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A COMMON FIXED POINT THEOREM IN
BICOMPLEX VALUED b-METRIC SPACES

SANJIB KUMAR DATTA, DIPANKAR PAL, RAKESH SARKAR AND
ARGHYATANU MANNA

(Received : 26 - 06 - 2020 ; Revised : 07 - 01 - 2021)

Abstract. The main purpose of this paper is to investigate a common
fixed point theorem in bicomplex valued b-metric spaces for four maps.
Some concepts of Choi et al.[12] and Jebril et al.[17] are used here.

1. Introduction

Segre’s[28] paper, published in 1892 made a pioneering attempt in the
development of special algebras. He conceptualized commutative general-
ization of complex numbers as bicomplex numbers, tricomplex numbers,
etc. as elements of an infinite set of algebras. Unfortunately this significant
work of Segre failed to earn the attention of the mathematicians for almost
a century. However, recently a renewed interest in this subject contributes
a lot in the different fields of mathematical sciences and other branches of
science and technology.

Price[24] developed the bicomplex algebra and function theory. In this
field an impressive body of work has been developed by different researchers
during the last few years. One can see some of the attempts in {cf.[3]- [5],[7]-
[9],[13],[15],[16],[18]-[25],[29] & [30]}.

Azam et al.[1] introduced a concept of complex valued metric space
and established a common fixed point theorem for a pair of self contracting
mappings. Rouzkard & Imdad[26] generalized the result obtained by Azam
et al.[1] and they proved another common fixed point theorem satisfying
some rational inequality in complex valued metric space. Banach contrac-
tion principle is the main tool to prove the fixed point theorems. It states

2010 Mathematics Subject Classification: 47H09, 47H10, 30G35, 46N99, 54H25
Key words and phrases: Bicomplex valued metric space, bicomplex valued b-metric
space, common fixed point, contractive type mapping
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that "If (X, d) be a complete metric space and T : X → X is a self-map
then d(Tx, Ty) ≤ ad(x, y) where 0 ≤ a < 1, then T has a unique fixed
point in X. Banach proved his theory in 1922. Choudhury et al.{[10]&[11]}
proved some fixed point results in partially ordered complex valued met-
ric spaces for rational type expressions. Also one can see the attempts in
{cf.[2],[6],[31]&[32]}.

Rao et al.[27] introduced the concept of complex-valued b-metric spaces
and proved a common fixed point theorem in complex valued b-metric
spaces.

We denote the set of real, complex and bicomplex numbers respectively
as C0,C1 and C2.

Let z1, z2 ∈ C1 be any two complex numbers, then the partial order
relation - on C1 is defined as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2) and Im(z1) ≤ Im(z2),

i.e., z1 - z2 if one of the following conditions is satisfied:

(1) Re(z1) = Re(z2), Im(z1) = Im(z2),

(2) Re(z1) < Re(z2), Im(z1) = Im(z2),

(3) Re(z1) = Re(z2), Im(z1) < Im(z2) and

(4) Re(z1) < Re(z2), Im(z1) < Im(z2).

In particular, we can say z1 � z2 if z1 - z2 and z1 6= z2 i.e. one of (2), (3)
and (4) is satisfied and z1 ≺ z2 if only (4) is satisfied. We can easily check
the following fundamental properties of partial order relation - on C1:

1. If 0 - z1 � z2, then |z1| < |z2| ,
2. If z1 - z2, z2 ≺ z3then z1 ≺ z3 and
3. Ifz1 - z2 and λ > 0 is a real number then λz1 - λz2.
Segre[28] defined the bicomplex number as:

ξ = a1 + a2i1 + a3i2 + a4i1i2

where a1, a2, a3, a4 ∈ C0, and the independent units i1, i2 are such that
i21 = i22 = −1 and i1i2 = i2i1. We denote i1i2 = j , which is known as the
hyperbolic unit and such that j2 = 1, i1j = ji1 = −i2, i2j = ji2 = −i1.
Also the set of bicomplex numbers C2 is defined as:

C2 = {ξ : ξ = a1 + a2i1 + a3i2 + a4i1i2, a1, a2, a3, a4 ∈ C0}
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i.e.,
C2 = {ξ : ξ = z1 + i2z2, z1, z2 ∈ C1} .

where z1 = a1 + a2i1 ∈ C1 and z2 = a3 + a4i1 ∈ C1.

If ξ = z1 + i2z2 and η = w1 + i2w2 be any two bicomplex numbers then
the sum is

ξ ± η = (z1 + i2z2)± (w1 + i2w2) = (z1 ± w1) + i2 (z2 ± w2)

and the product is

ξ.η = (z1 + i2z2) . (w1 + i2w2) = (z1w1 − z2w2) + i2 (z1w2 + z2w1) .

There are four idempotent elements in C2, they are 0, 1, e1 = 1+i1i2
2

and e2 = 1−i1i2
2 out of which e1 and e2 are nontrivial such that e1 + e2 = 1

and e1e2 = 0. Every bicomplex number z1+ i2z2 can uniquely be expressed
as the combination of e1 and e2, namely

ξ = z1 + i2z2 = (z1 − i1z2) e1 + (z1 + i1z2) e2.

This representation of ξ is known as the idempotent representation of bi-
complex number and the complex coefficients ξ1 = (z1 − i1z2) and ξ2 =

(z1 + i1z2) are known as idempotent components of the bicomplex number
ξ.

An element ξ = z1 + i2z2 ∈ C2 is said to be invertible if there ex-
ists another element η in C2 such that ξη = 1 and η is said to be the
inverse (multiplicative) of ξ. Consequently ξ is said to be the inverse (mul-
tiplicative) of η. An element which has an inverse in C2 is said to be the
nonsingular element of C2 and an element which does not have an inverse
in C2 is said to be the singular element of C2.

An element ξ = z1+ i2z2 ∈ C2 is nonsingular if and only if
∣∣z21 + z22

∣∣ 6= 0

and singular if and only if
∣∣z21 + z22

∣∣ = 0. The inverse of ξ is defined as

ξ−1 = η =
z1 − i2z2
z21 + z22

.

Zero is the only element in C0 which does not have any multiplicative
inverse and in C1, 0 = 0 + i0 is the only element which does not have any
multiplicative inverse. We denote the set of singular elements of C0 and C1

by O0 and O1 respectively. But there are more than one element in C2

which do not have any multiplicative inverse; we denote this set by O2 and
clearly O0 = O1 ⊂ O2.
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The norm ‖·‖ of C2 is a positive real valued function and ‖·‖ : C2 → C+
0

is defined by

‖ξ‖ = ‖z1 + i2z2‖ =
{
|z1|2 + |z2|2

} 1
2

=

[
|(z1 − i1z2)|2 + |(z1 + i1z2)|2

2

] 1
2

=
(
a21 + a22 + a23 + a24

) 1
2 ,

where ξ = a1 + a2i1 + a3i2 + a4i1i2 = z1 + i2z2 ∈ C2.
The linear space C2 with respect to defined norm is a norm linear space,

also C2 is complete; therefore C2 is the Banach space. If ξ, η ∈ C2 then
‖ξη‖ ≤

√
2 ‖ξ‖ ‖η‖ holds instead of ‖ξη‖ ≤ ‖ξ‖ ‖η‖, therefore C2 is not

the Banach algebra.
Now we define the partial order relation -i2 on C2 as follows:
Let C2 be the set of bicomplex numbers and ξ = z1 + i2z2, η = w1 +

i2w2 ∈ C2 then ξ -i2 η if and only if z1 - w1 and z2 - w2,

i.e., ξ -i2 η if one of the following conditions is satisfied:

(1) z1 = w1, z2 = w2,

(2) z1 ≺ w1, z2 = w2,

(3) z1 = w1, z2 ≺ w2 and

(4) z1 ≺ w1, z2 ≺ w2.

In particular we can write ξ �i2 η if ξ -i2 η and ξ 6= η i.e. one of (2),
(3) and (4) is satisfied and we will write ξ ≺i2 η if only (4) is satisfied.

For any two bicomplex numbers ξ, η ∈ C2 we can verify the followings:
(i) ξ -i2 η ⇒ ‖ξ‖ ≤ ‖η‖ ,
(ii) ‖ξ + η‖ ≤ ‖ξ‖+ ‖η‖ ,
(iii) ‖aξ‖ = a ‖ξ‖ , where a is a non negative real number,
(iv) ‖ξη‖ ≤

√
2 ‖ξ‖ ‖η‖ and the equality holds only when at least

one of ξ and η is equal to zero,
(v)

∥∥ξ−1∥∥ = ‖ξ‖−1 if ξ is a non-singular bicomplex number with
0 ≺ ξ,

(vi)
∥∥∥ ξη∥∥∥ = ‖ξ‖

‖η‖ , if η is a non-singular bicomplex number.
Choi et al.[12] defined the bicomplex valued metric space as follows:

Definition 1.1. [12] Let X be a nonempty set. Suppose the mapping
d : X ×X → C2 satisfies the following conditions:
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1. 0 -i2 d(x, y) for all x, y ∈ X,
2. d(x, y) = 0 if and only if x = y,

3. d(x, y) = d(y, x) for all x, y ∈ X and
4. d(x, y) -i2 d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a bicomplex valued metric on X and (X, d) is called

the bicomplex valued metric space.

Definition 1.2. [14]Let X be a nonempty set and let s ≥ 1. Suppose the
mapping d : X ×X → C2 satisfies the following conditions:

1. 0 -i2 d(x, y) for all x, y ∈ X,
2. d(x, y) = 0 if and only if x = y,

3. d(x, y) = d(y, x) for all x, y ∈ X and
4. d(x, y) -i2 s [d(x, z) + d(z, y)] for all x, y, z ∈ X.
Then d is called a bicomplex valued b-metric on X and (X, d) is called

the bicomplex valued b-metric space.

Definition 1.3. (i). Let A ⊆ X and a ∈ A is said to be an interior point
of A if there exists 0 ≺i2 r ∈ C2 such that

B(a, r) = {x ∈ X : d(a, x) ≺i2 r} ⊆ A

and the subset A ⊆ X is said to be an open set if each point of A is an
interior point of A.

(ii). A point a ∈ X is said to be a limit point of A if for all 0 ≺i2 r ∈ C2

such that
B(a, r) ∩ {A− {a}} 6= φ

and the subset A ⊆ X is said to be a closed set if all the limit points of A
belong to A.

(iii). The family

F = {B(a, r) : a ∈ X, 0 ≺i2 r ∈ C2}

is a sub-basis for a Hausdorff topology τ on X.

Definition 1.4. For a bicomplex valued metric space (X, d)

(i). A sequence {xn} in X is said to be a convergent sequence and
converges to a point x if for any 0 ≺i2 r ∈ C2 there is a natural number
n0 ∈ N such that d(xn, x) ≺i2 r, for all n > n0 and we write lim

n→∞
xn = x or

xn → x as n→∞.
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(ii). A sequence {xn} in X is said to be a Cauchy sequence in (X, d)

if for any 0 ≺i2 r ∈ C2 there is a natural number n0 ∈ N such that
d(xn, xn+m) ≺i2 r, for all m,n ∈ N and n > n0.

(iii). If every Cauchy sequence in X is convergent in X then (X, d) is
said to be a complete bicomplex valued metric space.

Definition 1.5. Let S, T : X → X be two self-mappings then, S and T are
said to be weakly compatible if STx = TSx whenever Sx = Tx.

Definition 1.6. Let C2 be the set of bicomplex numbers, then the max

function on C2 for the patial order relation -i2 is defined by:
(1). max {ξ, η} = η if and only if ξ -i2 η,
(2). ξ -i2 max {η, ζ} implies ξ -i2 η or ξ -i2 ζ.

From above definition we can say that if -i2be the partial order relation
on C2 and ξ1, ξ1, ξ1, .... ∈ C2 then

(i). If ξ1 -i2 max {ξ2, ξ3} then ξ1 -i2 ξ2 if ξ3 -i2 ξ2;
(ii). If ξ1 -i2 max {ξ2, ξ3, ξ4} then ξ1 -i2 ξ2 if max {ξ3, ξ4} -i2 ξ2;
(iii). If ξ1 -i2 max {ξ2, ξ3, ξ4, ξ5} then ξ1 -i2 ξ2 if max {ξ3, ξ4, ξ5} -i2 ξ2

and so on.
In this paper we use the concept of bicomplex valued b-metric space and

prove a common fixed point theorem in bicomplex valued b-metric spaces.

2. The Proofs

In this section we present some lemmas which are needed in the sequel.

Lemma 2.1. Let (X, d) be a bicomplex valued metric space and {xn} a se-
quence in X.Then {xn} converges to a point x if and only if lim

n→∞
d(xn, x) =

0.

Proof. Let {xn} be a convergent sequence and converges to a point x and
let ε > 0 be any real number. Suppose

r =
ε

2
+ i1

ε

2
+ i2

ε

2
+ i1i2

ε

2
.

Then clearly 0 ≺i2 r ∈ C2 and for this r there is a natural number
n0 ∈ N such that d(xn, x) ≺i2 r for all n > n0.

Therefore,
‖d(xn, x)‖ < ‖r‖ = ε ∀ n > n0,
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which implies that
lim
n→∞

‖d(xn, x)‖ = 0

Conversely let lim
n→∞

‖d(xn, x)‖ = 0.Then for 0 ≺i2 r ∈ C2, there exists
a real ε > 0 such that for all ξ ∈ C2,

‖ξ‖ < ε⇒ ξ ≺i2 r.

Then for this ε > 0 there exists a natural number n0 ∈ N such that

‖d(xn, x)‖ < ε ∀ n > n0.

Therefore,
d(xn, x) ≺i2 r ∀ n > n0.

Hence {xn} converges to a point x. �

Lemma 2.2. Let (X, d) be a bicomplex valued metric space and {xn} be
a sequence in X. Then {xn} is a Cauchy sequence in X if and only if
lim
n→∞

d(xn, xn+m) = 0.

Proof. Let {xn} be a Cauchy sequence in X and let ε > 0 be any real
number. Suppose

r =
ε

2
+ i1

ε

2
+ i2

ε

2
+ i1i2

ε

2
.

Then clearly 0 ≺i2 r ∈ C2 and for this r there is a natural number n0 ∈ N
such that d(xn, xn+m) ≺i2 r for all n > n0.

Therefore,
‖d(xn, xn+m)‖ < ‖r‖ = ε ∀ n > n0,

which implies that

lim
n→∞

‖d(xn, xn+m)‖ = 0

Conversely let lim
n→∞

‖d(xn, xn+m)‖ = 0.Then for 0 ≺i2 r ∈ C2, there
exists a real ε > 0, such that for all ξ ∈ C2,

‖ξ‖ < ε⇒ ξ ≺i2 r.

Then for this ε > 0 there exists a natural number n0 ∈ N such that

‖d(xn, xn+m)‖ < ε ∀ n > n0.

Therefore,
d(xn, xn+m) ≺i2 r ∀ n > n0.

Hence {xn} is a Cauchy sequence. �
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In this section we prove a fixed point theorem on bicomplex valued
b-metric space for a pair of self contracting mappings.

Theorem 2.3. Let (X, d) be a complete bicomplex valued b-metric space
with the coefficient s ≥ 1. Let S, T, f, g : X → X be mappings such that

S (X) ⊆ g (X) and T (X) ⊆ f (X) (2.1)

also satisfying the condition

d (Sx, Ty) -i2

amax {d (fx, gy) , d (fx, Sx) , d (gy, Ty) , d (fx, Ty) , d (gy, Sx)} (2.2)

for all x, y ∈ X, where 0 ≤ a < 1
s2+s

. Suppose the pairs {S, f} and {T, g}
be weakly compatible and T (X) be a closed subspace of X.Then S, T, f and
g have a unique common fixed point.

Proof. Since a < 1
s2+s

, then 0 ≤ a < 1.

Let {xn} and {yn} be two sequences in X such that

y2n = Sx2n = gx2n+1, y2n+1 = Tx2n+1 = fx2n+2, n = 0, 1, 2, ...,

where x0 is an arbitrary fixed point in X.
Therefore by using (2.2) we obtain that

d (y2n, y2n+1) = d (Sx2n, Tx2n+1)

-i2 amax

{
d (fx2n, gx2n+1) , d (fx2n, Sx2n) , d (gx2n+1, Tx2n+1) ,

d (fx2n, Tx2n+1) , d (gx2n+1, Sx2n)

}

-i2 amax

{
d (y2n−1, y2n) , d (y2n−1, y2n) , d (y2n, y2n+1) ,

d (y2n−1, y2n+1) , d (y2n, y2n)

}

-i2 amax

{
d (y2n−1, y2n) , d (y2n, y2n+1) ,

s [d (y2n−1, y2n) + d (y2n, y2n+1)]

}
. (2.3)

Now if y2n−1 = y2n for some n then from (2.3) we get that

d (y2n, y2n+1) -i2 sa d (y2n, y2n+1)

i.e., d (y2n, y2n+1) = 0⇒ y2n = y2n+1.

Continuing this process we can show that y2n−1 = y2n = y2n+1 = ...
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Therefore {yn} is a Cauchy sequence. Again if yn 6= yn+1 for all n then
(2.3) can be written as

d2n -i2 amax {d2n−1, d2n, s [d2n−1 + d2n]} , (2.4)

where d2n = d (y2n, y2n+1) . Now if amax {d2n−1, d2n, s [d2n−1 + d2n]} = d2n

then d2n -i2 ad2n, which is not true, as 0 ≤ a < 1. Therefore from (2.4)

we get that d2n -i2 amax {d2n−1, s [d2n−1 + d2n]} ⇒ d2n -i2 γd2n−1 for all
n ∈ N, where γ = max

{
a, sa

1−sa

}
. Similarly, we can show that d2n−1 -i2

γd2n−2 for all n ∈ N and therefore

dn -i2 γdn−1 for all n ∈ N

i.e., ‖dn‖ ≤ γ ‖dn−1‖ ≤ γ2 ‖dn−2‖ ≤ ........ ≤ γn ‖d0‖

i.e., ‖d (yn, yn+1)‖ ≤ γn ‖d (y0, y1)‖ for all n = 1, 2, 3, ... (2.5)

Since γ = max
{
a, sa

1−sa

}
,

then sγ =


sa < s

[
1

s2+s

]
= 1

s+1 ≤
1
2 < 1 if γ = a

s sa
1−sa < s

[
1

s+1

1− 1
s+1

]
= 1 if γ = sa

1−sa .
.

Therefore in both the cases sγ < 1.

Then for any two positive integers m,n with m > n and sγ < 1 we have

d (yn, ym) -i2 s [d (yn, yn+1) + d (yn+1, ym)] .

Hence

‖d (yn, ym)‖ ≤ s ‖d (yn, yn+1)‖+ s ‖d (yn+1, ym)‖

≤ s ‖d (yn, yn+1)‖+ s2 ‖d (yn+1, yn+2)‖+ s2 ‖d (yn+2, ym)‖

≤

{
s ‖d (yn, yn+1)‖+ s2 ‖d (yn+1, yn+2)‖+
s3 ‖d (yn+2, yn+3)‖+ s3 ‖d (yn+3, ym)‖

}
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i.e., ‖d (yn, ym)‖

≤

{
s ‖d (yn, yn+1)‖+ s2 ‖d (yn+1, yn+2)‖+

s3 ‖d (yn+2, yn+3)‖+ .....+ sm−n−1 ‖d (ym−1, ym)‖

}
i.e., ‖d (yn, ym)‖

≤

{
s ‖d (yn, yn+1)‖+ s2 ‖d (yn+1, yn+2)‖+

s3 ‖d (yn+2, yn+3)‖+ .....+ sm−n ‖d (ym−1, ym)‖

}
, as s ≥ 1.

Therefore by using (2.5) we obtain that

‖d (yn, ym)‖ ≤{
sγn ‖d (y0, y1)‖+ s2γn+1 ‖d (y0, y1)‖+ s3γn+2 ‖d (y0, y1)‖+

.....+ sm−nγm−1 ‖d (y0, y1)‖

}

i.e., ‖d (yn, ym)‖ ≤
m−n∑
i=1

siγi+n−1 ‖d (y0, y1)‖

i.e., ‖d (yn, ym)‖ ≤
m−n∑
i=1

si+n−1γi+n−1 ‖d (y0, y1)‖ , as s ≥ 1

i.e., ‖d (yn, ym)‖ ≤
m−1∑
j=n

sjγj ‖d (y0, y1)‖

i.e., ‖d (yn, ym)‖ ≤
∞∑
j=n

(sγ)j ‖d (y0, y1)‖

i.e., ‖d (yn, ym)‖ ≤
(sγ)n

1− sγ
‖d (y0, y1)‖ .

Since (sγ)n

1−sγ −→ 0 as n −→∞, then for any ε > 0 there exists a positive
integer n0 such that ‖d (yn, ym)‖ < ε for all m,n > n0.Therefore {yn} is
a Cauchy sequence in X. Also X is a complete bicomplex valued b-metric
space. Hence there exists z ∈ X such that lim

n−→∞
Sx2n = lim

n−→∞
gx2n+1 =

lim
n−→∞

Tx2n+1 = lim
n−→∞

fx2n+2 = z. Again T (X) is a closed subspace of X,
therefore z ∈ T (X) .

Since, T (X) ⊆ f (X), then there exists some u ∈ X such that z = fu.

Now we show that Su = z.
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We have

d (Su, z) -i2 s [d (Su, Tx2n+1) + d (Tx2n+1, z)]

i.e.,
1

s
d (Su, z) -i2

amax

{
d (fu, gx2n+1) , d (fu, Su) , d (gx2n+1, Tx2n+1) ,

d (fu, Tx2n+1) , d (gx2n+1, Su)

}
+ d (Tx2n+1, z)

i.e.,
1

s
d (Su, z) -i2

amax

{
d (z, y2n) , d (z, Su) , d (y2n, y2n+1) ,

d (z, y2n+1) , d (y2n, Su)

}
+ d (y2n+1, z)

i.e.,
1

s
‖d (Su, z)‖ ≤

amax

{
‖d (z, y2n)‖ , ‖d (z, Su)‖ , ‖d (y2n, y2n+1)‖ ,

‖d (z, y2n+1)‖ , ‖d (y2n, Su)‖

}
+ ‖d (y2n+1, z)‖

Taking limit as n→∞ we get that
1

s
‖d (Su, z)‖ ≤ amax {‖d (z, Su)‖ , s ‖d (z, Su)‖}

i.e.,
1

s
‖d (Su, z)‖ ≤ as ‖d (z, Su)‖

i.e., ‖d (Su, z)‖ ≤ s2a ‖d (Su, z)‖ .

Since a < 1
s2+s

⇒ a
(
s2 + s

)
< 1 ⇒ s2a < 1, then ‖d (Su, z)‖ = 0 ⇒

Su = z = fu.

Again since z = Su ∈ (X) ⊆ g (X) , then there exists some v ∈ X such
that z = gv.

Now we show that Tv = z.
We have

d (Tv, z) = d (Tv, Su) = d (Su, Tv)

-i2 amax {d (fu, gv) , d (fu, Su) , d (gv, Tv) , d (fu, Tv) , d (gv, Su)}

-i2 amax {d (z, z) , d (z, z) , d (z, Tv) , d (z, Tv) , d (z, z)}

i.e., d (Tv, z) - i2ad (Tv, z)

i.e., ‖d (Tv, z)‖ ≤ a ‖d (Tv, z)‖ .
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Since a < 1, then ‖d (Tv, z)‖ = 0 ⇒ Tv = z and so Su = fu = Tv =

gv = z.

Also f and S are weakly compatible mappings, therefore Sfu = fSu⇒
Sz = fz. Now we show that Sz = z.

We have

d (Sz, z) = d (Sz, Tv)

-i2 amax {d (fz, gv) , d (fz, Sz) , d (gv, Tv) , d (fz, Tv) , d (gv, Sz)}

-i2 amax {d (Sz, z) , d (Sz, Sz) , d (z, z) , d (Sz, z) , d (z, Sz)}

-i2 ad (Sz, z)

i.e., ‖d (Sz, z)‖ ≤ a ‖d (Sz, z)‖ .

Since a < 1, then ‖d (Sz, z)‖ = 0⇒ Sz = z = fz, which is a contradic-
tion. Therefore Sz = fz = z.

Again since g and T are weakly compatible mappings, then Tgv =

gTv ⇒ Tz = gz. Now we show that Tz = z. If not then 0 ≺i2 d (Tz, z) ∈ C2.

Therefore,

d (Tz, z) = d (Tz, Sz) = d (Sz, Tz)

-i2 amax {d (fz, gz) , d (fz, Sz) , d (gz, Tz) , d (fz, Tz) , d (gz, Sz)}

-i2 amax {d (z, Tz) , d (z, z) , d (Tz, Tz) , d (z, Tz) , d (Tz, z)}

-i2 ad (Tz, z)

i.e., ‖d (Tz, z)‖ ≤ a ‖d (z, Tz)‖
Since a < 1, then ‖d (Tz, z)‖ = 0 ⇒ Tz = z = gz and so Sz = Tz =

fz = gz = z. This shows that z is a common fixed point of S, T, f and g.
Now we show that f, g, S and T have a unique common fixed point. If

possible suppose that z∗ ∈ X be another common fixed point of S, T, f and
g, i.e. Sz∗ = Tz∗ = fz∗ = gz∗ = z∗.



A COMMON FIXED POINT THEOREM IN BICOMPLEX ... b-METRIC SPACES 13

Then

d (z, z∗) = d (Sz, Tz∗)

-i2 amax

{
d (fz, gz∗) , d (fz, Sz) , d (gz∗, T z∗) ,

d (fz, Tz∗) , d (gz∗, Sz)

}
-i2 amax {d (z, z∗) , d (z, z) , d (z∗, z∗) , d (z, z∗) , d (z∗, z)}

-i2 ad (z, z∗) .

Therefore,
‖d (z, z∗)‖ ≤ a ‖d (z, z∗)‖ .

Since a < 1, then ‖d (z, z∗)‖ = 0 ⇒ z = z∗. Therefore z is the unique
common fixed point of S, T, f and g. This completes the proof of the theo-
rem. �

Example 2.4. Let X = [0, 1] , and consider the mapping d : X ×X → C2

as defined by d (x, y) = (1 + i1 + i2 + i1i2) |x− y|2

Then for all x, y, z ∈ X,

d(x, y) = (1 + i1 + i2 + i1i2) |x− y|2

= (1 + i1 + i2 + i1i2) |x− z + z − y|2

= (1 + i1 + i2 + i1i2)
(
|x− z|2 + |z − y|2 + 2 |x− z| |z − y|

)
-i2 (1 + i1 + i2 + i1i2)

(
|x− z|2 + |z − y|2 + |x− z|2 + |z − y|2

)
-i2 2 [d(x, z) + d(z, y)]

therefore (X, d) is a bicomplex valued b-metric space as s = 2

Now, we consider the mappings S, T, f, g : X → X by Sx = x
4 , Tx =

x3

8 , fx = x and gx = x3

2 ,

Then, d (Sx, Ty) = 1
16 (1 + i1 + i2 + i1i2)

∣∣∣x− y3

2

∣∣∣2 = 1
16d (fx, gy) , here

a = 1
16 <

1
s2+s

= 1
6 .

Also Sfx = fSx and Tgx = gTx at the point of coincidence, therefore
{S, f} and {T, g} are weakly compatible and T (X) is a closed subspace of
X.

Therefore, S, T, f and g satisfy all conditions of the Theorem(2.3).
Clearly, 0 is the unique common fixed point of S, T, f and g.
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Corollary 2.5. Let (X, d) be a complete bicomplex valued b-metric space
with the coefficient s ≥ 1. Let S, T, f : X → X be mappings such that

S (X) ⊆ f (X) and T (X) ⊆ f (X) (2.6)

also satisfying the condition

d (Sx, Ty)

-i2 amax {d (fx, fy) , d (fx, Sx) , d (fy, Ty) , d (fx, Ty) , d (fy, Sx)}
(2.7)

for all x, y ∈ X, where 0 ≤ a < 1
s2+s

. Suppose that the pairs {S, f} and
{T, f} be weakly compatible and T (X) is a closed subspace of X. Then S, T
and f have a unique common fixed point.

Concluding comments

In the line of the works as carried out in the paper one may think of
the deduction of fixed point theorems using fuzzy metric, quasi metric, par-
tial metric, probabilistic metric, p-adic metric (where p is a prime number),
cone metric, quasi semi metric, convex metric, D-metric and other differ-
ent types of metrics under the flavour of bicomplex analysis. This may be
regarded as an active area of research to the future workers in this branch.

Acknowledgement: We are grateful to the referee for the comments which
improved the quality of the paper.
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Abstract. The aim of this paper is to obtain the common fixed point
theorems for two mappings in b-–metric space. In this paper we prove
that a unique common fixed point exists for two mappings in b-–metric
space. Moreover an example is discussed to verify the main result.

1. Introduction

In many branches of Science, Economics, Computer Science, Engineer-
ing and the development of nonlinear analysis, the fixed point theory is one
of the most important tool. In 1989, Bakhtin [2] introduced the concept of
generalized b–metric spaces. Boriceanu [4], Mehmat Kir [9] extended the
fixed point theorem in b–metric space. Borkar [5] obtained the common
fixed point theorem for non expansive type mapping.

In 1993 Czerwik [8] extended the results of b-metric spaces. Using this
idea many researchers presented generalization of renowned Banach fixed
point theorem in b-metric space. Czerwik [8] 1998 presented the gener-
alization of Banach fixed point theorem in b-metric spaces. Agrawal [1]
presented the existence and uniqueness theorem in b-–Metric Space.

Chopade [6] dicussed the common fixed point theorems for contractive
type mapping in metric space. Roshan [10] obtained common fixed point of
four maps in b–Metric space. Suzuki [11] obtained some basic inequalities
and applications in b–Metric space.
In this work we extend the well known fixed point theorems which are also
valid in b–metric space.
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Key words and phrases: Fixed Point, b–Metric Space, Convergence in b–Metric Space,
Cauchy Sequence.
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2. Some Basic Definitions and Preliminaries

Definition 2.1: Let X be a non-empty set and s ≥ 1 be a given real
number. A function δ : X ×X −→ R is called a b–metric provided that for
all u, v, w ∈ X

i. δ(u, v) ≥ 0

ii. δ(u, v) = 0 if and only if u = v

iii. δ(u, v) = δ(v, u)

iv. δ(u, v) ≤ s{δ(u,w) + δ(w, v)}

A pair (X, δ) is called a b–metric space. It is clear that the definition of
b–metric space is an extension of usual metric space.

Remark: If s = 1, then the b–metric space is a usual metric space.

Example 2.1: Let (X, d) be a metric space and δ(u, v) = (d(u, v))p, where
p > 1 is a real number. Clearly, δ(u, v) is a b–metric with s = 2p−1.

Example 2.2: If X = R , be the set of real numbers and d(u, v) = |u− v|
usual metric, then δ(u, v) = (u − v)2 is a b–metric on R with s = 2, but
not a metric on R.

Example 2.3: By Boriceanu [4], Let M = {0, 1, 2} and δ :M ×M → R is
defined by,
δ(0, 2) = δ(2, 0) = m ≥ 2

δ(0, 1) = δ(1, 0) = δ(1, 2) = δ(2, 1) = 1

δ(0, 0) = δ(1, 1) = δ(2, 2) = 0.

Here δ(u, v) is a b–metric on M with s = m
2

Definition 2.2: Let (X, δ) be a b–metric space then a sequence {un} in X
is called a convergent sequence if there exists u ∈ X such that for all ε > 0

there exists n(ε) ∈ N such that n ≥ n(ε) we have, δ(un, u) < ε.
In this case we write limn→∞ un = u.

Definition 2.3: Let (X, δ) be a b–metric space then a sequence {un} in X
is called Cauchy sequence if for all ε > 0 there exists n(ε) ∈ N such that
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m,n ≥ n(ε) we have, δ(un, um) < ε.

Definition 2.4: Let (X, δ) be a b–metric space then X is said to be com-
plete if every Cauchy sequence in X is convergent sequence in X.

3. Main Result
We use the following Lemma to prove the main result.

Lemma 3.1 [11] Let (X, δ) be a complete b–metric space and let {xn} be
a sequence in X. Assume that there exist r ∈ [0, 1) satisfying

δ(xn+1, xn+2) ≤ rδ(xn, xn+1) for any n ∈ N.

Then {xn} is a Cauchy sequence in X.

Theorem 3.1 Let (X, δ) be a complete b–metric space. A : X → X and
B : X → X be any two selfmaps on X satisfying

δ(Au,Bv) ≤ αδ(u, v) + βmax{δ(u,Bv), δ(Au, v)}

+ γ[δ(u,Au) + δ(v,Bv)],∀ u, v ∈ X
(3.1)

where α, β, γ ≥ 0 and s ≥ 1 such that,

i. α+ 2βs+ 2γ < 1

ii. γs+ βs2 < 1

Then A and B have a unique common fixed point in X.
Proof: Let u0 ∈ X, and {un} be a sequence in X defined by the recursion

A(u2n) = u2n+1 and B(u2n−1) = u2n, n = 1, 2, ... (3.2)

Using equations (3.1) and (3.2) we obtain,

δ(u1, u2) = δ(Au0, Bu1)

≤ αδ(u0, u1) + βmax{δ(u0, Bu1), δ(u1, Au0)}

+ γ[δ(u0, Au0) + δ(u1, Bu1)]

≤ αδ(u0, u1) + βmax{δ(u0, u2), δ(u1, u1)}

+ γ[δ(u0, u1) + δ(u1, u2)]

≤ αδ(u0, u1) + βmax{δ(u0, u2), 0}

+ γ[δ(u0, u1) + δ(u1, u2)]

≤ αδ(u0, u1) + βδ(u0, u2) + γδ(u0, u1) + γδ(u1, u2)

(1− γ)δ(u1, u2) ≤ (α+ γ)δ(u0, u1) + βsδ(u0, u1) + βsδ(u1, u2)
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(1− βs− γ)δ(u1, u2) ≤ (α+ γ + βs)δ(u0, u1)

δ(u1, u2) ≤
(α+ γ + βs)

(1− βs− γ)
δ(u0, u1)

δ(u1, u2) ≤ rδ(u0, u1)

where r = (α+γ+βs)
(1−βs−γ) < 1.

Now consider,

δ(u2, u3) = δ(Bu1, Au2) = δ(Au2, Bu1)

≤ αδ(u2, u1) + βmax{δ(u2, Bu1), δ(u1, Au2)}

+ γ[δ(u2, Au2) + δ(u1, Bu1)]

≤ αδ(u2, u1) + βmax{δ(u2, u2), δ(u1, u3)}

+ γ[δ(u2, u3) + δ(u1, u2)]

≤ αδ(u2, u1) + βmax{0, δ(u1, u3)}

+ γ[δ(u2, u3) + δ(u1, u2)]

≤ αδ(u2, u1) + βδ(u1, u3) + γδ(u2, u3) + γδ(u1, u2)

(1− γ)δ(u2, u3) ≤ (α+ γ)δ(u1, u2) + βsδ(u1, u2) + βsδ(u2, u3)

(1− βs− γ)δ(u2, u3) ≤ (α+ γ + βs)δ(u1, u2)

δ(u2, u3) ≤
(α+ γ + βs)

(1− βs− γ)
δ(u1, u2)

δ(u2, u3) ≤ rδ(u1, u2)

where r = (α+γ+βs)
(1−βs−γ) < 1.

In general, for any n ∈ N ,

δ(un+1, un+2) ≤ rδ(un, un+1) (3.3)

where r = (α+γ+βs)
(1−βs−γ) < 1.

Therefore by Lemma 3.1, the sequence {un} is a Cauchy Sequence in
X. Since X is complete, sequence {un} converges to u∗ in X.
Hence as,

n→∞, un → u∗ ⇒ u2n−1 → u∗, u2n → u∗ and u2n+1 → u∗

Now we show that u∗ is a fixed point of both the mappings A and B.
Consider,

δ(Au∗, u∗) ≤ s[δ(Au∗, u2n) + δ(u2n, u
∗)]
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≤ sδ(Au∗, Bu2n−1) + sδ(u2n, u
∗)

≤ s{αδ(u∗, u2n−1) + βmax{δ(u∗, Bu2n−1), δ(u2n−1, Au∗)}

+ γ[δ(u∗, Au∗) + δ(u2n−1, Bu2n−1)]}+ sδ(u2n, u
∗)

δ(Au∗, u∗) ≤ αsδ(u∗, u2n−1) + βsM1 + γsδ(u∗, Au∗)

+ γsδ(u2n−1, Bu2n−1) + sδ(u2n, u
∗)

(3.4)

(1− γs)δ(Au∗, u∗) ≤ αsδ(u∗, u2n−1) + βsM1

+ γs2[δ(u2n−1, u
∗) + δ(u∗, Bu2n−1)] + sδ(u2n, u

∗)

(1− γs)δ(Au∗, u∗) ≤ αsδ(u∗, u2n−1) + βsM1 + γs2δ(u2n−1, u
∗)

+ γs2δ(u∗, u2n) + sδ(u2n, u
∗)

(1− γs)δ(Au∗, u∗) ≤ (αs+ γs2)δ(u∗, u2n−1) + βsM1

+ (s+ γs2)δ(u∗, u2n)

where, M1 = max{δ(u∗, Bu2n−1), δ(u2n−1, Au∗)}

Case I: If
M1 = max{δ(u∗, Bu2n−1), δ(u2n−1, Au∗)}

= δ(u∗, Bu2n−1)

then by equation (3.4) we get,

(1− γs)δ(Au∗, u∗) ≤ (αs+ γs2)δ(u∗, u2n−1) + βsδ(u∗, Bu2n−1)

+ (s+ γs2)δ(u∗, u2n)

(1− γs)δ(Au∗, u∗) ≤ (αs+ γs2)δ(u∗, u2n−1) + βsδ(u∗, u2n)

+ (s+ γs2)δ(u∗, u2n)

(1− γs)δ(Au∗, u∗) ≤ (αs+ γs2)δ(u∗, u2n−1) + (s+ βs+ γs2)δ(u∗, u2n)

δ(Au∗, u∗) ≤ (αs+ γs2)

(1− γs)
δ(u∗, u2n−1) +

(s+ βs+ γs2)

(1− γs)
δ(u∗, u2n)

Hence,

limn→∞ δ(Au
∗, u∗) = 0

δ(Au∗, u∗) = 0

Au∗ = u∗.

Therefore, u∗ is a fixed point of A.
Case II: IfM1 = max{δ(u∗, Bu2n−1), δ(u2n−1, Au∗)} = δ(u2n−1, Au

∗) then
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by equation (3.4) we get,

(1− γs)δ(Au∗, u∗) ≤ (αs+ γs2)δ(u∗, u2n−1) + βsδ(u2n−1, Au
∗)

+ (s+ γs2)δ(u∗, u2n)

(1− γs)δ(Au∗, u∗) ≤ (αs+ γs2)δ(u∗, u2n−1) + βs2δ(u2n−1, u
∗)

+ βs2δ(Au∗, u∗) + (s+ γs2)δ(u∗, u2n)

(1− γs− βs2)δ(Au∗, u∗) ≤ (αs+ γs2 + βs2)δ(u∗, u2n−1)

+ (s+ γs2)δ(u∗, u2n)

δ(Au∗, u∗) ≤ (αs+ γs2 + βs2)

(1− γs− βs2)
δ(u∗, u2n−1) +

(s+ γs2)

(1− γs− βs2)
δ(u∗, u2n)

Hence,

limn→∞ δ(Au
∗, u∗) = 0

δ(Au∗, u∗) = 0

Au∗ = u∗

Therefore, u∗ is a fixed point of A.
Now we prove that, u∗ is a fixed point of B.
Consider,

δ(u∗, Bu∗) = δ(Au∗, Bu∗)

δ(u∗, Bu∗) ≤ αδ(u∗, u∗) + βmax{δ(u∗, Au∗), δ(u∗, Bu∗)}

+ γδ(u∗, Bu∗)

(1− γ)δ(u∗, Bu∗) ≤ β max{0, δ(u∗, Bu∗)}

(1− γ)δ(u∗, Bu∗) ≤ βδ(u∗, Bu∗)

(1− γ − β)δ(u∗, Bu∗) ≤ 0

δ(u∗, Bu∗) ≤ 0

δ(u∗, Bu∗) = 0

Bu∗ = u∗

Therefore, u∗ is a fixed point of B.
Hence, u∗ is a common fixed point of the mappings A and B.
Uniqueness:
Suppose, u∗ and v∗ be two common fixed points of the mappings A and B.
Therefore, Au∗ = Bu∗ = u∗ and Av∗ = Bv∗ = v∗
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Consider
δ(u∗, v∗) = δ(Au∗, Bv∗)

δ(u∗, v∗) ≤ αδ(u∗, v∗) + β max{δ(u∗, Bv∗), δ(Au∗, v∗)}+ γδ(u∗, Au∗)

+ γδ(v∗, Bv∗)

δ(u∗, v∗) ≤ αδ(u∗, v∗) + βmax{δ(u∗, v∗), δ(u∗, v∗)}+ γδ(u∗, u∗) + γδ(v∗, v∗)

δ(u∗, v∗) ≤ (α+ β)δ(u∗, v∗)

But, (α+ β) < 1.

Therefore we have,

δ(u∗, v∗) < δ(u∗, v∗)

This is a contradiction. Hence, A and B have a unique common fixed point.

Corollary 3.1: Let (X, δ) be a complete b–metric space. A : X → X and
B : X → X are self mappings on X which satisfies condition 3.1 and if any
one of A or B is continuous then A and B have a unique common fixed
point in X.

4. Application

Example 4.1: Let X = [0, 1] be a complete b–metric space with respect to
the b-metric δ defined by δ(u, v) = (u−v)2 for all u, v ∈ X. Let A : X → X

and B : X → X be defined A(u) = (u8 )
2 for all u ∈ X, and B(v) = (v4 )

2 for
all v ∈ X
Choose α = 1

4 , β = 1
16 and γ = 1

8 . Then

i. α+ 2βs+ 2γ = 1
4 + 4

16 + 2
8 = 1

4 + 1
4 + 1

4 < 1

ii. γs+ βs2 = 2
8 + 4

16 = 1
4 + 1

4 < 1

Moreover for all u ≤ v with u, v ∈ X, A and B satisfies the condition

δ(Au,Bv) =

[(u
8

)2
−
(v
4

)2]2
=
[u
8
− v

4

]2 [u
8
+
v

4

]2
≤
(
3

8

)2 [u
8
− v

4

]2
≤
(

9

64

)[
u− 2v

8

]2



26 VARSHA D. BORGAONKAR AND K. L. BONDAR

δ(Au,Bv) ≤
(

9

64

)[
2u− 2v

8

]2
≤
(

9

64

)
(u− v)2

16

≤ 4(u− v)2

16

≤ δ(u, v)

4

δ(Au,Bv) ≤ 1

4
δ(u, v) +

1

16
max{δ(u,Bv), δ(Au, v)}+ 1

8
δ(Au, u)

+
1

8
δ(v,Bv)

δ(Au,Bv) ≤ αδ(u, v) + βmax{δ(Au, v), δ(u,Bv)}+ γ [δ(Au, u) + δ(v,Bv)]

Hence by Theorem 3.1, A and B have a unique common fixed point in [0, 1].
The unique common fixed point for A and B is x = 0.

5. Discussion and the concluding Remarks

In this paper, we have proved the existence and uniqueness of common
fixed points for two contractive type mappings. Also we have obtained an
example to verify the main result.

Acknowledgement: We are thankful to the referee for the comments
which helped us to improve the quality of the paper.
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Abstract. The object of the present paper is to study space-time
admitting generalized projective curvature tensor.

1. Introduction

The aim of the present work is to study certain investigations in gen-
eral theory of relativity and cosmology by the coordinate free method of
differential geometry. The basic differences between Riemannian and semi-
Riemannian geometry are (i) the existence of null vector (i.e. g(v, v) = 0, for
v 6= 0, where g is metric tensor) in semi-Riemannian manifold but not in Rie-
mannian manifold, (ii) the signature of metric tensor g in semi-Riemannian
manifold is (−,−, ...−,+,+, ...,+) but in a Riemannian manifold the sig-
nature of g is (+,+, ...,+). Lorentzian manifold is a spacial case of semi-
Riemannian manifold. The signature of metric tensor g in Lorentzian man-
ifold is (−,+,+, ...,+). A Lorentzian manifold consists of three types of
vectors such as timelike (i.e. g(v, v) < 0), spacelike (i.e. g(v, v) > 0) and
null vector (i.e. g(v, v) = 0, for v 6= 0). In general, a Lorentzian manifold
(Mn, g) may not have a globally timelike vector field. If (Mn, g) admits a
globally timelike vector field, it is called time orientable Lorentzian mani-
fold, physically known as space-time. The foundation of general relativity
is based on a 4-dimensional space-time which is the stage of present mod-
eling of the physical world a torsionless, time-oriented Lorentzian manifold
(M, g).

2010 Mathematics Subject Classification: 53C25, 53C50; Secondary 53C80, 53B20
Key words and phrases: Projective Curvature Tensor, Generalized Projective
Curvature Tensor, Z-tensor, Einstein Space, Einstein Field Equations, Perfect Fluid
Space-time, Energy-momentum Tensor
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An n-dimensional generalized Robertson-Walker (GRW) space-time with
n ≥ 3 is a Lorentzian manifold which is a warped product of an open in-
terval I of R and an (n − 1)-dimensional Riemannian manifold ([12], [13],
[14]). These Lorentzian manifold broadly extends the classical Robertson-
Walker (RW) space-time. RW space-time is regarded as cosmological model
since it is spatially homogenous and spatially isotropic whereas GRW space-
time serve as inhomogeneous extension of RW space-times that admit an
isotropic radiation [22]. A Lorentzian manifold is perfect fluid space-time if
its Ricci tensor S has the form

S(X,Y ) = αg(X,Y ) + βA(X)A(Y ), (1.1)

where α and β are scalars, A is a non-zero one-form such that g(X, v) =

A(X) for all v and v is the velocity vector field such that g(v, v) = −1.
Perfect-fluid space-times in a language of differential geometry are called
quasi-Einstein spaces where A is metrically equivalent to a unit space-like
vector field [5].

The Einstein’s field equation with cosmological constant is given by [18]

S(X,Y )− r

2
g(X,Y ) + λg(X,Y ) = kT (X,Y ), (1.2)

where S and r denotes the Ricci tensor and scalar curvature respectively, λ
is the cosmological constant, T (X,Y ) is the energy momentum tensor and
k 6= 0. Einstein’s field equation without cosmological constant is given by
[18]

S(X,Y )− r

2
g(X,Y ) = kT (X,Y ). (1.3)

The Einstein’s field equations (1.2) and (1.3) imply that the energy-momentum
tensor is conservative. This requirement is satisfied if the energy-momentum
tensor is covariant constant [2]. Chaki and Ray [2] showed that a general
relativistic space-time with covariant constant energy-momentum tensor is
Ricci symmetric, that is, ∇S = 0.

A symmetric (0, 2) type tensor field E on a semi-Riemannian manifold
(Mn, g) is said to be a Codazzi tensor if it satisfies the Codazzi equation

(∇UE)(V,X) = (∇VE)(U,X), (1.4)
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for arbitrary vector fields U, V and X. The geometrical and topological con-
sequences of the existence of a non-trivial Codazzi tensor on a Riemannian
manifold have been studied by Derdzinski and Shen [6].

2. Preliminaries

The Weyl (Projective) curvature tensor is given as [16]

P (U, V,X, Y ) =R(U, V,X, Y )

− 1

n− 1
[S(V,X)g(U, Y )− S(U,X)g(V, Y )],

(2.1)

where R(U, V,X, Y ) is Riemann curvature tensor and r denotes the scalar
curvature. Covariant derivative of projective curvature tensor is given as

(∇WP )(U, V,X, Y ) = (∇WR)(U, V,X, Y )

− 1

n− 1
[g(U, Y )(∇WS)(V,X)− g(V, Y )(∇WS)(U,X)].

(2.2)

Divergence of projective curvature tensor is given as

(divP )(U, V,X, Y ) =
n− 2

n− 1
[(∇US)(V,X)− (∇V S)(U,X)]. (2.3)

In 2012, Mantica and Suh [11] introduced a new generalized (0, 2) sym-
metric tensor Z and studied various geometric properties of it on Riemann-
ian manifold. A new tensor Z is defined as

Z(X,Y ) = S(X,Y ) + ψg(X,Y ) (2.4)

is called generalized Z−tensor and ψ is an arbitrary scalar function.

Definition 2.1. A Riemannian manifold (Mn, g) is said to be of quasi-
constant curvature [3] if the Riemannian curvature tensor R(U, V,X, Y ) of
type (0, 4) satisfies the condition

R(U, V,X, Y ) =p[g(V,X)g(U, Y )− g(U,X)g(V, Y )]

+ q[g(U, Y )A(V )A(X) + g(V,X)A(U)A(Y )

− g(U,X)A(V )A(Y )− g(V, Y )A(U)A(X)],

(2.5)

where p, q are scalar functions and A is non-zero 1-form. If q = 0, then the
manifold reduces to manifold of constant curvature.

Definition 2.2. A (0, 4) tensor is called a generalized curvature tensor if it
obeys the symmetries like Riemannian curvature tensor R ([7], [20], [21]).
Since the projective curvature tensor P (U, V,X, Y ) is skew-symmetric in
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first two slots, not skew-symmetric in last two slots and not symmetric in
pair of slots [16], therefore projective curvature tensor is not a generalized
curvature tensor.

3. Generalized Projective Curvature Tensor

In view of equation (2.4), equation (2.1) takes the form

P (U, V,X, Y ) =R(U, V,X, Y )− 1

n− 1
[Z(V,X)g(U, Y )−Z(U,X)g(V, Y )]

+
ψ

(n− 1)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )].

(3.1)

Define

P ∗(U, V,X, Y ) = R(U, V,X, Y )− 1

n− 1
[Z(V,X)g(U, Y )−Z(U,X)g(V, Y )].

(3.2)
Thus using equation (3.2) in equation (3.1), we have

P (U, V,X, Y ) = P ∗(U, V,X, Y )+
ψ

(n− 1)
[g(V,X)g(U, Y )−g(U,X)g(V, Y )],

which gives

P ∗(U, V,X, Y ) = P (U, V,X, Y )− ψ

(n− 1)
[g(V,X)g(U, Y )−g(U,X)g(V, Y )],

(3.3)
where P ∗(U, V,X, Y ) is called generalized projective curvature tensor.
If ψ = 0, then from equation (3.3), we obtain

P ∗(U, V,X, Y ) = P (U, V,X, Y ). (3.4)

Thus we have the following:
Note: A generalized projective curvature tensor reduces to projective cur-
vature tensor provided that the scalar function ψ vanishes.
Now, if P ∗(U, V,X, Y ) = 0, then from equation (3.3), we obtain

P (U, V,X, Y ) =
ψ

(n− 1)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )], (3.5)

which is of constant projective curvature tensor. Thus we can state as
follows:

Proposition 3.1. A generalized projectively flat manifold is of constant
projective curvature tensor.
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Again, if projective curvature tensor vanishes, then from equation (3.3),
we obtain

P ∗(U, V,X, Y ) = − ψ

(n− 1)
[g(V,X)g(U, Y )− g(U,X)g(V, Y )], (3.6)

which is of constant generalized projective curvature tensor. Thus we can
state as follows:

Proposition 3.2. A projectively flat manifold is of constant generalized
projective curvature tensor.

From equation (3.3), we obtain

P ∗(V,U,X, Y ) = P (V,U,X, Y )− ψ

(n− 1)
G(U, V,X, Y ), (3.7)

where
G(U, V,X, Y ) = g(V,X)g(U, Y )− g(U,X)g(V, Y ) (3.8)

called Gaussian tensor [19] and [21]. Gaussion tensor G(U, V,X, Y ) is skew-
symmetric first two slots, skew-symmetric last two slots and symmetric
pair of slots [19] and [21]. By using the properties of Gaussian tensor and
projective curvature tensor we can state as follows:

Theorem 3.3. A generalized projective curvature tensor on (Mn, g) is
(1) skew-symmetric in first two slots,
(2) not skew-symmetric in lost two slots,
(3) not symmetric in pair of slots.

Now, writing two more equations by the cyclic permutations of U, V
and X of equation (3.3), we obtain

P ∗(V,X,U, Y ) = P (V,X,U, Y )− ψ

(n− 1)
[g(X,U)g(V, Y )−g(V,U)g(X,Y )],

(3.9)
and

P ∗(X,U, V, Y ) = P (X,U, V, Y )− ψ

(n− 1)
[g(U, V )g(X,Y )−g(X,V )g(U, Y )],

(3.10)
Adding equations (3.3), (3.9) and (3.10), we obtain

P ∗(U, V,X, Y ) + P ∗(V,X,U, Y ) + P ∗(X,U, V, Y )

= P (U, V,X, Y ) + P (V,X,U, Y ) + P (X,U, V, Y ).
(3.11)



34 S. P. MAURYA, S. K. PANDEY AND R. N. SINGH

In [21], Shaikh and Kundu have been proved that the projective curvature
tensor P satisfies Bianchi’s first identity i.e. P (U, V,X, Y )+P (V,X,U, Y )+

P (X,U, V, Y ) = 0. By using this fact, equation (3.11) reduces to

P ∗(U, V,X, Y ) + P ∗(V,X,U, Y ) + P ∗(X,U, V, Y ) = 0, (3.12)

which shows that generalized projective curvature tensor satisfied Bianchi’s
first identity. Thus we can state as follows:

Theorem 3.4. A generalized projective curvature tensor on (Mn, g) satis-
fies Bianchi’s first identity.

Now, taking the covariant derivative of equation (3.7), with respect to
U, we obtain

(∇UP ∗)(V,X, Y,W ) = (∇UP )(V,X, Y,W ). (3.13)

Writing two more equations by the cyclic permutations of U, V and X from
equation (3.13), we obtain

(∇V P ∗)(X,U, Y,W ) = (∇V P )(X,U, Y,W ), (3.14)

and
(∇XP ∗)(U, V, Y,W ) = (∇XP )(U, V, Y,W ). (3.15)

Adding equations (3.13), (3.14) and (3.15), we obtain

(∇UP ∗)(V,X, Y,W ) + (∇V P ∗)(X,U, Y,W ) + (∇XP ∗)(U, V, Y,W )

= (∇UP )(V,X, Y,W ) + (∇V P )(X,U, Y,W ) + (∇XP )(U, V, Y,W ).

(3.16)

In [21], Shaikh and Kundu have been proved that the projective curva-
ture tensor P satisfies Bianchi’s second identity i.e. (∇UP )(V,X, Y,W ) +

(∇V P )(X,U, Y,W )+(∇XP )(U, V, Y,W ) = 0 if and only if the Ricci tensor
of manifold is Codazzi tensor. By using this fact, equation (3.16) reduces
to

(∇UP ∗)(V,X, Y,W ) + (∇V P ∗)(X,U, Y,W ) + (∇XP ∗)(U, V, Y,W ) = 0.

(3.17)
Thus we can state as follows:

Theorem 3.5. A generalized projective curvature tensor on (Mn, g) satis-
fies Bianchi’s second identity if the Ricci tensor of M is of codazzi type.
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4. Generalized Projectively Flat Space-time

Let M be a 4-dimensional space-time of general relativity, then in view
of equation (3.2), we have

P ∗(U, V,X, Y ) = R(U, V,X, Y )− 1

3
[Z(V,X)g(U, Y )−Z(U,X)g(V, Y )].

(4.1)
If P ∗(U, V,X, Y ) = 0, then from equation (4.1), we have

R(U, V,X, Y ) =
1

3
[Z(V,X)g(U, Y )−Z(U,X)g(V, Y )]. (4.2)

Contracting V and X in above equation by using equation (2.4), we obtain

S(U, Y ) =
r + 3ψ

4
g(U, Y ), (4.3)

which on contraction gives ψ = 0. Thus equation (4.3) reduces to

S(U, Y ) =
r

4
g(U, Y ). (4.4)

This shows that a generalized projectively flat space-time is an Einstein
space-time. Thus we have the following corollary:

Corollary 4.1. A 4-dimensional relativistic generalized projectively flat
space-time is an Einstein space-time.

Now, ψ = 0 so in view of equation (3.3), we have P ∗ = P. In view of
equations (2.1) and (4.2), we get

R(U, V,X, Y ) =
1

3
[S(V,X)g(U, Y )− S(U,X)g(V, Y )]. (4.5)

Now, using equation (4.4) in equation (4.5), we obtain

R(U, V,X, Y ) =
r

12
[g(U, Y )g(V,X)− g(U,X)g(V, Y )], (4.6)

which shows that M is of constant curvature. Thus we can state as follows:

Theorem 4.2. The following conditions are equivalent in 4-dimensional
relativistic space-time
(1) M is generalized projectively flat space-time,
(2) M is projectively flat space-time,
(3) M is of constant curvature.

It is known that a Lorentzian manifold of constant curvature is a man-
ifold of conformally flat. Thus we have the following corollary:
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Corollary 4.3. A 4-dimensional relativistic generalized projectively flat
space-time is a conformally flat space-time.

In 1980, Kramer et al. [10] have been proved that a space is of O-type
if the conformal curvature tensor vanishes on it. Thus we have a theorem
as follows:

Theorem 4.4. A 4-dimensional relativistic generalized projectively flat space-
time is of O-type.

Now, we consider a perfect fluid space-time with flat generalized pro-
jective curvature tensor having Einstein’s field equation in the presence of
cosmological constant. Let £ξ be the Lie derivative operator along the vec-
tor field ξ generating the symmetry. The matter collineation defined by
(£ξT )(U, V ) = 0 represents the symmetry of energy momentum tensor T .
In view of equation (4.4), equation (1.2) takes the form

(λ− r

4
)g(X,Y ) = kT (X,Y ). (4.7)

If ξ be a Killing vector field on the space-time with generalized projectively
flat curvature tensor, then

(£ξg)(X,Y ) = 0. (4.8)

Taking the Lie derivative of equation (4.7) along ξ, we obtain

(λ− r

4
)(£ξg)(X,Y ) = k(£ξT )(X,Y ). (4.9)

In virtue of equation (4.8), equation (4.9) shows that (£ξT )(X,Y ) = 0,

which shows that the space-time admits matter collineation. Conversely,
If (£ξT )(X,Y ) = 0, it follows that from equation (4.9), that ξ is Killing
vector field. Hence we can state as follows:

Theorem 4.5. If a 4-dimensional relativistic space-time having Einstein’s
field equation in the presence of cosmological constant generalized projec-
tively flat curvature tensor, then the space-time satisfies matter collineation
along a vector field ξ if and only if ξ is a Killing vector field.

Next, Let us assume that the vector field ξ is a conformal Killing vector
field, then we obatin

(£ξg)(X,Y ) = 2φg(X,Y ), (4.10)
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where φ is scalar, which is view of equation (4.9), gives

(λ− r

4
)2φg(X,Y ) = k(£ξT )(X,Y ). (4.11)

Using equation (4.7) in equation (4.11), we obtain

(£ξT )(X,Y ) = 2φT (X,Y ). (4.12)

From above equation, we see that the energy-momentum tensor has Lie
inheritance property along ξ. Conversely, if equation (4.12) holds, then
it follows that equation (4.10) holds, i.e. the vector field ξ is a conformal
Killing vector field. Thus we have a theorem as follows:

Theorem 4.6. In a 4-dimensional relativistic space-time having Einstein’s
field equation in the presence of cosmological constant generalized projec-
tively flat curvature tensor, a vector field ξ is conformal Killing vector field
if and only if the energy-momentum tensor T has a symmetry inheritance
property along ξ.

Again, we consider a perfect fluid space-time with generalized projec-
tively flat curvature tensor having Einstein’s field equation in the absence
of cosmological constant. The energy momentum tensor T of a perfect fluid
is given by [18]

T (X,Y ) = (σ + ρ)A(X)A(Y ) + ρg(X,Y ), (4.13)

where ρ is the isotropic pressure, σ is the energy density and A is the non-
zero one-form such that g(X, v) = A(X), for all X, v being the velocity
vector field of the flow, i.e. g(v, v) = −1. Using equations (4.4) and (4.13)
in equation (1.3), we get

(
r

4
− kρ)g(X,Y ) = k(ρ+ σ)A(X)A(Y ), (4.14)

which on contraction gives

r = k(σ − 3ρ). (4.15)

Now, taking X = Y = v in equation (4.14) and using g(v, v) = −1, we
obtain

r = 4kσ. (4.16)

From equations (4.15) and (4.16), we have

σ + ρ = 0, (4.17)
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which gives that the perfect fluid behave as a cosmological constant. Thus,
in view of equation (4.17), equation (4.13) reduces to

T (X,Y ) = ρg(X,Y ). (4.18)

For a generalized projectively flat space-time, the scalar curvature is con-
stant. Thus σ is constant. Consequently, ρ is constant. Therefore, on taking
covariant derivative of equation (4.18), we obtain

(∇UT )(X,Y ) = 0, (4.19)

which shows that the energy momentum tensor is covariantly constant.
Thus we have theorem as follows:

Theorem 4.7. In a 4-dimensional relativistic perfect fluid generalized pro-
jectively flat space-time following Einstein’s field equation in the absence
of cosmological constant, σ + ρ = 0 and the isotropic pressure and energy
density are constants. Moreover, energy momentum tensor is covariantly
constant.

Taking the frame-field after contraction over X and Y of equation (1.3),
we obtain

r = −kt, (4.20)

where t is tr(T ). Therefore, equation (1.3) can be written as:

S(X,Y ) = k[T (X,Y )− t

2
g(X,Y )]. (4.21)

Einstein’s field equation in the absence of cosmological constant for a purely
electromagnetic distribution takes the form [18]

S(X,Y ) = kT (X,Y ). (4.22)

From equations (4.21) and (4.22), we obtained t = 0. Thus from equa-
tion (4.20), we get r = 0. Therefore, from equation (4.6), we obtain
R(U, V,X, Y ) = 0, which shows that the space is flat. Thus we arrive
at the following:

Theorem 4.8. A 4-dimensional relativistic generalized projectively flat space-
time having Einstein’s field equation in the absence of cosmological constant
for a purely electromagnetic distribution is an Euclidean space.
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5. Conservative Generalized Projective Space-time

From equation (3.3), generalized projective curvature tensor is given by

P ∗(U, V )X = P (U, V )X − ψ

(n− 1)
[g(V,X)U − g(U,X)V ]. (5.1)

The divergence of P ∗(U, V )X is defined as

(divP ∗)(U, V )X = g((∇eiP ∗)(U, V )X, ei)

i.e.
(divP ∗)(U, V )X =g((∇eiP )(U, V )X, ei)

− 1

n− 1
[g((∇eiψ){g(V,X)U − g(U,X)V }, ei)],

(5.2)

which gives

(divP ∗)(U, V )X = (divP )(U, V )X − 1

(n− 1)
[(Uψ)g(V,X)− (V ψ)g(U,X)].

(5.3)
From equations (2.3) and (5.3), we obtain

(divP ∗)(U, V )X =
n− 2

n− 1
[(∇US)(V,X)− (∇V S)(U,X)]

− 1

(n− 1)
[(Uψ)g(V,X)− (V ψ)g(U,X)].

(5.4)

If scalar function ψ is constant then from equation (5.3), we obtain

(divP ∗)(U, V )X = (divP )(U, V )X. (5.5)

If (divP ∗)(U, V )X = 0 then from equation (5.5), we obtain

(divP )(U, V )X = 0,

which gives
n− 2

n− 1
[(∇US)(V,X)− (∇V S)(U,X)] = 0. (5.6)

From above equation, it follows that Ricci tensor is Codazzi tensor.

Theorem 5.1. A 4-dimensional relativistic conservative generalized projec-
tive space-time M with constant scalar function ψ is conservative projective
curvature tensor, provided that Ricci tensor is codazzi tensor.

Guifoyle and Nolan [9], gave "Yang Pure Space", a 4-dimensional Lorentzian
manifold (Mn, g) whose metric tensor solves Yang’s equation

(∇US)(V,X)− (∇V S)(U,X) = 0.
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Thus we can state as follows:

Theorem 5.2. A 4-dimensional relativistic conservative generalized projec-
tive space-time M with constant scalar function ψ is a Yang Pure space.

Since we known that [9], a 4-dimensional relativistic perfect fluid space-
time with σ + ρ 6= 0 is a Yang Pure space-time if and only if space-time is
RW space-time.

Theorem 5.3. A 4-dimensional relativistic conservative generalized projec-
tive space-time M with constant scalar function ψ is a RW space-time.

It is known that divergence of conformal (Weyl) curvature tensor can
be written as

(divC)(U, V )X =
n− 3

n− 2
[(∇US)(V,X)− (∇V S)(U,X)

− 1

2(n− 1)
g(V,X)dr(U)− g(U,X)dr(V )].

(5.7)

In virtue of equations (5.6) and (5.7), we observe that (divC)(U, V )X = 0

if and only if (divP ∗)(U, V )X = 0. Thus we can state as follows:

Theorem 5.4. A 4-dimensional relativistic space-timeM satisfying divC =

0 if and only if (divP ∗)(U, V )X = 0 with constant scalar function ψ.
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Abstract. In this paper, we prove that there are only seven bijective
cubic polynomials on the real line upto topological conjugacy.

1. Introduction and preliminaries

A dynamical system is a pair (X, f) where X is a metric space and f is a
continuous self map on X. Simply we call the map f : X → X a dynamical
system. Two dynamical systems f : X → X and g : Y → Y are said to be
topologically conjugate if there exists a homeomorphism h : X → Y (called
topological conjugacy) such that h ◦ f = g ◦ h. A point x ∈ X is said to
be a fixed point of a dynamical system f : X → X if f(x) = x. A point
x ∈ X is said to be a periodic point of period n of a dynamical system
f : X → X if fn(x) = x and fp(x) 6= x for 1 ≤ p < n. If f is an increasing
cubic polynomial on the real, then we can associate a word over {0, 1} to
f by looking at the graph of f from left to right assigning 1 or 0 according
as the graph is above or below the diagonal in each interval determined
by the fixed points, we denote the word by w(f). If f is decreasing, then
f2 := f ◦f is increasing and hence a word can be associated to f by looking
at the graph of f2, this word is enough to determine the conjugacy class
(separately for increasing and decreasing classes). If f is a bijective linear
polynomial on the real line, then there are only four such f upto topologi-
cal conjugacy. It may be noted that the conjugacy classes of the real linear
polynomials x+ 1, x, x

2 and 3x
2 are distinct. If f(x) = ax2 + bx+ c is a real

quadratic polynomial then f has an extremum at x = − b
2a , thus there is

no bijective quadratic polynomial on the real line. Refer [2] for more details.
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Let Σ = {0, 1}, and 0̃ = 1 and 1̃ = 0. If w = w1w2...wn is a word
over Σ then the dual of w is defined as w̃ = w̃nw̃n−1...w̃1. Two bijective
real polynomials (bijections on R with unique fixed point) are conjugate to
each other if and only if the associated words are either the same or one
is the dual of the other [see [1], [2]]. When f is a real cubic polynomial,
the equation f(x) = x has three solutions in the complex plane. Hence the
possible words for the increasing bijective real cubic polynomials are 01, 001

and 0101. Also there are at the most three orbits of period two for f (which
are among the remaining six solutions of f2(x) = x). This implies that the
possible words for a decreasing cubic are 01, 0101, 0011, 010101, 011001,
001011, 01010101. Therefore, the number of conjugacy classes among bi-
jective real cubic polynomials cannot exceed 10 (3+7).

In this paper, we provide seven examples of bijective cubic polynomi-
als on the real line such that no two of them are topologically conjugate.
This is established by giving some distinguishing conjugate invariant prop-
erties. We prove that these are the only bijective real cubic polynomials
upto topological conjugacy with the help of properties of polynomials.

2. Main Results

For a polynomial f , we denote f ′ for the derivative map. A fixed point
x of a polynomial f is said to be attracting if |f ′(x)| < 1, repelling if
|f ′(x)| > 1, and neutral if |f ′(x)| = 1. A periodic point x of period n

of a polynomial f is said to be attracting if |(fn)′(x)| < 1, repelling if
|(fn)′(x)| > 1, and neutral if |(fn)′(x)| = 1.

2.1. Increasing Cubics. Here we provide examples for three increasing
bijective real cubic polynomials which are not conjugate to each other.

Example 2.1. Let f1(x) = x3 + x. The increasing bijective cubic polyno-
mial f1 has unique fixed point, namely 0. Hence the associated word w(f1)

is 01.

Example 2.2. Let f2(x) = x3 + x2 + x. The increasing bijective cubic
polynomial f2 has exactly two fixed points, namely 0 and −1. Hence the
associated word w(f2) is 001.
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Example 2.3. Let f3(x) = x3. The increasing bijective cubic polynomial
f3 has exactly three fixed points, namely −1, 0, and 1. Hence the associated
word w(f3) is 0101.

2.2. Decreasing Cubics. Here we provide examples for four decreasing
bijective real cubic polynomials which are not conjugate to each other.

Example 2.4. Let f4(x) = −x3 − x. The decreasing bijective polynomial
f4 has unique fixed point 0. Since |f4(x)| > x for all x 6= 0, there is no
point of period 2. Hence the associated word w(f4) is 01.

Example 2.5. Let f5(x) = −x3. The decreasing bijective cubic polynomial
f5 has unique fixed point 0, which is attracting since f ′5(0) = 0. The only
orbit of f5 of period 2 is {−1, 1}, which is repelling (i.e., each periodic point
in the orbit is repelling) since f ′5(−1).f ′5(1) = 9. Hence the associated word
w(f5) is 0101.

Example 2.6. Let f6(x) = −x3 +1. Then f6(
2
3) = 19

27 > 2
3 , f6(

3
4) = 37

64 < 3
4

and |f ′6(x)| = 3x2 > 1 for all x ∈ [23 ,
3
4 ]. So the unique fixed point of f6

is in [23 ,
3
4 ] and it is repelling. Also {0, 1} is an orbit of period two, which

is attracting since f ′6(0).f ′6(1) = 0. If x0 is the largest fixed point of f2
6 ,

then (f2
6 )′(x0) ≥ 1 since f2

6 (x) > x for large x. But (f2
6 )′(1) = 0 < 1.

Therefore, f6 must have one more orbit of period two. Another argument
for the same is f2

6 (1.1) = f6(−0.331) < f6(
1
3) = 1

27 +1 < 1.1; and f2
6 (x) > x

for large x. Let p > 1 be a point of period two and let q = f6(p). Then

q < −1
3 . Therefore, |f ′6(p)|.|f ′6(q)| > |f ′6(1)|.|f ′6(−1

3)| = 3.
1

3
= 1. Thus the

orbit {p, q} is repelling. Also f6 does not have a third orbit of period two
because the attracting and the repelling types should come alternately and
the outermost one cannot be attracting. Hence the associated word w(f6)

is 010101.

Example 2.7. Let f7(x) = −x3 − x
2 + 1√

2
. Then f ′7(x) = −3x2 − 1

2 < 0

for all x and hence f7 is bijective. Also {0, 1√
2
} is an orbit of period

two; f ′7(0).f ′7(
1√
2
) = (−1

2
).(−2) = 1 implies it is neutral (hence it ac-

counts for four solutions of f2
7 (x) = x). Note that |f ′7(x)| > 1 if and

only if |x| > 1√
6

and f7(
1√
6
) =

−4 + 6
√

3

6
√

6
>
−4 + 6.(

5

3
)

6
√

6
=

1√
6
. There-

fore the fixed point is in ( 1√
6
, 1√

2
) and it is repelling. Now, (f2

7 )′′( 1√
2
) =
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f ′′7 (0).
[
f ′7(

1√
2
)
]2

+ f ′7(0).f ′′7 ( 1√
2
) =

3√
2
> 0. This shows that the graph of

f2
7 lies above the diagonal y = x in a deleted neighbourhood of 1√

2
. Also,

(f2
7 )′(x) > (f2

7 )′( 1√
2
) = 1 for all x > 1√

2
. These facts ensure that there is

no more orbit of period two. Hence the associated word for the decreasing
bijective polynomial f7 is 0011.

2.3. The class of cubic polynomials.
Now we are ready to state our Main Theorem:

Theorem 2.8. The polynomials fi, i = 1, ..., 7 are the only bijective real
cubic polynomials upto topological conjugacy.

For a proof, first we will consider the following four lemmas. Later, we
will prove the theorem.

Lemma 2.9. If ax3 + bx2 + cx+ d is a decreasing bijective real cubic poly-
nomial then a < 0 and c ≤ 0.

Proof. Let f(x) = ax3 + bx2 + cx + d be a decreasing bijective real cubic
polynomial. Then f ′(x) = 3ax2 + 2bx+ c < 0 for all x ∈ R. Hence a should
be negative. Now 2bx→ 0 and −3ax2 → 0 as x→ 0. But 2bx+ c < −3ax2

for all x ∈ R. Hence c ≤ 0. �

Lemma 2.10. If ax3 + bx2 + cx + d is a decreasing bijective real cubic
polynomial then it is conjugate to a′x3 + c′x + d′ for some a′, c′, d′ ∈ R.

Proof. Let f(x) = ax3 + bx2 + cx + d be a decreasing bijective real cubic
polynomial. Put x = y − b

3a . Then the polynomial becomes g(y) = a′y3 +

c′y + d′ for some a′, c′, d′ ∈ R. Since two bijective real polynomials are
conjugate to each other if and only if the associated words are either the
same or one is the dual of the other, the proof follows. �

Lemma 2.11. If −ax3 + cx + d with a > 0 is a decreasing bijective real
polynomial then it is conjugate to −x3 + c′x + d′ for some c′, d′ ∈ R.

Proof. Let f(x) = −ax3 + cx + d with a > 0 be a decreasing bijective
real polynomial. Put x = a−

1
3 y. Then the polynomial becomes g(y) =

−y3 + c.a−
1
3 y + d. Since two bijective real polynomials are conjugate to

each other if and only if the associated words are either the same or one is
the dual of the other, the proof follows. �



THE CONJUGACY CLASSES OF BIJECTIVE CUBIC POLYNOMIALS 47

Now we have:

Lemma 2.12. Let f : R→ R be any decreasing bijection with unique fixed
point and let c ∈ R. Let a, b be the fixed points of f and f − c respectively,
where c denotes the constant function on R with value c. Then f is topo-
logically conjugate to f − c if and only if f2|[a,∞) is topologically conjugate
to (f − c)2|[b,∞).

Proof. First observe that, if f : R→ R is a decreasing bijection with unique
fixed point then f − c is also a decreasing bijection with unique fixed point
for any real number c. Fix c > 0 and let a, b be the fixed points f and f −c

respectively with b > a. Since two decreasing bijections with unique fixed
point are conjugate to each other if and only if the associated words are
either the same or one is the dual of the other, we have that f is topologi-
cally conjugate to f − c if and only if f2|[a,∞) is topologically conjugate to
(f − c)2|[b,∞). Hence the proof follows. �

Proof of Theorem 2.8: By Lemmas 2.9, 2.11 and 2.12, it is enough
to consider the decreasing bijective real cubic polynomials of the form
f(x) = −x3 − cx + d with c ≥ 0. Now let f(x) = −x3 − cx + d be a
decreasing bijective real cubic polynomial with c > 0 and d 6= 0. By similar
arguments involved as in Example 2.7, the map f has unique fixed point
and exactly one orbit of period 2. If c > 1 then the unique fixed point
of f should not be neutral. If 0 < c ≤ 1 then the unique fixed point of
the polynomial g(x) = −x3 − cx +

√
c is also not neutral. Hence because

of Lemma 2.12, w(f) is 0011 whenever f(x) = −x3 − cx + d with c > 0

and d 6= 0. If f(x) = −x3 − cx with c ≥ 1 then the associated word w(f)

is 01. This is because, if f(x) = −x3 − cx with c ≥ 1 then |f(x)| > |x|
for all x 6= 0. If 0 < c < 1 then by Lemma 2.12, w(f) is either 0011 or
01. If f(x) = −x3 + d with d > 0 then by similar arguments involved as
in Example 2.6 and by Lemma 2.12, the associated word w(f) is 010101.
Hence there are only seven bijective real cubic polynomials upto topological
conjugacy.
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TO EXACTLY SOLVABLE QUANTUM MECHANICAL
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Abstract. Most textbooks on Quantum Mechanics only discuss the
harmonic oscillator, potential well, hydrogen atom and the Morse po-
tential as examples of exactly solvable systems under the Schrödinger
equation. However, there is significant ongoing research in which exact
solutions of more complex quantum mechanical potentials have been
obtained using theory of Heun functions. In this article, we describe
one such potential whose solutions are given by the hypergeometric
functions. In addition, an accessible introduction to hypergeometric
and Heun’s function is given that familiarises the reader with advanced
mathematical terminology and motivates to conduct research in math-
ematical and physical applications

1. Introduction

The behaviour of any system being treated under the non-relativistic
theory of quantum mechanics is described by a linear, second order differ-
ential equation called the Schrödinger equation. For a particle of mass m,
energy E in the presence of a potential V (x), the one-dimensional, time-
independent Schrödinger’s equation is:

∂2ψ

∂x2
+

2m

~2
(E − V (x)))ψ = 0, (1.1)

Here, ~ = h/2π = 1.054571817× 10−34Js is the reduced Planck’s constant
and ψ is the wavefunction that completely describes all the features of the
system. A complete treatment of the physical and mathematical features
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of this equation is beyond the scope of this paper, so we refer the reader to
[12].

Now, the treatments in most books like [12] focus on potentials of the
potential well (Vpw), harmonic oscillator (Vho), hydrogen atom (Vhyd) and
the Morse potential VM describing the potential energy of a diatomic mol-
ecule, that have a rather simple mathematical form:

Vpw(x) = constant, (1.2)

Vho(x) =
kx2

2
, (1.3)

Vhyd(x) = − e2

4πεx
, (1.4)

VM(x) = De(1− exp−β(x−xe))2 (1.5)

where, k is the spring constant, e is the charge of the electron (9.1×10−31C),
ε is the permittivity of the medium, and in VM (x), De is the well-depth for
the potential, x is the internuclear distance and xe is the bond length and
β is a function that depends on the vibrational constant, reduced mass and
De. Even for these simple cases, the solutions to the Schrödinger equation
are described by special mathematical functions such as Hermite polyno-
mials for the eigenfunction of the harmonic oscillator and Laguerre poly-
nomials for the radial part of the hydrogen wavefunction. The important
mathematical properties of these special functions are given in [2].

The importance of having exactly solvable forms of potential for the
Schrodinger equation cannot be overemphasized, since it is pivotal for ex-
tracting physical parameters to be tested in experiments. From a mathe-
matical point of view, it is desired that an exact solution can be obtained for
potentials where all the involved parameters can be varied independently.
This provides a rich analytical structure to the solutions and ascribes to the
unsaid rule of modern mathematics: the more general the better.

As far as we know, only a handful of such potentials are known which
are solvable in terms of the most well studied class of special functions:
the hypergeometric functions. There are five known solutions based on the
Kummer hypergeometric functions and three on the basis of the more gen-
eral Gauss hypergeometric functions. In this paper, we describe a solution
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that has rather recently been obtained for the following potential:

Vgh(x) = V0 +
V1√

1 + e2(x−x0)/σ
(1.6)

The solution for this potential is written in terms of Gauss hypergeometric
functions. The motives for discussing this particular potential are several:
to introduce the reader to a mathematically rich class of functions, namely
the hypergeometric functions by studying their application to modern quan-
tum physics, to demonstrate the analytical complexity that remains to be
explored of seemingly simple equations such as the Schrödinger equation
and to encourage further research in the mathematical features as well as
the physical applications of the Heun functions.

The solution for this potential, along with most of the current research
in this area is conducted by Ishkhanyan(see [8, 9] and references therein)
along with notable exceptions such as [24]. Furthermore, a full classification
of all potentials solvable by Heun functions is given in [10]. However before
we describe the solutions, we shall give a compact and largely self contained
description of the special functions, in particular the Heun functions.

2. Hypergeometric and Heun Equations

2.1. Fuchsian Equations. The primary object of study here are ordinary,
linear, homogenous second order differential equations with polynomial co-
efficients P (z), Q(z) and R(z) of the form:

P (z)
d2y(z)

dz2
+Q(z)

dy(z)

dz
+R(z)y(z) = 0, z ∈ CP1 (2.1)

where CP1 is the Riemann sphere, which contains the entire complex z-
plane along with the point z = ∞. The singular points of the equation,
the points at which the equation is not analytic, are classified into regular
(or Fuchsian) and irregular points. In the above equation, if the function
KQP = Q(z)/P (z) has a pole of at most first order and KRP = R(z)/P (z)

has a pole of at most second order at some singularity z = z0, then z0 is
called a Fuchsian singularity, otherwise it is an irregular singularity. The
above equation is a Fuchsian equation if all its singularities are Fuchsian sin-
gularities. A rather complete albeit slightly advanced treatment of Fuchsian
equations is given in [16].
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Any Fuchsian equation which has exactly three singular points can be
transformed into the hypergeometric equation by transformations in de-
pendent or independent variables. Similarly, any Fuchsian equation with
exactly four singular points can be transformed into a Heun equation.
The transformation in dependent and independent variables are called s-
homotopic and Möbius transformations respectively.

For each of the regular singularities, we can construct a polynomial
equation called the indicial equation, the roots of which are called charac-
teristic exponents. The indicial equation is given by:

ρ(ρ− 1) + piρ+ qi = 0, (2.2)

where,

pi = Residuez=zi
Q(z)

P (z)
, qi = Residuez=zi(z − zi)

R(x)

P (x)
(2.3)

The introduction of these mathematical terminologies would assist in sys-
tematically studying the relevant mathematical features of the hypergeo-
metric and Heun equations.
2.2. Hypergeometric equations. The hypergeometric equation, also called
Gauss hypergeometric equation, is linear, second order differential equations
that can be obtained from performing s-homotopic and Möbius transforma-
tions to the Riemann equation-a Fuchsian equation with three singularities
(see Chapter 15 in [1]). For the Gauss hypergeometric equations, these are:
z = 0, 1,∞. The explicit form of the equation is as follows:

z(1− z)d
2y(z)

dz2
+ [c− (a+ b+ 1)z]

dy(z)

dz
− aby(z) = 0 (2.4)

Here, a, b, c, d are free parameters. The standard solution to this equation
is given in terms of a power series 2F1(a, b; c; z) called the hypergeometric
function. It can be expanded as a Frobenius series (see [16]) about the
three singular points of the equation. For example, under the condition
that parameter c 6= 0,−1,−2.....the Frobenius series about z = 0 is of the
form:

2F1(a, b; c; z = 0, z) =
∞∑
k=0

gkz
k, (2.5)

where the coefficients gk are given by a ratio of gamma functions:

gk =
Γ(k + a)Γ(k + b)Γ(c)

Γ(k + 1)Γ(k + c)Γ(a)Γ(b)
(2.6)
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This series converges within the unit circle |z| ≤ 1. Similar series solutions
exist for singularities z = 1, z = ∞. For a comprehensive treatment of
the properties of functions like the gamma function, we refer the reader to
[16, 23].

A compact method of describing Fuchsian-type equations is by using
the Riemann-P symbol. For the hypergeometric equation, the Riemann-P
symbol is:  0 ∞ 1

0 a 0 ; z

1− c b c− a− b

 (2.7)

The first row indicates the singularities of the equation and the two sub-
sequent rows (excluding the z term in the second row, which indicates the
complex variable for the equation) denote the characteristic exponents cor-
responding to the singularities. The advantage of this notation is that the
underlying equation can be completely recovered from the P-symbol. These
symbols are extremely useful in obtaining identities related to hypergeomet-
ric and Heun equations (see page 139-159 in [14]).

2.3. Heun equations. The Heun class of second order ODEs can be ob-
tained from the general Heun[3]-a Fuchsian equation with four singularities.
They are a straightforward extension of the hypergeometric equation. The
canonical form of the general Heun equation is:

d2y(z)

dz2
+

[
γ

z
+

δ

z − 1
+

ε

z − a

]
dy(z)

dz
+

αβz − q
z(z − 1)(z − a)

y(z) = 0 (2.8)

where q ∈ C is called the accessory parameter. The corresponding Riemann-
P symbol is as follows: 0 1 a ∞

0 0 0 α ; z

1− γ 1− δ 1− ε β

 (2.9)

where the parameters satisfy the Fuch’s condition:

1 + α+ β = γ + δ + ε (2.10)

Several features are worth mentioning. Firstly, the equation is singular
at the following four points: z = 0, 1, a,∞. Secondly, in total the Heun
equation has 192 solutions as compared to the mere 24 solutions of the Gauss
Hypergeometric equation found by Kummer. In other words, according to
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Theorem 4.3 in [13], the solutions to the Heun equation have the Coxeter
Group D4 as the automorphism group, which means that all 192 solutions
can be generated by using the symmetries of D4. All solutions are explicitly
listed in [13].

If we set ε = 0, γ = δ = 1/2 in the Heun equation, we get another
prominent equation, the Lamé equation which arises in the separation of
variables for the Laplace equation in elliptic coordinates. For an interesting
study on the relationship between Lamé and Heun polynomials, we refer
the reader to [15]

The study of Heun equations, both in mathematics and physics is an
active area of research and we would discuss applications in both subjects
in the last section. For now, we have introduced enough formalism to un-
derstand their applicability to quantum mechanical potentials.

3. The Quantum Mechanical Potential

In this section we learn in detail the applicability of the afore mentioned
hypergeometric and Heun equations to the quantum mechanical potential
given in equation 1.6, that can be exactly solved using the Schrödinger’s
equation. We note that although the transformations might seem ad hoc,
the techniques are based on the results in [11].

We first start with the transformation of the wavefunction ψ = ϕ(z)u(z)

and z = z(x) with,

ϕ(z) = ρ(z)−1/2exp

(
1

2

∫
f(z)dz

)
, (3.1)

ρ(z) =
dz

dx
(3.2)

This reduces the Schrödinger equation to:

I(z) = g − fz
2
− f2

4
=

−1

2

(
ρz
ρ

)
z

− 1

4

(
ρz
ρ

)2

+
2m

~2
E − V (z)

ρ2
(3.3)

where, f(z) and g(z) are coefficients of the Heun equation and I(z) is the
invariant of the equation [7] when rewritten in Liouvillian form. A con-
sequence of the Theorem 27 in [11] is that the logarithmic derivative of
(ρz/ρ) should contain only the poles corresponding to the finite singulari-
ties of the Heun equation. Therefore, if we label the finite singularities by
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z = a1, a2, a3, the function ρ is given as:

ρ = (z − a1)m1 (z − a2)m2 (z − a3)m3 /σ (3.4)

where m1,m2,m3 are integers or half integers and σ is an arbitrary scaling
constant. Now, the invariant form of the Heun equation is a fourth-order
polynomial in z divided by the factors corresponding to the singularities
a1, a2, a3, i.e (z − a1)2(z − a2)2(z − a3)2.

The next step is to match the (ρz/ρ) terms in equation . This leads
to the set of equations given in [10]. For the potential in equation 1.6, if
a1, a2, a3 = −1, 1, 0 respectively (as is the case for the finite singularities
of the Heun equation), the solutions would be a combination of two hyper-
geometric functions [10]. This would in turn correspond to the following
conditions for the Heun parameters:

q(q + γ − δ) = αβ (3.5)

The values of m1,m2,m3 corresponding to these conditions are 1, 1 and −1

respectively. Now, equation (16) suggests the substitution:

ϕ(z) = (z − a1)α1(z − a2)α2(z − a3)α3 (3.6)

By requiring,

(z − a1)2(z − a2)2(z − a3)2V (z)/ρ2 =

ν0 + ν1z + ν2z
2 + ν3z

3 + ν4z
4, (3.7)

and that ν0, ν1, ν2, ν3 be independent, we obtain the following solutions to
the Schrödinger equation:

ψ(x) = (z + 1)α1(z − 1)α
2
u(z), (3.8)

z =
√

1 + e2(x−x0)/σ, (3.9)

u(z) = 2F1

(
α− 1, β; γ − 1;

z + 1

2

)
+

(α2 − α1 + βz)

2(γ − 1)
2F1(α, β + 1; γ;

z + 1

2
), (3.10)
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where the parameters are given by:

(α, β, γ) = (α+ 1 + α2 − α0, α1 + α2 + α0, 1 + 2α1), (3.11)

α0 = ±
√
−2mσ2

~2
(E − V0), (3.12)

α1 = ±
√
−mσ2

2~2
(E − V0 + V1), (3.13)

α2 = ±
√
−mσ2

2~2
(E − V0 − V1), (3.14)

Thus, by reducing the Schrödinger’s equation to the Heun equation and
analysing it, we have obtained an exact solution in terms of hypergeometric
functions, given by equation 3.8, for the potential in equation 1.6.

4. Further Avenues for Research

The preceding discussion demonstrates the analytical richness as well
the power of solutions based on hypergeometric functions. Here, we very
briefly discuss their applicability to two other avenues, one in physics and
one in mathematics, both of which are areas of active current research.

4.1. In Mathematics. Until now, all the mathematical functions that we
dealt with are called transcendental functions, i.e. a class of functions that
do not satisfy a polynomial equation. This makes them analytically rich,
but at the same time rather difficult to study. Therefore, mathematicians
are working on whether solutions to the Heun equation can be obtained by
functions that are not transcendental. It is also interesting to see whether
the theory of Heun equations can shed light on other differential equations
that are also known to have transcendental solutions.

One of the methods of doing so has been pioneered by Takemura(see
[20, 21] and references therein). In [20], the Hermite-Krichever Ansatz,
which essentially deals with solutions of a differential equation as a finite
series in the derivatives of an elliptic function, was applied to the Heun
equation which provided useful formulas for reduction of hyperelliptic to
elliptic integrals. This was done by studying the monodromy behaviour
(behaviour near the singularity of the equation) of two singularities of the
Heun equation. In [21], the aforementioned result was generalised to a
broader class of Fuchsian equations that contained additional (removable)
singularities as compared to the Heun equation. By performing an elliptic
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transformation to this class, which preserves the monodromy behaviour of
the equations, and by utilising the Hermite-Krichever Ansatz, the equation
was converted to a Painleve-VI equation, that has applications in advanced
mathematical physics.

This relationship between Heun equations and Painlevé equations has
been extensively studied in [17, 18, 19].

4.2. In Physics. In addition to obtaining exactly solvable quantum me-
chanical potentials, another active area of research in the applicability of
hypergeometric functions to physics is in black hole perturbation theory.
While the complete treatment of this subject is beyond the scope of this
paper, we briefly mention the important points. The perturbation dynamics
of a Kerr Black Hole (a rotating black hole which is obtained as a solution
of Einstein’s General Relativity equations) by a particle with any spin value
(s = 0,1/2,1,3/2) are governed by the Teukolsky Equation [22]. It has been
shown that the Teukolsky equation for Kerr Black Holes can be analyti-
cally solved by using confluent Heun functions [4]. This has proved to be
extremely crucial for studying quantities of astrophysical relevance, in par-
ticular quasinormal modes [5, 6]. A detailed treatment of the matter is
given in [4].

5. Conclusion

In this paper, we have described the application of hypergeometric func-
tions, in particular as solutions to Heun equations, in obtaining exactly
solvable potentials for the Schrödinger’s equation. This demonstrates the
analytical richness of these functions. Furthermore, their applications in
modern mathematics and black hole astrophysics are discussed to motivate
further research in their applicability.
Acknowledgement: The author is grateful to the anonymous referee for
their constructive feedback which significantly improved the quality of the
manuscript.
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Abstract. In this paper, we study Hurwitz complex continued frac-
tion (HCCF) expansion of some complex quadratic irrationals. We ob-
served that some complex quadratic irrationals can be expanded into
two HCCFs. On comparing the Hurwitz complex continued fraction
with simple continued fraction of any real quadratic irrational, it was
found that there are differences between the two.

1. Introduction

Definition 1.1. A simple continued fraction (infinite) or regular continued
fraction [2, 3, 8, 9] is defined as an expression of the form,

a0 +
1

a1 +
1

a2 +
1

...

(1.1)

where a0 ∈ Z and ak ∈ N ∀ k = 1, 2, 3, ..

In short, it is written as x = [a0; a1, a2, ...]. A finite simple contin-
ued fraction (or a terminating regular continued fraction) has only a finite
number of terms and it is written as

[a0; a1, ..., an] = a0 +
1

a1 +
1

...+
1

an

(1.2)

Simple continued fraction is best described from Euclidean algorithm (in
real numbers) [9]: The Euclidean algorithm, also called Euclid’s algorithm,
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is an algorithm for finding the greatest common divisor (gcd) [4, 8, 9], of
two numbers a ∈ N and b ∈ N: there exist q, r ∈ N such that a = bq + r;
0 ≤ r < b.

A truncated simple continued fraction [a0; a1, a2, ..., ak], 0 ≤ k <∞ (or,
0 ≤ k ≤ n, in case of finite simple continued fraction) is called the kth

convergent of the continued fraction which we denote it as Ck or
pk
qk

where

pk, qk can be determined recursively as follows [8, 9]:

p0 = a0, p1 = a0a1 + 1, pm+1 = am+1pm + pm−1

q0 = 1, q1 = a1, qm+1 = am+1am + am−1 for allm ≥ 1.

The terms a0, a1, ..., an, ... are called partial quotients or partial denom-
inators of the simple continued fraction.

Convergents of a simple continued fraction (finite or infinite) satisfy the
following condition:

pkqk−1 − pk−1qk = (−1)k−1 for all 0 ≤ k <∞.

The following are the important properties from simple continued frac-
tion [8, 9]:

Theorem 1.2. The sequence {qn}n≥2 of denominators of convergents
pn
qn

is a strictly increasing sequence.

Theorem 1.3. Any finite simple continued fraction represents a rational
number. Conversely, any rational number p/q can be expressed as finite
simple continued fraction in exactly two ways one with the last term greater
than 1 and the other with the last term equals to 1.

Theorem 1.4. Every infinite simple continued fraction (non-terminating
regular continued fraction) represents (converges to) a positive irrational
number and to every positive irrational number there is a unique infinte
simple continued fraction converging to that number.

An infinite simple continued fraction [a0; a1, ..., ak, ...] is periodic if ∃n ∈
N such that ar = an+r for all sufficiently large r [8, 9]. We denote it as,

z = [a0; a1, ..., ar−1, ar, ar+1, ..., ar+n−1]
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The minimum number of the repeating terms of a periodic continued frac-
tion is called the period (period length) of the continued fraction, which we
denoted by l.

A real number x is called a quadratic irrational, if x is the irrational
solution of a quadratic equation ax2+ bx+ c with rational coefficients a, b, c
[8].

Theorem 1.5. A real number x is quadratic irrational if and only if, its
simple continued continued fraction expansion is periodic.

Euclidean algorithm for Gaussian integers, is the algorithm to compute
gcd of two or more Gaussian integers. It is briefly discussed as [1, 4]:

Let p, q ∈ G, not both zero, suppose one of them is zero, without loss of
generality let q = 0 then gcd(p, q) = p. Suppose both of them are not zero,

arrange p, q such that |p| ≥ |q|, we define g, a Gaussian integer as g =

[
p

q

]
where [u] := [Re(u)] + i[Im(u)] is the Gaussian integer nearest to u. We
then compute pairs (pj+1, qj+1) successively as (pj+1, qj+1) := (qj , pj − gqj)
with (p0, q0) = (p, q) the process is carried on, if at some k ∈ N we have
qk = 0 then we stop. We clearly see that this is a fast algorithm since,

|pj+1qj+1| ≤
1√
2
|pjqj | [1, 4].

For example, consider two Gaussian integers 219+47i and 67−59i. Now,

g =

[
p

q

]
=

[
219 + 47i

67− 59i

]
= 1+2i, then, (p1, q1) = (67−59i, 34−28i). Again,

g =

[
p1
q1

]
=

[
67− 59i

34− 28i

]
= 2. We then have, (p2, q2) = (34 − 28i,−1 − 3i)

now, g =

[
p2
q2

]
=

[
34− 28i

−1− 3i

]
= 5 + 13i. (p3, q3) = (−1− 3i, 0). Therefore,

gcd(219+47i, 67−59i) = −1−3i. Gcd of a pair of Gaussian integers is not
unique, if d is one of the gcd of a pair of Gaussian integers then −d, id,−id
are also gcds of that given pair.

From the idea of computing gcd of Gaussian integers, we understand
the theory of Hurwitz complex continued fraction. The Hurwitz complex
continued fraction (HCCF) was developed by Hurwitz from an algorithm
which we now known as Hurwitz algorithm [4, 5, 10]:
Hurwitz start from a random complex number z 6= 0, to obtained the equa-
tions a0 = [z] ([z] := [Re(z)] + i[Im(z)]), with z0 = z − a0 and an = [z−1n−1];
zn = z−1n−1 − an ∀n ≥ 1, the process is continued indefinitely if z is not
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a complex rational and the complex continued fraction (which we abbrevi-
ated as HCCF) is infinite, we denote it as [a0; a1, ..., ak, ...]. If z is a complex
rational i.e. z ∈ Q(i), the algorithm terminates and the HCCF is a finite
complex continued fraction also called finite HCCF. The Hurwitz complex
continued fraction (infinite) is given by the expression

z = a0 +
1

a1 +
1

a2 +
1

...

(1.3)

and we say that HCCF of z is [a0; a1, ..., an, ...].
When the input z is a real number, the Hurwitz algorithm is commonly

known as the nearest integer algorithm and the continued fraction developed
is a regular continued fraction in terms of ordinary integers [4].

Definition 1.6. A complex number z is called a complex quadratic irra-
tional, if z is the irrational solution of a quadratic equation az2 + bz + c

with complex rational coefficients a, b, c [8].

Definition 1.7. Sign of a real number is defined as

sign : R −→ {−1, 0, 1}

sign(x) =


−1, x < 0

0, x = 0

1, x > 0

Remark 1.8.
√
a+ ib = ±(α + iβ) a, b ∈ R, where α =

√
a+
√
a2 + b2

2

and β = sign(b)

√
−a+

√
a2 + b2

2
.

In Hurwitz complex continued fraction, partial quotients, convergents
and other terms are also defined in the same manner as in simple continued
fraction.

An infinite HCCF [a0; a1, ..., ak, ...] is periodic if ∃n ∈ N such that ar =
an+r for all sufficiently large r [5, 11]. We denote it as,

z = [a0; a1, ..., ar−1, ar, ar+1, ..., ar+n−1]

The minimum number of the repeating terms of a periodic HCCF is called
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the period (period length) of the continued fraction, usually denoted by l.
A complex quadratic irrational has periodic HCCF and vice versa [6, 7].

2. HCCF of some complex quadratic irrationals

In this section, we study Hurwitz complex continued fraction of some
specific complex quadratic irrational

√
D and found interesting properties.

Following are some results and properties for some specific values of D:

Proposition 2.1. Let D = k2 + i; k ≥ 1 is integer.

(1) HCCFs of
√
k2 + i are

[
k;−2ki, 2k

]
and,

[
−k; 2ki,−2k

]
and period

length is l = 2.
(2) The convergents of the HCCFs are:

p0
q0

= ±
(
k

1

)
,
p1
q1

= ±
(
−2k2i+ 1

−2ki

)
,
p2
q2

= ±
(
−4k3i+ 3k

−4k2i+ 1

)
, ...

Proof. Let α =
√
k2 + i = a+ ib, where a, b ∈ R; solving for a and b we get,

a2 =
k2 +

√
k4 + 1

2
and b2 =

−k2 +
√
k4 + 1

2
and so, a = ±

√
k2 +

√
k4 + 1

2

and b = ±
√
−k2 +

√
k4 + 1

2
. �

Example 2.2. Consider D = 1 + i

(1) Here z =
√
1 + i = ±

(√
1 +
√
2

2
+

√
−1 +

√
2

2

)
. Without loss of

generality, let us consider only ′+′ sign. Therefore, a0 := [z] = 1,
z0 := z − a0 =

√
1 + i − 1 which gives z−10 = (−i)(

√
1 + i + 1) so

that, a1 := [z−10 ] = −2i, z1 := z−10 − a1 = i(1 −
√
1 + i) which

gives z−11 =
√
1 + i + 1 so that, a2 := [z−11 ] = 2, z2 := z−11 − a2 =√

1 + i − 1 = z0 which gives a3 = a1. Hence, HCCFs of
√
1 + i are[

1;−2i, 2
]
and,

[
− 1; 2i,−2

]
and period length is l = 2.

(2) The convergents of the HCCFs are:
p0
q0

= ±1, p1
q1

= ±
(
−2i+ 1

−2i

)
,
p2
q2

= ±
(
−4i+ 3k

−4i+ 1

)
, ...

Proposition 2.3. Let D = k2 − i; k ≥ 1 is integer.

(1) HCCFs of
√
k2 − i are

[
k; 2ki, 2k

]
and,

[
− k;−2ki,−2k

]
period

length is l = 2.
(2) The convergents of the HCCFs are:

p0
q0

= ±
(
k

1

)
,
p1
q1

= ±
(
2k2i+ 1

2ki

)
,
p2
q2

= ±
(
4k3i+ 3k

4k2i+ 1

)
, ...
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Proof. The proof can be referred from proposition 2.1. �

Example 2.4. Consider D = 4− i

(1) Here z =
√
4− i = ±

(√
4 +
√
17

2
+

√
−4 +

√
17

2

)
. Without loss

of generality, let us consider only ′+′ sign. Therefore, a0 := [z] = 2,
z0 := z − a0 =

√
4− i − 2 which gives z−10 = (i)(

√
4− i + 2) so

that, a1 := [z−10 ] = 4i, z1 := z−10 − a1 = i(
√
4− i − 2) which gives

z−11 =
√
4− i + 2 so that, a2 := [z−11 ] = 4, z2 := z−11 − a2 =√

4− i − 2 = z0 which gives a3 = a1. Hence, HCCFs of
√
4− i are[

2; 4i, 4
]
and,

[
− 2;−4i,−4

]
and period length is l = 2.

(2) The convergents of the HCCFs are:
p0
q0

= ±
(
2

1

)
,
p1
q1

= ±
(
8i+ 1

4i

)
,
p2
q2

= ±
(
32i+ 6

16i+ 1

)
, ...

Corollary 2.5. Let D = −k2 + i; k ≥ 1 is integer.

(1) HCCF of
√
−k2 + i is

[
ki; 2k, 2ki

]
, period length is l = 2.

(2) The convergents of the HCCF are:
p0
q0

=
ki

1
,
p1
q1

=
2k2i+ 1

2k
,
p2
q2

=
(−4k3 + 3ki)

4k2i+ 1
, ...

Proof. Let α =
√
−k2 + i = a + ib, where a, b ∈ R; solving for a and

b we get, a2 =
−k2 +

√
k4 + 1

2
and b2 =

k2 +
√
k4 + 1

2
and so, a =

±
√
−k2 +

√
k4 + 1

2
and b = ±

√
k2 +

√
k4 + 1

2
.

Further steps can be proceeded in the same way as in proposition 2.1. �

Corollary 2.6. Let D = −k2 − i; k ≥ 1 is integer.

(1) HCCF of
√
−k2 − i is

[
ki;−2k, 2ki

]
, period length is l = 2.

(2) The convergents of the HCCF are:
p0
q0

=
ki

1
,
p1
q1

=
−2k2i+ 1

−2k
,
p2
q2

=
(4k3 + 3ki)

−4k2i+ 1
, ...

Proof. Let α =
√
−k2 − i = a + ib, where a, b ∈ R; solving for a and

b we get, a2 =
−k2 +

√
k4 + 1

2
and b2 =

k2 +
√
k4 + 1

2
and so, a =

±
√
−k2 +

√
k4 + 1

2
and b = ±

√
k2 +

√
k4 + 1

2
. Note that real numbers

a and b can be chosen in such a way that, ab < 0.
Further steps can be proceeded as referred to proposition 2.1. �
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Theorem 2.7. Let D ∈ G, then HCCF of a complex quadratic irrational√
D is [a0; 2a0], if and only if D = a20 + 1 and D 6= 0.

Proof. Given, HCCF of
√
D is [a0; 2a0], let θ = [2a0], then we have a qua-

dratic equation with complex integral coefficients,

θ2 − 2a0θ − 1 = 0 so that, θ =
−1

a0 −
√
a20 + 1

which implies that,
√
D =

a0 +
1

θ
=
√
a20 + 1, that is, D = a20 + 1.

Conversely, let D = a20 + 1, by Hurwitz algorithm, a0 = [
√
D], z0 =√

a20 + 1 − a0 and
−1
2
≤ Re(z0), Im(z0) <

1

2
, so, z−10 =

√
a20 + 1 + a0

which implies, a1 = 2a0 and z1 =
√
a20 + 1− a0 = z0.

Hence, HCCF of
√
D is [a0; 2a0].

�

Corollary 2.8. (1) If a0 = k ∈ N, then HCCF of
√
k2 + 1 is

[
k; 2k

]
,

period length is l = 1.
(2) The convergents of the HCCF are:

p0
q0

=
k

1
,
p1
q1

=
2k2 + 1

2k
,
p2
q2

=
(4k3 + 3k)

4k2 + 1
, ...

Corollary 2.9. (1) If a0 = ki, 1mmk ∈ N, then HCCF of
√
a20 + 1 is[

ki; 2ki
]
, with period length l = 1.

(2) The convergents of the HCCF are:
p0
q0

=
ki

1
,
p1
q1

=
−2k2 + 1

2ki
,
p2
q2

=
(−4k3 + 3k)i

−4k2 + 1
, ...

Theorem 2.10. Let D ∈ G, then HCCF of a complex quadratic irrational√
D is [a0;−2a0, 2a0], if and only if D = a20 − 1 and D 6= 0.

Corollary 2.11. Let D = (k2 − 1), k ≥ 2.

(1) HCCF of
√
k2 − 1 is

[
k;−2k, 2k

]
or, [−k; 2k,−2k], period length is

l = 2.
(2) The convergents of the HCCF are:

p0
q0

=
k

1
,
p1
q1

=
−2k2 + 1

−2k
,
p2
q2

=
(−4k3 + 3k)

−4k2 + 1
, ...

Proof. The proof can be referred from proposition 2.9 and proposition 2.8.
�

Corollary 2.12. Let D = −(k2 + 1), k ≥ 1.

(1) HCCF of i
√
k2 + 1 is

[
ki;−2ki, 2ki

]
, period length is l = 2.
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(2) The convergents of the HCCF are:
p0
q0

=
ki

1
,
p1
q1

=
2k2 + 1

−2ki
,
p2
q2

=
(4k3 + 3k)i

4k2 + 1
, ...

Theorem 2.13. Let D ∈ G, then HCCF of a complex quadratic irrational√
D is [a0; a0, 2a0], if and only if D = a20 + 2 and D 6= −2, 1.

Corollary 2.14. Let D = (k2 + 2), k ∈ N, k ≥ 2.

(1) HCCF of
√
k2 + 2 is

[
k; k, 2k

]
, period length is l = 2.

(2) The convergents of the HCCF are:
p0
q0

=
k

1
,
p1
q1

=
k2 + 1

k
,
p2
q2

=
(2k3 + 3k)

2k2 + 1
, ...

Corollary 2.15. Let D = −(k2 − 2), k ∈ N, k > 2. Then

(1) HCCF of i
√
k2 − 2 is

[
ki; ki, 2ki

]
, period length is l = 2.

(2) The convergents of the HCCF are:
p0
q0

=
ki

1
,
p1
q1

=
−k2 + 1

ki
,
p2
q2

=
(−2k3 + 3k)i

−2k2 + 1
, ...

Theorem 2.16. Let D ∈ G, then HCCF of a complex quadratic irrational√
D is [a0;−a0, 2a0], if and only if D = a20 − 2 and D 6= −3,−2, 1.

Corollary 2.17. If a0 = ki, D = −(k2 + 2), k ≥ 2. Then

(1) HCCF of i
√
k2 + 2 is

[
ki;−ki, 2ki

]
, period length is l = 2.

(2) The convergents of the HCCF are:
p0
q0

=
ki

1
,
p1
q1

=
k2 + 1

−ki
,
p2
q2

=
(2k3 + 3k)i

2k2 + 1
, ...

Theorem 2.18. Let D ∈ G, the HCCF of
√
D is [a0; 2, 2a0], if and only if

D = a20 + a0 and D 6= 0.

Corollary 2.19. If a0 = k ∈ N, then HCCF of
√
D =

√
k2 + k is [k; 2, 2k].

Corollary 2.20. If a0 = ±ki, k ∈ N, then HCCF of
√
D =

√
−k2 + ki is

[ki; 2, 2ki] or, [−ki;−2,−2ki].

Corollary 2.21. The HCCF of
√
D =

√
−k2 − ki is [ki;−2, 2ki] or,

[−ki; 2,−2ki].

Proposition 2.22. Let D = −(k2 + k), k ≥ 1.

(1) HCCF of i
√
k2 + k is

[
ki;−2i, 2ki

]
, period length is l = 2.

(2) The convergents of the HCCF are:
p0
q0

=
ki

1
,
p1
q1

=
2k + 1

−2i
,
p2
q2

=
(4k2 + 3k)i

4k + 1
, ...
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Example 2.23. Let us consider k = 2, then D = −6.

Now z = i
√
6, a0 := [z] = 2i, z0 = z−a0 = i(

√
6−2), z−10 =

−i(
√
6 + 2)

2
so

that, a1 := [z−10 ] = −2i, z1 = z−10 − a1 =
−i(
√
6− 2)

2
, z−11 = i(

√
6 + 2) so

that, a2 := [z−11 ] = 4i, z2 = z−11 − a2 = i(
√
6− 2) = z0, this gives, a3 = a1.

Hence, HCCF of i
√
6 is [2i;−2i, 4i].

The convergents of the HCCF are:
p0
q0

=
2i

1
,
p1
q1

=
5

−2i
,
p2
q2

=
22i

9
, ...

Theorem 2.24. Let k ∈ N, then HCCF of
√
D is [k(1 + i); 2k, 2k(1 + i)],

if and only if D = 1 + (2k2 + 1)i.

Corollary 2.25. The HCCF of
√
−1 + i(2k2 − 1) is [k(1+i);−2k, 2k(1 + i)].

Proof. HCCF of z =
√
D be z = [k(1+i); 2k, 2k(1 + i)], let θ = [−2k, 2k(1 + i)],

then we have a quadratic equation with complex integeral coefficients

(1 + i)θ2 + 2k(1 + i)θ + 1 = 0 so that, θ =
−k(1 + i)±

√
−1 + i(2k2 − 1)

(1 + i)

θ =
−1

k(1 + i)±
√
−1 + i(2k2 − 1)

then, z = ±
√
−1 + i(2k2 − 1) which implies that, D = z2 = −1+i(2k2−1).

�

Theorem 2.26. Let k ∈ N, k 6= 1, then HCCF of
√
D is

[k(1 + i); 2ki, 2k(1 + i)], if and only if D = 1 + (2k2 − 1)i.

Corollary 2.27. Let k ∈ N, the HCCF of
√
−1 + i(2k2 + 1) is [k(1 +

i);−2ki, 2k(1 + i)] and conversely.

Proof. Let HCCF of z =
√
D be z = [k(1 + i);−2ki, 2k(1 + i)], let θ =

[−2ki, 2k(1 + i)], then we have a quadratic equation with complex integeral
coefficients

(1 + i)θ2 + 2ki(1 + i)θ + i = 0 so that, θ =
−ki(1 + i)±

√
1− i(2k2 + 1)

(1 + i)

θ =
1

±i
√
1− i(2k2 + 1)− k(1 + i)

then, z = ±i
√
1− i(2k2 + 1) which implies that, D = z2 = −1+ i(2k2+1).

�

Theorem 2.28. Let k ∈ N, if the HCCF of
√
D is [k(1 + i); k, 2k(1 + i)],

then D = 2 + 2i(k2 + 1).
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Proof. Given, HCCF of z is [k(1 + i); k, 2k(1 + i)], k ∈ N. Let
θ = [k, 2k(1 + i)], then we have a binary quadratic equation with com-
plex integral coefficients (in θ), 2(1 + i)θ2 − 2k(1 + i)θ − 1 = 0 so that,

θ =
k(1 + i)±

√
2 + 2i(k2 + 1)

2(1 + i)
=

−1
k(1 + i)±

√
2 + 2i(k2 + 1)

, we have

z = k(1 + i) +
1

θ
= ±

√
2 + 2i(k2 + 1). Hence, D = 2 + 2i(k2 + 1).

�

Theorem 2.29. Let k ∈ N, k 6= 1, if the HCCF of
√
D is

[k(1 + i);−k, 2k(1 + i)], then D = −2 + 2(k2 − 1)i.

Proof. Given, HCCF of z is [k(1 + i);−k, 2k(1 + i)], k ∈ N. Let θ =

[−k, 2k(1 + i)], then we have a binary quadratic equation with complex
integral coefficients (in θ), 2(1 + i)θ2 + 2k(1 + i)θ + 1 = 0 so that, θ =

k(1 + i)±
√
−2 + 2i(k2 − 1)

2(1 + i)
=

−1
k(1 + i)±

√
−2 + 2i(k2 − 1)

, we have z =

k(1 + i) +
1

θ
= ±

√
−2 + 2i(k2 − 1). Hence, D = −2 + 2i(k2 − 1). �

The above expansion of complex quadratic irrationals is necessary for
us to study Pell’s equation in Gaussian integers. For example, does a Pell’s
equation x2+6y2 = 4 has solution in Gaussian integers? The answer is yes.

Example 2.30. Here, Pell’s equation x2 + 6y2 = 4. We find HCCF of
√
D = i

√
6 is [2i;−2i, 4i], here, convergents are

p0
q0

=
2i

1
,
p1
q1

=
5

−2i
,
p2
q2

=

22i

9
, ...

We have, p20 + 6q20 = 2, p21 + 6q21 = 1, p22 + 6q22 = 2,..., hence, one of the
solutions of Pell’s equation x2 + 6y2 = 4 is (p1, 2q1).

Concluding comments

Throughout this paper we have seen Hurwitz complex continued frac-
tion expansion of different types of complex quadratic irrationals and their
periodic behaviors, these HCCF expansions will help us study the complex
theory of Pell’s equation, that is, the study of Pell’s equation in Gaussian
integers, as well as binary quadratic forms with complex integral coefficients.
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Abstract. In this paper, we first present Bernstein’s proof of the
Weierstrass approximation theorem using probabilistic arguments. We
then apply the method to develop approximations for a Dirichlet se-
ries on the critical strip. We prove two limit theorems, the first one
by considering sums of independent Bernoulli random variables, and
the second one by looking at sums of independent geometric random
variables.

1. Introduction

The Riemann Hypothesis (see [1]) is the conjecture that the Rie-
mann zeta function has its zeros only at the negative even integers and
complex numbers with real part equal to ½. It is considered to be one of the
most important unsolved problems in Mathematics. It is of great interest in
number theory as it has important connections to the distribution of prime
numbers. It was proposed by Bernhard Riemann in 1859, after whom it is
named. The Riemann zeta function ζ(s) is a function whose argument s
may be any complex number other than 1, and whose values are also com-
plex. It has zeros at the negative even integers -2, -4, -6,. . . , which are called
the trivial zeros. However, these are not the only values for which ζ (s) = 0,
and the other ones are called the non-trivial zeros. The Riemann hypoth-
esis is concerned with the locations of these non-trivial zeros, and it states
that the real part of every non-trivial zero of the Riemann zeta function is ½.
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Dirichlet series may be regarded as natural generalizations of the Rie-
mann zeta function, and one may ask for the locations of the zeros of these
closely related Dirichlet series. In this context, the Dirichlet eta function,
also called the alternating zeta function, plays a prominent role. This pa-
per makes approximations to a certain Dirichlet series using probabilistic
arguments, and one can now ask for the locations of the zeros of these
approximating polynomials and functions.

2. Preliminaries

In this section, we state and prove the Weierstrass approximation the-
orem. The proof is due to Bernstein and may be found in [2]. Another
exposition of Bernstein’s proof may also be found in [3]. We present some
preliminaries from probability theory that we will need, such as Chebyshev’s
inequality and some results concerning Bernoulli random variables.

Chebyshev’s Inequality: For c ≥ 0 and X ∈ L2, we have

c2P (|X − µ| > c) ≤ V ar (X) ,

where µ = E [X].

Bernoulli random variables: We consider a sequence {Xn} of indepen-
dent and identically distributed Bernoulli random variables (IID RVs) with
values in {0, 1}, with

p = P (Xn = 1) = 1− P (Xn = 0) .

Then, evidently, E [Xn] = p and V ar [Xn] = p(1−p) ≤ 1
4 . Now consider

sums of IID Bernoulli RVs of the form

Sn = X1 +X2 + · · ·+Xn.

Then, Sn is known to have a binomial distribution with expectation
np and variance np(1 − p) ≤ n

4 . Furthermore, we have E
[
Sn
n

]
= p and

V ar
[
Sn
n

]
= 1

n2V ar [Sn] ≤ 1
4n . Chebyshev’s inequality then readily yields

P

(∣∣∣∣Snn − p
∣∣∣∣ > δ

)
≤ 1

δ2
V ar

[
Sn
n

]
≤ 1

4nδ2
.
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With these in hand, we now state the following theorem, due to Weier-
strass.

Weierstrass Approximation Theorem: If f is a continuous function on
[0, 1] and ε > 0, then there exists a polynomial B such that

sup

x ∈ [0, 1]
|B(x)− f(x)| ≤ ε.

Proof: Consider a sequence {Xn} of IID Bernoulli RVs, and let

Sn = X1 +X2 + · · ·+Xn.

Then, the probability of k successes in n Bernoulli trials is given by the
binomial probability

P (Sn = k) =

(
n

k

)
pk (1− p)n−k , k = 0, 1, . . . n. (2.1)

From (2.1), we define the following polynomial of degree n:

Bn (p) = E

[
f

(
Sn
n

)]
=

n∑
k=0

f

(
k

n

)(
n

k

)
pk(1− p)n−k,

with ‘B’ being in deference to Bernstein, whose proof we are presenting.

Now, f is bounded on [0, 1], for there is a K such that |f(y)| ≤ K for
all y ∈ [0, 1]. Also, f is uniformly continuous on [0, 1]; for given ε > 0, there
exists a δ > 0 such that

|x− y| ≤ δ implies that |f (x)− f(y)| < 1

2
ε. (2.2)

Now, for p ∈ [0, 1],

|Bn (p)− f(p)| =
∣∣∣∣E{f (Snn

)
− f(p)

}∣∣∣∣ .
Let us write Yn =

∣∣f (Sn
n

)
− f(p)

∣∣ and Zn =
∣∣Sn
n − p

∣∣. Then, Zn ≤ δ

implies that Yn < 1
2ε. Moreover, we note that Bn(p) is a bounded function

on [0, 1] since
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|Bn(p)| ≤
n∑

i=0

K ·

(
n

i

)
pi (1− p)n−i = K · (p+ (1− p))n = K.

Thus, we have, by conditioning on Zn:

|Bn (p)− f (p)| ≤ E [Yn]

= E [Yn| Zn ≤ δ]P (Zn ≤ δ) + E [Yn| Zn > δ]P (Zn > δ)

≤ 1

2
ε P (Zn ≤ δ) + 2K P (Zn > δ)

≤ 1

2
ε+ 2K · 1

4nδ2
,

where the last inequality follows from Chebyshev’s inequality, as out-
lined above.

Earlier, we chose a fixed δ in (2.2). We can now choose n so that

2K

4nδ2
<

1

2
ε.

Then, |Bn (p)− f(p)| < ε for all p ∈ [0, 1], which completes the proof.

3. Application to approximation of Dirichlet series

In this section, we again consider a sequence of independent and iden-
tically distributed Bernoulli random variables, and use the Strong Law of
Large Numbers to make estimates of a Dirichlet series related to the Rie-
mann zeta function. We first state the Strong Law of Large Numbers, which
can be found in many textbooks like [2].

Strong Law of Large Numbers: Let X1, X2, . . . , Xn be IID random
variables with a finite expected value E[Xi] = µ < ∞, and let Sn = X1 +

X2 + · · ·+Xn. Then,

P

(
Sn
n
→ µ

)
= 1 or

Sn
n
→ µ almost surely.

Before continuing with our probabilistic arguments, we first describe
some preliminaries from number theory that we need, for subsequent devel-
opments.
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Preliminaries from Number Theory: Let

ζ (s) =
∑
m≥1

1

ms
(3.1)

be the Riemann zeta function, where s is a complex variable. It is known
(see [4]) that (3.1) converges only for Re(s) > 1, but we are interested in
approximating the zeta function on the critical strip, 0 < Re(s) < 1. We
wish to work with a Dirichlet series that converges on 0 < Re(s) < 1, and
for this reason we consider the Dirichlet eta function, defined as (see [5])

η (s) =
∑
m≥1

(−1)m+1

ms
. (3.2)

The Dirichlet eta function is also known as the alternating zeta function,
and (3.2) is convergent (albeit not absolutely) for any complex number s
with Re(s) > 0. The following relation holds between the Dirichlet eta
function and the Riemann zeta function, as conjectured by Euler in 1749
(see [4]):

η (s) =
(
1− 21−s

)
ζ (s) . (3.3)

From (3.3), we see that the zeros of the eta function include all the
zeros of the zeta function. The factor of 1 − 21−s adds an infinite number
of complex simple zeros sn, with

sn = 1 +
2nπi

log 2
,

where n is any non-zero integer. We are interested in the zeros of η(s)
in the critical strip, 0 < Re(s) < 1. We do not work with the eta function
directly, but we consider instead the following closely related Dirichlet series:

f (s, a) =
∑
m≥1

am+1

ms
, |a| ≤ 1. (3.4)

The parameter a interpolates between η(s) and ζ(s), and in particular
f (s,−1) = η(s) and f (s, 1) = ζ (s). We are now interested in the domain
of convergence of f(s, a), and so we state the following convergence theorem
for Dirichlet series (see [6]).
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Theorem: Consider an arbitrary sequence {am} of complex numbers, and
consider also the following Dirichlet series formed from this sequence:

f (s) =
∑
m≥1

am
ms

.

Regard f as a function of the complex variable s. If the set of sums

am + am+1 + · · ·+ am+k

is bounded for all m and k ≥ 0, then the Dirichlet series converges on the
open half plane of s such that Re(s) > 0.

In (3.4), this convergence condition is satisfied for a = −1, |a| < 1, but
not for a = 1, the case of the Riemann zeta function. Having |a| < 1 is very
useful for the convergence properties of the series that are discussed below.

We let

fM (s, a) =

M∑
m=1

am+1

ms
(3.5)

be the sum of the first M terms of the series in (3.4), and we use
(3.5) in the arguments that follow. We will specifically use the Strong Law
of Large Numbers to make approximations to (3.5) on the critical strip,
0 < Re(s) < 1.

Returning to our probabilistic arguments, we now consider, in analogy
with the Bernstein polynomials of Section 2, the following expected value
of fM :

E

[
fM

(
Sn
n
, a

)]
, (3.6)

where Sn is the sum of n IID Bernoulli RVs, as in the preceding section.
The first step is to evaluate (3.6) using the Strong Law of Large Numbers.
Thus,
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lim
n→∞

E

[
fM

(
Sn
n
, a

)]
= E

[
lim
n→∞

fM

(
Sn
n
, a

)]
= E [fM (p, a)]

= fM (p, a) =
M∑

m=1

am+1

mp
(3.7)

On the other hand, we can evaluate (3.6) directly, using the binomial
distribution of Sn, as follows:

E

[
fM

(
Sn
n
, a

)]
=

n∑
k=0

fM

(
k

n
, a

)
P (Sn = k)

=
n∑

k=0

(
M∑

m=1

am+1

m
k
n

)(
n

k

)
pk(1− p)n−k. (3.8)

Interchanging the sums, we obtain:

M∑
m=1

am+1
n∑

k=0

1(
m

1
n

)k(nk
)
pk(1− p)n−k

=

M∑
m=1

am+1
n∑

k=0

(
n

k

)(
p ·m

−1
n

)k
(1− p)n−k

=
M∑

m=1

am+1
(
p ·m

−1
n + (1− p)

)n
, (3.9)

from the binomial theorem. Observe that the last line of (3.9) is a poly-
nomial in p of degree n. We may realize (3.7) by taking the limit as n→∞
of (3.9). Thus, we have established the following result.

Theorem 1:

M∑
m=1

am+1

mp
= lim

n→∞

M∑
m=1

am+1
(
p ·m

−1
n + (1− p)

)n
. (3.10)

Now, (3.10) is valid for all p ∈ [0, 1], but we may extend this domain
of convergence by taking the limit term by term in (3.10). Firstly, we note
that
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m
−1
n = e(logm)−1

n = 1− logm

n
+O

(
1

n2

)
,

and so

lim
n→∞

(
p ·m

−1
n + (1− p)

)n
= lim

n→∞

(
p

(
1− logm

n
+O

(
1

n2

))
+ (1− p)

)n

= lim
n→∞

(
1− p · logm

n
+O

(
1

n2

))n

= lim
n→∞

(
1− p · logm

n

) n
p·logm

p·logm
= e−p·logm = m−p. (3.11)

This argument does not depend on p ∈ [0, 1] and is valid for all p ∈ C,
and so (3.10) is true for any complex number p. Now, let

gM (x, a) =

M∑
m=1

am+1
(
x ·m

−1
n + (1− x)

)n
. (3.12)

As gM (x, a) is a polynomial of degree n, it would be prudent to inves-
tigate its zeros in the critical strip for large n, maybe numerically. We can
simplify gM (x, a) somewhat from the binomial theorem. Note that

(ax+ (1− x))n = (1 + (a− 1)x)n =
n∑

k=0

(
n

k

)
(a− 1)kxk. (3.13)

From (3.13), it is clear that we can write (3.12) as

gM (x, a) =
M∑

m=1

am+1
n∑

k=0

(
n

k

)(
m

−1
n − 1

)k
xk.

Returning to (3.11), we can neglect O
(

1
n2

)
terms for large n, to obtain

the approximation

(
x ·m

−1
n + (1− x)

)n
≈
(
1− logm · x

n

)n

for large n. Summing over m, we can approximate gM (x, a) by hM (x, a)

for large n, where hM (x, a) is the following n-th degree polynomial:

hM (x, a) =
M∑

m=1

am+1

(
1− logm · x

n

)n

.
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It is also possible to simplify (3.9) without interchanging the sums.
Returning to (3.8) and factoring out pn, we obtain the following:

E

[
fM

(
Sn
n
, a

)]
= pn ·

n∑
k=0

(
M∑

m=1

am+1

m
k
n

)(
n

k

)(
1− p
p

)n−k
.

Equating the right hand side to zero, dividing out the factor of pn, and
letting z = 1−p

p , we obtain the following n-th degree polynomial in z:

n∑
k=0

(
M∑

m=1

am+1

m
k
n

)(
n

k

)
zn−k = 0.

It will be of interest to study the zeros of this approximating polynomial
for large values of n.

We complete this discussion by showing that gM (x, a) is a good ap-
proximation to f(x, a) for |a| < 1, or a = −1. Let f(x, a), fM (x, a), and
gM (x, a) be as given above. Given ε > 0, choose M large enough that

|f (x, a)− fM (x, a)| < ε

2
,

and choose n large enough that

|fM (x, a)− gM (x, a)| < ε

2
.

Then, it is easy to see that |f (x, a)− gM (x, a)| < ε directly from the
triangle inequality.

4. Application to sums of geometric random variables

In this section, we extend the approach in Section 3 by considering sums
of independent geometric random variables instead of Bernoulli variables.
First, we review some properties of geometric and negative binomial ran-
dom variables; see Scheaffer et al. [7] and Balakrishnan et al. [8] for details.

Geometric Random Variables: Consider a sequence of independent
Bernoulli trials with success probability p, and define X to be the num-
ber of failures prior to the first success. Then, it is clear that X has the
following distribution, where q = 1− p:
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P (X = k) = qkp, k = 0, 1, 2, . . .

It is also evident that

E [X] =
∑
k≥0

kP (X = k) =
∑
k≥0

kqkp =
q

p
.

We are now interested in sums of independent geometric random vari-
ables, and so let us consider

Sn = X1 +X2 + · · ·+Xn,

where {Xi} are IID geometric RVs. Clearly, Sn represents the number
of failures prior to the n-th success in a sequence of Bernoulli trials, and it
is known that Sn has the following negative binomial distribution:

P (Sn = k) =

(
k + n− 1

n− 1

)
pnqk, k = 0, 1, 2, . . .

We now recall the negative binomial theorem, which states that

1

(1− x)n
=
∑
k≥0

(
n+ k − 1

k

)
xk, |x| < 1.

As in Section 3, we next evaluate

E

[
fM

(
Sn
n
, a

)]
, (4.1)

using the Strong Law of Large Numbers. Thus,

lim
n→∞

E

[
fM

(
Sn
n
, a

)]
= E

[
lim
n→∞

fM

(
Sn
n
, a

)]
= E

[
fM (

q

p
, a)

]
= fM

(
q

p
, a

)
=

M∑
m=1

am+1

m
q
p

(4.2)

We now evaluate (4.1) using the distribution of Sn as follows:
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E

[
fM

(
Sn
n
, a

)]
=

∞∑
k=0

fM

(
k

n
, a

)
P (Sn = k)

=

∞∑
k=0

(
M∑

m=1

am+1

m
k
n

)(
k + n− 1

n− 1

)
pn(1− p)k.

Interchanging the sums, we obtain

M∑
m=1

am+1
∞∑
k=0

1(
m

1
n

)k(k + n− 1

n− 1

)
pn(1− p)k

=
M∑

m=1

am+1
∞∑
k=0

(
k + n− 1

n− 1

)
pn
(
1− p
m

1
n

)k

=
M∑

m=1

am+1 pn(
1− 1−p

m
1
n

)n , (4.3)

from the negative binomial theorem.

Taking the limit as n → ∞ in (4.3) and comparing to (4.2), we arrive
at the following result.

Theorem 2:

M∑
m=1

am+1

m
q
p

= lim
n→∞

M∑
m=1

am+1 pn(
1− 1−p

m
1
n

)n (4.4)

It will be of interest to study the zeros of the right hand sides of (3.10)
and (4.4) when a = −1 and for large n.

Acknowledgement: We are grateful to the referee for the comments which
improved the quality of the paper.
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Abstract. The object of the present paper is to deduce some neces-
sary and sufficient conditions for submanifolds of LP-Sasakian mani-
folds with coefficient α to be totally geodesic. Obtained resultes are
supported by illustrative examples.

1. Introduction

In differential geometry, submanifold theory has become a growing topic
of research. B. Y. Chen ([3],[4]) has done many works in this line. Invariant
and semi-invariant submanifolds has been studied by several authors ([1],
[2], [8],[15]). In general an invariant submanifold is not necessarily totally
geodesic. In the paper ([15]), the authors attempted to prove an invariant
submanifold of an LP-Sasakian manifold is totally geodesic. In the pa-
per ([16]) it has been shown that a recurrent submanifold of a Kenmotsu
manifold is totally geodesic. Keeping this works in mind, in the present
paper we would like to study invariant and totally geodesic submanifolds
of LP-Sasakian manifolds with coefficient α. For details about LP-Sasakian
manifolds with coefficient α, we refer ([7],[9],[12],[13]). LP-Sasakian mani-
folds with coefficient α are generalizations of LP-Sasakian manifolds. So our
results are more general than the results of ([15]). Submanifolds with sec-
ond fundamental form satisfying some parallelity and symmetry conditions
have been studied in ([6]). Invariant submanifolds of LP-Sasakian mani-
folds have also been studied in ([14]) and in this paper it is proved that an
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submanifolds, totally geodesic , recurrent submanifolds.
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invariant submanifold of an LP-Sasakian manifold is also LP-Sasakian.

The present paper is organized as follows : After the introduction in
Section 1, we give the required preliminaries in Section 2. In Section 3 we
show that if a 3-dimensional submanifold of an LP-Sasakian manifold with
coefficient α is invariant then it is totally geodesic. The converse is also
true. Interestingly, in Section 4, we prove that the same is not true for
4-dimensional submanifold. We prove it by an example. It is also shown
in Section 5 that in 4-dimensional case if we assume the submanifold is
invariant and recurrent then it is totally geodesic. Totally umbilical sub-
manifolds of LP-Sasakian manifolds with coefficient α have been studied
in Section 6. The last section contains the study of submanifolds whose
second fundamental forms satisfy some parallelity and pseudo symmetry
conditions.

2. preliminaries

Let M̃ be an n-dimensional real differentiable manifold of differentia-
bility class C∞ endowed with a C∞-vector valued linear function φ, a C∞-
vector field ξ, an one form η and a Lorentzian metric g of type (0, 2) such
that for each p∈M̃ , the tensor gp : TpM̃×TpM̃→R is a non-degenerate
inner product of signature (−,+,+,+,+, ......,+), where TpM̃ denotes the
tangent vector space of M̃ at p and R is the field of real numbers, which
satisfies

φ2X = X + η(X)ξ, η(ξ) = −1 (2.1)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X) (2.2)

for all vector fields X,Y tangent to M̃ . Such a structure (φ,ξ,η,g) is termed
as Lorentzian para contact structure. In Lorentzian para contact structure
the following results hold :

φξ = 0, η(φX) = 0, (2.3)

rankφ = (n− 1), (2.4)

A Lorentzian para contact manifold M̃ is called Lorentzian para-Sasakian
manifold or LP-Sasakian manifold if

(∇̃Xφ)(Y ) = g(X,Y )ξ + η(Y )X + 2η(X)η(Y )ξ, (2.5)
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∇̃Xξ = φX (2.6)

for all X,Y tangent to M̃ , where ∇̃ denotes the Levi-civita connection with
respect to g.
In the Lorentzian para contact manifold M̃ , if the relations

(∇̃ZΩ)(X,Y ) = α[{g(X,Y ) + η(X)η(Z)}η(Y )

+ {g(Y, Z) + η(Y )η(Z)}η(X)], (2.7)

Ω(X,Y ) = (1/α)(∇̃Xη)(Y ), (2.8)

hold, where, Ω(X,Y ) = Ω(Y,X) and Ω(X,Y ) = g(X,φY ) and ∇̃ denotes
the operator of covariant differentiation with respect to Lorentzian metric
g and α is a non-zero scalar function , then M̃ is called an LP-Sasakian
manifold with a coefficient α. An LP-Sasakian manifold with a coefficient
1 is an LP-Sasakian manifold.

Let M be a submanifold immersed in an n-dimensional Riemannian
manifold M̃ , we denote by the same symbol g induced metric on M . Let
TM be the tangent space of M and T⊥M is the set of all vector fields
normal to M . Then Gauss and Weingarten formulae are given by ([3])

∇̃XY = ∇XY + σ(X,Y ), (2.9)

∇̃XN = −ANX +∇⊥
XN (2.10)

for any tangent vector fields X,Y of M and normal vector fields N of M ,
where ∇⊥ is the connection in the normal bundle. The second fundamental
form σ and AN are related by

g(ANX,Y ) = g(σ(X,Y ), N). (2.11)

It is also noted that σ(X,Y ) is bilinear, and since ∇fXY=f∇XY, for a C∞

function f on a manifold we have

σ(fX, Y ) = fσ(X,Y ). (2.12)

Let us now recall the following:

Definition 2.1. Let, M̃ be an n-dimensional LP-Sasakian manifold with
coefficient α and M be a submanifold of M̃ . The submanifold M of M̃ is
said to be invariant if the structure vector field ξ is tangent to M , at every
point of M and φX is tangent to M for any vector field X tangent to M ,
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at every point on M , that is, φTM ⊂ TM at every point on M .

Definition 2.2. A submanifold of an LP-Sasakian manifold with a co-
efficient α is called totally geodesic if σ(X,Y ) = 0, for any X,Y ∈ TM .
Definition 2.3. The second fundamental form σ is said to be recurrent,
respectively, 2-recurrent if the following conditions hold :

(∇Wσ)(Y,Z) = A(W )σ(Y,Z), (2.13)

(∇U∇Wσ)(Y,Z) = B(U,W )σ(Y,Z), (2.14)

where A is a 1-form on M and B is 2-form on M .

3. Invariant submanifolds of LP-Sasakian manifolds with
coefficient α

Proposition 3.1. An invariant submanifold of an LP-Sasakian manifold
with coefficient α is also an LP-Sasakian manifold with coefficient α.
Proof: Let M̃ be an LP-Sasakian manifold with coefficient α. And also
let, M be an invariant submanifold of M̃ .
We shall prove that, M is also an LP-Sasakian manifold with coefficient α.
Since, M̃ is an LP-Sasakian manifold with coefficient α, we get

(∇̃ZΩ)(X,Y ) = α[{g(X,Z) + η(X)η(Z)}η(Y )

+ {g(Y, Z) + η(Y )η(Z)}η(X)]. (3.1)

By covariant differentiation, we get

(∇̃ZΩ)(X,Y ) = ∇̃ZΩ(X,Y )− Ω(∇̃ZX,Y )− Ω(X, ∇̃ZY ). (3.2)

Again, by (2.9)

∇̃ZΩ(X,Y ) = ∇ZΩ(X,Y )− σ(Z,Ω(X,Y )), (3.3)

∇̃ZX = ∇ZX − σ(Z,X). (3.4)

Combining (3.2),(3.3) and (3.4), we get

(∇̃ZΩ)(X,Y ) = (∇ZΩ)(X,Y ). (3.5)

Using (3.1) and (3.4), we get

(∇ZΩ)(X,Y ) = α[{g(X,Z) + η(X)η(Z)}η(Y )

+ {g(Y, Z) + η(Y )η(Z)}η(X)]. (3.6)
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This shows that, the invariant submanifoldM is also LP-Sasakian manifold
with coefficient α. Hence, the proposition follows.
Proposition 3.2. Let, M be an invariant submanifold of an LP-Sasakian
manifold M̃ with coefficient α. Then there exists two differentiable orthog-
onal distributions D and D⊥ on M such that
TM = D ⊕D⊥⊕ < ξ >, and φ(D) ⊂ D⊥, φ(D⊥) ⊂ D.

Proof. For an invariant submanifold M , ξ is tangent to M . Hence, we
can write TM = D1⊕ < ξ >. Let X1∈D1. Now g(X1, φX1) = 0 and
g(ξ,φX1)=0, so φX1 is orthogonal to X1 and ξ. Consequently, it is possible
to write D1=D⊕D⊥, where X1∈D⊂D1 and φX1∈D⊥⊂D1. For φX1∈D⊥,
we note that
φ(φX1) = φ2X1 = X1+η(X1)ξ = X1∈ D.
Let, φX1=X2∈D⊥. Hence for X1∈ D, φX1∈D⊥ and for X2∈D⊥, φX2∈D.
Hence, the proposition follows. �

Proposition 3.3. For an invariant submanifold M of an LP-Sasakian
manifold M̃ with a coefficient α , we have for the two differentiable tangent
vector fields X,Y of M
σ(X,ξ) = 0,
σ(X,φY) = φσ(X,Y) = σ(φX,Y).

Proof. ∇̃XY = ∇XY+σ(X,Y ), Putting, Y = ξ, we have

∇̃Xξ = ∇Xξ + σ(X, ξ). (3.7)

Again, for LP-Sasakian manifold with coefficient α, we get

∇̃Xξ = αφX. (3.8)

Combining (3.7) and (3.8) we get,

αφX = ∇Xξ + σ(X, ξ). (3.9)

Comparing tangential component and normal component, we get

∇Xξ = αφX and σ(X, ξ) = 0. (3.10)

Again since, ∇fXY=f∇XY, for a C∞ function f on a manifold we have,
σ(X,φY )=φσ(X,Y )=σ(φX, Y ). This completes the proof. �

Theorem 3.1. Every odd dimensional invariant submanifold of an LP-
Sasakian manifold with coefficient α is totally geodesic.
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Proof. Let us consider an odd dimensional invariant submanifold M of an
LP-Sasakian manifold M̃ with coefficient α. Then M is also LP-Sasakian
manifold with coefficient α by Proposition 3.1.
Now it is obvious that σ(X,Y ) satisfies

φ2σ(X,Y ) = σ(X,Y ) + η(σ(X,Y ))ξ. (3.11)

Let X1, Y1 ∈ D, then we have σ(X1,φY1)=φσ(X1,Y1).
Then φσ(X1,φY1)=φ2σ(X1,Y1)=σ(X1,Y1)+η(σ(X1,Y1))ξ.
Since σ(X1,Y1)∈(TM)⊥, σ(X1,Y1) is orthogonal to ξ∈TM . Hence we ob-
tain, η(σ(X1,Y1))=0. Thus we have σ(φX1,φY1)=σ(X1,Y1).
Let φX1=X2 , φY1=Y2 . We note that X2=φX1∈D⊥ and Y2=φY1∈D⊥.
Then

σ(X2, Y2) = σ(X1, Y1) (3.12)

for X1 ,Y1∈D and X2, Y2∈D⊥. Since σ is bilinear, for X1, Y1∈D and X2

,Y2∈D⊥, it follows that

σ(X1 +X2 + ξ, Y1) = σ(X1, Y1) + σ(X2, Y1) + σ(ξ, Y1), (3.13)

σ(X1 +X2 + ξ,−Y2) = −σ(X1, Y2)− σ(X2, Y2)− σ(ξ, Y2), (3.14)

σ(X1 +X2 + ξ, ξ) = σ(X1, ξ) + σ(X2, ξ) + σ(ξ, ξ). (3.15)

Keeping in mind that σ(X,ξ)=0, forX∈TM . Using (3.13), (3.14) and (3.15)
we get, by virtue of (3.12),

σ(X1 +X2 + ξ, Y1 − Y2 + ξ) = σ(X2, Y1)− σ(X1, Y2). (3.16)

Now, TM = D⊕D⊥⊕< ξ >.
So, U=X1+X2+ξ ∈ TM and V=Y1-Y2+ξ ∈ TM .
Thus, σ(U, V )=σ(X2,Y1)-σ(X1,Y2).
From the above equation it follows that
φσ(U, V )=σ(X2,φY1)-σ(φX1,Y2)=σ(X2,Y2)-σ(X2,Y2)=0.
The above equation gives φ2σ(U, V )=0. Consequently, σ(U, V )=0. �

Now we shall show that the converse is true irrespective of dimension.
Theorem 3.2. Every totally geodesic submanifold of an LP-Sasakian man-
ifold with coefficient α is invariant.
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Proof. Let, the submanifold be totally geodesic. So, σ(X,Y )=0 for any
tangent vector fields X, Y of M . Now we know that

∇̃XY = ∇XY + σ(X,Y ). (3.17)

Putting Y = ξ, we have

∇̃Xξ = ∇Xξ + σ(X, ξ). (3.18)

Again, for LP-Sasakian manifold with coefficient α, we get

∇̃Xξ = αφX. (3.19)

Since σ(X,ξ)=0, then from (3.18) and (3.19) we get

αφX = ∇Xξ. (3.20)

From (3.20) it is clear that φX∈TM . So, the submanifold is invariant. �

4. Examples

In this section we would like to construct an example of a four-dimensional
LP-Sasakian manifold with coefficient α and there on an example of two-
dimensional invariant submanifold of the manifold. We shall show that
every even dimensional submanifold of an LP-Sasakian manifold with coef-
ficient α is not necessarily totally geodesic.

Let us consider the 4-dimensional manifold M̃={(x, y, z, w)∈R4|w 6= 0},
where (x, y, z, w) are the standard coordinates in R4. The vector fields

e1 = w( ∂
∂x + y ∂

∂y ), e2 = w ∂
∂y , e3= w( ∂∂y + ∂

∂z ), e4 = w3 ∂
∂w

are linearly independent at each point of M̃ . Let, g be the Lorentzian
metric defined by

g(e1,e1)=g(e2,e2)=g(e3,e3)=1, g(e4,e4) = -1.
g(ei,ej)=0 for i 6=j and i, j = 1, 2, 3, 4.
Let, η be the 1-form defined by
η(Z)=g(Z,e4) for any Z∈ χ(M̃). Let, φ be the (1,1) tensor field defined

by
φ(e1) = e1, φ(e2) = e2, φ(e3) = e3, φ(e4) = 0.
Then using the linearity of φ and g we have

η(e4) = −1,

φ2Z = Z + η(Z)e4,

g(φZ, φW ) = g(Z,W ) + η(Z)η(W ),
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for any Z,W ∈ χ(M̃).
Then for e4 = ξ, the structure (φ, ξ, η, g) defines a Lorentzian para

contact structure on M̃ . Let, ∇̃ be the Levi-Civita connection with respect
to the Lorentzian metric g. Then we have

[e1, e2] = -we2, [e1, e3] = -we2, [e1, e4] = -w2e1,
[e2, e3] = 0, [e2, e4] = -w2e2, [e3, e4] = -w2e3.

Taking e4 = ξ and using Koszul formula for the Lorentzian metric g, we
can easily calculate the following
∇̃e1e1 = -w2e4, ∇̃e1e2 = -w2 e3, ∇̃e1e3 = -w2 e2, ∇̃e1e4 = -w2e1,
∇̃e2e1 = we2 + w

2 e3, ∇̃e2e2 = w2e4-we1, ∇̃e2e3 = -w2 e1, ∇̃e2e4 = -w2e2,
∇̃e3e1 = w

2 e2,∇̃e3e2 = -we1, ∇̃e3e3 = w2e4, ∇̃e3e4 = -w2e3,
∇̃e4e1 = 0, ∇̃e4e2 = 0, ∇̃e4e3 = 0, ∇̃e4e4 = 0.
From the above it can be easily seen that M̃4(φ, ξ, η, g) is an LP-

Sasakian manifold with a coefficient α = -w2 6= 0.
Let, f be an isometric immersion from M to M̃ defined by f(y, w) =

(0, y, 0, w). Let, M = {(y, w) ∈ R2 | w 6= 0}, where (y, w) are the standard
coordinates in R2.

The vector fields e2 = w ∂
∂y and e4 = w3 ∂

∂w are linearly independent at
each point of M .

Let, g be the Lorentzian metric defined by
g(e2,e2) = 1, g(e2,e4) = 0, g(e4,e4) = -1.
Let, η be the 1-form defined by η(Z)=g(Z,e4) for any vector field Z

tangent to M .
Let, φ be the (1,1) tensor field defined by φ(e2) = e2 and φ(e4) = 0.
Then, using the linearity of φ and g we have

η(e4) = −1,

φ2Z = Z + η(Z)e4,

g(φZ, φW ) = g(Z,W ) + η(Z)η(W )

for any vector fields Z,W tangent to M .
Then for e4 = ξ, the structure M(φ, ξ, η, g) defines a Lorentzian para

contact structure on M . Let, ∇ be the Levi-Civita connection on M with
respect to the Lorentzian metric g. Then we have [e2, e4] = -w2e2.

Taking e4 = ξ and using Koszul formula for the Lorentzian metric g, we
can easily calculate the following :
∇e2e2 = -w2e4, ∇e2e4 = -w2e2,
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∇e4e2 = 0, ∇e4e4 = 0.
We see that the M(φ, ξ, η, g) structure satisfies the formula
∇Xξ = (-w2)φX = αφX. Hence, M(φ, ξ, η, g) is a two-dimensional LP-

Sasakian manifold with a coefficient α = -w2 6= 0. It is obvious that the
manifold M under consideration is a submanifold of the manifold M̃ . Let
us take X ∈ TM , then we can write X = λe2 + µe4, where, λ, µ are
two scalars. Now, φX = φ(λe2 + µe4) = λφ(e2)+µφ(e4) = λe2 + 0 = λe2

∈ TM . Hence, the two-dimensional submanifold is invariant submanifold.
Let, U = λ1e2 + λ2e4 ∈ TM and V= µ1e2 + µ2e4 ∈ TM where, λi and µi
are scalars, i=1,2 . Then

σ(U, V ) = σ(λ1e2 + λ2e4, µ1e2 + µ2e4)

= λ1µ1σ(e2, e2) + λ1µ2σ(e2, e4) + λ2µ1σ(e4, e2) + λ2µ2σ(e4, e4).

From the values of ∇̃eiej and ∇eiej calculated before and from the relation
σ(ei, ej) = ∇̃eiej - ∇eiej , we see that, σ(e2, e2) = 2w2e4-we1 6= 0. So,
σ(U, V ) 6= 0, for all U, V ∈ TM .
So, the submanifold is not totally geodesic.
Remark 4.1. From the above example it is seen that the Theorem 3.1 is
not true for 4-dimensional manifold, the Theorem 3.1 is true only for odd
dimensional manifold. So, every even dimensional invariant submanifold
of an LP-Sasakian manifold with coefficient α is not necessarily totally ge-
odesic. In the next section we will prove that in even-dimensional case if
we assume the submanifold is invariant as well as recurrent then it will be
totally geodesic.

5. Recurrent submanifolds of LP-Sasakian manifolds with
coefficient α

A submanifold is called recurrent, if its second fundamental form is
recurrent. To prove the main theorem of this section, first we prove the
following lemma.
Lemma 5.1. Let, M be an invariant submanifold of an LP-Sasakian man-
ifold M̃ with coefficient α. Then

σ(X, ξ) = 0 and ∇Xξ = αφX.

Proof. From equation (2.9), we get
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∇̃XY = ∇XY + σ(X,Y ). (5.1)

Putting, Y=ξ, we have

∇̃Xξ = ∇Xξ + σ(X, ξ). (5.2)

Again, for LP-Sasakian manifold with coefficient α, we get

∇̃Xξ = αφX. (5.3)

Combining (5.2) and (5.3), we get

αφX = ∇Xξ + σ(X, ξ). (5.4)

Since, the submanifold is invariant then φX ∈ TM . Now comparing the
tangential and normal component, we have

σ(X, ξ) = 0 and ∇Xξ = αφX. �

Theorem 5.1. Let, M be a submanifold of an LP-Sasakian manifold M̃
with a coefficient α tangent to ξ. If M is invariant and recurrent then M
is totally geodesic.

Proof. For recurrent submanifolds we get

(∇̃Xσ)(Y,Z) = A(X)σ(Y,Z), (5.5)

where A is a 1-form on M . Again, by covariant differentiation we have

(∇̃Xσ)(Y,Z) = ∇⊥
Xσ(Y, Z)− σ(∇XY,Z)− σ(Y,∇XZ). (5.6)

Combining (5.5) and (5.6) we get

∇⊥
Xσ(Y, Z)− σ(∇XY,Z)− σ(Y,∇XZ) = A(X)σ(Y,Z). (5.7)

Taking Z = ξ in (5.7) we have

∇⊥
Xσ(Y, ξ)− σ(∇XY, ξ)− σ(Y,∇Xξ) = A(X)σ(Y, ξ). (5.8)

Using Lemma 5.1, in equation (5.8) we have

σ(Y,∇Xξ) = 0. (5.9)

Again, by Lemma 5.1, σ(Y, αφX) = 0. So for α 6= 0, σ(X,Y ) = 0. Hence
M is totally geodesic.
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The converse part of the theorem is also true. The proof of the converse
part is trivial. �

Remark 5.1. In [16], the authors studied some submanifolds of Kenmotsu
manifolds with second fundamental form satisfying some conditions. All
results of that paper has analogue in case of submanifolds of LP-Sasakian
manifolds with coefficient α. All the proofs are similar to the proof of the
above theorem.

6. Totally umbilical submanifolds of LP-sasakian manifolds
with coefficient α

Definition 6.1. A submanifold of an LP-Sasakian manifold with coefficient
α is called totally umbilical if it satisfies

σ(X,Y ) = g(X,Y )H. (6.1)

Here σ is second fundamental form of the submanifold, g is the induced
metric, H is mean curvature vector. X,Y are tangent toM [5].

In this section, we shall prove the following:
Theorem 6.1. A totally umbilical invariant submanifold of an LP-Sasakian
manifold with coefficient α is totally geodesic.

Proof. From Codazzi equation [5] we get

R̃⊥(X,Y )Z = g(Y,Z)∇⊥
XH − g(X,Z)∇⊥

YH. (6.2)

Here R̃ is the curvature tensor of the ambient manifold and R̃⊥ is its normal
part. Putting Z = ξ in (6.2), we obtain

R̃⊥(X,Y )ξ = η(Y )∇⊥
XH − η(X)∇⊥

YH. (6.3)

Now from ([9]), we know

R̃(X,Y )ξ = (α2 − ρ)(η(Y )X − η(X)Y ). (6.4)

Here ρ is a scalar. Since the right hand side of (6.4) is tangential to the
submanifold, we get

R̃⊥(X,Y )ξ = 0. (6.5)

By virtue of (6.3) and (6.5)

η(Y )∇⊥
XH = η(X)∇⊥

YH. (6.6)



96 MATILAL SEN, AVIJIT SARKAR AND SUJOY GHOSH

Replacing X by φX in the above equation, we have

∇⊥
φXH = 0. (6.7)

Again by covariant differentiation of (6.1), we see that

∇⊥
Wσ(X,Y )− σ(∇WX,Y )− σ(X,∇WY ) = g(X,Y )∇⊥

WH. (6.8)

If the submanifold is invariant, then putting Y = ξ in the above equation
and using Proposition 3.3, equations (6.7) and (6.8) we immediately get
σ(X,αφW ) = 0. Hence, for α 6= 0, σ(X,W ) = 0. So, the submanifold is
totally geodesic. This completes the proof. �

7. Submanifolds of LP-Sasakian manifolds with coefficient α

with parallel semi parallel and pseudo parallel second
fundamental forms

Definition 7.1. The second fundamental form σ of a submanifold of an
LP-Sasakian manifold with coefficient α is called parallel if ∇σ=0.
Definition 7.2. The second fundamental form σ of a submanifold of an LP-
Sasakian manifold with coefficient α is called semi parallel if R̃(X,Y ).σ = 0.
Definition 7.3. The second fundamental form σ of a submanifold of an
LP-Sasakian manifold with coefficient α is called pseudo parallel if

(R̃(X,Y ).σ)(U, V ) = fQ(g, σ)(X,Y, U, V ),

where f denotes a real function on M̃ . Here Q is given by

Q(E, T )(X,Y, Z,W ) = −(X ∧E Y )T (Z,W )− T ((X ∧E Y )Z,W )

− T (Z, (X ∧E Y )W ),

(X ∧E Y )Z = E(Y,Z)X − E(X,Z)Y

for a (0,2) tensor E and an arbitrary tensor T . For details about parallel
and pscudo symmetric tensor, we refer ([10], [11]).

Submanifolds of trans-Sasakian manifolds with such properties have
been studied in the paper ([6]). Following the similar method of the paper
([6]) we obtain the following
Theorem 7.1. An invariant submanifold of an LP-Sasakian manifold with
coefficient α is totally geodesic if and only if the second fundamental form
of the submanifold is parallel.
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Proof. Since σ is parallel, we have
(∇Wσ)(X,Y ) = 0, which implies

∇⊥
Wσ(X,Y )− σ(∇WX,Y )− σ(X,∇WY ) = 0. (7.1)

Putting Z = ξ in the above equation and applying (3.11) we obtain

σ(X,∇W ξ) = 0. (7.2)

So from (3.9) and the above equation (7.2) we obtain

σ(X,αφW ) = 0. (7.3)

Hence, for α 6= 0,
σ(X,W ) = 0. So the submanifold is totally geodesic. The converse part

is trivial. Hence the result. �

Theorem 7.2. An invariant submanifold of an LP-Sasakian manifold with
coefficient α is totally geodesic if and only if the second fundamental form
of the submanifold is semi-parallel.

Proof. Since σ is semi-parallel, we have (R̃(X,Y ).σ)(U, V )=0, which implies

R̃⊥(X,Y )σ(U, V )− σ(R̃(X,Y )U, V )− σ(U, R̃(X,Y )V ) = 0. (7.4)

Putting V = ξ = Y and using Proposition 3.3 we get from equation (7.4)

σ(U, R̃(X, ξ)ξ) = 0. (7.5)

Now from [9], we know

R̃(X,Y )ξ = (α2 − ρ)(η(Y )X − η(X)Y ). (7.6)

Here ρ is a scalar. The above equation implies

R̃(X, ξ)ξ = −(α2 − ρ)φ2X. (7.7)

From (7.5) and (7.7) we get

σ(U, φ2X) = 0, (7.8)

provided (α2 − ρ) 6= 0. Hence from (7.8) we have σ(X,U) = 0. Thus the
submanifold is totally geodesic. The converse part is trivial. Hence the
result. �
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Theorem 7.3. An invariant submanifold of an LP-Sasakian manifold with
coefficient α is totally geodesic if and only if the second fundamental form
of the submanifold is pseudo parallel, provided (α2 − ρ− f) 6= 0.

Proof. Since σ is pseudo parallel, we have
(R̃(X,Y ).σ)(U, V ) = fQ(g, σ)(X,Y, U, V ), which implies

R̃⊥(X,Y )σ(U, V ) − σ(R̃(X,Y )U, V )− σ(U, R̃(X,Y )V )

= −f{g(Y, σ(U, V ))X − g(X,σ(U, V ))Y

+ σ(g(Y,U)X − g(X,U)Y, V )

+ σ(U, g(Y, V )X − g(X,V )Y )}. (7.9)

Putting V = ξ = Y in equation (7.9) and applying Proposition 3.3 we
obtain

σ(U, R̃(X, ξ)ξ) = fσ(U, g(ξ, ξ)X − g(X, ξ)ξ). (7.10)

Now from [9], we know

R̃(X,Y )ξ = (α2 − ρ)(η(Y )X − η(X)Y ). (7.11)

Here ρ is a scalar. The above equation implies

R̃(X, ξ)ξ = −(α2 − ρ)φ2X. (7.12)

From (7.10) and (7.12) we get

σ(U, φ2X) = 0, (7.13)

provided (α2 − ρ − f) 6= 0. Hence from (7.13) we have σ(X,U) = 0. So,
the submanifold is totally geodesic. The converse part is trivial. �

Conclusion. Any totally geodesic submanifold of an LP-Sasakian manifold
with coefficient α is invariant. The converse is true only for odd dimensional
submanifolds. Some other necessary and sufficient conditions for invariant
submanifolds of LP-Sasakian manifolds with coefficient α to be totally ge-
odesic are that the second fundamental form of the submanifold should be
any one of the following types
(1) parallel
(2) semi-parallel
(3) pseudo parallel
(4) recurrent.
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Abstract. Let L1(TN ) be the class of all 2π-periodic, Lebesgue inte-
grable complex functions on TN , where T = [0, 2π) is the one−dimensional
torus. Here, for any f ∈ L1(TN ) and g ∈ (Λ1, ...,ΛN )∗BV (p1,...,pN )(TN ),
where 1 ≤ p1 ≤ ... ≤ pN < ∞ and N > 1, it is observed that their
convolution product f ∗ g ∈ (Λ1, ...,ΛN )∗BV (p1,...,pN )(TN ). Thus, the
convolution product inherits the generalized Wiener class property and
the class

∧∗BV (~p)(TN ) can be regarded as a module over the ring
L1(TN ).

1. Introduction

In 1961, Benedek and Panzone [1] finer the classical structure of Ba-
nach space Lp(RN ) (p > 1) by the mixed Lebesgue space L~p(RN ), re-
placing the constant exponent p of the Lp-norm by an exponent vector
~p := (p1, p2, ..., pN ) ∈ [1,∞]N .

Definition 1.1. The mixed Lebesgue space L~p(RN ) (~p := (p1, p2, ..., pN ) ∈
[1,∞]N ) is defined as the set of all measurable functions f such that
‖f‖L~p(RN )

=

(∫
R
. . .

(∫
R
|f(x1, . . . , xN )|p1 dx1

) p2
p1

. . . dxN

) 1
pN

<∞.

Benedek and Panzone [1, Theorem 1] proved that the mixed Lebesgue
space (L~p(RN ), ‖ ‖L~p(RN )) is a Banach space and (L~p(RN ))∗ = (L~q(RN ),
where ~p ∈ (1,∞)N , ~q := (q1, q2, ..., qN ) denote the conjugate exponent of ~p
and 1

pi
+ 1

qi
= 1, ∀i ∈ {1, . . . , N}. Moreover, Holder’s inequality holds for

2010 Mathematics Subject Classification: 42B35, 26B30, 42A85
Key words and phrases: convolution product, generalized bounded variation, mixed
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the mixed norm [3, Lemma 1].

If ~p = (p, p, ..., p) with some p ∈ [1,∞] then the space coincides with the
classical Banach space Lp(RN ).

Property of various function spaces with mixed norm are studied, like Besov
spaces, Orlicz spaces, Sobolev spaces, Hardy spaces and Bessel potential
spaces. Recently, J. Zhao, Wei-Shih Du and Y. Chen [5, Theorem 4] ob-
tained mixed norm convolution inequality

||f∗g||L~p(RN ) ≤ ||f ||L~p(RN )||g||L1(RN ), for any f ∈ L~p(RN ) and g ∈ L1(RN ).

Definition 1.2. For any f, g ∈ L1(TN ) and for any (x1, . . . , xN ) ∈ TN , the
convolution product of f and g (that is f ∗ g) is defined as
(f ∗ g)(x1, . . . , xN ) =

1

(2π)N

∫
. . .

∫
TN

f(s1, . . . , sN )g(x1 − s1, . . . , xN − sN ) ds1 . . . dsn.

It is observed that the Banach space (C[a,b], ‖ ‖∞) as well as spaces
of functions of generalized bounded variations with compact support and a
suitable variation norm, are closed under the convolution product. More-
over [4], L1(TN ) ∗ E = {f ∗ g : f ∈ L1(TN ) and g ∈ E over TN} ⊂ E for
E = ΛBV (p)(TN ).

Here, we have extended this result for more generalized Wiener class
(Λ1, ...,ΛN )BV (~p)(TN ). For the simplicity, first we discuss the result for
functions of two variables.

In the sequel, L is the class of non-decreasing sequences Λ = {λn}∞n=1 of
positive numbers such that

∑∞
n=1 λ

−1
n diverges. Throughout the paper, C

represents a constant which would vary from time to time.

2. New result for functions of two variables

Consider a function f on a compact subset of Rk. For k = 1 and
I = [a, b], define ∆f ba = f(I) = f(b) − f(a). For k = 2, I = [a, b] and
J = [c, d], define

∆f
(b,d)
(a,c) = f(I × J) = f(I, d)− f(I, c) = f(b, d)− f(a, d)− f(b, c) + f(a, c).
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Definition 2.1. Given a pair of sequences
∧

= (Λ1,Λ2), where Λk =

{λkn}∞n=1 ∈ L, for k = 1, 2; and given an index vector ~p = (p, q) ∈ [1,∞]2.
A complex−valued function f defined on T2 is said to be of ~p−

∧
− bounded

variation (that is, f ∈
∧
BV (~p)(T2

)) if

V∧
~p
(f,T2

) = sup
P=P1×P2

{
V∧

~p
(f,T2

, P )
}
<∞,

where P1 : 0 = x0 < x1 < · · · < xm = 2π, P2 : 0 = y0 < y1 < · · · < yn = 2π

and

V∧
~p
(f,T2

, P ) =

∑
j

(∑
i
|∆f(xi,yj)|p

λ1
i

) q
p

λ2
j


1
q

, in which

∆f(xi, yj) = f([xi, xi+1]× [yj , yj+1]).

For any two arbitrary functions g and h need not be bounded (or need
not be measurable) from T into R. Define the function f : T2 → R as
f(x, y) = g(x) +h(y), then V∧

~p
(f,T2

) = 0 implies f ∈
∧
BV (~p)(T2

). Thus,

a function f ∈
∧
BV (~p)(T2

) need not be bounded (or need not be measur-
able).

If a measurable function f ∈
∧
BV (~p)(T2

) is such that the marginal func-
tions f(0, .) ∈ Λ2BV (q)(T) and f(., 0) ∈ Λ1BV (p)(T) then f is said to be of
~p−
∧∗− bounded variation (that is, f ∈

∧∗BV (~p)(T2
)). Recently [2, Theo-

rem 3.1], it is observed that the space
∧∗BV (~p)(T2

)), the class of functions
of ~p−

∧∗− bounded variation, is a Banach space with a suitable variation
norm.

Theorem 2.2. If f ∈ L1(T2
) and g ∈

∧∗BV (~p)(T2
), where ~p = (p, q), 1 ≤

p ≤ q <∞; then f ∗ g ∈
∧∗BV (~p)(T2

).

Proof. Since, g ∈
∧∗BV (~p)(T2

), from the result [2, Lemma 3.1] g is bounded
on T2. Hence, g ∈ L~p(T2

).

Consider a partition P = P1 × P2 of the given rectangle T2, where

P1 : 0 = x0 < x1 < · · · < xm = 2π and P2 : 0 = y0 < y1 < · · · < yn = 2π.

For any xij = (xi, yj) ∈ P , from Hölder’s inequality, we have
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|∆f ∗ g(xij)|p = | 1
4π2

∫ ∫
T2 f(x, y)∆g(xi − x, yj − y)dx dy|p

≤
(

1

4π2

∫ ∫
T2
|f(x, y)|1−1/p|f(x, y)|1/p|∆g(xi − x, yj − y)|dx dy

)p
≤ C

(
||f ||

1,T2

)p−1
(∫ ∫

T2
|f(x, y)||∆g(xi − x, yj − y)|p dx dy

)
.

Dividing both the sides of above inequality by λ1
i and then summing over

i = 1 to m, we get

∑m
i=1

|∆f∗g(xij)|p
λ1
i

≤ C

(∫ ∫
T2
|f(x, y)|

m∑
i=1

|∆g(xi − x, yj − y)|p

λ1
i

dx dy

)
For p = q theorem can be easily follows from the above inequality.
If p < q, then for r = q

p > 1. In view of Hölder’s inequality, , we have(∑m
i=1

|∆f∗g(xij)|p
λ1
i

)r
≤ C

(∫ ∫
T2
|f(x, y)|1−1/r|f(x, y)|1/r

m∑
i=1

|∆g(xi − x, yj − y)|p

λ1
i

dx dy

)r

≤ C

(∫ ∫
T2
|f(x, y)|

(
m∑
i=1

|∆g(xi − x, yj − y)|p

λ1
i

)r
dx dy

)
.

Dividing both the sides of above inequality by λ2
j and then summing over

j = 1 to n, we have

∑n
j=1

(∑m
i=1

|∆f∗g(xij)|p

λ1
i

)r
λ2
j



≤ C

∫ ∫
T2
|f(x, y)|

n∑
j=1


(∑m

i=1
|∆g(xi−x,yj−y)|p

λ1
i

)r
λ2
j

 dx dy


≤ C

(
VΛ(p,q)

(g,T2
)
)q
.

Thus, VΛ(p,q)
(f ∗ g,T2

) <∞.
It is easy to show that, g(0, .) ∈ Λ2BV (q)(T) and g(., 0) ∈ Λ1BV (p)(T)

imply (f ∗g)(0, .) ∈ Λ2BV (q)(T) and (f ∗g)(., 0) ∈ Λ1BV (p)(T) respectively.
Hence, the result follows. �
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Theorem 2.2 with p = q reduces to [4, Theorem 2.4] as a particular case.

Remark 2.3. Since L1(T2
) is a ring, for the convolution product as a ring

product. From the above theorem, the class
∧∗BV (p,q)(T2

) can be regarded
as a module over the ring L1(T2

).

3. Extension of the result for functions of several variables

Let Ik = [ak, bk] ⊂ R, for k = 1, 2, · · ·, N . In the above Section 2, we
defined f(I1) and f(I1× I2) for a function of one variable and a function of
two variables respectively. Similarly, for a function f on RN , by induction,
defining the expression f(I1×· · ·× IN−1) for a function of N − 1 variables,
one gets

f(I1 × · · · × IN ) = f(I1 × · · · × IN−1, bN )− f(I1 × · · · × IN−1, aN ).

Observe that, f(I1 × · · · × IN ) can also be expressed as

f(I1 × · · · × IN ) = ∆fba =
∑

c k(c)f(c),

where a = (a1, a2, · · ·, aN ), b = (b1, b2, · · ·, bN ) ∈ RN , the summation
is over all c = (c1, c2, · · ·, cN ) ∈ RN such that ci ∈ {ai, bi}, for i = 1, · · ·, N,
and for any such c, k(c) = k1 · · · kN , in which, for 1 ≤ i ≤ N,

ki =

{
1, if ci = bi,

−1, if ci = ai.

For N = 1, we get
f(I1) = ∆fba = ∆f b1a1

=
∑

c1
k(c)f(c) = f(b1)− f(a1).

For N = 2,we get
f(I1 × I2) = ∆fba = ∆f

(b1,b2)
(a1,a2) =

∑
(c1,c2) k(c)f(c)

= f(b1, b2) + f(a1, a2)− f(b1, a2)− f(a1, b2).

Similarly, for N = 3, we get

f(I1 × I2 × I3) = ∆fba = ∆f
(b1,b2,b3)
(a1,a2,a3) =

∑
(c1,c2,c3)

k(c)f(c)

= f(b1, b2, b3) + f(b1, a2, a3) + f(a1, b2, a3) + f(a1, a2, b3)

−f(b1, b2, a3)− f(a1, b2, b3)− f(b1, a2, b3)− f(a1, a2, a3).
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Given
∧

= (Λ1, · · ·,ΛN ), where Λk = {λkn}∞n=1 ∈ L, for k = 1, · · ·, N , and
~p := (p1, p2 · ··, pN ) ∈ [1,∞], a complex valued function f defined on TN is
said to be of ~p−

∧
− bounded variation (that is, f ∈

∧
BV (~p)(TN )) if

V∧
~p
(f,TN ) = sup

P=P1×···×PN

{
V∧

~p
(f,TN , P )

}
<∞,

where Pi : 0 = x0
i < x1

i < · · · < xkii = 2π; for all i = 1, 2, · · ·, N, and

V∧
~p
(f,TN , P )

=

∑sN
1

λN
sN

(
· · ·
(∑

s2
1
λ2
s2

(∑
s1

|∆f(x
s1
1 ,···,xsN

N )|p1
λ1
s1

) p2
p1

) p3
p2

· ··

) pN−1
pN−2


1

pN

,

in which ∆f(xs11 , · · ·, xsNN ) = f([xs11 , xs1+1
1 ]× · · · × [xsNN , xsN+1

N ]).

Note that, f ∈
∧

BV (~p)(TN)) need not be bounded (or need not be
measurable).

A measurable function f ∈
∧

BV (~p)(TN) is said to be of ~p −
∧∗

bounded variation (that is, f ∈
∧∗BV (~p)(TN)) if for each of its mar-

ginal functions

f(x1, ··, xi−1, 0, xi+1, ··, xN ) ∈ (Λ1, ··,Λi−1,Λi+1, ··,ΛN )∗BV (p1,···,pN )(TN (0i)),

∀ i = 1, 2, · · ·, N, where

TN(0i)

= {(x1, · · ·, xi−1, xi+1, · · ·, xN ) ∈ TN−1
: xk ∈ T for k = 1, · · ·, i− 1, i+ 1, · · ·, N}.

Note that, for p1 = · · · = pN = p, the classes
∧
BV (~p)(TN) and∧∗BV (~p)(TN) reduce to the classes

∧
BV (p)(TN) and

∧∗BV (p)(TN)

respectively.

We say f ∈ L(~p)(TN) if
‖f‖(~p) =(∫ 2π

0

(
· · ·
(∫ 2π

0

(∫ 2π

0
|f(x1, · · ·, xN )|p1 dx1

) p2
p1

dx2

) p3
p2

· ··

)pN−1

dxN

) 1
pN

is finite.
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Note that, for p1 = · · · = pN = p, the class L(~p)(TN) reduces to
the class Lp(TN). It is observed that the space

(
L(~p)(TN), ‖.‖(~p)

)
is a

Banach space [1].

Theorem 3.1. If f ∈ L1(TN) and g ∈
∧∗BV (~p)(TN), where 1 ≤

p1 ≤ p2,≤, ...,≤ pN <∞, then f ∗ g ∈
∧∗BV (~p)(T2

).

The above extended theorem of this section can be easily proved
by the induction of the arguments to N from Theorem 2.2.

Remark. Since L1(TN) is a ring for the convolution product as a
ring product. From the above theorem the class

∧∗BV (~p)(TN) can be
regarded as a module over the ring L1(TN).
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SOME RESULTS ON GENERALIZED (κ, µ)-SPACE
FORMS WITH RESPECT TO THE SEMI-SYMMETRIC

METRIC CONNECTION

TARAK MANDAL

(Received : 19 - 11 - 2019 ; Revised : 15 - 01 - 2021)

Abstract. In the present paper, we have studied curvature tensor
of generalized (κ, µ)-space forms with respect to the semi-symmetric
metric connection. We have established a relation between conformal
curvature tensors of a generalized (κ, µ)-space form with respect to
the Levi-Civita connection and semi-symmetric metric connection and
construct the condition for which a generalized (κ, µ)-space form with
respect to semi-symmetric metric connection to be ξ-conformally flat.
We have also derived the expression of Weyl projective curvature tensor
of a generalized (κ, µ)-space form on the same metric connection. Also
we give an example.

1. Introduction

In 2004, Alegre, Blair and Carriazo introduced the notion of general-
ized Sasakian-space forms in the paper [1]. The same topic has also been
studied in the papers [2], [3], [9], [13], [15] etc. by several authors. General-
ized (κ, µ)-space forms are the generalizations of generalized Sasakian-space
forms. The notion of generalized (κ, µ)-space forms was introduced in the
paper [8]. A generalized (κ, µ)-space form is an almost contact metric man-
ifold whose curvature tensor satisfies the following:

R(X,Y )Z = f1R1(X,Y )Z + f2R2(X,Y )Z + f3R3(X,Y )Z

+f4R4(X,Y )Z + f5R5(X,Y )Z + f6R6(X,Y )Z, (1.1)

2010 Mathematics Subject Classification: 53C15, 53C25.
Key words and phrases: Semi-symmetric metric connection, Weyl conformal curvature
tensor, ξ-Conformally flat manifold, Weyl projective curvature tensor.
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where fi(i = 1, 2, 3, 4, 5, 6) are some differentiable functions on the manifold
and Ri(i = 1, 2, 3, 4, 5, 6) are defined below

R1(X,Y )Z = g(Y,Z)X − g(X,Z)Y,

R2(X,Y )Z = g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ,

R3(X,Y )Z = η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ,

R4(X,Y )Z = g(Y,Z)hX − g(X,Z)hY + g(hY, Z)X

− g(hX,Z)Y,

R5(X,Y )Z = g(hY, Z)hX − g(hX,Z)hY

+ g(φhX,Z)φhY − g(φhY , Z)φhX,

R6(X,Y )Z = η(X)η(Z)hY − η(Y )η(Z)hX

+ g(hX,Z)η(Y )ξ − g(hY,Z)η(X)ξ.

In 1970, Yano introduced semi-symmetric metric connection in the pa-
per [16]. LetM be a (2n+1)-dimensional generalized (κ, µ)-space form and
∇ denotes the Levi-Civita connection on M . A linear connection ∇̄ on M
is called a semi-symmetric connection if the torsion tensor T̄ of type (1, 2)

defined as
T̄ (X,Y ) = ∇̄XY − ∇̄YX − [X,Y ] (1.2)

satisfies
T̄ (X,Y ) = η(Y )X − η(X)Y, (1.3)

for all vector fields X, Y on M .
A semi-symmetric connection ∇̄ is said to be semi-symmetric metric

connection if
∇̄g = 0. (1.4)

A relation between semi-symmetric metric connection ∇̄ and Levi-Civita
connection ∇ is given by

∇̄XY = ∇XY + η(Y )X − g(X,Y )ξ. (1.5)

Further, a relation between the curvature tensors R and R̄ of type (1, 3)

of ∇ and ∇̄, respectively, is given by
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R̄(X,Y )Z = R(X,Y )Z + α(X,Z)Y − α(Y,Z)X

+ g(X,Z)AY − g(Y, Z)AX, (1.6)

where

α(X,Y ) = g(AX,Y ) = (∇Xη)(Y )− η(X)η(Y ) +
1

2
g(X,Y ). (1.7)

Several authors such as De and Sengupta [11], Sharfuddin and Hussain
[14] and many more authors have also been studied semi-symmetric metric
connection in different types of manifolds.

In this paper we would like to study some properties of generalized
(κ, µ)-space forms with semi-symmetric metric connection.

The present paper is organized as follows: In Section 2, we have dis-
cussed some preliminary results. In Section 3, we have derived curva-
ture tensor of a generalized (κ, µ)-space forms with respect to the semi-
symmetric metric connection. In Section 4 and 5, we study Weyl conformal
curvature tensor and Weyl projective curvature tensor with respect to the
same connection, respectively. Last section contains an example.

2. preliminaries

A differentiable manifold of dimension (2n+ 1) is said to be an almost
contact metric manifold if it satisfies the following conditions [9]:

φ2(X) = −X + η(X)ξ, η(ξ) = 1. (2.1)

As a consequence, we get the following:

φξ = 0, g(X, ξ) = η(X), η(φX) = 0, (2.2)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.3)

g(φX, Y ) = −g(X,φY ), g(φX,X) = 0, (2.4)

(∇Xη)(Y ) = g(∇Xξ, Y ), (2.5)

where φ is a (1, 1) tensor field, ξ is a vector field, η is a 1-form and g is the
Riemannian metric on the manifold.

An almost contact metric manifold is called contact metric manifold if

dη(X,Y ) = Φ(X,Y ) = g(X,φY ), (2.6)

where Φ is the fundamental 2-form on the manifold.
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On a contact metric manifold (M,φ, ξ, η, g), the tensor field h, defined
by h = 1

2Lξφ, is symmetric and satisfies the following relations [8]:

hξ = 0, ∇Xξ = −φX − φhX, hφ = −φh, (2.7)

tr(h) = 0, tr(φh) = 0, η ◦ h = 0.

On a generalized (κ, µ)-space form, we have the following relations [12]:

R(X,Y )ξ = (f1 − f3)[η(Y )X − η(X)Y ]

+ (f4 − f6)[η(Y )hX − η(X)hY ], (2.8)

R(ξ, Y )Z = (f1 − f3)[g(Y, Z)− η(Z)Y ]

+ (f4 − f6)[g(hY, Z)ξ − η(Z)hY ], (2.9)

R(ξ,X)ξ = (f1 − f3)[η(X)ξ −X]− (f4 − f6)hX, (2.10)

η(R(X,Y )Z) = (f1 − f3)[g(Y,Z)η(X)− g(X,Z)η(Y )]

+ (f4 − f6)[g(hY,Z)η(X)− g(hX,Z)η(Y )], (2.11)

S(X,Y ) = (2nf1 + 3f2 − f3)g(X,Y )

− (3f2 + (2n− 1)f3)η(X)η(Y )

+ ((2n− 1)f4 − f6)g(hX, Y ), (2.12)

QX = (2nf1 + 3f2 − f3)X − (3f2 + (2n− 1)f3)η(X)ξ

+ ((2n− 1)f4 − f6)hX, (2.13)

S(φX, φY ) = S(X,Y )− 2n(f1 − f3)η(X)η(Y )

− 2((2n− 1)f4 − f6)g(hX, Y ), (2.14)

r = 2n(2n+ 1)f1 + 6nf2 − 4nf3, (2.15)

(∇Xφ)(Y ) = (f1 − f3)[g(X,Y )ξ − η(Y )X]

+ (f4 − f6)[g(hX, Y )ξ − η(Y )hX], (2.16)

(∇Xη)(Y ) = −(f1 − f3)g(φX, Y )− (f4 − f6)g(φhX, Y ), (2.17)

∇Xξ = −(f1 − f3)φX − (f4 − f6)φhX, (2.18)

where S, Q and r are the Ricci tensor of type(0, 2), Ricci operator and
scalar curvature of M, respectively.
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The Weyl conformal curvature tensor C of type (1, 3) of an (2n+1)(n >

1)-dimensional Riemannian manifold M is defined by [10]

C(X,Y )Z = R(X,Y )Z − 1

2n− 1
[S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY ]

+
r

2n(2n− 1)
[g(Y, Z)X − g(X,Z)Y ], (2.19)

where R, S, Q, r denotes the Riemannian curvature tensor of type (1, 3),
the Ricci tensor of type (0, 2), the Ricci operator and the scalar curvature
of the manifold, respectively.

The Weyl projective curvature tensor P of type (1, 3) on a Riemannian
manifold M of dimension (2n+ 1) is defined by [10]

P (X,Y )Z = R(X,Y )Z − 1

2n
[S(Y, Z)X − S(X,Z)Y ]. (2.20)

3. curvature tensor of a generalized (κ, µ)-space form with
respect to semi-symmetric metric connection

We have, from (1.6)

g(R̄(X,Y )Z,W ) = g(R(X,Y )Z,W ) + α(X,Z)g(Y,W )

− α(Y,Z)g(X,W ) + g(X,Z)α(Y,W )

− g(Y, Z)α(X,W ). (3.1)

Using (1.7) and (2.17), we get

g(R̄(X,Y )Z,W ) = g(R(X,Y )Z,W )− [(f1 − f3)g(φX,Z)

+ (f4 − f6)g(φhX,Z) + η(X)η(Z)

− 1

2
g(X,Z)]g(Y,W ) + [(f1 − f3)g(φY,Z)

+ (f4 − f6)g(φhY , Z) + η(Y )η(Z)

− 1

2
g(Y,Z)]g(X,W )− [(f1 − f3)g(φY,W )

+ (f4 − f6)g(φhY ,W ) + η(Y )η(W )

− 1

2
g(Y,W )]g(X,Z) + [(f1 − f3)g(φX,W )

+ (f4 − f6)g(φhX,W ) + η(X)η(W )

− 1

2
g(X,W )]g(Y,Z) (3.2)

Therefore, from above, we get
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R̄(X,Y )Z = R(X,Y )Z − (f1 − f3)[g(φX,Z)Y − g(φY,Z)X

+ g(X,Z)φY − g(Y,Z)φX]− (f4 − f6)[g(φhX,Z)Y

− g(φhY , Z)X + g(X,Z)φhY − g(Y, Z)φhX]

+ [g(X,Z)Y − g(Y,Z)X] + [η(Y )X − η(X)Y ]η(Z)

+ [g(Y,Z)η(X)− g(X,Z)η(Y )]ξ. (3.3)

Now, putting Z = ξ in (3.3) and using (2.8), we get

R̄(X,Y )ξ = (f1 − f3)[η(Y )X − η(X)Y + η(Y )φX

− η(X)φY ] + (f4 − f6)[η(Y )hX − η(X)hY

+ η(Y )φhX − η(X)φhY ]. (3.4)

Putting X = ξ in (3.3) and using (2.9), we get

R̄(ξ, Y )Z = (f1 − f3)[g(Y,Z)ξ − η(Z)Y + g(φY,Z)ξ

− η(Z)φY ] + (f4 − f6)[g(hY,Z)ξ − η(Z)hY

+ g(φhY , Z)ξ − η(Z)φhY ]. (3.5)

Putting Z = ξ in (3.5), we get

R̄(ξ, Y )ξ = (f1 − f3)[η(Y )ξ − Y − φY ]− (f4 − f6)[hY + φhY ]. (3.6)

Taking inner product (3.3) with the vector field ξ, we get

η(R̄(X,Y )Z) = (f1 − f3)[g(Y,Z)η(X)− g(X,Z)η(Y )]

+ (f4 − f6)[g(hY,Z)η(X)− g(hX,Z)η(Y )]

+ [g(φY,Z)η(X)− g(φX,Z)η(Y )]

+ [g(φhY , Z)η(X)− g(φhX,Z)η(Y )]. (3.7)

From (3.3), we get

g(R̄(X,Y )Z,W ) = g(R(X,Y )Z,W )− (f1 − f3)[g(φX,Z)g(Y,W )

− g(φY,Z)g(X,W ) + g(X,Z)g(φY,W )

− g(Y,Z)g(φX,W )]− (f4 − f6)[g(φhX,Z)g(Y,W )

− g(φhY , Z)g(X,W ) + g(X,Z)g(φhY ,W )

− g(Y,Z)g(φhX,W )] + [g(X,Z)g(Y,W )

− g(Y,Z)g(X,W )] + [g(X,W )η(Y )
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− g(Y,W )η(X)]η(Z) + [g(Y,Z)η(X)

− g(X,Z)η(Y )]η(W ). (3.8)

Let {e1, e2, ...., e2n, ξ} be a local orthonormal basis of vector fields in the
manifold. Then, by putting X = W = ei in the above equation and taking
summation over i, 1 ≤ i ≤ 2n, we get

S̄(Y,Z) = S(Y, Z) + (2n− 1)[(f1 − f3)g(φY,Z)

+ (f4 − f6)g(φhY , Z)− g(Y,Z) + η(Y )η(Z)], (3.9)

where S̄ is the Ricci tensor of type (0, 2) with respect to semi-symmetric
metric connection.
Contracting Y and Z in (3.9) and using (2.15), we get

r̄ = 2n(2n+ 1)f1 + 6nf2 − 4nf3 − 2n(2n− 1), (3.10)

where r̄ is the scalar curvature with respect to the semi-symmetric metric
connection.
Now, from (3.9) and (2.13), we get

Q̄Y = QY + (2n− 1)[(f1 − f3)φY

+ (f4 − f6)φhY − Y + η(Y )ξ], (3.11)

where Q̄ is the Ricci operator with respect to the semi-symmetric metric
connection.
Using (1.5), (2.2) and (2.16) we get

(∇̄Xφ)(Y ) = (f1 − f3)[g(X,Y )ξ − η(Y )X]

+ (f4 − f6)[g(hX, Y )ξ − η(Y )hX]

+ g(φX, Y )ξ − η(Y )φX. (3.12)

From the equations (1.5) and (2.18), we get

∇̄Xξ = −(f1 − f3)φX − (f4 − f6)φhX +X − η(X)ξ. (3.13)

Using (1.5), (2.2) and (2.18), we get

(∇̄Xη)(Y ) = −(f1 − f3)g(φX, Y )− (f4 − f6)g(φhX, Y )

+ g(X,Y )− η(X)η(Y ). (3.14)

Thus we can state the following:
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Theorem 3.1. LetM be a generalized (κ, µ)-space form of dimension (2n+

1). With respect to the semi-symmetric metric connection, the following hold
in M :

R̄(X,Y )ξ = (f1 − f3)[η(Y )X − η(X)Y + η(Y )φX

− η(X)φY ] + (f4 − f6)[η(Y )hX − η(X)hY

+ η(Y )φhX − η(X)φhY ],

R̄(ξ, Y )Z = (f1 − f3)[g(Y,Z)ξ − η(Z)Y + g(φY,Z)ξ

− η(Z)φY ] + (f4 − f6)[g(hY,Z)ξ − η(Z)hY

+ g(φhY , Z)ξ − η(Z)φhY ],

R̄(ξ, Y )ξ = (f1 − f3)[η(Y )ξ − Y − φY ]− (f4 − f6)[hY + φhY ],

η(R̄(X,Y )Z) = (f1 − f3)[g(Y,Z)η(X)− g(X,Z)η(Y )]

+ (f4 − f6)[g(hY, Z)η(X)− g(hX,Z)η(Y )]

+ [g(φY,Z)η(X)− g(φX,Z)η(Y )]

+ [g(φhY , Z)η(X)− g(φhX,Z)η(Y )],

S̄(X,Y ) = S(X,Y ) + (2n− 1)[(f1 − f3)g(φX, Y )

+ (f4 − f6)g(φhX, Y )− g(X,Y ) + η(X)η(Y )],

r̄ = 2n(2n+ 1)f1 + 6nf2 − 4nf3 − 2n(2n− 1),

Q̄X = QX + (2n− 1)[(f1 − f3)φY

+ (f4 − f6)φhY − Y + η(Y )ξ],

(∇̄Xφ)(Y ) = (f1 − f3)[g(X,Y )ξ − η(Y )X]

+ (f4 − f6)[g(hX, Y )ξ − η(Y )hX]

+ g(φX, Y )ξ − η(Y )φX,

∇̄Xξ = −(f1 − f3)φX − (f4 − f6)φhX +X − η(X)ξ,

(∇̄Xη)(Y ) = −(f1 − f3)g(φX, Y )− (f4 − f6)g(φhX, Y )

+ g(X,Y )− η(X)η(Y ).
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4. Weyl conformal curvature tensor with respect to
semi-symmetric metric connection

TheWeyl conformal curvature tensor with respect to the semi-symmetric
metric connection is given by [11]

C̄(X,Y )Z = R̄(X,Y )Z − 1

2n− 1
[S̄(Y, Z)X − S̄(X,Z)Y

+ g(Y, Z)Q̄X − g(X,Z)Q̄Y ]

+
r̄

2n(2n− 1)
[g(Y, Z)X − g(X,Z)Y ]. (4.1)

Using (3.3), (3.9), (3.10) and (3.11) in (4.1), we get

C̄(X,Y )Z = R(X,Y )Z + (f1 − f3)[g(φY,Z)X − g(φX,Z)Y

+ g(Y,Z)φX − g(X,Z)φY ] + (f4 − f6)[g(φhY , Z)X

− g(φhX,Z)Y + g(Y,Z)φhX − g(X,Z)φhY ]

+ [g(X,Z)Y − g(Y,Z)X] + [η(Y )X − η(X)Y ]η(Z)

+ [g(Y,Z)η(X)− g(X,Z)η(Y )]ξ − 1

2n− 1
[S(Y,Z)X

+ (2n− 1){(f1 − f3)g(φY,Z)X + (f4 − f6)g(φhY , Z)X

− g(Y,Z)X + η(Y )η(Z)X} − S(X,Z)Y

− (2n− 1){(f1 − f3)g(φX,Z)Y + (f4 − f6)g(φhX,Z)Y

− g(X,Z)Y + η(X)η(Z)Y }+ g(Y,Z)QX

+ (2n− 1){(f1 − f3)g(Y,Z)φX + (f4 − f6)g(Y, Z)φhX

− g(Y, Z)X + g(Y, Z)η(X)ξ} − g(X,Z)QY

− (2n− 1){(f1 − f3)g(X,Z)φY + (f4 − f6)g(X,Z)φhY

− g(X,Z)Y + g(X,Z)η(Y )ξ}]

+
r − 2n(2n− 1)

2n(2n− 1)
[g(Y,Z)X − g(X,Z)Y ]

= R(X,Y )Z − 1

2n− 1
[S(Y,Z)X − S(X,Z)Y

+ g(Y,Z)QX − g(X,Z)QY ]

+
r

2n(2n− 1)
[g(Y,Z)X − g(X,Z)Y ]

= C(X,Y )Z. (4.2)

Thus we can state the following:
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Theorem 4.1. The Weyl conformal curvature tensors of a generalized (κ, µ)-
space form with respect to the Levi-Civita connection and semi-symmetric
metric connection are equal.

Definition 4.2. A generalized (κ, µ)-space form of dimension (2n + 1) is
said to be ξ-conformally flat with respect to the semi-symmetric metric
connection if

C̄(X,Y )ξ = 0.

Putting Z = ξ in (4.2), we get

C̄(X,Y )ξ = R(X,Y )ξ − 1

2n− 1
[S(Y, ξ)X − S(X, ξ)Y

+ η(Y )QX − η(X)QY ]

+
r

2n(2n− 1)
[η(Y )X − η(X)Y ]. (4.3)

Using (2.8), (2.12), (2.13) and (2.15) in (4.3), we get

C̄(X,Y )ξ = −2(n− 1)f6
2n− 1

(η(Y )hX − η(X)hY ). (4.4)

Thus we can state the following:

Theorem 4.3. A generalized (κ, µ)-space form of dimension (2n+1)(n > 1)

is ξ-conformally flat with respect to the semi-symmetric metric connection
if f6 = 0.

5. weyl projective curvature tensor with respect to
semi-symmetric metric connection

The Weyl projective curvature tensor of a generalized (κ, µ)-space form
of dimension (2n+ 1) with respect to semi-symmetric metric connection is
given by [11]

P̄ (X,Y )Z = R̄(X,Y )Z − 1

2n
[S̄(Y, Z)X − S̄(X,Z)Y ], (5.1)

where P̄ (X,Y )Z is the projective curvature tensor of type (1, 3) with respect
to semi-symmetric metric connection.

A generalized (κ, µ)-space form of dimension (2n+1) is projectively flat
with respect to the semi-symmetric metric connection if

P̄ (X,Y )Z = 0,
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for all X, Y , Z on M .
Using (3.3) and (3.9) in (5.1), we get

P̄ (X,Y )Z = P (X,Y )Z +
1

2n
[(f1 − f3)(g(φY,Z)X − g(φX,Z)Y )

+ (f4 − f6)(g(φhY , Z)X − g(φhX,Z)Y − (g(Y, Z)X

− g(X,Z)Y ) + (η(Y )X − η(X)Y )η(Z)]

+ (f1 − f3)(g(Y,Z)φX − g(X,Z)φY )

+ (f4 − f6)(g(Y,Z)φhX − g(X,Z)φhY )

+ (g(Y, Z)η(X)− g(X,Z)η(Y ))ξ. (5.2)

By straight forward calculation, we can state the following proposition:
Proposition 5.1. In a generalized (κ, µ)-space form, the projective curva-
ture tensor with respect to semi-symmetric metric connection satisfies the
following:

P̄ (X,Y )Z = −P̄ (Y,X)Z, (5.3)

P̄ (X,Y )Z + P̄ (Y,Z)X + P̄ (Z,X)Y = 0, (5.4)

if P̄ (X,Y, Z,W ) = g(P̄ (X,Y )Z,W ),then
2n+1∑
i=1

P̄ (ei, Y, Z, ei) =
2n+1∑
i=1

P̄ (ei, ei, Z,W ) =
2n+1∑
i=1

P̄ (X,Y, ei, ei) = 0. (5.5)

Let a generalized (κ, µ)-space form is projectively flat with respect to
the semi-symmetric metric connection. Then from (5.1), we get

R̄(X,Y )Z =
1

2n
[S̄(Y, Z)X − S̄(X,Z)Y ]. (5.6)

This implies

R̄(X,Y, Z,W ) =
1

2n
[S̄(Y, Z)g(X,W )− S̄(X,Z)g(Y,W )], (5.7)

where R̄(X,Y, Z,W ) = g(R̄(X,Y )Z,W ). Contracting Y , Z in (5.7), we get

S̄(X,W ) =
r̄

2n+ 1
g(X,W ). (5.8)

Thus we can state the following:

Theorem 5.1. Let M be a generalized (κ, µ)-space form of dimension
(2n+1). If M be projectively flat with respect to the semi-symmetric metric
connection, then M is an Einstein manifold.
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6. example

Let us consider the manifold M = {(x1, x2, x3, x4, x5) ∈ R5 : x5 6= 0} of
dimension 5, where {x1, x2, x3, x4, x5} are standard coordinates in R5. We
choose the vector fields

e1 = e−x5
∂

∂x1
, e2 = e−x5

∂

∂x2
, e3 = e−x5

∂

∂x3
,

e4 = e−x5
∂

∂x4
, e5 =

∂

∂x5
,

which are linearly independent at each point of M , we get

[e1, e5] = e1, [e2, e5] = e2, [e3, e5] = e3, [e4, e5] = e4

and the remaining [ei, ej ] = 0, for all 1 ≤ i, j ≤ 5.
Let g be the Riemannian metric defined by g(ei, ej) = δij , i, j =

1, 2, 3, 4, 5. Let ∇ be the Riemannian connection and R the curvature ten-
sor of g. The 1-form η is defined by η(X) = g(X, e5), for any X on M ,
which is a contact form because η ∧ dη 6= 0. Let φ be the (1, 1)-tensor field
defined by

φ(e1) = e3, φ(e2) = e4, φ(e3) = −e1, φ(e4) = −e2, φ(e5) = 0.

Then we find that

η(e5) = 1, φ2X = −X + η(X)e5, dη(X,Y ) = g(X,φY ),

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for any vector fieldsX, Y onM . Hence (φ, e5, η, g) defines an almost contact
metric structure on M .

Using Koszul’s formula, we obtain

∇e1e1 = −e5, ∇e2e2 = −e5, ∇e3e3 = −e5, ∇e4e4 = −e5

and the remaining ∇eiej = 0, for all 1 ≤ i, j ≤ 5. The tensor field h satisfies

he1 = e1, he2 = e2, he3 = e3, he4 = e4, he5 = 0.

Now, from the definition of curvature tensor, we obtain

R(e1, e5)e1 = e5, R(e2, e5)e2 = e5,

R(e3, e5)e3 = e5, R(e4, e5)e4 = e5

and the remaining R(ei, ej)ek = 0, for all 1 ≤ i, j, k ≤ 5.
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Thus M is a generalized (κ, µ)-space form with f1 = −1+f
2 , f2 = 0,

f3 = 1−f
2 , f4 = 0, f5 = 0, f6 = 0, where f is an arbitrary differentiable

function on the manifold.
Let ∇̄ be the semi-symmetric metric connection, we have

∇̄e1e1 = −2e5, ∇̄e2e2 = −2e5, ∇̄e3e3 = −2e5,

∇̄e4e4 = −2e5, ∇̄e1e5 = e1, ∇̄e2e5 = e2,

∇̄e3e5 = e3, ∇̄e4e5 = e4

and the remaining ∇̄eiej = 0, for all 1 ≤ i, j ≤ 5.
The components of torsion tensor T̄ of the connection ∇̄ are given by

T̄ (e1, e5) = −T̄ (e5, e1) = e1, T̄ (e2, e5) = −T̄ (e5, e2) = e2,

T̄ (e3, e5) = −T̄ (e5, e3) = e3, T̄ (e4, e5) = −T̄ (e5, e4) = e4

and the remaining T̄ (ei, ej) = 0, 1 ≤ i, j ≤ 5.
The components of the curvature tensor R̄ of the manifold M with

respect to the semi-symmetric metric connection ∇̄ are given by

R̄(e1, e2)e1 = 2e2, R̄(e1, e2)e2 = −2e1, R̄(e1, e3)e1 = 2e3,

R̄(e1, e3)e3 = −2e1, R̄(e1, e4)e1 = 2e4, R̄(e1, e4)e4 = −2e1,

R̄(e1, e5)e1 = 2e5, R̄(e1, e5)e5 = −e1, R̄(e2, e3)e2 = 2e3,

R̄(e2, e3)e3 = −2e2, R̄(e2, e4)e2 = 2e4, R̄(e2, e4)e4 = −2e2,

R̄(e2e5)e2 = 2e5, R̄(e2, e5)e5 = −e2, R̄(e3, e4)e3 = 2e4,

R̄(e3, e4)e4 = −2e3, R̄(e3, e5)e3 = 2e5, R̄(e3, e5)e5 = −e3,

R̄(e4, e5)e4 = 2e5, R̄(e4, e5)e5 = −e4
and the remaining R̄(ei, ej)ek = 0, 1 ≤ i, j, k ≤ 5.

From above, we see that C̄(ei, ej)e5 = 0, for all 1 ≤ i, j ≤ 5.
Hence the manifold M is ξ-conformally flat.
Acknowledgement: The author is thankful to the referee for his/her valu-
able suggestions towards the improvement of the paper.
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(Boston), 2002.
[6] Blair, D.E. and Yildrim, H., On conformally flat almost contact metric manifolds,

Mediterr. J. Math., 13(2016), 2759-2770.
[7] Boeckx, E., A full classification of contact metric (κ, µ)-spaces. Illinois J. Math.,

44(1)(2000), 212-219.
[8] Carriazo, A., Molina, V. M. and Tripathi, M. M., Generalized (κ, µ)-space-forms,

Mediterr. J. Math.,10(2013),475-496.
[9] De, U. C. and Sarkar, A., Some results on generalized Sasakian-space-forms. Thai.

J. Math., Vol. 8(2010), no. 1: 1-10.
[10] De, U. C. and Shaikh, A.A., Differential Geometry of manifolds, Narosa Pub. House,

New Delhi, 2007 .
[11] De, U. C. and Sengupta, J., On a type of Semi-symmetric metric connection on an

almost contact metric manifold. Facta Univ. Ser. Mat. Inform., 16(2001), 87-96.
[12] Hui, S. K., Uddin, S. and Mandal, P., Submanifolds of generalized (κ, µ)-space forms.

Period. Math. Hungar., vol. 77, 2(2018), 329-339.
[13] Kim, U. K., Conformally flat generalized Sasakian-space-forms and locally symmet-

ric generalized Sasakian-space-forms, Note di Mat., 26(2006), 55-67.
[14] Sharfuddin, A. and Hussain, S.I., Semi-symmetric metric connection in almost con-

tact manifolds. Tensor, N. S. 30(1976), 133-139.
[15] Singh, A. and Kishor, S., On a Semi-symmetric metric connection in generalized

Sasakian-space forms. Glob. J. Pure Appl. Math., Vol.139(2017), 6407-6419.
[16] Yano, K., On Semi-symmetric connection. Rev. Roum. Math. Pure Appl., 19(1970),

1570-1586.
[17] Yano, K. and Swaki, S., Riemannian manifolds admitting a conformal transforma-

tion group, J. Differential Geometry, 2(1968), 161-184.

Tarak Mandal
Department of Mathematics,
Jangipur College,
Murshidabad, Pin-742213, West Bengal, India.
E-mail: mathtarak@gmail.com



The Mathematics Student ISSN: 0025-5742
Vol. 90, Nos. 3-4, July-December (2021), 123–141

Sβλ-CLOSED SETS AND SOME LOW SEPARATION
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JAGANNATH PAL AND AMAR KUMAR BANERJEE

(Received : 27 - 01 - 2020 ; Revised : 09 - 02 - 2021)

Abstract. Here we have studied the ideas of sλ- , sgλ- and sβλ-closed
sets and investigated some of their topological properties in generalized
topological spaces. We have also studied some low separation axioms
namely sλT 1

4
, sλT 3

8
, sλT 1

2
axioms and their mutual relation with sλT0

and sλT1 axioms.

1. Introduction

After generalization of a topological space by A.D. Alexandroff [1] in
1940 to σ-space (Alexandroff space), many topologists turned their atten-
tion to carry out their works in such direction viz. in σ-spaces and bispaces
etc. [2, 4, 5, 6, 13] where several works in respect of topological properties
had been studied. On the other hand, N.Levine [14] in 1970, introduced
the concept of generalized closed sets (g-closed sets) in a topological space
which opened the door of many aspects in topological spaces to generate
different types of generalized sets. In 1987, Bhattacharyya and Lahiri [7]
introduced the class of semi-generalizsed closed sets in a topological space.
Since then many authors have contributed to the subsequent development
of various topological properties on semi generalized closed sets (sg-closed
sets) [12, 15, 16] where many more references are found. By taking an equiv-
alent form of g-closed sets, M. S. Sarsak [17] introduced gµ-closed sets in a
generalized topological space (X,µ) [9, 10] and studied the idea of new sep-
aration axioms namely µ-T 1

4
, µ-T 3

8
and µ-T 1

2
axioms by defining λµ-closed

sets and investigated their properties and relations among the new axioms
with µ-T0 and µ-T1 axioms.
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We will see in this paper that a collection of sλ-open sets forms gen-
eralized topology in GTspaces (Corollary-3.16). This idea leads to another
generalization of closed sets viz., sgλ-closed set with the help of sλ-closed
sets by extending the notion of gµ-closed sets and λµ-closed sets in a more
general structure of generalized topological space. It may be investigated
how far topological properties are affected with the defined sets in the set-
ting of generalized topology. Then we have investigated some of the topo-
logical properties of the defined sets along with the low separation axioms
in GTspaces by introducing sβλ-closed set. We have also explored mutual
relation among sλT 1

4
, sλT 3

8
, sλT 1

2
axioms with sλT0 and sλT1 axioms. We

have also studied sλ-homeomorphism in a generalized topological space.

2. Preliminaries

Let X be a nonempty set. A generalized topology µ [17] is a collection
of subsets of X such that ∅ ∈ µ and µ is closed under arbitrary unions.
In a generalized topological space (GTspace in short) (X,µ), members of
µ are called µ-open sets and complements are µ-closed sets, µ-closure of a
set A denoted by Aµ is similar to a topological space and P (X) denotes all
subsets of X. If otherwise not stated, GTspace (X,µ) will be denoted by
X and R,Q respectively stand for the set of real and rational numbers.

Definition 2.1. (c.f.[13]). A set A in X is said to be semi µ-open (sµ-open
in short) if there exists a µ-open set E in X such that E ⊂ A ⊂ Eµ. A set
A is semi µ-closed (sµ-closed in short) if and only if X −A is semi µ-open.

Definition 2.2. (c.f.[17]). Let A be a subset of (X,µ). We define the sµ-
kernel of A is the set

⋂
{U : A ⊂ U,U is sµ-open} and denote it by sA∧µ .

Assume sA∨µ =
⋃
{F : F ⊂ A,F is sµ-closed}. The set A is called a s∧µ-set

if A = sA∧µ and A is called a s∨µ-set if A = sA∨µ . Note that sA∧µ = X if
there is no sµ-open set containing A and sA∨µ = ∅ if there is no sµ-closed
set contained in A.

Definition 2.3. (c.f.[17]). A subset A of (X,µ) is said to be sλ-closed if
A = K ∩ P where K is a s∧µ-set and P is a sµ-closed set. A is called
sλ-open if X −A is sλ-closed.

Definition 2.4. Suppose A is a subset of (X,µ). We define sA∧λ is the
set

⋂
{U : A ⊂ U,U is sλ-open}. Assume sA∨λ =

⋃
{F : F ⊂ A,F is sλ-

closed}. The set A is called a s∧λ-set if A = sA∧λ and A is called a s∨λ-set
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if A = sA∨λ . Note that sA∧λ = X if there is no sλ-open set containing A
and sA∨λ = ∅ if there is no sλ-closed set contained in A.

Obviously in a GTspace (X,µ), a µ-open set is sµ-open and a µ-closed
set is sµ-closed but converses may not be always true. Again, arbitrary
union of sµ-open sets is sµ-open. So collection of sµ-open sets forms gen-
eralized topology in X. On the other hand, collection of all s∨µ-sets in
a GTspace (X,µ) also forms generalized topology. A set A of (X,µ) is a
s∧µ-set if and only if X − A is a s∨µ-set . Hence, arbitrary intersection of
sλ-closed sets is sλ-closed [8].

We use the symbol τ in general sense to stand for µ- or λ- in the rest
of the section for the sake of repetition of similar types of results.

Definition 2.5. (c.f.[3]). Let (X,µ) be a GTspace then
(1) a point x ∈ X is said to be a sτ -adherence point of a subset A of X,

if for every sτ -open set U containing x such that A ∩ U 6= ∅. The set of all
sτ -adherence points of A is called sτ -closure of A and is denoted by sAτ ;

(2) sτ -interior of a set A ⊂ X is defined as the union of all sτ -open sets
contained in A and is denoted by sIntτ (A).

Theorem 2.6. (c.f.[8]). Let A,B ⊂ X. For sτ -closure following hold:
(1) sAτ =

⋂
{F : A ⊂ F ;F is sτ -closed};

(2) sAτ is sτ -closed;
(3) A is sτ -closed if and only if A = sAτ ;
(4) A ⊂ sAτ and s(sAτ )τ = sAτ ;
(5) if A ⊂ B, then sAτ ⊂ sBτ ;
(6) x ∈ sAτ if and only if each sτ -open set containing x intersects A.

Remark 2.7. (c.f.[8]). Let A,B ⊂ X. For sτ -interior following hold:
(1) sIntτ (A) ⊂ A; (2) if A ⊂ B, sIntτ (A) ⊂ sIntτ (B);
(3) sIntτ (A) is sτ -open; (4) A is sτ -open if and only if A = sIntτ (A).

Lemma 2.8. (c.f.[17]). Suppose A,B ⊂ X, then the following hold:
(1) s∅∧τ = ∅, s∅∨τ = ∅, sX∧τ = X, sX∨τ = X;
(2) A ⊂ sA∧τ , sA∨τ ⊂ A;
(3) A ⊂ B ⇒ sA∧τ ⊂ sB∧τ , A ⊂ B ⇒ sA∨τ ⊂ sB∨τ ;
(4) s(sA∧τ )∧τ = sA∧τ , s(sA∨τ )∨τ = sA∨τ ;
(5) s(X\A)∧τ = X\sA∨τ , s(X\A)∨τ = X\sA∧τ ;
(6) sA∧τ is a s∧τ -set and sA∨τ is a s∨τ -set.
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3. sλ-closed sets and sgλ-closed sets in GTspaces
and sλT 1

2
GTspace

In this section we will discuss some properties of sλ-closed sets, sλ-open
sets, sgλ-closed sets, sgλ-open sets and sλT 1

2
axiom in a GTspace which will

be useful in the sequel.

Definition 3.1. ([14]). A subset A of a topological space is said to be
generalized closed (g-closed for short) if and only if A ⊂ U whenever A ⊂ U
and U is open.

Definition 3.2. (c.f.[14]). A subset A of X is said to be a sgλ-closed set if
sAλ ⊂ U whenever A ⊂ U and U is sλ-open. A is called sgλ-open if X −A
is sgλ-closed.

Note 3.3. Clearly, a set A of X is sgλ-closed if and only if sAλ ⊂ sA∧λ .

Theorem 3.4. If A ⊂ X, then X − s(X −A)λ = sIntλ(A).

Theorem 3.5. A subset A of X is sgλ-open if and only if F ⊂ sIntλ(A)

whenever F ⊂ A and F is sλ-closed (or equivalently, sA∨λ ⊂ sIntλ(A)).

Proof. For necessary part: suppose A is a sgλ-open set and F is a sλ-closed
set, F ⊂ A. Then X − A ⊂ X − F , a sλ-open set and X − A is sgλ-
closed. So we have s(X −A)λ ⊂ X −F , by definition 3.2. By theorem 3.4,
X − sIntλ(A) = s(X −A)λ ⊂ X − F and hence F ⊂ sIntλ(A).

For sufficient part: suppose X−A ⊂ U,U is sλ-open. Then X−U ⊂ A
and X − U is sλ-closed. By assumption, X − U ⊂ sIntλ(A) and so by
theorem 3.4, s(X −A)λ = X − sIntλ(A) ⊂ U and hence X − A is sgλ-
closed by definition 3.2. This implies that A is sgλ-open. �

Lemma 3.6. For A ⊂ X, the following hold:
(1) A is sλ-closed if and only if A = sA∧µ ∩ sAµ.
(2) If A is sµ-closed then A is sλ-closed.
(3) If A is sλ-closed then A = sA∧µ ∩ sAλ.

Proof. (1). The condition is necessary. For let A be a sλ-closed set then
by definition 2.3, A = K ∩ P where K is a s∧µ-set i.e. K = sK∧µ by
definition 2.2 and P is a sµ-closed set. Now A ⊂ K ⇒ sA∧µ ⊂ sK∧µ and
A ⊂ P ⇒ sAµ ⊂ sPµ. Hence A ⊂ sA∧µ ∩ sAµ ⊂ sK∧µ ∩ sPµ = K ∩P = A⇒
A = sA∧µ ∩ sAµ.
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Sufficient part is obvious since sA∧µ is a s∧µ-set and sAµ is sµ-closed.
(2) Let A be a sµ-closed set, then sA∧µ ∩ sAµ = sA∧µ ∩ A = A ⇒ A is

sλ-closed by (1).
(3). Let A be a sλ-closed set, then by definition 2.3, A = K ∩ P

where K is a s∧µ-set i.e. K = sK∧µ by definition 2.2 and P is a sµ-closed
set, then by (2), P is a sλ-closed set. Now A ⊂ K ⇒ sA∧µ ⊂ sK∧µ and
A ⊂ P ⇒ sAλ ⊂ sPλ. Hence A ⊂ sA∧µ ∩ sAλ ⊂ sK∧µ ∩ sPλ = K ∩P = A⇒
A = sA∧µ ∩ sAλ. �

Remark 3.7. Obviously in a GTspace (X,µ), every s∧µ-set as well as every
sµ-closed set are sλ-closed and sλ-closed set is sgλ-closed. Converse parts
are not in general true as revealed from examples 3.8 (i), (ii) and (iii).

Example 3.8. (i): In a GTspace, example of a sλ-closed set which is not
a s∧µ-set:

Suppose X = {a, b, c}, µ = {∅, {a}, {a, b}}. Then (X,µ) is a GTspace
but not a topological space. Among P (X), the family of µ-closed sets is
{X, {b, c}, {c}}; the family of sµ-open sets is {∅, {a}, {c}, {a, b}}, by defi-
nition 2.1; the family of sµ-closed sets is {X, {b, c}, {a, b}, {c}}; the family
of sλ-closed sets is {{a}, {b}, {c}, {a, b}, {b, c}, X}, by lemma 3.6 (1) and
the family of sλ-open sets is {∅, {a}, {c}, {a, b}, {b, c}, {c, a}}. Hence {b}
is a sλ-closed set but not a s∧µ-set, since s{b}∧µ =

⋂
{U : {b} ⊂ U,U is

sµ-open}= {a, b} 6= {b}, by definition 2.2.
(ii): In a GTspace, example of a sλ-closed set which is not a sµ-closed

set:
Suppose X = {a, b, c}, µ = {∅, {a, b}, {b, c}, X}. Then (X,µ) is a

GTspace but not a topological space. Among P (X), the family of µ-closed
sets is {X, {c}, {a}, ∅}; the family of sµ-open sets is {∅, {a, b}, {b, c}, {a, b, c}},
by definition 2.1 and the family of sµ-closed sets is {X, {c}, {a}, ∅}. Then
{a, b} is sλ-closed as s{a, b}∧µ ∩ s{a, b}µ = {a, b} ∩ {a, b, c} = {a, b}, by
lemma 3.6 (1). But {a, b} is not sµ-closed.

(iii): In a GTspace, example of a sgλ-closed set which is not a sλ-closed
set:

Let X = {a, b, c, d}, µ = {∅, {a, b, c}}. Then (X,µ) is a GTspace but not
a topological space. Among P (X), the family of µ-closed sets is {X, {d}};
the family of sµ-open sets is {∅, {d}, {a, b, c}}, by definition 2.1; the fam-
ily of sµ-closed sets is {X, {a, b, c}, {d}}; the family of sλ-closed sets is
{X, {d}, {a, b, c}}, by lemma 3.6 (1) and the family of sλ-open sets is



128 JAGANNATH PAL AND AMAR KUMAR BANERJEE

{∅, {d}, {a, b, c}}. Consider the subset {a, d} = B (say). Now by definition
2.4, sB∧λ =

⋂
{U : B ⊂ U,U is sλ-open}= X and sBλ = X ⊂ X = sB∧λ

and so by note 3.3, B is sgλ-closed but not sλ-closed.

The idea of s∧λ-set has been used in section 4 to define sβλ-closed set.
Now we are giving the idea of sg∧λ-set, a generalization of s∧λ-set and it
will be used to make a GTspace to be sλT 1

2
in a different way.

Definition 3.9. (c.f.[17]). A set A of a GTspace (X,µ) is called a semi
generalised ∧λ-set (sg∧λ-set in short ) if sA∧λ ⊂ F whenever F ⊃ A and
F is sλ-closed. A is called a semi generalized ∨λ-set (sg∨λ-set in short ) if
X −A is sg∧λ-set.

Note 3.10. If a set A of X is a s∧λ-set (resp. s∨λ-set) then A is sg∧λ-set
(resp. sg∨λ-set). But converse may not be true as seen from example 3.20.

Theorem 3.11. Let (X,µ) be a GTspace then
(1): For each x ∈ X, {x} is either sλ-open or sg∨λ-set.
(2): For each x ∈ X, {x} is either sλ-closed or {x} is sgλ-open.

Proof. (1): Suppose x ∈ X and {x} is not sλ-open, then X − {x} is not
sλ-closed. But X is µ-closed⇒ X is sµ-closed⇒ X is sλ-closed by remark
3.7, hence s(X − {x})λ = X. Now s(X−{x})∧λ ⊂ s(X − {x})λ ⇒ X−{x}
is sg∧λ-set, by definition 3.9 and thus {x} is sg∨λ-set.

(2): Suppose x ∈ X and {x} is not sλ-closed, then X − {x} is not sλ-
open. By definition 2.4, s(X−{x})∧λ = X ⇒ s(X − {x})λ ⊂ s(X−{x})∧λ ⇒
X − {x} is a sgλ-closed set by note 3.3 and thus {x} is a sgλ-open set. �

Theorem 3.12. For a subset A of a GTspace (X,µ) the following hold:
(1) if A is sλ-closed then A is sgλ-closed;
(2) if A is sgλ-closed and sλ-open then A is sλ-closed;
(3) if A is sgλ-closed and A ⊂ B ⊂ sAλ then B is sgλ-closed.

Proof. (1): This is obvious, by definition 3.2.
(2): Let A be sgλ-closed and sλ-open. Then sAλ ⊂ A, by definition 3.2

and so A is sλ-closed.
(3): Let B ⊂ U,U is sλ-open then A ⊂ U . By assumption A is sgλ-

closed then sAλ ⊂ U . Again A ⊂ B ⊂ sAλ ⇒ sAλ ⊂ sBλ ⊂ s(sAλ)λ = sAλ

then sAλ = sBλ and hence sBλ ⊂ U . So B is sgλ-closed. �

Theorem 3.13. Let (X,µ) be a GTspace and A ⊂ X then following hold:
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(1) A is sgλ-closed if and only if sAλ − A does not contain any non-
empty sλ-closed set;

(2) let A be s∧λ-set (resp. s∨λ-set) then A is sgλ-closed (resp. sgλ-open
) if and only if A is sλ-closed (resp. sλ-open);

(3) if sA∧λ is sgλ-closed (resp. sA∨λ is sgλ-open) then A is sgλ-closed
(resp. sgλ-open).

Proof. (1): The condition is necessary: suppose A is a sgλ-closed set and
P is a non-empty sλ-closed set, P ⊂ sAλ − A. Then A ⊂ X − P , a sλ-
open set, so by definition 3.2, sAλ ⊂ X − P ⇒ P ⊂ X − sAλ. Thus
P ⊂ sAλ ∩ (X − sAλ) = ∅.

The condition is sufficient: assume the conditions hold and we shall
prove that A is sgλ-closed. Let A ⊂ V where V is sλ-open. If sAλ 6⊂ V

then sAλ ∩ (X − V ) is a non-empty sλ-closed set contained in sAλ − A, a
contradiction to the assumption. Hence A is sgλ-closed.

(2): Let A be a sgλ-closed set and a s∧λ-set i.e. A = sA∧λ . Then by
note 3.3, sAλ ⊂ sA∧λ = A⇒ sAλ = A, hence A is sλ-closed. On the other
hand, a sλ-closed set is obviously a sgλ-closed set. Hence the result follows.

Again, let A be a sgλ-open set and a s∨λ-set i.e. A = sA∨λ . Then
by theorem 3.5, sIntλ(A) ⊃ sA∨λ = A ⇒ sIntλ(A) = A and hence A is
sλ-open. On the other hand, a sλ-open set is obviously a sgλ-open.

(3): Suppose sA∧λ is sgλ-closed. As sA∧λ is a s∧λ-set, by lemma 2.8 (6),
then sA∧λ is sλ-closed by (2). Now A ⊂ sA∧λ ⇒ sAλ ⊂ s(sA∧λ)λ = sA∧λ .
Hence by note 3.3, A is sgλ-closed.

Again, suppose sA∨λ is sgλ-open. As the set sA∨λ is a s∨λ-set by lemma
2.8 (6), then sA∨λ is sλ-open by (2). Now A ⊃ sA∨λ ⇒ sIntλ(A) ⊃
sIntλ(sA∨λ) = sA∨λ . Hence A is sgλ-open by theorem 3.5. �

Lemma 3.14. In a GTspace (X,µ) arbitrary intersection of s∧µ-sets is a
s∧µ-set.

Proof. Let Aα, α ∈ ∆,∆ being an index set, be an arbitrary collection of
s∧µ-sets and let A =

⋂
{Aα;α ∈ ∆}. Then for each α ∈ ∆, Aα = s(Aα)∧µ ,

by definition 2.2 and Aα ⊃ A⇒ s(Aα)∧µ ⊃ sA∧µ for all α ∈ ∆. This implies
that sA∧µ ⊂

⋂
s(Aα)∧µ =

⋂
Aα = A ⊂ sA∧µ . Hence A = sA∧µ . �

Theorem 3.15. Suppose (X,µ) is a GTspace then the following hold:
(1) if Ai, i ∈ I, are sλ-closed sets of X, I being an index set, then

⋂
iAi

is sλ-closed;
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(2) if Ai, i ∈ I, are sλ-open sets of X, I being an index set, then
⋃
iAi

is sλ-open.

Proof. (1) Suppose Ai, i ∈ I, are sλ-closed sets, I being an index set, then
for each i there exist a s∧µ-set Ki and a sµ-closed set Pi such that Ai =

Ki∩Pi. Hence
⋂
Ai =

⋂
(Ki∩Pi) = (

⋂
Ki)

⋂
(
⋂
Pi). By lemma 3.14,

⋂
Ki

is a s∧µ-set and
⋂
Pi is a sµ-closed set. This shows that

⋂
Ai is sλ-closed.

(2) Suppose Ai, i ∈ I, are sλ-open sets, I being an index set. Then
X − Ai is sλ-closed set for each i and X −

⋃
Ai =

⋂
(X − Ai). Therefore

by (1), X −
⋃
Ai is sλ-closed and hence

⋃
Ai is sλ-open. �

Corollary 3.16. Collection of sλ-open sets in a GTspace (X,µ) forms
generalized topology.

Definition 3.17. (c.f.[11]). A GTspace (X,µ) is said to be sλT 1
2
if every

sgλ-closed set is sλ-closed.

Theorem 3.18. (c.f.[17]). In a GTspace (X,µ), following are equivalent:
(1) (X,µ) is sλT 1

2
GTspace;

(2) Every singleton of X is either sλ-open or, sλ-closed;
(3) Every sg∧λ-set is s∧λ-set.

Proof. (1)⇒ (2): Let (X,µ) be a sλT 1
2
GTspace and {x} ∈ X. By theorem

3.11 (2), {x} is either sλ-closed or X − {x} is sgλ-closed. If X − {x} is
sgλ-closed then by assumption, X−{x} is sλ-closed and so {x} is sλ-open.

(2)⇒ (3): Let A ⊂ X be a sg∧λ-set which is not s∧λ-set i.e. A 6= sA∧λ .
Then sA∧λ 6⊂ A, therefore there exists x ∈ sA∧λ , x 6∈ A. By supposition, {x}
is either sλ-open or sλ-closed.

Case (i): If {x} is sλ-open, then X − {x} is sλ-closed containing A.
As A is a sg∧λ-set then by definition 3.9, sA∧λ ⊂ X − {x} ⇒ x 6∈ sA∧λ , a
contradiction.

Case (ii): If {x} is sλ-closed, then X − {x} is sλ-open containing A.
But x ∈ sA∧λ ⊂ X − {x}, a contradiction. Hence the result follows.

(3) ⇒ (1) : Suppose every sg∧λ-set is s∧λ-set and (X,µ) is not sλT 1
2

GTspace. Then there exists a sgλ-closed set A which is not sλ-closed i.e.
sAλ 6= A, therefore there exists a point x ∈ sAλ but x 6∈ A.

By theorem 3.11 (1), {x} is either sλ-open or, X − {x} is a sg∧λ-set.
Case (i): suppose {x} is sλ-open. Since x ∈ sAλ, {x}∩A 6= ∅ ⇒ x ∈ A,

a contradiction, hence A is sλ-closed.
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Case (ii): if X − {x} is a sg∧λ set, then by assumption, it is s∧λ-set
i.e. (X − {x})∧λ = X − {x} by definition 2.4, hence X − {x} is a sλ-open
set containing A. Since A is sgλ-closed, sAλ ⊂ X − {x} which contradicts
that x ∈ sAλ. Hence A is sλ-closed and (X,µ) is sλT 1

2
GTspace. �

Theorem 3.19. Following theorems for a sλ-open set A of a GTspace
(X,µ) can be deduced easily from the definitions.

(1) A is sλ-open if and only if A = N ∪H, N is a s∨µ-set and H is a
sµ-open set.

(2) A is sλ-open if and only if A = sA∨µ ∪ sIntµ(A).
(3) s∨µ-sets and sµ-open sets are sλ-open sets.

Example 3.20. In a GTspace, a sg∧λ-set which is not a s∧λ-set.
Let X = R − Q and µ = {∅, ({

√
2,
√

7} ∪ A;A ⊂ X,A 6= ∅)}. Then
(X,µ) is a GTspace but not a topological space. Consider the set B of all
irrational numbers in (1, 2). So

√
2 ∈ B but

√
7 6∈ B. As B and X −B do

not contain a proper µ-open set, B is neither a sµ-open set nor a sµ-closed
set, by definition 2.1. Hence sB∧µ =

⋂
{X − {x} : B ⊂ X − {x}, a sµ-open

set, x ∈ X − B, x 6=
√

7} = B ∪ {
√

7}, by definition 2.2 and sBµ = X as√
2 ∈ B. Therefore sBµ ∩ sB∧µ = B ∪ {

√
7} 6= B, so by lemma 3.6 (1), B

is not a sλ-closed set. Again, since each {y} ⊂ B, y 6=
√

2, is a µ-closed
set, it is a sµ-closed set and since B does not contain any sµ-open set
(except ∅), sB∨µ ∪ sIntµ(B) = (

⋃
{{y} : {y} ⊂ B, y 6=

√
2, {y} is sµ-closed})⋃

sIntµ(B) = (B − {
√

2})
⋃
∅ = B − {

√
2} 6= B and hence B is not a

sλ-open set, by theorem 3.19 (2). For each x ∈ X − B (x 6=
√

7), X − {x}
is a sµ-open set so it is a s∧µ-set containing B, hence by remark 3.7, it is
a sλ-closed set and these sµ-open sets are also sλ-open, by theorem 3.19
(3). Therefore sB∧λ = B ∪ {

√
7} = sBλ 6= B ⇒ B is not a s∧λ-set but a

sg∧λ-set since sB∧λ ⊂ sBλ, by definition 3.9.

Remark 3.21. In a GTspace (X,µ), intersection of two µ-open sets may
not be µ-open can be seen from example 3.8 (ii). This leads by duality that
union of two µ-closed sets may not be µ-closed which affects the topological
closure property Aµ ∪Bµ = (A ∪B)µ;A,B ∈ X.
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4. sλT 1
4
GTspace, sλT 3

8
GTspace and sλ-homeomorphism

In this section we introduce sβλ-closed set and sλT 1
4
, sλT 3

8
axioms and

investigate some of their properties including relation with sλT0, sλT1 and
sλT 1

2
axioms and discuss sλ-homeomorphism in a GTspace.

Definition 4.1. Suppose (X,µ) is a GTspace, then
(1) it is called sλT0 if for any two distinct points x, y of X, there exists

a sλ-open set U which contains only one of the points;
(2) it is called sλT1 if for any two distinct points x, y ∈ X, there are

sλ-open sets U, V such that x ∈ U, y 6∈ U, y ∈ V, x 6∈ V .

Theorem 4.2. (X,µ) is a sλT0 GTspace if and only if for any pair of
distinct points x, y ∈ X, there is a set A containing only one of the points
such that A is either sλ-open or sλ-closed.

Proof. Condition necessary. Let a GTspace (X,µ) be sλT0 and x, y ∈
X,x 6= y. Then there is a sλ-open set A such that x ∈ A, y 6∈ A or there is
a sλ-open set B such that y ∈ B, x 6∈ B. Therefore x ∈ X −B, y 6∈ X −B
when X −B is a sλ-closed set. Hence the result follows.

Condition sufficient. Suppose x, y ∈ X,x 6= y and A is a sλ-open set
such that x ∈ A, and y 6∈ A. Then by definition, (X,µ) is a sλT0 GTspace.
Now let x ∈ A, y 6∈ A but A is sλ-closed. Then X − A is sλ-open and
y ∈ X −A, x 6∈ X −A. In this case also the GTspace (X,µ) is a sλT0. �

Theorem 4.3. A GTspace (X,µ) is sλT1 if and only if every singleton of
X is sλ-closed.

Proof. First let (X,µ) be sλT1 and x ∈ X. Assume any point y ∈ X such
that x 6= y. Then there exists sλ-open set V containing y such that x 6∈ V .
So y can not be a sλ-adherence point of {x}. Therefore s{x}λ = {x} and
hence {x} is sλ-closed.

Conversely, let every singleton of X be sλ-closed and x, y ∈ X,x 6= y.
Therefore X−{x} and X−{y} are sλ-open sets such that y ∈ X−{x}, x 6∈
X −{x} and x ∈ X −{y}, y 6∈ X −{y}, so the GTspace (X,µ) is sλT1. �

Next we are going to define sβλ-closed set which plays an important
role for establishing a relation among sλT0, sλT1, sλT 1

2
, sλT 1

4
, sλT 3

8
axioms.

Definition 4.4. A set A of a GTspace (X,µ) is said to be sβλ-closed if
A = H ∩Q where H is a s∧λ-set and Q is a sλ-closed set. A is sβλ-open if
X −A is sβλ-closed.
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Lemma 4.5. A set A of a GTspace (X,µ) is sβλ-closed if and only if
A = sA∧λ ∩ sAλ.

Proof is similar to that of the lemma 3.6 (1) and so is omitted.

Remark 4.6. Clearly a sλ-closed set in a GTspace (X,µ) is both sgλ-closed
and sβλ-closed. But converses may not be true as seen from examples 3.8
(iii) and (i). In example (i) it is seen that {a, c} is sβλ-closed, by lemma
4.5, but it is not sλ-closed. Necessary and sufficient condition is given here
for a set to be sλ-closed.

Theorem 4.7. A set A of X is sλ-closed if and only if A is sgλ-closed and
sβλ-closed.

Proof. Necessary part is obvious.
Conversely, let A be sgλ-closed and sβλ-closed. Since A be sgλ-closed,

sAλ ⊂ sA∧λ , by note 3.3 and since A is sβλ-closed, by lemma 4.5, A =

sA∧λ ∩ sAλ = sAλ. Hence A is sλ-closed. �

We summarize the relationship among various types of generalized closed
as well as open sets for a set A ⊂ X in the following diagram; it is noted
that, in general, none of the implications in the diagram is reversible.

(1) s∨µ-set sβλ-closed s∨λ-set −→−→ sg∨λ-set
(A = sA∨µ) (A = sA∧λ ∩ sAλ) (A = sA∨λ)

↑ ↑ ↗
µ-closed −→ sµ-closed −→ sλ-closed −→−→ sgλ-closed

(A = sA∧µ ∩ sAµ) (sAλ ⊂ sA∧λ)

µ-open −→ sµ-open −→ sλ-open →−→−→ sgλ-open
(A = sA∨µ ∪ sIntµ(A)) (sA∨λ ⊂ sIntλ(A))

↓ ↓ ↘
s∧µ-set sβλ-open s∧λ-set −→−→ sg∧λ-set

(A = sA∧µ) (A = sA∧λ) (sA∧λ ⊂ sAλ)

(2) sµ-open −→ sλ-closed; sµ-closed −→ sλ-open
↗ ↗

s∧µ-set s∨µ-set
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Theorem 4.8. A GTspace (X,µ) is sλT 1
2
if and only if every subset is

sβλ-closed.

Proof. First assume that (X,µ) is a sλT 1
2
GTspace and A ⊂ X. Then

by theorem 3.18 (2), every singleton is either sλ-open or sλ-closed. Put
G =

⋂
{X − {x} : x ∈ X −A, {x} is sλ-closed} and H =

⋂
{X − {x} : x ∈

X −A, {x} is sλ-open}. Therefore, G is a s∧λ-set, by definition 2.4 and H
is a sλ-closed set and A = G ∩H. Hence A is a sβλ-closed set.

Conversely, suppose that every subset of (X,µ) is sβλ-closed and x ∈
X, {x} is not sλ-open. Then X − {x} is not sλ-closed. Now X is µ-closed
⇒ X is sµ-closed⇒ X is sλ-closed, by remark 3.7⇒ s(X − {x})λ = X. By
assumption, X−{x} is a sβλ-closed set and then by lemma 4.5, X−{x} =

s(X − {x})∧λ ∩ s(X − {x})λ = s(X − {x})∧λ =
⋂
{U : (X − {x}) ⊂ U,U is

sλ-open}. Therefore X−{x} is sλ-open which implies that {x} is sλ-closed
and hence by theorem 3.18, (X,µ) is sλT 1

2
GTspace. �

Levine [14] placed T 1
2
axiom in between T0 and T1 axioms in a topolog-

ical space. Following are the definitions of new axioms which will be placed
between sλT0 and sλT 1

2
axioms.

Definition 4.9. (c.f.[17]). Suppose (X,µ) is a GTspace then it is called a
(1) sλT 1

4
GTspace if for every finite subset E of X and for every y ∈

X − E, there exists a set Gy containing E and Gy ∩ {y} = ∅ such that Gy
is either sλ-open or sλ-closed;

(2) sλT 3
8
GTspace if for every countable subset E of X and for every

y ∈ X −E, there exists a set Gy containing E and Gy ∩ {y} = ∅ such that
Gy is either sλ-open or sλ-closed.

Note 4.10. Clearly if we take E = {x} in the definition 4.9 (1), then in
view of theorem 4.2 we see that every sλT 1

4
GTspace is a sλT0, but converse

may not be true as seen from example 4.12.

Theorem 4.11. Following results hold in a GTspace (X,µ):
(1) (X,µ) is sλT0 if and only if every singleton of X is sβλ-closed;
(2) (X,µ) is sλT 1

4
if and only if every finite subset of X is sβλ-closed;

(3) (X,µ) is sλT 3
8
if and only if every countable subset of X is sβλ-

closed.

Proof. We prove the result (2) only; proofs of other are similar to that of
(2) and so are omitted.



sβλ-CLOSED SETS AND SOME LOW SEPARATION AXIOMS IN GT-SPACES 135

(2) Suppose (X,µ) is sλT 1
4
GTspace and E is a finite subset of X. Then

by definition 4.9 (1), for every y ∈ X−E there is a set Gy containing E and
disjoint from {y} such that Gy is either sλ-open or sλ-closed. Let K be the
intersection of all such sλ-open sets Gy and P be the intersection of all such
sλ-closed sets Gy as y runs over X −E. Then K is a s∧λ-set by definition
2.4 and P is a sλ-closed set and E = K ∩ P . Thus E is sβλ-closed.

Conversely, consider a finite subset E ⊂ X and it is sβλ-closed and
y ∈ X − E. Then by definition 4.4, E = K ∩ P where K is a s∧λ-set and
P ia a sλ-closed set. If y 6∈ P then the case is obvious since P = sPλ. If
y ∈ P , then y 6∈ K = sK∧λ = ∩{U : K ⊂ U,U is sλ-open}, so there exists
some sλ-open set U containing E such that y 6∈ U . Hence (X,µ) is sλT 1

4

GTspace. �

Example 4.12. A sλT0 GTspace which is not sλT 1
4
.

Let X = R −Q and µ = {∅, ({
√

2,
√

3} ∪ (X − ({
√

7} ∪ A));A ⊂ X,A

is finite)}. Then (X,µ) is a GTspace but not a topological space. We
claim that every singleton is sβλ-closed. Now {

√
7} is µ-closed⇒ sµ-closed

⇒ sλ-closed ⇒ sβλ-closed, by lemma 4.5. Again s{
√

2}∧µ =
⋂
{U = X −

{
√

7, r}, r 6=
√

2,
√

3;U is sµ-open, U ⊃ {
√

2}} = {
√

2,
√

3} and s{
√

2}µ =

{
√

2,
√

7}, then s{
√

2}∧µ ∩ s{
√

2}µ = {
√

2} ⇒ {
√

2} is sλ-closed, by lemma
3.6 (1) ⇒ it is sβλ-closed. Similarly, {

√
3} is sβλ-closed. Again for each

x ∈ X,x 6=
√

2,
√

3,
√

7; s{x}∧µ = {x,
√

2,
√

3} and s{x}µ = {x,
√

7} then
s{x}∧µ ∩ s{x}µ = {x} ⇒ {x} is sλ-closed ⇒ it is sβλ-closed. Hence by
theorem 4.11 (1), (X,µ) is a sλT0 GTspace.

Consider a finite set D = {
√

2,
√

5,
√

11}. Since
√

3,
√

7 6∈ D,D is
neither sµ-open nor sµ-closed. By theorem 3.19 (2), D is not a sλ-open
set. Now sD∧µ =

⋂
{V = X − {

√
7, r}, r 6=

√
3, r ∈ X − D,V is sµ-

open, V ⊃ D} = D ∪ {
√

3}...........(Z) and sDµ = X as
√

2 ∈ D, hence
sD∧µ ∩ sDµ = D ∪ {

√
3} 6= D ⇒ D is not sλ-closed. From (Z), we see that

each V is sµ-open so it is s∧µ-set by definition 2.2, hence by remark 3.7,
it is a sλ-closed set. Again each V is also a sλ-open set by theorem 3.19
(3). Therefore, sD∧λ =

⋂
{V, V ⊃ D,V is sλ-open}= D ∪ {

√
3} = sDλ, so

sD∧λ ∩ sDλ = D ∪ {
√

3} 6= D ⇒ D is not sβλ-closed. Hence by theorem
4.11 (2), (X,µ) is not a sλT 1

4
GTspace.

Remark 4.13. Theorems 4.8 and 4.11 (1) show that a sλT 1
2
GTspace is

sλT0. It follows from theorems 4.8, 4.11 (3), 4.11 (2) that sλT 1
2
axiom
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implies sλT 3
8
axiom and sλT 3

8
axiom implies sλT 1

4
axiom. But those may

not be reversible as seen from examples 4.14 and 4.15.

Example 4.14. A sλT 1
4
GTspace which is not a sλT 3

8
GTspace.

Let X = R − Q and µ = {∅, ({
√

3} ∪ (X − ({
√

2} ∪ A));A ⊂ X,A is
finite)}. Then (X,µ) is a GTspace but not a topological space. We assert
that (X,µ) is a sλT 1

4
GTspace. Assume B is a finite set then consider

following cases:
(i) if

√
3 ∈ B,

√
2 6∈ B; then B is not µ-open as well as not sµ-open

and by definition 2.2, sB∧µ =
⋂
{(X − {

√
2, r}), a sµ-open set containing

B, r ∈ X −B} = B ⇒ B is s∧µ-set ⇒ B is sλ-closed, by remark 3.7.
(ii) if

√
2 ∈ B,

√
3 6∈ B ⇒ B is µ-closed ⇒ B is sµ-closed ⇒ B is

sλ-closed, by remark 3.7.
(iii) if

√
2,
√

3 6∈ B; then sB∧µ =
⋂
{X−{

√
2, r}, a sµ-open set containing

B, r ∈ X −B, r 6=
√

3} = B ∪ {
√

3} and sBµ = B ∪ {
√

2} ⇒ sBµ ∩ sB∧µ =

B ⇒ B is sλ-closed, by lemma 3.6 (1).
(iv) if

√
2,
√

3 ∈ B; then B is neither a sµ-open set nor a sµ-closed set.
Now sB∨µ ∪ sIntµ(B) =

⋃
{{
√

2, r}, r ∈ B, r 6=
√

3, {
√

2, r} is sµ-closed}⋃
sIntµ(B) = (B − {

√
3})

⋃
∅ = B − {

√
3} 6= B; hence B is not a sλ-open

set by theorem 3.19 (2). Assume for each p ∈ X −B, Gp = X − {p}; then
for each r 6=

√
3, r ∈ B, {

√
2, r, p} is a sµ-closed set and Gp − {

√
2, r} is a

sµ-open set, hence s(Gp)∨µ ∪ sIntµ(Gp) = {
√

2, r} ∪ (Gp − {
√

2, r}) = Gp;
so each Gp is a sλ-open set containing B, this implies that sB∧λ = B.

Thus in all four cases we can easily assess by lemma 4.5 thatB (including
each singleton) is a sβλ-closed set and hence (X,µ) is sλT 1

4
GTspace, by

theorem 4.11 (2).
Now we are going to prove that (X,µ) is not a sλT 3

8
GTspace. Consider

a countable set D of X such that
√

2,
√

3 6∈ D, then D is neither a sµ-open
set nor a sµ-closed set. Therefore sD∧µ =

⋂
{X − {

√
2, r}, a sµ-open set

containing D, r ∈ X − D, r 6=
√

3} = D ∪ {
√

3}. Since D is countable,
sDµ = X. Hence sDµ ∩ sD∧µ = D ∪ {

√
3} 6= D ⇒ D is not a sλ-closed

set, by lemma 3.6. Again D contains none of sµ-closed set and sµ-open set
(except ∅) , so by theorem 3.19 (2), D is not a sλ-open set. Now for each
r ∈ X −D, r 6=

√
3, X − {

√
2, r} is a sµ-open set so it is a s∧µ-set, hence a

sλ-closed set containing D, by remark 3.7 and these sµ-open sets are also
sλ-open sets, by theorem 3.19 (3), hence sD∧λ = D ∪ {

√
3} = sDλ. Thus
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sD∧λ
⋂
sDλ = {

√
3} ∪D 6= D, then by lemma 4.5, D is not sβλ-closed and

(X,µ) is not sλT 3
8
GTspace, by theorem 4.11 (3).

Example 4.15. A sλT 3
8
GTspace which is not a sλT 1

2
GTspace.

Consider the GTspace (X,µ) as in example 4.14 and assume A is count-
able in lieu of finite, B is any countable set, D is the set of all irrational
numbers in (0, 1), so {

√
2,
√

3} 6∈ D. Then it can be shown in the similar
way followed in the said example that the GTspace is sλT 3

8
. To prove (X,µ)

is not a sλT 1
2
GTspace we follow the modality applied in the last part of the

example 4.14 which affords us sD∧λ = D∪{
√

3} = sDλ 6= D ⇒ sDλ ⊂ sD∧λ
and hence D is a sgλ-closed set, by note 3.3 but not a sλ-closed set, by
lemma 3.6 (1). Hence the result follows.

Theorem 4.16. If the GTspace (X,µ) is sλT0 then for every pair of distinct
points p, q ∈ X, either p 6∈ s{q}λ or q 6∈ s{p}λ.

Proof. Let the GTspace (X,µ) be sλT0 and p, q ∈ X, p 6= q. Then there
exists a sλ-open set U which contains only one of p, q. Suppose p ∈ U

and q 6∈ U . Then the sλ-open set U has an empty intersection with {q}
and hence p 6∈ s{q}λ. Similarly if U contains the point q but not p then
q 6∈ s{p}λ. �

Following definition will help us to convert a sλT0 GTspace to a sλT1.

Definition 4.17. A GTspace (X,µ) is said to be sλ-symmetric if x, y ∈
X,x ∈ s{y}λ ⇒ y ∈ s{x}λ.

Theorem 4.18. A GTspace (X,µ) is sλ-symmetric if and only if {x} is
sgλ-closed for each x ∈ X.

Proof. Condition necessary. Assume x ∈ X, {x} ⊂ U , a sλ-open set, but
s{x}λ 6⊂ U . This implies that s{x}λ∩(X−U) 6= ∅. Let y ∈ s{x}λ∩(X−U).
Since the GTspace is sλ-symmetric, x ∈ s{y}λ. As y ∈ X − U , s{y}λ ⊂
X − U and x 6∈ U , we arrive at a contradiction. Hence s{x}λ ⊂ U and so
by definition 3.2, {x} is sgλ-closed.

Condition sufficient. Suppose each singleton of X is sgλ-closed and for
x, y ∈ X,x ∈ s{y}λ but y 6∈ s{x}λ. Then {y} ⊂ X − s{x}λ, a sλ-open set.
Since {y} is sgλ-closed, s{y}λ ⊂ X − s{x}λ, by definition 3.2 and hence
x ∈ X − s{x}λ, a contradiction. Thus y ∈ s{x}λ. �
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Theorem 4.19. A GTspace (X,µ) is sλT1 if and only if it is sλ-symmetric
and sλT0.

Proof. Condition necessary. Let (X,µ) be sλT1 GTspace. Then obviously
it is sλT0. Since (X,µ) is sλT1, every singleton is sλ-closed, by theorem 4.3
and so sgλ-closed. Hence (X,µ) is sλ-symmetric by theorem 4.18.

Condition sufficient. Let (X,µ) be sλ-symmetric and sλT0 GTspace and
let x, y ∈ X,x 6= y. Since (X,µ) is sλT0, either x 6∈ s{y}λ or y 6∈ s{x}λ,
by theorem 4.16. Let x 6∈ s{y}λ. Then y 6∈ s{x}λ. For if y ∈ s{x}λ then
it would imply x ∈ s{y}λ since the GTspace is sλ-symmetric. Again since
x 6∈ s{y}λ, there is a sλ-closed set F such that y ∈ F and x 6∈ F . So
x ∈ X − F , a sλ-open set and y 6∈ X − F . Also since y 6∈ s{x}λ, there is a
sλ-closed set P such that x ∈ P and y 6∈ P . So y ∈ X − P , a sλ-open set
and x 6∈ X − P . Hence (X,µ) is sλT1. �

Remark 4.20. The main purpose of this paper to explore mutual relation
among the axioms discussed herein above is now summarized as sλT1 ⊆
sλT 1

2
⊆ sλT 3

8
⊆ sλT 1

4
⊆ sλT0 and it is not reversible and next theorem

shows that all axioms are equivalent under certain condition.

Theorem 4.21. If the GTspace (X,µ) is sλ-symmetric then the axioms
sλT0, sλT1, sλT 1

2
, sλT 3

8
, sλT 1

4
are all equivalent.

Proof. (1): By theorem 4.19, sλ-symmetric sλT0 axiom implies sλT1 axiom.
(2): By theorem 4.3 and 3.18, sλT1 axiom implies sλT 1

2
axiom.

(3): By theorem 4.8 and 4.11 (3), sλT 1
2
axiom implies sλT 3

8
axiom.

(4): By theorem 4.11 (3) and 4.11 (2), sλT 3
8
axiom implies sλT 1

4
axiom.

(5): By theorem 4.11 (2) and 4.11 (1), sλT 1
4
axiom implies sλT0 axiom.

�

Definition 4.22. (c.f.[2]). Let (X,µ1) and (Y, µ2) be two GTspaces. Then
a function f : (X,µ1) −→ (Y, µ2) is said to be sλ-continuous (respectively
sβλ-continuous and sgλ-continuous) if the inverse image of each µ2-open set
is sλ-open (respectively sβλ-open and sgλ-open) in (X,µ1).

Clearly, a function f : (X,µ1) −→ (Y, µ2) is sλ-continuous (respectively
sβλ-continuous and sgλ-continuous) if the inverse image of each µ2-closed
set is sλ-closed (respectively sβλ-closed and sgλ-closed) in (X,µ1).

Theorem 4.23. Suppose (X,µ1) and (Y, µ2) are two GTspaces. A func-
tion f : (X,µ1) −→ (Y, µ2) is sλ-continuous if and only if f is both sβλ-
continuous and sgλ-continuous.
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Proof. Condition necessary. Suppose a function f : (X,µ1) −→ (Y, µ2) is
sλ-continuous and V is a µ2-closed set. Then f−1(V ) is sλ-closed in (X,µ1).
Hence by remark 4.6, f−1(V ) is both sβλ-closed and sgλ-closed in (X,µ1).
Hence f is both sβλ-continuous and sgλ-continuous.

Condition sufficient. Suppose f is both sβλ-continuous and sgλ-continuous
and V is a µ2-closed set. Then f−1(V ) is both sβλ-closed and sgλ-closed
in (X,µ1). So by theorem 4.7, f−1(V ) is sλ-closed in (X,µ1). Hence the
result follows. �

Definition 4.24. Let (X,µ1) and (Y, µ2) be two GTspaces. A bijective
mapping f : (X,µ1) −→ (Y, µ2) is called sλ-homeomorphism if the following
conditions hold:

(i) inverse image of every sλ-open set in (X,µ2) under f is sλ-open in
(X,µ1) and

(ii) inverse image of every sλ-open set in (X,µ1) under f−1 is sλ-open
in (X,µ2).

Note that if µ1 = µ2 = µ then the conditions (i) and (ii) may be
expressed as a single condition (B): “Inverse image of every sλ-open set in
(X,µ) is sλ-open in (X,µ) under f and f−1."

For a set E of a GTspace (X,µ) we denote the set of all maps f :

(X,µ) −→ (X,µ) such that f is a sλ-homeomorphism and f(E) = E by
sλh(X,E, µ). When E = ∅ we denote sλh(X, ∅, µ) simply by sλh(X,µ).

The composition g ◦ f for every f, g ∈ sλh(X,µ) is clearly a binary
operation on sλh(X,µ).

Theorem 4.25. Suppose (X,µ) is a GTspace. Then sλh(X,µ) is a group
and sλh(X,E, µ) is a subgroup of sλh(X,µ) for each E ⊂ X with respect
to the composition of maps of sλh(X,µ) defined above.

Proof. Clearly the operation is associative and closed. Since the identity
map satisfies the condition (B), it belongs to sλh(X,µ) and it is the identity
element of the set. Again if any f ∈ sλh(X,µ), then f−1 satisfies the
condition (B) and hence f−1 ∈ sλh(X,µ). So sλh(X,µ) is a group with
this binary operation.

Since sλh(X,E, µ) ⊂ sλh(X,µ) then we have to prove only that for
any f, g ∈ sλh(X,E, µ), g ◦ f−1 ∈ sλh(X,E, µ). Since f, g ∈ sλh(X,E, µ),

then f, f−1, g, g−1 satisfy the condition (B) which map E into E. Hence
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g◦f−1 and f ◦g−1 satisfy the condition (B). Again, g◦f−1(E) = g(E) = E.
Therefore sλh(X,E, µ) is a subgroup of sλh(X,µ) for each E ⊂ X. �

Conclusion: By introducing sλ-, sgλ-, sβλ-closed sets and sg∧λ-set we
have investigated some of their properties and also furnished mutual relation
among low separation axioms viz. sλT 1

4
, sλT 3

8
, sλT 1

2
axioms along with

sλT0 and sλT1 axioms. Moreover, we have studied sλ-homeomorphism in a
GTspace. There is a scope of further investigation in the field of separation
axioms with ideal, compactness, connectedness, countability.
Acknowledgement: Authors are thankful to the reviewers for their useful
comments and valuable suggestions which improved the quality of the paper.
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REPRODUCING KERNEL FOR ROBIN BOUNDARY
CONDITIONS

GAUTAM PATEL AND KAUSHAL PATEL

(Received : 12 - 06 - 2020 ; Revised : 05 - 03 - 2021)

Abstract. In this paper, we introduced a reproducing kernel space
which is a particular class of Hilbert space. We discuss various prop-
erties of the reproducing kernel. In particular, our aim to construct
kernel in reproducing kernel Hilbert space of the specific function space
(Sobolev space) with the inner product and norm. Also, we derive the
reproducing kernel for Robin boundary conditions.

1. Introduction

Reproducing kernels were discovered during the initial stage of the twen-
tieth century by Zeremba[17] in that effort the center of interest on harmonic
function with boundary value. This was the earliest reproducing kernel
with the reproducibility proved correlated with function family. Actually,
in the early establishment, development of the reproducing kernel hypoth-
esis, almost all the works were executed by Bergman[8, 9, 10, 11, 12] , and
most of the kernels discussed in the 1930’s and 1940’s are Bergman kernels.
Bergman raises the conversation of the kernels with one or several variables
to the harmonic functions and utilized to solve the Laplace equation. It can
be stated that this is the establishment of a particular trend of reproducing
kernel. The next development of the reproducing kernel theory was pushed
by Mercer [16]. He invented the positive definite property of reproducing
kernel and known it as positive definite Hermition matrix:

n∑
i,j=1

k(xi, xj)γiγj ≥ 0 (1.1)
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In 1950,N. Aronszajn[1] outlined the past works and gave a systematic
reproducing kernel theory and laid a good foundation for the research of
each special case and greatly simplified the proof. In this theory unifying
the Bergman and Marces concept of reproducing kernel development.

Subsequently, reproducing kernel theory was used by the mathemati-
cian, scientist [2, 3, 4, 5, 6, 7, 14, 15] like to solve the theoretical problems
of many special fields. In 1986, Cui [13] construct the reproducing kernel
space and corresponding kernel in the Sobolev space.

Here, we review some aspects of reproducing kernel space and then con-
struct the reproducing kernel for the inner product and norm of Sobolev
space for m = 2 with Robin boundary conditions.

2. Preliminaries

In this section, we provide definition of reproducing kernel Hilbert space
and necessary lemmas which are used in the proof of next section theorems.

Definition 2.1. Consider H = {f(%) : f(%) ∈ R or f(%) ∈ C , % is in
abstract set} is endowed with 〈f(%), g(%)〉H , with respect to which H is a
Hilbert space.
For an abstract set X, a function R(%, ϕ) : X ×X → F ( F denotes R or C
)is called the reproducing kernel of Hilbert space H if its satisfies,

〈f(%),R(%, ϕ)〉H = f(ϕ), (2.1)

for each fixed ϕ ∈ X.

Lemma 2.2. In reproducing kernel space H, R(%, ϕ) = R(ϕ, %).

Proof. We have

R(%, ϕ) = 〈R(·, ϕ),R(·, %)〉H = 〈R(·, %),R(·, ϕ)〉H = R(ϕ, %).

Hence, R(%, ϕ) is conjugate symmetric. �

Lemma 2.3. The reproducing kernel R(%, ϕ) is unique in reproducing ker-
nel space H.

Proof. Let Q(%, ϕ) be also reproducing kernel , then

Q(%, ϕ) = 〈Q(·, ϕ),R(·, %)〉H = 〈R(·, %), Q(·, ϕ)〉H = R(ϕ, %) = R(%, ϕ).

Hence, reproducing kernel is unique. �
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Lemma 2.4. If R(%, ϕ) is the reproducing kernel in H , then for each % ∈ X
,R(%, %) ≥ 0 and R(%, %) = 0 if and only if H = {0} .

Proof. We have

R(%, %) = 〈R(·, %),R(·, %)〉H = ‖R(·, %)‖2H.

Which gives R(%, %) ≥ 0 and R(%, %) = 0 if and only if H = {0}. �

Lemma 2.5. Reproducing kernel R(%, ϕ) is a positive definite.

Proof. For any complex number γi,
n∑

ı,=1

γiγjR(%i, %j) =
n∑
i=1

n∑
j=1

γiγj 〈R(·, %i),R(·, %j)〉H

=

〈
n∑
j=1

γjR(·, %j),
n∑
i=1

γiR(·, %i)

〉
H

=

〈
n∑
i=1

γiR(·, %i),
n∑
i=1

γiR(·, %i)

〉
H

=

∥∥∥∥∥
n∑
i=1

γiR(·, %i)

∥∥∥∥∥
2

H

≥ 0.

Hence, reproducing kernel is positive definite. �

Lemma 2.6. For any fixed % ∈ X, the linear functional I(f(%)) = f(%) is
bounded if and only if Hilbert space H is a reproducing kernel space.

Proof. Since H is a reproducing kernel space, there exists a reproducing
kernel R(%, ϕ).

|I(f(%))| = |f(%)| = |〈f(·),R(·, %)〉H|

≤ ‖f(·)‖H‖R(·, %)‖H

= ‖f(·)‖H
√
〈R(·, %),R(·, %)〉H

= ‖f(·)‖H
√
R(%, %).

Therefore, I(f(%)) = f(%) is bounded.
Now, for every f(%) ∈ H, because of linear functional, by F. Riesz theorem
there exists a uniqueR(·, %) ∈ H, whence f(%) = I(f(%)) = 〈f(·),R(·, %)〉H.
Hence, the lemma is proved. �
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3. Reproducing Kernel Space Wm
2 [α, β]

In this section, the function space Wm
2 [α, β] = {f(%) : f (m−1)(%) is ab-

solutely continuous,f (m)(%) ∈ L2[α, β], % ∈ [α, β]}.
For any functions f(%), g(%) ∈ Wm

2 [α, β],

〈f(%), g(%)〉Wm
2

=

m−1∑
i=0

[
dif(α)

d%i
dig(α)

d%i
+
dif(β)

d%i
dig(β)

d%i

]

+

∫ β

α

dmf(%)

d%m
dmg(%)

d%m
d%,

(3.1)

‖f(%)‖Wm
2

=
√
〈f(%), g(%)〉Wm

2
. (3.2)

Theorem 3.1. The space Wm
2 [α, β] is an inner product space.

Proof. Let f(%), g(%), h(%) ∈ Wm
2 [α, β].

Here,

〈f(%), f(%)〉Wm
2

=
m−1∑
i=0

[(
dif(α)

d%i

)2

+

(
dif(β)

d%i

)2
]

+

∫ β

α

(
dmf(%)

d%m

)2

d%,

since,
(
dif(α)
d%i

)2
> 0 and

(
dif(β)
d%i

)2
> 0,0 ≤ i ≤ m − 1, also,

(
dif(α)
d%i

)2
= 0

and
(
dif(β)
d%i

)2
= 0 if and only if dif(α)

d%i
= 0 and dif(β)

d%i
= 0, 0 ≤ i ≤ m − 1

and
(
dmf(%)
d%m

)2
> 0 and

(
dmf(%)
d%m

)2
= 0 if and only if d

mf(%)
d%m = 0,∀% ∈ [α, β].

Therefore,
∫ β
α

(
dmf(%)
d%m

)2
d% > 0 and

∫ β
α

(
dmf(%)
d%m

)2
d% = 0 if and only if

dmf(%)
d%m = 0,∀% ∈ [α, β].

Thus, 〈f(%), g(%)〉Wm
2

is positive definite.
Clearly, 〈f(%), g(%)〉Wm

2
=〈g(%), f(%)〉Wm

2
which gives 〈f(%), g(%)〉Wm

2
is sym-

metric.
Now for linearity consider scalars a and b,

〈af(%) + bg(%), h(%)〉Wm
2

=

m−1∑
i=0

[(
a
dif(α)

d%i
+ b

dig(α)

d%i

)
dih(α)

d%i

+

(
a
dif(β)

d%i
+ b

dig(β)

d%i

)
dih(β)

d%i

] (3.3)
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+

∫ β

α

[
a
dmf(%)

d%m
+ b

dmg(%)

d%m

]
dmh(%)

d%m
d%

=

m−1∑
i=0

[
a
dif(α)

d%i
dih(α)

d%i
+ a

dif(β)

d%i
dih(β)

d%i

]

+

∫ β

α
a
dmf(%)

d%m
dmh(%)

d%m
d%

+

m−1∑
i=0

[
b
dif(α)

d%i
dih(α)

d%i
+ b

dif(β)

d%i
dih(β)

d%i

]

+

∫ β

α
b
dmf(%)

d%m
dmh(%)

d%m
d%

=a〈f(%), h(%)〉Wm
2
+ b〈g(%), h(%)〉Wm

2
.

Thus, 〈f(%), g(%)〉Wm
2

is linear.
This completes the proof. �

Theorem 3.2. The space Wm
2 [α, β] is a Hilbert space.

Proof. Consider fn(%), n = 1, 2, . . . is a Cauchy sequence in Wm
2 [α, β].

Therefore,

‖fn+p − fn‖2Wm
2

=

m−1∑
i=0

[(
difn+p(α)

d%i
− difn(α)

d%i

)2

+

(
difn+p(β)

d%i
− difn(β)

d%i

)2
]

+

∫ β

α

(
dmfn+p(%)

d%m
− dmfn(%)

d%m

)2

d%→ 0

as n→∞.
Which gives, d

ifn+p(α)
d%i

− difn(α)
d%i

→ 0 as n→∞, 0 ≤ i ≤ m− 1,n = 1, 2, . . ..

Similarly, d
ifn+p(β)
d%i

− difn(β)
d%i

→ 0 as n→∞, 0 ≤ i ≤ m− 1,n = 1, 2, . . . and∫ β

α

(
dmfn+p(%)

d%m
− dmfn(%)

d%m

)2

d%→ 0 as n→∞.

Which indicates that for any i (0 ≤ i ≤ m − 1), the sequence difn(α)
d%i

and
difn(β)
d%i

,n = 1, 2, . . . are Cauchy sequences in R and dmfn(%)
d%m ,n = 1, 2, . . . is a

Cauchy sequence in space L2[α, β].
So, there exists unique real numbers ci and di, 0 ≤ i ≤ m − 1 and unique
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function h(%) ∈ L2[α, β] such that, d
ifn(α)
d%i

→ ci and
difn(β)
d%i

→ di ,0 ≤ i ≤

m− 1 and
∫ β
α

(
dmfn(%)
d%m − h(%)

)2
d%→ 0 as n→∞.

We must have g(%) ∈ Wm
2 [α, β] with dig(α)

d%i
= ci ,

dig(β)
d%i

= di , 0 ≤ i ≤ m−1

and dmg(%)
d%m = h(%).

Moreover,

‖fn(%)− g(%)‖2Wm
2

=

m−1∑
i=0

[(
difn(α)

d%i
− dig(α)

d%i

)2

+

(
difn(β)

d%i
− dig(β)

d%i

)2
]

+

∫ β

α

(
dmfn(%)

d%m
− dmg(%)

d%m

)2

d%

=
m−1∑
i=0

[(
difn(α)

d%i
− ci

)2

+

(
difn(β)

d%i
− di

)2
]

+

∫ β

α

(
dmfn(%)

d%m
− h(%)

)2

d%

→ 0 as n→∞.

Hence, the function space Wm
2 is a Hilbert space. �

Theorem 3.3. The space Wm
2 [α, β] is a reproducing kernel Hilbert space.

Proof. As per lemma 2.6, suppose that I(f) = f(%), % ∈ [α, β] is linear
functional of Wm

2 [α, β] and f(%) ∈ Wm
2 .

We have,

dm−1f(%)

d%m−1
=
dm−1f(α)

d%m−1
+

∫ %

α

dmf(%)

d%m
d%,

and
dm−1f(%)

d%m−1
=

∫ β

%

dmf(%)

d%m
d%− dm−1f(β)

d%m−1
.

Therefore,

dm−1f(%)

d%m−1
=

1

2

[
dm−1f(α)

d%m−1
− dm−1f(β)

d%m−1

]
+

1

2

∫ β

α

dmf(%)

d%m
d%.

Obviously,∣∣∣∣dm−1f(%)d%m−1

∣∣∣∣ ≤ ∣∣∣∣dm−1f(α)d%m−1

∣∣∣∣+ ∣∣∣∣dm−1f(β)d%m−1

∣∣∣∣+ ∫ β

α

∣∣∣∣dmf(%)d%m

∣∣∣∣ d%. (3.4)
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Since, ∫ β

α

∣∣∣∣dmf(%)d%m

∣∣∣∣ d% ≤
[
(β − α)

∫ β

α

∣∣∣∣dmf(%)d%m

∣∣∣∣2 d%
] 1

2

= K0

[∫ β

α

∣∣∣∣dmf(%)d%m

∣∣∣∣2 d%
] 1

2

≤ K0

[
m−1∑
i=0

((
dif(α)

d%i

)2

+

(
dif(β)

d%i

)2
)

+

∫ β

α

∣∣∣∣dmf(%)d%m

∣∣∣∣2
] 1

2

= K0‖f‖Wm
2
.

(3.5)

Now, for any i, 0 ≤ i ≤ m− 1,∣∣∣∣dif(α)d%i

∣∣∣∣ ≤
[
m−1∑
i=0

((
dif(α)

d%i

)2

+

(
dif(β)

d%i

)2
)

+

∫ β

α

∣∣∣∣dmf(%)d%m

∣∣∣∣2
] 1

2

= ‖f‖Wm
2
.

(3.6)

Similarly, ∣∣∣∣dif(β)d%i

∣∣∣∣ ≤ ‖f‖Wm
2
. (3.7)

From (3.4) to (3.7), ∣∣∣∣dm−1f(%)d%m−1

∣∣∣∣ ≤ K1‖f‖Wm
2
. (3.8)

Analogously, ∣∣∣∣dm−2f(%)d%m−2

∣∣∣∣ ≤ K2‖f‖Wm
2
. (3.9)

Thus,|I(f)| = |f(%)| ≤ Km‖f‖Wm
2
.

Hence, I is bounded functional which provide that Wm
2 [a, b] is reproducing

kernel Hilbert space. �
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4. Method to Construct Reproducing Kernel

Suppose R(%, ϕ) is the reproducing kernel function of Wm
2 [α, β], then

for any fixed ϕ ∈ [α, β] and any f(%) ∈ Wm
2 [α, β], R(%, ϕ) must satisfy

〈f(%),R(%, ϕ)〉Wm
2

= f(ϕ). (4.1)

Therefore,

〈f(%),R(%, ϕ)〉Wm
2

=
m−1∑
i=0

[
dif(α)

d%i
∂iR(α,ϕ)

∂%i
+
dif(β)

d%i
∂iR(β, ϕ)

∂%i

]

+

∫ β

α

dmf(%)

d%m
∂mR(%, ϕ)

∂%m
d%.

(4.2)

Since, ∫ β

α

dmf(%)

d%m
∂mR(%, ϕ)

∂%m
d%

=
m−1∑
i=0

(
(−1)id

m−i−1f(%)

d%m−i−1
∂m+iR(%, ϕ)

∂%m+i

)β
%=α

+ (−1)m
∫ β

α
f(%)

∂2mR(%, ϕ)
∂%2m

d%.

(4.3)

Also,
m−1∑
i=0

((−1)id
m−i−1f(%)

d%m−i−1
∂m+iR(%, ϕ)

∂%m+i

=
m−1∑
i=0

(−1)m−i−1d
if(%)

d%i
∂2m−i−1R(%, ϕ)

∂%2m−i−1
.

(4.4)

From equations (4.2) to (4.4), we get

〈f(%),R(%,ϕ)〉Wm
2

=
m−1∑
i=0

[
dif(α)

d%i

(
∂iR(α,ϕ)

∂%i
− (−1)m−i−1∂

2m−i−1R(α,ϕ)
∂%2m−i−1

)

+
dif(β)

d%i

(
(−1)m−i−1∂

2m−i−1R(β, ϕ)
∂%2m−i−1

+
∂iR(β, ϕ)

∂%i

)]
+ (−1)m

∫ β

α
f(%)

∂2mR(%, ϕ)
∂%2m

d%.

(4.5)
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Now, from equations (4.1), (4.5) and the Dirac delta function

(−1)m∂
2mR(%, ϕ)
∂%2m

= δ(%− ϕ), (4.6)

∂iR(α,ϕ)
∂%i

− (−1)m−i−1∂
2m−i−1R(α,ϕ)
∂%2m−i−1

= 0, 0 ≤ i ≤ m− 1, (4.7)

(−1)m−i−1∂
2m−i−1R(β, ϕ)
∂%2m−i−1

+
∂iR(β, ϕ)

∂%i
= 0, 0 ≤ i ≤ m− 1. (4.8)

Here, R(%, ϕ) is the solution of the following constant coefficient 2m order
differential equation with boundary conditions (4.7) and (4.8)

(−1)m∂
2mR(%, ϕ)
∂%2m

= 0. (4.9)

The equation (4.9) has characteristic equation λ2m = 0 whose the charac-
teristic root λ = 0 with multiplicity 2m.
Therefore,

R(%, ϕ) =

R1(%, ϕ) =
∑2m

i=1 ci(ϕ)%
i−1, % < ϕ

R2(%, ϕ) =
∑2m

i=1 di(ϕ)%
i−1, % > ϕ.

(4.10)

Since, the solution (4.10) of (4.9) also satisfied the following conditions

∂iR1(ϕ,ϕ)

∂%i
=
∂iR2(ϕ,ϕ)

∂%i
, 0 ≤ i ≤ 2m− 2, (4.11)

∂2m−1R1(ϕ
+, ϕ)

∂%2m−1
− ∂2m−1R2(ϕ

−, ϕ)

∂%2m−1
=

1

(−1)m
. (4.12)

Using boundary conditions (4.7), (4.8), (4.11) and (4.12), we can derive the
reproducing kernel R(%, ϕ) for any m.

5. REPRODUCING KERNEL FOR ROBIN BOUNDARY
CONDITIONS

In this section, we will derive reproducing kernel for m = 2 with Robin
boundary conditions.
Therefore, the function space W2

2 [α, β] is defined as follows,

5.1. Reproducing Kernel R(%, ϕ) for f(α) = 0, f ′(β) = 0.
W2

2 [α, β] = {f(%)|f(%), f ′(%) are absolutely continuous, f ′′(%) ∈ L2[α, β], % ∈
[α, β], f(α) = 0, f ′(β) = 0}.
Described method in section 4 with the Robin boundary conditions, we get



152 GAUTAM PATEL AND KAUSHAL PATEL

fourth order differential equation with the boundary conditions in the form

∂4R(%, ϕ)
∂%4

= 0, (5.1)

R(α, β) = 0,

∂R(α,ϕ)
∂%

− ∂2R(α,ϕ)
∂%2

= 0,

R(β, ϕ)− ∂3R(β, ϕ)
∂%3

= 0,

∂R(β, ϕ)
∂%

= 0,

R1(ϕ,ϕ) = R2(ϕ,ϕ),

∂R1(ϕ,ϕ)

∂%
=
∂R2(ϕ,ϕ)

∂%
,

∂2R1(ϕ,ϕ)

∂%2
=
∂2R2(ϕ,ϕ)

∂%2
,

∂3R1(ϕ
+, ϕ)

∂%3
− ∂3R2(ϕ

−, ϕ)

∂%3
= 1.

(5.2)

Hence, the solution of (5.1) and (5.2) is

R(%, ϕ) =

R1(%, ϕ) = c1(ϕ) + c2(ϕ)%+ c3(ϕ)%
2 + c4(ϕ)%

3, % ≤ ϕ

R2(%, ϕ) = d1(ϕ) + d2(ϕ)%+ d3(ϕ)%
2 + d4(ϕ)%

3, % > ϕ.

(5.3)
Where,

c1(ϕ) =

α



2α3 β3 − 3α3 β2 ϕ+ α3 ϕ3 + 6α3 − 2α2 β4 − 8α2 β3

+6α2 β2 ϕ2 + 12α2 β2 ϕ− 4α2 β ϕ3 − 24α2 β − 4α2 ϕ3

−24α2 + 3αβ4 ϕ+ 6αβ4 − 6αβ3 ϕ2 + 3αβ2 ϕ3

−18αβ2 ϕ2 + 12αβ ϕ3 + 36αβ ϕ+ 72αβ − 18αϕ2

−6β4 ϕ+ 12β3 ϕ2 − 6β2 ϕ3 − 72β ϕ+ 36ϕ2


6

(
α4 − 4α3 β − 4α3 + 6α2 β2 + 12α2 β

−4αβ3 − 12αβ2 − 12α+ β4 + 4β3 + 12β + 12

) ,
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c2(ϕ) = −

α4 β2 − 2α4 β ϕ+ α4 ϕ2 − 4α3 β2 + 8α3 β ϕ− 4α3 ϕ2

−α2 β4 + 3α2 β2 ϕ2 − 2α2 β ϕ3 − 12α2 β + 2αβ4 ϕ+ 2αβ4

−4αβ3 ϕ2 + 2αβ2 ϕ3 − 6αβ2 ϕ2 + 4αβ ϕ3 + 24αβ ϕ
+24αβ − 12αϕ2 − 2β4 ϕ+ 4β3 ϕ2 − 2β2 ϕ3 − 24β ϕ+ 12ϕ2

2

(
α4 − 4α3 β − 4α3 + 6α2 β2 + 12α2 β

−4αβ3 − 12αβ2 − 12α+ β4 + 4β3 + 12β + 12

) ,

c3(ϕ) =
ϕ

2
+

(α− ϕ)

 α3 ϕ− 2α2 β2 − α2 ϕ2 − 4α2 ϕ+ 2αβ3

+αβ2 ϕ+ 6αβ2 + 2αϕ2 + 6α− 2β3 ϕ
−4β3 + β2 ϕ2 − 6ϕ− 12


2

(
12α+ β3 (4α− 4) + β2

(
12α− 6α2

)
−β (−4α3 + 12α2 + 12) + 4α3 − α4 − β4 − 12

) ,

c4(ϕ) = −

(α− ϕ)

 α3 − 4α2 β + α2 ϕ− 4α2 + 3αβ2

+2αβ ϕ+ 12αβ − 2αϕ2 − 4αϕ
−3β2 ϕ− 6β2 + 2β ϕ2 + 2ϕ2


6

(
12α+ β3 (4α− 4) + β2

(
12α− 6α2

)
−β (−4α3 + 12α2 + 12) + 4α3 − α4 − β4 − 12

) − 1

6
,

d1(ϕ) =

(α− ϕ)



2α3 β3 − 3α3 β2 ϕ+ 6α3 − 2α2 β4 + 2α2 β3 ϕ

−8α2 β3 + 3α2 β2 ϕ2 + 12α2 β2 ϕ− 24α2 β
+6α2 ϕ− 24α2 + αβ4 ϕ+ 6αβ4 − 4αβ3 ϕ2

−8αβ3 ϕ− 6αβ2 ϕ2 + 12αβ ϕ+ 72αβ − 12αϕ2

−24αϕ+ β4 ϕ2 + 4β3 ϕ2 + 12β ϕ2 + 12ϕ2


6

(
α4 − 4α3 β − 4α3 + 6α2 β2 + 12α2 β − 4αβ3

−12αβ2 − 12α+ β4 + 4β3 + 12β + 12

) ,

d2(ϕ) = −

β (α− ϕ)

 α3 β − 2α3 ϕ+ α2 β ϕ− 4α2 β + 2α2 ϕ2

+8α2 ϕ− αβ3 − 2αβ ϕ2 − 4αβ ϕ− 4αϕ2

−12α+ β3 ϕ+ 2β3 + 2β ϕ2 + 12ϕ+ 24


2

(
α4 − 4α3 β − 4α3 + 6α2 β2 + 12α2 β − 4αβ3

−12αβ2 − 12α+ β4 + 4β3 + 12β + 12

) ,
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d3(ϕ) =−
(α−ϕ) (2ϕ−2α+4)β3

2 − (α−ϕ) (−2α2+αϕ+6α+ϕ2)β2

2(
12α+ β3 (4α− 4) + β2

(
12α− 6α2

)
+ 4α3

−β (−4α3 + 12α2 + 12)− α4 − β4 − 12

)

−
(α−ϕ) (−α3 ϕ+α2 ϕ2+4α2 ϕ−2αϕ2−6α+6ϕ+12)

2(
12α+ β3 (4α− 4) + β2

(
12α− 6α2

)
+ 4α3

−β (−4α3 + 12α2 + 12)− α4 − β4 − 12

) ,

d4(ϕ) =
(α−ϕ) (3ϕ−3α+6)β2

6 − (α−ϕ) (−4α2+2αϕ+12α+2ϕ2)β
6(

12α+ β3 (4α− 4) + β2
(
12α− 6α2

)
+ 4α3

−β (−4α3 + 12α2 + 12)− α4 − β4 − 12

)

+

(α−ϕ) (−α3−α2 ϕ+4α2+2αϕ2+4αϕ−2ϕ2)
6(

12α+ β3 (4α− 4) + β2
(
12α− 6α2

)
+ 4α3

−β (−4α3 + 12α2 + 12)− α4 − β4 − 12

) .
5.2. Reproducing Kernel R(%, ϕ) for f ′(α) = 0, f(β) = 0.
W2

2 [α, β] = {f(%)|f(%), f ′(%) are absolutely continuous,f ′′(%) ∈ L2[α, β], % ∈
[α, β], f ′(α) = 0, f(β) = 0}.
Described method in section 4 with the Robin boundary conditions, we get
fourth order differential equation with the boundary conditions in the form

∂4R(%, ϕ)
∂%4

= 0, (5.4)

R(α,ϕ) + ∂3R(α,ϕ)
∂%3

= 0,

∂R(α,ϕ)
∂%

= 0,

R(β, ϕ) = 0,

∂2R(β, ϕ)
∂%2

+
∂R(β, ϕ)

∂%
= 0,

R1(ϕ,ϕ) = R2(ϕ,ϕ),

(5.5)
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∂R1(ϕ,ϕ)

∂%
=
∂R2(ϕ,ϕ)

∂%
,

∂2R1(ϕ,ϕ)

∂%2
=
∂2R2(ϕ,ϕ)

∂%2
,

∂3R1(ϕ
+, ϕ)

∂%3
− ∂3R2(ϕ

−, ϕ)

∂%3
= 1.

Hence, the solution of (5.4) and (5.5) is

R(%, ϕ) =

R1(%, ϕ) = c1(ϕ) + c2(ϕ)%+ c3(ϕ)%
2 + c4(ϕ)%

3, % ≤ ϕ

R2(%, ϕ) = d1(ϕ) + d2(ϕ)%+ d3(ϕ)%
2 + d4(ϕ)%

3, % > ϕ.

(5.6)
Where,

c1(ϕ) = −

(β − ϕ)



−2α4 β2 + α4 β ϕ− 6α4 β + α4 ϕ2 + 2α3 β3

+2α3 β2 ϕ+ 8α3 β2 − 4α3 β ϕ2 + 8α3 β ϕ
−4α3 ϕ2 − 3α2 β3 ϕ+ 3α2 β2 ϕ2 − 12α2 β2 ϕ

+6α2 β ϕ2 + 24αβ2 − 12αβ ϕ+ 72αβ − 12αϕ2

−6β3 − 6β2 ϕ− 24β2 + 12β ϕ2 − 24β ϕ+ 12ϕ2


6

(
α4 − 4α3 β − 4α3 + 6α2 β2 + 12α2 β − 4αβ3

−12αβ2 − 12α+ β4 + 4β3 + 12β + 12

) ,

c2(ϕ) =

α (β − ϕ)

 −α3 β + α3 ϕ− 2α3 + αβ3 + αβ2 ϕ

+4αβ2 − 2αβ ϕ2 + 4αβ ϕ− 2αϕ2 − 2β3 ϕ
+2β2 ϕ2 − 8β2 ϕ+ 4β ϕ2 + 12β − 12ϕ+ 24


2

(
α4 − 4α3 β − 4α3 + 6α2 β2 + 12α2 β − 4αβ3

−12αβ2 − 12α+ β4 + 4β3 + 12β + 12

) ,

c3(ϕ) =−
− (β−ϕ) (2β−2ϕ+4)α3

2 +
(β−ϕ) (2β2−β ϕ+6β−ϕ2)α2

2(
12β − α3 (4β + 4) + α2

(
6β2 + 12β

)
+ 4β3

−α (4β3 + 12β2 + 12) + α4 + β4 + 12

)

−
(β−ϕ) (−β3 ϕ+β2 ϕ2−4β2 ϕ+2β ϕ2+6β−6ϕ+12)

2(
12β − α3 (4β + 4) + α2

(
6β2 + 12β

)
+ 4β3

−α (4β3 + 12β2 + 12) + α4 + β4 + 12

) ,
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c4(ϕ) =−
(β−ϕ) (3β−3ϕ+6)α2

6 − (β−ϕ) (4β2−2β ϕ+12β−2ϕ2)α
6(

12β − α3 (4β + 4) + α2
(
6β2 + 12β

)
+ 4β3

−α (4β3 + 12β2 + 12) + α4 + β4 + 12

)

−
(β−ϕ) (β3+β2 ϕ+4β2−2β ϕ2+4β ϕ−2ϕ2)

6(
12β − α3 (4β + 4) + α2

(
6β2 + 12β

)
+ 4β3

−α (4β3 + 12β2 + 12) + α4 + β4 + 12

) ,

d1(ϕ) = −

β



−2α4 β2 + 3α4 β ϕ− 6α4 β + 6α4 ϕ+ 2α3 β3 + 8α3 β2

−6α3 β ϕ2 − 12α3 ϕ2 − 3α2 β3 ϕ+ 6α2 β2 ϕ2

+3α2 β ϕ3 + 18α2 β ϕ2 + 6α2 ϕ3 − 4αβ2 ϕ3 + 24αβ2

−12αβ ϕ3 − 36αβ ϕ+ 72αβ − 72αϕ+ β3 ϕ3 − 6β3

+4β2 ϕ3 − 24β2 + 18β ϕ2 + 36ϕ2 − 12α2 β2 ϕ


6

(
α4 − 4α3 β − 4α3 + 6α2 β2 + 12α2 β − 4αβ3

−12αβ2 − 12α+ β4 + 4β3 + 12β + 12

) ,

d2(ϕ) =

−α4 β2 + 2α4 β ϕ− 2α4 β + 2α4 ϕ− 4α3 β ϕ2 − 4α3 ϕ2

+α2 β4 + 4α2 β3 + 3α2 β2 ϕ2 + 2α2 β ϕ3 + 6α2 β ϕ2

+2α2 ϕ3 − 2αβ4 ϕ− 8αβ3 ϕ− 2αβ2 ϕ3 + 12αβ2 − 4αβ ϕ3

−24αβ ϕ+ 24αβ − 24αϕ+ β4 ϕ2 + 4β3 ϕ2 + 12β ϕ2 + 12ϕ2

2

(
α4 − 4α3 β − 4α3 + 6α2 β2 + 12α2 β − 4αβ3

−12αβ2 − 12α+ β4 + 4β3 + 12β + 12

) ,

d3(ϕ) = −

(β − ϕ)

 −2α3 β + 2α3 ϕ− 4α3 + 2α2 β2

−α2 β ϕ+ 6α2 β − α2 ϕ2 − β3 ϕ
+β2 ϕ2 − 4β2 ϕ+ 2β ϕ2 + 6β − 6ϕ+ 12


2

(
12β − α3 (4β + 4) + α2

(
6β2 + 12β

)
−α (4β3 + 12β2 + 12) + α4 + 4β3 + β4 + 12

) − ϕ

2
,

d4(ϕ) = −

(β − ϕ)

 3α2 β − 3α2 ϕ+ 6α2 − 4αβ2

+2αβ ϕ− 12αβ + 2αϕ2 + β3 + β2 ϕ
+4β2 − 2β ϕ2 + 4β ϕ− 2ϕ2


6

(
12β − α3 (4β + 4) + α2

(
6β2 + 12β

)
−α (4β3 + 12β2 + 12) + α4 + 4β3 + β4 + 12

) +
1

6
.
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6. CONCLUSION

In this paper we derived a generalized reproducing kernel for Robin
boundary conditions using an inner product. This reproducing kernel is used
to solve the first order ordinary differential equations with Robin boundary
condition in particular for m = 2. The derive reproducing kernel is gener-
alized to nth order ordinary differential equations for substitute m = n+1.
Acknowledgement: We wish to thank the editor-in-chief and the anony-
mous referees for their valuable suggestions to improve the quality of the
paper.
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NONSTANDARD APPROACH TO HAUSDORFF
OUTER MEASURE

MEE SEONG IM
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Abstract. We use nonstandard techniques, in the sense of Abraham
Robinson, to define and give the exact Hausdorff outer measure.

1. Introduction

Developing a notion of dimension and measuring sets is foundational
in mathematics (cf. [4, 7, 6, 8, 9, 10]). Originally studied by B. Riemann,
they have been further developed by H. Schwarz, F. Klein, D. Hilbert, H.
Lebesgue, F. Hausdorff, and others.

In this manuscript, we focus on Hausdorff measure, which is well-defined
for any set. That is, a d-dimensional Hausdorff measure of a measurable
subset of Rn is proportional to the dimension of the set. In particular, d-
dimensional Hausdorff measure exists for any real number d ≥ 0 (so d is
not necessarily an integer). This implies that the Hausdorff dimension of a
set is greater than or equal to its topological dimension, and less than or
equal to the dimension of the metric space imbedding the set (thus it is a
refinement of an integral dimension).

We use a nonstandard approach to study Hausdorff measure since non-
standard techniques provide a richer insight to standard objects and sets.
In particular, we show how discrete measure (cf. Definition 4.2) gives rise
to Hausdorff outer measure, which is our main result:

Theorem 1.1. Let A be a subset in [0, 1]. Let Hs(A) be the Hausdorff outer
measure of dimension s. Then

2010 Mathematics Subject Classification: 26E35, 28E05, 28A78, 11K55.
Key words and phrases: Nonstandard analysis, Hausdorff outer measure, measure
theory, infinitesimals.

© Indian Mathematical Society, 2021 .
159



160 MEE SEONG IM

(a) Hs(A) ≤ inf{st hsδ(B) : internal B ⊇ st−1(A)} for all infinitesimal
δ, and

(b) Hs(A) = lim
δ→0

inf{st hsδ(B) : internal B ⊇ st−1(A)}, where δ ranges
over standard positive values in R in the limit.

Theorem 1.1 introduces counting methods that calculate the correct
Hausdorff measure. Other methods, such as Minkowski, i.e., box-counting,
methods, have been proven to overestimate or underestimate the correct
dimension of a set, particularly if it is irregular (cf. [11, 14]). In fact, if a
set or its complement is not self-similar, then the box-counting method fails
since there is no dimension for which the limit converges.

Secondly, the nonstandard version is easier to compute than the stan-
dard Hausdorff version. This is because the discrete measure of Hs(A) has
a fixed δ, not a varying one. Also, taking the supremum over any δ is omit-
ted to compute Hs(A) (see Definition 3.3) since the process of taking the
supremum over all δ’s has already been applied when choosing our δ. So
although this operation is omitted, we still obtain the accurate Hausdorff
dimension, which is defined for any set.

Throughout this manuscript, we assume that the set N of natural num-
bers includes 0.

1.1. Summary of the sections. In §2, we introduce key ideas in nonstan-
dard analysis needed to prove Theorem 1.1. In §3, we give a background
on Hausdorff measure. In §4, we develop a notion of computing measure in
the nonstandard universe. We give a relation between Hs(A) and Lebesgue
outer measure λ(A) for nice sets A ⊆ Rn (cf. (4.1)), which provides an al-
ternative (discretized) way to obtain Hausdorff outer measure.

In §5, we provide the proof of Theorem 1.1. Finally, we conclude with
an example in §6, showing that Theorem 1.1(a) cannot be replaced by an
equality.

2. Nonstandard analysis

We give a background on the theory of nonstandard analysis (also
see, e.g., [17, 16, 1]).
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2.1. Ultrafilters. A filter over a set I is a nonempty collection U of subsets
of I that satisfies the following:

(1) if A,B ∈ U , then A ∩B ∈ U , and
(2) if A ∈ U and B ⊇ A, then B ∈ U .

Filters can be used to define a notion of large subsets of I. That is, a
set A ⊆ N is large if and only if

(1) a finite subset of N, including the empty set, is not large,
(2) the set of natural numbers is large,
(3) two subsets of N are large, then all supersets of their intersection

are also large,
(4) its complement Ac is not large.

This notion of largeness is a special kind of filter called an ultrafilter.

Definition 2.1. A nonprincipal ultrafilter U of subsets of a nonempty set
I contains all large subsets of I.

It is a maximal proper filter since it cannot contain any more subsets
without including the empty set and becoming improper. Each infinite set
I contains at least one maximal nonprincipal proper filter, and if there are
more than one nonprincipal ultrafilters, then they are isomorphic to each
other. Let a = (a0, a1, . . .), b = (b0, b1, . . .) ∈ RN, sequences of real numbers.
We say a = b if and only if ai = bi for a large set of i ∈ N, and we write
a ∼ b if {i : ai = bi} ∈ U .

Let A ⊆ R be a set. The starred version ∗A of A is defined as AN/∼,
where ∼ is the equivalence relation given above; we say ∗A is the non-
standard version of A. With a slight abuse of notation, we write a =

[a0, a1, . . .] ∈ ∗R to denote the equivalence class of a = (a0, a1, . . .).

2.2. Nonstandard real and natural numbers. Let ∗R be the set of
nonstandard reals. The algebraic operations on ∗R are componentwise,
and the partial order < on ∗R is defined to be a < b if and only if
{i : ai < bi} ∈ U . Note that R ↪→ ∗R via the constant-valued sequence
embedding r 7→ ∗r = [r, r, r, . . .].

We will now describe hyperreal numbers. Suppose a = [a0, a1, a2, . . .] ∈
∗R. Then for a large i ∈ N, a is a
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(1) positive infinitesimal if 0 ≤ ai < t for every positive real t,
(2) finite if s < ai < t for some s, t ∈ R,
(3) positive infinite if s < ai for every s ∈ R, and
(4) standard if ai = aj for any i and j.

Example 2.2. Let a = [1/n]n∈N and b = [1/n2]n∈N be hyperreals for n 6= 0.
Then a is an infinitesimal since {n : |1/n| < x} ∈ U for any positive real x.
By the same reason, b is also an infitesimal. The only difference between a
and b is their rate of convergence: a ≥ b > 0.

Remark 2.3. The number ∗0 is the only number that is both an infinites-
imal and standard.

We will also say a hyperreal number x ∈ ∗R is an infinite real number if
x > ∗n for every ∗n = [n, n, n, . . .] ∈ ∗N. We will write x ∈ ∗R \R or x > R
to say that x is an infinite real number. Similarly, we will write N ∈ ∗N \N
or N > N to say that N is an infinite natural number.

2.3. Nonstandard superstructure. Let A be a set. Let {Vi(A)}i∈N be
the sequence defined by V0(A) = A and Vi+1(A) = Vi(A) ∪ P(Vi(A)),
where P(Vi(A)) is the power set of Vi(A). Then V (A) :=

⋃
i∈N

Vi(A), the

superstructure over A. The rank of x ∈ V (A) is the smallest k such that
x ∈ Vk(A).

Let V be the collection of all (pure) sets, i.e., elements of pure sets
are hereditary, and let ∈ be the universal symbol the element of. Denote
V = 〈V,∈〉, the first-order structure in set theory. We define the ultrapower
of V as ∗V :=

∏
U

V � V , where U is an ultrafilter.

The ∗-transformation is a technique to convert a language from the
standard universe to the nonstandard world. That is, if ∗ proceeds an ele-
ment, set, or function, then it represents that the element or set lives in the
nonstandard world, or that the operation is computed in the nonstandard
universe.

Theorem 2.4 (Łoś’ Theorem). Let V = 〈V,∈〉, the superstructure of V .
Let θ(a0, a1, . . . , an−1) be a first-order statement, and let θ(∗a0, ∗a1, . . . , ∗an−1)
be its ∗-transformation. Then θ(a0, a1, . . . , an−1) is true in V if and only
if θ(∗a0, ∗a1, . . . , ∗an−1) is true in ∗V .
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2.4. Internal sets. A subset A of the nonstandard universe ∗V is called
internal if there is a set B ⊆ V such that

A = {[a0, a1, . . .] ∈ ∗V : {i : ai ∈ B} ∈ U }.

In particular, A ⊆ ∗R is internal if and only if it is ∗B for some B ⊆ R.

Example 2.5. A finite subset ∗A ⊆ ∗R such as {∗0, ∗1, ∗2} = ∗{0, 1, 2} is
internal.

To build internal sets, produce a sequence {Ai}i∈N of standard sets such
that A = [{Ai}i∈N] ⊆ ∗V . To generate an internal function f that maps an
internal set A to an internal B, form a sequence of functions f = {fi}i∈N
such that each fi is well-defined between Ai and Bi for each i. Hence we
have f : A→ B if and only if fi : Ai → Bi for almost all i, i.e., for a large
subset of the natural numbers.

Sets which are not internal are called external. Since basic principles
of mathematics are broken down for external sets when moving between
standard and nonstandard worlds, they are rarely of our interest.

To see how the reals are embedded in the hyperreals, we introduce
monads.

Definition 2.6. The standard part st(x) of a finite x ∈ ∗R is the unique
a ∈ R that is closest to x, i.e.,

st(x) := inf{a ∈ R : ∗a ≥ x} = sup{a ∈ R : ∗a ≤ x}.

The set consisting of x ∈ ∗R such that st(x) = a is called the monad of a,
and is written as

st−1(a) = µ(a) = {x ∈ ∗R : st(x) = a}.

Since the monad of 0 is not first-order definable, µ(0) is not internal.
More generally, we have the following:

Proposition 2.7. Let a ∈ R and let µ(a) be the monad of a. Then µ(a) is
not internal.

2.5. Overspill principle and saturation. In this section, we discuss two
theorems frequently used in nonstandard analysis.



164 MEE SEONG IM

Theorem 2.8 (Overspill principle). Let A ⊆ ∗R be a nonempty internal
subset containing arbitrary large finite elements. Then A contains an infi-
nite element.

Proof. Let A be a nonempty internal subset of ∗R. If A is unbounded, then
A must contain at least one infinite element, and we are done. So suppose
A is bounded. Let a be the least upper bound of A. Since A contains
arbitrary large finite elements, a must be infinite. If there is no x ∈ A

such that a − ε ≤ x ≤ a for some positive ε, then a − ε is the least upper
bound of A, which is a contradiction. Thus, there is some x ∈ A such that
a− ε ≤ x ≤ a, and we see that A contains an infinite element. �

An alternative way to think of the overspill principle is that if a state-
ment is true for all infinitesimals, then it is true for some standard positive
number.

Proposition 2.9. Let R be a domain in V = 〈V,∈〉. Suppose A ⊆ ∗R is
an internal subset and each x ∈ A is a finite element. Then A contains a
least upper bound.

The overspill principle is also used to distinguish sets that are not in-
ternal to ∗V for if they were internal, then we would be assuming R = ∗R,
which is clearly false.

Theorem 2.10 (Saturation). Let {Ai}i∈N be a sequence of internal sets

satisfying
n⋂
i=0

Ai 6= ∅ for each n ∈ N, where each Ai = [Ai0, A
i
1, A

i
2, . . .].

Then
⋂
i∈N

Ai 6= ∅.

Theorem 2.10 is also known as ℵ1-saturation (cf. [3]).

3. Hausdorff measure

We begin with some preliminary definitions. Also see [5, 12, 15, 18] for
further background on Hausdorff measure. Let d : Rn × Rn → R be the

Euclidean magnitude d(x, y) = ||x−y|| :=

(
n∑
i=1

(xi − yi)2
)1/2

for x, y ∈ Rn.

Given U ⊆ Rn, the diameter of U is defined as diam(U) = sup{d(x, y) :

x, y ∈ U}. Now let A ⊆ Rn. For any Ui ⊆ Rn, the collection {Ui : i ∈ N} is
a δ-cover of A if
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(1)
⋃
i∈N

Ui ⊇ A, and

(2) 0 ≤ diam(Ui) ≤ δ for each i ∈ N.
A δ-covering of a set is chosen such that the differences

⋃
i

Ui\A and A\
⋃
i

Ui

are negligible sets1.

Definition 3.1. Let A be a subset of Rn, and let s, δ > 0. The Hausdorff
δ-measure of A is defined as

Hsδ(A) = inf

{ ∞∑
i=0

diam(Ui)
s

}
,

where the infimum is taken over every δ-cover {Ui}i∈N of A.

We will simply write Hausdorff δ-measure as Hausdorff measure.

Example 3.2. Let C be the Cantor set on the unit interval. That is, it is
generated by cutting the middle 1/3 from each of the previous connected
line segments. So letting C0 = [0, 1], C1 = [0, 1/3]∪ [2/3, 1], C2 = [0, 1/9]∪

[2/9, 3/9] ∪ [6/9, 7/9] ∪ [8/9, 1], . . ., Cm =

m⋂
i=0

Ci. At m-th iteration, there

are 2m intervals of length 3−m to cover Cm. So

Hsδ(C) = 2m3−ms,

which implies the critical value s must be log 2/ log 3.

Definition 3.3. Let A ⊆ Rn, and let s > 0. Then s-dimensional Hausdorff
outer measure of A is

Hs(A) = lim
δ→0
Hsδ(A) = sup

δ>0
Hsδ(A).

The Hausdorff measure Hsδ(A) increases as δ decreases. In fact, Hs(A)

is a nonincreasing function as s→∞.

Definition 3.4. Let A be a subset of Rn. The Hausdorff dimension of A is

dimH(A) = inf{s : Hs(A) = 0} = sup{s : Hs(A) =∞}.

An interpretation of the infimum in Definition 3.4 is as follows: if s is
greater than the actual Hausdorff dimension of A, then Hs(A) = 0, which

1Negligible sets form an ideal, and in this paper, we assume that negligible sets are
σ-ideal, i.e., a countable union of negligible sets is negligible.
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is the reason for us to take the infimum over all such s. A similar argument
holds for the second equality.

4. Nonstandard analysis techniques on Lebesgue and
Hausdorff measure

In this section, we develop a notion of measure in the nonstandard world
by using nonstandard analysis techniques to explore various ways to mea-
sure a set.

Consider the unit interval, and let Ω = {0, 1/N, . . . , i/N, . . . , 1}, where
N ∈ ∗N \ N is a nonstandard natural. Note that the standard map for
Ω sends all points to the interval [0, 1]. Recall from Proposition 2.7 that,
for some set A ⊆ [0, 1], st−1(A) ⊆ Ω is not necessary internal. In partic-
ular, studying the cardinality card(st−1(A)) is meaningless. Hence we will
approximate this set using internal sets.

4.1. Lebesgue measure in the nonstandard universe. We refer to
[13, 19, 2] for some background on Lebesgue measure. In this section, we
define a nonstandard version of Lebesgue measure.

Let A ⊆ [0, 1] be a nonempty set. Let B be an internal subset of Ω

such that B ⊆ st−1(A). Note that there may be many internal B contained
in st−1(A). Each B has a discrete measure in Ω, which is the discrete
probability measure, where each x ∈ Ω is equally likely. We define the
discrete measure of B as

d(B) =
card(B)

N + 1
,

where N ∈ ∗N \ N. Note that d(B) ∈ ∗Q ∩ ∗[0, 1].

Definition 4.1. LetA be a subset of [0, 1], and let Ω be the set {0, 1/N, . . . , i/N, . . . , 1},
where N ∈ ∗N \ N. Let d(B) be defined as above for some internal set B.
Lower Lebesgue measure of A is defined to be

λ(A) = sup{st d(B) : internal B ⊆ st−1(A)},

and upper Lebesgue measure of A is defined as

λ(A) = inf{st d(B) : internal B ⊇ st−1(A)}.
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We say A is Lebesgue measurable if λ(A) = λ(A), and we write λ(A) when
A is Lebesgue measurable.

4.2. Hausdorff measure in the nonstandard universe. Hausdorff outer
measure is related to Lebesgue outer measure by

Hs(A) = csλ(A) (4.1)

for some constant cs that depends on s, and for nice sets A. That is, given a
nice set embedded in Rn with positive integral dimension s, we use Lebesgue
outer measure to find the measure of A.

We now give a discrete version of Hausdorff measure.

Definition 4.2. Given δ > 0, s in the unit interval, and N > N, a δ-interval
of Ω is a set {i/N, (i + 1)/N, . . . , j/N} with diameter (j − i + 1)/N ≤ δ.
For an internal set B ⊆ Ω, the discrete s-dimensional measure is defined as

hsδ(B) = min
L∑
i=1

(diam(Vi))
s, (4.2)

where we take the minimum over all partitions {V1, . . . , VL} of B into δ-
intervals.

The finite L ∈ ∗N varies, depending on the partition. In the discrete
space Ω, this definition is internal and since there are finitely-many nonstan-
dard partitions to consider, the min in (4.2) is a true minimum. Moreover,
since the Vi’s are subsets of Ω which have been normalized, the need for
renormalization is unnecessary.

5. Proof of Theorem 1.1

Proof. We will prove (a) first. Assume that the infinitesimal δ is fixed, and
that hsδ(B) is finite for some internal B ⊇ st−1(A). Let η > 0 be standard.
Our strategy is to find an η-cover Ui for i ∈ N such that

∑
i

(diam(Ui))
s ≤

st(hsδ(B)).
Take an optimal partition {Vj}Kj=1 of B in the sense of hsδ(B). Using

an internal induction in the nonstandard universe, modify {Vj}Kj=1 to some
other partition {Wk}Lk=1 as follows. When defining some Wk, given an
internal interval I ⊆ Ω, consider the leftmost Vi that is to the right of I.
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If I ∪ Vi is also an interval, replace I with this interval and continue. This
process stops when one of the following occurs:

(1) I ∪ Vi is not an interval, or there is no further Vi to the right of I,
(2) diam(I) ≥ η.

If either (1) or (2) happens, we stop the construction and let Wk = I.
We then construct Wk+1 starting with I ′, the leftmost Vi to the right of I
if any.

At the end of this construction, we will have nonstandard finitely-many
intervals Wk of length at most η+ δ partitioning B. This gives a countable
η-cover U of our original A consisting of all sets U = st(Wk) for some Wk

such that the set U has nonempty interior.
To see that this does indeed cover A, consider a ∈ A. Then the monad

of a is contained in B. By the overspill principle, this monad is contained
in an interval J ⊆ B, where the length of J is not infinitesimal. But
then, by construction, the monad of a is contained in either some set Wk

or else, in two neighboring sets Wk and Wk+1 (the latter case is when the
construction of the set Wk was “finished” whilst inside the monad of a).
Moreover, Wk (or in the other case both of Wk and Wk+1) have lengths
that are non-infinitesimal, by construction and by choice of η. So a is either
in the interior of st(Wk) or else is an endpoint of both st(Wk) and st(Wk+1),
as required. The cover U is countable because any set of intervals in the
real number line, all with nonempty interior, must necessarily be countable.
Finally, since without loss of generality, s ≤ 1 (since we are working on the
unit interval) and hence (a+ b)s ≤ as + bs for a, b > 0, we have∑

U∈U
(diamU)s = st

∑
k

(diam(Wk))
s ≤ st

∑
i

(diam(Vi))
s,

as required.
We will now prove (b). We observe first that for 0 < δ < η, even if δ is

not infinitesimal, then the argument just given shows thatHsη(A) ≤ sthsδ(B)

for all internal B ⊇ st−1(A). Thus we only have to prove the other direction.
It suffices to show that for each standard δ > 0 and each standard ε > 0,
there is an internal B ⊇ st−1(A) with Hsδ(A) ≥ st(hsη(B))− ε for a certain
η depending only on δ and ε. Let λ = Hsδ(A).
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Let U = {Ui}i∈N be a δ-cover of A such that
N∑
i=1

(diam(Ui))
s ≤ λ+ (ε/2),

and assume without loss of generality that each Ui is an interval. We “en-
large” Ui by increasing its length by (ε/2)1/s2−i/s on each side, obtaining
intervals Vi. By saturation, there is a sequence of intervals Wi ⊆ Ω such
that st(Wi) = Vi and Wi is defined for all i < K, where K > N. Then for

any N > N, we have
N⋃
i=1

Wi ⊇ st−1(A) because of the “enlarging”. Moreover,

for each N ∈ N, we have
N∑
i=1

(diam(Wi))
s ≤

N∑
i=1

(diam(Ui) + (ε/2)1/s2−i/s)s

≤
N∑
i=1

(diam(Ui))
s + (ε/2) + (ε/2)

N∑
i=1

2−i

≤ λ+ ε.

By the overspill principle, there is an infinite N such that the above inequal-

ities hold. Thus, some B =

N⋃
i=1

Wi has a partition showing hsη(B) ≤ λ + ε.

Finally, note that the maximum diameter of any Wj is δ + (ε/2)1/s2−1/s,
which may be made as close to δ as we like by choosing ε sufficiently small.
This completes the proof. �

6. Example to the main theorem

Unfortunately, it does not seem possible to replace the limit as δ → 0

over standard δ with an infinitesimal δ in Theorem 1.1(b). In other words,
the inequality in Theorem 1.1(a) cannot be replaced by an equality, even
for carefully chosen δ, as shown by the following example.

Example 6.1. Consider the Cantor set C ⊆ [0, 1] in Example 3.2, which has
dimension s = log 2/ log 3. Given an internal B ⊇ st−1(C) and a positive
infinitesimal δ, we will estimate hsδ(B).

For each a ∈ C, the monad st−1(a) is covered by an interval of non-
infinitesimal length I ⊆ B. Taking all such intervals and mapping them
back to the unit interval via the standard part map, and taking the interiors
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of these sets, we obtain an open cover of C. Since C is closed and bounded
(hence compact), there is a finite subcover. This shows that we may assume
that B is one of the sets of 2m intervals of length 3−m obtained at the m-th
stage of the construction of C (if not, such collection would be smaller than
B). For an interval I ⊆ Ω of length `, we have that hsδ(I) is approximately
(`/δ)δs, so

hsδ(B) = 2m
3−m

δ
δs = (2/3)mδs−1.

Since 0 < s < 1 and δ is an infinitesimal, this value is infinite for all standard
m ∈ N. Hence st(hsδ(B)) =∞ for all internal B ⊇ st−1(C).

One can speculate that the problem is that for an infinitesimal δ, the
function hsδ measures the size of B in terms of s < 1 , whereas the local
structure of B shows that it has dimension 1. We leave it as future work
to determine for which sets we have an equality in Theorem 1.1(a) for a
suitably chosen infinitesimal δ.
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NOTE FOR THE THIRD HILBERT PROBLEM: A
FRACTAL CONSTRUCTION
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Abstract. Hilbert’s Third problem questioned whether, given two
polyhedrons with the same volume, it is possible to decompose the
first one into a finite number of polyhedral parts that can be put to-
gether to yield the second one. This finite equidecomposition process
had already been shown to be possible between polygons of the same
area. Dehn solved the problem by showing that a regular tetrahedron
and a cube with equal volume were not equidecomposable. In this
paper, we present an infinite fractal process that allows the cube to
be visually reconstructed from a tetrahedron with equal volume. We
have proved that, given two tetrahedrons with the same volume, the
first one can be decomposed into an infinite number of polyhedral parts
that can be put together to yield the second one. This process makes it
possible to obtain the volume of a tetrahedron from the volume of the
parallelepiped, without the use of formulas or the Cavallieri Principle.

1. Introduction

In 1900, Hilbert proposed 23 problems that opened research lines in
different branches of Mathematics [8]. Some of these yet unsolved problems
remain as a challenge for current mathematicians. On the other hand, the
Third problem was solved before Hilbert’s lecture was delivered [3]. How-
ever, the interest on this matter remains.

In particular, the Third problem, in which prestigious mathematicians
such as Gauss had already shown interest [6], stated that given two polyhe-
drons with the same volume, it is possible to decompose the first one into
a finite number of polyhedral parts that can be put together to yield the
second one. Dehn, [2], one of Hilbert’s students, provided a negative answer
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to this problem and proved that a regular tetrahedron and a cube with the
same volume are not equidecomposable. In other words, the former cannot
be decomposed into finitely many polyhedral pieces that can be put together
to obtain the latter. The main idea behind Dehn’s proof was to define an
invariant that remains unchanged in the process of decomposition into finite
polyhedral pieces, and to show that the cube and the regular tetrahedron
had different values of the invariant. In 1965, Sydler, [6], proved that two
polyhedra are equidecomposable if and only if they have the same volume
and the same Dehn invariant.

The above highlights the difference between the Euclidean plane and the
Euclidean space, as the Wallace-Bolyai-Gerwein theorem [1] states: Poly-
gons are equidecomposable if and only if they have the same area. Theile [7]
has suggested that on Hilbert’s view, the need of infinite processes could
contradict the metaphysical principle that the Universe is governed in such
a way that a maximum of simplicity and perfection is done. However, infi-
nite processes can also result of great simplicity and perfection, as happens
with fractals, which exhibit approximations to infinity of great beauty and
mathematical regularity [5].

In this paper we describe an infinite fractal process to decompose a reg-
ular tetrahedron into infinite pieces that can be put together to form a cube
of the same volume. The process is repeated successively in different scales
showing a fractal nature.

This process is generalizable to any tetrahedron, obtaining an origi-
nal visual demonstration of an “infinite” version of the Third problem for
tetrahedrons: given two tetrahedrons with the same volume, it is possible to
decompose the first one into a finite number of polyhedral parts that can be
put together to yield the second one.

To ease the visual comprehension of this process without resorting to
the use of formulas of volumes or the Cavalieri principle, the decomposi-
tion of a particular tetrahedron, the trirectangular tetrahedron, is initially
shown. Subsequently the generalization to any tetrahedron is presented.
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Before the main results we introducing some concepts and notations in
order to clarify the paper.

2. Concepts and notations

• A trirectangular tetrahedron is a tetrahedron with all three faces
angles at one vertex are right angles. The three edges that meet at
the right angle of a trirectangular tetrahedron are called legs.

• Cn denotes a cube of edge length n.

• Tn denotes a trirectangular tetrahedron of equal legs of length n.

• Pn denotes the regular tetrahedron obtained by joining four of the 8
vertices of the cube Cn. More specifically, picking every other vertex
of a cube so that no two are joined by an edges but any pair is joined
by a diagonal of the cube’s face we can form a regular tetrahedron.

3. Main result

Lemma 3.1. A Fractal Decomposition of a trirectangular tetrahedron in a
cube is possible.

Proof. The three diagonals of the faces of a cube that meet in a vertex
comprise a trihedron angle which is the tip of a regular tetrahedron. By
joining the other vertices of these diagonals with those from the other sides
of the cube, we obtain a tetrahedron with equal angles and legs of the same
length, the diagonal of the face of the cube C1, therefore it is a regular
tetrahedron P1 (Figure 1). �

Figure 1. Regular tetrahedron P1 within the cube C1.

Outside the tetrahedron there remain four identical figures, namely tri-
angular pyramids, with 3 faces comprising rectangular and isosceles trian-
gles and one face comprising an equilateral triangle (the face of the tetra-
hedron). So, C1 is decomposed in four trirectangular tetrahedrons T1, and
a tetrahedron P1 (Figure 2).
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Figure 2. Decomposition of C1 in P1 and four T1.

We start the fractal decomposition of the trirectangular tetrahedron
T1. In order to determine the portion of the cube occupied by T1, we
will truncate it by means of half-planes parallel to one of its bases. A
new trirectangular tetrahedron then appears, T 1

2
, in the upper part of the

truncated one (Figure 3a). Letting such T 1
2
rotate (Figure 3b), with axis

equal to the cutting line between the plane and the equilateral face we
obtain three pieces: a cube C 1

2
and two T 1

2
adhered to it (Figures 3c, 3d).

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 3. From left to right, top to bottom: Truncation of
T1 to obtain one cube C 1

2
and two T 1

2
.

Repeating the truncation process for T 1
2
, two cubes C 1

4
and four new

T 1
4
are obtained (Figure 4).
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Figure 4. Truncation of the two T 1
2
.

This process can be successively iterated as it is shown in Figure 5
obtaining a series of cubes and trirectangular tetrahedrons that can be
summarized in Figure 6.

(a) Truncation of the 8 T 1
4
. (b) Recurrent process

Figure 5. Recurrent process of the truncation.

T1

2T 1
2

4T 1
4

8T 1
8

2nT 1
2n

C 1
2

2C 1
4

4C 1
8

2n−1C 1
2n

First truncation
+

Second truncation

Third truncation

+

+

nth Truncation
+

Figure 6. Number of trirectangular tetrahedrons and
cubes obtained after each truncation.
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By conveniently placing these cubes above half of the original cube, we
obtain a sequence from which two views are shown (perspective and lateral)
in Figures 7a-7b.

According to Nelsen’s in [4], and by comparing quantities, the sum of
the surface quantities of the square faces is equal to one-third of the surface
quantity of the square (Figure 7c).

(a) Figure 7a (b) Figure 7b

(c) Figure 7c (d) Figure 7d

Figure 7. From left to right, top to bottom: location of
the cubes in the truncation in order to obtain the volume.

We also note that this follows from the geometric series of ratio
1

4
and

first term
1

4
and

∞∑
n=1

(
1

4

)n

=
1

3
.

This comparison allows us to say that the sum of the volume magni-
tudes of all the cubes in which we decomposed T1 is one-third of half of the
cube.

A new placement of these cubes (Figure 7d) divided into three pieces
allows the construction of a prism of equal height of T1 and rectangular

base of dimensions of the base
1

3
and

1

2
. To do so, each square of Figure
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7c is divided into three equal rectangles. Two of them are left together and
the third is placed on the first of those mentioned previously, as it can be
perceived in the recursive process of Figure 7c.

Visualizing this construction in perspective as it is shown in Figure 7a,

it is perceived that T1 has decomposed into a right prism of
1

6
of the volume

of C1. As any two given prisms of equal volume are equidecomposable [1],
we have proved the following result.

Proposition 3.2. T1 has been decomposed into an infinite fractal process

into a prism of which the volume is
1

6
the volume of the cube with its same

edge (Figure 8).

Figure 8. Equidecomposition from Ttri to a cube.

Now we can generalize the result for any tetrahedron.

Theorem 3.3. A fractal decomposition of a tetrahedron in a cube is possi-
ble.

Proof. The above fractal process is generalizable to any tetrahedron. We
show with images the sequence of steps. The only difference is that in the
truncation process it is necessary to perform a symmetry (Figures 9–10). �

(a) Step 1 (b) Step 2

Figure 9. Fractal process: Steps 1 and 2.
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(a) Step 3 (b) Step 4

(c) Step 5 (d) Step 6

(e) Step 7 (f) Step 8

(g) Step 9 (h) Step 10

(i) Step 11 (j) Step 12

Figure 10. Fractal process: Steps 3 to 12.

As in the T1 case, these parallelepipeds divided into three pieces can be
repositioned to obtain a new parallelepiped of volume 1/6 of the original
parallelepiped.
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Finally, by equidecomposition of prisms of equal volume, we obtain a
cube of equal volume to the original tetrahedron, and therefore of volume
equal to 1/6 of the parallelepiped that contains the original tetrahedron.
Therefore, we can formulate the following result:

Theorem 3.4. Given two tetrahedra of equal volume, it is possible to de-
compose the first one into an infinite number of polyhedral pieces that can
be put together so as to yield the second one.

Proof. The proof is based on decomposing the first tetrahedron into a prism
with volume 1/6 of the parallelepiped and then repeating the reverse process
to reconstruct the other tetrahedron. Furthermore, as a consequence of this
process, what is obtained is that the volume of a tetrahedron is 1/6 of
the parallelepiped that contains it. An infinite process has been necessary,
but neither the formulas nor the Cavalieri Principle have been used. This
construction can also be used for the case of the regular square pyramids,
because they can be decomposed in 4 T1 (Figure 11). �

Figure 11. Regular square pyramid (left) and comprising
four trirectangular tetrahedrons (right).

As pointed out by the Dehn Theorem answering to Hilbert’s problem,
the comparison of the volume of a pyramid requires an infinite process. The
explained procedure makes an iterative comparison based on self-similarity,
which allows to obtain the ratio between the volumes of the tetrahedron
and the regular square pyramid, and between both and the cube.
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PROBLEM SECTION

Through Volume 90 (1-2) 2021 of The Mathematics Student, we had invited

solutions from readers to Problems 1, 2, 3, 5, 6, 8 and 9 mentioned in MS

89 (3-4) 2020, as well as solutions to the eight new problems till August 20,

2021.

As regards to solutions to the seven Problems mentioned in MS 89(1-2)

2020, we did not receive any solution to any of the seven problems. We

believe that Problems 1, 2, 3 and 5 can be solved by several readers and

we give some more time to the readers to solve these problems. Solutions

provided by the proposers to Problems 6, 8 and 9 are being published in

this section.

As far as solutions to the eight new Problems mentioned in MS 90 (1-2)

2021 are concerned, we received two correct solutions to Problem 3 and we

publish one solution which is more precise and elegant. We also received

two correct solutions to Problem 6 and we publish one solution which is

short and better. Further, we received from readers one correct solution

to Problem 7 and one correct solution to Problem 8. These solutions are

being presented in this section.

We pose ten new problems in this section. We invite Solutions

from the readers to these ten problems; solutions to Problems 1, 2, 3 and

5 of MS 89 (3-4) 2020 and also solutions to the rest of the Problems men-

tioned in MS 90 (1-2) 2021 till January 10, 2022. Correct solutions received

from the readers by this date will be published in Volume 91 (1-2) 2022

of The Mathematics Student. This volume is scheduled to be published in

February 2022.

New Problems

The following five problems are posed by Prof. B. Sury, Indian Sta-

tistical Institute, Bangalore.

© Indian Mathematical Society, 2021 .
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MS 90 (3-4) 2021: Problem 1. Find all 4-tuples (a1, a2, a3, a4) of

positive integers such that ai’s are distinct and each ai divides the sum of

the other three.

MS 90 (3-4) 2021: Problem 2. Call a positive integer N ‘powerful’

if it can be written as a3 + b5 + c7 + d9 + e11 + f13 for positive integers

a, b, c, d, e, f . Show that there exist arbitrarily large numbers that are NOT

powerful.

MS 90 (3-4) 2021: Problem 3. Let p be a prime and, for each 1 ≤ i ≤
p− 1, let ip ≡ ai mod p2 where 0 < ai < p2. Find the value of

∑p−1
i=1 ai.

MS 90 (3-4) 2021: Problem 4. Let f : Rn → R be defined as

f(x1, · · · , xn) =
x
a1
1 x

a2
2 ···x

an
n

x
b1
1 +···+xbnn

for (x1, · · · , xn) 6= (0, · · · , 0) and f(0, · · · , 0) =

0, where ai’s are positive integers and bi’s are even positive integers. De-

termine precisely all the ai’s and bi’s for which f is discontinuous at 0.

MS 90 (3-4) 2021: Problem 5. Let S be a finite set of points in the

plane and suppose each of the points is given one of two colours red or blue.

Prove that there exist P,Q ∈ S such that all the points on the line joining

P and Q have the same colour.

Dr. Anup Dixit, Institute of Mathematical Sciences, Chennai posed

the following three problems.

MS 90 (3-4) 2021: Problem 6. Let x1, x2, · · · , xn be distinct real

numbers. Show that

∑
1≤i≤n

∏
j 6=i

(
1− xixj
xi − xj

)
=

{
0 if n is even

1 if n is odd.

MS 90 (3-4) 2021: Problem 7. Show that

ζ(3) <
5

4
,

where ζ(k) :=
∑∞

n=1 1/nk.

MS 90 (3-4) 2021: Problem 8. Show that among any 4 distinct positive

real numbers a1, a2, a3, a4, we can find ai, aj such that ai > aj and

ai(
√

3− aj) < (
√

3aj − 1).
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The following two problems have been proposed by Dr. Siddhi Pathak,

Chennai Mathematical Institute, Chennai.

MS 90 (3-4) 2021: Problem 9. Let a1, a2, · · · , a2021 be real numbers

such that
2021∑
i=1

ai = 0,
2021∑
i=1

a2i = 1.

Let c := max
1≤i≤2021

ai and d := min
1≤i≤2021

ai. Show that

−1

2
≤ c d ≤ − 1

2021
.

MS 90 (3-4) 2021: Problem 10. Fix any positive integer m > 1. Show

that if f : (0,∞)→ (0,∞) satisfies

f(x) f(y) = mf (x+ yf(x)) for all x, y > 0,

then f(x) = m for all x > 0.

Solutions to the old Problems

MS 89 (3-4) 2020: Problem 6 (Posed by Dr. Siddhi Pathak).

Let Q+ denote the set of positive rational numbers, and P : Q+ → N be

defined as P (m/n) = mn for gcd(m,n) = 1. Show that∑
q∈Q+

1

P (q)2
=

5

2
.

The solution provided by Dr. Pathak to this problem is given below.

Solution: Note that ∑
q∈Q+

1

P (q)2
=

∞∑
m,n=1
(m,n)=1

1

(mn)2
,

where (m,n) denotes the gcd(m,n). Let ζ(s) =
∑∞

n=1 n
−s denote the

Riemann zeta-function. Then we have

ζ(2)2 :=

( ∞∑
n=1

1

n2

)2

=

∞∑
m,n=1

1

(mn)2
=

∞∑
d=1

∞∑
m,n=1
(m,n)=d

1

(mn)2

=

( ∞∑
d=1

1

d4

) ∞∑
m,n=1
(m,n)=1

1

(mn)2

 = ζ(4)

∑
q∈Q+

1

P (q)2

 .
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Thus, ∑
q∈Q+

1

P (q)2
=
ζ(2)2

ζ(4)
=

5

2
,

since ζ(2) = π2/6 and ζ(4) = π4/90.

Remark. The above argument in fact shows that for s ∈ C with <(s) > 1,

F (s) :=
∑
q∈Q+

1

P (q)s
=
ζ(s)2

ζ(2s)
.

In particular, F (2n) ∈ Q as ζ(2n) ∈ π2nQ×.

MS 89 (3-4) 2020: Problem 8 (Posed by Dr. Anup Dixit).

Let a1, a2, · · · , an be positive real numbers all ≥ 1. Let G denote its geo-

metric mean given by G = (a1a2 · · · an)1/n. Show that

1

1 + a1
+

1

1 + a2
+ · · ·+ 1

1 + an
≥ n

1 +G
.

The solution provided by Dr. Dixit is presented below.

Solution: We first show that the inequality holds for n = 2, i.e., for

a1, a2 ≥ 1,
1

1 + a1
+

1

1 + a2
≥ 2

1 +
√
a1a2

. (1)

On simplification, this is equivalent to showing that

(2+a1+a2)
√
a1a2 ≥ a1+a2+2a1a2 ⇐⇒ (

√
a1a2−1)(a1+a2−2

√
a1a2) ≥ 0.

This clearly holds because a1, a2 ≥ 1 and therefore
√
a1a2 − 1 ≥ 0. Fur-

thermore, (a1 + a2 − 2
√
a1a2) = (

√
a1 −

√
a2)

2 ≥ 0.

For n = 4, using (1) twice, we conclude that if a1, a2, a3, a4 ≥ 1, then

1

1 + a1
+

1

1 + a2
+

1

1 + a3
+

1

1 + a4
≥ 2

1 +
√
a1a2

+
2

1 +
√
a3a4

≥ 4

1 + (a1a2a3a4)1/4
.

Similarly, using induction, it is easy to see that the required inequality

holds for n = 2k for any positive integer k, i.e., if G is the geometric mean

of a1, a2, · · · , a2k with all ai ≥ 1, then

2k∑
i=1

1

1 + ai
≥ 2k

1 +G
. (2)
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Now, suppose n is any positive integer satisfying 2m ≤ n < 2m+1. Let

G denote the geometric mean of a1, a2, · · · , an. Set an+1 = an+2 = · · · =

a2m+1 = G. Clearly, the geometric mean of a1, a2, · · · , a2m+1 is also G. By

(2), we have

2m+1∑
i=1

1

1 + ai
=

n∑
i=1

1

1 + ai
+

2m+1∑
i=n+1

1

1 +G
≥ 2m+1

1 +G

Hence,
n∑
i=1

1

1 + ai
≥ n

1 +G

as required.

MS 89 (3-4) 2020: Problem 9 (Posed by Prof. Ram Murty).

Prove that
∞∑
n=1

nn

n!
αn

is transcendental for every non-zero algebraic α satisfying |α| < 1/e.

The solution given by Prof. Murty to the problem is as follows.

Solution. The above sum is connected to the tree function, which is the

inverse of a certain well known function. Our first goal is to figure out the

Taylor series expansion of inverse functions. If f(z) =
∑∞

i=0 ciz
i, then we

use the notation [zn]f(z) to denote the co-efficient cn.

Theorem 1 (Lagrange’s inversion formula). Suppose f(z) is analytic in a

neighborhood near zero, with f(0) = 0, f ′(0) 6= 0. Then f (−1)(z) is analytic

in a neighborhood near zero, and

[zn]f (−1)(z) = [zn−1]
( zn

nf(z)n
)
.

Using the same ideas, for a positive integer k, we can also prove that

Proposition 1. Under the same assumptions on f(z) and for n ≥ k, we

have

[zn](f (−1)(z))k = [zn−k]
( kzn

nf(z)n
)

.
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The assumption of n ≥ k is required as f−1(z) has a zero of order one

at z = 0, and therefore for the Taylor series of f (−1)(z)k around z = 0

starts from zk.

We also require a result on transcendence of the exponential function

evaluated at a non-zero algebraic number.

Theorem 2. If α is a non-zero algebraic number, then eα is transcendental.

This was essentially proved by Lindemann in 1882 and generalised by

Weierstrass in 1885. We now proceed with the solution to the Problem.

Proof. We begin by describing the tree function T (z) which is the inverse

function of the map z → ze−z. We claim that the Taylor expansion of T (z)

around z = 0 is given by :

T (z) =

∞∑
n=1

nn−1

n!
zn.

To prove this, we use the Lagrange inversion formula :

[zn]T (z) = [zn−1]
( zn

n(ze−z)n
)

= [zn−1]
(enz
n

)
=

nn−1

n(n− 1)!
=
nn−1

n!
. (3)

This proves the claim. Furthermore, from Proposition ?? for any positive

integer k, we have

T (z)k =
∞∑
n=0

k(n+ k)n−1

n!
zn+k.

In the above series, the term corresponding to zk is 1 and this result can

formally be extended to non-negative integers k. Now we have :

1

1− T (z)
=
∞∑
k=0

T (z)k =
∞∑
k=0

∞∑
n=0

k(n+ k)n−1

n!
zn+k =

∞∑
u=0

u∑
n=0

(u− n)un−1

n!
zu,

where in the last step we are performing a change of variables by setting

n+ k = u, and since k ≥ 0, the sum n ranges from 0 to u. Rearranging the

terms in the above sum, we obtain :

1

1− T (z)
=

∞∑
u=0

( u∑
n=0

(u− n)un−1

n!

)
zu =

∞∑
u=0

( u∑
n=0

un

n!
−
u−1∑
n=0

un

n!

)
zu =

∞∑
u=0

uuzu

u!
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where the term corresponding to z0 is 1. If we set S(α) =
∞∑
n=1

nn

n! α
n, we

have

1

1− T (α)
= 1 + S(α) (4)

We now assume that S(α) is algebraic for some non-zero algebraic num-

ber α. From (4) we note that T (α) is algebraic. Since T (z) is the inverse of

the function z → ze−z, we have T (α)e−T (α) = α and from this, we conclude

that eT (α) is algebraic. By Lindemann’s theorem, this can happen only if

T (α) is zero, and therefore α has to be zero. This is a contradiction to our

assumption. �

Solutions Provided by the readers to the problems

MS 90 (1-2) 2021 : Problem 3 (posed by Prof. B. Sury, ISI, Bangalore).

Let A be an n× n matrix with rational entries. If the rank of A is 1, show

that det(In +A)− trace(A) = 1.

Mr. Ritesh Dwivedi, an M. Sc. Student of Allahabad University,

Allahabad gave a solution to this problem. We also received a correct

solution to this problem from Ms Anupriya Shetty, Department of PG

Studies and Research in Mathematics, St Aloysius College, Mangaluru -

575 003, Karnataka. The solution provided by Dwivedi is shorter and it is

presented below.

Solution. If n = 1, the result holds obviously. So, let n > 1. Since the

rank of A is 1, all the eigen values of A are zero, except one which must

be nonzero. So let, λ be the non zero eigen value of A. Then, trace(A) =

sum of the eigen values of A = λ. Also, the eigen values of In + A are 1

(with multiplicity n − 1) and λ + 1. Therefore, det(In + A) = product of

the eigen values of (In +A) = λ + 1. Now the result follows.

MS -90 (1-2) 2021: Problem 6. (Proposed by Dr. Siddhi Pathak,

Chennai Math. Inst., Chennai)

Let Q+ denote the set of positive rational numbers, and P : Q+ → N be

defined as P (m/n) = mn for gcd(m,n) = 1.

Show that ∑
q∈Q+

1

P (q)2
=

5

2
.
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Mr. Subhash Chand Bhoria, Department of Mathematics, Pt. CLS

Govt. PG College, Karnal, Haryana gave a solution to the problem. The

solution given by him is presented below.

Solution. We prove a more general result involving two variables a, b ∈
N\{1} namely,

∞∑
m,n=1

gcd(m,n)=1

1

manb
=
ζ(a)ζ(b)

ζ(a+ b)
.

In particular, a = 2, b = 2 in the above identity gives us the desired closed

form for the sum
∑

q∈Q+
1

P (q)2
. Let

∞∑
m,n=1

gcd(m,n)=1

1

manb
= S(a, b).

We know that
∞∑
m=1

∞∑
n=1

1

manb
=
∞∑
m=1

1

ma

∞∑
n=1

1

nb
= ζ(a)ζ(b). (5)

Observe that sum in the LHS of the equation (5) can be written in the

following manner,

∞∑
m=1

∞∑
n=1

1

manb
=

∞∑
m,n=1

gcd(m,n)=1

1

manb
+

∞∑
m,n=2

gcd(m,n)=2

1

manb
+

∞∑
m,n=3

gcd(m,n)=3

1

manb
+ · · ·

=

∞∑
r=1

∞∑
m,n=r

gcd(m,n)=r

1

manb
. (6)

In order to re-index the sum in the RHS of equation (6), we make substi-

titions m = ru and n = rv in the inner summation to receive,

∞∑
r=1

∞∑
m,n=r

gcd(m,n)=r

1

manb
=
∞∑
r=1

∞∑
u,v=1

gcd(u,v)=1

1

(ru)a(rv)b

=
∞∑
r=1

1

ra+b

∞∑
u,v=1

gcd(u,v)=1

1

uavb

= ζ(a+ b)× S(a, b). (7)
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Now, Combining equations (5), (6) and (7) we finally get,

ζ(a)ζ(b) = ζ(a+ b)× S(a, b) =⇒ S(a, b) =
ζ(a)ζ(b)

ζ(a+ b)
.

Finally, taking the special values of the Riemann zeta-function that is,

ζ(2) = π2

6 and ζ(4) = π4

90 yields S(2, 2) =
π2

6
×π

2

6
π4

90

= 5
2 , which completes the

proof.

MS -90 (1-2) 2021: Problem 7 (Posed by Dr. Anup Dixit, IMSc,

Chennai).

Show that the series
∞∑
n=1

(−1)[
√
n]

n
5
9

is convergent. Here [x] denotes the greatest integer ≤ x.

Mr. Rohit Yadav, Mustafabad, Sangipur, Pratapgarh, Uttar Pradesh

provided a solution to this problem. The solution due to him is given below.

Solution.

Step 1: Since [
√
n] are same for such n ∈ N , which is satisfying -

k2 ≤ n < (k + 1)2, k ∈ N

⇒ k2 ≤ n < k2 + 2k + 1............(1)

So, (2k+1) number of distinct n ∈ N which satisfy (1).

Step 2: Now we grouping of terms of given series as kth group contains

(2k+1) terms.

By step 1, [
√
n] are same for each term of kth group and for kth group

[
√
n] = k

Hence by above discussion,

∞∑
n=1

(−1)[
√
n]

n
5
9

= (−1)1(
1

1
5
9

+
1

2
5
9

+
1

3
5
9

) + (−1)2(
1

4
5
9

+
1

5
5
9

+
1

6
5
9

+
1

7
5
9

+
1

8
5
9

)

+(−1)3(
1

9
5
9

+
1

10
5
9

+
1

11
5
9

+
1

12
5
9

+
1

13
5
9

+
1

14
5
9

+
1

15
5
9

) + ......

=
∞∑
m=1

(−1)m(
1

(m2)
5
9

+
1

(m2 + 1)
5
9

+
1

(m2 + 3)
5
9

+......+
1

(m2 + 2m)
5
9

)............(2)
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In the right hand side of equation (2), we have a alternating series of

the form
∑∞

m=1(−1)mam where

am = (
1

(m2)
5
9

+
1

(m2 + 1)
5
9

+
1

(m2 + 3)
5
9

+ ......+
1

(m2 + 2m)
5
9

);m ∈ N

clearly,
2m+ 1

(m2)
5
9

≥ am ≥
2m+ 1

(m2 + 2m)
5
9

;m ∈ N............(3)

From above, by Squeeze Theorem, we have {am} is converges to 0 and

Also {am} is strictly decreasing sequence. Hence, by Leibnizs test, given

series
∞∑
n=1

(−1)[
√
n]

n
5
9

is convergent.

MS -90 (1-2) 2021: Problem 8 (Proposed by Dr. Anup Dixit, IMSc,

Chennai).

Show that ∫ 1

0

{
1

x

}2

x2dx = 1− 1

3

(
ζ(2) + ζ(3)

)
,

where {x} is the fractional part of x and ζ(k) :=
∑∞

n=1
1
nk

denotes the

Riemann zeta-function for k > 1.

Mr. Subhash Chand Bhoria whose affiliation is given above has

also provided the solution to this problem. The solution provided by him

is given below.

Solution. Let the given integral be

I =

∫ 1

0

{
1

x

}2

x2dx.

We can write { 1x} = 1
x −

⌊
1
x

⌋
, where

⌊
1
x

⌋
denotes the greatest integer ≤ 1

x .

Then the integral becomes

I =

∫ 1

0

(
1

x
−
⌊

1

x

⌋)2

x2dx =

∫ 1

0

(
1

x2
− 2

x

⌊
1

x

⌋
+

⌊
1

x

⌋2)
x2dx
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= 1− 2

∫ 1

0
x

⌊
1

x

⌋
dx+

∫ 1

0
x2
⌊

1

x

⌋2
dx = 1− 2I1 + I2, (8)

where I1 =
∫ 1
0 xb

1
xdx and I2 =

∫ 1
0 x

2b 1x
2
dx. Now we would like to solve

I1 and I2 independently. Note that, we can break the interval (0, 1] into

disjoint subintervals ( 1
n+1 ,

1
n ] such that (0, 1] = ∪∞n=1(

1
n+1 ,

1
n ]. This will give

us that if

1

n+ 1
< x ≤ 1

n
=⇒ n ≤ 1

x
< n+ 1 =⇒

⌊
1

x

⌋
= n.

Consider

I1 =

∫ 1

0
x

⌊
1

x

⌋
dx =

∞∑
n=1

∫ 1/n

1/(n+1)
x

⌊
1

x

⌋
dx =

∞∑
n=1

∫ 1/n

1/(n+1)
xndx

=
∞∑
n=1

n

(
x2

2

)1/n

1/(n+1)

=
∞∑
n=1

n

(
1

2n2
− 1

2(n+ 1)2

)
=

1

2

∞∑
n=1

2n+ 1

n(n+ 1)2
.

And

I2 =

∫ 1

0
x2
⌊

1

x

⌋2
dx =

∞∑
n=1

∫ 1/n

1/(n+1)
x2
⌊

1

x

⌋2
dx =

∞∑
n=1

∫ 1/n

1/(n+1)
x2n2dx

=
∞∑
n=1

n2
(
x3

3

)1/n

1/(n+1)

=
∞∑
n=1

n2
(

1

3n3
− 1

3(n+ 1)3

)
=

1

3

∞∑
n=1

3n3 + 3n+ 1

n(n+ 1)3
.

Substituting the values of I1 and I2 in the equation (8) we arrive to

I = 1−
∞∑
n=1

2n+ 1

n(n+ 1)2
+

1

3

∞∑
n=1

3n3 + 3n+ 1

n(n+ 1)3

= 1 +
1

3

∞∑
n=1

(
6n+ 3

n(n+ 1)2
− 3n3 + 3n+ 1

n(n+ 1)3

)

= 1− 1

3

∞∑
n=1

3n2 + 6n+ 2

n(n+ 1)3
= 1− 1

3

∞∑
n=1

(
(n+ 1)(3n+ 2)

n(n+ 1)3
− n

n(n+ 1)3

)

= 1− 1

3

∞∑
n=1

(
n+ 2(n+ 1)

n(n+ 1)2
+

1

(n+ 1)3

)

= 1− 1

3

∞∑
n=1

(
1

(n+ 1)2
+

2

n(n+ 1)
+

1

(n+ 1)3

)

= 1− 1

3

( ∞∑
n=1

1

(n+ 1)2
+ 2

∞∑
n=1

1

n(n+ 1)
+
∞∑
n=1

1

(n+ 1)3

)
.
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In the last step above observe that the sum
∞∑
n=1

1

n(n+ 1)
=

∞∑
n=1

(
1

n
− 1

n+ 1

)
= 1− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+ · · · = 1.

Utilizing the closed form of last sum above and the definition of Riemann

zeta-function, I finally becomes,

I = 1− 1

3

(
ζ(2)− 1 + 2 + ζ(3)− 1

)
= 1− 1

3

(
ζ(2) + ζ(3)

)
.

This finishes the proof.
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