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HOMOMORPHISMS BETWEEN C(X) AND C(Y)

SOMNATH HAZRA AND BASILA P

(Received : 05 - 10 - 2021 ; Revised : 04 - 12 - 2021)

Abstract. In this short note, we give an elementary proof of the fol-
lowing well-known theorem. Let X and Y be compact Hausdorff spaces.
If ρ : C(X) → C(Y ) is a unital homomorphism, then there exists a contin-
uous function p : Y → X such that (ρ(f))(y) = f(p(y)), x ∈ X, y ∈ Y ,
f ∈ C(X).

1. Introduction

Given a compact Hausdorff topological space X, let C(X) be the set
of all continuous functions from X to C. For f, g ∈ C(X) and c ∈ C,
setting f + g and cf to be the functions: (f + g)(x) = f(x) + g(x) and
(cf)(x) = cf(x), x ∈ X, respectively, we see that C(X) is a vector space.
If f and g are in C(X), then their point-wise product fg is a continuous
function (fg)(x) = f(x)g(x), x ∈ X. The vector space C(X) equipped
with this multiplication is an algebra. The constant function 1X , which is
the function 1X(x) = 1, x ∈ X, is the multiplicative identity of the algebra
C(X). Let Y be a compact Hausdorff topological spaces and p : Y → X

be a continuous function. For f ∈ C(X), the composition p∗(f) := f ◦ p
is continuous and hence p∗ maps C(X) to C(Y ). Also, p∗ is multiplicative
linear map, that is,

p∗(fg) = p∗(f)p∗(g), and p∗(af + bg) = ap∗(f) + bp∗(g),

for a, b ∈ C, f, g ∈ C(X). Moreover, it is unital, that is, p∗(1X) = 1Y .

The article is divided into three sections. In the first section, we describe
all the homomorphisms from C(X) to C(Y ) where X and Y are two finite
sets. In the second section, we prove that if ρ : C(X) → C(Y ) is a non-
zero multiplicative linear map, where X is a finite set and Y is a compact,

2010 Mathematics Subject Classification:15A03, 15A06, 54C08, 46L05
Key words and phrases: Linear maps, Homomorphisms, Linear functionals
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2 SOMNATH HAZRA AND BASILA P

connected, Hausdorff space, then there is a continuous function p : Y → X

such that ρ = p∗. In the final section, for any two compact Hausdorff spaces
X and Y , we show that if ρ : C(X)→ C(Y ) is a unital multiplicative linear
map, then there exists a continuous function p : Y → X such that ρ = p∗.

2. X and Y are finite

In what follows, if X is a finite set, then we assume that it is also a
topological space and the topology is the discrete topology, namely, every
subset of X is an open set.

For n ∈ N, the vector space Cn is an algebra with coordinate-wise
multiplication: For any two points (z1, . . . , zn) and (w1, . . . , wn) ∈ Cn, the
multiplication in the vector space Cn is given by

(z1, . . . , zn)(w1, . . . , wn) = (z1w1, . . . , znwn).

Lemma 2.1. If X = {x1, x2, . . . , xn} be a finite set, then there exists a
multiplicative isomorphism between C(X) and Cn.

Proof. Let fi : X → C, 1 ≤ i ≤ n, be the function:

fi(xj) =

1 if i = j, xj ∈ X, 1 ≤ j ≤ n,

0 if i 6= j, xj ∈ X, 1 ≤ j ≤ n.

The set of functions {f1, f2, . . . , fn} is a basis of C(X). In particular if

f ∈ C(X), then f =
n∑

i=1

f(xi)fi.

To complete the proof, for f ∈ C(X), define U : C(X)→ Cn by U(f) =

(f(x1), f(x2), . . . , f(xn)), and verify that U is a multiplicative isomorphism.
�

Recall that L : Cn → C is said to be a linear functional if for every pair
of vectors z and w in Cn and complex numbers a, b, we have

L(az + bw) = aL(z) + bL(w).

Now, we describe all the linear functionals L : Cn → C.

Lemma 2.2. Suppose that L : Cn → C is a linear map. Then there exists
ai ∈ C, 1 ≤ i ≤ n, such that

L(z1, z2, . . . , zn) =

n∑
i=1

ziai, (z1, z2, . . . , zn) ∈ Cn.
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Proof. Let {e1, e2, . . . , en} be the standard basis of Cn.Clearly we have
(z1, z2, . . . , zn) =

∑n
i=1 ziei for any (z1, z2, . . . , zn) ∈ C. Suppose that

L(ei) = ai, 1 ≤ i ≤ n. Since L is a linear map, it follows that

L

(
n∑

i=1

ziei

)
=

n∑
i=1

ziL(ei) =
n∑

i=1

ziai

completing the proof. �

Recall that if A is an algebra, then a a multiplicative linear functional
L : A → C is a linear functional L with the property that

L(ab) = L(a)L(b), a, b ∈ A.

The following Lemma describes all the multiplicative linear functionals on
Cn.

Lemma 2.3. Suppose that L : Cn → C is a non-zero multiplicative linear
functional. Then there exists a k, 1 ≤ k ≤ n, such that L(z) = zk, z :=

(z1, z2, . . . , zn) ∈ Cn.

Proof. It follows from Lemma 2.2 that L(z) =
∑n

i=1 ziai, z ∈ Cn for a
suitable choice of ai ∈ C, 1 ≤ i ≤ n. Now suppose there exists 1 ≤ p, q ≤ n
such that ap 6= 0 and aq 6= 0. Since L is multiplicative, we have

L((0, . . . , zp, . . . , zq, . . . , 0)(0, . . . , wp, . . . , wq, . . . , 0))

= L(0, . . . , zp, . . . , zq, . . . , 0)L(0, . . . , wp, . . . , wq, . . . , 0), (2.1)

where zp, wp and zq, wq are in p and qth slots of z and w, respectively. Now
expanding Equation (2.1), we obtain

zpwpap + zqwqaq = zpwpa
2
p + zpwqapaq + zqwpapaq + zqwqa

2
q . (2.2)

Since the Equation (2.2) is actually an identity in the four variables zp, zq,
wp, wq ∈ C, it follows that apaq = 0 which contradicts our assumption of
ap 6= 0 and aq 6= 0. If L is not zero, then this proves the existence of a k
such that ak 6= 0 and ai = 0 for i 6= k, 1 ≤ i, k ≤ n.

Again, using the multiplicative property of L, it follows that a2k = ak.
Since L is not zero, a2k = ak implies that ak = 1. �

The following corollary is a direct consequence of Lemma 2.1 and Lemma
2.3.
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Corollary 2.4. Let X = {x1, x2, . . . , xn}. Suppose that L : C(X) → C is
a non-zero multiplicative linear functional. Then there exists k such that
L(f) = f(xk) for all f ∈ C(X).

Now we are ready to prove the main theorem of this section, which
describes all multiplicative linear functionals from C(X) to C(Y ) assuming
that X and Y are finite sets.

Theorem 2.5. Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} be two
finite sets. Suppose that ρ : C(X) → C(Y ) is a non-zero multiplicative
linear map. Then there exists a function p : Y → X such that ρ = p∗.

Proof. For 1 ≤ j ≤ m, let evyj : C(Y ) → C be the evaluation map at the
point yj , that is, evyj (g) = g(yj), g ∈ C(Y ). The evaluation map evyj is
multiplicative.

Since ρ is a multiplicative linear map and evyj is a multiplicative linear
functionals, it follows that evyj ◦ ρ is also a multiplicative linear map from
C(X) to C. Consequently, using Corollary 2.4, we find xi in X such that

(evyj ◦ ρ)(f) = f(xi), f ∈ C(X).

Define p : Y → X by p(yj) = xi. For f ∈ C(X), we have

(ρ(f))(yj) = (evyj ◦ ρ)(f) = f(xi) = f(p(yj)).

This proves that ρ = p∗. �

3. X is finite and Y is connected

In this section, we describe all homomorphisms from C(X) to C(Y )

where X is a finite set and Y is a compact connected Housdorff space.

Lemma 3.1. Let X = {x1, x2, . . . , xn} be a finite set and Y be a compact,
connected, Housdorff space with more than one point. Suppose ρ : C(X)→
C(Y ) is a non-zero multiplicative linear map. Then for any f ∈ C(X), the
function ρ(f) in C(Y ) is a constant function.

Proof. Suppose ρ : C(X) → C(Y ) is a non-zero multiplicative linear map.
By Lemma 2.1, dim C(X) = n and therefore dim(ρ(C(X))) ≤ n, where
ρ(C(X)) denotes the image of ρ.

Assume that there exists f in C(X) such that ρ(f) is not constant.
Let a, b be two complex numbers such that a, b ∈ ρ(f)(Y ). Since a 6= b,
we have either Re a 6= Re b or Im a 6= Im b, where Re and Im stand for
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real and imaginary part of a complex number, respectively. Without loss
of generality, assume that Re a 6= Re b. Note that Re ρ(f) : Y → R
is a continuous function. Since Y is a connected space and Re ρ(f) is
continuous, the interval [Re a,Re b] is contained in the image of Re ρ(f).
Thus the image of the continuous function Re ρ(f), defined on Y , contains
uncountably many points and therefore the image of ρ(f) also contains
uncountably many points. Let g := ρ(f).

Now we prove that the set of functions {g, g2, g3, . . .} is a linearly in-
dependent. Note that it is enough to prove that the set {g, g2, . . . , gn} is
linearly independent for every n ≥ 1. Let α1, α2, . . . , αn be scalars such that

n∑
i=1

αig
i = 0. (3.1)

Since g(Y ) contains uncountably many distinct points, there exists y1, . . . ,
yn in Y such that g(yi) 6= g(yj), i 6= j, and g(yi) 6= 0 for all i = 1, 2, . . . , n.

Let g(yj) = zj , j = 1, 2, . . . , n. Then Equation (3.1) implies that
n∑

i=1

αiz
i
j = 0, 1 ≤ j ≤ n. (3.2)

From the well known formula for the determinant of the Vandermonde ma-
trix, we have

det
((
zij
))n
i,j=1

= z1z2 · · · zn
∏

i 6=j,i<j

(zi − zj),

which is non-zero. Thus it follows from Equation (3.2) that αi = 0 for
i = 1, 2, . . . , n. This proves that {g, g2, . . . , gn} is a linearly independent
set.

Since ρ is multiplicative, it follows that the set {g, g2, g3, . . .} is con-
tained in Im ρ. This contradicts the assumption that dim(Im ρ) ≤ n. There-
fore ρ(f) is constant for every f ∈ C(X). �

Theorem 3.2. Let X = {x1, x2, . . . , xn} be a finite set and Y be a compact,
connected, Housdorff space with more than one point. If ρ : C(X)→ C(Y )

is a non-zero multiplicative linear map, then there exists a constant function
p : Y → X such that ρ = p∗.

Proof. Let fi : X → C be the function fi(xj) = δij , 1 ≤ i, j ≤ n. By
Lemma 3.1, there exist scalars ai, 1 ≤ i ≤ n, such that ρ(fi)(y) = ai for
every y ∈ Y .
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Now if f is in C(X), then f =
n∑

i=1

f(xi)fi. Linearity of ρ implieas that

ρ(f) =

n∑
i=1

f(xi)ρ(fi). (3.3)

Since ρ(fi)(y) = ai for every y ∈ Y , we can rewrite Equation (3.3) as

ρ(f) =
n∑

i=1

f(xi)ai. (3.4)

A computation similar to the one in the proof of Lemma 2.3 is enough to
establish the existence of a k such that ak = 1 and ai = 0 if i 6= k.. Thus
we have ρ(f)(y) = f(xk) for every y in Y . Setting p : Y → X to be the
function given by the formula p(y) = xk, y ∈ Y , we see that ρ = p∗. �

4. X and Y are arbitrary compact Hausdorff spaces

In this final section, we describe all homomorphisms from C(X) to C(Y )

where X and Y are arbitrary compact Hausdorff spaces. To prove the main
Theorem of this section, we need some properties of weak topology.

Given a topological space Y and a family of functions F = {f : X → Y },
the weak topology on X induced by F is defined to be the smallest topology
generated by the sets{

f−1(V ) : f ∈ F and V is open in Y
}
.

The weak topology on X is the smallest topology on X such that every
functions in F is continuous.

Given a compact, Hausdorff space X, taking F to be the set of contin-
uous functions on X, we obtain the weak topology induced by C(X) on X.
In the following lemma, we describe the relationship between the original
topology on X and the weak topology induced by C(X) on it.

Lemma 4.1. If (X, τ) is a compact, Hausdorff space, then the weak topology
τw on X induced by C(X) and the topology τ coincide.

Proof. Let τw be the weak topology on X induced by C(X). Clearly, the
topology τw is contained in τ. Now we prove that τ is contained in τw.

Suppose U ∈ τ . Since (X, τ) is a compact, Hausdorff space, by Urysohn
metrization theorem there exists a metric d such that the topology τ is
induced by the metric d.
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Let f : X → C be the function defined by

f(x) = d(x, U c) := inf {d(x, y) : y ∈ U c}.

Suppose x1 and x2 are two elements of X. For any y′ ∈ U c, we have

f(x1) = inf {d(x1, y) : y ∈ U c}

≤ d(x1, y′)

≤ d(x1, x2) + d(x2, y
′),

where the last inequality follows by applying triangle inequality. Thus we
have

f(x1) ≤ d(x1, x2) + d(x2, y
′)

for any y′ ∈ U c. By taking infimum over y′ aforementioned, we obtain

f(x1) ≤ d(x1, x2) + f(x2). (4.1)

Interchanging the role of x1 and x2 in the inequality (4.1) and then applying
symmetry property of the metric, we obtain

f(x2) ≤ d(x1, x2) + f(x1). (4.2)

Now Equations (4.1) and (4.2) gives us

|f(x1)− f(x2)| ≤ d(x1, x2).

This proves that the function f is continuous.
Since U c is a closed set in τ , therefore x ∈ U c if and only if d(x, U c) = 0.

This implies that U c = f−1{0}. Therefore U ∈ τw. This proves that the
topology τ is contained in τw. �

One more ingredient in the proof of the main theorem of this section
is the following lemma, which describes the maximal ideals of C(X). Note
that an idealM of an algebra A is said to be a maximal ideal ifM is not
equal to A and if I is any ideal of A such thatM⊆ I, then either I =M
or I = A.

Lemma 4.2. Let X be a compact, Hausdorff space and M be a maximal
ideal of C(X). Then there exists unique point x0 in X such that M =

{f ∈ C(X) : f(x0) = 0}.

Proof. Suppose that M is a maximal ideal and that M is not of the form
{f ∈ C(X) : f(x) = 0} for any x ∈ X. Then for every x inX, there exists fx
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in M such fx(x) 6= 0. Since fx is continuous, there exists a neighbourhood
Ux of x such that fx(y) 6= 0 for every y ∈ Ux. The collection {Ux : x ∈ X}
is an open cover of X. Now compactness of X implies that there exists a
finite subcover {Uxi : i = 1, 2, . . . , n} of {Ux : x ∈ X}.

Let g : X → C be the function defined by

g(x) =
n∑

i=1

fxi(x)fxi(x).

Since M is an ideal, it follows that g ∈ M. Also since fxi is non-zero on
Uxi , the function g does not vanish on any point of X. Therefore 1

g is a
continuous function on X. This implies that 1 = g · 1g ∈ M , which is a
contradiction.

Thus there exists at least one point x0 such thatM = {f ∈ C(X) : f(x0)

= 0}. Now if there exists two points x0 and x̃0 in X such that M =

{f ∈ C(X) : f(x0) = 0, f(x̃0) = 0}, then M is no longer a maximal ideal.
Therefore there exists x0 ∈ X such that M = {f ∈ C(X) : f(x0) = 0}.

Since X is a compact Hausdorff space, therefore X is normal (See
[2, Theorem 32.3]). Now applying Uryshon’s Lemma ([2, Theorem 33.1]),
uniqueness of the point x0 follows. �

If X is a compact, Hausdorff space, then there is a natural norm on
C(X), namely,

‖f‖∞ = sup {|f(x)| : x ∈ X}, f ∈ C(X).

It is well known that (C(X), ‖ · ‖∞) is a Banach space (complete normed
linear space). The topology on C(X) is assumed to be the one induced by
the sup norm ‖ · ‖∞.

For x ∈ X, recall that evx : X → C, the evaluation functional which
maps f in C(X) to f(x), is a homomorphism. Also we have

|evx(f)| = |f(x)| ≤ ‖f‖∞.

Thus evx is a continuous homomorphism from C(X) to C. Therefore
ker(evx) is a closed subspace of C(X). Since ker(evx) = {f ∈ C(x) :

f(x) = 0}, it follows form the Lemma 4.2 that ker(evx) is a maximal ideal
of C(X).
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Theorem 4.3. Let X and Y be compact, Hausdorff spaces. Suppose that
ρ : C(X)→ C(Y ) be a continuous unital homomorphism. Then there exists
a continuous function p : Y → X such that f = p∗.

Proof. For y ∈ C(Y ), let evy : C(Y )→ C be the evaluational functional at
y. Since ρ : C(X)→ C(Y ) is a homomorphism, the map evy◦ρ : C(X)→ C
is also a homomorphism. Therefore ker(evy ◦ρ) is a maximal ideal in C(X).
Using Lemma 4.2, we obtain x ∈ X such that ker evy ◦ ρ = Mx where
Mx = {f ∈ C(X) : f(x) = 0}.

Now define a map p : Y → X, by setting p(y) = x, where ker(evy ◦ρ) =
Mx. The map p is well defined, thanks to Lemma 4.2.

Claim 1: The homomorphisms ρ and p∗ are equal.
It is evident that ker evy ◦p∗ =Mx. Thus ker evy ◦ρ and ker evy ◦p∗ are

equal and therefore, by [1, Lemma, p.110], there exists a constant c such
that evy ◦ρ = c evy ◦p∗. Since ρ is unital, it follows that c = 1. This implies
that evy ◦ ρ = evy ◦ p∗. Thus we have evy ◦ ρ = evy ◦ p∗ for every y ∈ Y .
This implies that ρ = p∗.

Claim 2: p is continuous.
Let U be an open subset of X and f ∈ C(X). By Claim 1, we see that

p−1
(
f−1(U)

)
= ρ(f)−1(U). (4.3)

Since ρ(f) is continuous for every f ∈ C(X), therefore ρ(f)−1(U) is an
open subset of Y . Now Equation (4.3) implies that p−1

(
f−1(U)

)
is an open

subset of Y. Thus p−1
(
f−1(U)

)
is an open subset of Y for every f ∈ C(X)

and every open subset U of X. Now by Lemma 4.1, we conclude that p is
continuous.

�

Remark 4.4. An abelian unital C∗-algebra A is ∗-isomprphic to C(X) via
the Gelfand map ([3, Theorem 4.29]), where X is the maximal ideal space of
A. Therefore, using Theorem 4.3, we can describe every continuous unital
homomorphism between two abelian unital C∗-algebra.
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HYERS-ULAM-RASSIAS STABILITY OF nth ORDER
LINEAR PARTIAL DIFFERENTIAL EQUATION
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Abstract. This paper deals with the Hyers-Ulam-Rassias stability of
nth order linear partial differential equation. Result is obtained by
using Laplace Transform.

1. Introduction

The question raised by S.M.Ulam [17] during discussion on stability
problems, in 1940 and D.H.Hyers [5] partial answer to it in terms of stability
of linear functional equations, in 1941, opened up new avenues for research
in the field of functional equations and differential equations. Paper by
Alsina and Ger [3] on the Hyers–Ulam (HU) stability of the differential
equation y′ = y and its generalization by Takahasi et al [16] in 2002 for the
complex Banach space valued differential equation y′ = λy together with
[13] lead to series of papers on the topic. These include [6, 7, 8, 9] on HU
and Hyers-Ulam-Rassias (HUR) stability. Gordji et al. [4] generalized the
result of [9] to first and second order non linear partial differential equations.
N. Lungu and C. Cracium [10] established HU stability and HUR stability
of non linear hyperbolic partial differential equation in general form. M.N.
Qarawani [12] studied the HUR stability for Heat equation. H. Rezaei [14]
established the HU stability of linear differential equation of nth order. HUR
stability for special types of non linear equations have been studied in [1] ,
[2] and [11]. In this paper, we shall establish the HUR stability of nth order
linear partial differential equation

∂u

∂t
= an

∂nu

∂xn
, t > 0, 0 < x < l, a > 0 (1.1)

2010 Mathematics Subject Classification: 35A22; 35A35; 26D10
Key words and phrases: Hyers-Ulam-Rassias stability, Laplace transform
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with initial condition

u(x, 0) = µ(x), 0 ≤ x ≤ l (1.2)

and boundary conditions

u(0, t) = v0(t), ux(0, t) = v1(t), uxx(0, t) = v2(t), · · · , uxx···x(0, t) = vn−1(t),

(1.3)
where l ∈ R, µ(x) ∈ C[0, l], v0(t), v1(t), v2(t), · · · , vn−1(t) ∈ C(−∞,∞) and
u(x, t) ∈ Cn1 ((0, l)× (0,∞)).

We need following definitions.

Definition 1.1. : We shall say that the equation (1.1) is HUR stable with
respect to φ(x, t) > 0 if ∃ ψ(x, t) > 0 such that for each ε > 0 and for each
solution w(x, t) ∈ Cn1 ((0, l)× (0,∞)) of the inequality

|∂u
∂t
− an∂

nu

∂xn
| ≤ εφ(x, t), (1.4)

with conditions (1.2) and (1.3), ∃ a solution u(x, t) ∈ Cn1 ((0, l)× (0,∞)) of
the equation (1.1) such that

|w(x, t)− u(x, t)| ≤ εψ(x, t), (1.5)

∀(x, t) ∈ ((0, l)×(0,∞)), φ(x, t) ∈ C((0, l)×(0,∞)) and ψ(x, t) ∈ C((0, l)×
(0,∞)).

Definition 1.2. :[13] For each function f : (0,∞) → F (R or C) of expo-
nential order, the Laplace transform of f is defined by

L{f(t)} = F (s) =
∫∞
0 e−stf(t)dt.

There exists a unique number −∞ ≤ σ < ∞ such that this integral con-
verges if <(s) > σ and diverges if <(s) < σ. The number σ is called abscissa
of convergence and is denoted by σf .

Definition 1.3. :[13] Let f(t) be a continuous function whose Laplace
transform F (s) has the abscissa of convergence σf . Then the inverse Laplace
transform is given by

f(t) = 1
2π

∫∞
−∞ e

(α+iy)tF (α+ iy)dy, for any real α > σf .

2. Main result

In this section we prove the HUR stability of nth order linear partial
differential equation (1.1).We obtain the result by using Laplace transform.
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Theorem 2.1. : If w(x, t) ∈ Cn1 ((0, l)× (0,∞)) is an approximate solution
of the I-BVP (1.1) - (1.3) , then I-BVP (1.1) - (1.3) is HUR stable.

Proof. : Given ε > 0. Suppose w(x, t) is an approximate solution of the
I-BVP (1.1) - (1.3).
We have to show that ∃ an exact solution u(x, t) ∈ Cn1 ((0, l) × (0,∞))

of equation (1.1) such that |w(x, t) − u(x, t)| ≤ εψ(x, t), where ψ(x, t) ∈
C((0, l)× (0,∞)).

From the definition of HUR stability we have
|∂w∂t − a

n ∂nw
∂xn | ≤ εα(t− ln

an ).

This yields

−εα(t− ln

an
) ≤ ∂w

∂t
− an∂

nw

∂xn
≤ εα(t− ln

an
), (2.1)

where α(t− c) = 0, for t ≤ c and α(t− c) = x(t− c), for t ≥ c, c ≥ 0.

Taking Laplace transform of equation (2.1), we get

−εL{α(t− ln

an
)} ≤ L{∂w

∂t
− an∂

nw

∂xn
} ≤ εL{α(t− ln

an
)},

and hence
|L{∂w

∂t
− an∂

nw

∂xn
}| ≤ εL{α(t− ln

an
)}.

This gives,

|L{∂w
∂t
} − anL{∂

nw

∂xn
}| ≤ εL{α(t− ln

an
)}. (2.2)

Also since w(x, t) satisfies boundary conditions (1.3), we get
L{w(0, t)} = L{v0(t)} = W (0, p) = V0(p),

L{wx(0, t)} = L{v1(t)} = Wx(0, p) = V1(p),

L{wxx(0, t)} = L{v2(t)} = Wxx(0, p) = V2(p), · · · ,
· · · ,L{wxx···x(0, t)} = L{vn−1(t)} = Wxx···x(0, p) = Vn−1(p).

As L
{
∂nw
∂xn

}
= dnW

dxn (x, p), L
{
∂w
∂t

}
= pW (x, p)− w(x, 0) and

L{α(t− ln

an )} = x
p2
e−p

ln

an , with (2.2), we get

| − an{dnWdxn (x, p)− pW (x,p)
an + µ(x)

an }| ≤ ε
x
p2
e−p

ln

an .

⇒ |an{dnWdxn (x, p)− pW (x,p)
an + µ(x)

an }| ≤ ε
x
p2
e−p

ln

an .

⇒ |dnWdxn (x, p)− pW (x,p)
an + µ(x)

an | ≤
ε
an

x
p2
e−p

ln

an .

Hence we get

− εx

anp2
e
−pln

an ≤ dnW

dxn
(x, p)− pW (x, p)

an
+
µ(x)

an
≤ εx

anp2
e
−pln

an . (2.3)
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Integrating the inequality (2.3) n times, from 0 to x, we get

− εxn+1

(n+ 1)! p2 an
e
−pln

an ≤W (x, p)−W (0, p)− dW (0, p)

dx
x

−d
2W

dx2
(0, p)

x2

2!
− d3W

dx3
(0, p)

x3

3!
· · · − dn−1W

dxn−1
(0, p)

xn−1

(n− 1)!

− p

(n− 1)! an

∫ x

0
W (s, p)(x− s)n−1ds

+
1

(n− 1)! an

∫ x

0
µ(s)(x− s)n−1ds ≤ εxn+1

(n+ 1)! p2 an
e−

pln

an ,

i.e.

− εxn+1

(n+ 1)! p2 an
e
−pln

an ≤W (x, p)− V0(p)− V1(p)x

−V2(p)
x2

2!
− V3(p)

x3

3!
· · · − Vn−1(p)

xn−1

(n− 1)!

− p

(n− 1)! an

∫ x

0
W (s, p)(x− s)n−1ds

+
1

(n− 1)! an

∫ x

0
µ(s)(x− s)n−1ds ≤ εxn+1

(n+ 1)! p2 an
e−

pln

an . (2.4)

It is easily verified that the function U(x, p) = L{u(x, t)} which is given by

U(x, p) = V0(p) + V1(p)x+ V2(p)
x2

2! + · · ·+ Vn−1(p)
xn−1

(n−1)!

+ p
(n−1)!an

∫ x
0 U(s, p)(x− s)n−1ds− 1

(n−1)!an
∫ x
0 µ(s)(x− s)n−1ds

has to satisfy the equation dnW
dxn (x, p) − pW

an (x, p) + µ(x)
an = 0, with the

boundary conditions

W (0, p) = V0(p),Wx(0, p) = V1(p), · · · ,Wxx···x(0, p) = Vn−1(p). (2.5)

Next consider, the difference
∆ = |W (x, p)− U(x, p)|

= |W (x, p)− V0(p)− V1(p)x− V2(p)x
2

2! − · · · · · · · · · − Vn−1(p)
xn−1

(n−1)!

− p
(n−1)!an

∫ x
0 U(s, p)(x−s)n−1ds+ 1

(n−1)!an
∫ x
0 µ(s)(x− s)n−1ds|.

= |W (x, p)− V0(p)− V1(p)x− V2(p)x
2

2! − · · · − Vn−1(p)
xn−1

(n−1)!

− p
(n−1)!an

∫ x
0 W (s, p)(x−s)n−1ds+ 1

(n−1)!an
∫ x
0 µ(s)(x− s)n−1ds

+ p
(n−1)!an

∫ x
0 W (s, p)(x−s)n−1ds− p

(n−1)!an
∫ x
0 U(s, p)(x−s)n−1ds|.
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≤ |W (x, p)− V0(p)− V1(p)x− V2(p)x
2

2! − · · · · · · · · · − Vn−1(p)
xn−1

(n−1)!

− p
(n−1)!an

∫ x
0 W (s, p)(x− s)n−1ds+ 1

(n−1)!an
∫ x
0 µ(s)(x− s)n−1ds|

+ p
(n−1)!an

∫ x
0 |W (s, p)− U(s, p)|(x− s)n−1ds.

≤ εxn+1

(n+1)! p2 an
e−

pln

an + p
(n−1)!an

∫ x
0 |W (s, p)− U(s, p)|(x− s)n−1ds.

(Using(2.4)).
≤ εln

(n+1)!an
x
p2
e−

pln

an + p
(n−1)!an

∫ x
0 |W (s, p)− U(s, p)|(x− s)n−1ds.

By using Grownwall inequality we get
|W (x, p)− U(x, p)| ≤ εln

(n+1)!an
x
p2
e−

pln

an e
∫ x
0

p
(n−1)!an

(x−s)n−1ds
.

⇒ |W (x, p)− U(x, p)| ≤ εln

(n+1)!an
x
p2
e−

pln

an e
pln

n!an .

⇒ |W (x, p)− U(x, p)| ≤ εln

(n+1)!an
x
p2

e−
p(n!−1)ln

ann! .

⇒ |W (x, p)− U(x, p)| ≤ εln

(n+1)!an L{α(t− (n!−1)ln
n!an )}.

⇒ − εln

(n+1)!an L{α(t− (n!−1)ln
n!an )} ≤W (x, p)− U(x, p)

≤ εln

(n+1)!an L{α(t− (n!−1)ln
n!an )}.

⇒ − εln

(n+1)!anL{α(t− (n!−1)ln
n!an )} ≤ L{w(x, t)− u(x, t)}

≤ εln

(n+1)!anL{α(t− (n!−1)ln
n!an )}.

Taking inverse Laplace transform, we get,
− εln

(n+1)!an {α(t− (n!−1)ln
n!an )} ≤ w(x, t)−u(x, t) ≤ εln

(n+1)!an {α(t− (n!−1)ln
n!an )}.

⇒ |w(x, t)− u(x, t)| ≤ εln

(n+1)!an {α(t− (n!−1)ln
n!an )}.

Consequently, we have
max
o≤x≤l |w(x, t)− u(x, t)| ≤ εln

(n+1)!an {α(t− (n!−1)ln
n!an )}.

Hence the I-BVP (1.1)− (1.3) is HUR stable. �

Remark 2.2. The above result is an extension of the results for the HUR
stability of the first and third order linear partilal differential equations,
proved in [15] .

Acknowledgement: Authors are very much thankful to the editor and
reviewers for their valuable suggestions in the improvement of the paper.
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SINGULAR MULTIPLICATIVE CALCULUS USING
MULTIPLICATIVE MODULUS FUNCTION

C. GANESA MOORTHY
(Received : 29 - 01 - 2020 ; Revised : 11 - 12 - 2021)

Abstract. There is a usual multiplicative calculus apart from clas-
sical Newton-Leibnitz additive calculus. This article provides a new
multiplicative calculus, which includes singular multiplicative differen-
tiation, singular multiplicative Riemann integration, and singular mul-
tiplicative Lebesgue integration based on newly introduced multiplica-
tive measure. Properties of multiplicative modulus function have been
used.

1. Introduction

Calculus, which is based on addition and summation, is known to high
school students. There was no difficult to introduce multiplication based
calculus, but it became an active research area only after appearance of the
article [2]. The author also wrote an article [4] in usual multiplicative cal-
culus about multiplicative differentiation, multiplicative Riemann integra-
tion, and multiplicative Lebesgue integration with respect usual measures,
by using multiplicative modulus function. The concept of multiplicative
modulus function was just mentioned in the article [2]. The first extensive
usage of this concept was done in the recent article [3] to study infinite
products. The second usage was done in the article [4]. The present article
also uses the concept of multiplicative modulus function. Since the concepts
introduced in this article are different from usual concepts in multiplicative
calculus, the word “singular” is prefixed before the names of the concepts.
There are some advantages in introduction of new concepts, and because
of these advantages a deviation takes place. One deviation is introduction
of multiplicative measures. It should be mentioned that if usual metrics

2010 Mathematics Subject Classification: 26A42,26A24, 26A06
Key words and phrases: Differentiation, Positive measure integration, Riemann
integration
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are considered as additive metrics, there are other multiplicative metrics
which have been introduced just for derivation of fixed point theorems; see
[1]. There are topologies induced by these multiplicative metrics which can
be obtained by exponentiation of usual metrics. Exponential function and
logarithmic function play important role in transforming fixed point results
from metric spaces to multiplicative metric spaces, as they play a role in
transforming results from series to infinite products.

A real valued function f on an open interval (a, b) containing a point x0
is said to be differentiable at x0, if the limit lim

x→x0
f(x)−f(x0)

x−x0 −k exists and it

is equal to 0, for some real number k. That is, f is said to be differentiable at
x0, if for given ε > 0, there is a δ > 0 such that |f(x)−f(x0)−k(x−x0)| <
ε|x − x0| whenever |x − x0| < δ, and x ∈ (a, b). This particular format
is to be used in the third section to introduce a new concept of singular
multiplicative differentiation. The fourth section introduces a concept of
singular multiplicative Riemann integration by interchanging existing roles
of bases and exponents. A similar modification is done in the fifth section to
introduce a new concept of singular multiplicative Lebesgue integration by
using newly introduced multiplicative measures. The next section provides
some fundamental properties of multiplicative metrics and multiplicative
modulus function. The author provides only results which are derivable by
him.

2. Multiplicative modular function and EL-metrics

The following different name EL-metrics has been given, because of
usage of Exponential function and Logarithmic function in transforming
results and concepts. Definitions of many such metrics may be seen in [1].
The definition of EL-metrics may also be seen in the survey article [1] with
a different name.

Definition 2.1. LetX be a non empty set. A mappingD : X×X → [1,∞)

is called an EL-metric, if the following axioms are true.

(a) D(x, y) = 1 if and only if x = y in X.
(b) D(x, y) = D(y, x) for all x, y in X.
(c) D(x, y) ≤ D(x, z)D(y, z) for all x, y, z in X.

The pair (X,D) is called an EL-metric space.
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Definition 2.2. For each x in (0,∞), let us associate a value |x|× in [1,∞),
which is defined by |x|× = max{x, 1x}. This function | |× : (0,∞)→ [1,∞)

is called multiplicative modulus function. Let us declare for convention that
|0|× = |∞|× =∞.

Example 2.3. Define D in (0,∞) by D(x, y) = |xy |×. Then D is an
EL-metric on (0,∞)× (0,∞).

Remark 2.4. (a) If d is a metric on X, and if D is defined on X ×X
by the relation D(x, y) = exp d(x, y), for all x, y ∈ X, then D is an
EL-metric on X. Let us write it D = exp d.

(b) If D is an EL-metric on X, and if d is defined on X × X by the
relation d(x, y) = logD(x, y), for all x, y ∈ X, then d is a metric on
X. Let us write it d = logD.

(c) If D is an EL-metric, then D = exp(logD). If d is a metric, then
d = log(exp d).

(d) Let D be an EL-metric on X. For each r ≥ 1 and for each x ∈ X,
let us define B(x, r) = {y ∈ X : D(x, y) < r}. Let τ = {U ⊆ X :

For each x ∈ U, there is a r > 1 such that B(x, r) ⊆ U}. Then
τ is a topology on X. Let us call it the topology induced by D.
If d = logD, then the topology induced by d coincides with the
topology induced by D.

(e) If d is a metric on X, and if D = exp d, then the topology induced
by d coincides with the topology induced by D.

(f) Let (X,D) be an EL-metric space. A sequence (xn)∞n=1 is said to
be Cauchy in (X,D), if for given ε > 1 there is a positive integer n0
such that D(xn, xm) < ε,∀n,m ≥ n0. A sequence (xn)∞n=1 is said
to converge to x in (X,D), if for given ε > 1, there is a positive
integer n0 such that D(xn, x) < ε,∀n ≥ n0. Let d = logD. A
sequence (xn)∞n=1 is Cauchy ((xn)∞n=1 converges to x) in (X,D) if
and only if it is Cauchy (it converges to x) in (X, d). If it is defined
that (X,D) is a complete EL-metric space whenever every Cauchy
sequence converges in (X,D), then (X,D) is complete if and only
if (X, d) is complete.

(g) Let (X, d) be a metric space. If D = exp d , then a sequence (xn)∞n=1

is Cauchy ((xn)∞n=1 converges to x) in (X,D) if and only if it is
Cauchy (it converges to x) in (X, d). Thus, (X,D) is complete if
and only if (X, d) is complete.
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(h) A function f from an EL-metric space (X,DX) to an EL-metric
space (Y,DY ) is said to be uniformly continuous, if for given ε > 1,
there is a δ > 1 such that DY (f(x), f(y)) < ε whenever DX(x, y) <

δ, and x, y ∈ X. A function f from an EL-metric space (X,DX)

to a metric space (Y, dY ) is said to be uniformly continuous, if for
given ε > 0, there is a δ > 1 such that dY (f(x), f(y)) < ε when-
ever DX(x, y) < δ, and x, y ∈ X. A function f from a metric
space (X, dX) to an EL-metric space (Y,DY ) is said to be uni-
formly continuous, if for given ε > 1, there is a δ > 0 such that
DY (f(x), f(y)) < ε whenever dX(x, y) < δ, and x, y ∈ X. If these
three statements given above are considered as definitions, then it
can be concluded that f is uniformly continuous, whenever f is
continuous on X, and whenever X is compact with respect to the
topology induced by DX or dX .

All these properties of EL-metrics can be verified. The following prop-
erties of multiplicative modular function can also be verified directly.

Remark 2.5. (a) |x|× = exp(log |x|×), for all x ∈ (0,∞).
(b) |x| = log(exp |x|), for all x ∈ (−∞,+∞).
(c) If d(x, y) = |x − y| for all x, y ∈ (−∞,+∞), and if D(x, y) = |xy |×

for all x, y ∈ (0,∞), then D = exp(logD), and d = log(exp d).
(d) |xy|× ≤ |x|×|y|× and

∣∣∣xy ∣∣∣× ≤ |x|×|y|× , for all x, y ∈ (0,∞).

(e) |xy|× = |x||y|× , for all x ∈ (0,∞) and for all y ∈ (−∞,+∞).
(f) |xy|× ≤ x|y|× , for all x ∈ [1,∞) and for all y ∈ (0,∞).

(g) For a given x > 0, if p = (|x|×x)1/2, q =
(
|x|×
x

)1/2
, then p

q = x, pq =

|x|×, p ≥ 1, and q ≥ 1 .

Remark 2.6. The conventions given in [6] for algebraic operations for ex-
tended real number system are to be followed in this article, in addition
to the followings. ∞0 = 1, and 1x = 1 and 0.x = 0,∀x ∈ [−∞,+∞]. If
x > 0, a ∈ (−∞,+∞), then xa > 0.

3. Singular multiplicative differentiation

Let us begin with a new definition guessed from definition of classical
differentiation as mentioned in the first section.
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Definition 3.1. Let (a, b) be an interval in (0,∞). Let f be a positive real
valued function defined on (a, b). Then f is said to be sm-differentiable at
a point x0 ∈ (a, b), if there is a real number constant k such that for given
ε > 0 there is a δ > 1 such that∣∣∣ f(x)

f(x0)

(x0
x

)k∣∣∣
×

=
∣∣∣f(x0)

f(x)

( x
x0

)k∣∣∣
×
≤
∣∣∣x0
x

∣∣∣ε
×

=
∣∣∣ x
x0

∣∣∣ε
×
,

whenever
∣∣∣x0x ∣∣∣× < δ and x ∈ (a, b).

Proposition 3.2. The constant k mentioned in Definition 3.1 is unique.

Proof. Suppose there are two different real constants k and s for Definition

3.1. Fix ε = |k−s|
4 > 0. Then there is a δ > 1 such that

∣∣∣f(x0)f(x)

(
x
x0

)k∣∣∣
×
≤∣∣∣x0x ∣∣∣ε× and

∣∣∣ f(x)f(x0)

(
x0
x

)s∣∣∣
×
≤
∣∣∣ xx0 ∣∣∣ε×, whenever ∣∣∣x0x ∣∣∣× < δ and x ∈ (a, b). Then

∣∣∣ x
x0

∣∣∣|k−s|
×

=
∣∣∣( x
x0

)(k−s)∣∣∣
×

=
∣∣∣f(x0)

f(x)

( x
x0

)k f(x)

f(x0)

(x0
x

)s∣∣∣
×
≤
∣∣∣x0
x

∣∣∣2ε
×

=
∣∣∣x0
x

∣∣∣( |k−s|
2

)

×
,

whenever
∣∣∣x0x ∣∣∣× < δ and x ∈ (a, b), by Remark 2.5. This is impossible. So,

k = s. �

Definition 3.3. The constant k mentioned in Definition 3.1 is called sm-
derivative of f at x0 and it is denoted by f (sm)(x0).

Example 3.4. If f(x) = xa, x > 0, for some real constant a, then∣∣∣f(x0)

f(x)

( x
x0

)a∣∣∣
×

=
∣∣∣(x0
x

)a( x
x0

)a∣∣∣
×
≤
∣∣∣x0
x

∣∣∣ε
×
,

for every ε > 0. Thus f (sm)(x) = a,∀x ∈ (0,∞).

Remark 3.5. Suppose f and g are positive real valued functions on (a, b) ⊆
(0,∞). Suppose f and g are sm-differentiable (continuous) at a point x0 ∈
(a, b). Let c be a real constant. Then the followings are true.

(a) If c > 0, then cf is sm- differentiable at x0 , and (cf)(sm)(x0) =

f (sm)(x0).
(b) The function f c is sm- differentiable at x0, and (f c)(sm)(x0) =

c(f (sm)(x0)), where f c(x) = f(x)c.

Proof. Let k = f (sm)(x0). Let ε > 0 be given. If c 6= 0, then let

δ > 1 be such that
∣∣∣f(x0)f(x)

(
x
x0

)k∣∣∣
×
≤
∣∣∣x0x ∣∣∣( ε

|c| )

×
, whenever

∣∣∣x0x ∣∣∣× < δ
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and x ∈ (a, b). Then∣∣∣(f(x0))
c

(f(x))c

( x
x0

)kc∣∣∣
×

=
∣∣∣f(x0)

f(x)

( x
x0

)k∣∣∣|c|
×
≤
∣∣∣x0
x

∣∣∣ε
×
,

whenever
∣∣∣x0x ∣∣∣× < δ and x ∈ (a, b). If c = 0, then again

1 =
∣∣∣(f(x0))

c

(f(x))c

( x
x0

)kc∣∣∣
×
≤
∣∣∣x0
x

∣∣∣ε
×
,

whenever
∣∣∣x0x ∣∣∣× < δ and x ∈ (a, b). This proves that (f c)(sm)(x0) =

c(f (sm)(x0)). �

(c) The function fg is sm-differentiable at x0, and (fg)(sm)(x0) = f (sm)(x0)+

g(sm)(x0).

Proof. Let k = f (sm)(x0) and s = g(sm)(x0). Let ε > 0 be given.

There is a δ > 1 such that
∣∣∣f(x0)f(x)

(
x
x0

)k∣∣∣
×
≤
∣∣∣x0x ∣∣∣ ε2× and

∣∣∣g(x0)g(x)

(
x
x0

)s∣∣∣
×
≤∣∣∣x0x ∣∣∣ ε2×, whenever ∣∣∣x0x ∣∣∣× < δ and x ∈ (a, b). Then

∣∣∣f(x0)g(x0)f(x)g(x)

(
x
x0

)k+s∣∣∣
×
≤∣∣∣f(x0)f(x)

(
x
x0

)k∣∣∣
×

∣∣∣g(x0)g(x)

(
x
x0

)s∣∣∣
×
≤
∣∣∣x0x ∣∣∣ε×, whenever ∣∣∣x0x ∣∣∣× < δ and x ∈

(a, b) �

(d) The inverse function h = 1
f is sm-differentiable at x0, and (h)(sm)(x0) =

−f (sm)(x0) .

Proof. Use the relation

h(xo)

h(x)

( x
x0

)−k
=

f(x)

f(x0)

(x0
x

)k
.

�

4. Singular multiplicative Riemann integration

Let [a, b] ⊆ (0,∞). Let f : [a, b]→ [m,M ] ⊆ (−∞,+∞) be a function.
Let P be the collection of all partitions P = {x0, x1, ..., xn}, a = x0 < x1 <

... < xn = b, n = 1, 2, .... Then P is a directed set under the inclusion
relation. For a fixed partition P = {x0, x1, ..., xn}, let ti ∈ [xi, xi+1] for i =

0, 1, 2, ..., n− 1, and consider the finite product
∏n−1
i=0

(
xi+1

xi

)f(ti)
. Suppose

that the net
(∏n−1

i=0

(
xi+1

xi

)f(ti))
P∈P

converges uniformly to a positive real

number s > 0 for all possible ti ∈ [xi, xi+1]. That is, for given ε > 0,
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there is a partition P0 of [a, b] such that
∣∣∣∏n−1

i=0

(
xi+1

xi

)f(ti)
− s
∣∣∣ < ε , for all

P ⊇ P0 in P, and for all possible points ti ∈ [xi, xi+1]. Then f is said to be
sm-Riemann integrable, and let us write the value s as SM b

af(x)dx. Note
that this s is unique.

Let [a, b] ⊆ (0,∞). Fix a function f : [a, b] → [m,M ] ⊆ (0,∞). Fix a
partition P = {x0, x1, ..., xn} of [a, b]. Letmi = infti∈[xi,xi+1] f(ti) andMi =

supti∈[xi,xi+1] f(ti), for i = 0, 1, 2, ..., n − 1. Let L(P, f) =
∏n−1
i=0

(
xi+1

xi

)mi

and U(P, f) =
∏n−1
i=0

(
xi+1

xi

)Mi

. Here mi ≥ 0, ∀i. Then f is sm-integrable

if and only if for given ε > 1, there is a partition P such that U(P,f)
L(P,f) < ε.

Remark 4.1. Let [a, b] ⊆ (0,∞). Suppose f : [a, b] → [m,M ] ⊆ (0,∞)

and g : [a, b] → [m,M ] ⊆ (0,∞) be two sm-Riemann integrable functions
over [a, b]. Let c be a positive constant. Then f + g is sm-Riemann inte-
grable over [a, b], and the constant function c is integrable over [a, b]. Also,
SM b

a(f + g)(x)dx = (SM b
af(x)dx)(SM b

ag(x)dx) and SM b
a(cf)(x)dx =

(SM b
af(x)dx)c .

The following Proposition 4.2 provides an immediate example for a class
of sm-Riemann integrable functions. This proposition will be generalized in
Theorem 5.15.

Proposition 4.2. Let [a, b] ⊆ (0,∞). Let f : [a, b] → [m,M ] ⊆ (0,∞) be
a continuous function. Then f is sm-Riemann integrable over [a, b].

Proof. The function f is uniformly continuous, when [a, b] is endowed with
the EL-metric D(x, y) =

∣∣∣xy ∣∣∣× for all x, y ∈ [a, b], and [m,M ] is endowed

with the metric d(x, y) = |x − y| for all x, y ∈ [m,M ]. Fix ε > 1. Find
η > 0 such that

(
b
a

)η
< ε. For this η > 0, there is a δ > 1 such that

|f(x) − f(y)| < η whenever
∣∣∣xy ∣∣∣× < δ. Let P = {x0, x1, ..., xn} be any

partition of [a, b] such that
(
xi+1

xi

)
< δ, ∀i. Then |Mi − mi| ≤ η when

mi = inft∈[xi,xi+] f(t) and Mi = supt∈[xi,xi+1] f(t), ∀i. For this P ,

U(P, f)

L(P, f)
=

n−1∏
i=0

(xi+1

xi

)Mi−mi

≤
n−1∏
i=0

(xi+1

xi

)η
=
( b
a

)η
< ε.

This proves that f is sm-Riemann integrable over [a, b]. �
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Lemma 4.3. Let [a, b] ⊆ (0,∞). Let f : [a, b] → [m,M ] ⊆ (0,∞) be
a function which is sm-Riemann integrable over [a, b]. For each c ∈ [a, b],
then the function f : [a, c]→ [m,M ] is sm-Riemann integrable over [a, c].

Proof. Let P = {x0, x1, ..., xn} be a partition of [a, b] such that c ∈
{x0, x1, ..., xn} and c = xr for some r. Then 1 ≤

∏r−1
i=0

(
xi+1

xi

)Mi−mi

≤∏n−1
i=0

(
xi+1

xi

)Mi−mi

= U(P,f)
L(P,f) . This relation proves that f : [a, c] → [m,M ]

is sm-Riemann integrable over [a, c]. �

Theorem 4.4. Let [a, b] ⊆ (0,∞). Let f : [a, b] → [m,M ] ⊆ (0,∞) be a
function which is sm-Riemann integrable over [a, b]. For a ≤ x ≤ b, define
F (x) = SMx

af(t)dt. Then F is continuous on [a, b]. If f is continuous at
a point x0, then F is sm-differentiable at x0 and F (sm)(x0) = f(x0).

Proof. For a ≤ x < y ≤ b and for c = max{m,M,m−1,M−1},∣∣∣F (x)

F (y)

∣∣∣
×

= |SMy
xf(t)dt|× ≤ SMy

xcdt =
(y
x

)c
.

This proves uniform continuity of F over [a, b].
Suppose further that f is continuous at x0 ∈ [a, b]. Let ε > 0 be given.

Then there is a δ > 0 such that |f(u) − f(x0)| < ε whenever |u − x0| < δ.
Then for y ∈ [a, b] satisfying x0 ≤ y < x0 + δ,∣∣∣ F (y)

F (x0)

(x0
y

)f(x0)∣∣∣
×

= |(SMy
x0f(u)du)(SMy

x0(−f(x0))du)|×

= |SMy
x0(f(u)− f(x0))du|× ≤

∣∣∣ y
x0

∣∣∣ε
×
.

Similarly, for y ∈ [a, b] satisfying x0 − δ < y ≤ x0,∣∣∣F (x0)

F (y)

( y
x0

)f(x0)∣∣∣
×

= |(SMx0
y f(u)du)(SMx0

y (−f(x0))du)|×

= |SMx0
y (f(u)− f(x0))du|× ≤

∣∣∣ y
x0

∣∣∣ε
×
.

This proves that F is sm-differentiable at x0 and F (sm)(x0) = f(x0). �

Remark 4.5. Since all positive constant functions c are sm-Riemann in-
tegrable over [a, b] ⊆ (0,∞), there are many continuous functions between
c and c + 1 which are sm-Riemann integrable, and hence there are many
sm-differentiable functions in view of the previous Theorem 4.4.
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5. Singular multiplicative integration by multiplicative
measure

For arguments and similarities of arguments, it may be referred to the
books [5, 6], mainly to the book [6]. In this section, (X,M) will denote a
measurable space, in whichX will denote a nonempty set, andM will denote
a σ-algebra. All subsets of X to be considered will be only measurable sets,
and all extended real valued functions on X which are to be considered will
be only measurable functions, when M is also considered.

Definition 5.1. Let µ : M→ [1,∞] be a function such that µ(A) <∞, for
some A ∈ M, and such that µ(

⋃∞
i=1Ai) =

∏∞
i=1 µ(Ai) whenever Ai ∈ M,

∀i, and Ai
⋂
Aj = ∅ for i 6= j. Let us call the function µ as a sm-measure.

The triple (X,M, µ) is called sm-measure space.

Remark 5.2. Let µ : M→ [1,∞] be a sm-measure. Define λ : M→ [0,∞]

by λ(E) = logµ(E), when µ(E) < ∞, and λ(E) = ∞, otherwise, for
E ∈M. Then λ is a usual countably additive positive measure (or, simply
measure). Let us write λ = logµ, in this case. On the other hand, if
λ : M → [0,∞] is a given countably additive positive measure, and if
µ : M → [1,∞] is defined by µ(E) = expλ(E), when λ(E) < ∞, and
µ(E) = ∞, otherwise, for E ∈ M, then µ is a sm-measure. Let us write
µ = expλ, in this case. A common fact regarding “almost everywhere” is
that µ(E) = 1 if and only if λ(E) = 0.

Proposition 5.3. Let µ be a sm-measure on a measurable space (X,M).
Then the followings are true.

(a) µ(∅) = 1.
(b) µ(

⋃r
i=1Ai) =

∏r
i=1 µ(Ai), for all pair wise disjoint Ai ∈M, and for

all r = 1, 2, ....

(c) If A ⊆ B,A ∈M, and B ∈M, then µ(A) ≤ µ(B).
(d) If A1 ⊆ A2 ⊆...in M, and if A =

⋃∞
i=1Ai, then µ(An) → µ(A) as

n→∞.
(e) If A1 ⊇ A2 ⊇ ...in M, µ(A1) < ∞, and if A =

⋂∞
i=1Ai , then

µ(An)→ µ(A) as n→∞.

Constructing Lebesgue measure can be done by means of Lebesgue outer
measure, as it is explained in the book [5]. This method is used in the next
example.
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Example 5.4. LetX = (0,∞). For each interval [a, b] in (0,∞) with a ≤ b,
let us define µ∗([a, b]) = µ∗((a, b]) = µ∗([a, b)) = µ∗((a, b)) = b

a . If a = 0 or
b =∞ with a < b, let us define µ∗((a, b)) =∞. If a = 0 and b ∈ (0,∞), let
us define µ∗((a, b]) =∞. If a ∈ (0,∞) and b =∞, let us define µ∗([a, b)) =

∞. For a subset A of (0,∞), let us define µ∗(A) = inf
∏∞
i=1 µ

∗(Ii) , where
the infimum is taken over all countable collections (Ii)

∞
i=1 of intervals of the

types mentioned above satisfying
⋃∞
i=1 Ii ⊇ A. Let M be the collection of

all (classical) Lebesgue measurable subsets of (0,∞). Define µ : M→ [1,∞]

by µ(A) = µ∗(A), for all A ∈ M. Then µ is a sm-measure on M. Let us
call it Lebesgue sm-measure.

Definition 5.5. Let (X,M, µ) be a sm-measure space. Let s : X → (0,∞)

be a simple measurable function of the form s =
∑n

i=1 αiχAi , where αi
are distinct positive numbers and Ai = {x ∈ X : s(x) = αi}. Let A ∈ M.
Define sm-Lebesgue integral of s over A by SMAsdµ =

∏n
i=1(µ(Ai

⋂
A))αi

. Let f : X → [0,∞] be a measurable function. Then, let us define the
sm-Lebesgue integral of f over A by SMAfdµ = supSMAsdµ , where the
supremum is taken over all simple measurable functions s : X → (0,∞)

satisfying 0 < s(x) ≤ f(x), ∀x ∈ X.

Proposition 5.6. Let (X,M, µ) be a sm-measure space. Let f : X → [0,∞]

and g : X → [0,∞] be measurable functions. Then the followings are true.

(a) If 0 ≤ f ≤ g, then 1 ≤ SMEfdµ ≤ SME gdµ,∀E ∈M.
(b) If A ⊆ B in M, then SMAfdµ ≤ SMBfdµ.
(c) If c ∈ [0,∞) is a constant, then SME(cf)dµ ≤ (SMEfdµ)c, ∀E ∈

M.
(d) If E ∈M, and f(x) = 1, ∀x ∈ E, then SMEfdµ = µ(E).
(e) If µ(E) = 1, then SMEfdµ = 1 even if f(x) =∞, ∀x ∈ E.
(f) If E ∈M, then SMEfdµ = SMXχEfdµ .

Let (X,M, µ) be a sm-measure space. Let λ = log µ . Then (X,M, λ)

is a positive measure space. If f : X → [0,∞] is a measurable function,
then SMEfdµ = exp

∫
E fdλ,∀E ∈ M. Similarly, for a given positive

measure space (X,M, λ), if µ = expλ, then (X,M, µ) is a sm-measure
space, and

∫
E fdλ = logSMEfdµ,∀E ∈ M , for every measurable function

f : X → [0,∞] . One may use these transformations to derive results. Next
Proposition 5.7 is a counterpart of Proposition 1.25 in [6], but a direct proof
is given without using exponential-logarithmic transformations.
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Proposition 5.7. Let (X,M, µ) be a sm-measure space. Let s : X → (0,∞)

and t : X → (0,∞) be simple measurable functions. Define ϕ : M→ [1,∞]

by ϕ(E) = SMEsdµ, ∀E ∈ M. Then ϕ is a sm-measure on M. Also,
SME(s+ t)dµ = (SMEsdµ)(SMEtdµ), ∀E ∈M.

Proof. Let s =
∑n

i=1 αiχAi , where αi are distinct positive numbers and
Ai = {x ∈ X : s(x) = αi}. Let E1, E2,... be disjoint measurable sets. Let
E =

⋃∞
r=1Er. Then

ϕ(E) =

n∏
i=1

(µ(Ai ∩ E))αi =

n∏
i=1

( ∞∏
r=1

(µ(Ai ∩ Er))αi

)
=

∞∏
r=1

( n∏
i=1

(µ(Ai ∩ Er))αi

)
=
∞∏
r=1

ϕ(Er).

This proves that ϕ is a sm-measure. Since E 7→ SME(s + t)dµ,E 7→
SMEsdµ , and E 7→ SMEtdµ are sm- measures, it follows as in the proof
of Proposition 1.25 in [6] that SME(s+ t)dµ = (SMEsdµ)(SMEtdµ),∀E ∈
M. �

Proposition 5.8. Let (X,M, µ) be a sm-measure space. Let (fn)∞n=1 be a
sequence of measurable functions on X such that 0 ≤ f1(x) ≤ f2(x) ≤ ... ≤
∞, and such that fn(x) → f(x) as n → ∞. Then SMXfndµ → SMXfdµ

as n→∞.

Proof. Let λ = logµ. Then, by the classical monotone convergence theorem,∫
X fndλ →

∫
X fdλ as n → ∞. It can be concluded with a convention for

special cases that SMXfndµ = exp
∫
X fndλ → exp

∫
X fdλ = SMXfdµ as

n→∞. �

Proposition 5.8 is a counterpart of the classical monotone convergence
theorem. The next Theorem 5.9 is a counterpart of Theorem 1.27 in [6].

Theorem 5.9. Let (X,M, µ) be a sm-measure space. Let fn : X → [0,∞]

be measurable, for n = 1, 2,.... Let f(x) =
∑∞

n=1 fn(x),∀x ∈ X. Then
SMXfdµ =

∏∞
n=1 SMXfndµ.

The next one is a counterpart of the classical Fatou’s lemma.

Theorem 5.10. Let (X,M, µ) be a sm-measure space. Let fn : X → [0,∞]

be measurable, for n = 1, 2,...
Then SMX(lim infn→∞ fn)dµ ≤ lim infn→∞ SMXfndµ.
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Next Theorem 5.11 is a counterpart of Theorem 1.29 in [6].

Theorem 5.11. Let (X,M, µ) be a sm-measure space. Let f : X →
[0,∞] be a measurable function. Define ϕ : M → [1,∞] by ϕ(E) =

SMEfdµ,∀E ∈M. Then ϕ is a sm-measure on M. Also, if g : X → [0,∞]

is measurable, then SMX gdϕ = SMX gfdµ.

Proof. Let E1, E2,... be disjoint measurable sets. Let E =
⋃∞
i=1Ei. Then

χEf =
∑∞

i=1 χEif . By Theorem 5.9, ϕ(E) = SMXχEfdµ =
∏∞
i=1 SMEifdµ =∏∞

i=1 ϕ(Ei). Also, ϕ(∅) = 1. Thus, ϕ is a sm-measure. Since SMXχEdϕ =

ϕ(E) = SMXχEfdµ , then SMXsdϕ = SMXχEsdµ, ∀E ∈ M , for every
simple measurable function s : X → (0,∞). Now, Proposition 5.8 implies
that SMXgdϕ = SMXgfdµ. �

Next Theorem 5.12 is a counterpart of Theorem 1.39(a) in [6].

Theorem 5.12. Let (X,M, µ) be a sm-measure space. Let f : X → [0,∞]

be a measurable function. Let E ∈M. Suppose SMEfdµ = 1. Then f = 0

almost everywhere on E (see Remark 5.2).

Proof. Let λ = logµ. Then
∫
E fdλ = 0. Theorem 1.39 (a) in [6] implies that

f = 0 almost everywhere on E. That is, µ({x ∈ E : f(x) 6= 0}) = 1. �

For a given sm-measure space (X,M, µ) , and for all functions f : X →
[0,∞], if Λf = Λ(f) = SMXfdµ, then Λ(f + g) = (Λf)(Λg),Λ(cf) =

(Λf)c, and Λ(f) ≥ 1, for all f : X → [0,∞], g : X → [0,∞], and c ≥ 0.
Next Theorem 5.13 is a counter part of Theorem 2.14 in [6], the Riesz
representation theorem.

Theorem 5.13. Let X be a locally compact Hausdorff space. Let C+
c (X) =

{f : X → [0,∞):
f is continuous on X with compact support } = {f : X → [0,∞) : f ∈
Cc(X)}. Let Λ : C+

c (X) → [1,∞) be a functional satisfying Λ(f + g) =

(Λf)(Λg),and Λ(cf) = (Λf)c,∀f, g ∈ C+
c (X), and ∀c ≥ 0. Then there is a

σ-algebra M in X which contains all Borel subsets of X, and there exists a
unique sm-measure µ on M having the following properties.

(a) Λf = SMXfdµ,∀f ∈ C+
c (X) .

(b) µ(K) <∞, for every compact set K ⊆ X.
(c) µ(E) = inf{µ(V ) : E ⊆ V, V open},∀E ∈M

(d) The relation µ(E) = sup{µ(K) : K ⊆ E,K compact} holds for
every open set E, and for every E ∈M with µ(E) <∞.
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(e) If E ∈M, A ⊆ E, and µ(E) = 1, then A ∈M .

Proof. Define Λ̃ : C+
c (X) → [0,∞) by Λ̃(f) = log Λf, ∀f ∈ C+

c (X) . Then
Λ̃(f + g) = Λ̃(f) + Λ̃(g), and Λ̃(cf) = cΛ̃(f), ∀f, g ∈ C+

c (X), ∀c ≥ 0. For
each f ∈ C+

c (X) , define Λ̃(f) = Λ̃(f+) − Λ̃(f−), where f+ and f− are
positive part and negative part of f , respectively. Then Λ̃ : Cc(X) →
(−∞,+∞) is a positive linear functional, as it was shown in the proof of
Theorem 1.32 in [6]. By Theorem 2.14 in [6], there is a σ-algebra M in X
which contains all Borel subsets of X, and there exists a unique measure λ
on M satisfying the properties (b), (c), (d), (e) with replacement of µ by
λ, and 1 by 0, and satisfying the relation Λ̃f =

∫
X fdλ,∀f ∈ Cc(X). Then

Λf = exp Λ̃f = exp
∫
X fdλ = SMXfdµ,∀f ∈ C+

c (X) �

Remark 5.14. There is another method to construct Lebesgue sm-measure
in (0,∞), by using the Riesz representation theorem, Theorem 5.13, apart
from the method used in Example 5.4.

Let X = (0,∞) be endowed with the usual Euclidean topology so that
it is a locally compact Hausdorff space. For each f ∈ C+

c (X), there is
a bounded interval [a, b] ⊆ (0,∞) such that f(x) = 0 for all x /∈ [a, b].
Define Λ : C+

c (X) → [1,∞) by using sm-Riemann integration: Λ(f) =

SM b
af(x)dx, when f(x) = 0 for all x /∈ [a, b]. Then Λ(f+g) = (Λf)(Λg),and

Λ(cf) = (Λf)c,∀f, g ∈ C+
c (X),and ∀c ≥ 0. Then M constructed indirectly

in Theorem 5.13 is the collection of all Lebesgue measurable subsets of X
and the sm-measure µ constructed is the Lebesgue sm-measure on M .

There are obvious counterparts of Theorem 2.17, Theorem 2.18, and
Theorem 1.41 in [6], and there are partial counterparts of Theorem 2.24,
Theorem 6.10(a), and Theorem 6.11 in [6]. They are not to be stated.
Next Theorem 5.15 is a counterpart of Theorem 11.33 in [5], and this is a
generalization of Proposition 4.2.

Theorem 5.15. Let [a, b] ⊆ (0,∞). Let f : [a, b] → [m,M ] ⊆ (0,∞)

be a given function. Then f is sm-Riemann integrable over [a, b] if and
only if it is continuous almost everywhere on [a, b]. Moreover, in this case,
SM[a,b]fdµ = SM b

af(x)dx , where µ is the Lebesgue sm-measure.

Proof. If P = {x0, x1, ..., xn}, a = x0 < x1 < ... < xn = b is a partition, de-
fine UP (a) = LP (a) = f(a), and define UP (x) = Mi = supt∈[xi,xi+1] f(t) and
LP (x) = mi = inft∈[xi,xi+1] f(t) for xi < x ≤ xi+1 , when i = 0, 1, 2, ..., n−1.
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Then L(P, f) = SM[a,b]LPdµ and U(P, f) = SM[a,b]UPdµ. Suppose f is sm-
Riemann integrable over [a, b]. Then there is a sequence of partitions P1 ⊆
P2 ⊆ ... of [a, b] such that U(P,f)

L(P,f) <
k+1
k whenever P is a partition such that

P ⊇ Pk, for k = 1, 2, . . . . Let L(x) = limn→∞ LPk
(x) = supk=1,2,... LPk

(x)

and U(x) = limn→∞ UPk
(x) = infk=1,2,... UPk

(x), for x ∈ [a, b]. Then
L ≤ f ≤ U and, by the monotone convergence Theorem 5.8, SM[a,b]Ldµ =

SM b
af(x)dx = SM[a,b]Udµ . Since SM[a,b](U − L)dµ = 1, then U − L = 0

almost everywhere in [a, b]. Since, for x /∈
⋃∞
k=1 Pk, U(x) = L(x) if and

only if f is continuous at x, then f continuous almost everywhere in [a, b].
Also, SM[a,b]fdµ = SM b

af(x)dx.
Suppose f is continuous almost everywhere in [a, b]. Then there is a

sequence of partitions P1 ⊆ P2 ⊆ ... of [a, b] such that SM[a,b]UPk
dµ

SM[a,b]LPk
dµ → 1 as

k → ∞, for functions UPk
and LPk

defined above. Thus, U(Pk,f)
L(Pk,f)

→ 1 as
k →∞ This proves that f is sm-Riemann integrable over [a, b]. �

Corollary 5.16. Let [a, b] ⊆ (0,∞). Let f : [a, b] → [m,M ] ⊆ (0,∞) be a
monotone function. Then f is sm-Riemann integrable over [a, b].

Concluding comments

If a positive real valued function f is sm-differentiable at a point x0, then
one may try to prove that limx→x0

log f(x)−log f(x0)
log x−log x0 = f (sm)(x0), and one

may try to extend this as a definition of a g-singular derivative as a limit
limx→x0

g(f(x))−g(f(x0))
g(x)−g(x0) . This article is successful in providing a definition

for sm-differentiability such that the definition does not depend on any
specific function g. This article has illustrated methods of using exponential-
logarithmic transformations as well as methods of non-using exponential-
logarithmic transformations, in arguments. However, it is suggested to avoid
using exponential-logarithmic transformations in arguments, just to avoid
missing something. Introduction of concepts should not involve specific
functions. It is expected that one should know such singular analysis exists
in nature of mathematics.
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IRRATIONAL NUMBERS AND STURM-LIOUVILLE
PROBLEMS

İBRAHIM ADALAR
(Received : 12 - 07 - 2021 ; Revised : 16 - 12 - 2021)

Abstract. In this paper, we establish a relationship between bound-
ary value problems and irrational numbers. In particular, we exploit
eigenvalues of Sturm-Liouville problems to give a new proof of the ir-
rationality of tanr for nonzero rational r.

1. Introduction

The idea of combining the theory of linear differential equations with
the question of irrationality of certain numbers is very appealing. Ram
Murty and Kumar Murty consider a solution y(x) of a linear differential
equation of order n,

p0y
(n) + p1y

(n−1) + ...+ pny = 0

where pi are rational numbers with pn 6= 0 in [7]. y is defined on [0, r].

They show that if y(i)(0), y(i)(r) are rational for i = 0, ..., n − 1 then r is
irrational. We note the following corollaries of the theorem in [7].

Corollary 1.1. π2 is irrational.

Corollary 1.2. er, sin r, cos r are irrational for nonzero rational r.

Trigonometric functions sin r and cos r can be seen as solutions of linear
differential equations. But, tan r cannot be a solution of linear differential
equations with constant coefficients. Because of that, the irrationality of
the tangent function for nonzero rational values of the arguments cannot
be proved by a direct calculation using the result in [7].

In this study, we reformulate the special case n = 2 of the result of
Ram Murty and Kumar Murty. We give new proofs of the irrationality
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of π2 and tan r for nonzero rational r. In addition to we show that the
relationship between spectral theory and irrationality by using boundary
value problems.

Consider the Sturm-Liouville problem

`y := −y′′ + cy = λy, x ∈ [0, r] , (1.1)

y′(0)− hy(0) = 0, (1.2)

y′(r) +Hy(r) = 0, (1.3)

where r, h ∈ Q, c,H ∈ R and λ is a spectral parameter. The values of the λ
parameter for which (1.1)-(1.3) has nonzero solutions are called eigenvalues
{λn}n≥1 and the corresponding nontrivial solutions are called eigenfunc-
tions {yn}n≥1 . Some important results on the properties of eigenvalues and
eigenfunctions of Sturm–Liouville problem have been published in various
publications (see, [5, 6, 9]) and the references therein). It is known that
the spectrum of such problems consists of countably many real eigenvalues,
which have no finite limit point.

We can show that if r is rational, y(0) is rational and y′(0) − hy(0) =
0 for some rational h, then y(r) is irrational or the number H given by
y′(r) +Hy(r) = 0 is irrational. In this way one obtains precisely the result
of Ram Murty and Kumar Murty for n = 2. As a result, we can give
following theorem by using same techniques in [7].

Theorem 1.3. Assume that h and r are rational. If (c− λn) ∈ Q\ {0}
and yn(0) ∈ Q for some n ∈ N then yn(r) or H is irrational.

We make the proof simpler and give it in Section 3. The following ex-
amples and corollaries illustrate how Theorem 1.3 can be used to advantage.

Corollary 1.4. tan r is irrational for nonzero rational r.

Proof. As an application, we can present the proof by two steps.
Step 1: Let us consider the following boundary value problem

−y′′ = λy, x ∈ [0, r]

y′(0) = 0

y′(r) + (tan r) y(r) = 0.
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It is clear that λ1 = 1 and y1(x) = cosx for this problem. This problem
satisfies the assumptions of Theorem 1.3 by λ1. Hence, we have that if r is
rational then at least one of the y1(r) = cos r and H = (tan r) is irrational.

Step 2: Now, we assume that tan r is rational for rational r 6= 0, so
cos 2r = 1−tan2 r

1+tan2 r
must be rational. Similar to Niven’s proof in [8, pp. 21],

it is concluded that if r is rational then cos r is rational. This contradiction
completes the proof. �

Remark 1.5. Lambert in 1761 proved that tan r is irrational for nonzero
rational r [1, pp. 129-146]. Since then, this result has been given with
various techniques (see, for example, [8, Corollary 2.7], [10]). It can be seen
explanations about the necessity of irrationality of cos r for nonzero rational
r in Niven’s proof [8, pp. 21]. In the proof of Corollary 1.4, we do not need
the knowledge of irrationality of cos r for nonzero rational r.

Corollary 1.6. Since tanπ = 0 ∈ Q, π is irrational.

On the other hand, if condition (1.3) is replaced by

y′(r) + f(λ)y(r) = 0,

we obtain the Sturm-Liouville problem with eigenparameter-dependent bound-
ary condition for a class of functions f. The properties of eigenvalues of this
kind of the problem have been studied in various publications (see, for ex-
ample, [2, 3, 4]). We note that, we can determine suitable H = f(λn) to
show the irrationality of certain eigenvalue λn by using Theorem 1.3.

Example 1.7. Consider the problem

−y′′ = λy, x ∈ [0, 1]

y′(0) = 0

y′(1) +

(
λ− λ2

π2

)
y(1) = 0.

It is easy to check that λ1 = λ2 = 0 is a double eigenvalue and all other
simple eigenvalues are the solutions of the equation

tan
√
λ =
√
λ

(
1− λ

π2

)
.

λ3 = π2 is a simple eigenvalue, h = 0 and y3(x) = cosπx. y3(0), y3(1) and
H = f(λ3) ∈ Q.
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Corollary 1.8. According to Example 1.7 and Theorem 1.3, π2 is irra-
tional.

By using Theorem 1.3, we can determine suitable coefficients of the
problem (1.1)-(1.3) from knowledge of the eigenvalues for λ < c. Thus, we
show the irrationality of certain exponential values. In a similar way, we
find that following example.

Example 1.9. Let us consider

−y′′ + 2y = λy, x ∈ [0, r]

y′(0)− y(0) = 0

y′(r)− y(r) = 0.

This problem satisfies the assumptions of the Theorem 1.3 by λ1 = 1 and
y1(x) = ex.

Corollary 1.10. According to Example 1.9 and Theorem 1.3, er is irra-
tional for nonzero rational r.

2. Eigenvalues and the Tangent Function

We have that the eigenvalues of the problem (1.1)-(1.3) satisfy the fol-
lowing equation [5, pp. 78]

tan
(
r
√
λ− c

)
=

h+H√
λ− c− hH√

λ−c

(2.1)

for λ > c. Thus, we show the relation between irrationality of tan r and the
eigenvalues of the problem (1.1)-(1.3). In doing this, we obtain the following
corollaries.

Corollary 2.1. According to (2.1) and Corollary 1.4, if
√
λn − c, r 6= 0 and

h are rational for ∃ n ∈ N then H is irrational.

Example 2.2. Consider the problem

−y′′ = λ2y, x ∈ [0, r] (2.2)

y′(0) = 0 (2.3)

y′(r) + λ2y(r) = 0. (2.4)
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The positive eigenvalues are the roots of the following equation

tan rλ = λ. (2.5)

Corollary 2.3. According to (2.5) and Corollary 1.4, if r is nonzero ratio-
nal, then the positive eigenvaules {λn}n≥1 of (2.2)-(2.4) are irrational.

By considering parameter-dependent boundary conditions instead of
(1.2), (1.3), we can obtain some stronger results on eigenvalues.

Example 2.4. Let g(λ) = h and H = f(λ) for f and g arbitary function.
Consider the problem

−y′′ = λ2y, x ∈ [0, r] (2.6)

y′(0)− g(λ)y(0) = 0 (2.7)

y′(r) + f(λ)y(r) = 0 (2.8)

The eigenvalues are the roots of the following equation

tan rλ =
(f(λ) + g(λ))λ

λ2 − f(λ)g(λ)
. (2.9)

Corollary 2.5. Assume that g(λn) and f(λn) are rational for all λn. Ac-
cording to (2.9) and Corollary 1.4, if r is nonzero rational, then the problem
(2.6)-(2.8) has no rational eigenvalue.

3. Proof of the Theorem 1.3

Proof. Let r = a
b , (a, b) = 1, a, b ∈ Z+ and the eigenfunction yn(x) cor-

responding to eigenvalue λn. Under the assumptions of the Theorem , we
define the functions

fm(x) =
(bx)m(a− bx)m

m!
,

Fm(x) = fm(x)−
f
(2)
m (x)

λn − c
+

f
(4)
m (x)

(λn − c)2
− · · ·+ (−1)m f (2m)

m (x)

(λn − c)m

where m ∈ N. Put
Ly = −y′′ + (c− λn) y.

Integrating by parts twice, we obtain
r∫

0

Fm(x)Lyn(x)dx−
r∫

0

yn(x)LFm(x)dx =Wr [yn, Fm]−W0 [yn, Fm]
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where

Wx [yn, Fm] =

∣∣∣∣∣ yn(x) Fm(x)

y′n(x) F ′m(x)

∣∣∣∣∣ .
We have Lyn(x) = 0 and LFm(x) = (c− λn) fm(x), so that

−
r∫

0

yn(x)LFm(x)dx = F ′m(r)yn(r)−Fm(r)y′n(r)+y′n(0)Fm(0)−yn(0)F ′m(0).

Since yn(x) satisfies the boundary conditions (1.2) and (1.3), one can obtain

− (c− λn)
r∫

0

yn(x)fm(x)dx = F ′m(r)yn(r) + Fm(r)Hyn(r)

+ hyn(0)Fm(0)− yn(0)F ′m(0).

It is easy to check that f (k)m (0) and f (k)m (r) are integers for k ≥ 0. It follows
that

(
(c− λn)m F (k)

m (x)
)
is an integer for x = 0 and x = r, k ≥ 0.

We assume that the yn(r) and H are rational. A denotes the products
of the denominators of r, (c− λn)m+1, yn(0), h, yn(r) and H. Thus,(
A (c− λn)m

(
F ′m(r)yn(r) + Fm(r)Hyn(r) + hyn(0)Fm(0)− yn(0)F ′m(0)

))
(3.1)

is an integer. For |yn(x)| ≤ B and |bx(a− bx)| ≤ C on [0, r] , we have that

0 <

∣∣∣∣∣∣A (c− λn)m+1

r∫
0

yn(x)fm(x)dx

∣∣∣∣∣∣ < (c− λn)m+1 rABCm

m!
.

We obtain

0 <

∣∣∣∣∣∣A (c− λn)m+1

r∫
0

yn(x)fm(x)dx

∣∣∣∣∣∣ < 1

for sufficiently large m. This contradicts with (3.1). Thus, both yn(r) and
H cannot be rational at the same time. The proof is complete. �
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A NOTE ON APPLICATIONS OF THE
GREGORY-LEIBNIZ SERIES FOR π AND ITS

GENERALIZATION

A. K. RATHIE AND R. B. PARIS

(Received : 23 - 08 - 2021 ; Revised : 18 - 12 - 2021)

Abstract. It is shown how different groupings of the terms in the
Gregory-Leibniz series for π and some other series can be evaluated
using a hypergeometric series approach. A natural generalization of
the Gregory-Leibniz series is also considered. Several interesting special
cases are given.

1. Introduction

The well-known Gregory-Leibniz series for π is given by

S1 = 1− 1

3
+

1

5
− 1

7
+ · · · =

∞∑
n=0

(−1)n

2n+ 1
=
π

4
. (1)

A more subtle problem is the evaluation of the series

Sm =

∞∑
n=0

(−1)bn/mc

2n+ 1
(2)

for positive integer m, when the terms in (1) are taken in groups of m with
alternating signs between the groups. For example, when m = 2 and m = 3

we have

S2 =

(
1 +

1

3

)
−
(

1

5
+

1

7

)
+

(
1

9
+

1

11

)
− · · ·

and
S3 =

(
1 +

1

3
+

1

5

)
−
(

1

7
+

1

9
+

1

11

)
+ · · · .
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In 1978, Lew [5] proposed the evaluation of S2 and S3 in the Problems
Section of The American Mathematical Monthly. Berndt [2] employed a
Fourier series representation combined with Cauchy’s residue theorem ap-
plied to a contour integral to evaluate these series. Subsequently Cohen [4]
determined the sum of these series by a Fourier series approach combined
with use of the Chebyshev polynomials.

Both these approaches used quite sophisticated analysis to evaluate
cases of Sm. Our aim in this note is to demonstrate that these sums can
be established in an alternative way by using a hypergeometric series ap-
proach. To achieve this we exploit two classical summation formulas for the
hypergeometric series of negative unit argument. We show the details of
this evaluation in the cases m = 2, 3 and 4, and how the procedure can then
be extended quite naturally to determine the sum Sm for arbitrary positive
integer m.

We first recall the definition of the generalized hypergeometric function
with p numerator and q denominator parameters

pFq

(
a1, a2, . . . , ap

b1, b2, . . . , bq
;x

)
=

∞∑
n=0

(a1)n(a2)n . . . (ap)n
(b1)n(b2)n . . . (bq)n

xn

n!
, (3)

where (a)n denotes the Pochhammer symbol (or rising factorial since (1)n =

n!) defined by

(a)n =
Γ(a+ n)

Γ(a)
=

{
a(a+ 1) . . . (a+ n− 1) (n = 1, 2, . . .)

1 (n = 0).

For more details about the hypergeometric function and its convergence
conditions, we refer to the standard texts of Andrews et al. [1] and Slater
[8]. We shall make use of the following two classical summation formulas
[1, p. 126, 148], [8, p. 243]:

2F1

(
a, b

1 + a− b
;−1

)
=

Γ(1 + 1
2a)Γ(1 + a− b)

Γ(1 + a)Γ(1 + 1
2a− b)

(4)

and

4F3

(
a, 1 + 1

2a, b, c
1
2a, 1 + a− b, 1 + a− c

;−1

)
=

Γ(1 + a− b) Γ(1 + a− c)
Γ(1 + a) Γ(1 + a− b− c)

. (5)
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The summation formula (4) is known in the literature as Kummer’s sum-
mation theorem.

In Section 2, we discuss the evaluation of the series Sm in (2) by making
use of the summation formulas (4) and (5). In Section 3 some additional
examples are presented. In Section 4, a summation formula for the series
3F2(1), when the parameters depend on a non-negative integer n, is obtained
as a consequence of examining the tail of the series S1 truncated after n
terms. We conclude with a natural extension of the Gregory-Leibniz series.

2. Summation of certain π-series

To illustrate the hypergeometric series approach, we first show that
S1 = π/4. This sum may be written in hypergeometric form as

S1 =
1

2

∞∑
n=0

(−1)n

n+ 1
2

=
1

2

∞∑
n=0

(−1)n
Γ(n+ 1

2)

Γ(n+ 3
2)

=
∞∑
n=0

(−1)n
(12)n (1)n

(32)n n!

= 2F1

(
1, 1/2

3/2
;−1

)
.

The 2F1 series can now be evaluated with the help of (4) by taking a = 1

and b = 1
2 and we immediately obtain S1 = π/4.

Evaluation of S2. The nth term of S2 is (−1)n
{

1
(4n+1) + 1

(4n+3)

}
, so that

S2 =

∞∑
n=0

(−1)n
(

1

4n+ 1
+

1

4n+ 3

)
=

1

2

∞∑
n=0

(−1)n (n+ 1
2)

(n+ 1
4) (n+ 3

4)
.

Proceeding as above, we arrive at

S2 =
1

2

∞∑
n=0

(−1)n
Γ(n+ 3

2) Γ(n+ 1
4) Γ(n+ 3

4)

Γ(n+ 1
2) Γ(n+ 5

4) Γ(n+ 7
4)

=
4

3
4F3

(
1, 3/2, 1/4, 3/4

1/2, 5/4, 7/4
;−1

)
.

The 4F3 series can now be evaluated by (5) by taking a = 1, b = 1/4 and
c = 3/4 to find after some simplification the result S2 = π

√
2/4.
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Evaluation of S3. The nth term of S3 is (−1)n
{

1
(6n+1) + 1

(6n+3) + 1
(6n+5)

}
,

so that

S3 =
∞∑
n=0

(−1)n
(

1

6n+ 1
+

1

6n+ 3
+

1

6n+ 5

)

=
∞∑
n=0

(−1)n

6n+ 3
+
∞∑
n=0

(−1)n
(

1

6n+ 1
+

1

6n+ 5

)
.

Now, as above, it is not difficult to see that
∞∑
n=0

(−1)n

6n+ 3
=

1

3
2F1

(
1, 1/2

3/2
;−1

)
=

π

12

by (4), and
∞∑
n=0

(−1)n
(

1

6n+ 1
+

1

6n+ 5

)
=

8

5
4F3

(
1, 3/2, 1/6, 5/6

1/2, 7/6, 11/6
;−1

)
=
π

3

by (5). Thus we obtain the result S3 = 5π/12.
Evaluation of S4. In the case m = 4, we have the following series

S4 =

(
1 +

1

3
+

1

5
+

1

7

)
−
(

1

9
+

1

11
+

1

13
+

1

15

)
+

(
1

17
+

1

19
+

1

21
+

1

23

)
− · · ·

=
∞∑
n=0

(−1)n
(

1

8n+ 1
+

1

8n+ 3
+

1

8n+ 5
+

1

8n+ 7

)

=
∞∑
n=0

(−1)n
(

1

8n+ 1
+

1

8n+ 7

)
+
∞∑
n=0

(−1)n
(

1

8n+ 3
+

1

8n+ 5

)
.

As above, we find that
∞∑
n=0

(−1)n
(

1

8n+ 1
+

1

8n+ 7

)
=

8

7
4F3

(
1, 3/2, 1/8, 7/8

1/2, 9/8, 15/8
;−1

)

=
1

8
Γ

(
1

8

)
Γ

(
7

8

)
by (5). Similarly, we have

∞∑
n=0

(−1)n
(

1

8n+ 3
+

1

8n+ 5

)
=

8

15
4F3

(
1, 3/2, 3/8, 5/8

1/2, 11/8, 13/8
;−1

)

=
1

8
Γ

(
3

8

)
Γ

(
5

8

)
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so that, upon use of the reflection formula for the gamma function

Γ(x)Γ(1− x) =
π

sinπx
,

we obtain
S4 =

π

8

(
cosec

π

8
+ cosec

3π

8

)
.

Having shown how to evaluate Sm for 1 ≤ m ≤ 4, we can now deal with
the general case. We have, for positive integer m,

Sm =

(
1 +

1

3
+ · · ·+ 1

2m− 1

)
−
(

1

2m+ 1
+

1

2m+ 3
+ · · ·+ 1

4m− 1

)
+· · ·

=
∞∑
n=0

(−1)n
(

1

2mn+ 1
+

1

2mn+ 3
+ · · ·+ 1

2mn+ 2m− 1

)
.

If we define the following sum involving pairs of the above fractions

H(p, 2m− p) :=

∞∑
n=0

(−1)n
(

1

2mn+ p
+

1

2mn+ 2m− p

)
for integer p satisfying 1 ≤ p ≤ 2m− 1, we observe that, with d := p

2m ,

H(p, 2m− p) =
1

m

∞∑
n=0

(−1)n(n+ 1
2)

(n+ d)(n+ 1− d)

=
2m

(2m− p)p 4F3

(
1, 3/2, d, 1− d
1/2, 1 + d, 2− d

;−1

)

=
2m

p (2m− p)
Γ(2− d)Γ(1 + d)

=
π

2m
cosec

πp

2m

by (5) and use of the reflection formula for the gamma function.
Then we may write the series Sm, making use of the symmetry property

H(p, 2m− p) = H(2m− p, p), as

Sm =
1

2

m−1∑
k=0

H(2k + 1, 2m− 2k − 1) =
π

4m

m−1∑
k=0

cosec
(2k + 1)π

2m
(6)

for positive integer m ≥ 1. It can be readily verified that this result reduces
to the above evaluations for Sm when 1 ≤ m ≤ 4. We remark that (6)
agrees with the result stated in the editorial section associated with [2].
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3. A summation formula for a 3F2(1) series

As an application of the Gregory-Leibniz series for π in (1), we shall
show how it can be employed to establish the following summation formula
for the particular 3F2 series of positive unit argument given by

3F2

(
1, 2n+1

4 , 2n+3
4

2n+5
4 , 2n+7

4

; 1

)
=

1

2
(−1)n (2n+ 1) (2n+ 3)

{
π

4
−
n−1∑
r=0

(−1)r

2r + 1

}
,

(7)
where n is a non-negative integer. We note that in series form this can be
written as

1

(2n+ 1)(2n+ 3)
+

1

(2n+ 5)(2n+ 7)
+

1

(2n+ 9)(2n+ 11)
+ · · ·

=
1

2
(−1)n

{
π

4
−
n−1∑
r=0

(−1)r

2r + 1

}
.

From (1), we subtract off the first n terms of the series to obtain

π

4
−
n−1∑
r=0

(−1)r

2r + 1
=
∞∑
r=n

(−1)r

2r + 1

= (−1)n
{(

1

2n+ 1
− 1

2n+ 3

)
+

(
1

2n+ 5
− 1

2n+ 7

)
+ · · ·

}
= (−1)n

∞∑
s=0

{
1

4s+ 2n+ 1
− 1

4s+ 2n+ 3

}
.

Proceeding as in Section 2, we then find that

π

4
−
n−1∑
r=0

(−1)r

2r + 1
=

(−1)n

8

∞∑
s=0

1

(2n+1
4 + s)(2n+3

4 + s)

=
2 (−1)n

(2n+ 1) (2n+ 3)

∞∑
s=0

(1)s (2n+1
4 )s (2n+3

4 )s

(2n+5
4 )s (2n+7

4 )s s!
.

Identification of the above sum as a 3F2(1) series then produces the result
stated in (7).

As an example, we give the following evaluations for n = 0, 1, 2, 3 (where
the cases corresponding to n = 0, 1 are recorded in [6]):
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3F2

(
1, 1/4, 3/4

5/4, 7/4
; 1

)
=

3π

8
,

3F2

(
1, 3/4, 5/4

7/4, 9/4
; 1

)
=

15

8
(4− π),

3F2

(
1, 5/4, 7/4

9/4, 11/4
; 1

)
=

35

24
(3π − 8),

3F2

(
1, 7/4, 9/4

11/4, 13/4
; 1

)
=

21

40
(52− 15π).

Alternatively, the above results can be written in the form:

1

1 · 3
+

1

5 · 7
+

1

9 · 11
+ · · · =

π

8
,

1

3 · 5
+

1

7 · 9
+

1

11 · 13
+ · · · =

1

8
(4− π),

1

5 · 7
+

1

9 · 11
+

1

13 · 15
+ · · · =

1

24
(3π − 8),

1

7 · 9
+

1

11 · 13
+

1

15 · 17
+ · · · =

1

120
(52− 15π).

Similarly other results may be obtained.

The same procedure can be employed on other series. For example, the

well-known evaluation
∞∑
r=1

r−2 =
π2

6
yields

1

n2
3F2

(
1, n, n

n+ 1, n+ 1
; 1

)
=
π2

6
−
n−1∑
r=1

1

r2
,

where n is a positive integer. A different approach using continued frac-
tion representations of the tails of hypergeometric series to obtain similar
evaluations has been discussed in [3].
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4. Some related series

The series

S1 = 1− 1

5
+

1

7
− 1

11
+

1

13
− 1

17
+ · · · (8)

was considered by Cohen [4] who determined the sum by means of a Fourier
series approach combined with use of the Chebyshev polynomials. This
series may be written as

S1 =
∞∑
n=0

(
1

6n+ 1
− 1

6n+ 5

)

= 4
∞∑
n=0

1

(6n+ 1) (6n+ 5)

=
4

5
3F2

(
1, 1/6, 5/6

7/6, 11/6
; 1

)
.

By means of Dixon’s summation theorem for a hypergeometric series of
positive unit argument [8, p. 243]

3F2

(
a, b, c

1 + a− b, 1 + a− c
; 1

)

=
Γ(1 + 1

2a) Γ(1 + a− b) Γ(1 + a− c) Γ(1 + 1
2a− b− c)

Γ(1 + a)Γ(1 + 1
2a− b) Γ(1 + 1

2a− c) Γ(1 + a− b− c)
,

provided <(12a− b− c) > −1, we immediately deduce that S = π
2
√
3
.

A variation of the series (8) is obtained by grouping the terms in pairs,
namely

S2 = 1 +
1

5
−
(

1

7
+

1

11

)
+

(
1

13
+

1

17

)
− · · · .

This series can be expressed in the form

S2 =
∞∑
n=0

(−1)n
(

1

6n+ 1
+

1

6n+ 5

)

=
∞∑
n=0

(−1)n
12n+ 6

(6n+ 1) (6n+ 5)

=
6

5
4F3

(
1, 3/2, 1/6, 5/6

1/2, 7/6, 11/6
;−1

)
=
π

3
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by (4).

As a final example, consider the series

T =

(
1 +

1

5
+

1

9

)
−
(

1

11
+

1

15
+

1

19

)
+

(
1

21
+

1

25
+

1

29

)
− · · ·

=

∞∑
n=0

(−1)n
(

1

10n+ 1
+

1

10n+ 5
+

1

10n+ 9

)

=

∞∑
n=0

(−1)n

10n+ 5
+

∞∑
n=0

(−1)n (20n+ 10)

(10n+ 1) (10n+ 9)
.

The first series has the value

∞∑
n=0

(−1)n

10n+ 5
=

1

5
2F1

(
1, 1/2

3/2
;−1

)
=

π

20

by (4), and the second series has the value

∞∑
n=0

(−1)n (20n+ 10)

(10n+ 1) (10n+ 9)
=

10

9
4F3

(
1, 3/2, 1/10, 9/10

1/2, 11/10, 19/10
;−1

)
=

π

10 sin(π/10)

by (5). Thus we have

T =
π

20
+

π

10 sin(π/10)
= (3 + 2

√
5)
π

20
.

Concluding comments

To conclude, we mention that a natural generalization of the Gregory-
Leibniz series (1) is

U(n) = 1− 1

2n+3
+

1 · 3
(2n+3) (2n+5)

− 1 · 3 · 5
(2n+3) (2n+5) (2n+7)

+ · · ·

= 2F1

(
1, 1

2

n+ 3
2

;−1

)
for positive integer n (when n = 0 the series reduces to S1 given in (1)). If
we substitute the values a = 1, b = 1

2 into the generalization of Kummer’s
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theorem (4) in the form given in [6] (see also [7]):

2F1

(
a, b

1 + a− b+ n
;−1

)
=

2n−2b Γ(1 + a− b+ n) Γ(b− n)

Γ(b) Γ(a− 2b+ n+ 1)

×
n∑
r=0

(−1)r

(
n

r

)
Γ(12a− b+ 1

2 + 1
2n+ 1

2r)

Γ(12a+ 1
2 + 1

2r −
1
2n)

(n = 1, 2, 3, . . .),

we immediately obtain after use of the reflection formula for the gamma
function the result

U(n) =
2n−1

√
π (−1)n

n!

(
n+

1

2

) n∑
r=0

(−1)r

(
n

r

)
Γ(12 + 1

2r + 1
2n)

Γ(1 + 1
2r −

1
2n)

. (9)

Examples of these evaluations for n = 1, 2, 3 are:

1− 1

5
+

1 · 3
5 · 7

− 1 · 3
7 · 9

+ · · · =
3π

4
− 3

2

1− 1

7
+

1 · 3
7 · 9

− 1 · 3 · 5
7 · 9 · 11

+ · · · =
15π

8
− 5

1− 1

9
+

1 · 3
9 · 11

− 1 · 3 · 5
9 · 11 · 13

+ · · · =
35π

8
− 77

6
,

where the first evaluation is recorded in [6].
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PRIMES DIVIDING VALUES OF A GIVEN
POLYNOMIAL

DEVENDRA PRASAD
(Received : 27 - 08 - 2021 ; Revised : 27 - 09 - 2021)

Abstract. Let P (x) ∈ Z[x] be a polynomial. We give an easy and
new proof of the fact that the set of primes p such that p | P (n), for
some n ∈ Z, is infinite. We also get analog of this result for some
special domains.

1. Main results

Let P (x) ∈ Z[x] be a polynomial. Consider the set of primes p such
that p | f(n), for some n ∈ Z. It is known that this set is infinite. This
was proved for the first time by Schur and is called as Schur’s theorem (see
Schur [1]). In this article, we give a new proof of this fact. For a given
prime p and given number d, we denote the highest power of p dividing d

by wp(d). For instance, w2(12) = 22. Now, we state our main result.

Theorem 1.1. Let P (x) ∈ Z[x] be a polynomial. Then the set of primes p,
such that there exists n ∈ Z such that p | P (n) is infinite.

Proof. We prove by contradiction. Assume there are only finitely many
primes. We can label them as p1, p2, . . . , pr. There exist integers ki and ei

such that wpi(f(ki)) = peii ∀ 1 ≤ i ≤ r. If n0 is a solution of congruence
equations x ≡ ki (mod pei+1

i ), then f(n0) is divisible by peii but is not
divisible by pei+1

i for any 0 ≤ i ≤ r. This holds since m ≡ n (mod
∏

pei+1
i )

implies P (m) ≡ P (n) (mod
∏

pei+1
i ), so that if wpi(P (m)) = peii , then

wpi(P (n)) is also peii . Since n0 is a solution of the above congruence, n =

n0 + k
∏

pei+1
i is also a solution for every integer k. The equality P (n) =∏r

i=1 p
ei
i or P (n) = −

∏r
i=1 p

ei
i can hold only for finitely many solutions n of

x ≡ ki (mod pei+1
i ) Hence, there exist a solution nk of x ≡ ki (mod pei+1

i )

2010 Mathematics Subject Classification: 11A41
Key words and phrases: prime numbers
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such that
∏r

i=0 P
ei
i is a proper divisor of P (nk). Since pei+1

i cannot divide
P (nk), so there exists a prime other than p1, p2, . . . pr dividing P (nk), which
is a contradiction. Hence the result follows. �

By our approach, it is evident that the result holds for polynomials with
coefficients in a Dedekind domain or sometimes a domain.
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CHARACTERIZATIONS OF K-FRAMES IN 2-HILBERT
SPACES

P. GHOSH, S. ROY AND T. K. SAMANTA

(Received : 18 - 08 - 2020 ; Revised : 31 - 10 - 2021)

Abstract. In this paper our interest is to discuss a few properties of
K-frames in 2-Hilbert spaces and verify that sum of two K-frames is
also a K-frame in 2-Hilbert space. Also we shall describe the concept of
tight K-frames in 2-Hilbert spaces and some of their characterizations.

1. Introduction

In 1952, Duffin and Schaeffer introduced frames in Hilbert spaces in
their fundamental paper [1], they used frames as a tool in the study of
nonharmonic Fourier series. Later in 1986, frame theory was popularized
by Daubechies, Grossman, Meyer [2]. A frame for a Hilbert space is a
generalization of an orthonormal basis and this is such a tool that also
allows each vector in this space can be written as a linear combination of
elements from the frame but, linear independence among the frame elements
is not required. Such frames play an important role in Gabor and wavelet
analysis . Several generalizations of frames namely, G-frame [18], K-frames
[4] etc. have been introduced in recent times. K-frames for a separable
Hilbert space were introduced by Lara Gavruta to study the basic notions
about atomic system for a bounded linear operator. K-frames are more
generalization than the ordinary frames and many properties of ordinary
frames may not holds for such generalization of frames.

The concept of 2-inner product space was first introduced by Diminnie,
Gahler, White [9, 10], in 1970’s and thereafter notion of 2-norm induced
by the concept of 2-inner product space was first introduced by S. Gahler
[13]. The notion of a frame in a 2-inner product space has been introduced
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by A. Arefijamaal and G. Sadeghi [15] and they also established some fun-
damental properties of 2-frames for 2-inner product space. The concept of
2-atomic systems which is a generalization of families of local 2-atoms in a
2-inner product spaces were introduced by B. Dastourian and M. Janfada
[17] and they also defined 2-K-frames as the generalization of 2-frames.

In this paper, we shall discuss some properties of K-frame in 2-inner
product space and it will be seen that the family of all K-frames in 2-
inner product space is closed with respect addition. Further we also give
the notion of a tight K-frames relative to 2-inner product spaces.

In the entire paper, H will denote a separable Hilbert space with the
inner product 〈 · , · 〉 and B (H ) denote the space of all bounded linear
operator on H. We also denote R (T ) for range set of T where T ∈
B (H ) and l 2 (N ) denote the space of square summable scalar-valued
sequences with index set N.

2. Preliminaries

Definition 2.1. [3] A sequence { f i }∞i=1 of elements in H is said to be a
frame for H if there exist constants A, B > 0 such that

A ‖ f ‖ 2 ≤
∞∑

i=1

| 〈 f , f i 〉 | 2 ≤ B ‖ f ‖ 2 (2.1)

for all f ∈ H. The constants A and B are called frame bounds. If the
collection { f i }∞i=1 satisfies only the right inequality of (2.1) then it is
called a Bessel sequence.

Definition 2.2. [3] Let { f i }∞i=1 be a frame for H. Then the bounded

linear operator T : l 2 (N ) → H, defined by T { ci } =
∞∑

i=1
c i f i is called

pre-frame operator and its adjoint operator T ∗ : H → l 2 (N ), given
by T ∗ f = { 〈 f , fi 〉 }∞i=1 is called the analysis operator. The operator

S : H → H defined by S f = T T ∗ f =
∞∑

i=1
〈 f , f i 〉 f i is called the

frame operator.

The frame operator S is bounded, positive, self-adjoint and invertible
[3].

Definition 2.3. [4] Let K : H → H be a bounded linear operator. Then
a sequence { f i }∞i=1 in H is said to be a K-frame for H if there exist
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constants A, B > 0 such that

A ‖K ∗ f ‖ 2 ≤
∞∑

i=1

| 〈 f , f i 〉 | 2 ≤ B ‖ f ‖ 2

for all f ∈ H. If A = B then it is said to be a tight K-frame and if
A = B = 1 then it is called Parseval K-frame.

2.1. Example.

(i) Let H be an infinite dimensional separable Hilbert space and { ei }∞i=1

be an orthonormal basis for H. Define K : H → H by K f =
m∑

i=1
〈 f, ei 〉 e i, f ∈ H, where m is a fixed positive integer.Now,

for each f ∈ H, we have

‖K ∗ f ‖ 2 =

m∑
i=1

| 〈 f, ei 〉 | 2 ≤
∞∑

i=1

| 〈 f, ei 〉 | 2

≤ 2 | 〈 f, e 1 〉 | 2 + 2 | 〈 f, e 2 〉 | 2 + | 〈 f, e 3 〉 | 2 + · · · · · ·

≤ 2
∞∑

i=1

| 〈 f, ei 〉 | 2 = 2 ‖ f ‖ 2.

Thus, { e 1, e 1, e 2, e 2, e 3, e 4, · · · } is a K-frame for H with bounds
1 and 2.

(ii) Let H = R 3 and { e 1, e 2, e 3 } be its standard orthonormal ba-
sis. Define K : H → H by K e 1 = e1, K e 2 = e2, K e 3 =

e 3. It is easy to verify that K ∗ e 1 = e1, K
∗ e 2 = e2, K

∗ e 3 =

e 3. Then ‖K ∗ f ‖ 2 = ‖ f ‖ 2 for all f ∈ H. Let { f i } 3i=1 =

{ e 1, e 1, e 2, e 2, e 3, e 3 }. Then for each f ∈ H, we have
3∑

i=1

| 〈 f, fi 〉 | 2 = 2
3∑

i=1

| 〈 f, ei 〉 | 2 = 2 ‖ f ‖ 2 = 2 ‖K ∗ f ‖ 2 .

So, { f i } 3i=1 is a tight K-frame for H with bound 2.

Theorem 2.4. [5] Let K : H → H be a bounded linear operator. Then
a Bessel sequence { f i }∞i=1 in H is a K-frame if and only if there exists
λ > 0 such that S ≥ λK K∗, where S is the frame operator for { f i }∞i=1.

Theorem 2.5. [3] Let U be a bounded linear operator from a Hilbert space
H 1 to another Hilbert space H 2 with closed range RU . Then there exists
a bounded linear operator U † : H 2 → H 1 such that U U † f = f , for all
f ∈ RU .
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The operator U † is called the pseudo-inverse of U .

Theorem 2.6. (Douglas’ factorization theorem ) [6] Let U, V be two bounded
linear operators on H. Then the following conditions are equivalent:

( I ) R (U ) ⊆ R (V ).

( II ) U U ∗ ≤ λ 2 V V ∗ for some λ > 0.

( III ) U = V W for some bounded linear operator W on H.

Theorem 2.7. [7] Let S, T, U ∈ B (H ). Then the following are equiva-
lent:

( I ) R (S ) ⊆ R (T ) + R (U ).

( II ) S S ∗ ≤ λ 2 (T T ∗ + U U ∗ ) for some λ > 0.

( III ) S = T A + U B for some A, B ∈ B (H ).

Theorem 2.8. [12] The set S (H ) of all self-adjoint operators on H is
a partially ordered set with respect to the partial order ≤ which is defined
as for T, S ∈ S (H )

T ≤ S ⇔ 〈T f , f 〉 ≤ 〈S f , f 〉 ∀ f ∈ H.

Definition 2.9. [8, 9] Let X be a linear space of dimension greater than 1
over the field K, where K is the real or complex numbers field. A function
〈 · , · | · 〉 : X × X × X → K is said to be an 2-inner product on X if it
satisfies the following conditions:

(I) 〈x , x | z 〉 ≥ 0 and 〈x , x | z 〉 = 0 if and only if x and z are
linearly dependent,

(II) 〈x , x | z 〉 = 〈 z , z |x 〉,
(III) 〈x , y | z 〉 = 〈 y , x | z 〉,
(IV ) 〈αx , y | z 〉 = α 〈x , y | z 〉, for all α ∈ K,
(V ) 〈x 1 + x 2 , y | z 〉 = 〈x 1 , y | z 〉 + 〈x 2 , y | z 〉.

A linear space X equipped with an 2-inner product 〈 · , · | · 〉 defined on
X is called a 2-inner product space.

2.2. Example. Let (X, 〈 ·, · 〉 ) be an inner product space. Then the stan-
dard 2-inner product 〈 · , · | · 〉 on X is defined by

〈x , y | z 〉 =

∣∣∣∣∣ 〈x, y 〉 〈x, z 〉〈 z, y 〉 〈 z, z 〉

∣∣∣∣∣ = 〈x, y 〉 〈 z, z 〉 − 〈x, z 〉 〈 z, y 〉 ,
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for all x, y, z,∈ X.

Definition 2.10. [13] Let X be a linear space of dimension greater than
1 over the field K, where K is the real or complex numbers field. A real
valued function ‖ · , · ‖ defined on X is said to be a 2-norm on X if it
satisfies the following conditions:

(I) ‖x , y ‖ = 0 if and only if x , y are linearly dependent,

(II) ‖x , y ‖ = ‖ y , x ‖,

(III) ‖αx , y ‖ = |α | ‖x , y ‖, for all α ∈ K,

(IV ) ‖x , y + z ‖ ≤ ‖x , y ‖ + ‖x , z ‖.
A linear space X together with a 2-norm ‖ · , · ‖ is called a linear 2-
normed space.

Theorem 2.11. [14] Let (X , 〈 · , · | · 〉 ) be a 2-inner product space then

| 〈x , y | z 〉 | ≤ ‖x , z ‖ ‖ y , z ‖

holds for all x, y, z ∈ X, where

| 〈x , y | z 〉 | ≤ ‖x , z ‖ ‖ y , z ‖

Definition 2.12. [11] Let (X , 〈 · , · | · 〉 ) be a 2-inner product space over
real or complex number field K . Let { e i }ni=1 be linearly independent
vectors in X. Then for a given h ∈ X, if

〈 e i , e j |h 〉 = δ i j i , j ∈ { 1 , 2 , · · · , n }

where, δ i j =

1 if i = j

0 if i 6= j
,

the family { e i }ni=1 is said to be h-orthonormal . If an h-orthonormal set
is countable, we can arrange it in the form of a sequence { e i } and call it
h-orthonormal sequence.

Definition 2.13. [16] Let (X , ‖ · , · ‖ ) be a linear 2-normed space.A se-
quence {xn } in X is said to converge to some x ∈ X if

lim
n→∞

‖xn − x , y ‖ = 0

for every y ∈ X and it is called a Cauchy sequence if

lim
n ,m→∞

‖xn − xm , z ‖ = 0
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for every z ∈ X. The space X is said to be complete if every Cauchy
sequence in this space is convergent in X. An 2-inner product space is
called 2-Hilbert space if it is complete with respect to its induce norm.

Throughout this paper, X is considered to be a 2-Hilbert space asso-
ciated with the 2-inner product 〈 · , · | · 〉.

Definition 2.14. [15]. A sequence { f i }∞i=1 ⊆ X is said to be a 2-frame
associated to h ∈ X if there exist constants A, B > 0 such that

A ‖ f , h ‖ 2 ≤
∞∑

i=1

| 〈 f , f i |h 〉 | 2 ≤ B ‖ f , h ‖ 2 (2.2)

for all f ∈ H. If the sequence { f i }∞i=1 satisfying the right inequality of
(2.2) then it is called a 2-Bessel sequence associated to h.

Theorem 2.15. [15] Let Lh denote the linear subspace of X generated
by a fixed h ∈ X. Let Mh be the algebraic complement of Lh . Define
〈x , y 〉h = 〈x , y |h 〉 on X. Then 〈 · , · 〉h is a semi-inner product on X

and this semi-inner product induces an inner product on the quotient space
X /Lh which is given by

〈x + Lh , y + Lh 〉h = 〈x , y 〉h = 〈x , y |h 〉 ,

for all x, y ∈ X. By identifying X /Lh with Mh in an obvious way, we
obtain an inner product on Mh. Define ‖x ‖h =

√
〈x , x 〉h (x ∈ Mh ).

Then (Mh , ‖ · ‖h ) is a norm space.

Let Xh be the completion of the inner product space Mh.

Theorem 2.16. [15] A sequence { f i }∞i=1 in X is a 2-frame associated
to h with bounds A and B if and only if it is a frame for the Hilbert space
Xh with bounds A and B.

Definition 2.17. [15] Let { f i }∞i=1 be a 2-Bessel sequence associated to
h. Then the 2-pre frame operator

Th : l 2 (N ) → Xh , Th ( { ci }∞i=1 ) =
∞∑

i=1

c i f i

is well-defined and bounded and its adjoint operator given by

T ∗h : Xh → l 2 (N ) , T ∗h ( f ) = { 〈 f , fi |h 〉 }∞i=1

is also well-defined and bounded.
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Definition 2.18. [15] Let { f i }∞i=1 be a 2-frame associated to h. Then
the operator Sh : Xh → Xh defined by

Sh f = Th T
∗
h f =

∞∑
i=1

〈 f , f i |h 〉 f i,

for all f ∈ Xh is called the 2-frame operator for { f i }∞i=1.

Theorem 2.19. [15] Let { f i }∞i=1 be a 2-frame associated to h. Then
the corresponding 2-frame operator is bounded, invertible, self-adjoint, and
positive.

Definition 2.20. [17] Let Kh : Xh → Xh be a bounded linear opera-
tor. Then a sequence { f i }∞i=1 ⊆ X is said to be a 2-K-frame for X if
there exist constants A, B > 0 such that

A ‖K∗h f, h ‖ 2 ≤
∞∑

i=1

| 〈 f , f i |h 〉 | 2 ≤ B ‖ f, h ‖ 2

for all f ∈ Xh. In particular when Kh is the identity operator on Xh

then { f i }∞i=1 becomes a 2-frame.

3. Some properties of K-frames in 2-Hilbert spaces

In this section, we first give an example of 2-Kh-frame and discuss
various properties of K-frame relative 2-Hilbert space.

3.1. Example. Consider X = C3 with the standard 2-inner product

〈x , y | z 〉 =

∣∣∣∣∣ 〈x, y 〉 〈x, z 〉〈 z, y 〉 〈 z, z 〉

∣∣∣∣∣
for all x, y, z,∈ X, where 〈 ·, · 〉 is the inner product of C3. Let { e 1, e 2, e 3 }
be the standard orthonormal basis of X and h = e 3. In this case Xh =

C2. Now, we define Kh : Xh → Xh by Kh e 1 = e1, Kh e 2 = e1, Kh e 3 =

e 2. It is easy to verify that K ∗h e 1 = e1, K
∗
h e 2 = e1, K

∗
h e 3 = e 2. Then

{ f i } 3i=1 = { e 1, e 1, e 2 } is a 2-Kh-frame for X.

Theorem 3.1. Let Kh : Xh → Xh be a bounded linear operator. If
{ f i }∞i=1 is a 2-K-frame associated to h for X and Th ∈ B (Xh ) with
R (Th ) ⊂ R (Kh ), then { f i }∞i=1 is also a 2-T -frame associated to h for
X.
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Proof. Suppose that { f i }∞i=1 is a 2-K-frame associated to h for X. Then
there exist constants A , B > 0 such that

A ‖K ∗h f, h ‖
2 ≤

∞∑
i=1

| 〈 f , f i |h 〉 | 2 ≤ B ‖ f, h ‖ 2 , (3.1)

for all f ∈ Xh. Since R (Th ) ⊂ R (Kh ), by Theorem 2.6, there exists
λ > 0 such that Th T

∗
h ≤ λ 2 KhK

∗
h. Therefore

A

λ 2
‖T ∗h f, h ‖

2 =
A

λ 2
〈Th T

∗
h f , f |h 〉 =

〈
A

λ 2
Th T

∗
h f , f |h

〉
≤ 〈A KhK

∗
h f , f |h 〉 = A ‖K ∗h f, h ‖

2 .

Using this, for each f ∈ Xh, (3.1) can be rewrite as

A

λ 2
‖T ∗h f, h ‖

2 ≤ A ‖K ∗h f, h ‖
2 ≤

∞∑
i=1

| 〈 f , f i |h 〉 | 2 ≤ B ‖ f, h ‖ 2 .

This shows that { f i }∞i=1 is a 2-T -frame for X. �

Theorem 3.2. Let Kh ∈ B (Xh ) and { f i }∞i=1 be the corresponding
2-K-frame associated to h for X. If Th is a surjective bounded linear
operator on Xh such that it has closed range and ThKh = Kh Th, then
{Th f i }∞i=1 is a 2-K-frame associated to h for X.

Proof. Since Th has a closed range so the pseudo-inverse of Th exists say
T †h, by Theorem 2.5, we have T T †h = Ih where Ih is the identity operator

on Xh. Then for each f ∈ Xh , K
∗
h f =

(
T †h

) ∗
T ∗h K

∗
h f . Therefore, for

each f ∈ Xh, we have

‖K ∗h f, h ‖ =
∥∥∥(T †h ) ∗ T ∗h K ∗h f, h ∥∥∥ ≤ ∥∥∥(T †h ) ∗ ∥∥∥ ‖T ∗h K ∗h f, h ‖ .

Thus, for each f ∈ Xh, we have∥∥∥(T †h ) ∗ ∥∥∥− 1
‖K ∗h f, h ‖ ≤ ‖T ∗h K ∗h f, h ‖ . (3.2)

Now, for each f ∈ Xh,
∞∑

i=1

| 〈 f , Th f i |h 〉 | 2 =

∞∑
i=1

| 〈T ∗h f , f i |h 〉 |
2

≥ A ‖K ∗h T ∗h f, h ‖
2 [ since { f i }∞i=1 is 2-K-frame ]

= A ‖T ∗h K ∗h f, h ‖
2 [ using ThKh = Kh Th ].
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≥ A
∥∥∥(T †h ) ∗ ∥∥∥− 2

‖K ∗h f, h ‖
2 [ using (3.2) ]. (3.3)

On the other hand, for each f ∈ Xh, we have
∞∑

i=1

| 〈 f , Th f i |h 〉 | 2 =
∞∑

i=1

| 〈T ∗h f , f i |h 〉 |
2

≤ B ‖T ∗h f, h ‖
2 [ since { f i }∞i=1 is a 2-K-frame ]

≤ B ‖T ∗h ‖
2 ‖ f, h ‖ 2

= B ‖Th ‖ 2 ‖ f, h ‖ 2. (3.4)

From (3.3) and (3.4), for each f ∈ Xh, we have

A
∥∥∥(T †h ) ∗ ∥∥∥−2 ‖K ∗h f, h ‖ 2 ≤ ∞∑

i=1

| 〈 f , Th f i |h 〉 | 2

≤ B ‖Th ‖ 2 ‖ f, h ‖ 2.

This shows that {Th f i }∞i=1 is a 2-K-frame associated to h for X. �

Theorem 3.3. Let Kh : Xh → Xh be a bounded linear operator and
{ f i }∞i=1 be the corresponding 2-K-frame associated to h for X . If Th ∈
B (Xh ) such that Th T

∗
h = Ih and ThKh = Kh Th, then {Th f i }∞i=1

is a 2-K-frame associated to h for X .

Proof. Since Th T
∗
h = Ih, for f ∈ Xh, ‖T ∗h f, h ‖

2 = ‖ f, h ‖ 2. Thus,

‖T ∗h K ∗h f, h ‖
2 = ‖K ∗h f, h ‖ 2, f ∈ Xh. (3.5)

Now, for each f ∈ Xh, we have
∞∑

i=1

| 〈 f , Th f i |h 〉 | 2 =
∞∑

i=1

| 〈T ∗h f , f i |h 〉 |
2

≥ A ‖K ∗h T ∗h f, h ‖
2 [ since { f i }∞i=1 is a 2-K-frame ]

= A ‖T ∗h K ∗h f, h ‖
2 [ using ThKh = Kh Th ]

= A ‖K ∗h f, h ‖
2 [ using (3.5) ].

Thus we see that {Th f i }∞i=1 satisfies lower 2-K-frame condition. Following
the proof of the Theorem 3.2, it can be shown that it also satisfies upper
2-K-frame condition and therefore it is a 2-K-frame associated to h for
X. �

Theorem 3.4. Let Kh ∈ B (Xh ) . Then { f i }∞i=1 is a 2-K-frame as-
sociated to h if and only if there exists a bounded linear operator Th :
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l 2 (N ) → Xh such that f i = Th e i and R (Kh ) ⊂ R (Th ), where
{ e i }∞i=1 is an h-orthonormal basis for l 2 (N ).

Proof. Let { f i }∞i=1 be a 2-K-frame associated to h. Then for each f ∈
Xh, there exist A , B > 0 such that

A ‖K ∗h f, h ‖
2 ≤

∞∑
i=1

| 〈 f , f i |h 〉 | 2 ≤ B ‖ f, h ‖ 2 . (3.6)

Now we consider the linear operator Lh : Xh → l 2 (N ) defined by

Lh ( f ) =
∞∑

i=1

〈 f , f i |h 〉 e i.

Since { e i }∞i=1 is an h-orthonormal basis for l 2 (N ), we can write

‖Lh ( f ) ‖ 2l 2 =
∞∑

i=1

| 〈 f , f i |h 〉 | 2 ≤ B ‖ f, h ‖ 2 [ by (3.6) ].

Thus, for each f ∈ Xh, we get ‖Lh ( f ) ‖ 2l 2 ≤ B ‖ f ‖ 2h. This shows
that Lh is well-defined and bounded linear operator on Xh. So, adjoint
of Lh , L

∗
h : l 2 (N ) → Xh exists and it is also a bounded linear opera-

tor. Now, for each f ∈ Xh, we have

〈L ∗h e i , f |h 〉 = 〈 e i , Lh f |h 〉 =

〈
e i ,

∞∑
i=1

〈 f , f i |h 〉 e i |h

〉
= 〈 f , f i |h 〉 = 〈 f i , f |h 〉 .

This implies that, L ∗h ( e i ) = f i. Using the operator Lh, (3.6) can be
written as

A ‖K ∗h f ‖ 2h ≤ ‖Lh ( f ) ‖ 2l 2 ⇒ 〈AKhK
∗
h f , f |h 〉 ≤ 〈L ∗h Lh f , f |h 〉

Thus, AKhK
∗
h ≤ Th T

∗
h , where Th = L ∗h and hence by Theorem 2.6,

R (Kh ) ⊂ R (Th ).

Conversely, suppose that Th : l 2 (N ) → Xh be a bounded linear
operator such that f i = Th e i and R (Kh ) ⊂ R (Th ). We have to show
that { f i }∞i=1 is a 2-K-frame. Now, for each f ∈ Xh, we have



CHARACTERIZATIONS OF K-FRAMES IN 2-HILBERT SPACES 67

〈T ∗h f, g |h 〉 =

〈
T ∗h f,

∞∑
i=1

c i e i |h

〉
, where g =

∞∑
i=1

c i e i

=
∞∑

i=1

c i 〈 f , Th e i |h 〉 =
∞∑

i=1

c i 〈 f , f i |h 〉

=
∞∑

i=1

〈 g, e i |h 〉 〈 f, f i |h 〉 , [ since c i = 〈 g, e i |h 〉 ]

=

∞∑
i=1

〈 e i , g |h 〉 〈 f , f i |h 〉

=

〈 ∞∑
i=1

〈 f, f i |h 〉 e i, g |h

〉
, for all g ∈ l 2 (N ).

Thus, for f ∈ Xh, we get

T ∗h ( f ) =

∞∑
i=1

〈 f , f i |h 〉 e i.

Now, for each f ∈ Xh, we have
∞∑

i=1

| 〈 f , f i |h 〉 | 2 =
∞∑

i=1

| 〈 f , Th e i |h 〉 | 2

=

∞∑
i=1

| 〈T ∗h f , e i |h 〉 |
2

= ‖T ∗h f , h ‖
2 ≤ ‖T ∗h ‖

2 ‖ f, h ‖ 2.

This shows that { f i }∞i=1 is a 2-Bessel sequence associated to h. Since
R (Kh ) ⊂ R (Th ), by Theorem 2.6, there exists A > 0 such that
AKhK

∗
h ≤ Th T

∗
h . Hence following the proof of the Theorem 3.1, for

each f ∈ Xh, we have

A ‖K ∗h f, h ‖
2 ≤ ‖T ∗h f, h ‖

2 =

∞∑
i=1

| 〈 f , f i |h 〉 | 2 .

Therefore, { f i }∞i=1 is a 2-K-frame associated to h for X. �

Theorem 3.5. Let { f i }∞i=1 and { g i }∞i=1 be two 2-K-frame associated
to h for X with corresponding 2-pre frame operators Th and Lh, respec-
tively. If Th L

∗
h and Lh T

∗
h are positive operators, then { f i + g i }∞i=1 is

2-K-frame associated to h for X.
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Proof. Let { f i }∞i=1 and { g i }∞i=1 be 2-K-frames associated to h for
X. Then by Theorem 3.4, there exist bounded linear operators Th and Lh

such that Th e i = f i , Lh e i = g i and R (Kh ) ⊂ R (Th ) , R (Kh ) ⊂
R (Lh ), where { e i }∞i=1 is an h-orthonormal basis for l 2 (N ). Now we
have R (Kh ) ⊂ R (Th ) +R (Lh ). Therefore by Theorem 2.7, KhK

∗
h ≤

λ 2 (Th T
∗
h + Lh L

∗
h ), for some λ > 0. Now, for each f ∈ Xh, we have

∞∑
i=1

| 〈 f , f i + g i |h 〉 | 2 =
∞∑

i=1

| 〈 f , Th e i + Lh e i |h 〉 | 2

=

∞∑
i=1

| 〈 f , (Th + Lh ) e i |h 〉 | 2 =

∞∑
i=1

| 〈 (Th + Lh )
∗ f , e i |h 〉 | 2

= ‖ (Th + Lh )
∗ f , h ‖ 2 [ since { e i }∞i=1 is an h-orthonormal basis ]

= 〈 (Th + Lh )
∗ f , (Th + Lh )

∗ f |h 〉

= 〈T ∗h f + L ∗h f , T
∗
h f + L ∗h f |h 〉

= 〈T ∗h f, T ∗h f |h 〉+ 〈L ∗h f, T ∗h f |h 〉+ 〈T ∗h f, L ∗h f |h 〉+ 〈L ∗h f, L ∗h f |h 〉

= 〈Th T
∗
h f, f |h 〉+ 〈Th L

∗
h f, f |h 〉+ 〈Lh T

∗
h f, f |h 〉+ 〈Lh L

∗
h f, f |h 〉

≥ 〈 (Th T
∗
h + Lh L

∗
h ) f , f |h 〉 [ since Th L

∗
h , Lh T

∗
h are positive ]

≥ 1

λ 2
〈KhK

∗
h f , f |h 〉 [ since KhK

∗
h ≤ λ 2 (Th T

∗
h + Lh L

∗
h ) ]

=
1

λ 2
〈K∗h f , K ∗h f |h 〉 =

1

λ 2
‖K∗h f , h ‖

2 .

Also, for each f ∈ Xh, using the Minkowski’s inequality, we have

( ∞∑
i=1

| 〈 f , f i + g i |h 〉 | 2
)1

2

≤

( ∞∑
i=1

| 〈 f , f i |h 〉 | 2
)1

2
+

( ∞∑
i=1

| 〈 f , g i |h 〉 | 2
)1

2

≤
√
A ‖ f , h ‖ +

√
B ‖ f , h ‖ [ since { f i }∞i=1 , { g i }∞i=1 are 2-K-frame ]

=
(√

A +
√
B
)
‖ f , h ‖.

Thus, for each f ∈ Xh, we have
∞∑

i=1

| 〈 f , f i + g i |h 〉 | 2 ≤
(√

A +
√
B
) 2
‖ f , h ‖ 2.
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Hence, { f i + g i }∞i=1 is a 2-K-frame associated to h for X. �

Theorem 3.6. Let { f i }∞i=1 be 2-K-frame associated to h ∈ X with
corresponding 2-frame operator Sh and Ah : Xh → Xh be a positive
operator. Then { f i + Ah f i }∞i=1 is also a 2-K-frame associated to h for
X.

Proof. Let { f i }∞i=1 be 2-K-frame with corresponding 2-frame operator

Sh. Then for each f ∈ Xh, we have 〈Sh f , f |h 〉 =
∞∑

i=1
| 〈 f , f i |h 〉 | 2

and
A ‖K ∗h f, h ‖

2 ≤ 〈Sh f , f |h 〉 ≤ B ‖ f, h ‖ 2

with symbols this can be written as AKhK
∗
h ≤ Sh ≤ B Ih, where Ih is

the identity operator on Xh. Now, for each f ∈ Xh,
∞∑

i=1

〈 f , f i + Ah f i |h 〉 ( f i + Ah f i )

=

∞∑
i=1

〈 f , ( Ih + Ah ) f i |h 〉 ( Ih + Ah ) f i

= ( Ih + Ah )

∞∑
i=1

〈 f , ( Ih + Ah ) f i |h 〉 f i

= ( Ih + Ah )
∞∑

i=1

〈 ( Ih + Ah )
∗ f , f i |h 〉 f i

= ( Ih + Ah )Sh ( Ih + Ah )
∗ f.

This shows that the frame operator for { f i + Ah f i }∞i=1 is
( Ih + Ah )Sh ( Ih + Ah )

∗. Since Sh , Ah are positive,
( Ih + Ah )Sh ( Ih + Ah )

∗ ≥ Sh ≥ AKhK
∗
h. Hence, by Theorem 2.4,

{ f i + Ah f i }∞i=1 is a 2-K-frame associated to h for X. �

Theorem 3.7. Let { f i }∞i=1 and { g i }∞i=1 be two 2-Bessel sequences as-
sociated to h in X with bounds C and D, respectively. Suppose that Th

and T ′h be their 2-pre frame operators such that Th (T ′h )
∗ = K ∗h. Then

{ f i }∞i=1 and { g i }∞i=1 are 2-K-frames associated to h in X.

Proof. Since Th and T ′h are the 2-pre frame operator for { f i }∞i=1 and
{ g i }∞i=1, respectively. Then for each f ∈ Xh, we have

‖T ∗h f, h ‖
2 =

∞∑
i=1

| 〈 f , f i |h 〉 | 2 ,
∥∥ (T ′h ) ∗ f, h ∥∥ 2

=
∞∑

i=1

| 〈 f, g i |h 〉 | 2 .
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Now, for each f ∈ Xh, we have

‖K ∗h f, h ‖ 4 = ( 〈K ∗h f , K ∗h f | h 〉 )
2 =

( 〈
Th

(
T ′h
) ∗

f , K ∗h f | h
〉 ) 2

=
( 〈 (

T ′h
) ∗

f , T ∗h K
∗
h f | h

〉 ) 2 ≤ ∥∥ (T ′h ) ∗ f, h ∥∥ 2 ‖T ∗h K ∗h f, h ‖
2

=
∞∑

i=1

| 〈 f , g i | h 〉 | 2
∞∑

i=1

| 〈K ∗h f , f i | h 〉 |
2

≤
∞∑

i=1

| 〈 f , g i |h 〉 | 2 C ‖K ∗h f , h ‖ 2,

[ since { f i }∞i=1 is 2-Bessel sequence ].

Thus, { g i }∞k=1 is a 2-K-frame associated to h in X with bounds 1 /C

and D. Similarly, it can be shown that { f i }∞i=1 is a 2-K-frame associated
to h with the lower bound 1 /D. �

4. Tight K-frame in 2-Hilbert space

Definition 4.1. A sequence { f i }∞i=1 in X is said to be a tight 2-K-frame
associated to h for X, if for each f ∈ Xh, there exists constant A > 0

such that
∞∑

i=1

| 〈 f , f i |h 〉 | 2 = A ‖K ∗h f, h ‖ 2.

If A = 1, then { f i }∞i=1 is called Parseval 2-K-frame. From above we get
that

∞∑
i=1

∣∣∣∣ 〈 1√
A
f , f i |h

〉 ∣∣∣∣ 2 = ‖K ∗h f, h ‖ 2.

Therefore if { f i }∞i=1 is a tight 2-K-frame associated to h with bound A

then family
{

1√
A
f i

}∞
i=1

is a Parseval 2-K-frame associated to h.

Theorem 4.2. Let { f i }∞i=1 is a tight 2-frame associated to h for X

with bound A and Kh ∈ B (Xh ), then {Kh f i }∞i=1 is a tight 2-K-frame
associated to h for X with bound A.

Proof. Since { f i }∞i=1 is a tight 2-frame associated to h for X with bound
A, for each f ∈ Xh, we have

∞∑
i=1

| 〈 f , Kh f i |h 〉 | 2 =
∞∑

i=1

| 〈K ∗h f , f i |h 〉 |
2 = A ‖K ∗h f , h‖ 2.
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Hence, {Kh f i }∞i=1 is a tight 2-K-frame associated to h for X with
bound A. �

Theorem 4.3. Let Kh , T ∈ B (Xh ) and { f i }∞i=1 is a tight 2-K-frame
associated to h for X with bound A. Then {T f i }∞i=1 is a tight 2-TK-
frame associated to h for X with bound A.

Proof. Since { f i }∞i=1 is a tight 2-K-frame associated to h for X with
bound A, for each f ∈ Xh, we have

∞∑
i=1

| 〈 f, T f i |h 〉 | 2 =

∞∑
i=1

| 〈T ∗ f, f i |h 〉 | 2

= A ‖K ∗h (T ∗ f ) , h ‖ 2 = A ‖ (T Kh )
∗ f , h ‖ 2.

Hence, {T f i }∞i=1 is a tight 2-T K-frame associated to h for X with
bound A. �

Theorem 4.4. Let { f i }∞i=1 & { g i }∞i=1 be two Parseval 2-K-frames
associated to h for X with corresponding 2-pre frame operators Th and
Lh, respectively. If Th L

∗
h = θ, where θ is the null operator on Xh then

{ f i + g i }∞i=1 is a tight 2-K-frame associated to h with frame bound 2.

Proof. Let { f i }∞i=1 and { g i }∞i=1 be two Parseval 2-K-frames associ-
ated to h for X. Then by Theorem 3.4, there exist 2-pre frame operators
Th and Lh such that Th e i = f i , Lh e i = g i, ( where { e i }∞i=1 is an
h-orthonormal basis for l 2 (N ) ) with R (Kh ) ⊂ R (Th ) , R (Kh ) ⊂
R (Lh ), respectively. Then the corresponding adjoint operators can be de-
fined as for all f ∈ Xh,

T ∗h : Xh → l 2 (N ) , T ∗h ( f ) =
∞∑

i=1

〈 f , f i |h 〉 e i,

L ∗h : Xh → l 2 (N ) , L ∗h ( f ) =
∞∑

i=1

〈 f , g i |h 〉 e i.

Now from the definition of Parseval 2-K-frame, we can write

‖K ∗h f, h ‖
2 =

∞∑
i=1

| 〈 f , f i |h 〉 | 2 = ‖T ∗h f, h ‖
2 , (4.1)

‖K ∗h f, h ‖
2 =

∞∑
i=1

| 〈 f , g i |h 〉 | 2 = ‖L ∗h f, h ‖
2 . (4.2)
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Following the proof of the Theorem 3.5, it can be shown that for each
f ∈ Xh,
∞∑

i=1

| 〈 f , f i + g i |h 〉 | 2 =
∞∑

i=1

| 〈 f , (Th + Lh ) e i |h 〉 | 2

= ‖ (Th + Lh )
∗ f , , h ‖ 2

= 〈Th T
∗
h f, f |h 〉+ 〈Th L

∗
h f, f |h 〉+ 〈Lh T

∗
h f, f |h 〉+ 〈Lh L

∗
h f, f |h 〉

= 〈Th T
∗
h f , f |h 〉 + 〈Lh L

∗
h f , f |h 〉 [ since Th L

∗
h = θ = Lh T

∗
h ]

= 〈T ∗h f , T ∗h f |h 〉 + 〈L ∗h f , L ∗h f |h 〉 = ‖T ∗h f , h ‖
2 + ‖L ∗h f , h ‖

2

= ‖K ∗h f , h ‖
2 + ‖K ∗h f , h ‖

2 [ using (4.1) and (4.2) ]

= 2 ‖K ∗h f , h ‖
2 .

This shows that { f i + g i }∞i=1 is a tight 2-K-frame associated to h with
frame bound 2. �
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A COMBINATORIAL PROOF OF A
GENERALIZATION OF A THEOREM OF FROBENIUS

SUPRAVAT SARKAR
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Abstract. In this article, we shall generalize a theorem due to Frobe-
nius in group theory, which asserts that if p is a prime and pr divides
the order of a finite group, then the number of subgroups of order pr is
≡ 1(mod p). Interestingly, our proof is purely combinatorial and does
not use much group theory.

1. Introduction

Although Sylow’s theorems are taught in almost all undergraduate courses
in abstract algebra, a generalization due to Frobenius does not seem to be
as well known as it ought to be. Frobenius’ generalization states that if p
is a prime and pr divides the order N of a finite group G, the number of
subgroups of G of order pr is ≡ 1 (mod p). The special case when pr is the
largest power of p dividing N is part of Sylow’s third theorem. Many of the
standard texts do not mention this theorem. One source is Ian Macdonald’s
‘Theory of Groups’ [1]. In fact, a further generalization due to Snapper [2]
asserts that for any subgroup K of order pr and for any s ≥ r where ps

divides the order of G, the number of subgroups of order ps containing K
is also ≡ 1 (mod p). In this article, we give a new proof of a further ex-
tension of Snapper’s result that is purely combinatorial and does not use
much group theory. Thus, we have a new combinatorial proof of Frobenius’s
theorem as well.
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Key words and phrases: Group, subgroup, prime, count
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2. Main results

We initially started by giving a combinatorial proof of Frobenius’s result
and, interestingly, our method of proof yields as a corollary an extension of
Snapper’s Theorem. Our proof builds on the famous combinatorial proof of
Cauchy’s theorem which asserts that if a prime divides the order of a group,
there is an element of that prime order.

Theorem 1.1. Let G be a finite group of order N , and let p be a prime.
Let b0 < b1 < · · · < br be nonnegative integers such that pbr divides N and
Pb0 be a subgroup of G of order pb0. Then the number of ordered tuples
(Pb1 , Pb2 , · · · , Pbr) such that each Pbi is subgroup of G of order pbi and

Pb0 ⊂ Pb1 ⊂ · · · ⊂ Pbr

is ≡ 1 (mod p).

The case r = 1 is a Theorem due to Snapper [2] which is itself an extension
of Frobenius’s Theorem that corresponds to the case r = 1, b0 = 0 in our
Theorem.
Let us recall here the simple results in finite group theory that we will need.

(1) If H is a subgroup of a finite group G of order N , and the index
[G : H] is the smallest prime divisor of N , then H is normal in G.

(2) (Sylow’s first theorem) If G is a finite group of order N , p a prime,
i ≥ 0 is an integer, pi+1|N and P is a subgroup of G of order pi,
then there is a subgroup Q of G containing P of order pi+1.

We shall also use the following notations throughout.

(1) For a finite set S, |S| denotes the number of elements (cardinality)
of S.

(2) If G, H are finite groups, H ≤ G means H is a subgroup of G.
(3) If G, H are finite groups, H ≤ G, [G : H] denotes the index of H

in G.
(4) If G is a finite group, the order of G is the number of elements of

G.
(5) If H is a subgroup of a group G, NG(H) denotes the normalizer of

H in G.
(6) For positive integers a, b, we write a|b to mean a divides b.
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Proof of Theorem.
For ease of understanding, we divide the proof into three steps.

Step 1: We tackle the case r = 1, b0 = 0, b1 = 1 first, which just says that
if p divides the order of G, then the number of subgroups of G of order p is
≡ 1 (mod p).
Let T = {(a1, a2, ..., ap) | ai ∈ G ∀i, a1a2...ap = 1}.
Observe that |T | = Np−1 ≡ 0 (mod p), as any choice of a1, ..., ap−1 uniquely
determines ap. Also, if not all ai’s are equal, then (a1, a2, ..., ap) ∈ T implies
(ai, ai+1, ..., ai+p−1) for i = 1, 2, ..., p (indices are modulo p) are p distinct
elements of T . The reason is as follows:
If (ai, ai+1, ..., ai+p−1) = (aj , aj+1, ..., aj+p−1) for some i 6= j, then ak =

ak+j−i∀k. By induction, ak = ak+α(j−i) for any integer α. But i 6= j im-
plies gcd(j − i, p) = 1, as 0 < |i − j| < p and p is a prime. So, j − i is
invertible modulo p. So any 1 ≤ l ≤ p satisfies l ≡ 1 + α(j − i) (mod p) for
some integer α. So, al = a1+α(j−i) = a1 for any 1 ≤ l ≤ p. So, al’s are all
equal, which leads to a contradiction.

So, if d is the number of elements of G of order p, then 0 ≡ |T | ≡ (1 + d)

(mod p). So, d ≡ −1 (mod p) (as there are exactly 1+d elements of T with
all ai’s equal.) In each subgroup of order p, there are p−1 elements of order
p, different subgroups of order p intersect at the identity. So,
−1 ≡ d =(p − 1)(number of subgroups of order p) ≡ −(number of

subgroups of order p) (mod p).
So, number of subgroups of order p is ≡ 1 (mod p), which finishes the

proof for the case r = 1, b0 = 0, b1 = 1.

Step 2: Now come to a general case. First, we fix a notation. Let H be
any group of order M , pn|M,pn+1 -M , 0 ≤ r ≤ n. Let Pr be a subgroup of
order pr in H. Define

S(Pr, H) = {(Pr+1, Pr+2, · · · , Pn)|Pi ≤ H, |Pi| = pi ∀ i, Pr ≤ Pr+1 ≤ · · · ≤ Pn ≤ H}.

So, S(Pn, H) is a singleton set, by convention.
For r ≤ i < n and a subgroup Pi of H of order pi, there is a subgroup P ′i+1

of H of order pi+1 containing Pi, by Sylow’s theorems. [P ′i+1 : Pi] = p,

which is the smallest prime divisor of |P ′i+1|, so Pi is normal in P ′i+1.

Hence P ′i+1 ≤ NG(Pi). So, P ′
i+1

Pi
is a subgroup of order p in NG(Pi)

Pi
. So,
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p|[NG(Pi) : Pi]. By the same reasoning, any subgroup Pi+1 of H of order
pi+1 containing Pi must be a subgroup of NG(Pi), and so Pi+1

Pi
is a subgroup

of order p in NG(Pi)
Pi

. Conversely, any subgroup of order p in NG(Pi)
Pi

gives
rise via pullback to a subgroup Pi+1 of NG(Pi)( hence of H) of order pi+1

containing Pi. So, there is a one-to-one correspondence between such Pi+1

(subgroups of G of order pi+1 containing Pi) and the subgroups of order p
of the quotient group NG(Pi)

Pi
.

So, the number of such Pi+1 is the number of subgroups of order p in NG(Pi)
Pi

,
which is ≡ 1 (mod p), in view of Step 1. So, in mod p, we can choose Pr+1

in 1 way, after each such choice we can choose Pr+2 in 1 way, and so on.
So, |S(Pr, H)| ≡ 1 (mod p).

Step 3: Now come to the setup of our theorem. We have |S(Pb0 , G)| ≡
1(mod p), by Step 2. Let us count |S(Pb0 , G)| in another way. Let x be
the number of ordered tuples as in the statement of our theorem. After
choosing any of such x ordered tuples, we can choose (Pbi+1, ..., Pbi+1−1) in
|S(Pbi , Pbi+1

)| ≡ 1(mod p) ways, for each 0 ≤ i ≤ r − 1, and we can choose
(Pbr+1, ..., Pn) in |S(Pbr , G)| ≡ 1(mod p) ways.
Now, pn is the largest power of p dividing N , each Pi is a subgroup of G of
order pi and Pi ≤ Pi+1 for all b0 ≤ i < n. So, we obtain |S(Pb0 , G)| ≡ x

(mod p). Hence finally we get x ≡ 1 (mod p) which completes the proof.

Remarks

The case r = 1 is Snapper’s result and the further special case r = 1, b0 = 0

corresponds to Frobenius’ theorem.
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Abstract. In this paper, we prove an inequality regarding the differ-
ential polynomial. This improves some recent results.

1. Introduction and Main Results

Throughout this paper, we assume that the reader is familiar with the
value distribution theory [6]. Further, it will be convenient to let that E
denote any set of positive real numbers of finite Lebesgue measure, not
necessarily same at each occurrence. For any non-constant meromorphic
function f , we denote by S(r, f) any quantity satisfying

S(r, f) = o(T (r, f)) as r →∞, r 6∈ E.

Let f be a non-constant meromorphic function. A meromorphic function
a(z)(6≡ 0,∞) is called a “small function” with respect to f if T (r, a(z)) =

S(r, f). For example, polynomial functions are small functions with respect
to any transcendental entire function.

Definition 1.1. [8]. Let a ∈ C ∪ {∞}. For a positive integer k, we denote

i) by Nk) (r, a; f) the counting function of a-points of f whose multi-
plicities are not greater than k,

ii) by N(k (r, a; f) the counting function of a-points of f whose multi-
plicities are not less than k.

2020 Mathematics Subject Classification: 30D45, 30D30, 30D20, 30D35.
Key words and phrases: Value distribution theory, Meromorphic functions, Differential
monomials, Differential polynomial.
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Similarly, the reduced counting functions Nk)(r, a; f) and N (k(r, a; f) are
defined.

Definition 1.2. [7]. For a positive integer k, we denote Nk(r, 0; f) the
counting function of zeros of f , where a zero of f with multiplicity q is
counted q times if q ≤ k, and is counted k times if q > k.

Definition 1.3. [1]. Let n0j , n1j , · · · , nkj be non-negative integers. Then
the expressionMj [f ] = (f)n0j (f ′)n1j · · · (f (k))nkj is called a differential mono-

mial generated by f . The quantities d(Mj) =
k∑

i=0
nij and ΓMj =

k∑
i=0

(i+1)nij

are known as the degree and weight of the monomial Mj respectively.

The sum P [f ] =
t∑

j=1
bjMj [f ] is called a differential polynomial generated

by f , where T (r, bj) = S(r, f) (j = 1, 2, · · · , t). The quantities d(P ) =

max
1≤j≤t

{d(Mj)} and ΓP = max
1≤j≤t

{ΓMj} are called degree and weight of the

polynomial P [f ] respectively.
The numbers d(P ) = min

1≤j≤t
{d(Mj)} and k (the highest order of the

derivative of f in P [f ]) are known as the lower degree and order of the
polynomial P [f ].

P [f ] is called homogeneous if d(P ) = d(P ). Otherwise P [f ] is called a
non-linear differential polynomial. P [f ] is called a linear differential poly-
nomial if d(P ) = 1.

In 2003, I. Lahiri and S. Dewan proved the following theorem:

Theorem A. [7]. Let f be a transcendental meromorphic function and
α( 6≡ 0,∞) be a small function of f . If ψ = α(f)n(f (k))p, where n(≥ 0), p(≥
1), k(≥ 1) are integers, then for any small function a( 6≡ 0,∞) of ψ we have

(p+n)T (r, f) ≤ N(r,∞; f)+N(r, 0; f)+pNk(r, 0; f)+N(r, a;ψ)+S(r, f).

In this paper we extend and improve the Theorem A. Now in the fol-
lowing we are stating our result:

Theorem 1.1. Let f(z) be a transcendental meromorphic function and

α(z)(6≡ 0,∞) be a small function of f(z). Let P [f ] = α
t∑

j=1
Mj [f ] be a differ-

ential polynomial generated by f , where Mj [f ] = cj(f)n0j (f ′)n1j · · · (f (k))nkj

(j = 1, 2, · · · , t) such that k(≥ 1) is the order of P [f ], t(≥ 1), nij(i =

0, 1, · · · , k; j = 1, 2, · · · , t) are non-negative integers and cj(j = 1, 2, · · · , t)
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are small functions of f such that they do not have poles at the zeros of f .
Then, for a small function a(6≡ 0,∞),

d(P )T (r, f) ≤ N(r, 0; f) +N(r, a;P [f ]) +N(r,∞; f) + n1eN1(r, 0; f)

+n2eN2(r, 0; f) + · · ·+ nkeNk(r, 0; f) + S(r, f),

where (1 ·n1e + 2 ·n2e + · · ·+ k ·nke) = max
1≤j≤t

(1 ·n1j + 2 ·n2j + · · ·+ k ·nkj).

2. Necessary Lemmas

Lemma 2.1. [5] Let A > 1, then there exists a set M(A) of upper logarith-
mic density at most δ(A) = min{(2e(A−1)−1)−1, 1+e(A−1) exp(e(1−A))}
such that for k = 1, 2, 3, · · ·

lim sup
r→∞,r /∈M(A)

T (r, f)

T (r, f (k))
≤ 3eA.

Lemma 2.2. Let f be a transcendental meromorphic function and α (6≡
0,∞) be a small function of f . Let, ψ = α(f)q0(f ′)q1 · · · (f (k))qk , where
q0, q1, · · · , qk(≥ 1), k(≥ 1) are non-negative integers. Then ψ is not identi-
cally constant.

Proof. Since, α is a small function of f , then T (r, α) = S(r, f). Therefore
the proof follows from Lemma (3.4) of ([3]). �

Lemma 2.3. Let f be a transcendental meromorphic function and α (6≡
0,∞) be a small function of f . Let, ψ = α(f)q0(f ′)q1 · · · (f (k))qk , where
q0, q1, · · · , qk(≥ 1), k(≥ 1) are non-negative integers. Then

T (r, ψ) ≤ {q0 + 2q1 + · · ·+ (k + 1)qk}T (r, f) + S(r, f).

Proof. This result is very well known and the proof is similar to the Lemma
(2.3) of [7] . So, we omit the details. �

Lemma 2.4 ([2, 4]). Let, f be a meromorphic function and P [f ] be a
differential polynomial. Then

m

(
r,
P [f ]

fd(P )

)
≤ (d(P )− d(P ))m

(
r,

1

f

)
+ S(r, f).
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3. The Proofs

Proof of Theorem 1.1. Since P [f ] is a differential polynomial generated
by f , then using Lemma 2.4, we have

T (r, (f)d(P )) = N(r, 0; (f)d(P )) +m

(
r,

1

(f)d(P )

)
+O(1)

= N(r, 0; (f)d(P )) +m

(
r,

P [f ]

(f)d(P )

1

P [f ]

)
+O(1)

≤ N(r, 0; (f)d(P )) + (d(P )− d(P ))m

(
r,

1

f

)
+m

(
r,

1

P [f ]

)
+ S(r, f)

= N(r, 0; (f)d(P )) + (d(P )− d(P ))m

(
r,

1

f

)
+ T (r, P [f ])

−N(r, 0;P [f ]) + S(r, f).

Thus,

T (r, (f)d(P )) ≤ N(r, 0; (f)d(P )) + (d(P )− d(P ))m

(
r,

1

f

)
+ T (r, P [f ])−N(r, 0;P [f ]) + S(r, f). (3.1)

Using Nevanlinna’s second fundamental theorem, from (3.1) we get

T (r, (f)d(P )) ≤ N(r, 0; (f)d(P )) +N(r, 0;P [f ]) +N(r,∞;P [f ])

+N(r, a;P [f ])−N(r, 0;P [f ]) + (d(P )− d(P ))m

(
r,

1

f

)
+S(r, P [f ]) + S(r, f). (3.2)

From definition of P [f ] and using Lemma (2.3) we have

T (r, P [f ]) ≤ K1T (r, f) + S(r, f),

for some constant K1. This implies S(r, P [f ]) = S(r, f). We also note that
N(r,∞;P [f ]) = N(r,∞; f) + S(r, f).

Thus from (3.2),

T (r, (f)d(P )) ≤ N(r, 0; (f)d(P )) +N(r, 0;P [f ]) +N(r,∞; f)

+N(r, a;P [f ])−N(r, 0;P [f ]) + (d(P )− d(P ))m

(
r,

1

f

)
+S(r, f). (3.3)
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Let, z0 be a zero of f(z) with multiplicity q (≥ 1). For any k,Mj [f ] (j =

1, 2, · · · , t) has a zero at z0 of order atleast

qn0j + (q − 1)n1j + (q − 2)n2j + · · ·+ 2nq−2 j + nq−1 j + rj

= q(n0j + n1j + · · ·+ nq−1 j)− (1 · n1j + 2 · n2j + · · ·+ (q − 1) · nq−1j)

+rj

= q(n0j + n1j + · · ·+ nq−1 j + · · ·+ nkj)− q(nqj + nq+1 j + · · ·+ nkj)

−(1 · n1j + 2 · n2j + · · ·+ (q − 1) · nq−1 j) + rj

= q(d(Mj))− (1 · n1j + 2 · n2j + · · ·+ (q − 1) · nq−1 j + qnqj + · · ·

+qnkj) + rj

≥ q(d(P ))− (1 · n1j + 2 · n2j + · · ·+ (q − 1) · nq−1 j + qnqj + · · ·

+qnkj), if q ≤ k

and

qn0j + (q − 1)n1j + (q − 2)n2j + · · ·+ (q − k)nkj + rj

= q(n0j + n1j + · · ·+ nkj)− (1 · n1j + 2 · n2j + · · ·+ k · nkj) + rj

= q(d(Mj))− (1 · n1j + 2 · n2j + · · ·+ k · nkj) + rj

≥ q(d(P ))− (1 · n1j + 2 · n2j + · · ·+ k · nkj), if q > k,

where rj (j = 1, 2, · · · , t) is the multiplicity of zero of cj (j = 1, 2, · · · , t) at
z0, which must be a non-negative quantity.

Therefore, P [f ] has a zero at z0 of order

≥ q(d(P )) + r − (1 · n1e + · · ·+ (q − 1) · nq−1 e + qnqe + · · ·

+q · nke) if q ≤ k and

≥ q(d(P )) + r − (1 · n1e + 2 · n2e + · · ·+ k · nke) if q > k,

where r = 0 if α(z) does not have a zero or pole at z0, r = s if α(z) has
a zero of order s at z0, r = −s if α(z) has a pole of order s at z0, s be-
ing a natural number and {n1e, n2e, · · · , nke} is the set of values such that
(1·n1e+2·n2e+· · ·+k·nke) = max

1≤j≤t
(1·n1j+2·n2j+· · ·+k·nkj). [We see that

whenever q(≥ 1) and k(≥ 1) are fixed, then max
1≤j≤t

(1·n1j+2·n2j+· · ·+q ·nkj)

and max
1≤j≤t

(1 · n1j + 2 · n2j + · · ·+ k · nkj) will appear for same set of values
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{n1j , n2j , · · · , nkj} for some j ∈ {1, 2, · · · , t}.]

Therefore,

1 + q(d(P ))− q(d(P ))− r (3.4)

+(1 · n1e + · · ·+ (q − 1) · nq−1 e + qnqe + · · ·+ q · nke)

= q(d(P )− d(P )) + 1− r

+(1 · n1e + · · ·+ (q − 1) · nq−1 e + qnqe + · · ·+ q · nke) if q ≤ k

and

1 + q(d(P ))− q(d(P ))− r + (1 · n1e + 2 · n2e + · · ·+ k · nke) (3.5)

= q(d(P )− d(P )) + 1− r + (1 · n1e + 2 · n2e + · · ·+ k · nke) if q > k.

Therefore, from (3.4) and (3.5) we have

N(r, 0; (f)d(P )) +N(r, 0;P [f ])−N(r, 0;P [f ])

≤ (d(P )− d(P ))N(r, 0; f) +N(r, 0; f) + n1eN1(r, 0; f)

+n2eN2(r, 0; f) + · · ·+ nkeNk(r, 0; f) + S(r, f).

Therefore (3.3) gives

d(P )T (r, f)

≤ N(r, 0; f) +N(r, a;P [f ]) +N(r,∞; f) + (d(P )− d(P ))N(r, 0; f)

+(d(P )− d(P ))m

(
r,

1

f

)
+ n1eN1(r, 0; f) + n2eN2(r, 0; f) + · · ·

+nkeNk(r, 0; f) + S(r, f)

= N(r, 0; f) +N(r, a;P [f ]) +N(r,∞; f) + (d(P )− d(P ))T (r, f)

+n1eN1(r, 0; f) + n2eN2(r, 0; f) + · · ·+ nkeNk(r, 0; f) + S(r, f).

Thus,

d(P )T (r, f) ≤ N(r, 0; f) +N(r, a;P [f ]) +N(r,∞; f) + n1eN1(r, 0; f)

+n2eN2(r, 0; f) + · · ·+ nkeNk(r, 0; f) + S(r, f).

�



AN INEQUALITY REGARDING DIFFERENTIAL POLYNOMIAL 85

Concluding comments

In this short note, we have described a result(Theorem 1.1) which ex-
tends and improves Theorem A.
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Abstract. We introduce the notion of polygons and Jordan curves.

We �rst provide a proof of the Jordan Curve Theorem for polygons,

and then we answer the following questions: given a �nite collection of

polygonal regions in the plane, can we write their union as an almost

disjoint union of polygonal regions? What do the boundaries of the

connected components in the complement of these polygons look like?

Having answered these questions, we construct a �regular� polygonal

cover for arcs in the plane and use such a covering to prove a sepa-

ration result about arcs inside discs. In the last section we provide a

proof of the Jordan Curve Theorem using the methods developed in

the previous sections.
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1. Introduction

In this paper, we provide a proof of the classic Jordan Curve Theorem.

This is one of those theorems that is very simple to state and understand

but notoriously di�cult to prove. The �rst proof was given by Jordan

(although there were some doubts, [1] claims that the original proof was

indeed correct), and since then there have been many other proofs.

In the following two sections we provide a few de�nitions and a proof

of the Jordan Curve Theorem for polygons using a parity function. In

section 4 we answer the following question: can we write a �nite union of

polygonal regions as an almost disjoint union of other polygonal regions.

The answer is yes, provided the collection satis�es a regularity condition

as de�ned later. Furthermore, we also prove that under said regularity, all

connected components in the complement of a union of polygons (just the

boundaries) have polygonal boundaries.

In section 5 we spend some time proving certain Jordan like construc-

tion and results for �nite collection of polygons, their boundaries and arcs

connecting points on these boundaries.

In section 6 we prove a rather interesting theorem about arcs, which

doesn't seem to be a direct consequence of the Jordan Curve Theorem.

Suppose we have two arcs intersecting only at the end points. A bulk of

this section is spent in explicitly constructing a polygonal covering of one

of these arcs meeting the aforementioned regularity conditions and more.

We then show that under a rather mild condition on these two arcs (see

Theorem 6), given a point, say x, not on these arcs, we can cover one

of these arcs by polygons such that x is in the unbounded component of

the complement of these polygons (we shall prove that there is only one

unbounded component in section 3).

In section 7 we prove that an arc lying inside the unit disc with ends on

the boundary circle separates the disc into two regions and makes up their

common boundary. This theorem has been proved before, but we provide

a proof using the methods developed in the previous sections. Finally, in

section 8 we provide a proof of the Jordan Curve theorem, mainly relying

on the methods developed in the previous sections.

The core of the paper is contained in sections 4 through 6 and these

concern �nite collections of polygons. The results and methods involved
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here, speci�cally Theorems 4, 5, 6 and the construction detailed in section

6.1, are novel to the best of the author's knowledge.

While the end goal of this article is to prove the Jordan Curve Theorem,

we mention here that the bulk of it is spent in developing certain results

for �nite collections of polygons and polygonal covers of arcs/curves. As

far as proofs of the theorem go, [1] contains the original proof and [2] is a

much shorter proof and both involve approximations of curves by polygons.

The proofs detailed in [3, 4] are slightly di�erent, but still concentrated on

curves. As mentioned before, the focus of this article is on �nite collections

of polygons and polygonal covers and came out of an attempt by the author

to provide a proof of Jordan Curve Theorem.

Throughout we shall use the same label to refer to a map or its image. It

is assumed that the reader is familiar with basic real analysis and topology.

2. Definitions

A Jordan curve is a homeomorphic image of S1 in R2. An arc is a

homeomorphic image of [0, 1] in any Rn, while a Jordan arc is an arc in R2.

A path is any continuous image of [0, 1] in any Rn, although we will mostly

be con�ned to the plane.

A polygon P is a Jordan curve that is piecewise linear i.e., a map

P : S1 → R2 with �nitely many points in S1 between which P is a line.

Similarly, we de�ne a polygonal arc.

Given a polygon P , let V (P ) = {v1, . . . , vn} be a minimal set such that

P is a line between vi, vi+1, i = 1, . . . , n where vn+1 = v1. By minimality,

the two lines at vi must be non parallel. The points in V are called the

vertices of P , and the lines are called the edges of P .

Let P = {P1, . . . , Pn} be a �nite collection of polygons. We de�ne the

�nite set of �new vertices� V (P) to be the set that contains

• V (Pi), i = 1, . . . , n.

• Points of intersections of non parallel edges from di�erent polygons

in P.

An edge of P refers to any edge of any P ∈ P. Given v ∈ V = V (P),

take an open ball U around v disjoint from other points of V , and edges

that don't contain v. Any such a ball shall be called the zone of v, and

exists because both V and the set of edges of P are �nite. Edges that pass
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through v induce a radius (or diameter) in the zone of v because U is an

open disc with centre v.

Uv

Figure 2.1. Zone U of vertex v with 6 radii

Two radii are adjacent if there is no other radii between them in at least

one orientation (i.e., clockwise or anticlockwise). By the choice of U,U ∩P
contains only radial lines. Similarly de�ne a zone for v /∈ ∪P∈PP \V (P) by

avoiding all points in V and edges not passing through v. This time, there

is only one diameter in U as only overlapping edges of Pi pass through v.

Suppose C1, C2 are compact subsets of R2. The distance d between

C1, C2 refers to the minimum attained by the distance map (which is con-

tinuous) on C1 ×C2. It is zero if and only if C1 ∩C2 ̸= ∅, and when d ̸= 0,

an open ball of radius d (or less) around any x ∈ C1 does not intersect C2.

3. Jordan curve theorem for polygons

In this section we prove that if P is a polygon, then R2 \ P has two

components, one bounded and the other unbounded, both having P as

their boundaries.

3.1. Parity function. Let P be a polygon and f be a direction not par-

allel to any of the edges in P . Since there are �nitely many edges, such

an f always exists. Because rotation is a linear homeomorphism, sending

polygons to polygons, we may suppose that f is along the positive x-axis.

We will now de�ne a parity function n : R2 \ P → {0, 1}.
The zones at each point of P have two sectors given by non parallel

radii at vertices, and a diameter at non vertices. For x /∈ P , take Rx to be

the ray (half-line) originating at x parallel to f . For each p ∈ Rx ∩ P , we
de�ne a contribution c(p) to n(x) to be 1 if Rx intersects both sectors in



FINITE COLLECTION OF POLYGONS AND THE JORDAN CURVE THEOREM 91

the zone of p and 0 otherwise. De�ne

n(x) =
∑

p∈Rx∩P
c(p) mod 2.

Here the empty sum is taken to be 0. The sum is �nite because Rx is

not parallel to any edge of P . Note that if p is not a vertex, then its

contribution(see Figure 3.1) is 1, and if p is a vertex, it is 1 if and only if

the edges at p lie on both sides of Rx.

0 1

1

11

Figure 3.1. Zones and their contributions

Lemma 3.1.1. The parity function constructed above is locally constant.

Proof. Take x = (a, b) /∈ P and π to be the projection onto the y-axis.

Suppose Rx ∩P = ∅. Consider the closed set Px = P ∩ {(c, d) ∈ R2|c ≥ a},
then π(Px) doesn't contain b, hence there is a neighbourhood (b±δ) disjoint
from π(Px). It follows for p su�ciently close to x with π(p) ∈ (b± δ), Rp ∩
P = ∅, so n is identically zero in a neighbourhood of x.

Suppose Rx∩P = {a1, . . . , am}. In the zone of ai, the edges of P induce

two radii, neither of which is parallel to the x-axis. Projecting both to the

y-axis we get two positive lengths, of which ri is the smaller one. Take

r = min{r1, . . . , rm}.
Next, let η be the smallest y-length of the edges of P . Since no edge is

parallel to the x-axis, η > 0. Lastly, let δ > 0 be such that B(x, δ)∩P = ∅.
Now, shift the line Rx vertically within ϵ = min{r, η, δ} of the original to

get a ray R′
x, i.e., R

′
x is the half-line parallel to positive x-axis originating

from a point (a, b′) with |b′− b| < ϵ. When comparing R′
x ∩P with Rx ∩P ,

by the choice of r, we see that (see Figure 3.1)

• If ai is not a vertex, then it is replaced by another non vertex

• If ai is a vertex that contributes 1 to n(x), then it is replaced by a

non vertex
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• If ai is a vertex that contributes 0 to n(x), then either it is replaced

by two non vertices or removed altogether

So this was about the edges that both Rx, R
′
x intersect. Now, suppose R′

x

was shifted upwards to y = b′ and intersects an edge e that Rx did not.

It follows that e lies above the line y = b. Let v be the lower vertex of

e and e′ the other edge of v. Let N be the union of Rx, R
′
x and the vertical

line segement l from (a, b) to (a, b′). Observe that N divides the plane into

two parts.

(a, b)

(a, b′)

Rx

R′
x

U

e

v

e′

N

l

Figure 3.2. Parity is invariant under small vertical shifts

Since e touches R′
x but not Rx, v is either inside N or on its boundary.

Note that e, e′ cannot intersect l because l lies in U = B(x, ϵ). Since ϵ < η,

the other vertex of e′ must be outside N . If e′ doesn't intersect Rx, R
′
x, then

it intersects l as the other vertex is outside N . Thus, either Rx intersects

e′ or R′
x intersects e′.

If Rx intersects e′, then by the choice of r,N cannot contain v. Thus,

e′ intersects R′
x but not Rx. So, e, e

′ together contribute 0 to n, by two non

vertices or by v. Note that the lower vertex for e′ is also v, so the edges

that R′
x intersects but not Rx come in pairs.

So, n doesn't change under this vertical shift. Since every point of U

is obtained by a vertical shift followed by a horizontal shift from x, and n

remains invariant under these perturbations (by choice of ϵ), it is constant

on U . The parity doesn't change under horizontal shifts because, by the

choice of δ, the intersection points do not change. □

Lemma 3.1.2. Parity function is surjective.

Proof. Let p be a point on some edge e of P that is not a vertex. There are

two sectors in the zone of p. The parity for points in those sectors di�er by
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1 because the horizontal ray passes through an extra edge, namely e, which

contributes 1. □

As a consequence of the lemma, any small neighbourhood around non

vertices has points of both parity. It follows that R2 \ P is disconnected.

3.2. Two components. The following is taken from [2]. Cover P with a

zone Up at each p ∈ P and obtain a �nite subcover U1, . . . , Un. Each Ui has

two connected sectors, say U ′
i , U

′′
i . Label the sectors so that

U ′
i ∩ U ′

i+1 ̸= ∅ and U ′′
i ∩ U ′′

i+1 ̸= ∅.

Then the unions U ′
1 ∪ · · · ∪ U ′

n, U
′′
1 ∪ · · · ∪ U ′′

n are connected sets and there

is a line from any p /∈ P to one of these sets that doesn't intersect P (draw

the line from p to any edge and look at the �rst time it meets P ). Thus,

R2 \ P has at most two components, hence exactly two components. Since

n is continuous, the components are given by n−1(0), n−1(1).

Of these, n−1(0) is unbounded for we can enclose P in a rectangle whose

outside remains connected after removing P and is part of n−1(0), whereas

n−1(1) is inside, hence bounded.

The proof of the lemma above shows that all points of P that are not

vertices lie in the boundary of both components. Since boundary is closed,

both components have P as their boundary.

Thus, R2 \ P has two components, the bounded �inside� i(P ) and the

unbounded �outside� o(P ) with P as their common boundary. Observe that

these are path components of the complement, hence independent of the

choice of the ray used to compute parity, so we may choose any convenient

ray and check whether the parity is 0 (outside) or 1 (inside).

Given a collection of polygons P outside of P refers to ∩P∈Po(P ) and

inside refers to ∪P∈P i(P ).

3.3. Approximations.

Lemma 3.3.1. Suppose U is an open set in Rn and J : [0, 1] → U a con-

tinuous path, with J(0) ̸= J(1). Given ϵ > 0, there is a polygonal arc

P : [0, 1] → U with P (0) = J(0), P (1) = J(1) such that every point of P is

within ϵ of some point of J .

Proof. For x ∈ J choose µx > 0 such that B(x, 2µx) ⊆ U . From the cover

{B(x, µx)}x∈J obtain a �nite subcover {B(x1, µ1), . . . , B(xm, µm)} and let

µ = min{µ1, . . . , µm}. Then for x ∈ B(xi, µi), B(x, µ) ⊆ B(xi, 2µi) ⊆ U .
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We may take ϵ < µ. By uniform continuity of J , choose N such that

|t1 − t2| < 2/N ⇒ |J(t1)− J(t2)| < ϵ.

Take J(0), J(1/N), . . . , J(1) and draw line segments between consecutive

points to get a piecewise linear path from J(0) to J(1). Observe that some

of these lines may be degenerate because it is possible that J( i
N ) = J( i+1

N ),

but J(0) ̸= J(1), so P is not altogether degenerate.

For 1 ≤ i ≤ N ,∣∣∣∣J( i− 1

N

)
− J

(
i

N

)∣∣∣∣ < ϵ⇒ J

(
i− 1

N

)
∈ B

(
J

(
i

N

)
, ϵ

)
so the line between them is in B(J( i

N ), ϵ) ⊆ U by the choice of ϵ < µ.

Thus, every point on the resulting union of lines is in U and within ϵ

of some point of J . Next, replace any two overlapping lines by their union,

this way the lines intersect at only �nitely many points. Remove the loops

as we go from J(0) to J(1) along the union of lines. Since there are �nitely

many loops (�nitely many intersection points) this process terminates.

We will be left with a polygonal arc, i.e., a Jordan arc, P ⊂ U such that

every point of P is within ϵ of some point of J and ends of P are the ends

of J . It is easy to obtain P as an injective image of [0, 1] using piecewise

de�nitions. □

Corollary 3.3.1. If P is a polygon and J ⊂ i(P ) (or J ⊂ o(P )), then

there is a polygonal approximation of J within given ϵ > 0 that lies in i(P )

(o(P )).

Corollary 3.3.2. A connected open U ⊆ Rn, is path connected, hence arc

connected. In particular, for a polygon P, i(P ), o(P ) are arc connected.

Proof. If Sx denotes the path component of x ∈ U , then one can show that

it is both closed and open, hence Sx = U . The rest follows from Lemma

3.3.1. □

Corollary 3.3.3. For a polygon P , given x, y ∈ i(P ), there is a polygonal

arc between them which lies entirely in i(P ), except possibly at the ends.

Proof. For x ∈ P there is a straight line from x to a point x′ ∈ i(P ) that,

except for x, lies in i(P ). Similarly obtain a point y′ ∈ i(P ) for y. Using

Corollary 3.3.2, obtain a polygonal arc from x′ to y′. We get the required

polygonal arc by joining these paths. □
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4. Some results about polygons

Let P = {P1, . . . , Pn} be a collection of polygons, V = V (P). Let U be

a zone of some �xed v ∈ V . The edges of P determine radii in U which in

turn determine open sectors between adjacent radii. These sectors remain

connected in the complement of P and are either inside or outside P.
We say that v is a regular vertex if for every component outside P, there

is at most one sector that intersects it, otherwise v is singular. This notion

doesn't depend on U as long as it has it is disjoint from other points of V

and edges that v doesn't lie on, i.e., as long as U is a zone of v.

When v is not a vertex, its zone has just a diameter, and one of the

sectors lies in some i(Pi), so non vertices are always regular. We say that

P is regular if all points in P are regular.

Polygons P,Q are said to have shallow intersection if i(P ) ∩ i(Q) = ∅.
The collection P is said to have shallow intersection if i(Pj) ∩ i(Pk) =

∅, ∀ j ̸= k. In this case, no edge of Pi goes into i(Pj) for any j. The union

i(P1) ∪ · · · ∪ i(Pn) is said to be a shallow union when P has a shallow

intersection.

u

v

P Q

R

Figure 4.1. Here v is a reg-
ular vertex, u is singular, P,Q
don't have shallow intersec-
tion, P,R and Q,R do have
shallow intersection.

Theorem 4.0.1. Let G be a graph. If every vertex of G has degree 2, then

G is a disjoint union of cycles.

For a proof see [5].

Theorem 4.0.2. Let P,Q be two polygons, V = V ({P,Q}). Suppose

P ̸⊂ i(Q), Q ̸⊂ i(P ). Then i(P )∪i(Q) is a shallow union i(R1)∪· · ·∪i(Rm)

for some polygons R1, . . . , Rm whose vertices come from V with edges sub-

segments of the edges of P,Q.

Lemma 4.0.1. With the setting as above, let v ∈ P ∪ Q, then its zone

has at most 4 sectors and no two of them are in the same component of

i(P ) \ i(Q).
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Proof. The zone U of v has at most 4 radii - two each from P,Q and

therefore at most 4 sectors. Suppose a sector S bounded by r1, r2 is in

i(P ) \ i(Q) = i(P ) ∩ o(Q). Because r1, r2 come from P,Q the sectors

adjacent to S cannot be in i(P ) ∩ o(Q). For example, if r1 is from P , then

the other side of r1 is in o(P ). Therefore, if U has 2 or 3 sectors then at

most one is in i(P ) \ i(Q).

We are left with the case when U has 4 sectors, two of which, S1, S2 are

in i(P )∩o(Q) (by the discussion above, it is at most two). This can happen

only when the radii from Q at v and the corresponding sector inside Q are

all in i(P ). Now, suppose S1, S2 are in some component R of i(P ) \ o(Q),

then there is a polygonal path from a point in S1 to S2 that lies inside R.

Using radii from v, we construct a polygon P̃ that lies in R∪ {v}, hence in
i(P ) ∪ {v} with P̃ ∩ P = {v}.

v
p′

q

p̃

p̃

pp̃

pp̃

S1

S2

Figure 4.2. In the adjacent
�gure we use lower case letters
to indicate sectors inside poly-
gons, product to denote inter-
section and prime to denote
outside.

We claim that Q ⊂ i(P̃ ) ⊆ i(P ) which is a contradiction. For the �rst

inclusion, observe that the radii from Q at v are in i(P̃ ), and Q doesn't

intersect P̃ (except at v), therefore by connectedness, Q must be in i(P̃ ).

For the second inclusion, let x ∈ i(P̃ ), then there is a path from x to any

y ∈ P̃ lying in i(P̃ ). This is a path from x to a point in i(P ), so it su�ces

to prove that it doesn't intersect P .

To this end, if it did intersect P , then because the path lies in i(P̃ ), we

conclude that there is some x0 ∈ o(P ) ∩ i(P̃ ). However, this is impossible

for o(P ) ⊂ o(P̃ ). □

Proof of Theorem 4.0.2. The proof has the following steps: we show that

components of i(P ) \ i(Q) have boundaries that are unions of polygons, we

then show that this boundary is actually a single polygon and the last step

completes the proof.

Step 1: Boundary of components is a union of polygon

Let R be a component of i(P )\i(Q). Given x ∈ ∂R, we know x ∈ P ∪Q
and let U be a zone of x. From the lemma, U has at most 4 sectors and
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exactly one is in R (because x ∈ ∂R).Let r1, r2 be the radii bounding this

sector. If x /∈ V , then r1 ∥ r2, hence an open line segment is part of ∂R>

When l is maximal, the ends must be in ∂R∩V as otherwise we can extend

it. If x ∈ V , then r1 ̸∥ r2.
Thus, ∂R is a union of line segments with ends in V and at these points

there are exactly two non parallel line segments that are part of ∂R (because

of the previous lemma). Therefore, ∂R is a graph with vertices from V each

of degree 2. By Theorem 4.0.1 it is a union of disjoint cycles, in this case

polygons. Obeserve that if P ′ is one such boundary polygon, then one of

the sectors at every point in P ′ is in R.

Step 2: Boundary has exactly one polygon

With R as above, suppose Q1 is a boundary polygon of R. Then R

must either lie inside or outside Q1 because R is path connected. Suppose

it lies outside Q1. Any path from i(Q1) to o(Q1) must then pass through

R, in particular through i(P ). However, observe that o(P ) ∩ o(Q1) ̸= ∅, so
we conclude that i(Q1) ∩ o(P ) = ∅.

The edges of Q1 are subsegments of edges in P ∪ Q and for any such

edge, we must have both sides in i(P ) (because the outside part is in R,

hence in i(P ) and the inside part is disjoint from o(P )). Therefore, these

edges must be subsegements of edges of Q which forces Q = Q1 and in this

case, Q is inside i(P ) which is a contradiction. Therefore, R must be inside

Q1 and in this case, by connectedness of R, ∂R = Q1 is a polygon.

Step 3:

So the components of i(P ) \ i(Q) lie inside their polygonal boundaries

whose vertices come from V . Since V is �nite, there can be only �nitely

many polygons, say R1, . . . , Rm−1. The inside regions of Ri, Rj cannot

intersect for i ̸= j because they would then describe the same component.

By construction of Ri, the inside regions of Ri, Q cannot intersect. Set

Rm = Q, then the collection {R1, . . . , Rm} has shallow intersection. It is

clear that i(P ) ∪ i(Q) = i(R1) ∪ · · · ∪ i(Rm) and that the edges of Ri are

subsegments of the original edges. □

In the proof, we partitioned i(P ) \ i(Q) into polygonal regions we call

this the reduction of P by Q.
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Theorem 4.0.3. Let P1, . . . , Pn be polygons, set V = V ({P1, . . . , Pn}).
Suppose Pi ̸⊂ i(Pj) for i ̸= j. Then i(P1)∪ · · · ∪ i(Pn) is a shallow union of

i(R1), . . . , i(Rm) for some polygons R1, . . . , Rm with vertices coming from

V and edges subsegement of the original edges.

Proof. By the previous theorem, the statment is true for n = 2. Assume

n ≥ 3 and that the statment is true for n − 1. First reduce P1 by P2

to obtain polygons R2
1, . . . , R

2
k. The set of new vertices is a subset of the

original and the collection R2
1, . . . , R

2
k, P2 has shallow intersection.

Ignoring any R2
i for which R2

i ⊂ i(P3), which means i(R2
i ) ⊆ i(P3) we

take R2
i ̸⊂ i(P3). By construction, i(R2

i ) ⊂ i(P1), so P3 ̸⊂ i(R2
i ). Reduce

each R2
i by P3 to obtain polygons R23

i1 , . . . , R
23
iki

such that i(R23
ij ) ⊂ i(R2

i ).

SinceR2
1, . . . , R

2
k had shallow intersection, the collection {R23

ij |1 ≤ i ≤ k, 1 ≤
j ≤ ki} has shallow intersection. In fact, these R23

ij also have shallow

intersection with P2, P3.

Continuing this way we next reduce each R23
ij by P4 and so on to arrive at

a collection R1, . . . , Rp each contained in i(P1) having shallow intersection

among themselves and with P2, . . . , Pn. At each stage the union i(P1) ∪
· · · ∪ i(Pn) is preserved and the set of vertices is a subset of the original.

Using induction hypothesis, obtain polygons Rp+1, . . . , Rm with ver-

tices from V ({P2, . . . , Pn}) ⊂ V and shallow intersection such that Rp+1 ∪
. . . i(Rm) = i(P2) ∪ · · · ∪ i(Pn).

At each stage above, the set of vertices is a subset of the original V

and the edges are subsegments of the original edges. Together R1, . . . , Rm

satisfy the requirements of the statement, proving the theorem for n and

by induction for every n. □

Remark. Since the set of new vertices is a subset of the original V and

all edges are subsegments of the original edges, the zones around each new

vertex doesn't change from the original. As a consequence, if {P1, . . . , Pn}
is regular, then so is the new collection of polygons (the common outside

does not change from the original).

Given a collection of polygons P, the intersection graph is a graph with

a vertex vP for every P ∈ P and an edge between vP , vQ if i(P )∩ i(Q) ̸= ∅.
If there is an edge between vP , vQ, then there is a path from any point in

i(P ) to any point in i(Q) that lies entirely in their union.
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Theorem 4.0.4. Let P = {P1, . . . , Pn} be a regular collection of polygons

with shallow intersection and connected intersection graph. Then all com-

ponents in the complement of P have polygonal boundaries.

Proof. Since P has shallow intersection, for every j, i(Pj) is una�ected by

the presence of other polygons, so it stays connected. If R is a component

in the complement of P = P1 ∪ · · · ∪ Pn that intersects some i(Pj), then

R = i(Pj) for i(Pj) is connected and there are no paths to points outside.

Clearly i(Pj) has a polygonal boundary.

Let R be a component on the outside and let V = V (P). For x ∈ ∂R\V ,
say from some edge e, the zone has two sectors. Since x ∈ ∂R, one of these

sectors lies in the common outside. The other sector lies inside some Pi

(that which e is a part of). Reasoning as before, there is an open segment

around x in e that is part of ∂R.

For x ∈ ∂R∩V its zone has exactly one sector lying in R by regularity.

As before, two radii at v are part of ∂R. We conclude that ∂R is a union

of disjoint polygons.

Suppose Q1, Q2 are two boundary polygons, then they are disjoint, so

either Q1 ⊂ i(Q2) or Q1 ⊂ o(Q2). In the �rst case R must lie between

Q1, Q2 (although there may be other boundary polygons in between as well)

and this contradicts the connectedness of the intersection graph because a

path from inside of Q1 (hence inside some Pi) to outside of Q2 must pass

through R (which lies in the common outside of P). In the second case, R

must lie outside both Q1, Q2 again contradicting the path connectedness of

the intersection graph (this time there is no path from inside Q1 to inside

Q2 which doesn't pass through R). Therefore R must have exactly one

polygon in its boundary. □

Remark. Observe that the boundaries of components outside P are

polygonal regardless of whether P has a shallow intersection.

5. Some more results about polygons

Let a, b be points in the plane, l1, l2, l3 be polygonal arcs from a to b that

intersect only at the ends. Using two of the three arcs, we form polygons

P1, P2, P3, where Pi doesn't use li. Let n1, n2, n3 be the corresponding parity

functions, calculated using a direction not parallel to any of the edges in

l1, l2, l3.
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a

b

l1

l2

l3

o(P1)

i(P2)

i(P3)

Figure 5.1.

Lemma 5.0.1. n1 + n2 + n3 = 0.

Proof. Take x /∈ L = l1 ∪ l2 ∪ l3 and let Rx be the ray originating from x

used to compute the parity.

Suppose Rx passes through a. At a, take a zone U small enough to

avoid x. Denote by r1, r2, r3 the radii in U induced by l1, l2, l3 respectively.

The diameter d induced by Rx cuts U in half. If two of the three radii, say

r1, r2, lie on the same side then the contribution by a is 0 to n3 and 1 to

n1, n2. Otherwise all three radii are on the same half and the contribution

to each ni is 0. In both cases the contribution to the sum is 0. The same

holds for b.

If p is a point other than a, b, then it appears in exactly one of l1, l2, l3

and its zone has two sectors. Since each li is part of two polygons, the

contribution from p is counted twice in the sum n1(x) + n2(x) + n3(x). It

follows that n1 + n2 + n3 is identically zero. □

As a consequence, every point in the complement of L is either inside

exactly two polygons or outside all three. In the zone of a, there are three

sectors and it is easy to see that one of the three sectors, say the one bounded

by r2, r3, must lie outside all Pi. Then the radius r1 lies inside P1 and by

connectedness, l1 excluding a, b, lies inside P1. So, some li \ {a, b} is inside

Pi.

Suppose l1 lies inside P1. Bound all the polygons in a large square

and take a point p outside this square, so p ∈ o(P1) ∩ o(P2) ∩ o(P3). For

x ∈ o(P1), there is a path from x to p lying outside P1. Since l1 is inside P1,
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this path cannot intersect l1, hence P2, P3. It follows that x ∈ o(P2)∩o(P3).

Therefore, o(P1) ⊆ o(P2) ∩ o(P3) and n1(x) = 0 ⇒ n2(x) = n3(x) = 0.

Thus there are three components o(P1), i(P2), i(P3) in the complement

of L with boundaries P1, P2, P3 respectively. The zones at a, b have three

sectors, one for each component. For points in l1 other than a, b both sectors

are in i(P1).

Corollary 5.0.1. With the setting as above, if ϕ : [0, 1] → R2 is a path with

ϕ(0) ∈ o(P1), ϕ(1) ∈ i(P2) that doesn't intersect i(P3), then it intersects l3.

Proof. Because o(P1) ⊆ o(P2), ϕ∩P2 ̸= ∅. Suppose ϕ∩ l3 = ∅, then it must

intersect l1 \ {a, b}. Let t1 = inf{ϕ−1(ϕ ∩ l1)}. Since ϕ(0) /∈ i(P1), we have

t1 ̸= 0. Let U be a zone of ϕ(t1) ∈ l1, by continuity there is an interval

(t0, t2) such that ϕ((t0, t1)) ⊂ U .

One of the sectors of U is in i(P3) and the other in i(P2). For t0 < t < t1,

by minimality of t1, ϕ(t) cannot lie on the radii in U . By hypothesis, ϕ(t)

cannot lie in the sector contained in i(P3). So, ϕ(t) is in the sector that

is contained in i(P2) and we can �nd a t′ < t such that ϕ(t′) ∈ P2. Since

ϕ ∩ l3 = ∅ by assumption, ϕ(t′) ∈ l1 \ {a, b} contradiction minimaity of t1.

So, ϕ ∩ l3 ̸= ∅. □

Corollary 5.0.2. If l1, . . . , ln are n polygonal paths between a, b that inter-

sect only at a, b, then the complement of L = l1 ∪ · · · ∪ ln has n− 1 bounded

components and one unbounded.

Proof. Induction. □

Lemma 5.0.2. Suppose P,Q are polygons with P ̸⊂ i(Q). Suppose Q∩i(P )
is a non empty, connected (open) path whose ends are di�erent. Then we

can reduce P by Q in the sense that i(P )\ i(Q) = i(R) for some polygon R.

Proof. L = Q ∩ i(P ) is a polygonal arc between two points a, b ∈ P, a ̸= b.

Let L1, L2 be the two paths between a, b along P . So L1, L, L2 are three

polygonal arcs that intersect only at the ends and we know that L (except

for the ends) is contained inside P . Let P1 = L1 ∪ L,P2 = L2 ∪ L.
We have i(P1) ∩ Q = ∅ because i(P1) ∩ Q ⊂ i(P ) ∩ Q ⊂ L. So, i(P1)

is connected in the complement of Q, hence inside or outside Q. Similarly

i(P2) is inside or outside Q. Take z ∈ L \ {a, b}, then the zone of z has two

sectors, one from each i(P1), i(P2) and these two sectors should also come
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from i(Q), o(Q). So, one of i(P1), i(P2) is inside Q and the other outside.

Assume i(P2) ⊂ i(Q), then

i(P ) \ i(Q) = (i(P1) ∪ i(P2) ∪ L) \ i(Q) = i(P1).

So, the reduction of P by Q is the polygon P1. □

5.1. Removing singular vertices. Let P = {P1, . . . , Pn} be a collection

of polygons, V = V (P). If v ∈ V is a singular vertex, with zone U , then

there is more than one sector in U that comes from a component C outside

P.
Choose radii r1, r2 such that all sectors of U lying in C lie in a sector

S determined by r1, r2. Let S to be minimal in the sense that no smaller

sector in S contains all the sectors of U that intersect C. Then the sectors

in S that have r1 or r2 in their boundary must lie in C. We note r1 ̸= r2

and that they cannot lie inside any Pi.

By assumption S ̸⊆ C, so it contains some radii of U . In fact, there

must be at least two radii in S as if there is only one radius s, then S has

two parts - sectors sr1, sr2. By the assumptions on C, v at least two of the

sectors in S must be in C outside P, which means that both sides of s are

outside P which is impossible.

As we go from r1 to r2 through S, let s1, s2 be the �rst and second radii

we meet before reaching r2. The sector r1s1 in S must lie in C, therefore

outside P and the sector S′ determined by s1, s2 must lie in some i(Pi)

because s1 cannot have both its sides outside P.
Let a, b be the midpoints of s1, s2 respectively. Let l be a polygonal

path from a to b that lies entirely in S′. Form the polygon Q = av ∪ l ∪ bv.

v

r1

r2

s1

s2

l

S′

U

a

b
s3

Figure 5.2. Line bv may also be removed, av is removed
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For each i, by the choice of s1, s2 either S′ ⊂ i(Pi) or S′ ⊂ o(Pi).

Therefore, the intersection Q ∩ i(Pi) is either empty or the open path l or

the union l∪ bv in case s2 is inside Pi. In the last two cases, the end points

of the intersection are di�erent, so we may apply Lemma 5.0.2 to reduce Pi

by Q and obtain a polygon P ′
i (= Pi when Q ∩ i(Pi) = ∅).

One side of av is outside P and the other in i(Q), so av is outside all P ′
i ,

hence i(Q) is now part of C. The set V (P ′
1, . . . , P

′
n) includes the vertices of

Q in addition to the original V . At the zones of a(b) we have three radii

from l, s1(s2). So, a, b are regular. The other points of Q other than v are

regular as they have only two radii from l in their zones.

Lastly, note that the loss of interior from Pi is just i(Q). So, anything

not in i(Q) covered by P is still covered by i(P ′
1) ∪ · · · ∪ i(P ′

n). Therefore,

if w is a regular vertex outside U , it cannot become singular upon these

reductions.

Now, shrink U to avoid l. The sectors contained in C still lie in S. Since

av is removed, the number of radii between r1, r2 has reduced by at least

1. Repeating the steps above, we make sure that S has no other radius in

between, giving us one sector in U that intersects C. Repeating this process

for other sectors of U makes v a regular point.

The process terminates as there are �nitely many radii and we are left

with one less singular point. Modify P in a �nite number of steps so that the

resulting V has no singular points. Note that at each stage the cardinality

of P does not change.

5.2. Jordan-like results. Let P = {P1, . . . , Pn} be a regular collection of

polygons with shallow intersection and a connected intersection graph. In

this case, V = V (P) is the collection of vertices in P. Let C be a bounded

component outside P with polygonal boundary R (Theorem 4.0.4).

Suppose u1, u3 ∈ R are distinct points. Let L1, L2 be the two paths

along R from u1 to u3. Fix polygons R1, R3 ∈ P that contain u1, u3 re-

spectively. We may have R1 = R3. Traversing L1 from u1 to u3 gives each

p ∈ L1 a backward edge and a forward edge. In the zone of p, these edges

determine radii b, f respectively and two sectors one of which is inside R.

All other radii are in the other sector S. As we go from b to f through

S, form the sequence of sectors that lie in i(P ) for some P ∈ P. By shallow

intersection, such P are unique. If this sequence has just one term, then

points on b, f also have the same sequence, so an open segment of R around
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p also has the same associated sequence. The ends of a maximal such

segment must lie in V .

So the only p ∈ L1 that can have more than one element in their associ-

ated sequence of polygons are those from V (R) = V ∩R, a �nite set. Now

start at the sector corresponding to R1 at u1 and go through the sequence

of polygons associated to points in V (R) ∩ L1 along L1 in the manner de-

scribed, backward edge to forward edge outside R, till we reach the sector

corresponding to R3 at u3. This sequence we call S(L1). Similarly de�ne

S(L2) starting at u1 and going to u3.

R1

R3

u1

u3

X

Y

out

x

y

z

1
2
3
4

5
6

7
8

Figure

5.3. Obtaining S(L1)

R1

R2

R4

R3

u1

u2

u3

u4

ϕ

Figure 5.4. Set up
for Theorem 5

For example, in the �gure above, the sequence S(L1) will contain the

sectors numbered in order, i.e., the sectors 1, 2 at u1 (skipping the sector

lying outside the cover) then sectors 3, 4 at x and so on till sector 8 at u3.

Suppose we can choose polygons R2 ∈ S(L1), R4 ∈ S(L2) di�erent from

R1, R3 (we can have R2 = R4) and points u2 ∈ L1 ∩ V (R), u4 ∈ L2 ∩ V (R)

that are part of R2, R4 respectively. Assume u1, u2, u3, u4 are distinct.

Let ϕ be a path (continuous image of [0, 1]) from a point in i(R1) to

one in i(R3) that lies outside R, except possibly for the ends and if an end

does lie on R, then it is u1 or u3. Let ψ be a path from a point in i(R2) to

one in i(R4) with similar conditions. Furthermore, assume

• ϕ doesn't intersect i(R2), i(R4) with the exception of u1, u3

• ψ doesn't intersect i(R1), i(R3) with the exception of u2, u4

Theorem 5.2.1. The paths ϕ, ψ should intersect.

Proof. Suppose they do not intersect. Assume ϕ(0) ∈ i(R1), ϕ(1) ∈ i(R3).

If ϕ(0) ̸= u1, let l1 be a polygonal arc from u1 to ϕ(0) that, except for
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the ends, lies in i(R1). Note that l1 doesn't intersect i(R2), i(R4) except

possibly at u1. Extend ϕ by travelling along l1 from u1 till the �rst time

we meet ϕ and from there along ϕ. If ϕ(1) ̸= u3, extend ϕ using a similar

polygonal arc l3 from u3 to ϕ(1).

Since the open segments of l1, l3 lie inside R1, R3, they cannot intersect

ψ. So, ψ cannot intersect the extension of ϕ, which we continue to denote

by ϕ. Even after the extension, ϕ lies outside R except for the ends and

the ends are u1, u3 because l1, l3 can intersect R only at u1, u3 respectively.

Furthermore, ϕ continues to not intersect i(R2), i(R4) except possibly at

u1, u3.

Let d > 0 be the distance between (the extended) ϕ and ψ and ϵ =

min{d, |u1 − u3|}. Around u1, take a zone of radius < ϵ/2 and a radial line

r1 from u1 to a point x ∈ ϕ in this zone. Note that x ̸= u3 is outside R

and does not lie in any sector corresponding to i(R2), i(R4). So, the line

r1 doesn't intersect i(R), i(R2), i(R4) except at u1. Similarly, take a line r3

from u3 to a point y ∈ ϕ that does't intersect i(R), i(R2), i(R4) except at

u3.

Let ϕ′ be the restriction of ϕ between x, y. Note that x ̸= y by the

choice of ϵ. We know that ϕ′ lies outside R and is at a distance of some

µ > 0 from the closed set i(R2) ∪ i(R4). Approximate ϕ′ within min{ϵ, µ}
by a polygonal arc P that lies outside R.

Let Q be the polygonal arc r1 + P + r3 from u1 to u3. We make the

following observations

• Q lies outside R except for the ends u1, u3 which lie on R

• Q doesn't intersect i(R2), i(R4) except possibly at u1, u3. In partic-

ular Q ∩ i(R2) = Q ∩ i(R4) = ∅
• By the choice of ϵ, ψ doesn't intersect r1, r3 and P , hence it doesn't

intersect Q

Extend ψ similar to ϕ using polygonal arcs lying in i(R2), i(R4) to get

a path from u2 to u4. Since Q doesn't intersect i(R2), i(R4) and ui are

distinct, Q doesn't intersect this extension of ψ.

The paths L1, L2, Q are all polygonal arcs between u1, u3 that intersect

only at the ends and Q lies outside L1 ∪ L2. We may assume that L2

is inside L1 ∪ Q. When looking at L1, L2, Q, ψ, the zone of u4 has two

parts, one lying in i(R) and the other in i(L2∪Q), and ψ enters the second

sector. Similarly, u2 has two sectors in its zone and ψ enters that sector
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lying outside L1 ∪ Q (the other is inside R). By Corollary 5.0.1, ψ should

intersect Q which is a contradiction. □

The main idea of the proof is to use Corollary 5.0.1. We can extend the

result using a few assumptions. If ϕ doesn't have u1 as an end for example,

then the extension of ϕ must start at u1 and enter i(R1). At the same

time, if ψ doesn't have u2 as an end, then the extension of ψ must start at

u2 and enter i(R2). It is easy to see that, in this case, we can deal with

u1 = u2, because of the order in S(L1) which allows the use of Corollary

5.0.1. Similarly, we can have (observe that u1, u3 can be interchanged and

intuitively this is just turning the diagram upside down)

• u1 = u4 when ϕ doesn't have u1 as an end and ψ doesn't have u4

as an end

• u3 = u2 when ϕ doesn't have u3 as an end and ψ doesn't have u2

as an end etc.

An extreme case is u1 = u2 = u4 when ϕ doesn't have u1 as an end and ψ

doesn't have u2, u4 as its ends.

However, the proof doesn't apply directly to the case when all ui are

the same, because to construct L1, L2 we need u1 ̸= u3. Although, such an

extension can be similarly proved by looking at the sequence of polygons at

u1 and assuming that the Ri come in the appropriate order : R1 between

R4, R2 and R2 between R1, R3. We will also need ϕ, ψ to be outside R.

If they don't intersect, we obtain Q as before, and this time it is directly

a polygon. At u1 we have two sectors determined by Q and by the order

forced on Ri, we see that ψ is a path from a point in one of these sectors

to the other, i.e., a path from i(Q) to o(Q). So it must intersect Q, a

contradiction.

Remark. Observe that we are close to having a version of the Jordan

curve theorem because ϕ above corresponds to a curve and ψ is a path

which we have forced to go from �inside� ϕ to outside and we have shown

that ψ must intersect ϕ.

6. A theorem about arcs

Suppose we have points a, b in the plane and arcs ϕ1, ϕ2 from a to b

that intersect only at a, b. Set I1, I2 to be [0, 1] and suppose ϕi : Ii → R2

with ϕi(0) = a, ϕi(1) = b, i = 1, 2. Since ϕ1 is a homeomorphism, ϕ1 and its
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inverse are uniformly continuous. Fix ϵ > 0, and choose δ > 0, ϵ > ϵ′ > 0

such that

|t1 − t2| < 3δ ⇒ |ϕ1(t1)− ϕ1(t2)| < ϵ

|ϕ1(t1)− ϕ1(t2)| ≤ ϵ′ ⇒ |t1 − t2| < δ.

6.1. A special covering. At a, b take open squares with disjoint closures

and diameter < ϵ′. For t ∈ (0, 1), pick an open square of diameter < ϵ′

around ϕ1(t) whose closure doesn't intersect ϕ2. By compactness of ϕ1

obtain a �nite open subcover P = {P1, . . . , Pn}.
We re�ne this cover in steps. At each step we ensure that there are

unique polygons T1, T2 such that a ∈ i(T1), b ∈ i(T2), i(T1) ∩ i(T2) = ∅ and

if ϕ2 ∩ i(P ) ̸= ∅, then P = T1 or P = T2. This is true for P.
(1) First we remove singular vertices (5.1) in the cover P. A point

v ∈ ϕ1 is inside some polygon P̃ which means that a zone of v

has no sectors outside P, hence v is regular. If v /∈ ϕ1 is singular,

then we choose a zone that avoids ϕ1. The modi�cations to P while

making v regular involves removing a part of this zone from each

P ∈ P, therefore even after these modi�cations ϕ1 is covered by the

resulting polygons (and their insides).

If the original collection was {P1, . . . , Pn}, T1 = P1, T2 = Pn, then

each Pi is replaced (as detailed in 5.1) with a P ′
i , i(P

′
i ) ⊆ i(Pi). It is

easy to see that T1 = P ′
1, T2 = P ′

n after making v regular. Similarly

remove other singular vertices. At each stage we can �nd suitable

T1, T2.

(2) Remove redundant polygons to arrive at a minimal cover {P1, . . . , Pn}
with T1 = P1, T2 = Pn. Note that T1, T2 cannot be redundant.

Now if Pi ⊂ i(Pj), then i(Pi) ⊂ i(Pj) and Pi is redundant, so no

Pi ⊂ i(Pj). Take the collection P2, . . . , Pn−1 and apply Theorem

4.0.3 to obtain a collection R1, . . . , Rm. Now i(Rj) ⊆ i(Pk) for

some 2 ≤ k ≤ n− 1, so i(Rj) ∩ ϕ2 = ∅.
(3) So, we have the collection {P1, R1, . . . , Rm, Pn}. We cannot have

P1 ⊂ i(Rj) and remove any Rj for which Rj ⊂ i(P1). So we may

take Rj ̸⊂ i(P1), 1 ≤ j ≤ m. Reduce (Theorem 4.0.2) each Rj by

P1 to get a collection {P1, R
′
1, . . . , R

′
s, Pn}.

(4) As in Step 3, reduce each R′
j by Pn and obtain {P1, R

′′
1 , . . . , R

′′
t , Pn}.

The sets i(P1), i(Pn) are unaltered and i(P1)∩i(Pn) = ∅. The union
∪i(Pj) ⊃ ϕ1 is preserved and the collection has shallow intersection.
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Furthermore, for any i, there are j, k, 2 ≤ l ≤ n− 1 such that

i(R′′
i ) ⊆ i(R′

j) ⊆ i(Rk) ⊆ i(Pl) ⇒ ϕ2 ∩ i(R′′
i ) = ∅.

So, we can take T1 = P1, T2 = Pn. For the sake of convenience let

continue to call this collection P = {P1, . . . , Pn} and set V = V (P).

Lastly, we make sure that if two polygons intersect, then the intersection

contains points of ϕ1. For polygons P,Q with shallow intersection, the

intersection of edges e ∈ P, f ∈ Q is either a point (short intersection), or a

closed segment (long intersection). Henceforth short and long intersections

refer to those that don't contain points of ϕ1. This is a two step process.

First we make sure that long intersections have points of ϕ1. Then we

look at short intersections in P ∩ Q not part of any long intersection in

P ∩Q. Henceforth, short intersections refer only to this speci�c type. The

notion of short intersection now depends on the polygons P,Q for e∩f may

be short in P ∩Q, but not in P ′ ∩Q′ for some P ′, Q′ (see Figure 6.1). The

zone of a short intersection v ∈ P ∩Q has 2 radii each from P,Q.

M1

e
v

f

g

h

M2

M3

Figure 6.1. In the adjacent �g-
ure, the intersection g∩g is a long
intersection. The vertex v = e∩f
is a short intersection when con-
sidered as a point inM1∩M2, but
the same vertex is not a short in-
tersection inM1∩M3 andM2∩M3

because it appears in the long in-
tersections g∩g, h∩h respectively.

Removing long intersections:

Consider edges e ∈ P, f ∈ P , where P,Q ∈ P are arbitrary, and suppose

e ∩ f is a long intersection. The ends of e ∩ f are in V and since one side

of this segment lies in i(P ) and the other in i(Q), by shallow intersection,

there is no point of V in e ∩ f other than the ends.

Around e ∩ f take a rectangle R with one side parallel to e such that

i(R) is disjoint from

• ϕ1 and

• edges e′ ∈ P with e′ ∩ e ∩ f = ∅ and

• V \ e ∩ f , so that V ∩ i(R) = V ∩ e ∩ f ⊂ i(R).
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T1
T2

a
b

ϕ1

ϕ2

Figure 6.2. Example of a special covering

This is possible because e∩f is compact, so we take a �nite cover by squares

with one side parallel to e and then take a �minimum height� rectangle. The

initial cover of e ∩ f is one that avoids ϕ1 ∪ (V \ (e ∩ f)) and edges of P
that don't intersect e∩ f . Such a cover exists by the assumptions on P and

e ∩ f .
Now V ∩ R = V ∩ e ∩ f has 2 elements, so R does not contain any

P̃ ∈ P. We have

e ∩ f ⊂ i(R) ⇒ i(R) ∩ i(P ) ̸= ∅, i(R) ∩ i(Q) ̸= ∅

so by shallow intersection R ̸⊆ i(P̃ ) for any P̃ ∈ P. Reduce (Theorem 4.0.2)

each P̃ ∈ P by R giving us in place of P̃ , a shallow union of some polygons.

We show that each reduction gives one polygon.

P

Q

e
f

R

P̃

outside

P

Q

e
P̃

outside

Figure 6.3. Removing long intersection e ∩ f

Number of polygons doesn't change:
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P ∩i(R) is a connected path (involving 3 or fewer segments) and divides

R into polygons R1, R
′ with i(R1) ⊂ i(P ). By shallow intersection Q ∩

i(R) ⊂ i(R′). By Lemma 5.0.2, Q∩ i(R) divides R′ into 3 or fewer polygons

R2, R3, R4 with i(R2) ⊂ i(Q) where R3, R4 may be degenerate, i(R3) ∩
i(R4) = ∅. At each end of e∩ f , there is one sector each for R1, R2 and one

for R3 or R4.

R1

R2
R3

P

Q

e = fR
R1

R2R3

P

Q

R4

P̃

Figure 6.4. Examples of what R looks like. R4 is degen-
erate in the �rst one

For P̃ ∈ P, if P̃ ∩ i(R) = ∅ the reduction by R doesn't change P̃ , so

assume P̃ ∩ i(R) ̸= ∅, then we must have P̃ ∩ e ∩ f ̸= ∅. If e ∩ f ⊂ P̃ , by

shallow intersection P̃ = P or P̃ = Q and it is easy to see that R ∩ i(P̃ ) is
a connected path.

For P̃ ̸= P,Q, P̃ ∩ e ∩ f contains only the ends of e ∩ f . At each point

of P̃ ∩ e ∩ f , there are two segments induced by P̃ and both must be in

i(R3) or i(R4) by shallow intersection. The reduction of P̃ by R happens

in two steps - by R3, R4 separately. Observe that R3 ∩ i(P ), R4 ∩ i(P̃ ) are
connected in the step-wise reduction. After reducing by R3 for example,

R4 ∩ i(P̃ ) doesn't change.
In both cases, by Lemma 5.0.2, the number of polygons doesn't change.

Each P̃ ∈ P is replaced by a P ′ forming a collection P ′. Similar to step 1,

we can �nd T1, T2.

Regularity:

P ′ covers ϕ1 because R∩ϕ1 = ∅ and has a shallow intersection because

the interiors have shrunk. So V (P ′) = V ′ is the collection of vertices in P ′

and consists of points of R that lie in i(Pj), Pj ∈ P and points of V outside

R. As a consequence i(R) is now in the common outside.
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• Because R can intersect only those edges that intersect e ∩ f , any
edge intersecting R must go inside R. If x ∈ R lies on an edge

of Pi, then x /∈ V by construction of R. Its original zone had one

diameter and now contains a radius on either side introduced by R.

After reducing Pi by R, the sector that was in i(R) is now in the

common outside and the new zone has three sectors, with two radii

from R and one from half of the original diameter.

• If x ∈ R lies inside Pi, then its original �zone� (a ball around x that

lies inside the polygon will do) had no radii and the new zone has

two.

R

i(P )
Figure 6.5. After reducing
by R, the vertices introduced
by R are regular.

The other points of V ′ are points of V outside R. If x is such a point,

then the zone of x is unaltered because the line segments passing through x

are unaltered (for they are outside R). Note that any loss of interiors comes

from i(R), so the sectors at x do not change. So, P ′ is regular.

Number of long intersections:

Every long intersection in P ′ must come from a long intersection in P
because the new edges of P ′ lie inside polygons of P and cannot have long

intersections by shallow intersection of P.
Suppose e1, f1 are two edges in P such that e1 ∩ f1 is long. If e1 ∩ f1 ⊂

i(R), then by the choice of R, we have e1 ∩ f1 = e ∩ f , which is removed.

If e1 ∩ f1 ⊂ o(R), it is una�ected and is a long intersection in P ′. Lastly,

if e1 ∩ f1 enters R but not contained in it, then one end of e1 ∩ f1 is an

end of e ∩ f and the other is outside R. Because i(R) is a convex shape,

e1 ∩ f1 \ i(R) is a connected closed segment, so e1 ∩ f1 gives rise to exactly

one long intersection in P ′.

Thus, the number of long intersections has decreased by 1. Repeating

this process, we arrive at a collection P such that ϕ1 ⊂ ∪P∈P i(P ) with

shallow intersection and every long intersection of edges having points from

ϕ1. At each step, we can �nd T1, T2.

Removing short intersections:
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Suppose v = e ∩ f is a short intersection for edges e ∈ P, f ∈ Q. Let

U be a zone of v ∈ V that avoids ϕ1. In U , the sectors that lie inside P,Q

are disjoint and since v ∈ V one of them must be convex. Without loss of

generality, assume the sector in i(P ) bounded by radii r1, r2 is convex. Join

the midpoints of r1, r2 to get a triangle W contained inside i(P ).

Reducing P̃ ∈ P\{P} doesn't change it as i(W )∩i(P̃ ) = ∅. Reducing P
by W gives it two vertices in place of v. As before, these vertices and those

outside U are regular. The component i(W ) is either a new component

outside, or it merges with some other component outside all P̃ (depending

on whether the other side of ri is inside or outside P). In either case, v

stays regular. So, after reduction, points in V (P) ∪ V (W ) are regular.

Thus, upon reducing P byW , we have a regular polygonal cover (by the

choice of U) of ϕ1 with shallow intersection. Moreover, any long intersection

is a subsegment of one in P and, by the choice of U , contains a point of ϕ1.

The zones of a, b have two or three radii, so they cannot be short inter-

sections. Moreover, v is no longer a vertex of the reduced P as there is a

ball around v that doesn't intersect i(P )\ i(W ). Thus, the number of short

intersections has reduced by 1 as v ∈ P ∩Q is no longer an intersection in

the new collection. Again, since the number of polygons hasn't changed,

we can �nd T1, T2.

This process terminates and we obtain a regular P containing ϕ1 in

its shallow union and if P ∩ Q ̸= ∅, P,Q ∈ P, then P ∩ Q (in fact, every

component of P∩Q) contains a point of ϕ1. Furthermore, there are polygons

T1, T2 as described in the beginning.

Wv

r 1

r2

P

Q

a

b

U

Figure 6.6. Removing short intersection v ∈ P ∩Q

6.2. Consequence of the special covering. Suppose we have the cover-

ing P = {P1, . . . , Pn} as above and C is a bounded component outside P.
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Let Q1, . . . , Qk ∈ P be the polygons that intersect the polygon R = ∂C.

To each Qi, by minimality of the cover, we have the interval [ai, bi] ⊆ I1

where ai is the �rst time ϕ1 intersects i(Qi) and bi last. By the re�nement

in the last subsection, if Qi ∩Qj ̸= ∅, then [ai, bi] ∩ [aj , bj ] ̸= ∅. We started

with a cover where the diameter was less than ϵ′ and re�ned this cover. At

each step of the re�nement the diameter never increased, so bi − ai < δ

(assumptions made at the start of section 6).

Suppose in P, the polygon P1 contains a and Pn contains b, i.e., P1

plays the role of T1 and Pn that of T2. We know that i(P1) ∩ i(Pn) = ∅
and ϕ2 ∩ i(Pj) = ∅, 2 ≤ j ≤ n− 1. Now, i(P1) ∩ ϕ2, i(Pn) ∩ ϕ2 are two non

empty (because they contain a, b) disjoint closed sets in ϕ2. Because ϕ2 is

connected, there is an s ∈ (0, 1) ⊂ I2 such that ϕ2(s) /∈ i(P1)∪ i(Pn), hence

it is outside P, in particular outside Q1, . . . , Qk.

Set

α = min
1≤i≤k

ai, β = max
1≤i≤k

bi.

Look at the path ϕ1(α)
ϕ1−→ a

ϕ2−→ ϕ2(s). The �rst part, i.e. ϕ1(α)
ϕ1−→ a

intersects ∪ii(Qi) only at ϕ1(α) by de�nition, hence intersects R at most

once. If the second part, i.e., a
ϕ2−→ ϕ2(s), intersects R, hence any of the

i(Qj), then, by construction of P, that Qj = T1 or T2 and we must have

α = 0 or β = 1.

Since ϕ2(s) /∈ R, we can obtain a subpath, or more properly sub-arc,

not intersecting R, except possibly at one end. This arc, ψ1, goes from some

Qi to ϕ2(s). By the arguments in the preceding paragraph, ψ1 can intersect

only those i(Qj) which contain ϕ1(α) or ϕ(β).

Next, using the path ϕ1(β)
ϕ1−→ b

ϕ2−→ ϕ2(s), obtain an arc ψ2 not inter-

secting R, except possible at one end and intersecting only those i(Qj) that

contain ϕ(α) or ϕ1(β). Then the arc ψ = ψ1∪ψ2 goes from a point in some

i(Qi) to one in i(Qj) and intersects only those i(Ql) that contain ϕ1(α) or

ϕ1(β).

Now assume ϕ2(s) ∈ o(R). Then the path ψ (except for the ends) must

also lie outside R by de�nition of ψ1, ψ2 for if they meet i(R) then ψ1 or ψ2

must meet R.

Lemma 6.2.1. β − α < 3δ.

Proof. Choose polygons R1, R3 from Q1, . . . , Qk with associated intervals

[α, α′], [β′, β] respectively where α′, β′ are chosen so that α′ − α, β − β′ are
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ϕ1
ϕ2

b

a = ϕ1(α)

ϕ1(β)

R

Figure 6.7. Set up for Lemma 7, only the necessary poly-
gons are drawn

maximal. The ends of ψ are in these polygons, say ψ(0) ∈ i(R1), ψ(1) ∈
i(R3). If ψ(0) ∈ R, take u = ψ(0), otherwise take u to be a vertex of R1

in V (R). Similarly, if ψ(1) ∈ R, take v = ψ(1), otherwise take it to be a

vertex of R3 in V (R).

If u = v, then these intervals should intersect (they may even be equal)

and it follows that β − α < 2δ < 3δ. So, assume that u ̸= v and that

[α, α′] ∩ [β′, β] = ∅.
Let the two paths from u to v along R be L1, L2. Starting at u traverse

the sectors in the sequence S(L1) (with ends R1, R3), till the �rst point in

V (R)∩L1 that has a polygon R2 with [ai, bi], bi > α′. Going along L2, arrive

at a point in V (R)∩L2 that has a polygon R4 with interval [aj , bj ], bj > α′.

By the maximality assumption, we must have ai, aj > α. As we move

sequentially from R1, each polygon shares an edge or vertex with the pre-

vious one, so their intervals intersect. Therefore, we must have ai, aj < α′.

If bi ≥ β′ (or similarly bj ≥ β′), then

β − α = β − bi + bi − ai + ai − α < 3δ.

So, assume bi, bj < β′ and without loss of generality, assume bi ≤ bj .

For example, in Figure 6.8, we traverse the sectors from u to v according

to the numbering, i.e., sectors 1, 2 at u, then 3, 4 at x. Sector numbered 4

is from the polygon Y whose associated interval is the �rst to go beyond

[α, α′]. Notice that in the sequence each polygon shares an edge or vertex

with the previous one.

Let ϕ′ be the restriction of ϕ1 to [bi, bj ]. By assumption (on bi, bj), ϕ
′

doesn't intersect i(R1), i(R3). If ϕ′ ∩ L1 ̸= ∅, then let x be the last time
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Figure 6.8. Example

(while going from bi to bj) that it hits L1. Being closed, ϕ1(x) ∈ L1 and by

assumption ϕ1(x) ̸= u, v. Otherwise, set x = bi.

Next, if ϕ′∩L2 ̸= ∅, then set y to be the �rst time it hits L2 while going

from x to bj . Again, ϕ1(y) ∈ L2 and ϕ1(y) ̸= u, v. Otherwise set y = bj .

This way we obtain a path ϕ, given by the restriction of ϕ′ to go from x

to y, from a polygon R′
2 with a vertex in L1 to a polygon R

′
4 with a vertex in

L2, say ϕ(0) ∈ i(R′
2), ϕ(1) ∈ i(R′

4). Take u2 = ϕ(0) if ϕ(0) ∈ R, otherwise

take it to be a vertex of R′
2 in V (R). Similarly, take u4 = ϕ(1) if it is in

R, otherwise take it to be a vertex of R′
4 in V (R). Note that R′

2, R
′
4 are

di�erent from R1, R3 (because ϕ′, hence ϕ, doesn't intersect i(R1), i(R3)).

Observe

(1) Both ψ, ϕ lie outside R and the ends may lie on R or outside. We

assumed ψ is outside, but ϕ is outside by de�nition of R. If the ends

do lie on R, then it is u, v or u2, u4 respectively.

(2) By assumptions on bi, bj , ϕ doesn't intersect i(R1), i(R3). In partic-

ular, ϕ cannot have u or v as its ends.

(3) ψ intersects only those i(Qi) that contain ϕ1(α) or ϕ1(β). Neither

i(R′
2), i(R

′
4) have these points by the maximality conditions on α′, β′

so ψ doesn't intersect i(R′
2), i(R

′
4).

(4) By 3, if ψ(0) = u (ψ(1) = v), then R′
2, R

′
4 cannot have u (v) as a

vertex.

(5) Lastly, note that ϕ, ψ do not intersect
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We are in a possition to apply Theorem 5.2.1 and its extensions and

we have a contradiction. Therefore, one of bi, bj is larger than β′ and we

conclude that β − α < 3δ. □

Theorem 6.2.1. Suppose ϕ1, ϕ2 are two arcs meeting only at the ends a, b.

Let B be a circle or a polygon such that ϕ1 ∪ ϕ2 ⊂ i(B). Suppose there

is a point c ∈ ϕ2 \ {a, b} with a path ϕ going from c to a point outside B

such that ϕ ∩ ϕ1 = ∅. Then given any x /∈ ϕ1 ∪ ϕ2, there is a polygonal

cover P (with each polygon inside B) of ϕ1 such that x is in the unbounded

component of R2 \ P.

Proof. Let 4ϵ = infy∈ϕ1 |x − y| > 0. With ϵ′, δ de�ned as in the start of

Section 6, around each point of ϕ1 take open squares such that

• Each square has diameter < ϵ′.

• The closure of inside of each square is inside B (possible because

ϕ1 ⊂ i(B)).

• The closure of inside of each square is disjoint from ϕ (possible

because ϕ ∩ ϕ1 = ∅), in particular c.

• a, b are in di�erent squares whose interiors have disjoint closures.

From this cover obtain a �nite subcover S. Re�ne S and obtain a special

covering P. Now c is in the unbounded component of P because o(B) is

in the unbounded component of P and we have a path, namely ϕ, going

from c to o(B) avoiding P. Notice that ϕ avoids the squares in S and P is

obtained by shrinking these squares, so ϕ avoids P as well. It is clear that

each polygon in P is inside B.

By the choice of ϵ, ϵ′, the point x is outside P. Suppose x is in a bounded
component C (outside P) with boundary polygon R. Continuing with the

notation above, let Q1, . . . , Qk be the polygons surrounding R and [ai, bi]

be the interval associated to Qi. By the lemma β−α < 3δ where α, β are as

de�ned above. Because c is in the unbounded component in the complement

of P, c ∈ o(R) and the lemma is applicable.

Now, pass a line through x and let p1, p2 be the �rst time the two rays

hit R (so x is between p1, p2). Since x ∈ i(R), both rays must hit R.

Suppose p1 ∈ Q1. Since Q1 contains a point of ϕ1 and has diameter less

than ϵ′, we know that p1 is within ϵ
′ of some q1 ∈ ϕ1. Similarly, p2 is within

ϵ′ of some q2 ∈ ϕ1. Since β − α < 3δ, we have |q1 − q2| < ϵ and

|p1 − p2| < ϵ′ + ϵ+ ϵ′ < 3ϵ.



FINITE COLLECTION OF POLYGONS AND THE JORDAN CURVE THEOREM 117

Since x is on the line segment between p1, p2, it is a convex linear combina-

tion of p1, p2. So,

|x−q1| ≤ |x−p1|+|p1−q1| ≤ |p1−p2|+|p1−q1| < 4ϵ⇒ 0 < inf
y∈ϕ1

|x−y| < 4ϵ.

This contradicts the de�nition of 4ϵ, therefore x must be in the unbounded

component in the complement of P. □

7. Arcs in discs

Let D be the open unit disc and J : [0, 1] → R2 be an arc such that

J(t) ∈ D ∀ t ∈ (0, 1) and J(0), J(1) ∈ S1. We will show that D \ J has

two components, determined by the arcs in S1 \{J(0), J(1)}, with common

boundary J .

7.1. Separation theorem. Let A1, A2 be the two arcs of S
1 \{J(0), J(1)}

and take c ∈ A1, d ∈ A2. Suppose there is a path ϕ from c to d in D that

avoids J . Let ϵ be the minimum distance between ϕ and J . Approximate

ϕ by a polygonal path P within ϵ so that P ⊂ D (D is convex, so this

is possible). Draw tangents at c, d to S1 = C. If they do not intersect,

then use a perpendicular line outside C to join them. This way, we get a

polygonal path between c, d lying outside the circle. Together with P we

have a polygon Q.

Using rays that go outside the circle, we conclude that J(0), J(1) are

on di�erent sides of Q. More generally what we notice is that the two arcs

determined by c, d are on di�erent sides of Q, hence in particular J(0), J(1)

are on di�erent sides. Since J is a path going from inside Q to the outside,

it must intersect Q. Because J is inside the disc it must intersect P which is

impossible by the choice of ϵ. Therefore, c, d, hence A1, A2, are in di�erent

components of D \ J .

7.2. Exactly two components. Let x ∈ D \ J . Fix a c ∈ A1 and take

a normal to C going outwards at c. The arcs J,A1 meet only at the ends

(taking the closure of A1). Applying Theorem 6.2.1 (taking B to be a circle

of radius 2 centered at the origin for example), we obtain a polygonal cover

P such that x is in the unbounded component in the complement of P.
Then, there are paths from x to points far outside the circle that avoid

P and hence J . Since x ∈ D, any such path must pass through S1 and
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therefore A1 or A2. Thus, x is in the same component of D \ J as A1 or A2

and D \ J has exactly two components.

7.3. Boundary. We have two components, C1, C2 corresponding to A1, A2

respectively. We will show that J is part of the boundary of C1. First,

J(0), J(1) ∈ ∂C1, ∂C2 because any neighbourhood of both these points

intersects A1, A2 and ∂C1, ∂C2 are closed.

Lemma 7.3.1. Let R ⊂ R2 with Int(R), Ext(R) ̸= ∅, then any path from

Int(R) to Ext(R) intersects ∂R.

Proof. Suppose ϕ : [0, 1] → R2 is a path from x = ϕ(0) ∈ Int(R) to y =

ϕ(1) ∈ Ext(R). There is a neighbourhood around x that lies in Int(R),

hence a t > 0 such that ϕ([0, t)) ⊆ Int(R). Take

t0 = sup
[0,1]

{t : ϕ([0, t)) ⊆ Int(R)}.

If ϕ(t0) ∈ Int(R), then t0 ̸= 1 and we can increase t0. If ϕ(t0) ∈ Ext(R),

there is a t < t0 such that ϕ((t, t0)) ⊆ Ext(R). Both contradict the de�ni-

tion of t0, hence ϕ(t0) ∈ ∂R. □

By this lemma, we conclude that ∂R disconnects Int(R) from Ext(R).

Corollary 7.3.1. Let R ⊂ R2 with Int(R), Ext(R) ̸= ∅. Suppose there is

a path from x ∈ Int(R) to y ∈ Ext(R) in (R2 \ ∂R) ∪ S for some subset S

of the plane. Then S ∩ ∂R ̸= ∅.

Suppose x ∈ J is not in ∂C1. Then there is a neighbourhood of x in J

that is not in ∂C1. We will show that adding this neighbourhood to D \ J
connects C1, C2. Essentially, we want to show that if J ′ = J([0, 1]\ (t1, t2)),
then D \ J ′ is connected, where 0 < t1 < t2 < 1.

Around each point of J1 = J([0, t1]) take open squares whose

• closures avoid J2 = J([t2, 1]) and

• for 0 < t ≤ t1, the closure is contained in D.
Obtain a �nite subcover S of J1. In S, there is only one square that in-

tersects S1. We now remove singular vertices in such a way as to obtain a

cover of J1 by polygons P such that

• The boundary of polygons in P do not intersect J2.

• Every point of J1 lies inside at least one of the new polygons.

• Only one polygon intersects S1 at exactly two points.



FINITE COLLECTION OF POLYGONS AND THE JORDAN CURVE THEOREM 119

This is true for S. Now the vertices that can be singular are inside C,

as only one square in S goes outside, so points outside are regular. Since

we are going to shrink the polygons, it is clear that the boundaries of the

resulting polygons do not intersect J2.

Given a singular vertex v, if v ∈ J1, then take a zone that lies inside

one of the polygons, else take a zone that avoids J1. Ensure that the zone

lies inside the circle C. Since the new edges and the consequent loss of the

interiors happen inside this zone, the new edges do not intersect the circle

and J1 stays inside the polygons. The intersection with S1 still has the

original two points.

J2
P

C

Figure 7.1. J ⊂ ∂C1 ∩ ∂C2

Since J1 is connected, the intersection graph of (the modi�ed) S is

connected. So the unbounded component of S has a polygonal boundary

P which has edges going into the disc D. Since every point of J1 lies inside

some Q ∈ P, P ∩ J1 = ∅. By construction P ∩ J2 = ∅.
In P there is exactly one polygon that contains J(0) and hence intersects

A1, A2. We know that there are edges of P that go into D, so these edges

give a path from a point in A1 to one in A2 that lies entirely in D and avoids

J1 ∪ J2.
It lies entirely in D because P∩S1 has only two points. So, D\(J1∪J2) is

connected, therefore J((t1, t2))∩∂C1 ̸= ∅. This path along P must intersect

J((t1, t2)) and the �rst point of intersection is then arcwise accessible from

A1.

We conclude that J ⊆ ∂C1, ∂C2 and that any open segment of J has a

point accessible from A1, i.e., an x with an arc from a point in A1 to x that

avoids J \ {x}.
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8. Jordan curve theorem

Let J be a Jordan curve. Since J is bounded, it is inside a circle C.

Take two di�erent points on J and extend the line between them to a chord

of the circle. We can talk of the ��rst� and �last� points on this chord, which

corresponds to the points of J that lie farthest apart on this chord (such

points exist because J ∩ chord is closed). Let these points be a, b and the

ends of the chord c, d with a being between c, b and b between a, d. The

line segments ca, bd are disjoint and ac ∩ J = {a}, bd ∩ J = {b}.
The curve J , being homeomorphic to S1, gives us two arcs from a to b,

call them ϕ1, ϕ2. Together with the segments ac, bd, we get two arcs

J1 = ac ∪ ϕ1 ∪ bd; J2 = ac ∪ ϕ2 ∪ bd

from c to d: they intersect only on the segements ac, bd. Let the arcs of

C \ {c, d} be A1, A2.

For x ∈ ca, x ̸= a, c, there is a ball U around x that avoids J and the line

segment bd. Because U ∩ (J1∪J2) = U ∩ac is a diameter in U,U \ (J1∪J2)
has two components. Around c, there is an open ball that avoids J, bd. This

ball has three components of which one lies outside the circle C. We see

that all three parts are connected in the complement of J1 ∪ J2. Similar

results hold true for points on bd di�erent from b.

8.1. At least two components. In D \ J1 let the components of A1, A2

be C1, C2 respectively. Being connected in D \ J1, ϕ2 must lie in one of

these components, say C2. Now, a point of ϕ1 is accessible from A1 so this

path, say ψ, therefore lies in C1. So, ψ ∩ ϕ2 = ∅ and ψ ∩ J2 = ∅ giving us

ψ ⊂ D \ J2.
In D\J2, let the components corresponding to A1, A2 be D1, D2 respec-

tively. Since ψ is a path in D\J2, a point of ϕ1 is in D1 via ψ. We conclude

that ϕ1 ⊂ D1 as ϕ1 is connected in D \ J2.
Similarly, we have C1 ⊆ D1 and D2 ⊆ C2. For x ∈ ϕ1, choose an open

U such that x ∈ U ⊂ D1. Since ϕ1 is contained in the boundaries of C1, C2,

this neighbourhood has points from both C1, C2. In particular, U has a

point from C2 ∩D1, so C2 ∩D1 ̸= ∅. Note that C1 ∩D2 = ∅ as C1 ⊆ D1.

Thus,

D \ (J1 ∪ J2) = C1 ⊔ (C2 ∩D1) ⊔D2.
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Figure 8.1. J inside C

Let x ∈ C2 ∩D1 and suppose ϕ is a path from x to a point y ∈ C that

avoids J . If ϕ goes outside the circle C, look at the �rst time it hits C

(since x is inside, it must hit C at least once). With this as our new y, we

may assume that ϕ, except for y, lies inside C.

Case 1: y ∈ A1

Since x ∈ C2 and ϕ is inside C, we have ϕ ∩ J1 ̸= ∅. Since ϕ ∩ J = ∅,
it must intersect one of ca, db, say ac. Let z ∈ ac be the �rst point of

intersection. By the choice of y, z ̸= c.

Parametrize the restricted path by [0, 1] with ϕ(0) = x, ϕ(1) = z. Take

a ball U around z, disjoint from J and a t1 < 1 such that ϕ(t1) ∈ U .

By the choice of z, for any t < 1, ϕ(t) /∈ J1 and since ϕ(t) /∈ J , we have

ϕ(t) /∈ J1 ∪ J2. Let ϕ′ be the restriction of ϕ between x, ϕ(t1).

U \ (J1 ∪ J2) has two components that lie inside the circle, say H1, H2.

Because z ∈ ∂C1 ∩ ∂C2, one of these lies in C1 and the other in C2, say

H1 ⊂ C1. Because C1 ⊂ D1, we have H1 ⊂ D1, H2 ⊂ D2.

If ϕ(t1) ∈ H1 ⊂ C1 or ϕ(t1) ∈ H2, then ϕ
′ must meet J1, J2 respectively,

which is impossible.

Case 2: y = c

Take a ball U around y that avoids J, bd. As mentioned above, U \(J1∪
J2) has three components, of which one lies outside C. Parametrize ϕ by

[0, 1] with ϕ(0) = x, ϕ(1) = y and pick a t < 1 such that ϕ(t) ∈ U . We

know that ϕ(t) must either be on the radius of U induced by line ac, or in

one of the two components of U \ (J1 ∪ J2) inside C.
If it lies on the radius, then ϕ intersects ac and we continue as in case

1. If it lies in one of the other components, then as in case 1, ϕ(t) is in C1

or in D2 which also impossible.
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All other cases, i.e., y ∈ A2, y = d can be treated similarly. We conclude

that there is no path from x to a point in C avoiding J .

For x ∈ C1 there is a path from x to points on A1 avoiding J1. Since

ϕ2 ∈ C2, such paths also avoid ϕ2 and hence J . Similarly, for points in D2,

there are paths to A2 that avoid J . Lastly, for points on ac, bd di�erent

from a, b the line itself is a path to the circle that avoids J .

So, we have the �inside� of J which is the set C2∩D1 and the �outside�,

which is everything else in the complement of J . Fix a point p outside the

circle C. If x is on or outside the circle, there is a path from x to p avoiding

the inside of C and hence J . If x ∈ C1 ∪D2 or x ∈ ac ∪ bd, x ̸= a, b �rst go

to C and then to p. So, the outside of J is path connected.

Let i(J) denote the inside and o(J) the outside. We have shown above

that there is no path from a point in i(J) to one in o(J) that avoids J , so

R2 \ J has at least two components.

8.2. Boundary. Next, we show that all components in the complement of

J have J as the boundary. Since the boundary is closed, it su�ces to show

that all components have ϕ1 ∪ ϕ2 as the boundary. For points in ϕ1, take

neighbourhoods that avoid ϕ2. We know that these neighbourhoods contain

points from C1, hence from o(J). It follows that J = ∂o(J).

Let x ∈ i(J) and y ∈ ϕ1. We will show that in any neighbourhood of

y, there is a point that is accessible from the component Cx of x in the

complement of J . Then y is in the boundary of this component.

Parametrize ϕ1 by (0, 1) with lim
t→0

ϕ1(t) = a, lim
t→1

ϕ1(t) = b. Suppose y =

ϕ1(t1) where t1 ∈ (t0, t2) ⊂ (0, 1) is from any neighbourhood of y in ϕ1.

We have arcs l1 via ϕ1 and l2 through ϕ2 between points a1 = ϕ1(t0), b1 =

ϕ1(t2).

Some point z in the open l1 is accessible from A1, through some arc ψ.

This arc doesn't intersect J , hence l2. We can apply Theorem 6.2.1 (with

B = C) to conclude that there is a polygonal covering P of l2 such that x

is in the unbounded component in the complement of P. Thus, there are

polygonal paths from x to any point outside the circle avoiding P and its

inside, hence avoiding l2.

Let ψ′ be one such path. We chose x ∈ i(J), so ψ′ must intersect J .

Since it cannot intersect l2, it must intersect the open l1. Suppose ψ′ is

parametrized by [0, 1] with ψ′(0) = x. Let t3 > 0 be the �rst time ψ′
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intersects (closed) l1, then observe that

ψ′([0, t3)) ∩ J = ∅.

Therefore, ψ′|[0,t3) is a connected path in the complement of J , hence

lies in Cx. Since ψ′(t3) ∈ l1, it follows that the neighbourhood ϕ1((t0, t2))

of y has points accessible from Cx and from o(J) which lies exterior to Cx.

We conclude that y ∈ ∂Cx and that any neighbourhood has a point

(arcwise) accessible from x. It follows that ϕ1, ϕ2 and hence J are in the

boundary of Cx. Since ∂Cx ⊆ J , we have J = ∂Cx.

8.3. Two components. This subsection is based on [4]. So far we have

shown that if J is a Jordan curve, then R2\J has one unbounded component,

o(J) and bounded components in i(J). We know that all components have

J as the boundary. All that is left is to show that there is exactly one

bounded component.

Lemma 8.3.1. Let γ1, γ2 be two Jordan curves. If

γ2 ∩ i(γ1) ̸= ∅ and γ2 ∩ o(γ1) ̸= ∅,

then

γ1 ∩ i(γ2) ̸= ∅ and γ1 ∩ o(γ2) ̸= ∅.

Proof. First take x ∈ γ2 ∩ i(γ1) and y ∈ γ2 ∩ o(γ1). Choose neighbourhoods
Ux, Uy of x, y respectively such that Ux ⊂ i(γ1), Uy ⊂ o(γ1). Observe that

Ux ∩ Uy = ∅.
Since x, y are in the boundary of every component of the complement

of γ2, pick z1 ∈ Ux, z2 ∈ Uy that lie in the same component. There is a

path from z1 to z2 that avoids γ2. Since z1 ∈ i(γ1), z2 ∈ o(γ1), such a path

intersects γ1. However, this path is in a component of R2 \ γ2, therefore γ1
intersects every component in the complement of γ2. □

Take p ∈ i(J) and draw two rays through it. Both rays intersect J

because p ∈ i(J) and J is bounded. Let p′, p′′, p′ ̸= p′′ be the �rst points

of intersection. Let q′ ∈ ϕ1, q
′′ ∈ ϕ2 be accessible from A1, A2 respectively,

say there is an arc from z1 ∈ A1 to q′ and z2 ∈ A2 to q′′. Fix a q outside

the circle and take disjoint polygonal paths to z1, z2 outside the circle.

Together we get the Jordan curve J ′ : q → z1 → q′ → p′ → p → p′′ →
q′′ → z2 → q. Since p ∈ i(J), q ∈ o(J), by the lemma above, J ′ must

intersect every component in the complement of J . However, by the choice
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p
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p′′

q

q′

q′′

z1

z2

Figure 8.2. Curve J ′

of p′, p′′, the p′ → p→ p′′ arcs lie in the component of p and the other arcs

lie on or outside J . So, there can be only two components, that of p and

the outside of J . In particular the inside of J, i(J) is a connected open set.

In conclusion, R2 \ J has two connected components, one bounded and

the other unbounded, both having J as the boundary. This completes the

proof of the Jordan Curve Theorem.

9. Epilogue

In this article we have given proofs of some intuitive results on �nite

collection of polygons, using which we proved a few theorems on arcs in the

plane and then the Jordan Curve Theorem. However, unlike most other

proofs, we did not need the complete Jordan Arc Theorem. What we used

was a special case when the arcs are parts of Jordan Curves.

Using stronger approximation theorems, we can envelope this polygonal

arc to prove the connectedness of the complement. Proofs of the arc theorem

can be found in the references listed.
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THE FAITHFUL REPRESENTATIONS OF RIGID
MOTIONS OF A REGULAR POLYGON

DILCHAND MAHTO AND JAGMOHAN TANTI
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Abstract. Let n be a natural number. In this paper we characterize
all degree n faithful representations of a dihedral group G of order 2m,
m ≥ 3, over the field of complex numbers C. The results are important
due to their applications in the study of physical sciences.

1. Introduction

The study of faithful representations of a finite group acquires an im-
portant place in the Representation theory. So for a finite group G and
a natural number n, the question of characterization of degree n faithful
representation of G along with a combinatorial count of the number of all
such representations becomes very much necessary to investigate.

Definition 1.1. For G a finite group, an injective representation ρ : G →
GL(V) is called a faithful representation of the group G.

By Maschke’s theorem (see [1], Corollary 4.9, p. 316) every degree n
representation of G can be written as a direct sum of copies of it’s irreducible
representations.

The objective of this paper pertains to the following problems:
1. Characterization of all degree n faithful representations of G.
2. Deriving a formula to count the number of all degree n faithful represen-
tations of G.

The problems in concern have been dealt with in the literature in dif-
ferent points of view. Gongopadhyay, Kulkarni, and Tanti, in [5], [6], inves-
tigated about invariant bilinear spaces and the existence of non-degenerate
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invariant bilinear forms. Behravesh, Ghaffarzadeh and Delfani, in [2], [3],
[4], calculated the minimal degree of faithful representations of a group by
permutation matrix and the minimal degree of faithful representation of
a group by quasi-permutation matrices over the rational field Q and the
complex field C respectively.

In this paper we discuss all degree n faithful representations of the
dihedral group Dm, m ≥ 3.

Dm = {1, a, a2, · · · , am−1, b, ab, a2b, · · · , am−1b | am = b2 = 1, ba = am−1b}.

2. Preliminaries

The number of irreducible representation of Dm over C is 2|Z(Dm)| +
bm−12 c. Again we know that |G| =

∑r
i=1 d

2
i , where di’s are the degrees of the

irreducible representation and we also have di||G|. So we conclude that there
are 2|Z(Dm)| number of degree 1 representations and bm−12 c number of de-
gree 2 irreducible representations of Dm. Let ρ2|Z(Dm)|+1, ρ2|Z(Dm)|+2, · · · ,
ρ2|Z(Dm)|+bm−1

2
c be all degree 2 irreducible representations of Dm, where the

notations |Z(Dm)| and b.c denote order of the center Z(Dm) and greatest
integer function respectively.

2.1. Counter-clockwise rotation and their composition with reflec-
tion can be seen as below for 1 ≤ s ≤ m and 1 ≤ t ≤ bm−12 c.

ρ2|Z(G)|+t(a
s) =

[
Cos(2πm ts) −Sin(

2π
m ts)

Sin(2πm ts) Cos(2πm ts)

]
and

ρ2|Z(G)|+t(a
sb) =

[
Cos(2πm ts) Sin(2πm ts)

Sin(2πm ts) −Cos(
2π
m ts)

]
.

2.2. For m odd and 1 ≤ t ≤ m−1
2 , all irreducible representations of

G are recorded in the following table.

ρ1 ρ2 ρ2+t

a 1 1

[
Cos(2πm t) −Sin(

2π
m t)

Sin(2πm t) Cos(2πm t)

]

b 1 −1

[
1 0

0 −1

] .
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2.3. For m even and 1 ≤ t ≤ m
2 − 1, all irreducible representations

of G are presented by the following table.
ρ1 ρ2 ρ3 ρ4 ρ4+t

a 1 1 −1 −1

[
Cos(2πm t) −Sin(

2π
m t)

Sin(2πm t) Cos(2πm t)

]

b 1 −1 −1 1

[
1 0

0 −1

] .

Note 2.1 For 1 ≤ t ≤ bm−12 c, ρ2|Z(Dm)|+t is a faithful irreducible represen-
tation of Dm, if gcd(m, t) = 1. Fact that when gcd(m, t) 6= 1, then order of
ρ2|Z(Dm)|+t(a) is a proper divisor of m (see subsection 2.1).
Lemma 2.1. If T = {t ∈ N | gcd(m, t) = 1&1 ≤ t ≤ m

2 }. Then |T | =
φ(m)
2 ,

where φ is Euler’s totient function.

Proof. Let p be a prime divisor of m and gcd(m, t) = 1, then p - t implies
that p - (m − t) and gcd(m,m − t) = 1. So with the concepts of Euler’s
totient function, we have

φ(m) = |{t ∈ N | gcd(m, t) = 1&1 ≤ t < m}|.

=⇒ φ(m) =

∣∣∣∣{t ∈ N | gcd(m, t) = 1&1 ≤ t ≤ m
2

}∣∣∣∣+
∣∣∣∣{t ∈ N | gcd(m, t) = 1& m

2 < t < m

}∣∣∣∣.
=⇒ φ(m) =

∣∣∣∣{t ∈ N | gcd(m, t) = 1&1 ≤ t ≤ m
2

}∣∣∣∣+
∣∣∣∣{t ∈ N | gcd(m, t) = 1& −m < −t < −m

2

}∣∣∣∣.
=⇒ φ(m) =

∣∣∣∣{t ∈ N | gcd(m, t) = 1&1 ≤ t ≤ m
2

}∣∣∣∣+
∣∣∣∣{t ∈ N | gcd(m,m− t) = 1&0 < m− t < m

2

}∣∣∣∣.
=⇒ φ(m) = |T |+ |T |.

=⇒ |T | = φ(m)
2 .
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�

Now by Maschke’s theorem we have

ρ = k1ρ1 ⊕ · · · ⊕ k2|Z(Dm)|ρ2|Z(Dm)| ⊕ · · · ⊕ k2|Z(Dm)|+bm−1
2
cρ2|Z(Dm)|+bm−1

2
c.

(2.1)
where for every 1 ≤ i ≤ 2|Z(Dm)|+ bm−12 c, kiρi stands for the direct sum
of ki copies of the irreducible representation ρi. Let χ be the corresponding
character of the representation ρ, then

χ = k1χ1 + k2χ2 + · · ·+ k2|Z(Dm)|+bm−1
2
cχ2|Z(Dm)|+bm−1

2
c,

where χi is the character of ρi, ∀ 1 ≤ i ≤ 2|Z(Dm)|+ bm−12 c. The degree of
the character is being calculated at identity element of a group and is equal
to degree of corresponding representation. i.e,

k1 + · · ·+ k2|Z(Dm)| + 2k2|Z(Dm)|+1 + · · ·+ 2k2|Z(Dm)|+bm−1
2
c = n. (2.2)

Following Lemma is useful and its an standard result can be found in
most of the text books of Representation theory [1], [7].

Lemma 2.2. For G a finite group if ρ = ⊕sj=1kijρij is a representation
of G with kij ∈ N and ρij , 1 ≤ ij ≤ s irreducible representations, then
ord(ρ(g)) = lcm(ord(ρi1(g)), · · · , ρis(g)) for every g ∈ G.

Corollary 2.3. For ρ a representation of Dm, ρ is a faithful representation
if and only if the lcm of orders of its irreducible components evaluated at a
is m.

Proof. Immediate from the lemma. �

Note 2.2 Let N denotes the number of degree n representations, each of
which consists of tth1 , tth2 , · · · , tthl irreducible representations of degree 2 such
that

gcd(m, tr) 6= 1 and lcm
{

m
gcd(m,t1)

, m
gcd(m,t2)

, · · · , m
gcd(m,tl)

}
= m.

3. Main results

In this section we will prove main results. Our results are stated in the
following two main theorems.
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Theorem 3.1. Let Z(Dm) and ρi, 1 ≤ i ≤ 2|Z(Dm)|+bm−12 c be the center
and irreducible representation respectively of Dm, then degree n representa-

tion ρ = ⊕2|Z(Dm)|+bm−1
2
c

i=1 kiρi of Dm is faithful if ρ consists of at least one
faithful irreducible representation.

Converse of the above theorem is not true. For this we will produce one
counter example just after the proof of Theorem 3.1.

Theorem 3.2. Let φ be the Euler’s totient function and Z(Dm) the center
of Dm, then the number of degree n faithful representations of Dm is
bn
2
c∑

s=0

[(
s+ bm−32 c
bm−32 c

)
−
(
s+ bm−12 c −

φ(m)
2 − 1

bm−12 c −
φ(m)
2 − 1

)](
n− 2s+ 2|Z(Dm)| − 1

2|Z(Dm)| − 1

)
+N,

where N is described in the above Note ??.

Proof of Theorem 3.1. Let ρj be a faithful irreducible representation
appearing in ρ, then we have ρj(Dm) ∼= Dm. Therefore m is the least pos-
itive integer such that ρj(a)m is the identity operator and so ρ(a)m is the
identity operator, from Corollary 2.3. This completes the proof.

Example 1. The converse of Theorem 3.1 is not true, in general.

Let m = 15 and n even, then ρ = n−2
2 ρ2|Z(Dm)|+3 ⊕ ρ2|Z(Dm)|+5 is a

faithful representation, but ρ2|Z(Dm)|+3 and ρ2|Z(Dm)|+5 are not faithful,
similarly we can see for odd n.

Proof of theorem 3.2. We begin the proof by calculating all degree n
representations with non-trivial kernel. By using Maschke’s theorem, we
have from equation 2.2

2|Z(Dm)|∑
i=1

ki + 2

bm−1
2
c∑

t=1

k2|Z(Dm)|+t = n. (3.1)

2|Z(Dm)|∑
i=1

ki + 2
∑

1≤t≤bm−1
2
c

gcd(m,t)6=1

k2|Z(Dm)|+t + 2
∑

1≤t≤bm−1
2
c

gcd(m,t)=1

k2|Z(Dm)|+t = n. (3.2)

By Theorem 3.1, ρ has trivial kernel if it consists of a faithful irreducible
representation. In present case we are looking for a representation with
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non-trivial kernel i.e, in the first step whenever gcd(m, t) = 1, we must have
k2|Z(Dm)|+t = 0 in 3.2, and get the following reduced equation

2|Z(Dm)|∑
i=1

ki + 2
∑

1≤t≤bm−1
2
c

gcd(m,t)6=1

k2|Z(Dm)|+t = n.

Now by Lemma 2.1, for 1 ≤ t ≤ bm−12 c, the number of t each of which
shares a common factor with m is bm−12 c −

φ(m)
2 . Thus the number of

representations satisfying the above equation is
bn
2
c∑

s=0

(
s+ bm−12 c −

φ(m)
2 − 1

bm−12 c −
φ(m)
2 − 1

)(
n− 2s+ 2|Z(Dm)| − 1

2|Z(Dm)| − 1

)
.

Now in view of Corollary 2.3, in the second step we have to remove those
cases wherein the representation is with the copies of tth1 , tth2 , · · · , tthl irre-
ducible representations of degree 2 such that

gcd(m, tr) 6= 1 and lcm
{

m
gcd(m,t1)

, m
gcd(m,t2)

, · · · , m
gcd(m,tl)

}
= m,

which are precisely N in counting from Note ??.
Thus the number of degree n representations with non-trivial kernel is
bn
2
c∑

s=0

(
s+ bm−12 c −

φ(m)
2 − 1

bm−12 c −
φ(m)
2 − 1

)(
n− 2s+ 2|Z(Dm)| − 1

2|Z(Dm)| − 1

)
−N. (3.3)

To solve the equation 3.1
As k2|Z(Dm)|+1 + · · ·+ k2|Z(Dm)|+bm−1

2
c︸ ︷︷ ︸

bm−1
2
c

= s, 0 ≤ s ≤ bn2 c we have bn2 c + 1

equations, the sth equation

k2|Z(Dm)|+1 + · · ·+ k2|Z(Dm)|+bm−1
2
c︸ ︷︷ ︸

bm−1
2
c

= s (3.4)

The number of distinct solution to above equations 3.4 is
(s+bm−1

2
c−1

bm−1
2
c−1

)
,

0 ≤ s ≤ bn2 c.
Thus the number of all distinct 2|Z(Dm)|+bm−12 c tuples (k1, · · · , k2|Z(Dm)|, · · · ,

k2|Z(Dm)|+bm−1
2
c) is

∑bn
2
c

s=0

(s+bm−3
2
c

bm−3
2
c

)(n−2s+2|Z(Dm)|−1
2|Z(Dm)|−1

)
.

Now subtracting equation 3.3 from this result, we have the result.
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Example 2. Here we want to find out all degree 10 faithful representations
of the Dihedral group D15. Out of 9 irreducible representations, 2 are of
degree one and 7 are of degree two, namely ρ1, ρ2 and ρ2+t, for 1 ≤ t ≤ 7.
Further a representation ρ of degree 10 is expressed as,

ρ = ⊕9
i=1kiρi.

Thus all the representations of degree 10 are
∑5

s=0

(
s+6
6

)(
11−2s

1

)
= 1782 and

all the faithful representation of degree 10 are
∑5

s=0

[(
s+6
6

)
−
(
s+2
2

)](
11−2s

1

)
+

N = 1586+N in counting, here N is the number of all distinct solutions of
the equation

k1 + k2 + 2k5 + 2k7 + 2k8 = 10, k7 ≥ 1 and (k5, k8) 6= (0, 0).

k1 + k2 = 10− 2(k5 + k7 + k8).

As 2 ≤ k5 + k7 + k8 ≤ 5, we have 4 equations stated below

k5 + k7 + k8 = 2, k5 + k7 + k8 = 3, k5 + k7 + k8 = 4, k5 + k7 + k8 = 5.

The number of distinct solutions to each of these equations is
(
s−1+3−1

3−1
)
−

1, 2 ≤ s ≤ 5. Thus the number of all distinct such 5-tuples (k1, k2, k5, k7, k8)

is N =
∑5

s=2

[(
s+2
2

)
− 1

](
n−2s+2−1

2−1
)
= 80. Hence the number of distinct

faithful representations for D15 of degree 10 is 1586 + 80 = 1666.
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Abstract. In this paper, we discuss about finite groups in which,
CGH = NGH, for every abelian subgroup H of non prime power order.
Also, we classify all such nilpotent and minimal non nilpotent groups

1. Introduction

Throughout this paper, G denotes a finite group and p and q denote a
prime. By a p-group G, we mean G is a group of prime power order, for
some prime p. By a non p-group G, we mean G is a group of non prime
power order. Also, CGH and NGH denote the centralizer and the normal-
izer of H in G, respectively. Also, we use F (G) and Z(G) to denote the
Fitting subgroup and the center of G, respectively. Further, [H]K denotes
a split extension of K by a normal subgroup H.
Recall that, the automizer of a subgroup H in G is defined as AutGH =

NGH/CGH. Therefore AutGH can be considered as a subgroup of AutH
and since AutGH contains an isomorphic copy of InnH, we have InnH ≤
AutGH ≤ AutH. Now AutGH is said to be small if AutGH ∼= InnH and
AutGH is said to be large if AutGH ∼= AutH.
All finite groups with small automizers for their nonabelian subgroups are
classified in [3]. Zassenhaus proved in [10] that NGH = CGH for every
abelian subgroup iff G is abelian (also see [6]). Therefore AutGH is small
for all abelian subgroups of G iff G is abelian. Further, Li [8] classified all
finite groups in which any nonmaximal abelian subgroups do not have any
nontrivial inner automorphisms. Such groups are called NC-groups. All
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finite groups, in which every non normal abelian subgroup has trivial au-
tomizer, are classified in [1]. Such groups are called quasi-NC group. Finite
groups, in which for any non normal abelian subgroup A, either AutGA = 1

or CGA = A, are called NNC-groups and are discussed in [2]. More gen-
erally, all finite groups in which AutGH is either small or large for every
abelian subgroup H, are discussed in [9].

The following result is taken from [8, Lemma 2.4.]:

Lemma 1.1. Let G be a group. Then the following are equivalent:
(1) G is an NC-group;
(2) CGA = A or CGA = NGA holds for all abelian subgroups A of G of
prime power order.

The above lemma asserts also that if every abelian subgroup of G of
prime power order has small automizer, then infact every abelian subgroup
of G of non prime power order has also small automizer and G become
abelian. However, if every abelian subgroup of G of non prime power or-
der has small automizer, an abelian p-subgroup of G need not have small
automizer. For example, in the group S3 × Z3, the only abelian subgroups
of non prime power order are {I, σ} × Z3, where σ is a transposition in
S3. Clearly all such subgroups have small automizer in S3 × Z3. However,
A3 × Z3 is an abelian subgroup of prime power order but it’s automizer is
not small. Therefore it is of natural interest to classify all finite groups in
which, for every abelian subgroup H, either H is a p-subgroup (p depends
on H) or CGH = NGH. We shall do this partially in the present paper.
We call such groups as PNC-group. Clearly every finite abelian group is
PNC. So we shall focus on finite non abelian groups, which are PNC.
The aim of this paper is to study all finite solvable PNC-groups. Also, we
give a characterization of nilpotent PNC-groups and minimal non nilpotent
PNC-groups.

2. Nilpotent PNC-groups

Lemma 2.1. The class of PNC-groups is subgroup closed.

Proof. It is obvious. �

Proposition 2.2. Let G be a decomposable group with G ∼= G1 × G2, for
some finite non trivial groups G1 and G2. If, either (|G1|, |G2|) = 1 or both
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G1 and G2 are non p-groups, then the following are equivalent:
(i) G is abelian;
(ii) G is PNC.

Proof. Clearly, if G is abelian, then it is PNC. Conversely, assume that G
is PNC. First we observe that, under the given conditions, NGiHi = CGiHi

,∀ i = 1, 2 and for every abelian subgroup Hi of Gi . Now the result follows
from [10, Theorem 7]. �

Corollary 2.3. Let G be a non abelian group. Then G is a nilpotent PNC-
group iff G is a p-group.

Proof. If possible, suppose that G is a non p-group. Then we have G ∼= G1

× G2, where G1 is a Sylow-p subgroup of G and G2 is a Hall-p′ subgroup
of G. Also, we have (|G1|, |G2|) = 1. Now by above Proposition, G is an
abelian group, a contradiction. Hence G is a p-group.
Converse is obvious. �

3. Solvable non nilpotent PNC-groups

Recall that the Fitting subgroup of G, denoted as F (G), is defined as the
largest normal nilpotent subgroup of G. Also, we denote the commutator
subgroup of G as G′ .

Lemma 3.1. Let G be a solvable non abelian group. If G is a PNC-group,
then F (G) is a p-group.

Proof. Note that F (G) is a nilpotent PNC-group. Now if F (G) is non
abelian, then by Corollary 2.3, it is a p-group. Also, if F (G) is an abelian
but non p-group, then CGF (G) = NGF (G). Since G is solvable, we have
F (G) = CGF (G) = NGF (G). This gives that G is abelian, a contradiction.
This completes the proof. �

Lemma 3.2. Let G be a solvable non abelian group. If G is a PNC-group,
then Z(G) is a p-group.

Proof. First we note that Z(G) ⊆ F (G). Now the result follows from
Lemma 3.1. �

Lemma 3.3. Let G be a non abelian group with G′ nilpotent. If G is a
PNC-group, then G′ is a p-group.
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Proof. First we note that if G′ is nilpotent then G′ ⊆ F (G). Now the result
follows from Lemma 3.1. �

Recall that a group is said to be supersolvable, if it has a normal series
with cyclic factors.
If G is PNC, F (G) need not be a Sylow subgroup. For example, S4 is
PNC but it’s Fitting subgroup is not a Sylow subgroup. However we have
the following result.

Lemma 3.4. Let G be a non abelian supersolvable group. If G is PNC,
then F (G) is a Sylow-p subgroup.

Proof. First we note that the commutator subgroup of a supersolvable group
is nilpotent. Now by above Lemma, G′ is a p-group and hence F (G) is a
Sylow-p subgroup. �

Lemma 3.5. Let G be a PNC-group and H ≤ Z(G). If H ∩G′ = 1, then
G/H is also PNC.

Proof. Let K/H be an abelian non p-subgroup of G/H. Then K is also a
non p-subgroup of G. Also, K ′ ⊆ H ∩ G′ = 1. This gives that K is abelian.
Therefore NGK = CGK. Now, NG/H(K/H) = NGK/H = CGK/H ≤
CG/H(K/H). This implies that NG/H(K/H) = CG/H(K/H). �

Recall the following results from [1]:

Theorem 3.6. (see[1], Theorem 4.1.) Let G be a non-nilpotent quasi-NC
group. Then all Sylow subgroups of G are abelian.

Theorem 3.7. (see[1], Theorem 4.4.) Suppose that G is non nilpotent
quasi-NC group. Then G/Z(G) is also a quasi-NC group.

Note that if G is a non nilpotent PNC-group, then Sylow subgroups
of G need not be abelian. For example, S4 is a non nilpotent PNC-group,
but it’s Sylow-2 subgroups are non abelian. However the following result
is an analogous of Theorem 3.7. Recall that, an A-group is a finite group
with the property that all of its Sylow subgroups are abelian.

Lemma 3.8. Let G be a non nilpotent A-group. If G is PNC, then G/Z(G)
is also PNC.

Proof. From [1, Lemma 2.7], G′ ∩ Z(G) = 1. Now the result follows from
Lemma 3.5. �
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Recall that a finite group G is said to be SBP , if every proper subgroup
H of G has prime power order (the prime depending on H). The following
classification of SBP groups is given in [4; chapter 3, page 74/75].

Theorem 3.9. Let G 6= 1 be an SBP group. Then precisely one of the
following holds:
(I) G is a p-group, for some prime p.
(II) |G| = pq, where p and q are distinct primes.
(III) |G| = paq, p and q are distinct primes, a = exp(p, q) and a ≥ 2. More
ever, G ∼= Zap ×θ Zq for some monomorphism θ : Zq → AutZap .

Recall that a group H is said to a central extension of G, if H/A ∼= G,
where A ⊆ Z(H). For our convenience, we call a central extension H of G
as a p-central extension, if Z(H) is a p-group. Clearly, an SBP -group is a
solvable PNC-group and if it is non abelian, then it’s Fitting subgroup is
a p-group. Now we prove the following result.

Lemma 3.10. Let G be an SBP -group with F (G) a p-group. Then a p-
central extension of G is PNC.

Proof. If G is an abelian group or a p-group, the result holds trivially. So
let G be a non abelian group of order pnq, with F (G) a p-group. Also let H
be a p-central extension of G with H/A ∼= G, where A ⊆ Z(H). Since G is
SBP , A = Z(H). Also, since we have F (H/Z(H)) = F (H)/Z(H), F (H)

is a p-group. Now we claim that every proper non p-subgroup of H is of the
form TQ, where T ⊆ Z(H) and Q is a Sylow-q subgroup of H. Let K be
a non p-subgroup of H. Then KA/A is a subgroup of H/A and since H/A
is SBP , |K/K ∩ A| = |KA/A| = q. This gives that K = TQ, where T =
K ∩ A and Q is a Sylow-q subgroup of K. Therefore, for given any abelian
non p-subgroup TQ of H, NH(TQ) = CH(TQ) = AQ. This completes the
proof. �

Recall that a group is called a CP -group if every element of the group
has prime power order (see [5]). Finite CP -groups were first studied by
Higman [7] in 1957. The finite soluble CP -groups were classified by him as
follows (see [7], Theorem 1):

Theorem 3.11. Let G be a soluble group all of whose elements have prime
power order. Let p be the prime such that G has a normal p-subgroup greater
than 1, and let P be the greatest normal p-subgroup of G. Then G/P is either
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(i) a cyclic group whose order is a power of a prime other than p; or (ii)
a generalized quaternion group, p being odd; or (iii) a group of order paqb

with cyclic Sylow subgroups, q being a prime of the form kpa + 1. Thus G
has order divisible by at most two primes, and G/P is metabelian.

Now we prove some results about CP -groups.

Lemma 3.12. Every finite CP -group is PNC.

Proof. Note that a finite group is CP iff every abelian subgroup of G is of
prime power order. Now the result follows from definition. �

Remark. Unlike the case of SBP -groups, if G is solvable CP -group
with F (G) a p-group, a p-central extension of G need not be PNC. For
example, S4 is a solvable CP -group but S4 × Z2 is not a PNC-group as
A3 × Z2 has not small automizer. However we have the following result.

Theorem 3.13. Let G be a solvable CP -group of order pnq with p > q.
Then a p-central extension of G is a PNC-group.

Proof. Let H be a p-central extension of G, with H/A ∼= G, where A ⊆
Z(H). Since G is CP , A can not be a proper subgroup of Z(H) and so A
= Z(H). Let K be an abelian non p-subgroup of H. Then KA/A is an
abelian subgroup of H/A which is CP , being isomorphic to G. Therefore
|K/K ∩ A| = |KA/A| = q. This gives that K = TQ, where T = K ∩ A
and Q is a Sylow-q subgroup of K. Clearly, AQ ⊆ CH(TQ). Now we shall
show that NH(TQ) ⊆ AQ. First note that NGS = S, where S is a Sylow-q
subgroup of G. For if |NGS| = prq, for some positive integer r ≥ 1. Then,
since p > q, G will contain an element of order pq, which is not possible.
Hence AQ/A = NH/A(AQ/A) = NH(AQ)/A. This implies that NH(AQ)

= AQ. Now we have NH(TQ) ⊆ NH(AQ) = AQ. Hence NH(TQ) ⊆ AQ

⊆ CH(TQ). This completes the proof. �

Proposition 3.14. Let G be a non abelian solvable group with an abelian
maximal normal subgroup. If G is a PNC-group, then |G| = pnq, where p,
q are primes (need not be distinct) and n is some positive integer.

Proof. First note that a maximal normal subgroup of a solvable group is
of prime index. Now if H is an abelian maximal normal subgroup but not
a p-group, then NGH = CGH. It gives that G is abelian, a contradiction.
Hence H is a p-group. Now the result follows. �
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Corollary 3.15. D2n is a PNC-group iff n = pk , for some prime p and
positive integer k.

Proof. Since < r > (where r ∈ D2n is an element of order n) is an abelian
maximal normal subgroup of D2n, from the above proposition < r > is a
p-group. Now the result follows. Conversely, it is easy to observe that, if n
= pr, then D2n is PNC. In fact in this case D2n is CP . �

We have seen in the section 2 that nilpotent PNC groups are p-group.
However if we impose a weaker condition on G, namely the condition of
minimal non nilpotent, then we have the following result.

Theorem 3.16. G is a minimal non nilpotent PNC-group iff G ∼= [F (G)]Q,
where F (G) is a Sylow-p subgroup of G and Q is a cyclic subgroup of order
q acting non trivially on [F (G)] and every proper non p-subgroup of G is
abelian.

Proof. Let G be a minimal non nilpotent PNC group. Then G is solvable
and so F (G) is a p-group. Since every proper subgroup is nilpotent, F (G)
is a maximal normal subgroup of G and so [G : F (G)] = q, for some prime
q 6= p. Also from Corollary 2.3, it follows that every proper non p-subgroup
of G is abelian. Since G is non nilpotent, Sylow-q subgroup is non normal.
So let Q be a Sylow-q subgroup of G. Then clearly, G ∼= [F (G)]Q and Q,
being non normal, acts non trivially on F(G).
Conversely, assume that G ∼= [F (G)]Q, where F (G) is a Sylow-p subgroup
of G and Q is a cyclic subgroup of order q acting non trivially on [F (G)]

and every proper non p-subgroup of G is abelian. Since the action of Q on
F (G) is non trivial, G is non nilpotent. Also every non p-subgroup of G
is abelian, so G is minimal non nilpotent. Now since F (G) is a p-group,
no proper non p-subgroup of G is normal. Therefore NG(H) = CG(H), for
every abelian non p-subgroup of G. This completes the proof. �

Acknowledgement: I am grateful to the referee for the comments which
improved the quality of the paper.
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Abstract. This is essentially an expository paper which sheds new
light on existing knowledge of Euclidean domain due to Th. Motzkin.
In [4], Motzkin gave a constructive criterion for the existence of a Eu-
clidean algorithm within a given integral domain and from among the
different possible Euclidean algorithms in an integral domain one is
singled out. It is useful criterion for checking whether integral domains
in general and rings of integers in particular are Euclidean or not.

1. Introduction

Generally, we find in the literature two definitions of a Euclidean domain
R in which one definition says that a domain R with a Euclidean function
d on R− {0} satisfies the property

d(a) ≤ d(ab) ∀a, b 6= 0 ∈ R

and in other definition the above inequality is missing.
Here we write N for the set of elements 0, 1, 2, . . . .

Definition 1.1. [3] An integral domain R is called Euclidean if there is a
function
d : R− {0} → N with the following two properties:
(1) d(a) ≤ d(ab) for all non-zero a and b in R (the d-inequality)
(2) for all a and b in R with b 6= 0 we can find q and r in R such that
a = bq + r, r = 0 or d(r) < d(b) (Euclidean function).

Examples of Euclidean domains (with both (1) and (2) being satisfied):

• Any field F . Define d(a) = 1 for all non-zero a ∈ F .
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• Z(the ring of integers) is also a Euclidean domain. Define d(n) = |n|,
the absolute value of n, where n ∈ Z.
• Z[i], the ring of Gaussian integers. Define d(a + ib) = a2 + b2, the
squared norm of the Gaussian integer a+ bi.
• Z[w] (where w is a primitive cube root of unity), the ring of Eisen-
stein integers. Define d(a + bw) = a2 − ab + b2, the norm of the
Eisenstein integer a+ bw.

Definition 1.2. [2]
An integral domain R is called Euclidean if there is a function d : R−{0} →
N such that for all a and b in R with b 6= 0, we can find q and r in R such
that

a = bq + r, r = 0 or d(r) < d(b). (1.1)

Any function d : R − {0} → N that satisfies (1.1) will be called a
Euclidean function on R. Thus a Euclidean domain in definition (1.2) is
an integral domain that admits a Euclidean function, while a Euclidean
domain in Definition (1.1) is an integral domain that admits a Euclidean
function satisfying the d-inequality.

Definition 1.3. Let R be a Integral domain. Then R is said to be a
Euclidean domain if there is a function E : R → {0, 1, 2, 3, · · · } such that
E(0) = 0 and ∀a, b ∈ R, a 6= 0, ∃ q, c with b = qa+ c, c = 0 or E(c) < E(a).

Remark 1.4. This definition is equivalent to Definition 1.2 (without d-
inequality). The only difference is that the E-function is defined at 0 also.

Remark 1.5. [1] Suppose (R, d) is a Euclidean domain in the sense of
definition 1.2. We will introduce a new Euclidean function d̄ : R−{0} → N,

built out of d, which satisfies d̄(a) ≤ d̄(ab). Then (R, d̄) is Euclidean in the
sense of 1.1.This new Euclidean function can be defined as follows:
For non-zero a in R, set d̄(a) = min {d(ab) : b 6= 0 ∈ R}.

Example 1.6. Let R = F [x], F a field. Then R is a Euclidean domain
with the Euclidean function E(0) = 0 and E(f(x)) = deg(f(x)), for non-
zero f(x) ∈ F [x].

Example 1.7. R = Z is a Euclidean domain with Euclidean function
E(a) = |a|, for all a ∈ Z.
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With the above Euclidean function, let

X0 = {x ∈ R : E(x) = 0}.

Then 0 ∈ X0. Let a ∈ X0, then E(a) = 0. If a 6= 0, then for any b ∈ R,
b = qa + c for q, c ∈ R, with c = 0 or E(c) < E(a) = 0. It follows
that c = 0, so a must be a unit. Thus X0 ⊂ {0}

⋃
{units of R}. Let

Xi = {x ∈ R : E(x) ≤ i}. Then X0 ⊂ X1 ⊂ · · · and
⋃∞

i=0Xi = R.

Example 1.8. If R = Z, and d(a) = |a|, X0 = {0}, so X0 does not contain
units of Z viz. ±1. If R = F [x], F field, then X0 = F = {0}

⋃
R∗.

2. Motzkins Criterion for Euclidean Algorithm

Definition 2.1. (Motzkin’s set) For a integral domain R, define A0 = {0}.
For i ≥ 1, let

Ai = {0} ∪ {a ∈ R : ∀x ∈ R,∃ y ∈ Ai−1 such that x− y ∈ (a)}.

Suppose a 6= 0. Then a ∈ A1 if and only if for all x ∈ R, x − 0 ∈ (a),
i.e. if and only if R = (a), i.e. if and only if a is a unit.
Thus A1 = {0}∪ {the set of all units}. We prove by induction that

A0 ⊂ A1 ⊂ A2 ⊂ · · · .

By definition, A0 ⊂ A1. Assume for i ≥ 1, that Ai−1 ⊂ Ai. Let a 6= 0 and
a ∈ Ai. Then ∀x ∈ R, there is y ∈ Ai−1 such that x− y ∈ (a). As y ∈ Ai−1

and Ai−1 ⊂ Ai, we get that “ ∀x ∈ R, there is y ∈ Ai such that x− y ∈ (a)

”. Thus a ∈ Ai+1. Hence Ai ⊂ Ai+1. Thus by induction, Ai ⊂ Ai+1 for all
i ≥ 0.

Lemma 2.2. Suppose R be a Euclidean domain. Then A1 − A0 = {a ∈
R : each r̄ ∈ R/(a) contains 0} = R∗ (the set of all units of a R).

Proof. Let each r̄ in R/(a) contains 0. That is for each r ∈ R

r + ka = 0, for some k ∈ R.

Taking r = 1, we get

1 + ka = 0 for some k ∈ R.

Thus ab = 1 in R with b = −k. Therefore a ∈ R∗. Then (a) = R, so
R/(a) = {0̄}. Conversely suppose that a is a unit in R. We want to show
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that any arbitrary class in R/(a) contains 0. But (a) = R, so there is only
one class in R/(a), viz. r̄ = 0̄, i.e. 0 ∈ r̄.

�

Let A = ∪Ai.

Lemma 2.3. (Motzkin’s lemma) An integral domain R has a Euclidean
algorithm if and only if every element of R is in A.

Proof. (i) Suppose R is a Euclidean domain. Then with the E-function
as above, X0 ⊂ {0} ∪ {units of R}. By Lemma 2.2, we have A1 = {0} ∪
{units of R}. Thus X0 ⊂ A1.
Assume that Xi ⊂ Ai+1 for 0 ≤ i ≤ k − 1. We now show by induction that
Xk ⊂ Ak+1. Let a ∈ Xk. For x ∈ R, we have

x = qa+ r, where E(r) < E(a) ≤ k.

Therefore E(r) ≤ k − 1, so r ∈ Xk−1 ⊂ Ak, hence a ∈ Ak+1. Thus Xk ⊂
Ak+1. But ∪Xi = R, so ∪Ai = R, i.e. A = R.

(ii) Conversely suppose that A = R. For x ∈ R, define
E : R→ {0, 1, 2, · · · } by

E(x) = min{i : x ∈ Ai}.

Hence E(0) = 0. For a, b ∈ R, with a 6= 0, suppose E(a) = i, then a ∈ Ai.
Hence given x ∈ R, x = aq + r, with r ∈ Ai−1. Hence E(r) ≤ i − 1, i.e.
E(r) < E(a). Hence R is a Euclidean domain. �

Example 2.4. R = Z[1+
√
−19
2 ].

By Definition of Motzkin’s set, we have A0 = {0}. Any element α =

a+ b(1+
√
−19
2 ) ∈ R is unit if and only if N(α) = ±1. Now

N(α) = a2 + ab+ 5b2 =
(
a+

b

2

)2
+

19b2

4
.

If b 6= 0, then N(α) > 5, hence b = 0. Thus N(α) = ±1 if and only if
α = ±1. Therefore ±1 are the only units of a ring R. Thus

A1 = A0 ∪ {set of units} = {0, 1,−1}.

Now A2 = A1 ∪ {α ∈ R : every residue class of R/(a) is represented
by an element of A1}. Assume that α is a non-zero non-unit element.
Since R is the ring of integers of an imaginary quadratic field, we have
|R/(α)| = N(α). For α to be in A2, we must have N(α) ≤ 3. But it
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is not possible for non-zero non-unit α ∈ R, since for non-zero non-unit
α ∈ R, N(α) ≥ 4. Thus A2 = A1. Similarly we can show that A2 = A3 =

A4 = · · · = An = · · · . Therefore, we have

R 6=
∞⋃
i=0

Ai.

Hence by Motzkin’s Lemma 2.3, R = Z[1+
√
−19
2 ] is not a Euclidean domain.

Remark 2.5. It is known that for a given imaginary quadratic number
field, its ring of quadratic integers is Euclidean if and only if the norm is
a Euclidean function for it. We can also use the Motzkin’s criterion to
the rings of integers other than quadratic rings of integers. This idea of
Motzkin’s criterion is used by Weinberger in 1973 to prove the following
theorem and hence we get the large number of Euclidean domain.

Theorem 2.6. Let K be an algebraic number field whose ring of integers is
both a PID and also has infinitely many units. Then a Generalized Riemann
Hypothesis (GRH) implies that the ring of integers of K is Euclidean.

In 1801, Gauss conjectured that there are infinitely many real quadratic
fields with class number one, i.e. real quadratic fields which are PID. Such
real quadratic fields satisfies the condition of the above theorem. If Gauss
conjecture comes true, then we will get infinitely many PID’s and under
the assumption of GRH, we will get infinitely many examples of Euclidean
domain.

But unfortunately, both Gauss conjecture and GRH (Generalized Rie-
mann Hypothesis) are still open.

Example 2.7. R = Z[
√
m], where m is a positive square-free integer.

Joseph Louis Lagrange was the first European Mathematician who proved
that a2−mb2 = 1 has infinitely many solutions for a, b ∈ Z. These solutions
correspond to units a+ b

√
m of norm 1 in Z[

√
m]. Bhaskaracharya, in 12th

century, gave a method to find one non-trivial solution to such an equation.
This method is called ‘cyclic’ method (chakrawal). Once one solution is
obtained, infinitely many solutions can be obtained. This was earlier shown
by Brahmagupta in 7th century using an identity. In this case, Motzkin’s
set A1 is infinite, since there are infinitely many units in R. Thus in this
case all Ai, i ≥ 1 are infinite sets. If m ≡ 1 (mod 4), Z[

√
m] is not a UFD,

so not a Euclidean domain, so
⋃∞

i=0Ai 6= R.



148 KAJABE SANDEEP

Example 2.8. Let R = Z. Here for illustration sake, we use Motzkin’s
lemma to show that Z is a Euclidean domain. From (2.1), A0 = {0} and
A1 = {−1, 0, 1}, since the −1 and 1 are the only units in Z. For a =

0,±1,±2,±3, every residue class mod(a) is represented by element of A1,
but this does not hold if |a| ≥ 4. Therefore,

A2 = {0} ∪ {±1,±2,±3} = {−3,−2,−1, 0, 1, 2, 3}.

In general, we have

Ai = {−2i + 1,−2i, · · · ,−2,−1, 0, 1, 2, · · · , 2i, 2i − 1}.

Here ∪Ai = Z. Hence by Motzkin’s lemma (2.3), Z is a Euclidean domain.
Note also that for the Euclidean function E(a) = |a|, we have

Xi = {a ∈ Z : E(a) ≤ i} = {a ∈ Z : |a| ≤ i} ⊂ Ai for all i.

Example 2.9. Let R = F [x], where F a field. From (2.1),
A0 = {0} and A1 is the set of all constant polynomials, since all non-zero
elements of F are the only units of R. If g(x) ∈ F [x] is of degree ≤ 1, every
residue class mod (g(x)) is represented by elements of A1. This is not true
if deg(g(x)) ≥ 2. Therefore,

A2 = {g(x) ∈ F [x] : deg(g(x)) ≤ 1}.

In general, by induction we can see that

Ai = {0} ∪ {g(x) ∈ F [x] : deg(g(x)) ≤ i− 1}.

Hence ∪Ai = F [x]. Hence F [x] is Euclidean domain by Motzkin’s lemma
(2.3). Note also that E(g(x)) = deg(g(x)) works as a Euclidean function
and

Xi = {g(x) ∈ F [x] : E(g(x)) ≤ i} = {g(x) : deg(g(x)) ≤ i}.

Here Xi = Ai+1, for all i ≥ 0.

Note: The criterion is applied to some special rings, in particular rings
of quadratic integers. Motzkin used his criterion to prove that of the nine
imaginary quadratic fields of class number one, only five of them are Eu-
clidean and for these fields, the norm map serves as the Euclidean function.
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Abstract. In this paper we will give some alternate proofs of some

propositions about di�erential 1-form and path integration. We have

noticed if for the given di�erential 1-form for a smooth function, in

some subsets of the plane, then there does not exist a smooth function

such that its di�erential is equal to the 1-form. In the end of this

paper we construct subdivision and proof that for every closed 1-form,

the path integral is equal to the sum of the endpoints in subintervals.

1. Introduction and auxiliary facts

We denote with U an open set in the plane R2 .

De�nition 1.1. A smooth function or C∞ function on U is a function

f : U → R such that all partial derivatives of all order exists and are

continuous.

A di�erential 1-form, or just a 1-form, on U is given by a pair of smooth

functions p and q on U . We will denote a 1-form by w and we will write

w = pdx+ qdy.

By a smooth path or just path in U , we mean a mapping γ : [a, b]→ U from

a bounded interval into U that is continuous on [a, b] and di�erentiable in

the open interval (a, b). So γ(t) = (x(t), y(t)) and γ(a), γ(b) are called the

endpoints.

With w = pdx+qdy as above and γ a path given by the pair of functions

γ(t) , the integral
∫
w =

∫ b
a

(
p(x(t), y(t))dxdt + q(x(t), y(t))dxdt

)
dt.
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We write df = ∂f
∂xdx + ∂f

∂y dy for this 1-form and say that w is the

di�erential of f if w = df .

Proposition 1.2. df = dg on U if and only if f − g is locally constant on

U

Proposition 1.3. If γ is a segmented path in U from P to Q and w = df

in U then ∫
γ
w = f(Q)− f(P ).

Proposition 1.4. Let U be a product of two open �nite or in�nite intervals,

i.e., U = {(x, y) : a < x < b and c < y < d}, with −∞ ≤ a < b ≤ ∞ and

−∞ ≤ c < d ≤ ∞. If w is any 1-form on U such that dw = 0, then there

is function f on U with w = df .

A 1-form w is called closed if dw = 0 and is called exact if w = df .

2. Main results

Proposition 2.1. There is no smooth function g ∈ C∞ such that dg = wθ

on U where wθ = −ydx+xdy
x2+y2

and U is

a) the upper half plane

b) the union of the upper half plane and the right half plane

c) the complement of the negative x-axis.

Proof. If we take di�erential to the function f(x, y) = arctan( yx) we have

df = −ydx+xdy
x2+y2

. Let we denote this di�erential with wθ. The function

f(x, y) = arctan( yx) is not di�erential in x = 0 (because is composition of

z = y
x de�ned everywhere expect in the point x = 0, the function arctan is

continuous). If there exist g ∈ C∞ such that dg = wθ on U then the integral∫
γ wθ depends on endpoints for every path γ on U (from Proposition 1.3),

so we have ∫
γ
wθ = f (γ(b)− γ(a)) ,

where γ : [a, b]→ U, γ(t) = (x(t), y(t)) . The graph of the function f(x, y) =

arctan y
x is:
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From the graph we can decide that U can be the right and the left half

plane, then there exist g ∈ C∞ such that dg = wθ on U , while

f(x, y) = arctan y
x is not de�ned in x = 0, while the surface is divided by

x = 0 which means according to the y-axis. If U is the set in the cases a),

b) or c) we can not �nd such a function. If we suppose that there exists a

function g ∈ C∞, such that dg = wθ on U we obtain the case

a) Let γ(t) = (cos(t), sin(t)) , 0 ≤ t ≤ π is path on U , then∫
γ
wθ =

∫ π

0
df =

∫ π

0

−ydx+ xdy

x2 + y2
=

∫ π

0
1dt = π

On the other hand we have γ(0) = (1, 0), γ(π) = (−1, 0). So we obtain

f (γ(π))− f (γ(0)) = f (−1, 0)− f (1, 0) = arctan 0◦ − arctan 0◦ = 0

While
∫
γ wθ = π 6= 0 = f (γ(π)) − f (γ(0)). So we get that there is no

function g ∈ C∞, such that dg = wθ on U .

b) Let γ(t) = (cos(t), sin(t)) ,−π
2 ≤ t ≤ π is path on U , then∫

γ
wθ =

∫ π

−π
2

df =

∫ π

−π
2

−ydx+ xdy

x2 + y2
=

∫ π

−π
2

1dt =
3π

2

On the other hand we have γ(−π
2 ) = (0,−1), γ(π) = (−1, 0). So we

obtain

f (γ(π))− f
(
γ(−π

2
)
)

= f (−1, 0)− f (0,−1) =

= arctan
0

−1
− arctan

−1

0
= 0−

(
−π

2

)
=
π

2
.

So there is no function g ∈ C∞, such that dg = wθ on U , where U is the

union of the upper and the right half plane.
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c) Similarly there is no function g ∈ C∞. Here easy we can take γ(t) =

(cos(t), sin(t)) ,−3π
4 ≤ t ≤

3π
4 on the other hand from the graph we have

that the surface is divided from the y-axis).

�

Proposition 2.2. There exists a function on R2/ {(0, 0)}, such that w =
xdx+ydy

(x2+y2)2
represents its di�erential.

Proof. If the di�erential form w = xdx+ydy

(x2+y2)2
can be written as the di�erential

of function f on R2/ {(0, 0)}, than we have df = w.

If we integrate df = w, we obtain

f =

∫
xdx+ ydy

(x2 + y2)2
=

1

2

∫
d(x2 + y2)

(x2 + y2)2
= −1

2

1

x2 + y2

So f(x, y) = − 1
2(x2+y2)

is smooth function on R2/ {(0, 0)} that ful�lls the
required condition. �

Proposition 2.3. Let w be a closed 1-form on U and γ : [a, b] → U , is a

smooth path, then there exists a subdivision a = t0 < t1 < ... < tn = b and

a collection of Ui, i = 1, 2, ..., n where Ui is an open subset of U so that γ

maps [ti−1, ti] into Ui, and the restriction of w to Ui is the di�erential of a

function fi. For Pi = γ(ti) and for any such choices, the following relation

is valid ∫
γ
w =

n∑
i=1

[fi(Pi)− fi(Pi−1)]

Proof. For any point P ∈ γ([a, b]), we choose its neighborhood UP on which

the restriction of w is exact. It is clear that γ−1(UP ) form an open covering

of the compact interval [a, b], so the �nite number of them cover the interval.

From this it is not hard to construct the subdivision.

From [a, b] compact set and γ−1(UP ) open covering then exist ε > 0 such

that for every compact subset of K = [a, b] with diameter less then ε , and

is subset of any open set of covering.

Let we denote with An the segments of subdivision of [a, b].

If it is not true, let us suppose that for An subset of [a, b] with diameter

less then 1
n ,
(
d(An) < 1

n

)
and is not a subset of any open set of covering

γ−1(UP ).

From [a, b] compact set, every in�nitely subset have at least one boundary

value, for example A. Let Ω is open set from open covering, let A ∈ Ω, r > 0.
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Then each point of B
(
A, r2

)
is element of Ω. We obtain B

(
A, r2

)
∪An 6= ∅

for in�nitely terms, which is a contradiction.

So we have that every subset of [a, b] with diameter ε > 0(ε = 1
n), is subset

of any open set of covering.

If we �x such a subdivision, choose one of these open sets UP which contain

γ(Ai) and denote them with Ui and fi in Ui such that dfi = w in Ui.

Let γi : [ti−1, ti] → Ui be the restriction of γ in Ai. From dfi = w in Ui

(from Proposition 1.3 we have that integral depends from the end points).

So we have that ∫
γ
w =

∫
γ1

w +

∫
γ2

w + ...+

∫
γn

w =

=
n∑
i=1

[fi(γi(ti))− fi(γi(ti−1))] =

=

n∑
i=1

[fi(Pi)− fi(Pi−1)].

�
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Abstract. Torsional surface wave propagation in an elastic half-space
with void pores is investigated within the context of Eringen’s nonlocal
theory of elasticity. Three types of torsional surface waves are found to
travel with distinct speeds, which are frequency dependent and hence
dispersive in nature. All the three kind of torsional surface waves are
affected by the presence of non-locality present in the medium, where
as torsional surface wave of second and third kind also depend on the
presence of voids in the medium. To attain more clarity about the be-
havior of all the three kind of waves, results are simulated numerically.
The dispersion curves are plotted and the effect of the presence of voids
and non-locality is noticed and analyzed.

1. Introduction

The subject of surface waves has been of immense interest since long
due to their applications in diverse fields. These waves confine themselves
near the boundary surface of an elastic half-space and can penetrate very
little into the half-space. The most popular surface waves in the literature
are Rayleigh, Love and Stoneley waves and their literature are available in
abundance. Besides these waves, there are another type of surface waves
in the literature called ’torsional waves’ or ’twisting waves’, in which the
particles of the host medium rotate around the direction of their propaga-
tion. These waves are found to be horizontally polarized but give a twist
to the host medium. Due to the lack of sufficient information in the past,
these disturbances were termed as "noise" and received no serious atten-
tion in the study of seismic waves. Shekhar and Parvez [15] observed these
"noise" in the form of torsional surface waves that can propagate in the

2010 Mathematics Subject Classification: 11A41, 16N20
Key words and phrases: torsional, nonlocal, voids, speed, frequency
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non-homogeneous earth.
Elastic material with voids is a continuum matter containing uniform

distribution of small vacuous pores having nothing of mechanical or ener-
getic significance. The linear and nonlinear theories of elastic material with
voids were presented by Cowin and his coworker [3, 4]. This theory has a
departure from the classical theory of elasticity in the sense that the de-
formation of the continuum is characterized by a displacement vector, in
addition to a new kinematic variable corresponding to the change in void
volume fraction from the reference state. The introduction of the new kine-
matic variable came into picture while expressing the bulk density of the
material as a product of its matrix density and void volume fraction. The
interaction between the two neighboring elements of the continuum body
is governed by a force stress tensor and an equilibrated stress vector. A
brief summary of equations and relations in linear elastic material with
voids has been nicely reviewed by Dey et al. [6], while the literature review
of some dynamical problems attempted by the early researchers has been
given in Tomar [11]. Singh et al. [17] extended the theory of elastic mate-
rial with voids within the context of Eringen’s nonlocal theory of elasticity,
presented the governing equations and explored the propagation of time
harmonic plane waves.

Dey et al. [6] have shown the existence of two types of torsional modes
in an elastic half-space with void pores. Few relevant papers on torsional
waves are by Dey et al. [7, 8, 10], Chattaraj et al. [12], and Gupta et al.
[13, 14, 16] among others. Recently, Tomar and Kaur [18] have studied the
importance of sliding contact interface on torsional waves.

In the classical theory of elasticity, the stress at a point is a function
of strains at that point only and this relation is expressed by well known
generalized Hooke’s law in the literature. The underlying idea of nonlocal
continuum field theories is that the stress at an interior point of the con-
tinuum depends not only on the state of strains at that point but also at
all other points of the continuum body. Thus the stress at a point of the
continuum is the integral of the strain fields taken over the entire volume of
the body. This is how constitutive relations are expressed within the con-
text of nonlocal theory of elasticity. Non-locality in the theory of elasticity
has been proposed by Edelen and Laws [1], Edelen and his co-workers [2]
and Eringen and Edelen [5]. The book by Eringen [9] is a nice monograph
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on nonlocal continuum field theories for elastic solids and fluids.
In the present paper, the possibility of surface torsional waves in nonlo-

cal elastic solid half-space with voids has been analyzed. It is concluded that
such a half-space can allow three types of torsional surface waves propagat-
ing with distinct speeds. Two of the torsional modes are found to depend
only on the parameter associated with voids, while the remaining one trav-
els independently. All the three types of torsional modes are found to be
dispersive and affected by the nonlocality of the half-space.

1.1. Basic relations and equations. Following Singh et al. [17], the
equations of motion for a uniform nonlocal elastic material with void pores
are given by

β∇φ+ (λ+ 2µ)∇(∇ · u)− µ∇2u + ρ(1− ε2∇2)f = ρ(1− ε2∇2)ü, (1.1)

α∇2φ− ξφ− β∇ · u− ωφ̇+ ρ(1− ε2∇2)l = ρ(1− ε2∇2)χφ̈, (1.2)

where ε = e0a is nonlocality parameter with ‘e0‘ as material parameter and
‘a‘ as internal characteristic length; λ and µ are the Lame’s constants; ρ is
the mass density; χ is the equilibrated inertia; f is the body force; l is the
equilibrated extrinsic body force; u(x, t) is the displacement vector; φ(x, t)

is the volume fraction field. The quantities α, β, ξ are the void parameters.
Symbol with a superposed dot denotes the partial derivative with respect
to time variable t.

The constitutive relations are given by

σij = λekkδij + 2µeij + βφδij , (1.3)

hi = αφ, i, (1.4)

where σij is the force stress tensor; hi is the equilibrated stress vector; eij
is the strain tensor; δij is Kronecker delta and a comma in the subscript
represents the spatial derivative, e.g.,

φ, i =
∂φ

∂xi
.

The other symbols have their usual meanings.

2. Torsional wave propagation

Consider an elastic half-space having uniform distribution of small void
pores throughout. Introducing the cylindrical coordinate system (r, θ, z)
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such that the z−axis is pointing vertically downward into the elastic half-
space and r − θ plane is coincident with the boundary surface of the half-
space. Let u, v and w denote the displacement components along radial,
circumferential and axial directions, respectively. We shall consider a two-
dimensional problem in r − z plane and assume that the properties of the
half-space are independent of θ coordinate. Thus, we have

u = w = 0, v = v(r, z, t), φ = φ(r, z, t), and
∂(·)
∂θ
≡ 0.

With these considerations, the dynamical equations of motion (1.1) and
(1.2) in the absence of body force f and extrinsic equilibrated body force l
take the following form as

µ

(
∂2v

∂r2
+

1

r

∂v

∂r
+
∂2v

∂z2

)
+ β

(
∂φ

∂r
+
∂φ

∂z

)
= ρ(1− ε2∇2)

∂2v

∂t2
, (2.1)

α

(
∂2φ

∂r2
+

1

r

∂φ

∂r
+
∂2φ

∂z2

)
− ξφ = ρχ(1− ε2∇2)

∂2φ

∂t2
. (2.2)

Introducing the non-dimensional quantities

s =
r

L
, p = ξ0 +

z

L
, ω = mT, and τ =

t

T
, (2.3)

where ξ0 is a constant andm is the circular frequency having dimension T−1.
Here s is a dimensionless radial co-ordinate; p is a dimensionless depth co-
ordinate; ω is dimensionless frequency; while T is the standard time; L is
standard length such that L−1 shall represent the dimension of wavenum-
ber. With these non-dimensional parameters, the equations (2.1) and (2.2)
transform into

µ

(
∂2v

∂s2
+

1

s

∂v

∂s
+
∂2v

∂p2

)
+ βL

(
∂φ

∂s
+
∂φ

∂p

)
= ρ

L2

T 2

[
1− ε2

L2

(
∂2v

∂s2
+

1

s

∂v

∂s
+
∂2v

∂p2

)]
∂2v

∂τ2
, (2.4)

α

(
∂2φ

∂s2
+

1

s

∂φ

∂s
+
∂2φ

∂p2

)
− L2ξφ

= ρχ
L2

T 2

[
1− ε2

L2

(
∂2

∂s2
+

1

s

∂

∂s
+

∂2

∂p2

)]
∂2φ

∂τ2
. (2.5)
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For the time harmonic propagation of torsional waves, the displacement and
change in volume fraction fields can be taken as

{v, φ}(p, s, τ) = {V,Φ}(p)J0(s)eιωτ , (2.6)

with J0 as Bessel function of first kind and order zero, ω is the non-
dimensional circular frequency of the wave and ι =

√
−1.

Inserting (2.6) into equations (2.4) and (2.5), one can obtain

V ′′(p)−A1V (p) +B1

[
Φ(p)

J ′0(s)

J0(s)
+ Φ′(p)

]
= 0. (2.7)

and

Φ′′(p)−AΦ(p) = 0, (2.8)

where

A1 =

[
1− (ε2 + L2)

ρ

µ

ω2

T 2

](
1− ε2 ρ

µ

ω2

T 2

)−1
, B1 =

βL

µ

(
1− ε2 ρ

µ

ω2

T 2

)−1
,

A =

[
1− L2 ξ

α
− (L2 + ε2)χ

ρ

α

ω2

T 2

](
1− ε2χ ρ

α

ω2

T 2

)−1
.

The general solution for equation (2.8) satisfying Φ→ 0 as p→∞ is given
by

Φ = Ce−
√
Ap, (2.9)

where C is an arbitrary constant.
Using (2.9) into (2.7), we obtain

V ′′(p)−A1V (p) = B1C

(√
A− J ′0(s)

J0(s)

)
e−
√
Ap, (2.10)

whose general solution that satisfies the condition V (p) → 0 as p → ∞ is
given by

V = De−
√
A1p +

B1C

(A−A1)

(√
A− J ′0(s)

J0(s)

)
e−
√
Ap, (2.11)

where D is an arbitrary constant.
Utilizing (2.9) and (2.11) into (2.6), one can write the expressions of v

and φ satisfying the radiation condition as

v =

[
De−

√
A1p +

B1C

(A−A1)

(√
A− J ′0(s)

J0(s)

)
e−
√
Ap

]
J0(s)e

ιωτ , (2.12)
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φ = CJ0(s)e
−
√
Apeιωτ . (2.13)

3. Boundary conditions

The boundary surface of the half-space is assumed to be free from me-
chanical stresses. Accounting (1.3), (1.4) and (2.3), the appropriate bound-
ary conditions are given by

(i) σpθ =
∂v

∂p
= 0 and (ii) hp =

∂φ

∂p
= 0, at p = ξ0. (3.1)

Note that the other components of stresses are automatically vanishing.
These two boundary conditions give
√
A
βL

µ

(√
A− J ′0(s)

J0(s)

)
Ce
√
A1 ξ0 +

√
A1

(
1− ε2 ρ

µ

ω2

T 2

)
(A−A1)De

√
Aξ0 = 0,

and
√
AJ0(s)Ce

−
√
Aξ0 = 0. (3.2)

The non-zero value of constants C and D make the displacement v and
change in void volume fraction φ to happen for the propagation of torsional
waves. For the non-zero value of the constants C and D, the determinant
of the coefficient matrix of homogeneous equations in (3.2) must vanish,
which yields √

A1

√
A(A−A1) = 0. (3.3)

Equation (3.3) gives

C2
T1 =

c2

c22
=

1

ω2Γ1
, C2

T2 =
c2

c23
=

1 + L2

R2

ω2Γ1
, C2

T3 =
c2

c23
=

L2

ω2R2Γ2
,(3.4)

where

Γ1 = 1 +
ε2

L2
, Γ2 = 1− c23

c22

(
1− ε2

R2

)
, R =

√
α

ξ
,

c =
L

T
, c22 =

µ

ρ
c23 =

α

ρχ
.

Here, CT1 , CT2 and CT3 represent the non-dimensional speeds of three tor-
sional modes in a nonlocal elastic half-space with voids. From the formulae
obtained in (3.4), we note that:
(a) The speeds of all the three torsional modes are influenced by the non-
locality parameter (ε) of the half-space.
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(b) From the first two formulae of (3.4), it is clear that

CT2 = CT1 ×
√

1 +
L2

R2
.

(c) The speed of one of the torsional modes, namely, CT1 is independent of
the presence of voids, while the remaining torsional modes are influenced
by the presence of voids in the medium.
(d) The speeds of all the three torsional modes do depend on ω indicating
that they are dispersive in nature.

3.1. Special Case. In the absence of nonlocality from the half-space, the
problem reduces to the corresponding problem in the half-space with voids
earlier discussed by Dey et al. [6]. For the purpose, we set the nonlocality
parameter to zero, that is, ε = 0. Using ε = 0, we see that the formulae of
CT1 , CT2 and CT3 given in (3.4), reduce to

c2 =
c22
ω2
, c2 =

c23
ω2

(
1 +

L2

R2

)
, c2 =

c23
ω2

L2

R2

(
c22

c22 − c23

)
,

respectively. Now owing to the relations ω = mT and c = L
T defined earlier,

it can be seen that ω c = mL. Then the above formulae become

cT =

√
µ

ρ
, cT = c3

√
1 +

1

K2
1 R

2
, cT =

1

K1R

c2c3√
(c22 − c23)

, (3.5)

respectively. Here the notations defined by cT = mL and K1 = L−1 have
been used. These formulae are same as obtained by Dey et al. [6] for
the corresponding problem in the relevant half-space apart from notations.
Note that one of these formulae corresponds to shear wave speed in the
elastic half-space, which is not influenced by the presence of voids.

4. Numerical results

In order to understand the dependence of torsional modes on the fre-
quency parameter and to investigate the effect of various material param-
eters on the existing modes, numerical computations have been performed
for a specific model with the following values of relevant parameters:

µ = 7.5× 1010 Pa, ρ = 2000 kg/m3, α = 8× 109Pa m2,

ξ = 12× 109 Pa, χ = 0.16 m2, e0 = 0.39, a = 0.5× 10−9 m.
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Figure 1. Variation of torsional mode speed CT1 against frequency.

e0 = 0.39

e0 = 0.45

0 1 2 3 4
0

1

2

3

4

Ω

CT2

Figure 2. Variation of torsional mode speed CT2 against frequency.



TORSIONAL WAVES IN ELASTIC SOLID HALF-SPACE WITH VOIDS 165
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Figure 3. Variation of torsional mode speed CT3 against frequency.

The non-dimensional speeds of torsional modes CTi (i = 1, 2, 3) are com-
puted from the formulae given in (3.4) for the considered model and plotted
against the non-dimensional frequency parameter ω. The dispersion curves
corresponding to the first, second and third torsional modes are shown
through Figures 1, 2 & 3, respectively. In these figures, the black curve
corresponds to e0 = 0.39, while the blue curve corresponds to e0 = 0.45.
It is clear from these figures that the speeds of only two torsional modes,
namely, CT1 and CT2 are affected significantly by the nonlocality of the
medium, while the speed of the third torsional mode (CT3) is hardly af-
fected. These plots show that the torsional wave speed (CT1) increases
significantly with increase of e0, while the torsional mode speed (CT2) in-
creases slightly with increase of e0. We note that the speeds CT1 and CT2
increase almost 45.5% and 8.5% respectively due to 15% increase of e0.
Whereas CT3 decreases to very little extent upon changing e0 from 0.39 to
0.45. It can be observed that all the three torsional modes are dispersive in
nature.

In Figures 4, 5 & 6, the speeds of third torsional mode (CT3) is plotted
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Figure 4. Variation of torsional mode speed CT3 against
frequency for different values of α.

against the non-dimensional frequency for different values of void parame-
ters, respectively, α, χ and ξ. It is clear that this torsional wave speed is
influenced by the void parameters. We note that the speed CT3 increases
with increase of parameter α, whereas it decreases with increase of param-
eter χ and ξ. The speed CT3 increases around 8.7% when α enhances from
8 × 109 to 9 × 109; 16.1% when α enhances from 9 × 109 to 10 × 109 and
35.7% when α enhances from 10× 109 to 11× 109. Thus, we see that equal
step size enhancement of α, almost doubles the speed of CT3 . Further, the
speed CT3 decreases around 9.01% when χ enhances from 0.16 to 0.26 and
8.14% when α enhances from 0.26 to 0.36. It is also observed that the speed
CT3 shows decrease of around 13.8% when ξ decreases from 12 × 109 to
9× 109 and 11.1% when ξ decreases from 9× 109 to 7× 109.

Figures 7 and 8, show the variation of the speed of torsional mode CT3
against the dimensionless parameter U = α

ξL2 (= K2
1R

2) for varying values
of µ and α and at fixed value of frequency ω = 20π. It can be observed
from these figures that a decrease in the value of µ enhances the speed of
torsional mode, while a decrease in the value of α slightly slowdown the
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Figure 5. Variation of torsional mode speed CT3 against
frequency for different values of equilibrated inertia χ.

speed of torsional mode in the question. However, the respective deviation
is very poor in the vicinity of zero frequency. We note that around 36% en-
hancement of µ results in around 71.7% decrease in the speed of CT3 , while
60% enhancement of α results in increase of around 35.1% in the speed of
CT3 .

In Figure 9, all the three torsional wave speeds have been compared.
This figure clearly shows that the speed CT3 is the fastest as compared to
CT2 and CT1 for the considered model. The magnitudes of the speeds of
existing torsional modes can be compared as follows CT1 < CT2 < CT3 . The
speed CT2 is almost midway between CT1 and CT3 .

5. Conclusions

A mathematical study for the propagation of torsional surface waves in
a nonlocal elastic half-space with voids is performed. The following obser-
vations can be drawn from the analysis :

• It is found that there exist three torsional surface waves propagating
with different speeds.
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Figure 6. Variation of torsional mode speed CT3 against
frequency for different values of ξ.

• All the three torsional modes are found to be dispersive and depend
on the non-locality parameter ε of the half-space.
• Two of the three torsional modes are found to be affected by the
presence of voids in the medium, while the remaining mode travels
independently.
• The speed of one of the torsional modes, namely, CT2 is found to be(

1 + L2

R2

)
times multiple of CT1 .

• Enhancing the value e0 from 0.39 to 0.45, the speed CT1 becomes
almost double, the speed CT2 becomes almost half, while the speed
CT3 undergoes slightest decrease.
• The speed CT3 decreases around 9.01% when equilibrated inertia χ
enhances from 0.16 to 0.26 and 8.14% when χ enhances from 0.26

to 0.36.

• The speed CT3 decreases around 13.8% when the void parameter ξ
decreases from 12×109 to 9×109 and 11.1% when ξ decreases from
9× 109 to 7× 109.
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Figure 7. Variation of torsional mode speed CT3 against
non-dimensional quantity U for different values of µ.
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Figure 8. Variation of torsional mode speed CT3 against
non-dimensional quantity U for different values of α.
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Figure 9. Comparison of the speeds of torsional modes

• In the absence of nonlocality, the torsional modes reduce to those
obtained by Dey et al. [6] for the corresponding problem.
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Abstract. This article has presented several generalized fixed point
theorems with variations in S-metric space domains. In addition, sev-
eral more fixed point results are obtained for different forms of contrac-
tion mappings that have closed graphs in S-metric spaces.

1. Introduction

Metric spaces are most important in pure and applied mathematics.
So many authors were tried to find generalized metric spaces. B. C. Dhage
introduced the concept of 2-metric space in [1]. The concept of D-metric
space was introduced by S. G¨ahler in [3]. These two attempts have some
drawbacks, see for example [9, 10]. So, Z. Mustafa, and B. Sims introduced
the G-metric space in [8]. S. Sedghi et al modified concept of D-metric
spaces to D∗-metric spaces in [17].

The concept of S-metric space was introduced by S. Sedghi et al in [16].
A S-metric is a real valued mapping on N3, for some set N 6= ∅, where the
map represents the perimeter of the triangle. Also given examples to every
G-metric is a D∗ metric and every D∗-metric is a S-metric in [16]. Because
of introduction of this concept of S-metric spaces, many articles appeared
for fixed point theory, see for example [2, 5, 4, 6, 11, 12, 13, 14, 15, 18].

A cycle of domains to derive some fixed point theorems for metric
spaces was considered by C. G. Moorthy, and P. X. Raj in [7]. This article
motivates us to consider an increasing sequence of subsets N1 ⊆ N2 ⊆ ...

of a S-metric space (N,S), and a map T : N → N satisfying a contraction

condition such that T (Ni) ⊆ Ni+1, for all i, and N =
∞⋃
j=1

Nj .

2010 Mathematics Subject Classification: 47H10, 54H25
Key words and phrases: Contraction, S-metric space, Fixed point
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In this paper, we prove some more fixed point theorems for various
forms of contraction mappings having closed graph on S-metric spaces.

2. S-metric spaces

Definition 2.1. [16] Let N 6= ∅ be a set. The mapping S : N3 → [0,∞)

is said to be a S-metric if

(i) S(a, b, c) ≥ 0, for all a, b, c ∈ N and
(ii) S(a, b, c) = 0 if and only if a = b = c, for all a, b, c ∈ N ; and
(iii) S(a, b, c) ≤ S(a, a, e) + S(b, b, e) + S(c, c, e), for all a, b, c, e ∈ N.

Then (N,S) is called S-metric space(or, SMS).

Example 2.2. Let d be an ordinary metric on N 6= ∅, then S(a, b, c) =

d(a, b) + d(b, c) + d(c, a) is a S-metric on N .

Lemma 2.3. [16] Let S be a S-metric on N , then S(a, a, b) = S(b, b, a).

Definition 2.4. [16] Suppose (N,S) is a SMS.
(I) A subset B of N is called S-bounded if there exists r > 0 such that
S(a, a, b) < r, for all a, b ∈ B.
(II) A sequence {an} in N is said to be convergent if for every ε > 0, there
is a positive integer n0 such that for all n > n0, S(an, an, a) < ε, for some
a ∈ N .
(III) A sequence {an} in N is said to be Cauchy sequence if for any ε > 0,
there is a positive integer n0 such that for all n,m > n0, S(an, an, am) < ε.

Remark 2.5. Let {an} be a sequence in N . Then {an} is said to be
convergent to a if and only if S(an, an, a)→ 0 as n→∞, and {an} is said
to be Cauchy if and only if S(an, an, am)→ 0 as n,m→∞,

Lemma 2.6. [16] Let (N,S) be a SMS. Let {an} be a sequence in N . If
{an} converges to a and {an} converges to b, then a = b.

Definition 2.7. [16] A SMS (N,S) is called complete, if every Cauchy
sequence is convergent in S.

Lemma 2.8. [16] Let (N,S) be a SMS. Let {an} and {bn} be two sequences
in N such that an→a, bn→b as n→∞. Then S(an, an, bn)→ S(a, a, b) as
n→∞.

Definition 2.9. Let T be a mapping from a SMS (N,S) into itself. If
whenever an→a0 and Tan→b0 for some sequence {an} in N and some a0, b0
in N , we have b0 = Ta0, then T is said to have a closed graph.
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3. main results

Theorem 3.1. Let (N,S) be a complete SMS. Let T : N → N have a

closed graph. Let N1 ⊆ N2 ⊆ ... be subsets of N such that N =
∞⋃
j=1

Nj,

T (Ni) ⊆ Ni+1, for all i, and S(Ta, Ta, T b) ≤ liS(a, a, b), for all a, b ∈ Ni,

for all i, where li ∈ (0,∞) are constants such that
∞∑
n=1

l1l2...ln <∞. Then,

for any fixed a1 ∈ N , {Tna1} converges to a fixed point. Also, if li ∈ (0, 1),
for all i, then T has a unique fixed point(or, UFP) in N .

Proof. Fix a1 ∈ N1, and define an+1 = Tan = Tna1, for every n =

1, 2, 3, .... Then we have,

S(Tn+1a1, T
n+1a1, T

na1) ≤ ln+1S(T
na1, T

na1, T
n−1a1)

≤ ln+1lnln−1...l2S(Ta1, Ta1, a1).

Also, for m > n ≥ 1, we have,

S(Tma1, T
ma1, T

na1)

≤ 2S(Tma1, T
ma1, T

m−1a1) + 2S(Tm−1a1, T
m−1a1, T

m−2a1)

+...+ S(Tn+1a1, T
n+1a1, T

na1)

≤ 2

m−1∑
i=n+1

S(T i+1a1, T
i+1a1, T

ia1) + S(Tn+1a1, T
n+1a1, T

na1)

≤ 2
( m−1∑

i=n+1

li+1li...l2

)
S(Ta1, Ta1, a1) + ln+1ln...l2S(Ta1, Ta1, a1)

≤ 2
(m−1∑

i=n

li+1li...l2

)
S(Ta1, Ta1, a1).

Therefore, S(Tma1, T
ma1, T

na1) → 0 (n,m → ∞). Thus, {Tma1}∞m=1 is
a Cauchy sequence in N . Since N is complete, {Tma1}∞m=1 converges to
a∗ in N . It should be noted that {Tm+1a1}∞m=1 is also a Cauchy sequence
and it converges to a∗ in N . Since T has a closed graph, we should have
Ta∗ = a∗. Then a∗ is a fixed point of T .
Such claims are relevant for the common case: a1 ∈ Nn, for some n.
Suppose, further that li ∈ (0, 1), for all i.
If a∗, b∗ are fixed points of T , then let a∗, b∗ ∈ Nn, for some n, so that

0 ≤ S(a∗, a∗, b∗) = S(Ta∗, Ta∗, T b∗) ≤ lnS(a∗, a∗, b∗).
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Then, S(a∗, a∗, b∗) ≤ (ln)
mS(a∗, a∗, b∗), for every m = 1, 2, 3, .... Since

(ln)
m → 0 as m → ∞, S(a∗, a∗, b∗) = 0 and a∗ = b∗. Therefore, T has a

UFP. �

Example 3.2. Let N = [0,∞) and S : N3 → [0,∞) be defined by
S(a, b, c) = |a− c|+ |b− c|. Then (N,S) is a complete SMS.

Let Nn = [0, n], and ln = n2

(n+1)2
∈ (0, 1), for n = 2, 3, .... Then

∞∑
n=2

l2...ln <

∞.
Define T : N → N by T (a) = 1 + 1

22
+ 22

32
(a− 1), if a ∈ Nn, for n = 2, 3, ....

For a, c ∈ Nn, we have

S(Ta, Ta, T c) = |Ta− Tc|+ |Ta− Tc|

=
∣∣∣22
32

(a− 1)− 22

32
(c− 1)

∣∣∣+ ∣∣∣22
32

(a− 1)− 22

32
(c− 1)

∣∣∣
=

22

32

(
|a− c|+ |a− c|

)
≤ lnS(a, a, c), for all n = 2, 3, ....

The assumptions in Theorem 3.1 are then fulfilled. Also, the UFP is
29
20 = 1.45.

Theorem 3.3. Let (N,S) be a complete SMS and S-bounded. Let T : N →
N have a closed graph. Let li ∈ (0, 1), for all i, be such that l1l2...ln → 0 as
n → ∞. Suppose N1 ⊆ N2 ⊆ ... be subsets of N such that T (Ni) ⊆ Ni+1,

for all i, and S(Ta, Ta, T b) ≤ lid(a, a, b), for all a ∈ Ni, for all b ∈
∞⋃
j=1

Nj,

for all i. Let a1 ∈
∞⋃
j=1

Nj. Then the sequence {Tna1} converges to a unique

point in N , which is a fixed point of T . If N =
∞⋃
j=1

Nj, then T has a UFP

in N .

Proof. Fix a1, b1 ∈ N1. Define an+1 = Tan = Tna1, and bn+1 = Tbn =

Tnb1, for every n = 1, 2, 3, ..... For n > m, we have

S(an, an, bm) = S(Tan−1, Tan−1, T bm−1)

≤ lm−1S(an−1, an−1, bm−1)

≤ lm−1lm−2...l2l1S(an−m+1, an−m+1, b1)

≤ lm−1lm−2...l2l1r,
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Therefore, S(an, an, bm) → 0 as n,m → ∞. Also S(an, an, am) → 0, and
S(bn, bn, bm) → 0 as n,m → ∞. So, {an} and {bn} are Cauchy sequences
in N . Since, (S, d) is a complete, {an} and {bn} converges to a unique
point a∗ in S, by Lemma 2.7. Since {an} → a∗, we have {Tan} → a∗.
Since T has a closed graph, we have Ta∗ = a∗.
Such claims are relevant for the common case: a1, b1 ∈ Nn, for some n.

Suppose now N =
∞⋃
j=1

Nj .

If a∗, b∗ are fixed points of T , then let a∗ ∈ Nn, and b∗ ∈ Nn, for some n,
so that

0 ≤ S(a∗, a∗, b∗) = d(Ta∗, Ta∗, T b∗)

≤ lnd(a
∗, a∗, b∗)

≤ lnln+1ln+2...lmS(a
∗, a∗, b∗), for all m > n.

So, S(a∗, a∗, b∗) = 0, because l1l2...lm → 0 as m→∞. Therefore, T has a

UFP, when N =
∞⋃
j=1

Nj . �

Example 3.4. Let N = {0, 1, 12 ,
1
3 , ...}, and S : N3 → [0,∞) be defined

by S(a, b, c) = |a− c|+ |b− c|. Then (N,S) is a complete SMS.
Let Nn = {0, 1, 12 ,

1
3 , ...,

1
n}, and ln = n

(n+1) ∈ (0, 1), for n = 1, 2, 3, .... Then
l1l2...ln = 1

n+1 → 0 as n→∞.
Define T : N → N by T (a) = 0 if a = 0, and T (a) = 1

n+1 if a = 1
n for

n = 1, 2, 3, ....

For n > m, we have

S
(
T

1

m
,T

1

m
,T

1

n

)
=

∣∣∣T 1

m
− T 1

n

∣∣∣+ ∣∣∣T 1

m
− T 1

n

∣∣∣
=

1

m+ 1
− 1

n+ 1
+

1

m+ 1
− 1

n+ 1

=
n−m
nm

nm

(m+ 1)(n+ 1)
+
n−m
nm

nm

(m+ 1)(n+ 1)

≤ lm
n−m
nm

+ lm
n−m
nm

= lm

∣∣∣ 1
m
− 1

n

∣∣∣+ lm

∣∣∣ 1
m
− 1

n

∣∣∣
= lmS

( 1

m
,
1

m
,
1

n

)
.

The assumptions in Theorem 3.3 are then fulfilled. Also, the UFP is 0.
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Theorem 3.5. Let (N,S) be a complete SMS. Let T : N → N have a closed

graph. Let N1 ⊆ N2 ⊆ ... be subsets of N such that N =
∞⋃
j=1

Nj, T (Ni) ⊆

Ni+1, for all i, and S(Ta, Ta, T b) ≤ li[S(Ta, Ta, a) + S(Tb, T b, b)], for all

a, b ∈ Ni, for all i, where li ∈ (0, 1) are constants such that
∞∑
n=1

h1h2...hn <

∞, where hi = li
1−li , for all i. Then T has a UFP in N . Also, for any fixed

a1 ∈ N , {Tna1} converges to a UFP.

Proof. Fix a1 ∈ N1, and define an+1 = Tan = Tna1, for every n =

1, 2, 3, .... Then we have,

S(Tn+1a1, T
n+1a1, T

na1)

≤ ln+1[S(T
n+1a1, T

n+1a1, T
na1) + S(Tna1, T

na1, T
n−1a1)]

≤ ln+1S(T
n+1a1, T

n+1a1, T
na1) + ln+1S(T

na1, T
na1, T

n−1a1).

Now, we get

S(Tn+1a1, T
n+1a1, T

na1) ≤
ln+1

1− ln+1
S(Tna1, T

na1, T
n−1a1)

≤ hn+1S(T
na1, T

na1, T
n−1a1)

≤ hn+1hnhn−1...h2S(Ta1, Ta1, a1).

Also, for m > n ≥ 1, we have,

S(Tma1, T
ma1, T

na1)

≤ 2S(Tma1, T
ma1, T

m−1a1) + 2S(Tm−1a1, T
m−1a1, T

m−2a1)

+...+ S(Tn+1a1, T
n+1a1, T

na1)

≤ 2
m−1∑
i=n+1

S(T i+1a1, T
i+1a1, T

ia1) + S(Tn+1a1, T
n+1a1, T

na1)

≤ 2
( m−1∑

i=n+1

hi+1hi...h2

)
S(Ta1, Ta1, a1) + ln+1ln...l2S(Ta1, Ta1, a1)

≤ 2
(m−1∑

i=n

hi+1hi...h2

)
S(Ta1, Ta1, a1).

Therefore, S(Tma1, T
ma1, T

na1) → 0 (n,m → ∞). Thus, {Tma1}∞m=1 is
a Cauchy sequence in N . Since N is complete, {Tma1}∞m=1 converges to
a∗ in N . It should be noted that {Tm+1a1}∞m=1 is also a Cauchy sequence
and it converges to a∗ in N . Since T has a closed graph, we should have
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Ta∗ = a∗. Then a∗ is a fixed point of T .
Such claims are relevant for the common case: a1 ∈ Nn, for some n.
If a∗, b∗ are fixed points of T , then let a∗, b∗ ∈ Nn, for some n, so that

S(a∗, a∗, b∗) = S(Ta∗, Ta∗, T b∗) ≤ ln[S(Ta∗, Ta∗, a∗) + S(Tb∗, T b∗, b∗)] = 0.

Then, S(a∗, a∗, b∗) = 0 and a∗ = b∗. Therefore, T has a UFP. �

Example 3.6. Let N = {0, 13 ,
1
32
, 1
33
, ...}, and S : N3 → [0,∞) be defined

by S(a, b, c) = |a− c|+ |b− c|. Then (N,S) is a complete SMS.
Let Nn = {0, 13 ,

1
32
, 1
33
, ..., 1

32n+1 }, and ln = 1
3 , for n = 1, 2, 3, .... Then

∞∑
n=1

h1h2...hn <∞, where hi = li
1−li .

Define T : N → N by T (a) = 0 if a = 0, and T (a) = 1
3n+2 if a = 1

3n for
n = 1, 2, 3, ....

For n > m, we have

S
(
T

1

3m
, T

1

3m
, T

1

3n

)
=

∣∣∣ 1

3m+2
− 1

3n+2

∣∣∣+ ∣∣∣ 1

3m+2
− 1

3n+2

∣∣∣
=

∣∣∣ 1

3m+2
− 1

3n+1
+

1

3n+1
− 1

3n+2

∣∣∣+ ∣∣∣ 1

3m+2
− 1

3n+1
+

1

3n+1
− 1

3n+2

∣∣∣
≤ 1

3

{∣∣∣ 1

3m+1
− 1

3n

∣∣∣+ ∣∣∣ 1
3n
− 1

3n+1

∣∣∣}+
1

3

{∣∣∣ 1

3m+1
− 1

3n

∣∣∣+ ∣∣∣ 1
3n
− 1

3n+1

∣∣∣}
<

1

3

{ 2

3m+1
+
∣∣∣ 1
3n
− 1

3n+1

∣∣∣}+
1

3

{ 2

3m+1
+
∣∣∣ 1
3n
− 1

3n+1

∣∣∣}
=

1

3

{∣∣∣ 1
3m
− 1

3m+1

∣∣∣+ ∣∣∣ 1
3n
− 1

3n+1

∣∣∣}+
1

3

{∣∣∣ 1
3m
− 1

3m+1

∣∣∣+ ∣∣∣ 1
3n
− 1

3n+1

∣∣∣}
<

1

3

{∣∣∣ 1
3m
− 1

3m+2

∣∣∣+ ∣∣∣ 1
3n
− 1

3n+2

∣∣∣}+
1

3

{∣∣∣ 1
3m
− 1

3m+2

∣∣∣+ ∣∣∣ 1
3n
− 1

3n+2

∣∣∣}
=

1

3

[
S
(
T

1

3m
, T

1

3m
,
1

3m

)
+ S

(
T

1

3n
, T

1

3n
,
1

3n

)]
.

The assumptions in Theorem 3.5 are then fulfilled. Also, the UFP is 0.

Theorem 3.7. Let (N,S) be a complete SMS. Let T : N → N have a closed

graph. Let N1 ⊆ N2 ⊆ ... be subsets of N such that N =
∞⋃
j=1

Nj, T (Ni) ⊆

Ni+1, for all i, and S(Ta, Ta, T b) ≤ li[S(Ta, Ta, b) + S(Tb, T b, a)], for all

a, b ∈ Ni, for all i, where li ∈ (0, 12) are constants such that
∞∑
n=1

h1h2...hn <

∞, where hi = li
1−2li , for all i. Then T has a UFP in N . Also, for any fixed

a1 ∈ N , {Tna1} converges to a UFP.
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Proof. Fix a1 ∈ N1, and define an+1 = Tan = Tna1, for every n =

1, 2, 3, .... Then we have,

S(Tn+1a1, T
n+1a1, T

na1)

≤ ln+1[S(T
n+1a1, T

n+1a1, T
n−1a1) + S(Tna1, T

na1, T
na1)]

≤ ln+1[2S(T
n+1a1, T

n+1a1, T
na1) + S(Tn−1a1, T

n−1a1, T
na1)].

Now, we get

S(Tn+1a1, T
n+1a1, T

na1) ≤
ln+1

1− 2ln+1
S(Tna1, T

na1, T
n−1a1)

≤ hn+1S(T
na1, T

na1, T
n−1a1)

≤ hn+1hnhn−1...h2S(Ta1, Ta1, a1).

Also, for m > n ≥ 1, we have,

S(Tma1, T
ma1, T

na1)

≤ 2S(Tma1, T
ma1, T

m−1a1) + 2S(Tm−1a1, T
m−1a1, T

m−2a1)

+...+ S(Tn+1a1, T
n+1a1, T

na1)

≤ 2

m−1∑
i=n+1

S(T i+1a1, T
i+1a1, T

ia1) + S(Tn+1a1, T
n+1a1, T

na1)

≤ 2
( m−1∑

i=n+1

hi+1hi...h2

)
S(Ta1, Ta1, a1) + ln+1ln...l2S(Ta1, Ta1, a1)

≤ 2
(m−1∑

i=n

hi+1hi...h2

)
S(Ta1, Ta1, a1).

Therefore, S(Tma1, T
ma1, T

na1)→ 0 (n,m→∞). Thus, {Tma1}∞m=1 is a
Cauchy sequence in N . Since N is complete, {Tma1}∞m=1 converges to a∗

in N . It should be noted that {Tm+1a1}∞m=1 is also a Cauchy sequence
and it converges to a∗ in N . Since T has a closed graph, we should have
Ta∗ = a∗.
Then a∗ is a fixed point of T . Such claims are relevant for the common case:
a1 ∈ Nn, for some n. If a∗, b∗ are fixed points of T , then let a∗, b∗ ∈ Nn,
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for some n, so that

S(a∗, a∗, b∗) = S(Ta∗, Ta∗, T b∗) ≤ ln[S(Ta
∗, Ta∗, b∗) + S(Tb∗, T b∗, a∗)]

= ln[S(a
∗, a∗, b∗) + S(b∗, b∗, a∗)]

= 2lnS(a
∗, a∗, b∗).

Then, S(a∗, a∗, b∗) ≤ (2ln)
mS(a∗, a∗, b∗), for everym = 1, 2, 3, .... Since

(2ln)
m → 0 as m → ∞, S(a∗, a∗, b∗) = 0 and a∗ = b∗. Therefore, T has a

UFP.
�

Theorem 3.8. Let (N,S) be a complete SMS. Let T : N → N have a

closed graph. Let N1 ⊆ N2 ⊆ ... be subsets of N such that N =
∞⋃
j=1

Nj,

T (Ni) ⊆ Ni+1, for all i, and S(Ta, Ta, T b) ≤ liS(a, a, b) + tiS(b, b, Ta), for
all a, b ∈ Ni, for all i, where li, ti ∈ (0, 1) are constants such that li+ ti < 1,

for all i, and
∞∑
n=1

h1h2...hn <∞, where hi = li+2ti
1−ti , for all i. Then T has a

UFP in N . Also, for any fixed a1 ∈ N , {Tna1} converges to a UFP.

Proof. Fix a1 ∈ N1, and define an+1 = Tan = Tna1, for every n =

1, 2, 3, .... Then we have,

S(Tn+1a1, T
n+1a1, T

na1)

≤ ln+1S(T
na1, T

na1, T
n−1a1) + tn+1S(T

n−1a1, T
n−1a1, T

n+1a1)]

≤ ln+1S(T
na1, T

na1, T
n−1a1) + tn+12S(T

n−1a1, T
n−1a1, T

na1)

+tn+1S(T
n+1a1, T

n+1a1, T
na1)

= (ln+1 + 2tn+1)S(T
na1, T

na1, T
n−1a1) + tn+1S(T

n+1a1, T
n+1a1, T

na1)

Now, we get

S(Tn+1a1, T
n+1a1, T

na1) ≤
ln+1 + 2tn+1

1− tn+1
S(Tna1, T

na1, T
n−1a1)

≤ hn+1S(T
na1, T

na1, T
n−1a1)

≤ hn+1hnhn−1...h2S(Ta1, Ta1, a1).
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Also, for m > n ≥ 1, we have,

S(Tma1, T
ma1, T

na1)

≤ 2S(Tma1, T
ma1, T

m−1a1) + 2S(Tm−1a1, T
m−1a1, T

m−2a1)

+...+ S(Tn+1a1, T
n+1a1, T

na1)

≤ 2

m−1∑
i=n+1

S(T i+1a1, T
i+1a1, T

ia1) + S(Tn+1a1, T
n+1a1, T

na1)

≤ 2
( m−1∑

i=n+1

hi+1hi...h2

)
S(Ta1, Ta1, a1) + ln+1ln...l2S(Ta1, Ta1, a1)

≤ 2
(m−1∑

i=n

hi+1hi...h2

)
S(Ta1, Ta1, a1).

Therefore, S(Tma1, T
ma1, T

na1)→ 0 (n,m→∞). Thus, {Tma1}∞m=1

is a Cauchy sequence in N . Since N is complete, {Tma1}∞m=1 converges to
a∗ in N . It should be noted that {Tm+1a1}∞m=1 is also a Cauchy sequence
and it converges to a∗ in N . Since T has a closed graph, we should have
Ta∗ = a∗. Then a∗ is a fixed point of T .
Such claims are relevant for the common case: a1 ∈ Nn, for some n.
If a∗, b∗ are fixed points of T , then let a∗, b∗ ∈ Nn, for some n, so that

S(a∗, a∗, b∗) = S(Ta∗, Ta∗, T b∗) ≤ lnS(a
∗, a∗, b∗) + tnS(b

∗, b∗, Ta∗)]

= (ln + tn)S(a
∗, a∗, b∗).

Then, S(a∗, a∗, b∗) ≤ (ln + tn)
mS(a∗, a∗, b∗), for every m = 1, 2, 3, ....

Since (ln + tn)
m → 0 as m→∞, S(a∗, a∗, b∗) = 0 and a∗ = b∗. Therefore,

T has a UFP. �

Theorem 3.9. Let (N,S) be a complete SMS. Let T : N → N have a

closed graph. Let N1 ⊆ N2 ⊆ ... be subsets of N such that N =
∞⋃
j=1

Nj,

T (Ni) ⊆ Ni+1, for all i, and S(Ta, Ta, T b) ≤ qiS(a, a, b)+ li[S(Ta, Ta, a)+
S(Tb, T b, b)] + ri[S(Ta, Ta, b) + S(Tb, T b, a)], for all a, b ∈ Ni, for all i,
where qi, li, ri ∈ (0, 12) are constants such that qi + 2ri < 1, for all i, and
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∞∑
n=1

h1h2...hn <∞, where hi = qi+li+ri
1−li−ri , for all i. Then T has a UFP in N .

Also, for any fixed a1 ∈ N , {Tna1} converges to a UFP.

Proof. Fix a1 ∈ N1, and define an+1 = Tan = Tna1, for every n =

1, 2, 3, .... Then we have,

S(Tn+1a1, T
n+1a1, T

na1) ≤ qn+1S(T
na1, T

na1, T
n−1a1)

+ln+1[S(T
n+1a1, T

n+1a1, T
na1) + S(Tna1, T

na1, T
n−1a1)]

+rn+1[S(T
n+1a1, T

n+1a1, T
n−1a1) + S(Tna1, T

na1, T
na1)]

S(Tn+1a1, T
n+1a1, T

na1) ≤ qn+1S(T
na1, T

na1, T
n−1a1)

+ln+1S(T
n+1a1, T

n+1a1, T
na1) + ln+1S(T

na1, T
na1, T

n−1a1)

+rn+1[2S(T
n+1a1, T

n+1a1, T
na1) + S(Tn−1a1, T

n−1a1, T
na1)].

Now, we get

S(Tn+1a1, T
n+1a1, T

na1) ≤ (
qn+1 + ln+1 + rn+1

1− ln+1 − rn+1
)S(Tna1, T

na1, T
n−1a1)

≤ hn+1S(T
na1, T

na1, T
n−1a1)

≤ hn+1hnhn−1...h2S(Ta1, Ta1, a1).

Also, for m > n ≥ 1, we have,

S(Tma1, T
ma1, T

na1)

≤ 2S(Tma1, T
ma1, T

m−1a1) + 2S(Tm−1a1, T
m−1a1, T

m−2a1)

+...+ S(Tn+1a1, T
n+1a1, T

na1)

≤ 2
m−1∑
i=n+1

S(T i+1a1, T
i+1a1, T

ia1) + S(Tn+1a1, T
n+1a1, T

na1)

≤ 2
( m−1∑

i=n+1

hi+1hi...h2

)
S(Ta1, Ta1, a1) + ln+1ln...l2S(Ta1, Ta1, a1)

≤ 2
(m−1∑

i=n

hi+1hi...h2

)
S(Ta1, Ta1, a1).

Therefore, S(Tma1, T
ma1, T

na1) → 0 (n,m → ∞). Thus, {Tma1}∞m=1 is
a Cauchy sequence in N . Since N is complete, {Tma1}∞m=1 converges to
a∗ in N . It should be noted that {Tm+1a1}∞m=1 is also a Cauchy sequence
and it converges to a∗ in N . Since T has a closed graph, we should have
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Ta∗ = a∗. Then a∗ is a fixed point of T .
Such claims are relevant for the common case: a1 ∈ Nn, for some n.
If a∗, b∗ are fixed points of T , then let a∗, b∗ ∈ Nn, for some n, so that

S(a∗, a∗, b∗) = S(Ta∗, Ta∗, T b∗)

≤ qnS(a
∗, a∗, b∗) + ln[S(Ta

∗, Ta∗, a∗) + S(Tb∗, T b∗, b∗)]

+rn[S(Ta
∗, Ta∗, b∗) + S(Tb∗, T b∗, a∗)]

= qnS(a
∗, a∗, b∗) + rnS(a

∗, a∗, b∗) + rnS(b
∗, b∗, a∗)

= (
qn

1− 2rn
)S(a∗, a∗, b∗)

Then, S(a∗, a∗, b∗) ≤ ( qn
1−2rn )

mS(a∗, a∗, b∗), for every m = 1, 2, 3, .... Since
( qn
1−2rn )

m → 0 as m→∞, Thus, S(a∗, a∗, b∗) = 0 and a∗ = b∗. Therefore,
T has a UFP. �

Corollary 3.10. Let (N,S) be a complete SMS. Let T : N → N have a

closed graph. Let N1 ⊆ N2 ⊆ ... be subsets of N such that N =
∞⋃
j=1

Nj,

T (Ni) ⊆ Ni+1, for all i, and S(Ta, Ta, T b) ≤ qiS(a, a, b)+ li[S(Ta, Ta, a)+
S(Tb, T b, b)], for all a, b ∈ Ni, for all i, where qi, li ∈ (0, 1) are constants

such that
∞∑
n=1

h1h2...hn <∞, where hi = qi+li
1−li , for all i. Then T has a UFP

in N . Also, for any fixed a1 ∈ N , {Tna1} converges to a UFP.
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A NOTE ON ORTHOGONAL AND ALTERNATE DUAL
G-FRAME PAIRS
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Abstract. W. Sun introduced the concept of g- frames which are
generalized frames in Hilbert spaces. In this paper, we consider linear
combination of g-frames with coefficients as bounded linear operators
and construct some new g-frames from existing g-frames, considering
the cases of orthogonal and alternate dual g-frame pair in a Hilbert
space and give alternate proofs of some previously proved results. We
use our result to construct Gabor frames.

1. Introduction

Frames in Hilbert spaces have been introduced in 1952 by J. Duffin and
A.C. Schaeffer [7] while studying non harmonic Fourier series. The work of
Daubechies, Grossmann and Meyer [6] in 1986 reintroduced the Frames.

In [14], W. Sun introduced the concept of generalized frames (or g-
frames) in Hilbert spaces, which are generalizations of frames and cover
many other recent generalizations of frames such as bounded quasi-projections,
fusion frames, and pseudo frames. Constructions of frames and g-frames is
an interesting problem and is useful in applications. Therefore, algebraic
operations are considered among frames to construct new frames from ex-
isting frames. For more details see [1, 3, 11] and the references therein.

In this paper, we construct new g-frames by considering sum and differ-
ence of orthogonal and alternate dual g-frames. Our work generalizes the
work done in [2]. We give here alternate proofs of ([9],Theorem 31,Theorem
32 ) using the concept of R-duality of g-frames.

2000 Mathematics Subject Classification: 42C15
Key words and phrases: g-frames, Dual g-frames, Orthogonal g-frames, g-R-dual
sequence
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2. Preliminaries

Throughout this paper, H and K are separable Hilbert spaces and
{Hi}i∈I is a sequence of closed subspaces of K , where I is a subset of Z
and L(H ,Hi) is the collection of all bounded linear operators from H

into Hi. And we denote by IH the identity operator on H . Hilbert space
adjoint operator of T is denoted by T ∗. By T † we denote the pseudo-inverse
of the operator T.
Operators on L2(R):
Translation by a ∈ R, Ta : L2(R)→ L2(R), (Taf)(x) = f(x− a);

Modulation by b ∈ R, Eb : L2(R)→ L2(R), (Ebf)(x) = e2πibxf(x);

Dilation a 6= 0, Da : L2(R)→ L2(R), (Daf)(x) =
1√
|a|
f(
x

a
).

Definition 2.1. A sequence {fi : i ∈ I} of elements in H is called a frame
for H if there exist constants 0 < A ≤ B <∞ such that

A‖f‖2 ≤
∑
i∈I
|〈f, fi〉|2 ≤ B‖f‖2, ∀ f ∈H .

The constants A and B are called lower and upper frame bounds.

Definition 2.2.
(∑

i∈I ⊕Hi

)
l2

is a Hilbert space and is defined by(∑
i∈I
⊕Hi

)
l2

=

{
{fi}i∈I : fi ∈Hi, i ∈ I, ‖{fi}i∈I‖2 =

∑
i∈I
‖fi‖2 <∞

}
.

with the inner product defined by: 〈{fi}, {gi}〉 =
∑

i∈I〈fi, gi〉.

Definition 2.3. [14] A sequence {Λi ∈ L(H ,Hi) : i ∈ I} of bounded
operators is said to be a generalized frame or simply a g-frame for H with
respect to {Hi}i∈I if there exist constants 0 < A ≤ B <∞ such that

A‖f‖2 ≤
∑
i∈I
‖Λif‖2 ≤ B‖f‖2, ∀ f ∈H .

we call A and B the lower and upper g-frame bounds, respectively. We call
{Λi}i∈I a tight g-frame if A = B and a Parseval g-frame or a normalized
tight g-frame if A = B = 1.

We call {Λi : i ∈ I} an exact g-frame if it ceases to be a g-frame
whenever any one of its element is removed.

We call {Λi : i ∈ I} a g-frame for H whenever Hi = H , ∀ i ∈ I.
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The synthesis(g-pre frame) operator of {Λi}i∈I ;TΛ :

(∑
i∈I ⊕Hi

)
l2

→H

is defined by

TΛ

(
{fi}i∈I

)
=
∑
i∈I

Λ∗i fi.

We call the adjoint T ∗Λ, where T
∗
Λ : H →

(∑
i∈I ⊕Hi

)
l2

of the synthesis
operator, the analysis operator which is given by

T ∗Λf = {Λif}i∈I , ∀ f ∈H .

By composing TΛ and T ∗Λ, we obtain the g-frame operator SΛ : H → H

given by

SΛf = TΛT
∗
Λf =

∑
i∈I

Λ∗iΛif

which is bounded, positive, self adjoint, invertible operator and satisfies
AIH ≤ SΛ ≤ BIH . Then the following reconstruction formula takes place
for all f ∈H

f = S−1
Λ SΛf = SΛS

−1
Λ f.

{ΛiS−1
Λ }i∈I is also a g-frame for H with respect to {Hi}i∈I with bounds

B−1 and A−1 and it is said to be the canonical dual g-frame of {Λi}i∈I .

Definition 2.4. A g-frame {Θi}i∈I of H is called an alternate dual g-frame
of {Λi}i∈I if it satisfies

f =
∑
i∈I

Λ∗iΘif, ∀ f ∈H .

In terms of synthesis operators

TΛT
∗
Θ = IH or TΘT

∗
Λ = IH .

where TΛ and TΘ are the synthesis operators for {Λi}i∈I and {Θi}i∈I re-
spectively.

It is easy to show that if {Θi}i∈I is an alternate dual g-frame of {Λi}i∈I ,
then {Λi}i∈I is an alternate dual g-frame of {Θi}i∈I .

Definition 2.5. We call two g-Bessel sequences {Λi}i∈I and {Θi}i∈I to be
orthogonal if
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∑
i∈I

Λ∗iΘif = 0 or
∑
i∈I

Θ∗iΛif = 0, ∀ f ∈H .

In terms of synthesis operators

TΛT
∗
Θ = 0 or TΘT

∗
Λ = 0.

Definition 2.6. [14] Let Λi ∈ L(H ,Hi), i ∈ I.

(1) If the right hand inequality of (2) holds, then we say that {Λi : i ∈ I}
is a g-Bessel sequence for H with respect to {Hi : i ∈ I}.

(2) If {f : Λif = 0, i ∈ I} = {0}, then we say that {Λi : i ∈ I} is
g-complete.

(3) If {Λi : i ∈ I} is g-complete and there are positive constants A and
B such that for any finite subset I1 ⊂ I and gi ∈Hi, i ∈ I1,

A
∑
i∈I1

‖gi‖2 ≤

∥∥∥∥∥∥
∑
i∈I1

Λ∗i gi

∥∥∥∥∥∥
2

≤ B
∑
i∈I1

‖gi‖2

then we say that {Λi : i ∈ I} is g-Riesz basis for H with respect to
{Hi : i ∈ I}.

(4) We say that {Λi : i ∈ I} is a g-orthonormal basis for H with respect
to {Hi : i ∈ I} if it satisfies the following:

〈Λ∗i1gi1 ,Λ
∗
i2gi2〉 = δi1,i2〈gi1 , gi2〉, ∀ i1, i2 ∈ I, gi1 ∈Hi1 , gi2 ∈Hi2 ,∑

i∈I
‖Λif2‖ = ‖f‖2, ∀ f ∈H .

Definition 2.7. [8] Let {Ξi}i∈I and {Ψi}i∈I be g-orthonormal bases for H

with respect to {Wi}i∈I and {Hi}i∈I , respectively. Let {Λi ∈ L(H ,Hi) :

i ∈ I} be such that the series
∑

i∈I Λ∗i g
′
i is convergent for all {g′i}i∈I ∈(∑

i∈I ⊕Hi

)
l2
.

The g-R-dual sequence for the sequence {Λi}i∈I is ΓΛ
j : H → Wj which is

defined as

ΓΛ
j =

∑
i∈I

ΞjΛ
∗
iΨi, ∀ j ∈ I.

Definition 2.8. Let g ∈ L2(R) and a, b > 0. The sequence {EmbTnag}m,n∈Z
is called a Gabor system. A Gabor system is called a Gabor frame (resp.
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Gabor Riesz basis) if it is a frame (resp. Riesz basis) for L2(R). A Ga-
bor system is called a Gabor sequence (resp. Gabor Riesz sequence) if it
is a frame sequence (resp. Riesz sequence). Gabor frames are concrete
realization of frames.

Definition 2.9. Let D and T be the standard dilation and translation
operators, respectively, on L2(R), defined by (Df)(x) =

√
2f(2x) and

(Tf)(x) = f(x− 1) for any f ∈ L2(R).

A function φ ∈ L2(R) is called a frame wavelet of L2(R) if

{φn,l(x)} = {2n/2φ(2nx− l) : n, l ∈ Z} = {DnT lφ : n, l ∈ Z}

is a frame of L2(R), i.e., if there exist two positive constants 0 < A ≤ B

such that
A ‖f‖2 ≤

∑
n,l∈Z

|〈f,DnT lφ〉|2 ≤ B ‖f‖2

for all f ∈ L2(R). φ is called a tight frame wavelet if this frame is tight.
Similarly, φ is called a normalized tight frame wavelet if this frame is a
normalized tight frame.

The following results which are referred to in this paper are listed in the
form of lemmas.

Lemma 2.9. [9]. Let {Θi ∈ L(H ,Hi) : i ∈ I} be a g-orthonormal basis
for H , T ∈ L(H ). Define the transformation ΦT : {Λi ∈ L(H ,Hi) : i ∈
I} → {ΛiT ∗ : i ∈ I}, then

(1) It transforms g-frames to g-frames if and only if T is onto.
(2) It transforms normalized tight g-frame to normalized tight g-frame

if and only if T is a coisometry.
(3) It transforms g-Riesz bases to g-Riesz bases if and only if T is in-

vertible.
(4) It transforms g-orthonormal bases to g-orthonormal bases if and

only if T is unitary.

Lemma 2.10. [5]. Let T : K → H be a bounded surjective operator.
Then there exists a bounded operator (called the pseudoinverse of T ) T † :

H → K for which TT †f = f, ∀ f ∈H .
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Lemma 2.11. [8]. Let {Λi}i∈I and {Ωi}i∈I be g-frames for H with respect
to {Hi}i∈I . Then {Ωi}i∈I is a dual g-frame of {Λi}i∈I if and only if g-R-
dual sequences

{
ΓΛ
j

}
j∈I and

{
ΓΩ
j

}
j∈I are g-biorthogonal; that is,

ΓΛ
i

(
ΓΩ
j

)∗
gj = ΓΩ

i

(
ΓΛ
j

)∗
gj = δijgj , ∀ i, j ∈ I, gj ∈ Wj

Lemma 2.12. [13]. Let U : K → H be a bounded operator. Then the
following hold:

(1) ‖U‖ = ‖U∗‖ and ‖UU∗‖ = ‖U‖2.
(2) Range of U is closed in H if and only if range of U∗ is closed in

K .
(3) U is surjective if and only if there exists a constant C > 0 such that
‖U∗y‖ ≥ C ‖y‖ , ∀ y ∈H .

3. Main Result

This section deals with the following problem:
When is {ΛiU∗+ΓiV

∗ : i ∈ I} a g-frame, given {Λi : i ∈ I} and {Γi : i ∈ I}
are orthogonal g-frames for H and U, V ∈ L(H )?

Theorem 3.1. Let {Λi : i ∈ I} and {Γi : i ∈ I} be two g-frames for Hilbert
space H , and let TΛ and TΓ be synthesis operators of {Λi : i ∈ I} and
{Γi : i ∈ I} respectively. Let U, V ∈ L(H ). If TΛT

∗
Γ = 0 and U or V is

surjective, then
{

ΛiU
∗ + ΓiV

∗ : i ∈ I
}
is a g-frame for H .

Proof. Let {Λi : i ∈ I} and {Γi : i ∈ I} be two g-frames for H . Then there
exist 0 < A1 ≤ B1 <∞ and 0 < A2 ≤ B2 <∞ such that

A1 ‖f‖2 ≤
∑
i∈I
‖Λif‖2 ≤ B1 ‖f‖2 , A2 ‖f‖2 ≤

∑
i∈I
‖Γif‖2 ≤ B2 ‖f‖2 .

Since TΛT
∗
Γ = 0, for any f ∈H , we have∑

i∈I
Λ∗iΓif =

∑
i∈I

Γ∗iΛif = 0.

Hence for any f ∈H , we have∑
i∈I
‖(ΛiU∗ + ΓiV

∗)f‖2 =
∑
i∈I
〈(ΛiU∗ + ΓiV

∗)f, (ΛiU
∗ + ΓiV

∗)f〉
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=
∑
i∈I
‖ΛiU∗f‖2 +

∑
i∈I
‖ΓiV ∗f‖2 + 2Re

(∑
i∈I
〈ΛiU∗f,ΓiV ∗f〉

)
=
∑
i∈I
‖ΛiU∗f‖2 +

∑
i∈I
‖ΓiV ∗f‖2 + 2Re

〈∑
i∈I

Γ∗iΛiU
∗f, V ∗f

〉
=
∑
i∈I
‖ΛiU∗f‖2 +

∑
i∈I
‖ΓiV ∗f‖2

≤ B1 ‖U∗f‖2 +B2 ‖V ∗f‖2

≤
(
B1 ‖U∗‖2 +B2 ‖V ∗‖2

)
‖f‖2

Now ∑
i∈I
‖(ΛiU∗ + ΓiV

∗)f‖2 =
∑
i∈I
‖ΛiU∗f‖2 +

∑
i∈I
‖ΓiV ∗f‖2

≥
∑
i∈I
‖ΛiU∗f‖2

≥ A1 ‖U∗f‖2

Assume that U is surjective. Then by lemma [2.12], we have∑
i∈I
‖(ΛiU∗ + ΓiV

∗)f‖2 ≥ A1C
2 ‖f‖2

Thus {ΛiU∗ + ΓiV
∗ : i ∈ I} is a g-frame for H . �

When U = IH , we have the following result:

Corollary 3.2. Let {Λi : i ∈ I} and {Γi : i ∈ I} be two g-frames for a
Hilbert space H , and let TΛ and TΓ be synthesis operators of {Λi : i ∈
I} and {Γi : i ∈ I} respectively. Let V ∈ L(H ). If TΛT

∗
Γ = 0, then

{Λi + ΓiV
∗ : i ∈ I} is a g-frame for H . Moreover, {Λi + Γi(V

∗)a : i ∈ I}
is also a g-frame for H for any natural number a.

The following corollary can be immediately derived from Theorem [3.1],
when U = V = IH .

Corollary 3.3. Let {Λi : i ∈ I} and {Γi : i ∈ I} be two g-frames for
Hilbert space H , and let TΛ and TΓ be synthesis operators of {Λi : i ∈ I}
and {Γi : i ∈ I}, respectively. If TΛT

∗
Γ = 0, then {Λi + Γi : i ∈ I} is a

g-frame for H .

The next theorem provides a necessary and sufficient condition for the
new g-frame to be a tight g-frame.
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Theorem 3.4. Let {Λi : i ∈ I} and {Γi : i ∈ I} be two Parseval g-
frames for H , and let TΛ and TΓ be synthesis operators of {Λi : i ∈ I}
and {Γi : i ∈ I}, respectively, such that TΛT

∗
Γ = 0. Let U, V ∈ L(H ).

Then {ΛiU∗ + ΓiV
∗ : i ∈ I} is a λ-tight g-frame for H if and only if

(UU∗ + V V ∗) = λIH .

Proof. Since TΛT
∗
Γ = 0, for any f ∈H , we have∑

i∈I
‖(ΛiU∗ + ΓiV

∗)f‖2 =
∑
i∈I
‖ΛiU∗f‖2 +

∑
i∈I
‖ΓiV ∗f‖2

= ‖U∗f‖2 + ‖V ∗f‖2 ,

(Since {Λi}i∈I and {Γi}i∈I are Parseval g-frames.)

= 〈U∗f, U∗f〉+ 〈V ∗f, V ∗f〉

= 〈UU∗f, f〉+ 〈V V ∗f, f〉

= 〈(UU∗ + V V ∗)f, f〉

It follows that {ΛiU∗+ ΓiV
∗ : i ∈ I} is a λ-tight g-frame for H if and only

if (UU∗ + V V ∗) = λIH . �

Next we consider the case when {(Λi + Γi)U
∗ : i ∈ I} is a g-frame,

where {Λi : i ∈ I} and {Γi : i ∈ I} are alternate dual g-frame pair for H

and U ∈ L(H ).

Theorem 3.5. Let {Λi : i ∈ I} and {Γi : i ∈ I} be alternate dual g-
frame pair for Hilbert space H . Let U ∈ L(H ). If U is surjective, then
{(Λi + Γi)U

∗ : i ∈ I} is a g-frame for H .

Proof. Since {Λi : i ∈ I} and {Γi : i ∈ I} are g-frame for H , there exist
0 < A1 ≤ B1 <∞ and 0 < A2 ≤ B2 <∞ such that

A1 ‖f‖2 ≤
∑
i∈I
‖Λif‖2 ≤ B1 ‖f‖2 , A2 ‖f‖2 ≤

∑
i∈I
‖Γif‖2 ≤ B2 ‖f‖2 .

Now {Λi}i∈I and {Γi}i∈I is an alternate dual g-frame pair, therefore
TΛT

∗
Γ = TΓT

∗
Λ = IH i.e∑

i∈I
Λ∗iΓif =

∑
i∈I

Γ∗iΛif = f, ∀ f ∈H .

Hence for all f ∈H , we have∑
i∈I
‖(Λi + Γi)U

∗f‖2 =
∑
i∈I
〈(Λi + Γi)U

∗f, (Λi + Γi)U
∗f〉
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=
∑
i∈I
‖ΛiU∗f‖2 +

∑
i∈I
‖ΓiU∗f‖2 + 2Re

∑
i∈I
〈ΛiU∗f,ΓiU∗f〉

=
∑
i∈I
‖ΛiU∗f‖2 +

∑
i∈I
‖ΓiU∗f‖2 + 2Re

〈∑
i∈I

Γ∗iΛiU
∗f, U∗f

〉
=
∑
i∈I
‖ΛiU∗f‖2 +

∑
i∈I
‖ΓiU∗f‖2 + 2〈U∗f, U∗f〉

≤ B1 ‖U∗f‖2 +B2 ‖U∗f‖2 + 2 ‖U∗f‖2

≤
(
B1 ‖U∗‖2 +B2 ‖U∗‖2 + 2 ‖U∗‖2

)
‖f‖2

Since U is surjective, we have by lemma[2.12] that there exists some
constant C > 0 such that ‖U∗f‖2 ≥ C2 ‖f‖2 for any f ∈H .
Now we have,∑

i∈I
‖(Λi + Γi)U

∗f‖2 =
∑
i∈I
‖ΛiU∗f‖2 +

∑
i∈I
‖ΓiV ∗f‖2 + 2 ‖U∗f‖2

≥
∑
i∈I
‖ΛiU∗f‖2

≥ A1 ‖U∗f‖2

≥ A1C
2 ‖f‖2

Thus {(Λi + Γi)U
∗ : i ∈ I} is a g-frame for H . �

The following corollary can be immediately derived from Theorem[3.5],
when U = IH .

Corollary 3.6. Let {Λi : i ∈ I} and {Γi : i ∈ I} be two alternate dual
g-frame pair for Hilbert space H . Then {Λi + Γi : i ∈ I} is a g-frame for
H .

In the following results, we always assume that there exists a g-orthonormal
basis {Θi : i ∈ I} for H with respect to {Hi : i ∈ I}.

Theorem 3.7. Let {Λi : i ∈ I} and {Γi : i ∈ I} be two g-frames for Hilbert

space H , and let TΛ and TΓ be synthesis operators of {Λi : i ∈ I} and

{Γi : i ∈ I}, respectively, such that TΛT
∗
Γ = 0. Then {Λi − Γi : i ∈ I} is a

g-frame for H . Moreover, if {Λi : i ∈ I} and {Γi : i ∈ I} are normalized
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tight g-frames and TΛT
∗
Γ = 0, then {Λi − Γi : i ∈ I} is a tight g-frame for

H with bound 2.

Proof. Since TΛ and TΓ are synthesis operators associated with g-frames

{Λi : i ∈ I} and {Γi : i ∈ I} respectively, ΘiT
∗
Λ = Λi and ΘiT

∗
Γ = Γi for any

i ∈ I, where {Θi}i∈I is a g-orthonormal basis for H . Hence (Λi − Γi) =

Θi(TΛ − TΓ)∗, for any i ∈ I. Also

∑
i∈I

Λ∗iΓif = 0 =
∑
i∈I

Γ∗iΛif = 0, ∀ f ∈H .

To show that {(Λi − Γi)f : i ∈ I} is a g-frame, it is sufficient to show

that (TΛ − TΓ) is onto by lemma [2.9].

Since TΓT
∗
Λ = 0, we have (TΛ − TΓ)T ∗Λ = TΛT

∗
Λ − TΓT

∗
Λ = TΛT

∗
Λ.

Since TΛT
∗
Λ is invertible, for any z ∈H , there exists x = T ∗Λ(TΛT

∗
Λ)−1z ∈

H such that

(TΛ − TΓ)x = (TΛ − TΓ)T ∗Λ(TΛT
∗
Λ)−1z

= (TΛT
∗
Λ)(TΛT

∗
Λ)−1z

= z

Therefore, (TΛ − TΓ) is an onto operator. If {Λi : i ∈ I} and {Γi : i ∈ I}

are normalized tight g-frames and TΛT
∗
Γ = 0, then for any x ∈H , we have

∑
i∈I
‖(Λi − Γi)x‖2 =

∑
i∈I
‖Λix‖2 +

∑
i∈I
‖Γix‖2 −

∑
i∈I
〈Λix,Γix〉 −

∑
i∈I
〈Γix,Λix〉

= 2 ‖x‖2 −
∑
i∈I
〈ΘiT

∗
Λx,ΘiT

∗
Γx〉 −

∑
i∈I
〈ΘiT

∗
Γx,ΘiT

∗
Λx〉

= 2 ‖x‖2 −
∑
i∈I
〈TΓΘ∗iΘiT

∗
Λx, x〉 −

∑
i∈I
〈TΛΘ∗iΘiT

∗
Γx, x〉

= 2 ‖x‖2 −
〈
TΓ

∑
i∈I

Θ∗iΘiT
∗
Λx, x

〉
−
〈
TΛ

∑
i∈I

Θ∗iΘiT
∗
Γx, x

〉
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= 2 ‖x‖2 − 〈TΓT
∗
Λx, x〉 − 〈TΛT

∗
Γx, x〉

= 2 ‖x‖2

Thus {Λi − Γi : i ∈ I} is a tight g-frame for H with bound 2. �

Example : A difference of Gabor frames in L2(R). In [2] author has shown

that the sum of two orthogonal frames is a frame. Here we are using the

same example to generate frame by taking the difference of the two frames.

For x, y ∈ R, let Ex, and Ty be operators defined on L2(R) by

Ex(f(t)) = e2nixtf(t) and Ty(f(t)) = f(t− y).

Since the polynomial 1 + pz does not have root on the unit circle for

p ≤ 1, the set [0, 1) ∪ [1, 2) = [0, 2) forms a Gabor frame wavelet set [4, 10]

Likewise, the set [2, 1)∪ [1, 0) = [2, 0) forms a Gabor frame wavelet set. Let

g1(t) = χ[0,1) + pχ[1,2), and g2(t) = χ[1,0) + pχ[2,1).

The families

X = {EmTng1(t)}m,n∈Z , and Y = {EmTng2(t)}m,n∈Z

form frames for the space L2(R). Since the support(X) ∩ support(Y) =

φ ∀m,n ∈ Z, it follows that ∀f ∈ L2(R), we have

∑
m,n∈Z

〈f(t), EmTng1(t)〉EmTng2(t) = 0,

So X and Y form a pair of orthogonal frames for the space L2(R). Therefore

the difference

h(t) = g1(t)− g2(t) = χ[0,1) + pχ[1,2) − (χ[1,0) + pχ[2,1))

forms a frame for L2(R).

In [12], it is shown that the difference of two alternate dual g-frame pair is
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also a g-frame. In fact, sum of two alternate dual g-frames is also a g-frame.

We give a different proof of corollary[3.6].

Proof. Since {Λi}i∈I and {Γi}i∈I are alternate dual g-frames, we have∑
i∈I Λ∗iΓif =

∑
i∈I Γ∗iΛif = f, ∀ f ∈H . For any f ∈H , we have

∑
i∈I
‖(Λi + Γi)f‖2 =

∑
i∈I
‖Λif‖2 +

∑
i∈I
‖Γif‖2 + 2Re

∑
i∈I
〈Λif,Γif〉

=
∑
i∈I
‖Λif‖2 +

∑
i∈I
‖Γif‖2 + 2Re

〈∑
i∈I

Γ∗iΛif, f
〉

=
∑
i∈I
‖Λif‖2 +

∑
i∈I
‖Γif‖2 + 2〈f, f〉

≤ (B1 +B2 + 2) ‖f‖2

Let {Θi}i∈I be g-orthonormal basis for H .

∑
i∈I
‖(Λi + Γi)f‖2 =

∑
i∈I
‖Λif‖2 +

∑
i∈I
‖Γif‖2 + 2 ‖f‖2

=
∑
i∈I
‖ΘiT

∗
Λf‖

2 +
∑
i∈I
‖ΘiT

∗
Γf‖

2 + 2 ‖f‖2

=
∑
i∈I
‖T ∗Λf‖

2 +
∑
i∈I
‖T ∗Γf‖

2 + 2 ‖f‖2

Now TΛ is onto, so there exists an operator (TΛ)† such that TΛ(TΛ)† =

IH ⇒
(
T †Λ

)∗
T ∗Λ = IH .

So for any f ∈H , we have

‖f‖2 =
∥∥∥(T †Λ)∗T ∗Λf∥∥∥2

≤
∥∥∥(T †Λ)∗∥∥∥2

‖T ∗Λf‖
2

which implies that ‖T ∗Λf‖
2 ≥ ‖f‖2∥∥∥∥∥

(
T †Λ

)∗∥∥∥∥∥2 .
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Also TΓ is onto, so there exists an operator T †Γ such that TΓ(TΓ)† =

IH ⇒
(
T †Γ

)∗
T ∗Γ = IH .

So for any f ∈H , we have

‖f‖2 =
∥∥∥(T †Γ)∗T ∗Γf∥∥∥2

≤
∥∥∥(T †Γ)∗∥∥∥2

‖T ∗Γf‖
2

which implies that ‖T ∗Γf‖
2 ≥ ‖f‖2∥∥∥(T †Γ)∗∥∥∥2 .

Therefore∑
i∈I ‖T ∗Λf‖

2 +
∑

i∈I ‖T ∗Γf‖
2 + 2 ‖f‖2 ≥

(
1∥∥∥(T †Λ)∗∥∥∥2 + 1∥∥∥(T †Γ)∗∥∥∥2 + 2

)
‖f‖2

or
∑

i∈I ‖(Λi + Γi)f‖2 ≥

(
1∥∥∥(T †Λ)∗∥∥∥2 + 1∥∥∥(T †Γ)∗∥∥∥2 + 2

)
‖f‖2

Thus {Λi + Γi : i ∈ I} is a g-frame for H .

In [9] author proved that, when {Λi : i ∈ I} and {Θi : i ∈ I} is an

alternate dual g-frame pair for Hilbert space H and T is a coisometry,

{ΛiT ∗ : i ∈ I} and {ΘiT
∗ : i ∈ I} form an alternate dual g-frame pair. We

give here an alternate proof by using the concept of g-R-duality of g-frames.

We shall prove the duality of {ΛiT ∗ : i ∈ I} and {ΘiT
∗ : i ∈ I} by showing

that the their g-R-duals sequences are biorthogonal by lemma[2.11].

Theorem 3.8. Let {Λi : i ∈ I} and {Θi : i ∈ I} be alternate dual g-frames

for Hilbert space H , and T be a coisometry in L(H ). Then {ΛiT ∗ : i ∈ I}

and {ΘiT
∗ : i ∈ I} are alternate dual g-frames for H .

Proof. Let {Λi : i ∈ I} and {Θi : i ∈ I} be alternate dual g-frame pair

for H and T be a coisometry. Therefore by lemma[2.9], {ΛiT ∗}i∈I and

{ΘiT
∗}i∈I are also g-frames for H .
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Let {Ξi}i∈I and {Ψi}i∈I be g-orthonormal basis for H with respect to

{Wi}i∈I and {Hi}i∈I , respectively and
{

ΓΛ
j

}
j∈I and

{
ΓΘ
j

}
j∈I denote the g-

R-duals sequences of {ΛiT ∗}i∈I and {ΘiT
∗}i∈I respectively. By definition

of
{

ΓΛ
j

}
j∈I and

{
ΓΘ
j

}
j∈I , for every i, j ∈ I and {gj}j∈I ∈ Wj , we have

ΓΛ
j =

∑
i∈I

Ξj{ΛiT ∗}∗Ψi, ∀ j ∈ I.

and

ΓΘ
j =

∑
i∈I

Ξj{ΘiT
∗}∗Ψi, ∀ j ∈ I.

Now

ΓΛ
i

(
ΓΘ
j

)∗
gj =

∑
k∈I

Ξi
(
ΛkT

∗)∗Ψk

{∑
m∈I

Ξj
(
ΘmT

∗)∗Ψm

}∗
gj

=
∑
k∈I

∑
m∈I

ΞiTΛ∗kΨkΨ
∗
mΘmT

∗Ξ∗jgj

=
∑
k∈I

ΞiTΛ∗kΘkT
∗Ξ∗jgj

= ΞiT

(∑
k∈I

Λ∗kΘkT
∗Ξ∗jgj

)

= ΞiTT
∗Ξ∗jgj

Because T is a coisometry, TT ∗ = IH . Hence, ΓΛ
i

(
ΓΘ
j

)∗
gj = ΞiΞ

∗
jgj =

δijgj . �

Theorem 3.9. Let {Λi : i ∈ I} and {Θi : i ∈ I} be alternate dual g-

frames for Hilbert space H , and T be a surjective operator in L(H ). Then

{ΛiT ∗ : i ∈ I} and {ΘiT
† : i ∈ I} are alternate dual g-frames for H .

Similarly, {ΛiT † : i ∈ I} and {ΘiT
∗ : i ∈ I} are alternate dual g-frames for

H .
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Proof. Since T is onto, TT † = IH by lemma[2.10]. It follows that (T †)∗T ∗ =

IH . It follows that T †∗ is onto. Since {Λi : i ∈ I} and {Θi : i ∈ I} are

g-frames for H , {ΛiT ∗ : i ∈ I}, {ΘiT
∗ : i ∈ I}, {ΛiT † : i ∈ I} and

{ΘiT
† : i ∈ I} are g-frames for H by lemma[2.9]. Let g-R-dual sequences

of {ΛiT ∗ : i ∈ I}, {ΘiT
∗ : i ∈ I}, {ΛiT † : i ∈ I} and {ΘiT

† : i ∈ I} be

denoted by {Γ1
i }i∈I , {Γ2

i }i∈I , {Γ3
i }i∈I and {Γ4

i }i∈I respectively. For every

i, j ∈ I and {gj}i∈I ∈ Wj , we have

{Γ1
i } =

∑
i∈I

Ξj
{

ΛiT
∗}∗Ψi, ∀ j ∈ I.

{Γ2
i } =

∑
i∈I

Ξj
{

ΘiT
∗}∗Ψi, ∀ j ∈ I.

{Γ3
i } =

∑
i∈I

Ξj
{

ΛiT
†}∗Ψi, ∀ j ∈ I.

{Γ4
i } =

∑
i∈I

Ξj
{

ΘiT
†}∗Ψi, ∀ j ∈ I.

Now

{Γ1
i }
(
{Γ4

i }
)∗
gj =

∑
k∈I

Ξi
(
TΛ∗k

)
Ψk

{∑
m∈I

Ξj
(
ΘmT

†)∗Ψm

}∗
gj

=
∑
k∈I

∑
m∈I

ΞiTΛ∗kΨkΨ
∗
mΘmT

†Ξ∗jgj

=
∑
k∈I

ΞiTΛ∗kΘkT
†Ξ∗jgj

= ΞiT

(∑
k∈I

Λ∗kΘkT
†Ξ∗jgj

)

= ΞiTT
†Ξ∗jgj = ΞiΞ

∗
jgj = δijgj

So g-R-dual sequences of {ΛiT ∗ : i ∈ I}, {ΘiT
† : i ∈ I} are biorthogonal.

It follows that {ΛiT ∗ : i ∈ I}, {ΘiT
† : i ∈ I} are alternate dual g-frames
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for H . Similarly, we can show that g-R-dual sequences of {ΘiT
∗ : i ∈ I}

and {ΛiT † : i ∈ I} are biorthogonal. �

Acknowledgement: I am grateful to the referee for the comments which

improved the quality of the paper.
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Abstract. In Article 42 of his celebrated book ‘Disquisitiones Arith-
meticae’, Gauss proved the following result:
If the coefficients A,B,C, · · · , N ; a, b, c, · · ·n of two functions of the
form

xm +Axm−1 +Bxm−2 + Cxm−3 + · · ·+N (P )

xµ + axµ−1 + bxµ−2 + cxµ−3 + · · ·+ n (Q)

are all rational and not all integers, and if the product of (P) and (Q)

= xm+µ + Axm+µ−1 +Bxm+µ−2 + etc.+ Z

then not all the coefficients A,B, · · · ,Z can be integers.
This is the famous Gauss lemma which has been rephrased and gen-
eralized in several ways over 150 years. Some of the statements have
only existential proofs while some have surprisingly explicit proofs. We
discuss these aspects of the Gauss lemma and its generalizations.

1. Introduction

If f, g are polynomials in one variable over any commutative ring with unity,
a lemma due (independently) to Dedekind and Mertens from 1892 general-
izes the classical Gauss lemma and asserts that

c(f)deg(g)c(fg) = c(f)deg(g)c(f)c(g).

Here, for a polynomial f , one defines the content of f to be the ideal
c(f) generated by its coefficients. However, one thing that is true over
ANY commutative ring with unity is that, for any f and g, the equality
c(fg) = c(f)c(g) holds if c(f), c(g) are unit ideals. We start first by recall-
ing that the statement “c(fg) = c(f)c(g) if c(f), c(g) are unit ideals" has a

2010 Mathematics Subject Classification: 13B25
Key words and phrases: Gauss lemma, content, GCD domains, Dedekind-Mertens

© Indian Mathematical Society, 2022 .
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purely existential proof, and that indeed, no proof is known that is either
constructive or, is accomplished by some algebraic manipulations. Follow-
ing that, we provide a twist in the tale for a certain ring of functions where
a Gauss-lemma-like proof does work. Finally, in the next few sections, we
give a brief tour of some generalizations that the subject of Gauss’s lemma
has led to over the years.

2. Thus spake Gauss

In Article 42 of his celebrated book ‘Disquisitiones Arithmeticae’, Gauss
proved the following result (here is an English translation of his statement):

If the coefficients A,B,C, · · · , N ; a, b, c, · · ·n of two functions of the form

xm +Axm−1 +Bxm−2 + Cxm−3 + · · ·+N (P )

xµ + axµ−1 + bxµ−2 + cxµ−3 + · · ·+ n (Q)

are all rational and not all integers, and if the product of (P) and (Q)

= xm+µ + Axm+µ−1 +Bxm+µ−2 + etc.+ Z

then not all the coefficients A,B, · · · ,Z can be integers.

This is the famous Gauss lemma which is often re-phrased in several ways,
one of which is the following statement:
Over a unique factorization domain (abbreviated as UFD), the product of
primitive polynomials is a primitive polynomial.
Here, the adjective ‘primitive’ refers to a polynomial whose coefficients have
no common divisor in the UFD other than units. The Gauss lemma has
been generalized over time. For instance, Kaplansky showed that the above
statement holds over any integral domain in which any two elements admit
a GCD (greatest common divisor) - these are now known as GCD domains
and we discuss them in a later section here.
Note that over a UFD, any two non-zero non-units have a GCD which is
unique up to multiplication by units. The Gauss lemma can also be thought
of as the assertion that over a UFD, the product of the GCDs of polyno-
mials f and g is the GCD of the polynomial fg (up to multiplication by
units).
The main implication of Gauss’s lemma is that for any UFD A, the poly-
nomial ring A[X] is also a UFD.
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For a polynomial f , one may define the content of f to be the ideal c(f) gen-
erated by its coefficients - this definition makes sense over any commutative
ring with unity. It is evident that we have an inclusion c(fg) ⊆ c(f)c(g) for
polynomials f, g.
The content ideal is the same as the ideal generated by the GCD when the
ring is a PID (principal ideal domain); hence the above is an equality in
this case.
However, it is interesting to observe the subtlety that the inclusion c(fg) ⊆
c(f)c(g) could be proper for polynomials f, g over UFDs A.
For instance, if A = K[X,Y ] for a field A, the polynomials f(t) = X + Y t

and g(t) = X − Y t have the property that fg = X2 − Y 2t2 and hence

c(f)c(g) = (X,Y )2 = (X2, XY, Y 2) ⊃ (X2, Y 2) = c(fg)

where the inclusion is proper.
Another example is A = Z[X] where f(t) = 2 +Xt, g(t) = 2−Xt give

c(f)c(g) = (2, X)2 = (4, 2X,X2) ⊃ (4, X2) = c(fg)

which is a strict inclusion.

3. Existential proofs - a twist in the tale

If f, g are polynomials in one variable over any commutative ring with unity,
a lemma due (independently) to Dedekind and Mertens from 1892 which
will be discussed in detail in the next section asserts that

c(f)deg(g)c(fg) = c(f)deg(g)c(f)c(g).

However, one thing that is true over ANY commutative ring with unity is
that, for any f and g, the equality c(fg) = c(f)c(g) holds if c(f), c(g) are
unit ideals.

Our purpose is to start first by recalling that the statement “c(fg) =

c(f)c(g) if c(f), c(g) are unit ideals" has a purely existential proof, and
that indeed, no proof is known that is either constructive or, is accom-
plished by some algebraic manipulations. This may be instructive to bring
to the notice of the students. Following that, we provide a twist in the tale
for a certain ring of functions where a Gauss-lemma-like proof does work.
Finally, in the next two sections, we give a brief tour of some generalizations
that the subject of Gauss’s lemma has led to over the years.
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First, we recall the existential argument alluded to:

Let R be a commutative ring with unity. Let f =
∑n

i=0 aiX
i, g =

∑m
j=0 bjX

j ∈
R[X] be such that c(f), c(g) are unit ideals; that is,

1 =

n∑
i=0

aiAi =

m∑
j=0

bjBj

for some Ai, Bj ∈ R. If fg =
∑m+n

k=0 ckX
k, then c(fg) is the unit ideal; that

is, there exist Ck ∈ R so that
∑m+n

k=0 ckCk = 1.

To prove this, suppose the ideal generated by c0, · · · , cm+n is a proper ideal,
and let M be a maximal ideal containing it. Then, under the natural ring
homomorphism from R[X] to (R/M)[X], the polynomial fg maps to zero.
However, neither the image of f nor that of g maps to zero which contradicts
the fact that (R/M)[X] is an integral domain.

As mentioned above, the proof is purely existential. Having said this, we
observe now that for a ring like C[0, 1], the ring of real-valued continuous
functions on [0, 1], which is far from being even an integral domain, we pro-
vide a twist in the tale by showing that a proof akin to Gauss’s lemma works.

Here is the result and a constructive proof.

Lemma. Let R = C[0, 1] with addition and multiplication of functions
given in terms of their values. Let F =

∑n
i=0 fiXi, G =

∑m
i=0 giX

i ∈ R[X].
If c(F ) = c(G) = R, then c(FG) = R; further, one can prove this construc-
tively.
Note that if FG =

∑m+n
i=0 hiX

i, then c(FG) = R if, and only if, h0, · · · , hm+n

have no common zero in [0, 1]. This is because if hi’s have no common zero,
the elements Hi =

hi∑
i h

2
i
∈ R satisfy

∑
i hiHi = 1, the constant function

1, which is the unity of R. Therefore, the assumptions c(F ) = c(G) = R

imply that the fi’s have no common zero and the gj ’s have no common zero
as well. Consider an arbitrary a ∈ [0, 1]. Then we would have a smallest
r with 0 ≤ r ≤ n for which fr(a) 6= 0; similarly, we would have a smallest
s with 0 ≤ s ≤ m so that gs(a) 6= 0. Evidently hr+s(a) = fr(a)gs(a) 6= 0,
which means all the hi’s cannot have a common zero. Hence c(FG) = R.
This proof is just like the Gauss-lemma proof for Z.
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4. Dedekind-Mertens

As mentioned in the previous section, if f, g are polynomials in one vari-
able over any commutative ring with unity, Dedekind and Mertens inde-
pendently, proved the so-called (by Krull) Dedekind-Mertens Lemma. It
has been generalized by Prüfer and many others in diverse directions. The
readers can refer to [6] for a recent description of some beautiful gener-
alizations. The paper [4] which defines and studies something called the
Dedekind-Mertens number mentions the interesting history of Dedekind and
Mertens’s works. One form of the original lemma asserts that

c(f)deg(g)c(fg) = c(f)deg(g)c(f)c(g).

Here is a lovely, simple Gauss-lemma-like proof due to Coquand - who
champions the cause of constructive mathematics.

Coquand’s Proof of Dedekind-Mertens

Let A be a commutative ring with unity. Suppose f =
∑n

i=0 fiX
i, g =∑m

j=0 gjX
j and h = fg =

∑m+n
r=0 hrX

r in A[X]. Write the content ideals
c(f) = (f0, · · · , fn), c(g) = (g), · · · , gm) and c(h) = (h0, · · · , hm+n). We
may take the ring A to be Z[f0, · · · , fn, g0, · · · , gm] where the fi’s and
gj ’s can be regarded as indeterminates. We wish to prove c(f)m+1c(g) ⊆
c(f)mc(h) because the reverse inclusion is evident. Let F,G,H denote, re-
spectively, the abelian subgroup of A generated by the coefficients of f, g, h.
We wish to prove:

Fm+1G ⊆ FmH.

This will be proved by induction on m where it is obvious when m = 0.
Assume m > 0 and let Gm denote the additive subgroup of G generated by
g0, g1, · · · , gm−1. As usual, a symbol fk for k < 0 or k > n stands for 0.
Note

hr = fr−mgm +
∑
s<m

fr−sgs.

Therefore, ∑
s<m

fr−sgs = hr − fr−mgm ∈ H + Fgm

which gives, by the definition of Gm that

FGm ⊆ H + Fgm.
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So, inductively, F 2Gm ⊆ FH + F 2gm,

F 3Gm ⊆ F 2H + F 3gm

etc. Inductively, we obtain

FmGm ⊆ Fm−1H + Fmgm.

Therefore, for 0 ≤ i ≤ n, we have

fiF
mGm ⊆ fiF

m−1H + fiF
mgm ⊆ FmH + fiF

mgm.

On the other hand, since

figm = hi+m −
∑
s<m

fi+m−sgs ∈ H + fi+1Gm + · · ·+ fnGm.

This implies that for all 0 ≤ i ≤ n,

fiF
mGm ⊆ FmH + fi+1F

mGm + · · ·+ fnF
mGm.

Taking respectively i = n, n− 1, · · · etc., we have for all 0 ≤ i ≤ n that

fiF
mGm ⊆ FmH.

Hence Fm+1Gm ⊆ FmH which proves the assertion.

5. GCD Domains

As we saw, some versions of Gauss’s lemma involve the GCD of elements.
The notions of GCD and LCM can be generalized to any integral domain D

in an obvious manner but they do not always exist for two given elements
and there are also some surprises. Before starting a discussion, recall that
the GCD and LCM of a set of integers is defined only up to sign; so, in
reality, one should call it “A" GCD (but understand that it is unique up to
multiplication by a unit).

In an integral domain D, define “a" GCD of two non-zero elements a 6= b

in D to be an element d such that d|a, d|b and any c dividing both a and
b divides d also. It is clear that if c, d are two GCDs of a and b, then they
are associates as we are in a domain. A similar definition of “a" LCM is
easily given. The first fact which may not be all that surprising is that two
elements may not have a GCD at all (because there is no reason to expect
they should). But, a fact that is surprising is that two elements may have a
GCD but may not an LCM. Moreover, the opposite implication is not true.
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For instance, it is a little exercise to check that in the domain K[X2, X3]

for a field K, the elements X2, X3 have GCD 1 (and its associates) but
do not have any LCM. We discuss these aspects in some detail now. The
readers are invited to read the beautiful exposition by D D Anderson in
[1]. For other interesting exercises on GCD domains, readers may refer to
Kaplansky’s book [5].

We shall use the symbol (a, b) for the ideal generated by a and b and write
the qualifiers GCD, LCM etc. explicitly. Anderson uses the symbols [a, b]

and ]a, b[ for GCD and LCM respectively but these are not so common. We
first state the following obvious lemma:

Lemma. Let D be an integral domain, and let 0 6= a, b ∈ D. Then,
GCD(a, b) exists if, and only if, the ideal ∩{(c) : (c) ⊃ (a, b)} is principal;
LCM(a, b) exists if, and only if, the ideal

∑
{(c) : (c) ⊂ (a) ∩ (b)} is

principal.
In the respective cases, a generator of the corresponding principal ideal is,
respectively, a GCD and an LCM of a and b.
The statements generalize to a finite number of elements.

Proposition. Let D be an integral domain and let 0 6= a, b ∈ D.
(i) If LCM(a, b) exists, then GCD(a, b) also exists and they satisfy

GCD(a, b)LCM(a, b) = ab

up to units.
(ii) If c ∈ D, and if GCD(ca, cb) exists, then GCD(a, b) exists and

c.GCD(a, b) = GCD(ca, cb).

Consequently, if GCD(a, b) exists, say d, then the GCD of a/d and b/d

exists, and equals 1.
(iii) LCM(a, b) exists if, and only if, GCD(ca, cb) exists for all c ∈ D.
(iv) GCD(a, b) exists for all 0 6= a, b ∈ D if, and only if, LCM(c, d) exists
for all 0 6= c, d ∈ D.
Proof. We prove (i) first.
Suppose LCM(a, b) exists; say `. We want to show that d := ab/` equals
GCD(a, b). As a = d`/b and b = d`/a, it follows that d divides both a and
b. Now suppose that h is a common divisor of a and b. Now as a, b both
divide ab/h, ` divides ab/h which implies that h divides ab/` = d. Thus,
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we have proved (i).
The proof of (ii) is obvious, and we skip it.
Now, we prove (iii). We first show that if LCM(a, b) exists, then so does
LCM(ca, cb) for all c ∈ D. Note that both ca, cb divide cLCM(a, b). Now
suppose m is a common multiple of ca, cb. Then c divides m and both a, b

divide m/c. Thus LCM(a, b) divides m/c and so cLCM(a, b) divides m.
Thus LCM(ca, cb) exists, and equals cLCM(a, b). In particular, by (i),
GCD(ca, cb) exists for every c.
Now, we claim that if GCD(ca, cb) exists for every c, then LCM(a, b) exists
and equals ab/GCD(a, b). Clearly both a, b divide ab/GCD(a, b). Now,
suppose both a, b divide m. Then ab is a common divisor of ma and mb

and so ab divides GCD(ma,mb) = mGCD(a, b) by (ii) above. This implies
that ab/GCD(a, b) divides m. Thus (iii) follows.
Finally, (iv) is an immediate consequence of (i),(ii),(iii).

Definition. A GCD-domain is an integral domain D such that the equiva-
lent properties in (iv) of the proposition holds; that is, each pair of non-zero
elements has a GCD as well as an LCM. The nomenclature is due to I. Ka-
plansky.

Remarks.
(a) In a commutative ring that is not an integral domain, there is no relation
between the existence of an LCM of two elements and the existence of a
GCD. For example, in the ring K[X2, X3]/(X9, X10], an LCM of X5 and
X6 is X8 whereas these elements do not have a GCD.
(b) In contrast with the polynomial ring over a UFD, it is known that there
exist UFDs D such that D[[X]] is not a UFD. It is a fact that these power
series rings cannot be GCD-domains also. The proof of this needs other
characterizations of GCD domains that we do not go into here, and refer to
Anderson’s article.

Since UFDs are GCD domains, one can show certain domains such as
Z[
√
−d] (d ≥ 3), are not GCD domains and hence not UFDs by exhibiting

two elements which do not have an LCM. In a proposition below, we will
observe that GCD domains are integrally closed; ‘one-third’ of the domains
in the corollary below (namely, when −d ≡ 1 mod 4) are not even integrally
closed.
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Corollary. In each of the domains Z[
√
−d] (d ≥ 3) with d square-free, there

exist two elements a, b such that GCD(a, b) exists but LCM(a, b) does not
exist. In particular, Z[

√
−d] (d ≥ 3), is not a GCD domain and hence, is

not a UFD.
Proof. Here Z[

√
−d] = {a+ b

√
−d : a, b ∈ Z}.

Firstly, suppose that d + 1 is not a prime number. Let d + 1 = pk, where
p is a prime and k ≥ 2. Clearly a2 + db2 6= p for any a, b ∈ Z because the
left hand side is bigger than p if b 6= 0. If p = (a + b

√
−d)(u + v

√
−d)

in Z[
√
−d], then taking complex conjugates we see that u = a, v = −b.

Thus, p = a2 + db2, which is impossible as observed above. Therefore, p
is an irreducible element in Z[

√
−d]. Also p does not divide 1 +

√
−d be-

cause p(a + b
√
−d) = 1 +

√
−d gives pa = 1 which is impossible. Thus,

GCD(p, 1 +
√
−d) exists, and equals 1.

We shall show that GCD(pk, (1+
√
−d)k) does not exist. If it did, then by

the proposition, GCD(pk, (1+
√
−d)k) = k. As 1+

√
−d divides pk = 1+d,

both (1 +
√
−d)k, 1 +

√
−d divide k. Let k = (1 +

√
−d)(a + b

√
−d) =

(a− bd) + (a+ b)
√
−d. This gives a = −b and a− bd = a+ ad = k. Thus

apk = a(1 + d) = k which is a contradiction. In view of the proposition, it
follows that LCM(p, 1 +

√
−d) does not exist.

Suppose now that d ≥ 3 and d + 1 is a prime. Then d is. Let d + 4 = 2k,
for some k > 1. As above, one easily checks that 2 is irreducible and 2 does
not divide 2+

√
−d. Thus GCD(2, 2+

√
−d) exists and equals 1. We show

that GCD(2k, (2+
√
−d)k) does not exist. If it did, then as above, 2+

√
−d

divides k and which in turn implies that 4 + d divides k = (4 + d)/2 in Z,
a contradiction which shows that LCM(2, 2 +

√
−d) does not exist.

Remark. In the above proof, note that when d+1 = pk, p divides d+1 =

(1 +
√
−d)(1 −

√
−d) but p clearly does not divide either of 1 +

√
−d and

1 −
√
−d, showing that p, which is irreducible, is not prime. Similarly in

the second part of the proof, 2 divides d + 4 = (2 +
√
−d)(2 −

√
−d) but

does not divide either of them, which shows that 2 is not prime. This also
proves that Z[

√
−d] (d ≥ 3), is not a UFD.

Proposition. GCD domains are integrally closed.
Proof. Let D be a GCD domain, with quotient field K. Let a/b ∈ K
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satisfy
(a/b)n + an−1(a/b)

n−1 + · · ·+ a0 = 0

where ai ∈ D, a0 6= 0 and GCD(a, b) = 1. The last condition can be
assumed without loss of generality because we have by a proposition above
GCD(a/d, b/d) = 1 if GCD(a, b) = d in a GCD domain. So, we get

an + an−1a
n−1b+ an−2a

n−2b2 + · · ·+ a0b
n = 0.

Then b|an. But GCD(a, b) = 1 implies GCD(am, b) = 1 for all m ≥ 1 by
induction on m; indeed, if this is true for m, then any common divisor c of
am+1 and b divides am+1 and ab but GCD(am+1, ab) = aGCD(am, b) = a.
This shows that b|1; that is, it is a unit. Hence a/b ∈ D.

5.1. Gauss Lemma in GCD domains. In any GCD domain D, Gauss’s
lemma is valid. Indeed, if we define f ∈ D[X] to be primitive if GCD of its
coefficients is 1, then over a GCD domain D, the polynomial fg ∈ D[X] is
primitive if f, g are. This is an easy exercise - the usual proof for UFDs can
be adapted here. But, now we mention another version of Gauss’s lemma
that is valid over integrally closed domains. This version is the closest in
spirit to what Gauss actually stated in his article 42 - albeit, in the case of
Z and Q. The proof is an easy exercise (indeed, it is Ex.8, P.42 of [5]).

Gauss Lemma for Integrally closed domains. If D is an integrally
closed domain with quotient field K, and if f ∈ D[X] is a monic polynomial
such that f = gh with g, h ∈ K[X] monic, then g, h ∈ A[X].

6. Kaplansky’s conjecture

Over any commutative ring A with unity, one defines a polynomial f ∈ A[X]

to be Gaussian if c(f)c(g) = c(fg) holds for all polynomials g ∈ A[X]. One
calls A a Gaussian ring if every polynomial f ∈ A[X] is Gaussian. Several
papers in the last six decades have been written on possible characteriza-
tions of Gaussian rings or Gaussian polynomials. It is known that being
Gaussian is a local property. In particular, it was known for a long time that
if c(f) is locally principal, then f is Gaussian. Similarly, over a domain, it
was known that if c(f) is an invertible ideal, then f is Gaussian. Kaplansky
conjectured that the converse holds:
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Kaplansky’s Conjecture If A is a commutative ring with unity and
f ∈ A[X] is Gaussian, then the ideal c(f) is either invertible or locally
principal.

The authors of [3] mention that this was a question one of them heard in
the 1960’s from Kaplansky. In fact, this conjecture also appeared in the
PhD thesis of Kaplansky’s student H. Tsang in 1965 but has not appeared
in print. Many cases of the conjecture have been proved by Sarah Glaz and
others but it is not completely proved yet, along with other questions raised
by Glaz and others.
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PROBLEM SECTION

In Volume 91 (1-2) 2022 of The Mathematics Student, we had invited solu-

tions from the readers to the Problems 2, 3, 4, 5, 6, 8, 9 and 10 mentioned

in MS 90 (3-4) 2021, as well as solutions to the twelve new problems, till

April 20, 2022.

As regards to solutions to the eight Problems mentioned in MS 90 (3-4)

2021, we did not receive any solution to any of the eight problems. We

feel that several readers can provide solutions to Problems 2, 3, 4 and 5

and therefore we give one more opportunity to the readers to provide their

solutions to these problems until January 10, 2023. Solutions provided by

the proposers to Problems 6, 8, 9 and 10 are printed in this section.

As far as solutions to the twelve new problems mentioned in MS 91 (1-

2) 2022 are concerned, we received solutions from the readers to problems

2, 3, 6, 10 and 11. These solutions are being presented in this section.

We pose eight new problems in this section. We invite Solutions from

the readers to the Problems 2, 3, 4 and 5 of MS 90 (3-4) 2021, solutions to

the remaining seven problems viz. 1, 4, 5, 7, 8, 9, and 12 of MS 91 (1-2)

2022 and solutions to the eight new problems till January 10, 2023. Correct

solutions received from the readers by this date will be published in Volume

92 (1-2) 2023 of The Mathematics Student. This volume is scheduled to be

published in March 2023.

New Problems.

Dr. Anup Dixit, Institute of Mathematical Sciences, Chennai pro-

posed the following two problems.

MS 91 (3-4) 2022: Problem 1. Suppose an is a sequence of positive

integers such that
∞∑
n=1

sin(1/an)

log an

diverges. Show that for infinitely many n, lcm{a1, · · · , an} = lcm{a1, · · · , an+1}.

© Indian Mathematical Society, 2022 .
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MS 91 (3-4) 2022: Problem 2. Let {a1, a2, · · · , an} and {b1, b2, · · · , bn}
be two permutations of {1, 2, · · · , n}. Show that the set {a1b1, a2b2, · · · , anbn}
does not form a complete residue system modulo n.

Dr. Mohsen Soltanifar, University of Toronto, Canada proposed the

following two problems.

MS 91 (3-4) 2022: Problem 3. Let X be a real valued random variable

on the real line with finite mean. Assume for some −∞ < α <∞ we have:

E(min(X,α)) = E(max(X,α)).

Calculate the distribution of X.

MS 91 (3-4) 2022: Problem 4. Let X1, · · · , Xn be i.i.d random variables

with common uniform distribution on (0, 1). Let p, q > 0 and define a

random variable:

Sn(p, q) = (

n∏
i=1

Xp
i )

1
nq , (n ≥ 1).

Compute

lim
n→∞

Sn(p, q)

if it exists and find values of p, q for which it does.

Yathiraj Sharma, M. V. Sarada Vilas College, Mysuru, Karnataka

suggested the next problem.

MS 91 (3-4) 2022: Problem 5. Consider the sequence dn = 3n + 1.

Prove that the sum of the Legendre symbols (k/7) as k runs through divisors

of 12 (7d-4) is 0 whenever d 6= dn. Show further that for infinitely many

(but not all) n, the sum is not 0 as k runs over divisors of 12(7dn − 4).

Prof. Shpetim Rexhepi and Ilir Demiri, Mother Teresa University,

Skopje, North Macedonia proposed the following two problems.

MS 91 (3-4) 2022: Problem 6. Prove that

∫ ∞
0

u3du

e
4

√
15

4
u
− 1

=
4π4

225
.



PROBLEMS SECTION 219

MS 91 (3-4) 2022: Problem 7. For a> b>e, e-Euler number, prove

that
lnΓ(ba)

lnΓ(ab)
>
lnb

lna
.

Mr. Toyesh Prakash Sharma of Agra College, Agra suggested the

folowing problem.

MS 91 (3-4) 2022: Problem 8. If n > 0 and α is the positive root of

quadratic equation x2 − x− 1 = 0 then show that the following inequality

Fnα
Fn + Lnα

Ln ≥ 2Fn+1α
Fn+1

holds.

Further, obtain the above inequality using the convexity of a suitable

function where the Fibonacci numbers Fn and the Lucas numbers Ln satisfy

the conditiond.

Fn+2 = Fn+1 + Fn , F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln , L0 = 2, L1 = 1.

There was a mistake in Problem 1 of MS 91 (1-2) 2022. The correct

problem is produced here.

MS 91 (3-4) 2022: Problem 1. (Proposed by Demiri and Rexhepi)

Prove that

1∫
0

(
t
−1
n − t1−

1
n

)n−1
dt =

nn

(n+ 1)(n+ 1
2)(n+ 1

3)...(n+ 1
n−1)

where n ∈ N and n > 1.

Solutions to the Old Problems

MS 90 (1-2) 2021: Problem 2. (Proposed by Prof. B. Sury, ISI,

Bangalore)

Let f : [0, 1] → R be differentiable, and let f(0) = 0, f(1) = 1. Prove that

there exist t1, . . . , t2021 ∈ [0, 1] such that 2021 =
∑2021

i=1
1

f ′(ti)
.

Dr. Henry Ricardo, Westchester Area Math Circle, New York, USA

provided a solution to the problem as given below.
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Solution. The intermediate value theorem and continuity guarantee the

existence of ti, the smallest number in [0, 1] such that f(ti) = i/2021. If

we define t0 = 0 and t2021 = 1, we have 0 = t0 < t1 < t2 < · · · < t2020 <

t2021 = 1. For each interval (ti−1, ti), i = 1, 2, . . . , 2021, we may choose xi

such that

f ′(xi) =
f(ti)− f(ti−1)

ti − ti−1
by the mean value theorem. Then

f ′(xi) =
i

2021 −
i−1
2021

ti − ti−1
=

1

2021(ti − ti−1)
and

2021∑
i=1

1

f ′(ti)
=

2021∑
i=1

2021(ti − ti−1) = 2021

2021∑
i=1

(ti − ti−1) = 2021.

Comment: Clearly we can generalize this result, replacing 2021 by

any positive integer n.

MS 90 (3-4) 2021: Problem 6. (Proposed by Dr. Anup Dixit)

Let x1, x2, · · · , xn be distinct real numbers. Show that∑
1≤i≤n

∏
j 6=i

(
1− xixj
xi − xj

)
=

{
0 if n is even

1 if n is odd.

Solution. (By Dr. Anup Dixit)

We first show that the function

(i) f(x1, · · · , xn) :=
∑

1≤i≤n

∏
j 6=i

(
1− xixj
xi − xj

)
is a polynomial. Clearly, f is a symmetric function, i.e., swapping xi and

xj does not change f . Let

g(x1, · · · , xn) :=
∏

1≤i<j≤n
(xi − xj).

Then the function h := fg is a polynomial. Furthermore, g is an alter-

nating function, i.e., swapping xi and xj changes the sign of g. Since f

is symmetric, we deduce that h is an alternating polynomial. Alternating

polynomials in n-variables vanish on taking xi = xj for any distinct i, j.
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Thus, (xi − xj) divides h for any distinct i, j. Hence, g divides h implying

that h/g = f is a polynomial.

If yi := 1/xi, then note that

1− yiyj
yi − yj

=
1− xixj
xi − xj

.

Therefore,

f

(
1

x1
, · · · , 1

xn

)
= f(x1, · · · , xn) =⇒ f is a constant,

as we showed above that f is a polynomial.

To determine this constant, we evaluate f at xj = ζjn, where ζn is the

primitive n-th root of unity. The contribution to the summation in (i)

when j 6= n, n/2 is zero as the corresponding term has 1 − ζjnζn−jn = 0 in

the numerator. When n is odd, the term j = n gives

f(ζn, ζ
2
n, · · · , 1) =

∏
j 6=n

(
1− ζjn
1− ζjn

)
= 1.

When n is even, the terms for j = n/2, n need to be considered and we

obtain that

f(ζn, ζ
2
n, · · · , 1) =

∏
j 6=n/2

(
1− ζn/2n ζjn

ζ
n/2
n − ζjn

)
+
∏
j 6=n

(
1− ζjn
1− ζjn

)

= 1 +
∏
j 6=n/2

(
1 + ζjn

−1− ζjn

)
= 1 + (−1)n−1

= 0.

MS 90 (3-4) 2021: Problem 8. (Proposed by Dr. Anup Dixit)

Show that among any 4 distinct positive real numbers a1, a2, a3, a4, we

can find ai, aj such that ai > aj and

ai(
√

3− aj) < (
√

3aj − 1).

Solution. (By Dr. Anup Dixit)
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The inequality above is equivalent to showing that

0 <
ai − aj
1 + aiaj

<
1√
3
.

Define θi ∈ (0, π/2), such that

ai = tan θi.

Then, we have

0 <
ai − aj
1 + aiaj

<
1√
3
⇐⇒ 0 < tan(θi − θj) <

1√
3

⇐⇒ (θi − θj) <
π

6
.

Since θi ∈ (0, π/2) and there are 4 of them, by pigeon hole principle, there

exists θi, θj with the required property.

MS 90 (3-4) 2021: Problem 9. (Posed by Dr. Siddhi Pathak, Chennai

Math. Inst., Chennai)

Let a1, a2, · · · , a2021 be real numbers such that

2021∑
i=1

ai = 0,

2021∑
i=1

a2i = 1.

Let c := max
1≤i≤2021

ai and d := min
1≤i≤2021

ai. Show that

−1

2
≤ c d ≤ − 1

2021
.

Solution. (By Dr. Pathak)

Since
∑2021

i=1 ai = 0, c > 0 and d < 0. Also, as
∑2021

i=1 a
2
i = 1, c2+d2 ≤ 1.

Thus, by the AM-GM inequality,

−c d = |c| |d| ≤ c2 + d2

2
≤ 1

2
.

Hence, cd ≥ −1/2.

Let P := {i : ai ≥ 0} and N := {j : aj < 0}. Then we have that∑
i∈P

ai = −
∑
j∈N

aj .
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Furthermore, ai ≤ c for all i ∈ P and −aj ≤ −d for all j ∈ N . Therefore,

we deduce that ∑
i∈P

a2i ≤ c
∑
i∈P

ai = c
∑
j∈N

(−aj) ≤ −c d |N |.

Similarly, we have∑
j∈N

a2j ≤ −d
∑
j∈N

(−aj) = −d
∑
i∈P

ai ≤ −c d |P |.

Adding these two inequalities gives

1 =

n∑
i=1

a2i ≤ −c d(|P |+ |N |) = −2021 c d.

Hence,

c d ≤ − 1

2021
.

MS 90 (3-4) 2021: Problem 10. (Posed by Dr. Siddhi Pathak)

Fix any positive integer m > 1. Show that if f : (0,∞) → (0,∞)

satisfies

f(x) f(y) = mf (x+ yf(x)) for all x, y > 0,

then f(x) = m for all x > 0.

Solution. (By Dr. Pathak)

(i) We first prove that any f satisfying the given condition must be

non-decreasing. If not, then there exist positive real numbers x and

z with x < z but f(x) > f(z). Now let y := (z − x)/(f(x)− f(z)).

Note that y > 0 and x+ yf(x) = z + yf(z). Thus,

f(z) f(y) = mf (z + yf(z)) = mf (x+ yf(x)) = f(x) f(y),

implying that f(x) = f(z), which is a contradiction.

(ii) We now claim that f is not strictly increasing. Indeed, if f were to

be strictly increasing, then f would be injective. Taking one of the

arguments to be 1 in the given condition, we get

f(x) f(1) = mf (x+ f(x)) = mf (1 + xf(1)) .
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Since f is injective, we obtain that

x+ f(x) = 1 + xf(1) =⇒ f(x) = 1 + c x, with c = f(1)− 1 6= 0.

Substituting this in the given condition leads to(
1 + cx

)(
1 + cy

)
= m

(
1 + c

(
x+ y(1 + cx)

)
=⇒ 1 + cx+ cy + c2xy = m

(
1 + cx+ cy + c2xy

)
for all x, y > 0. Since f(x), f(y) 6= 0 and m > 1, this is a con-

tradiction.

(iii) Next, we demonstrate the existence of a y0 ∈ (0,∞) such that

f(y0) = m. Since f is not strictly increasing, there exist x, z with

x < z such that f(x) = f(z). As f is non-decreasing, f(w) = f(x)

for all x ≤ w ≤ z. Choose y0 to be any real number satisfying

0 < y0 < (z − x)/f(x) so that x < x+ (y0 f(x)) < z. Thus,

f(x) = f(x+ y0f(x)) =
1

m
f(x) f(y0) =⇒ f(y0) = m.

(iv) Finally, we construct an infinite sequence, {yn} with yn → ∞ and

f(yn) = m. Since f is non-decreasing, this establishes that f is

identically equal to m. From above, we have,

m2 = f(y0)
2 = mf(y0 + (y0f(y0))) = mf((m+ 1)y0)

=⇒ f((m+ 1)y0) = m.

Iterating the above process gives

f((m+ 1)n y0) = m for all positive integers n ≥ 1,

establishing the claim.

�

MS 91 (1-2) 2022: Problem 2. (Proposed by Ilir Demiri and Prof.

Shpetim Rexhepi, Skopje, North Macedonia)

For the beta function, prove with usual meaning that

∞∑
n=0

(B(2, n)−B(3, n)) =
1

2
where n ∈ N.

Dr. Henry Ricardo gave the following solution to this problem.
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Solution. Starting the summation with 1 instead of 0, we have

∞∑
n=1

(B(2, n)−B(3, n)) =
∞∑
n=1

{∫ 1

0
t(1− t)n−1dt−

∫ 1

0
t2(1− t)n−1dt

}

=
∞∑
n=1

∫ 1

0
t(1− t)ndt

=

∫ 1

0
t ·
∞∑
n=1

(1− t)ndt

=

∫ 1

0
t · 1− t

t
dt =

∫ 1

0
(1− t)dt =

1

2
,

where the interchange of summation and integration is allowed for power

series within the interval of convergence. If the summation starts with

n = 0, the sum becomes 1.

Mr. Anantha Krishna, Indian Inst. of Technology Bhubaneswar

also provided a correct solution to the above problem

MS 91 (1-2) : Problem 3. (Proposed by Ilir Demiri and Prof. Shpetim

Rexhepi, Skopje, North Macedonia)

For the beta function, prove with usual meaning that

B(k, n) =
(k − 1)B(k − 1, n)

n+ k − 1

for k, n ∈ N.

Mr. Anantha Krishna gave a correct solution to this problem. The

solution is presented below.

Solution.

Claim : For k, n ∈ N,

B(k, n) =
(n− 1)!(k − 1)!

(n+ k − 1)!
.

The above claim directly implies that the equation

B(k, n) =
(k − 1)B(k − 1, n)

n+ k − 1
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is true. For the case k = 1 we see that

B(1, n) =

∫ 1

0
xn−1dx =

1

n
=

(n− 1)!(1− 1)!

(n+ 1− 1)!
.

We use induction on k. Assume that the claim is true for all natural

numbers less than k. Using integration by parts

B(k, n) =

∫ 1

0
xk−1(1−x)n−1dx = xk−1

−(1− x)n

n

∣∣∣∣∣
1

0

+
k − 1

n

∫ 1

0
xk−2(1−x)ndx,

it follows that

B(k, n) =
k − 1

n
B(k − 1, n+ 1).

By inductive hypothesis,

B(k, n) =
k − 1

n

(k − 2)!(n)!

(n+ k − 1)!
=

(n− 1)!(k − 1)!

(n+ k − 1)!
.

So our claim is verified.

Dr. Henry Ricardo also provided a correct solution to this problem.

MS 91 (1-2) 2022: Problem 6. (Proposed by Prof. B. Sury)

Let f : [0, 1] → R be differentiable and satisfy f(0) = f ′(0) = f ′(1) = 0.

Then, show that there exists t ∈ (0, 1) such that f(t) = tf ′(t).

Dr. Henry Ricardo provided two solutions to this problem. One of

the two solutions is given below.

Solution.

Consider the function g : [0, 1]→ R defined by

g(x) =


f(x)
x if x ∈ (0, 1]

0 if x = 0.
(1)

It is obvious that g is continuous on [0, 1] and differentiable on (0, 1]. Fur-

thermore, from (1), we see that

g′(x) = −f(x)

x2
+
f ′(x)

x
= −g(x)

x
+
f ′(x)

x
(2)

for all x ∈ (0, 1].

Now from (1), we see that g(0) = 0. If g(1) = 0, then by Rolle’s

theorem there exists an η ∈ (0, 1) such that g′(η) = 0, and the desired

result is established. If g(1) 6= 0, then either g(1) > 0 or g(1) < 0. Suppose

g(1) > 0. Then from (2) we have g′(1) = −g(1) < 0. Since g is continuous

and g′(1) < 0, there exists a point x1 in (0, 1) such that g(x1) > g(1).
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Therefore we have g(0) < g(1) < g(x1), and by the Intermediate Value

theorem there exists x0 ∈ (0, x1) such that g(x0) = g(1). Applying Rolle’s

theorem to the function g on the interval [x0, 1], we have g′(η) = 0 for some

η ∈ (0, 1). A similar argument applies if g(1) < 0, and now the proof of the

problem statement is complete.

The second solution is given by using Flett’s mean value theorem (The

Mathematical Gazette, Vol. 42, No. 339, pp. 38-39). This theorem states

that if f : [a, b]→ R is differentiable on [a, b] and f ′(a) = f ′(b), then there

exists a point η ∈ (a, b) such that f(η)−f(a) = (η−a)f ′(η). Applying this

to the given function on (0, 1), we get the desired result.

MS 91 (1-2) 2022: Problem 10.(Posed by Dr. Anup Dixit)

For a complex number s = σ+ it with σ > 1, let ζ(s) =
∑∞

n=1 1/ns denote

the Riemann zeta function. Show that for a fixed σ > 1,

ζ(2σ)

ζ(σ)
≤ |ζ(σ + it)| ≤ ζ(σ).

Dr. Henry Ricardo provided provided two solutions to this problem.

The solutions are presented below.

Solution 1.

The result |1/ζ(s)| ≤ ζ(σ)/ζ(2σ) is known for σ > 1. (See, for exam-

ple, p. 66 of The Prime Number Theorem by G. J. O. Jameson (London

Mathematical Society, 2003).) Using this, we have

ζ(2σ)

ζ(σ)
≤ |ζ(σ + it)| =

∣∣∣∣∣
∞∑
n=1

1

ns

∣∣∣∣∣ ≤
∞∑
n=1

1

|ns|
=

∞∑
n=1

1

nσ
= ζ(σ).

Solution 2.

First of all, we see that

|ζ(σ + it| ≤
∞∑
n=1

1

|nσ+it|
=
∞∑
n+1

1

|nσ||nit|
=
∞∑
n=1

1

nσ
= ζ(σ)

since nσ > 0 and |nit| = |eit lnn| = 1

Next, we use Euler’s identity, a well-known product representation of

the Riemann zeta function:

ζ(s) =
∏
p

1

1− p−s
,
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where Re s > 1 and the product extends over all prime numbers p. The

product is absolutely convergent for Re s > 1.

By Euler’s identity we have

ζ(2σ)

ζ(σ)
=

∏
p

1
1−p−2σ∏

p
1

1−p−σ
=
∏
p

p2σ

(pσ − 1)(pσ + 1)
·p
σ − 1

pσ
=
∏
p

pσ

pσ + 1
=
∏
p

1

1 + p−σ
.

Estimating the denominator of Euler’s product for ζ(s), we see that

|1−p−s| = |1−p−σ−it| ≤ 1+|p−σ||p−it| = 1+p−σ, or
1

|1− p−s|
≥ 1

1 + p−σ
.

Now, to complete the proof, we use the last inequality to establish that

|ζ(σ + it| = |ζ(s)| =
∏
p

1

|1− p−s|
≥
∏
p

1

1 + p−σ
=
ζ(2σ)

ζ(σ)
.

MS 91 (1-2) 2022 : Problem 11.(Posed by Dr. Siddhi Pathak, Chennai

Mathematical Institute, Chennai.)

Fix an integer k ≥ 2. A positive integer n is said to be k-free if it is not

divisible by pk for any prime p. Evaluate the sum∑
n≥1,

n is 4 free

1

n2
.

Mr. Ritesh Dwivedi, Prayagraj, U. P. gave a correct solution to the

problem. The solution is presented below.

Solution: Recall that the Riemann Zeta function ζ is defined as

ζ(s) =
∑
n≥1

1

ns
.

Also by Euler’s product formula we have

1

ζ(s)
=
∏
p∈P

(1− 1

ps
),

where P denotes the set of all primes.

Let k, r ≥ 2 be positive integers. We prove in general that∑
n≥1,

n is k free

1

nr
=

ζ(r)

ζ(kr)
.

We have
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∑
n≥1,

n is k free

1

nr
=
∏
p∈P

(1 +
1

pr
+

1

p2r
+ · · ·+ 1

p(k−1)r
).

=
∏
p∈P

(1− 1
pkr

)

(1− 1
pr )

.

=
ζ(r)

ζ(kr)
.

Now putting r = 2 and k = 4 in above equation we get the required sum

as
π2/6

π8/9450
=

1575

π6
.
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