and related subset problems such as covering, independence and ir-

redundance. An excellent treatment of fundamentals of domination is given

in the book by Haynes et al. [20] and a survey of several advanced topics is

given in the book edited by Haynes et al. [21]. The concept of domination

has important applications in the context of social network. For example, in a

network where the actors are people in an organization and if we wish to form

a committee consisting of a few members, then it is desirable that every mem-

ber not in the committee knows at least one member in the committee. This

ensures that members not in the committee can easily pass on information to

the members of the committee. Such a subset of members who are in the com-

mittee is a dominating set in the network. If a member in the committee does

not know any other member in the committee, then he is isolated within the

committee. Hence it is desirable that every member in the committee knows

at least one other member in the committee. This gives the concept of total

domination, which was introduced by Cockayne et al. [8]. We now present the

formal definitions of these concepts.

A set S ⊆ V is said to be a dominating set of G if every vertex in V − S

is adjacent to some vertex in S. A dominating set S of G is called a total

dominating set if no vertex in S is an isolated vertex within S. The minimum

number of vertices in a dominating set of G is called the domination number

of G and is denoted by γ(G) and the minimum number of vertices in a total

dominating set of G is called the total domination number of G and is denoted

by γt(G).

For example for the graph G given in Figure 9, the set S = {v1, v4, v7, v10}
is a dominating set since every vertex not in S is adjacent to a vertex in S.

In fact there is no dominating set for G having less than four vertices and

γ(G) = 4. However, S is not a total dominating set since every vertex in S is

not adjacent to another vertex in S. The set S1 = {v1, v2, v5, v6, v9, v10} is a

total dominating set of G and γt(G) = 6.
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Figure 9: Graph with γ(G) = 3 and γt(G) = 6

We now proceed to give an application of dominating set in the context of a

social network. Social scientists are often interested in structural equivalence

of actors. A set S of two or more actors having identical relations with oth-

ers in the network is called a structural equivalence set. In other words S is

structurally equivalent if N(u) = N(v) for any two vertices u and v in S. Here

N(u) stands for the set of all vertices which are adjacent to u and is called

the neighbor set of u. Structurally equivalent actors have a competitive rela-

tion. For example two farmers who market their produce to the same set of

retailers are structurally equivalent and are in stiff competition to sell their

products. Structurally equivalent actors are completely substitutable for one

another. Social Network theorists have developed algorithms for finding a max-

imal structurally equivalent set and a detailed study of structural equivalence

is presented in Chapter 9 of Wasserman and Faust [40]. Kelleher [27] in her

doctoral thesis presented research on dominating sets in social network graphs.

Kelleher and Cozzens [28] have shown that structurally equivalent sets can be

found using the properties of dominating sets.

We now present two other models of dominating sets which have a good

potential for application. Consider a graph G = (V,E) representing a social

network. Let S be a subset of V and let v ∈ S. Then the number of neighbors

of v in V −S gives a measure of the outside support that v has in the network.

Similarly if v ∈ V − S, then the number of neighbors of v in S gives a measure

of the influence that v has over the members in S. Consider for example the sit-

uation where V represents the set of elected representatives of a political party

and the leader of the party wants to identify a subset S of V for governance.

If an actor x in S has substantially more number of supporters outside S when

compared to other actors in S, then the actor x may exert pressure on the

leader. Also if an actor y who is not in S has large number of his neighboring

vertices in S when compared to other vertices in V − S, then he may be able

to thrust his point of view on the numbers of S. Hence the leader of the party
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may like to have either one or both of the following properties for the subset

S.

(i) Any two members in S have almost equal number of supporters in V −S.

(ii) Any two members in V − S have influence on almost equal number of

members in S.

Motivated by this situation Anitha et al. [2] introduced the following concept

of equitable domination. Let D be a dominating set of a graph G. Then D is

called an equitable dominating set of type 1 if for any two vertices v, w in D,

the number of neighbors of v and w outside D differ by at most one. Also D

is called an equitable dominating set of type 2 if for any two vertices x and y

in V −D, the number of neighbors of x and y in D differ by at most one. The

minimum cardinality of an equitable dominating set of G of type 1 (type 2) is

called the 1-equitable (it 2-equitable) domination number of G and is denoted by

γeq1(G)(γeq2(G)). If D is an equitable dominating set of type 1 and type 2, then

D is called an equitable dominating set and the equitable domination number of

G is defined to be the minimum cardinality of an equitable dominating set and

is denoted by γeq(G). For basic properties of the above domination parameters

we refer to Anitha et al. [2].

9. Cliques, Clubs and Clans

In a global social network there may be dense subgroups which might be

perhaps a group of friends or a group of people living in a specific locality.

Dense subgraphs often represent cohesive grouping of nodes that are the natural

focal points for studying the network structure, dynamics and evolution. An

efficient algorithm for extracting dense subgroups in large networks has been

proposed by Gibson et al. [15]. There are several terminologies that describe

such cohesive subgroups in a network. Researchers in social network introduced

several concepts to describe closely knit groups in a network. In standard graph

theory a familiar cluster concept is given by cliques of a graph. A clique is a

maximal complete subgraph of G. Another cluster type definition of subgraphs

was introduced by Luce [31]. An n-clique L of a graph G is a maximal subgraph

of G such that for any two points u, v in L, the distance between u and v in G is

at most n. Clearly an n-clique is a global concept based on the total structure

of the network. Within the subgraph L the distance between points can be

larger than n. Hence the concept of n-clique does not imply the tightness or

even connectedness of the set. Alba [1] introduced a more satisfactory subclass

of n-cliques, which was later termed as clans by Mokken [33].
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An n-clan M of a graph G is an n-clique of G such that for any pair of points

u, v of M, the distance between u and v, computed within the subgraph M,

is at most n. Consequently an n-clan is connected and has diameter at most

n. Instead of the restriction of n-cliques to n-clans Mokken [33] introduced the

concept of n-club. An n-club N of a graph G is a maximal subgraph of G

of diameter n. It follows immediately form the definition that every n-club is

contained in some n-clique and every n-clan is an n-club. These concepts can

be extended for directed graphs also. Thus the maximum order of a clique,

club or clan indicates the size of closely knit subgroups in the network.

10. Future Research Directions

In the previous sections we have introduced several specific subsets such as

dominating sets, degree equitable sets, cliques, clans, clubs and also several

graph theoretic measures which are quite relevant in social network analysis.

The problem of identifying such subsets and the computation of most of these

parameters are notoriously hard combinatorial problems. Since this is a multi-

disciplinary research area involving social science, graph theory, statistics and

computer science, there are several possible directions for further research. One

obvious direction is to analyze small and large social networks arising from real

data sets, using graph theoretic tools so as to bring out hidden patterns sitting

in the network and leading to specific conclusions towards improving the per-

formance of the network. Social network researchers can take advantage of a

large collection of freely available computer software for computing the various

graph theoretic measures and subsets of specific type. Since a social network

is simply a graph that represents something real, the abstract graph theoretic

tools can be efficiently used to explain the behavior of a real system and on

the other hand social network problems may also lead to the discovery of new

graph theoretic tools whose theory can be independently developed, and thus

the two areas of research complement each other. To give an example, the

concept of structural equivalence defined by the social scientists can be used

to define new graph theoretic measures and the abstract theory developed on

these concepts can be applied again to real networks. We hope to see more of

this type of complementary research involving social network and graph theory.

11. Conclusion

In this chapter we have given a brief survey, which by no means is exhaus-

tive, on graph theoretic models for social networks. Several specific subsets and

graph theoretic parameters which are relevant in the study of social networks
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along with a few research directions and a case study have been presented.

Readers can construct social networks based on small data collected from or-

ganizations or massive data from other sources, apply the graph theoretic tools

and arrive at conclusions, leading to a better understanding of the system and

ways for improving the performance of the system.
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76TH IMS CONFERENCE : A BRIEF REPORT

A. K. SHUKLA

The 76th Annual Conference of the Indian Mathematical Society was held at

Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat - 395 007,

Gujarat, during the period December 27 - 30, 2010 under the Presidentship of

Prof. R. Sridharan, CMI, Chennai. The Conference was attended by more

than 500 delegates from all over the country.

Padma-Bhusan Prof. M.S. Narasimhan, IISc, Bangalore inaugurated the con-

ference. The Inaugural function was held in the forenoon of December 27,

2010 in the specially prepared Samiyana in the campus of Sardar Vallabhbhai

National Institute of Technology, Surat. Prof. S. G. Dani, TIFR, Mumbai

was the guest of honour. The inaugural function was presided by Prof. R.

Sridharan, President of the Indian Mathematical Society. Prof. P. L. Patel,

Director (I/C), SVNIT, delivered the welcome address. Prof. V. M. Shah,

General Secretary of the Indian Mathematical Society, spoke about the Society

and expressed his sincere and profuse thanks, on behalf of the Society, to the

host for organizing the Conference. Prof. Satya Deo, The Academic Secretary

of the Society, reported about the academic programmes of the Conference.

Prof. V. M. Shah reported about A. Narasinga Rao Memorial Prize. The Prize

is awarded to K. R. Vasuki for his research paper adjudged to be the best re-

search paper published in the Journal of the Indian Mathematical Society /

The Mathematics Student in the year 2008.

Prof. V. M. Shah also reported about P. L. Bhatnagar Memorial Prize for 2010.

The Prize was awarded to the top scorer Gaurav D. Patil (Pune), the top scorer

of the Indian Team at the International Mathematical Olympiad, 2010.

c© Indian Mathematical Society, 2011.
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It was the unique emotional event of the inaugural session this time when Mr.

K. Subramanian Iyer, former Asst. Librarian of the IMS Library at the Ra-

manujan Institute for Advanced Study in Mathematics, University of Madras,

Chennai, was felicitated for his long and dedicated services from February 1951

to October 2009, till his attainment of the age of Eighty eight (88) years. A

Citation and an amount of Rs. 2000/- was presented to him in absentia as he

could not remain present on health ground.

The Inaugural function ended with a vote of thanks proposed by Dr. A. K.

Shukla, Head, Department of Applied Mathematics & Humanities, SVNIT,

Surat and the Local Organizing Secretary of the Conference.

The Academic Sessions of the conference began with the Presidential General

Address by Prof. R. Sridharan , the President of the Society on “An Encomium

of Hermann Weyl” in the Main Hall, which was presided over by Prof. V. M.

Shah, the senior most past president of the Society present in the Conference.

The rest of the academic programmes were held in the Main Hall, LT-1, LT-2,

ADM Drawing Hall, MED Lecture Hall, AMD Seminar Hall.

One Plenary Lecture, Four Award Lectures and Nine invited Lectures were de-

livered by eminent mathematicians during the conference. Besides these, there

were Seven symposia on various topics of mathematics and computer science.

A Paper Presentation Competition for various IMS and other prizes was held

(without parallel session) in which 33 papers were presented. In all about 167

papers were presented for general reading during the conference on various dis-

ciplines of mathematics and computer science.

The Annual Meeting of the Council of the Indian Mathematical Society was

held on December 26, 2010 at 6.00 p.m. at the Guest House, Sardar Val-

labhbhai National Institute of Technology (SVNIT), Surat 395 007, Gujarat

(which was adjourned) and the adjourned Meeting was held on December 29,

2010 at 4.30 p.m. at the Guest House, Sardar Vallabhbhai National Institute

of Technology (SVNIT), Surat 395 007, Gujarat. The Annual General Body

Meeting of the Indian Mathematical Society was held on December 30, 2010 at

12:15 p.m. in the Samiyana in the Campus of the Sardar Vallabhbhai National

Institute of Technology (SVNIT), Surat. Since the President Prof. R. Sridha-

ran had to leave before the meeting, the General Body meeting was presided

by the senior most past president Prof. V. M. Shah present in the meeting.
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After the General Body Meeting, the Valedictory function was held. During

the valedictory function held on December 30, 2010, the IMS and other prizes

were awarded to the winners of the Paper Presentation Competition. It was

also announced that the next annual conference of the Society will be held at

the SRTM University, Nanded, (Maharashtra).

A Cultural Evening was also arranged on December 28, 2010. The conference

was supported by the NBHM, SVNIT, DST, CSIR, DRDO, Laxmi Diamond

Pvt. Ltd, KRIBHCO, SVNIT Alumni Association, Shajanand Group of com-

panies, Kunj Enterprise, and Suraj Corporation.

The details of the academic programmes of the Conference follows.

Details of the Plenary Lecture:

1. Prof. M. S. Narasimhan (FRS, I I Sc, Banagalore) delivered a Plenary

Lecture on “ALGEBRAIC GEOMETRY AND ANALYSIS”. Chair-

person : Prof. N. K. Thakare.

Details of the Memorial Award Lectures:

1. The 24th P. L. Bhatnagar Memorial Award Lecture was delivered by

Shiva Shankar (CMI, Chennai) on “Fourier Series, Arithmetic and

Control Theory ”. Chairperson : R. Sridharan.

2. The 21st V. Ramaswamy Aiyer Memorial Award Lecture was delivered

by A. Ojha (DPMIIIT, Jabalpur) on “Certain applications of mathe-

matics in path planning”. Chairperson : N. K. Thakare.

3. The 21st Srinivasa Ramanujan Memorial Award Lecture was delivered

by Mahan Mj (School of Mathematical Sciences, Ramkrishna Mission

Vivekanand University, Belur Math, Howrah) on “Geometry and dy-

namics of Kleinian groups”. Chairperson : Satya Deo.

4. The 21st Hansraj Gupta Memorial Award Lecture was delivered by

Subhash J. Bhatt (Dept. of Mathematics, S. P. University, Vallabh

Vidyanagar, Gujarat). on “C*-algebras, uniform Banach algebras and

a functional analytic meta theorem”. Chairperson : S. B. Nimse.

Details of various prizes awarded by the Society :

1. A. Narasinga Rao Memorial Prize.

This Prize was awarded to K. R. Vasuki for his research paper entitled

“On certain Ramanujan - Weber type Modular functions” published in
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the J. Indian Math, Soc. 75 (2008), 173 - 192 and adjudged to be the

best research paper published in the Journal of the Indian Mathemat-

ical Society / The Mathematics Student in the year 2008.

2. P. L. Bhatnagar Memorial Prize.

For the year 2010, this prize was awarded to Gaurav D. Patil (Pune)

for being the top scorer for the Indian Team (25 points) at the 51st In-

ternational Mathematics Olympiad held at Astana (Kazakstan) during

July 02 - 14, 2010.

3. Various prizes for the Paper Presentation Competition:

A total of 33 papers were presented for Paper Presentation Competition

for Six IMS Prizes, AMU Prize and VMS Prize. There were 23 entries

for six IMS prizes, one entry for the AMU prize and 9 entries for the

VMS prize.

Professors N. K. Thakare (Chairperson), Geetha S. Rao, Huzoor Khan,

S. Bhoosnurmath and J. R. Patadia were the judges.

Following is the result for the award of various prizes:

IMS Prize - Group-1: 07 Presentations. Prize awarded to :

Smruti Mane, Pune University, Pune.

IMS Prize - Group-2 : 02 Presentations. Prize not awarded.

IMS Prize - Group-3 : No Entry. Prize not awarded.

IMS Prize - Group-4 : 04 Presentations. Prize awarded to :

Pratibha Manohar, Rajasthan University, Jaipur.

IMS Prize - Group-5 : 05 Presentations. Prize awarded to :

Dilip Kumar, Center for Mathematical Sciences, Pala, Kerala.

IMS Prize - Group-6 : 02 Presentations. Prize awarded to : Keya

A. Shah, Sarvajanik College of Engineering, Surat.

AMU Prize : No Presentations. Prize not awarded

V M Shah Prize : 06 Presentations : Prize awarded to :

Renukadevi Dyavanal, Karnataka University, Dharwad.

Details of Invited Lectures delivered :

One hour Invited talks :

• V. Suresh (University of Hyderabad) on “A Hasse Principle for qua-

dratic forms”.

• Madhavan Mukund (CMI, Chennai) on “Interplay between Automata

Theory and Mathematical Logic”.

• V. D. Sharma (IIT Bombay, Powai, Mumbai) on “Hyperbolic systems

of PDEs and the associated wave phenomena”.
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Half an hour Invited talks :

• C. S. Rajan (TIFR, Mumbai) on “Spectrum and Arithmetic”.

• Anupam Singh (IISER, Pune) on “Real and Strongly Real Classes in

finite linear groups”.

• M M Shikare (Pune University) on “The element splitting operation for

graphs, matroids and its applications”.

• M. S. Mahadeva Naika (Central Collage, Bangalore University, Banga-

lore) on “Recent work on Modular equations and its applications”.

• R. D. Giri (University of Bombay, Mumbai) on “Coding Theory for

every one - semigroup approach”.

• B. M. Pandeya (IT, BHU) on “CMC Modules over Noetherian rings”.

Details of the Symposia organized :

1. On “Summability Operators and Applications & Method of Approxima-

tion”

Convener: Huzoor H. Khan (AMU, Aligarh).

Speakers :

• Huzoor H. Khan (AMU, Aligarh) : “Approximation by Summa-

bility Operators”.

• Shyam Lal (BHU, Varanasi) : “Approximation of functions of

generalized Lipschitz class by product summability operators ”.

• J. K. Maitra (R. D. University, Jabalpur) : “On Spline Modules”.

• Mridula Dube (R. D. University, Jabalpur) : “Trigonometric Splines”.

• S. K. Upadhyaya (IT, BHU, Varanasi) : “The Bessel wavelet trans-

formation involving Hankel convolution”.

2. On “Modeling in Environmental Fluid-mechanics”

Convener : Girija Jayaraman (I. I. T. Delhi, Delhi).

Speakers :

• Swaroop Nandan Bora (IIT Guwahati) : “Linear Water Wave

Propagation over a porous sea bed ”.

• B V Ratishkumar (IIT Kanpur) : “Convection in Porous Media

and Applications - A Numerical perspective”.

• Om P. Sharma (IIT Delhi) : “Modeling aerosol distributions in

atmospheric flows ”.

• Girija Jayraman (IIT Delhi): “Modeling in Environm- ental Fluid

Mechanics - State of the art”.

3. On “Recent advances in Analysis and Operator Theory”

Convener : Manjul Gupta (IIT Kanpur, Kanpur).
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Speakers :

• M. A. Sofi (University of Kashmir, Srinagar) : “Factoring certain

operator ideal equations determini- ing finite dimentionality”.

• TSSRK Rao (ISI Bangalore) : “Cental subspaces of Banach spaces”.

• Manjul Gupta (IIT Kanpur, Kanpur) : “ ”.

4. On “Mathematics and Information Technology”

Convener : G. N. Prasanna (IIIT, Bangalore).

Speakers :

• Madhavan Mukund (CMI, Chennai) : “Formal varification”.

• Raja (TIFR, Mumbai) : “Computarized Proof Assistants”.

• Sakti Balan (Infosys) : “Peptide Computer - Towards a formal

Model for Peptide computing ”.

• G. N. Prasanna (IIIT, Bangalore): “Mathematics and Information

Technology: Vistas and opportunities ”.

5. On “Cohomology of Transformation groups”.

Convener : Satya Deo (HRI, Allahabad).

Speakers :

• P. Sankaran (IMSc, Chennai): “Vector field problem for certain

homogeneous spaces”.

• H. K. Mukherjee (NEHU, Shillong) : “Homology and Dynamical

systems ”.

• S. K. Roushon (TIFR, Mumbai): “The Ferrel-Jones Isomorphism

Conjecture”.

• Satya Deo (HRI, Allahabad) : “Spaces of finite cohomological di-

mension and finifistic spaces ”.

6. On “Special Functions and their Applications”

Convener : Arun Verma (IIT Roorkee, Roorkee).

Speakers :

• A. K. Agarwal (Punjab University, Chandigarh) : “Matrix Theo-

retic interpretations of some basic series identities”.

• D. D. Somasekhar (Mysore University, Mysore) : “On some sum-

mation formulas and their applications”.

• Vivek Sahai (Lucknow University, Lucknow) : “p, q-representations

of Lie algebra gl(2) and p, q-Mellin integral transformation”.

• S. Bhargava (Mysore University, Mysore): “On the inversion of

Ramanujan’s Cubic Analogue of Jacobian Elliptic Integral”.

• A. Shukla (SVNIT, Surat) : “Recent development and study in

general class of polynomials”.
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• Arun Verma (IIT Roorkee, Roorkee) : “Summation and Transfor-

mations of balanced Terminating Hypergeometric series”.

7. On “Around Continued fractions”.

Convener : K C Prasad (University of Ranchi, Ranchi).

Speakers :

• K C Prasad (University of Ranchi, Ranchi) : “Some results in

Diophantine Approximations”.

• S. Bhargava (Mysore University, Mysore) : “Some continued frac-

tions of Ramanujan”.

• S. P. Singh (TDPG College, Jaunpur) : “On Hypergeometric func-

tion and Ramanujan’s continued fractions”.

• S. K. Agrawal (Vinoba Bhave University, Hazaribag, Jharkhand)

: “Chakrawala method of Bhaskara and continued fraction algo-

rithm”.

• K. R. Vasuki (University of Mysore, Mysore) : “Two Modular

Equations for Squares of the Cubic-functions with Applications”.

A. K. Shukla,

Local Organizing Secretary,

76th Annual Conference of the India Mathematical Society-2010

Sardar Vallabhbhai National Institute of Technology,

Surat-305 007, Gujarat, INDIA.
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Vol. 80, Nos. 1–4, (2011), pp.238

REPORT ON IMS SPONSORED LECTURES

The details of the IMS Sponsored Lectures/Popular Talks held is as under:

1. Speaker : Prof. Gautami Bhowmik.

(Universite de Lille, France).

Title of the Lecture : Some aspects of Additive Combinatorics.

Day & Date : March 04, 2011 at 3 p.m.

Venue : Seminar Hall - 1, Ramanujan Institute for

Advanced Study in Mathematics,

University of Madras, Chennai.

Organizer : Prof. K. Parthasarathy.

Abstract: In additive combinatorics, subsets of additive groups are described

and usually quantitative measures of these structures are given. This study

involves the use of tools from diverse areas of mathematics.

In this Lecture, some examples of recent years will be mentioned to show

the use of classical methods such as exponential sums and Fourier analysis as

well as some newer ones like geometry of numbers.

c© Indian Mathematical Society, 2011.
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The Mathematics Student ISSN: 0025-5742

Vol. 80, Nos. 1–4, (2011), pp.239–242

ADDRESS TO MR. V. RAMASWAMI AIYAR, M.A.,
FOUNDER OF THE INDIAN MATHEMATICAL

SOCIETY

FELLOW IMS MEMBERS OF 1926

c© Indian Mathematical Society, 2011.
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The Mathematics Student ISSN: 0025-5742

Vol. 80, Nos. 1–4, (2011), pp.243–258

GENESIS OF FOUNDING OF THE SOCIETY : BY V.
RAMASWAMI AIYAR IN HIS PRESIDENTAL

ADDRESS OF 1926

c© Indian Mathematical Society, 2011.
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Vol. 80, Nos. 1–4, (2011), pp.259–263

ORIGINAL LETTER FROM V. RAMASWAMI AIYER
SOLICITING SUPPORT FROM FELLOW
MATHEMATICS LOVING PERSONS FOR

ESTABLISHING “THE ANALYTIC CLUB” AND THE
LIST OF 20 FOUNDING MEMBERS

V. RAMASWAMI AIYAR

c© Indian Mathematical Society, 2011.
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