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S. S. SHRIKHANDE-HIS LIFE AND SOME
CONTRIBUTIONS TO MATHEMATICS

MOHAN S. SHRIKHANDE

1. Introduction

Sharadchandra Shankar Shrikhande (SSS) was born on October 19,1917
at Sagar, a town in the state of Madhya Pradesh. He received his B.Sc
(Honors) degree in Mathematics from Nagpur University in 1939. The job
situation at that time was very dire due to the world wide depression.
In addition, all resources were being diverted by the British Government
towards the war effort. Because of these circumstances SSS was unable to
find a teaching position.

He decided to spend a year at the Indian Statistical Institute(ISI), Cal-
cutta to learn the statistical techniques being advanced by Professor P. C.
Mahalanobis in the Jute Sample Survey. Professor Raj Chandra Bose was a
member of ISI, and had gained international fame in statistics, particularly
in the area of design theory. But according to SSS, he did not have any
contact with Bose during his stay at ISI. In 1942, SSS found a Lecturer’s
position in Mathematics at the Science College, Nagpur University. In 1943
he married Shakuntala Mohoni.

By the end of the War, the Government of India having amassed a large
amount of US PL 480 funds, decided to use them to award scholarships
for training students in statistics in USA. SSS was selected and began his
studies at the University of North Carolina (UNC), Chapel Hill in 1947,
leaving behind his wife and three young children.

He took some classes from Bose, who was on a visiting position at UNC.
Bose returned to ISI, and in 1949 emigrated to USA, accepting a permanent

Key words and phrases: Life, Contributions
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2 MOHAN S. SHRIKHANDE

Figure 1. R. C. Bose (1901-1987)

professorship at UNC. SSS requested Bose to guide his Ph.D thesis. Bose
became his thesis advisor and proposed some problems in combinatorial
designs.

SSS completed his Ph.D work and became Bose’s first Ph.D student
in 1950. His thesis is regarded as a landmark by researchers in the field.
It consisted of a result on the impossibility of certain symmetric balanced
incomplete block designs by applying the techniques of Bruck and Ryser
(1949), used for proving the non-existence of finite projective planes.

After completing his thesis, SSS returned to Science College, Nagpur
and resumed his teaching duties. Due to the excellent training received
under Bose, he was able to continue with his research and published several
papers. He spent 1951-1953 on a visiting position at the University of
Kansas, Lawrence.

After returning from Kansas to Science College, several of his students
completed their Master’s degrees. Among them was Damaraju Raghavarao,
a gold medalist, who later received his Ph.D from Bombay University. He
collaborated with SSS on several papers from the sixties to mid seventies.
Many of their results are discussed in Raghavarao’s book, Constructions
and Combinatorial Problems in Design of Experiments (1971). During his
tenure at Science College, he founded the Department of Statistics at Nag-
pur University and was Head of the Department.

SSS spent 1958-60 on a visiting position at UNC to collaborate with
Bose. According to SSS, this period at Chapel Hill, proved to be among the
most productive and satisfying time of his career. Refer to the next section
for more details.

In 1960, SSS returned to India, accepting a Professorship in Statistics
at Banaras Hindu University. While there he began his collaboration with
Damaraju Raghavarao, who had then recently completed his Ph.D from
Bombay University.
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S. S. SHRIKHANDE’S LIFE AND CONTRIBUTIONS 3

Figure 2. Statistics Department UNC, 1958 front row:
Nicholson, Roy, Hotelling, Bose, Hoeffding, back row: Con-
nor, Ogawa, SSS among others

Figure 3. S. S. Shrikhande and R. C. Bose, 1958

In 1963, SSS joined Bombay University as Professor and Head of De-
partment of Mathematics. There he established the Center of Advanced
Study in Mathematics and served as its Director. There three students -
Bhagwandas, Vasanti Bhat-Nayak, and Navin Singhi completed their Ph.Ds
under him. Later Singhi was his collaborator on many significant problems
in design theory. SSS officially retired from Bombay University in 1978.
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4 MOHAN S. SHRIKHANDE

Figure 4. Mehta Institute, with Seidel, Hughes

In 1983, he came out of retirement to become Director of Mehta Re-
search Institute (later renamed Harish Chandra Institute of Research) at
Allahabad. This was a newly formed research centre in Mathematics and
Mathematical Physics. Several internationally prominent mathematicians
such as J. J. Seidel and D. R. Hughes visited the Institute. Seidel and SSS
had many common research interests and had a profound influence on each
other’s work. In 1986, he returned to Nagpur.

In 1985 The Charles Babbage Research Centre in Canada published in
two volumes, Selected Papers of S. S. Shrikhande [15]. This was modeled
after their previously publication, Selected Papers of Sir R. A. Fisher. Its
aim was to compile selected papers of contemporary prominent researchers,
and to include in hindsight, a personal commentary of how they viewed
their problems, and how they fit in the larger body of research. We highly
recommend [15] to see how SSS thought about his own work.

After the death of his wife Shakuntala in 1988, he came to USA and
stayed with his sons Mohan and Anil and grand daughter Nita.

He returned to India in 2009 and stayed with his son Anil in New Delhi.
Many of his former colleagues and friends visited him there. Towards the
end of his son’s stay in Delhi, SSS suffered a fall and underwent major ortho-
pedic surgery. After that SSS shifted to Chinmaya Ashram in Vijayawada.
There he was looked after by his attendant Bhupinder. He spent his time
listening to music and enjoyed solving Sudoku and other puzzles. His 100th
birthday held on October 19, 2017, was attended by many of his former

MEMBER'S COPY



S. S. SHRIKHANDE’S LIFE AND CONTRIBUTIONS 5

Figure 5. With MSS, Tonchev, Ionin in Mt. Pleasant, 2002

colleagues, relatives, and friends. SSS passed away peacefully in his sleep
on April 21, 2020.

2. Some selected contributions of S. S. Shrikhande

We begin with Euler’s Conjecture. The concept of Latin squares and
orthogonal Latin squares goes back to Euler in late 1700s, when he served
as court mathematician to the Czar of Russia. Euler was given the task
of finding a suitable arrangement for a military parade of 36 officers from
6 ranks and 6 regiments in a 6 x 6 square, so that in each row and each
column there was exactly one officer from each rank and each regiment.
Formally, we make the following:

Definition 2.1. An n by n Latin square A is an array based on {1, 2, ..., n}
such that the entries in every row and column are distinct. Two Latin
squares A1 = [a

(1)
ij ] and A2 = [a

(2)
ij ] of order n ≥ 3 are orthogonal provided

that each of the n2 pairs (a
(1)
ij , a

(2)
ij ), (i, j = 1, 2, ..., n) are distinct. More

generally, let A1, A2, ..., At be a set of t Latin squares of order n ≥ 3. They
are called mutually orthogonal Latin squares (MOLS), if any pair of them
are orthogonal.

In his quest for a solution to the 36 Officers problem, Euler was unable
to find two orthogonal Latin squares of order 6 and thought that such a pair
did not exist. More generally, he thought it was impossible find a solution
which required two Latin squares of order 4t+2 for any t ≥ 1. This became
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6 MOHAN S. SHRIKHANDE

known as Euler’s Conjecture on Latin squares ([5]). In 1901, Tarry, a French
mathematician verified that Euler was correct for the case t = 1 by covering
all possible Latin squares of order 6.

The highlight of SSSs work with Bose was in proving the falsity of Euler’s
Conjecture on the non-existence of two mutually orthogonal Latin squares
(MOLS)of order 4t+2. This was done by constructing two MOLS of order
22 ([2]). They introduced the concept of pairwise balanced designs, and used
this idea in construction of MOLS ([3]). Finally in collaboration with E.
T. Parker, they completely demolished Euler’s Conjecture, by constructing
two MOLS of order 4t+2, for all t > 6 ([5]). Bose, Shrikhande, and Parker
became known as Euler’s Spoilers, and their photo appeared on the front
page of the New York Times on April 26, 1959.

Figure 6. End of Euler Conjecture

An excellent commentary on this is provided by SSS himself ([18],[19]).
We recommend the expository article by N. Rao [9]. In addition, refer to
the very recent papers by Sane ([10],[11]) and Singhi and Vijayan ([14]).
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S. S. SHRIKHANDE’S LIFE AND CONTRIBUTIONS 7

SSS’s body of work in mathematics, aside from that on Euler’s Con-
jecture deals with broad range of problems. These include non-existence
problems(on designs), construction and structural problems, characteriza-
tion of certain graphs and embedding problem of graphs and designs. Refer
to ([15]) for a detailed exposition.

Next, after a reviewing a few very basic design theory concepts, we
discuss some parts of SSS’s Ph.D. thesis. His thesis is now regarded as a
landmark by researchers in the field.

A design D = (V,B) consists of a finite set V (called points or treat-
ments), a set of subsets of V (called blocks), which satisfy some regularity
conditions. A balanced incomplete block design (BIBD or 2-design) with
parameters (v, b, r, k, λ) is a design on v points, b blocks each of size k, where
each point occurs in r blocks and any two distinct points occur together in
λ blocks. The parameters satisfy the relations bk = vr, λ(v − 1) = r(k − 1)

and Fisher’s inequality b ≥ v. The integer n = r − λ is called the order of
the design.

A 2-(v, k, λ) design with v = b is called a symmetric 2-(v, k, λ). Using
the usual zero-one incidence matrix N of a 2-(v, k, λ) design, it is easily
shown that any two distinct blocks of a symmetric (v, k, λ)-design intersect
in exactly λ points, i.e. it has exactly one block intersection number λ.

The well known Fano plane is the smallest symmetric design with pa-
rameters v = 7, k = 3, λ = 1.

Figure 7. Fano Plane

Some facts about finite projective planes (FPP) are: A FPP of order n
exists if and only iff a symmetric design with v = n2+n+1, k = n+1, λ = 1

exists; A FPP exists for n a prime power; and the celebrated Bruck-Ryser
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8 MOHAN S. SHRIKHANDE

Theorem(1949) which states that if there exists a FPP of order n, where
n ≡ 1, 2 mod 4, then n is a sum of two squares. As a consequence a FPP
of order 6, or equivalently a symmetric - (43, 7, 1) design does not exist.

Using the incidence matrix, SSS proved:

Theorem 2.2. If a symmetric 2-(v, k, λ), exists for v even, then k−λ is a
square.

As a corollary, the symmetric (22, 7, 2) design does not exist.
This was shown earlier by Q. M. Hussain (1946), by a lengthy argument.

Also, SSS ruled out a symmetric (46, 10, 2)-design, which was an open case
in Fisher-Yates table (1949).

To resolve the situation for symmetric designs with odd v, SSS needed
the use of Hasse-Minkowski invariants. We briefly give some background
on this. For a more details, see [7]. Let A be a non-singular and symmetric
matrix of order n. Let Dr be the leading principal minor determinant of
order r and suppose Dr 6= 0, for r = 1, 2, ..., n. Define the Hasse-Minkowski
invariant

CP (A) = (−1,−Dn)p
∏n

j=1(Dj ,−Dj+1)p, for every prime p, where (m,m′)p

is the Hilbert norm symbol.
The following non-existence result was proved by SSS:

Theorem 2.3. Let a symmetric 2-(v, k, λ) design with odd v exist and let
N be the incidence matrix of the design. Then,

Cp(NN
t) = (k − λ,−1)v(v−1)/2p (k − λ, v)2v−2p = +1,

for all odd prime p.

As an application of his method he obtained,

Corollary 2.4. A symmetric design with v = 29, k = 8, λ = 2 does not
exist.

Proof. Cp(NN
t)

= (k − λ,−1)
v(v−1)/2
p (k − λ, v)2v−2p

= (6,−1)29×14p (6, 29)55p
= (3, 29)p(2, 29)p = (29/3)p, the Legendre symbol for p = 3

=(2/3)3 = −1. Thus, a symmetric (v = 29, k = 8, λ = 2) design does
not exist. �
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S. S. SHRIKHANDE’S LIFE AND CONTRIBUTIONS 9

This was proved earlier by Q. M. Hussain (1945). As further applica-
tions, SSS ruled out open cases (137, 17, 2), (67, 12, 2), (43, 15, 5) in Fisher-
Yates table (1949 ).

SSS’s paper [15] was the first to systematically develop a method, using
the incidence matrix of a symmetric design to investigate the non-existence
of the design. It should be noted that some results of SSS were indepen-
dently proved by (1949) and by Chowla and Ryser (1950). The Hasse-
Minkowsi method was used for other types of designs, in S. S. Shrikhande,
D. Raghavarao, and S. K. Tharthare (1963), and B. Bekker, Y. J. Ionin,
and M. S. Shrikhande (1998).

We next discuss some work of SSS on strongly regular graphs (SRGs)
and quasi-symmetric designs (q. s. designs). These were areas in which
he provided some of the basic ideas and which have guided and influenced
some of my own research. The concept of a SRG is implicit in early papers
of Bose and Nair (1939) and Bose and Shimamoto (1952). Bose formally
defined a SRG in a famous paper, titled Strongly regular graphs, partial
geometries, and partially balanced designs (1963).

A SRG with parameters (n, a, c, d) is a graph on n vertices which is
regular with valency a and has the following properties: any two adjacent
vertices have exactly c common neighbors, and any two non-adjacent ver-
tices have exactly d common neighbors.

The Lattice graphs L2(n) and Triangular graphs T (n) are two important
infinite families of SRGs. The vertices of L2(n) are the n2 ordered pairs from
{1, 2, . . . , n}, with two vertices adjacent iff they agree in one coordinate.
L2(n) is a SRG (n2, 2n − 2, n − 2, 2). The vertex set of T (n), n ≥ 4 is the
set of the 2-subsets from {1, 2, . . . , n}, two vertices being adjacent iff they
have an element in common. It is a SRG (

(
n
2

)
, 2(n− 2), n− 2, 4).

An important research theme in the late fifties was to characterize cer-
tain graphs by their parameters. W. S. Connor, A. J. Hoffman, L. C.
Chang, and SSS made independent contributions. The parameters of T (n)

uniquely characterize the graph for n 6= 8 and this result was proved by
Connor (1958), SSS (1959, [16]), Hoffman (1960), and L. C. Chang (1960).
In the case, n = 8, there are exactly three non-isomorphic graphs, besides
T (8) known as the Chang graphs.

For L2(n), SSS proved in [17] the following theorem,
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10 MOHAN S. SHRIKHANDE

Theorem 2.5. The L2(n) graph is uniquely characterized by its parameters
for all n 6= 4. For n = 4, besides L2(4), there is a unique non-isomorphic
SRG with parameters (16, 6, 2, 2).

Figure 8. The Lattice graphs L2(4)

Remark 2.6. The exceptional L2(4) graph is known as the Shrikhande
graph. It appears in unexpected places, such as in representation of E8 in
Lie algebras. See the paper of Sane [12] on the Shrikhande graph.

Figure 9. The Shrikhande graph on a torus

Another concept of SSS [20] is that of a quasi-symmetric (q. s.) design,
though this was implicit in SSS’s work on the dual of partially designs
(1952). A q. s. design is a 2-(v, k, λ) with two block intersection numbers
x < y. A 2-(v, k, 1)-design is q. s. with x = 0, y = 1. The parameters of a
q. s. design with intersection numbers x, y, x < y are (v, b, r, k, λ;x, y).

Form the block graph Γ of a q. s. design by taking as vertices the
blocks of D. Define two vertices adjacent iff the blocks intersect in y points.
Further, assume Γ is connected. An important and useful result from [20]
is:

Theorem 2.7. The block graph Γ of a q. s. design is a SRG (n, a, c, d)

graph whose parameters can be found from the eigenvalues of Γ.

MEMBER'S COPY



S. S. SHRIKHANDE’S LIFE AND CONTRIBUTIONS 11

Goethals and Seidel’s paper [6] is another important paper on q. s.
designs. The papers [20] and [6] were my first introduction to q. s. designs.
There is by now a wide body of research on these designs. We refer to [13]
which is the first monograph on q. s. designs.

We close with some remarks on the λ design conjecture, where SSS and
Singhi had made significant contributions [21] and [22].

A λ-design D = (V,B) on v points is a collection of v proper subsets
(called blocks) of a point set with v points, such that every two blocks
intersect in λ points, λ < v and there are at least two block sizes. Recall
that in a symmetric design all blocks have the same size and every two
blocks intersect each other in λ points. The only known construction of
a λ-design is via block complementation of a symmetric design. Such a
λ-design is said to be of Type-1. The λ-design conjecture states that every
λ-design is of Type-1. This conjecture has been open since the last fifty
years. This has been proved true for many small values of λ. In 1976,
Singhi and SSS [21] proved it true for λ = p, where p is a prime. More than
a decade later, Seress proved it for λ = 2p. This problem is still unresolved
and has currently been the focus of papers of Parulekar and Sane (2019,
2020); and Yadav, Pawale, and M. S. Shrikhande (2020). Refer to chapter
14, [7] for more details about the λ-designs.
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SHRIKHANDE AND DESIGNS

BHASKAR BAGCHI

Combinatorics is the branch of Mathematics dealing with its discrete
aspects. Professor Sharadchandra Shrikhande (1917-2020) was a towering
presence (both figuratively as well as literally!) among the leading combina-
torialists of the twentieth century. An elegant and powerful mathematician
and the gentlest and kindest of men, his chosen subfield of expertise was
something known as Design Theory, aka ‘Finite geometry’. What are
these designs?

To appreciate Shrikhande’s contributions, we need to delve into the
background of design theory first. Although Euclid grappled (unsuccess-
fully) with the problem of defining points and lines, the modern point of
view is to take a set theoretic approach. Thus we take it as an axiom :

(A1) There is a universe : a set of objects called points, and a special col-
lection of subsets of this set whose members are called lines.

Thus, a line is to be thought of as a set whose elements are the points
lying on it, whatever these ‘points’ may be. A second fundamental axiom,
introduced by Euclid himself, is :

(A2) Any two distinct points are together in a unique line.

It follows that any two distinct lines have at most one point in common.
Two lines are called parallel if they have no common point, i.e., if they are
disjoint as sets. A third crucial axiom - Euclid’s parallel postulate- involves
this notion. Euclid’s original formulation of this axiom is rather clumsy and
not very intuitive (involving, as it does, angle measurement). The following
equivalent formulation of this axiom is due to Playfair :

(A3)(Playfair‘s axiom) Given any line l and any point x not lying on l, there
is a unique line passing through x which is parallel to l.

Notice that (A3) says : the set of lines is naturally broken up (par-
titioned) into parallel classes such that the lines in each parallel class

Key words and phrases: Designs, Latin squares, Linear spaces
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Figure 1. The Euclidean plane of order two.

partition the point set, and any two lines from different parallel classes
intersect (at a unique point - by (A2)).

Of course, there are many more axioms in euclidean geometry. David
Hilbert made a definitive study of these axioms, and he pointed out that
Euclid had missed some of them (but used them implicitly all the same).
But let us forget the other axioms and define an (abstract) eucidean plane
to be any non-trivial ‘model’ satisfying (A1), (A2) and (A3). Of course, the
classical euclidean plane of our intuition is one such. But there are many
more, as we shall see.

For us, the key question is : what are the finite euclidean planes (i.e.,
those having finite sets of points as their universes)? Figure 1 tries to depict
the smallest of them.

In this model there are four points, denoted 1,2,3,4, and six lines, namely
{1, 2}, {3, 4}| {1, 3}, {2, 4}| {1, 4}, {2, 3}. Each line in this model consists of
two points and each point is in three lines. There are three parallel classes
of lines (each containing two lines), separated by vertical bars in the list of
lines. This model of the euclidean plane is known as the Fano plane. Note
that, in our picture of this plane given in Figure 1, we have been forced to
use a curved line to depict one of its lines.

Using elementary counting arguments, it is not hard to prove that we
have :

Theorem 1. If π is a finite euclidean plane then there is a number n ≥ 2
(called the order of π) such that (a) π has n2 points and n2 + n lines, (b)
each point of π is in n+ 1 lines, each line of π contains n points, and (c) π
has n+ 1 parallel classes of lines, each containing n lines.

Thus the toy model shown above is an euclidean plane of order two.
Figure 2 displays the lines of an euclidean plane of order three. Already,
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Figure 2. The Euclidean plane of order three.

this is too large for a picture as in Figure 1 to be very revealing. Instead,
we represent the nine points of this plane by the nine positions in a 3 × 3
array. Each of the four squares in Figure 2 represents a parallel class in this
plane. In each square the three positions marked i constitute the ith line
in this parallel class (i = 1, 2, 3).

Descarte’s introduction of co-ordinates in geometry is usually thought
of as a great computational tool and nothing more. But it is also a great
step in rigourising euclidean geometry by presenting a model of the classical
euclidean plane built out of the real numbers alone. In the cartesean model,
the universe of points is the set R×R of all ordered pairs of real numbers.
The lines are the graphs of the linear functions. That is, the lines are the sets
{(x, y) : y = mx+ c} and {(x, y) : x = c}, where m and c vary over all real
numbers. This model "works" (satisfies the axioms A1, A2, A3) because
R is a field : it has two binary operations (addition and multiplication)
satisfying commutativity, associativity and distributivity, with an additive
identity 0, a multiplicative identity 1, and each real number has an additive
inverse (negative), each non-zero real number has a multiplicative inverse
(reciprocal).

Using any field F (such as the field of rational numbers) in place of R
in the cartesean model, we obtain a non-classical euclidean plane. If F is a
finite field, say of order (size, cardinality) q, we get a finite euclidean plane
of order q. It is well known since Evariste Galois that the order of any finite
field is a prime power, and, conversely, for each prime power q, there is an
essentially unique field of order q. So we have an infinite series of euclidean
planes of prime power orders. When the prime power q is > 8 and not a
prime, this construction can be perturbed to obtain other euclidean planes
of order q. But, to date, no finite euclidean plane of non-prime-power or-
der has been constructed. Indeed, one of the best known open problems in
Combinatorics is to settle :

The prime-power conjecture. The orders of all finite euclidean planes
are prime powers.

The only general result in this direction is the following non-existence
theorem. (There is also a computer assisted proof that there is no euclidean
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plane of order ten.)

Theorem 2 (Bruck and Ryser, 1949). If n ≡ 1 or 2 (mod 4) and n is not
a sum of (at most) two perfect squares, then there is no euclidean plane of
order n.

For instance, 6 ≡ 2 (mod 4), and 6 can not be written as a sum of two
squares. So there is no euclidean plane of order six. This theorem settles the
problem for infinitely many orders, but infinitely many other orders remain
undecided.

Many artists and mathematicians of Renaissance Europe were uncom-
fortable with the idea of there being exceptional pairs of lines in the plane
which never meet. They pointed out that, in real life, when our vision
is un-obstructed, so called parallel lines appear to meet at the horizon –
think of a pair of railway tracks in an open field. So it was observed that
an euclidean plane may be "completed" by a process of "projectivization".
Namely, for each parallel class of lines, introduce a new point (a point at
infinity or, an ideal point) through which all the lines in this class pass;
also introduce a new line (the line at infinity or the horizon) on which all
these points at infinity lie. What results is a new kind of geometry, called
a projective plane. Formally, a projective plane is a non-trivial model
satisfying the axioms (A1), (A2) and the following new axiom in place of
Playfair’s :
(A4) Any two distinct lines have a (unique) point in common.

Conversely, given any projective plane, one can use the inverse process
of "affinization" to create an euclidean plane. Namely, select any line and
remove it together with all the points lying on it. In the resulting euclidean
plane, the removed line (respectively removed points) play the role of the
line at infinity (respectively points at infinity). Coupling this construction
with Theorem 1 (or by a counting argument similar to the one used in prov-
ing this theorem) one can prove :

Theorem 3. Let Π be a finite projective plane. Then there is a number
n ≥ 2 (called the order of Π) such that (a) Π has n2 + n + 1 points and
n2 + n + 1 lines, and (b) each point of Π is in n + 1 lines; each line of Π
contains n+ 1 points.

Notice the simplicity and elegance of Theorem 3, which was missing
in Theorem 1. In view of the projectivization-affinization process, for any
number n, there is a projective plane of order n if and only if there is an
euclidean plane of order n. Thus both the Bruck-Ryser theorem and the
prime power conjecture may be (and usually is) stated in terms of projective
rather than euclidean planes.
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The class of finite geometries we consider can be considerably expanded
by introducing the notion of 2 -designs, as was done by Frank Yates, a
famous statistician. An incidence system is a model satisfying (A1).
In this generality one often uses the word "block" instead of "line". Let
v > k > λ > 0 be integers. Then a 2-design with parameters v, k, λ (in
short, a 2− (v, k, λ) design) is an incidence system D satisfying (1) D has v
points, (2) each line of D contains k points, and (3) any two distinct points
of D are together in λ lines. Thus, Theorems 1 and 3 say that the finite
euclidean (respectively projective) planes are just the 2− (n2, n, 1) designs
(respectively 2− (n2 +n+ 1, n+ 1, 1) designs), n ≥ 2. Again, easy counting
arguments show that we have :

Theorem 4. LetD be a 2−(v, k, λ) design. Then there are positive integers
b and r such that D has b lines, and r is the number of lines through each
point of D. These numbers are given by the formulae r(k − 1) = λ(v − 1)
and bk = rv.

Note that this theorem implies that, for the existence of 2-designs, the
following conditions on their parameters are necessary : k−1 divides λ(v−1)
and k(k−1) divides λv(v−1). But these divisibility conditions are far from
sufficient for the existence of 2-designs with given parameters. The gen-
eral existence question is, of course, wide open. The first progress in this
direction was made by R.A. Fisher, the founding father of Statistics and
Statistical Genetics. He used very ingenious counting arguments to prove :

Theorem 5 (Fisher, 1940). The parameters of any 2− (v, k, λ) design sat-
isfy b ≥ v. Equality holds here if and only if any two distinct lines of the
design have λ points in common.

Later, R.C. Bose gave a much simpler proof of this theorem using linear
algebra. A 2-design is said to be a square 2-design if it attains equality
in Fisher’s inequality. It is immediate from Theorem 4 that a 2-design is
square if and only if its parameters satisfy k(k − 1) = λ(v − 1). Thus the
square 2-designs with λ = 1 are precisely the finite projective planes. We
have seen that there are infinitely many of them. The following is an un-
published conjecture of Marshall Hall, jr.

Hall’s Conjecture. For each fixed value of λ > 1, there are only finitely
many square 2-designs.

While nobody could find a construction to disprove this conjecture,
nobody has succeeded in proving it either. It remains open for each fixed
value of λ, for instance, for λ = 2.
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Given this state of affairs, the following generalization of the Bruck-
Ryser theorem due to Shrikhande is a major advance in the field. It was
independently proved in the same year by Chowla and Ryser.

Theorem 6 (Shrikhande, Chowla-Ryser, 1950). For the existence of a
square 2− (v, k, λ) design, the following conditions are necessary : (a) if v
is even then k − λ must be a perfect square, and (b) if v is odd then the
equation (k − λ)x2 + (−1)(v−1)/2λy2 = z2 must have a solution in three
integers x, y, z, not all three equal to zero.

Part (a) of this theorem, which is much simpler than part (b), was
previously proved (in 1949) by M.P. Schutzenberger. The proof of part
(b) required fairly sophisticated tools from Number Theory, such as p-adic
Hilbert symbols and Hasse-Minkowski local-global theorem. This was the
first time that such non-elementary number theory was used as a proof
technique in Design Theory. This is all the more creditable on the part of
Shrikhande because, unlike Sarvadaman Chowla, he was no number theo-
rist. Shrikhande’s work was a part of his Ph.D. thesis written under the su-
pervision of Professor Raj Chandra Bose. R.C. Bose was one of the founders
of the mathematical theory of designs, and was instrumental - among other
achievements- in introducing finite fields for the construction of designs.

The Hasse Minskowski theory helps in proving parametric restrictions
on square 2-designs partly because they are square incidence systems : have
equally many points and lines. Bose and Connor used this technique to
prove similar non-existence results for another class of square incidence
systems, so called (square) regular divisible designs. Later, in another land-
mark paper of 1953, Shrikhande showed how to adopt this tool to prove
parametric restrictions on a certain class of non-square 2-designs, known
as affine resolvable designs. The full power of this approach remains to be
exploited.

Design theory is not only about proving non-existence results. An im-
portant aspect of the theory is the construction of interesting designs. This
is both a science and an art. Shrikhande was a consummate exponent of
this art form. He had numerous elegant and important constructions to
his credit. My personal favorite is his 1962 paper published in the journal
Sankhya, in which he introduces a special class of 2-designs and shows how
to "multiply" any two designs from this class to produce a third design from
the same class. He also presents a construction of square 2-designs in this
class using twin primes (i.e., pairs of prime numbers differing by two).

But Shrikhande’s best known work is on latin squares. A latin square
of order n is an n × n square array whose positions are filled in with n
symbols in such a way that each symbol occurs (once) in each row and in
each column of the array. For example, any correct solution of a Sudoku
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Figure 3. Orthogonal latin squares.

puzzle is a latin square of order 9. The third and fourth tables in Figure
2 (but not the first two squares there) are latin squares of order 3. If we
superimpose these two squares, we get the square displayed in Figure 3.

Notice that, in the superimposed square of Figure 3, each of the nine
ordered pairs 1/1, 1/2, · · · , 3/2, 3/3 occur once each. We say that the latin
squares of Figure 2 are orthogonal. More generally, two latin squares of
order n are said to be orthogonal, if, on superimposing them, one sees the
n2 ordered pairs of symbols once each. A MOL (mutually orthogonal set
of latin squares) of order n is a set of n× n latin squares any two of which
are orthogonal. It is not hard to see that any MOL of order n can contain
at most n − 1 squares. A MOL of order n and size n − 1 is said to be a
complete MOL.

The appearance of a pair of orthogonal latin squares in Figure 2, which
was constructed to display a finite euclidean plane, is no accident. Figure 2
contains a clear hint as to how, given any complete MOL of order n, one can
augment this set of squares by two trivial n×n squares (a "row square" and
a "column square", like the first two squares in Figure 2) to construct an
euclidean plane of order n. This process may easily be reversed to construct
a complete MOL of order n starting with a given euclidean plane of order n.
Thus complete MOLs of of order n and euclidean (or projective) planes of
order n are co-extensive, almost like two names for the same combinatorial
object.

The notion of latin squares and their orthogonality was introduced by
Leonhard Euler in a paper published in 1782. In view of the close link
between MOLs and finite euclidean planes, it is natural to consider the
maximum size N(n) of MOLs of order n. Thus, in general, N(n) ≤ n− 1,
and N(n) = n−1 if and only if there is an euclidean plane of order n. Also,
N(q) = q − 1 for all prime powers q. Even though Euler knew nothing of
design theory (finite planes were introduced by G.K.C. von Staudt only in
1856) his studies led him to conjecture that N(n) = 1 for all n ≡ 2 (mod 4).
In other words Euler’s conjecture was that for every "singly even" number
n (i.e., n = 2, 6, 10, · · · ), it is impossible to construct even two orthogonal
latin squares of order n. This is easy to see for n = 2, and has turned out to
be true for n = 6 as well. Since, besides being the greatest mathematician
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of all times, Euler was also a great human computer, it is likely that Euler
verified by computation that N(6) = 1. Perhaps this is what led him to the
general conjecture.

In a paper written in 1922, H.F. McNeish gave a nice product construc-
tion for latin squares. If A and B are two latin squares, of order m and n
respectively, then his construction produces a latin square A ⊗ B of order
mn. The construction is as follows. To find the (u, v)th entry of A ⊗ B,
where u, v are any two indices (1 ≤ u, v ≤ mn), note that u and v can be
written (uniquely) as u = (i−1)n+k, v = (j−1)n+ l where 1 ≤ i, j ≤ m,
and 1 ≤ k, l ≤ n. If the (i, j)th entry of A is ai,j and the (k, l)th entry of
B is bk,l then define the (u, v)th entry of A⊗B to be (ai,j − 1)n+ bk,l. (In
this construction, we have taken the symbols in A and B to be the numbers
between 1 and m, and the numbers between 1 and n, respectively.) Mc-
Neish’s construction has the useful property that, if A1, A2 are orthogonal
latin squares of order m and B1, B2 are orthogonal latin squares of order
n then A1 ⊗ B1 and A2 ⊗ B2 are orthogonal latin squares of order mn.
It follows that, for any two numbers m,n, N(mn) ≥ min (N(m), N(n)).
Iterating this inequality, we see that, for any factorisation n = n1 · · ·nt of
a number n, we have N(n) ≥ min (N(n1), · · · , N(nt)). In particular, if
q1 < q2 · · · < qt are the powers of distinct primes occuring in the unique
factorisation of n, we get N(n) ≥ q1−1. McNeish conjectured that actually
equality holds here for all n : N(n) = q − 1, where q is the smallest prime
power occurring in the unique factorisation of n. Note that q = 2 if and
only if n ≡ 2 (mod 4). Therefore McNeish’s conjecture generalizes Euler’s.

The first break through on this problem was achieved by E.T. Parker in
1957, when he disproved McNeish’s conjecture by constructing three mutu-
ally orthogonal latin squares of order 21. Soon after this, when Shrikhande
was visiting Bose in the university of North Carolina, they collaborated on
this problem and disproved Euler’s conjecture in a joint paper published in
1960. Here they constructed (for example) three mutually orthogonal latin
squares of order 14. Finally, the three of them collaborated to disprove
Euler’s conjecture in a very strong form. They proved :

Theorem 7 (Bose- Parker- Shrikhande, 1960). For all n 6= 1, 2.6, there is
a pair of orthogonal latin squares of order n.

Their proof rests on a construction of MOLs of order n using as inputs
several MOLs of smaller order and a linear space with n points. Here
a linear space is a model satisfying Axioms (A1) and (A2) (with possibly
varying line sizes). The details of this construction are rather involved,
and certainly beyond the scope of this expository article. Let me, instead,
illustrate the kind of ingenious techniques used in these constructions by
explaining Parker’s construction of three mutually orthogonal latin squares
of order 21.
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First observe that, given any latin square L, say of order m, we may
obtain a second latin square L′ by applying one or more of the following op-
erations on L : (i) permute rows, (ii) permute columns, and (iii) substitute
any m distinct symbols for the symbols of L. Moreover, if we apply these
operations simultaneously to all the latin squares L1, · · · , Lk in a MOL of
order m and size k, then we obtain a second MOL L′1, · · · , L′k of the same
order and size. Here, we must make sure that the same row/column per-
mutation is applied to all the squares in the first MOL, but the symbol
substitutions used may be entirely independent of each other. In particu-
lar, using a suitable row (or column) permutation, we can ensure that in the
last square L′k obtained, the entries in the main diagonal (i.e., the (i, i))th
entry, 1 ≤ i ≤ m) are all equal. Since the first k−1 squares in the resulting
MOL are orthogonal to L′k, it follows that each of these k−1 squares havem
distinct entries in the main diagonal. Further, we can apply suitable symbol
substitutions to ensure that, in each of the k− 1 mutually orthogonal latin
squares L′1, · · · , L′k−1 (though not in L′k), the (i, i)th entry is = i for all i,
(1 ≤ i ≤ m). In this construction, we may, of course, take k = N(m). Thus
we have proved:

Lemma. For all m, there are N(m)− 1 mutually orthogonal latin squares
of order m such that, in each of them, the ith entry in the main diagonal is
i (for all i, 1 ≤ i ≤ m).

Now take a projective plane Π of order 4. Since each line l of Π has
size 5 and N(5) = 4, the lemma above gives us, for each line l of Π, three
mutually orthogonal latin squares Al

1, A
l
2, A

l
3 such that the rows, columns

and symbols of these squares are (without loss of generality) indexed by
the five points of l (rather than the customary indices 1, 2, · · · , 5) and such
that, for each point x in l, the (x, x)th entry in each of these three squares
is = x. Now we can construct three 21× 21 square arrays B1, B2, B3, with
rows, columns and symbols indexed by the 21 points of Π, as follows. For
i = 1, 2, 3, and any two points x, y of Π, the (x, y)th entry of Bi is (a)
the point x if x = y, and (b) if x 6= y, this entry is the (x, y)th entry of
Al

i, where l is the unique line of Π joining x and y. It is a routine matter
to verify that B1, B2, B3, thus constructed, are three mutually orthogonal
latin squares of order 21.

Any reader who appreciates this beautiful construction will have no
trouble convincing herself that this technique proves, more generally, that :

Theorem 8 (Bose-Parker-Shrikhande, 1960). If there is a linear space with
v points, b lines and lines of size k1, k2, · · · , kb then
N(v) ≥ −1 + min (N(k1), N(k2), · · · , N(kb)).
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It was found that, when the input linear space has certain desirable
properties, the bound in this theorem can be improved upon slightly. The-
orem 8, together with these improvements and the construction of suitable
linear spaces, sufficed for Bose Parker and Shrikhande to disprove Euler’s
conjecture. In the same year, S. Chowla, P. Erdos and E. G. Strauss used
these constructions together with feats of Number Theory to prove :

Theorem 9 (Chowla-Erdos-Strauss), 1960). There is a constant c > 0 such
that N(n) ≥ nc for all sufficiently large numbers n.

Note that, this theorem shows that as n goes to infinity, the number
of mutually orthogonal latin squares of order n increases without bound –
in dramatic contrast to the expectations of Euler and McNeish. Actually
Theorem 9 was proved with the explicit constant c = 1/91. It may be
conjectured that this theorem holds for all constants c < 1/2, or, perhaps,
even with c = 1/2. But nobody has yet come anywhere close.

G. C. Rota, one of the leading exponents of Combinatorics, had this to
say of Design Theory : "Progress in understanding and classification has
been slow and proceeded by leaps and bounds, one ray of sunlight followed
by years of darkness". To Professor Shrikhande we owe several of these
leaps and bounds.

Bhaskar Bagchi
Professor of Mathematics (Retired)
Indian Statistical Institute, Bangalore
Email : bhaskarbagchi53@gmail.com
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QUASI-ANALYTICITY AND THE FOURIER
TRANSFORM∗

SWAGATO K. RAY

Abstract. It is a well known fact of Harmonic Analysis that very
rapid decay of the Fourier transform of an integrable function, on Eu-
clidean spaces, imposes real analyticity on the function. Consequently,
such functions cannot vanish on nonempty open sets. In the context
of real line, classical results of N. Levinson and A. E. Ingham charac-
terized the decay of the Fourier transform which prohibits a nonzero
function to vanish on nonempty open subsets. Results of this genre
are related to the classical Denjoy-Carleman theorem regarding char-
acterization of quasi-analytic functions on R. In this article we will
state some recent results regarding extension of a Denjoy-Carleman
type theorem and the results of N. Levinson and A. E. Ingham to Rn,
Tn and Riemannian symmetric spaces of noncompact type which are
generalizations of hyperbolic spaces.

1. Introduction

For f ∈ L1(Rn) we define the Fourier transform by the formula,

f̂(y) =

∫
R
f(x)e−2πi〈x,y〉dx.

If f ∈ L1(Rn) and f̂ ∈ L1(Rn) then we can reconstruct f from its Fourier
transform by the Fourier inversion

f(x) =

∫
R
f̂(y)e2πi〈x,y〉dy.

∗ This article is based on the text of the 30th Ramaswamy Aiyer Memorial Award
Lecture delivered at the 85th Annual conference of the IMS - An International Meet
held at IIT Kharagpur, W. B. during November 22-25, 2019.

c© Indian Mathematical Society, 2020 .
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For n = 1, it follows by differentiating inside the integral that

|f̂(y)| ≤ C

(1 + |y|)3
⇒ f ′ exists.

More generally, for m ≥ 3

|f̂(y)| ≤ C

(1 + |y|)m
⇒ f is (m− 2) times differentiable.

So, faster decay of f̂ increases differentiability of f . It is not hard to see
that much faster decay of f̂ can impose real analyticity on f . For instance,
if for positive real numbers a, C and all large |y|

|f̂(y)| ≤ Ce−a|y|,

then f extends holomorphically on {z ∈ C | |Im z| < a}. In particular,
vanishing of f on any nonempty open subset of R implies that f ≡ 0.
Analogous phenomena continue to occur in higher dimension.
Question: Is the above conclusion true if f̂ has slower decay like

|f̂(y)| ≤ Ce−
a|y|

1+log |y| ?

Unlike the previous case, it is not immediately clear whether this slower
decay of f̂ imposes analyticity on f . Problems of this kind had been worked
on by Paley, Wiener, Levinson and Ingham [20, 21, 18, 22] using the notion
of quasi-analyticity in the 1930s.

We start with the notion of quasi-analyticity (see [24]). Given a se-
quence of positive real numbers {Mn} we define a class C{Mn} of smooth
functions on R by

C{Mn} = {f ∈ C∞(R) | ‖f (n)‖∞ ≤ Af Bn
f Mn, n = 0, 1, . . .}.

Definition 1.1. A class C{Mn} is said to be quasi-analytic if the condi-
tions

f ∈ C{Mn}, f (n)(0) = 0, n = 0, 1, 2 . . . ,

imply that f ≡ 0.

It is known that C{n!} is a quasi-analytic class, in fact, it consists of
analytic functions [24]. A characterization of quasi-analytic classes were
first proved by A. Denjoy in 1921 (under certain restriction) and then by
T. Carleman in 1926 (see [24, 10]).
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Theorem 1.2 (Denjoy-Carleman). C{Mn} is a quasi-analytic class if and
only if

(1.1)
∞∑
n=1

1

M
1/n
n

=∞.

Remark 1.3. (1) All these started with a question of Hadamard: Un-
der what conditions on {Mn} can we conclude that vanishing of f
with all its derivatives at a point x0 ∈ R implies f ≡ 0?

(2) The Denjoy-Carleman theorem fails if we use only even powers of
d
dx , the example being f(x) = sinx, x0 = 0.

(3) Denjoy proved the result under the conditions that {Mn} is loga-
rithmically convex. The general case is due to Carleman.

A result, somewhat closely related to the Denjoy-Carleman theorem is
the Müntz-Szaz theorem.

Theorem 1.4. [24] If 0 < λ1 < λ2 < . . . then span{xλn | x ∈ [0, 1], n =
0, 1, 2, . . .}, is dense in C[0, 1] if and only if

∞∑
n=1

λ−1
n =∞.

This connection will be important for us.

2. Fourier analytic implications

We now present some results proved in the 1930s which used the notion
of quasi-analyticity for functions in L1(R). Until recently, these results were
known only in one dimension.

Theorem 2.1. Suppose f ∈ L1(R) and ψ : [0,∞) → [0,∞) is a locally
integrable function and

I =

∫ ∞
1

ψ(y)

y2
dy.

Suppose there exists a positive C such that for a.e. y ≥ 1,

(2.1) |f̂(y)| ≤ Ce−ψ(y).

(1) (Ingham, [18]) Suppose ψ(y) = θ(y)y where θ decreases to zero, as
y →∞. If I =∞ and f vanishes on a nonempty open subset of R
then f ≡ 0.
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(2) (Levinson, [21, 20]) Suppose ψ is an increasing function on [0,∞)
and I = ∞. If f vanishes on a nonempty open subset of R then
f ≡ 0.

(3) (Paley-wiener, [22]) If for some x0 ∈ R, supp f ⊂ (−∞, x0) and
I =∞ then f ≡ 0.

We come back to the question we started with: f ∈ L1(R) and for all
lage |y|

|f̂(y)| ≤ Ce
|y|

1+log |y| .

We can apply Ingham’s theorem here by choosing θ(y) = 1/(1 + log y) and
observe that ∫ ∞

1

1

y(1 + log y)
dy =∞.

Hence, vanishing of f on any nonempty open set implies that f is the zero
function. We can also apply Levinson’s result to draw the same conclusion
by choosing

ψ(y) =
y

(1 + log y)
, y ≥ 1.

Remark 2.2. (1) These results are essentially sharp in the following
sense. If I <∞ then in all the cases there exists nonzero f ∈ Cc(R)
supported in (−α, α) for any given α > 0 satisfying (2.1).

(2) Ingham proved his result only for Cc functions. The current version
is due to Mithun Bhowmik, who showed that Ingham’s original
proof is powerful enough to produce the current version.

(3) Though the theorems look similar but they are independent of each
other.

(4) It is not immediately clear from the expression ψ(y) = θ(y)y that

Ingham’s condition implies decay of f̂ at infinity. The same applies
to the result of Paley-Wiener.

(5) Using divergence of I and the decay condition (2.1), Ingham showed

that f (n) satisfy conditions of the Denjoy-Carleman theorem under
certain restriction on the function θ. The general case was proved
using the sharpness of the result.

(6) Paley-Wiener used ideas from complex function theory to prove
their result and then used it to give an alternative proof of the
Denjoy-Carleman theorem.

(7) Levinson reduced the problem to Paley-Wiener theorem. However,
this method of reduction seems very special to one dimension. An
alternative proof of this result can be found in [19]. Levinson also
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showed that his result is also valid for integrable functions on the
unit circle.

(8) A. Beurling proved that Levinson’s result remains true under the
weaker hypothesis that f vanishes on a set of positive Lebesgue
measure (see [19]). As of now, this result is known only in one
dimension.

An obvious question now is to ask the following: Are these results true
for Rn, Tn, n ≥ 2 and noncommutative Lie groups where the relevant
notions make sense? In the recent times we have obtained several results
in commutative as well as noncommutative settings which seem to imply
that these results are true in fairly general situation [3, 4, 6, 5, 1, 2, 7]. Due
to lack of space, in this article we will focus only on the result of Ingham
and show that it is true in most cases we are interested in, namely, Rn, Tn
and Riemannian symmetric spaces of noncompact type.

3. Euclidean spaces and the Torus

To extended the result of Ingham it is natural that we should start
with the problem of generalization of the Denjoy-Carleman theorem to Rn
and noncommutative spaces. Bochner and Taylor [9] proved several such
generalizations of Denjoy-Carleman theorem for Rn. We could use one of
these results to prove the following extensions of Ingham’s result.

Theorem 3.1. [3] Let θ : [0,∞)→ [0,∞) be decreasing with limr→∞ θ(r) =
0 and

I =

∫
{x∈Rn|‖x‖≥1}

θ(‖x‖)
‖x‖n

dx.

Suppose f ∈ L1(Rn) is such that f̂ satisfies the condition

(3.1)

∫
Rn
|f̂(x)|eθ(‖x‖)‖x‖dx <∞.

If f vanishes on a nonempty open subset of Rn and I = ∞ then f ≡ 0.
If I < ∞, then given any positive real number r there exists a nontrivial
continuous function f with supp f ⊂ B(0, r) satisfying (3.1).

Remark 3.2. Note that the assumed ‘decay’ of f̂ is uniform in all direction,
a weakness compared to the result on R.

An interesting application of the Poisson summation formula (an idea
already available in the work of Levinson) then produces the following
extension of Ingham’s result on the Torus Tn.
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Theorem 3.3. [3] Let θ be as in the previous theorem and

S =
∑
m∈N

θ(m)

m
.

Suppose f ∈ L1(Tn), n ≥ 1 is such that f̂ satisfies the condition

(3.2) |f̂(m)| ≤ Ce−θ(‖m‖)‖m‖, m ∈ Zn.

If f vanishes on a nonempty open subset of Tn and S =∞ then f ≡ 0. If
S < ∞ then given any nonempty open U ⊂ Tn, there exists a nontrivial
f ∈ L1(Tn), supp f ⊂ U satisfying (3.2).

The higher dimensional version of Theorem 1.2 which was used to prove
Theorem 3.1 is not suitable for Riemannian symmetric spaces. However,
Bochner proved extensions of Theorem 1.2 for Rn and Riemannian mani-
folds using iterates of the Laplace-beltrami operator ∆ (see [8]). Unfortu-
nately this does not quiet suffice for us. However, a variant of Bochner’s
result proved by P. R. Chernoff [11] turns out to be useful for us. The
following are the results of Bochner and Chernoff.

Theorem 3.4. (1) (Bochner, [8]) Suppose f ∈ C∞(Rn) and∑
m∈N
‖∆mf‖−

1
m∞ =∞.

If for all m ∈ N ∪ {0},

∆mf(x) = 0,

for all x in a set U of analytic determination (in particular, an
open set) then f ≡ 0.

(2) (Chernoff, [11]) Suppose f ∈ C∞(Rn) is such that for all m ∈
N ∪ {0}, ∆mf ∈ L2(Rn) and∑

m∈N
‖∆mf‖−

1
2m

2 =∞.

If for all α = (α1, α2, . . . , αn) ∈ Nn ∪ {0},

∂α1+α2+...+αn

∂xα1
1 ∂xα2

2 . . . ∂xαnn
f(x0) = 0,

then f ≡ 0.
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Remark 3.5. (1) It is clear that the vanishing condition in the result
of Chernoff is weaker than in the result of Bochner. But we find it
more useful because of the use of L2 norm which is much easier to
obtain instead of the L∞ norm used in Bochner’s result.

(2) Chernoff has also provided us with an example which shows that
mere vanishing of ∆mf(x0) is not enough to conclude that f ≡ 0.
Since differential operators on Rn with translation as well as rota-
tion invariance are polynomials in ∆ it follows that any extension of
Chernoff’s result on symmetric spaces is likely to involve differen-
tial operators other than the Laplace-Beltrami operator. Given the
method of proof in [11], this seems to be a rather nontrivial issue.
In the next section we will resolve it by compromising the vanishing
condition which will lead to a weaker version of Chernoff’s result on
Riemannian symmetric spaces of noncomapct type. This approach
has been motivated by an alternative proof of Levinson’s result on
R using a Müntz-Szaz type theorem available in [19].

4. Riemannian symetric spaces of noncompact type

We start this section with the preliminaries on semisimple Lie groups
and harmonic analysis on associated Riemannian symmetric spaces which
will be necessary to state our results. This material is standard and can
be found, for example, in [12, 13, 14, 15].

Let G be a connected, noncompact, real semisimple Lie group with
finite centre and g its Lie algebra. We fix a Cartan involution θ of g and
write g = k⊕ p where k and p are +1 and −1 eigenspaces of θ respectively.
Then k is a maximal compact subalgebra of g and p is a linear subspace
of g. The Cartan involution θ induces an automorphism Θ of the group
G and K = {g ∈ G | Θ(g) = g} is a maximal compact subgroup of G.
Let a be a maximal subalgebra in p; then a is abelian. We assume that
dim a = d, called the real rank of G. Let B denote the Cartan Killing form
of g. It is known that B |p×p is positive definite and hence induces an inner
product and a norm ‖ · ‖B on p. The homogeneous space X = G/K is a
smooth manifold with rank(X) = d. The tangent space of X at the point
o = eK can be naturally identified to p and the restriction of B on p then
induces a G-invariant Riemannian metric d on X. We can identify a with
Rd endowed with the inner product induced from p and let a∗ be the real
dual of a. The set of restricted roots of the pair (g, a) is denoted by Σ. We
choose a system of positive roots Σ+ and with respect to Σ+, the positive
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Weyl chamber a+ = {X ∈ a | α(X) > 0, for all α ∈ Σ+}. We denote by

n = ⊕α∈Σ+ gα.

Then n is a nilpotent subalgebra of g and we obtain the Iwasawa decompo-
sition g = k⊕ a⊕ n. If N = exp n and A = exp a then N is a Nilpotent Lie
group and A normalizes N . For the group G, we now have the Iwasawa
decomposition G = KAN , that is, every g ∈ G can be uniquely written as

g = κ(g) expH(g)η(g), κ(g) ∈ K,H(g) ∈ a, η(g) ∈ N,
and the map

(k, a, n) 7→ kan

is a global diffeomorphism of K×A×N onto G. Let ρ = 1
2

∑
α∈Σ+

mαα be

the half sum of positive roots counted with multiplicity. Let M ′ and M be
the normalizer and centralizer of a in K respectively. Then M is a normal
subgroup of M ′ and normalizes N . The quotient group W = M ′/M is
a finite group, called the Weyl group of the pair (g, k). W acts on a by
the adjoint action. It is known that W acts as a group of orthogonal
transformation (preserving the Cartan-Killing form) on a. Each w ∈ W
permutes the Weyl chambers and the action of W on the Weyl chambers is
simply transitive. Let A+ = exp a+. Since exp : a→ A is an isomorphism
we can identify A with Rd. If A+ denotes the closure of A+ in G, then
one has the polar decomposition G = KAK, that is, each g ∈ G can be
written as

g = k1(expY )k2, k1, k2 ∈ K,Y ∈ a.

In the above decomposition, the A component of g is uniquely determined
modulo W . In particular, it is well defined in A+. The map (k1, a, k2) 7→
k1ak2 of K × A×K into G induces a diffeomorphism of K/M × A+ ×K
onto an open dense subset of G. It follows that if gK = k1(expY )K ∈ X
then

(4.1) d(o, gK) = ‖Y ‖B.
We extend the inner product on a induced by B to a∗ by duality, that is,
we set

〈λ, µ〉 = B(Yλ, Yµ), λ, µ ∈ a∗, Yλ, Yµ ∈ a,

where Yλ is the unique element in a such that

λ(Y ) = B(Yλ, Y ), for all Y ∈ a.

This inner product induces a norm, again denoted by ‖ · ‖B, on a∗,

‖λ‖B = 〈λ, λ〉
1
2 , λ ∈ a∗.
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The elements of the Weyl group W acts on a∗ by the formula

sYλ = Ysλ, s ∈W, λ ∈ a∗.

Let a∗C denote the complexification of a∗, that is, the set of all complex-
valued real linear functionals on a. If λ : a → C is a real linear functional
then <λ : a→ R and =λ : a→ R, given by

<λ(Y ) = Real part of λ(Y ), for all Y ∈ a,

=λ(Y ) = Imaginary part of λ(Y ), for all Y ∈ a,

are real-valued linear functionals on a and λ = <λ + i=λ. The usual
extension of B to a∗C, using conjugate linearity is also denoted by B. Hence

a∗C can be naturally identified with Cd such that

‖λ‖B =
(
‖<λ‖2B + ‖=λ‖2B

) 1
2 , λ ∈ a∗C.

Through the identification of A with Rd, we use the Lebesgue measure
on Rd as the Haar measure da on A. As usual on the compact group K,
we fix the normalized Haar measure dk and dn denotes a Haar measure
on N . The following integral formulae describe the Haar measure of G
corresponding to the Iwasawa and Polar decomposition respectively.∫

G
f(g)dg =

∫
K

∫
a

∫
N
f(k expY n) e2ρ(Y ) dn dY dk, f ∈ Cc(G)

=

∫
K

∫
A+

∫
K
f(k1ak2) J(a) dk1 da dk2,

where dY is the Lebesgue measure on Rd and

J(expY ) = c
∏
α∈Σ+

(sinhα(Y ))mα , for Y ∈ a+,

c being a normalizing constant. If f is a function on X = G/K then f can
be thought of as a function on G which is right invariant under the action
of K. It follows that on X we have a G invariant measure dx such that∫

X
f(x) dx =

∫
K/M

∫
a+

f(k expY ) J(expY ) dY dkM ,

where dkM is the K-invariant measure on K/M . For a sufficiently nice

function f on X, its Fourier transform f̃ is defined on a∗C × K by the
formula

(4.2) f̃(λ, k) =

∫
G
f(g)e(iλ−ρ)H(g−1k)dg, λ ∈ a∗C, k ∈ K,
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whenever the integral exists ([14, P. 199]). As M normalizes N , the func-

tion k 7→ f̃(λ, k) is right M -invariant. If f̃ ∈ L1(a∗ × K, |c(λ)|−2 dλ dk)
then the following Fourier inversion holds,

(4.3) f(gK) = |W |−1

∫
a∗×K

f̃(λ, k) e−(iλ+ρ)H(g−1k) |c(λ)|−2dλ dk,

for almost every gK ∈ X ([14, Chapter III, Theorem 1.8, Theorem 1.9]).

Here c(λ) denotes Harish Chandra’s c-function. Moreover, f 7→ f̃ extends
to an isometry of L2(X) onto L2(a∗+×K, |c(λ)|−2 dλ dk) ([14, Chapter III,
Theorem 1.5]). The above results can also be thought of as results related
to eigenfunction expansion. This is because if ∆ denotes the Laplace-

Beltrami operator on X and eλ,k(g) = e(iλ−ρ)H(g−1k), then the functions
eλ,k are eigenfunctions of ∆. So, these functions basically play the role of
exponentials in the context of Harmonic Analysis on X. The following is
the analogue of the result of Chernoff for X (see Theorem 3.4)

Theorem 4.1. [7] Let f ∈ C∞(X) be such that ∆mf ∈ L2(X), for all
m ∈ N ∪ {0} and

∞∑
m=1

‖∆mf‖−
1

2m
2 =∞.

If f vanishes on any non-empty open set in X then f is identically zero.

Though the assumption that f vanishes on a non-empty open set dras-
tically changes the nature of the Euclidean version of the theorem but it
is still sufficient to obtain the following version of Ingham’s theorem (ana-
logue of Theorem 3.1) on X.

Theorem 4.2. [7] Let θ : [0,∞) → [0,∞) be a decreasing function with
limr→∞ θ(r) = 0 and

I =

∫
λ∈a∗+|‖λ‖B≥1

θ(‖λ‖B)

‖λ‖dB
dλ,

where d = rank(X).

(1) Suppose f ∈ L1(X) and its Fourier transform f̃ satisfies the esti-
mate

(4.4)

∫
a∗×K

|f̃(λ, k)|eθ(‖λ‖B)‖λ‖B |c(λ)|−2dλ dk <∞.

If f vanishes on a non-empty open set in X and I is infinite then
f vanishes identically.
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(2) If I is finite then given any positive number L, there exists a non-
trivial f ∈ C∞c (X) with supp f ⊂ B(o, L) (the ball of radius L with
center at o) satisfying (4.4).

We end this article with the following interesting questions.

(1) Is it possible to have a version of Ingham’s result for functions
without any K-invariance?

(2) What is the correct analogue of Chernoff’s result for Riemannian
symmetric spaces of noncompact type?

(3) A related question would be to ask the following: Suppose G is a
connected Lie group with f ∈ C∞(G) and there exists g0 ∈ G such
that Df(g0) = 0 for all D ∈ U(g), the universal enveloping algebra.
Under what condition one can conclude that f ≡ 0?

(4) Is there an analogue of the result of Ingham for Riemannian sym-
metric spaces of compact type?

(5) Is it possible to prove Ingham’s result (even for R) under the as-
sumption that f vanishes on a set of positive measure?
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THE SPIRAL VORTEX : A STORY ABOUT TORNADOS AND
BATHTUBS
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Abstract. In this paper, we show that equiangular spirals (also known
as logarithmic spirals) appear naturally in fluids going through sinks.
We provide a simple mathematical model that explains the spiral forms
in some natural formations. For this model we need only small parts
from the theories of complex variables and differential equations. The
purpose of this educational paper is to stimulate the students for further
studies in fluid theory and differential equations.

Introduction
When we drain the water from the bathtub we see a small whirlpool.
Amazingly, some galaxies and hurricanes look like a whirlpool too
(Figures 1 and 2).

Figure 1 Hurricane Bonnie, August 1998
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Key words and phrases: Equiangular spiral, logarithmic spiral, fluid motion, Greens
formula
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Figure 2 Spiral Galaxy M51

This likeness is not coincidental - the spiral lines observed in such cases
closely match equiangular spirals (Figure 3).

Figure 3 Equiangular spiral

The popular equiangular spiral is defined by the polar equation

r(θ) = r0e
kθ , −∞ < θ <∞ .

It has the characteristic property that the angle α between the radius vec-
tor and the tangent vector is the same at any point on the curve. In the
above equation, k = cot α. This spiral appears in many formations in na-
ture [2, 5, 7, 8, 13]. On Figure 3 we see several spirals with the same angle
α and different values of r0.
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Using complex variables, we shall give a simple explanation why vortex
curves are equiangular spirals and not something else. First we consider
two-dimensional velocity vector fields with one singularity at the origin O.
Such fields can model a water surface, or a thin layer in the atmosphere.
We also involve systems of differential equations which help to extend our
simple model from two to three dimensions.
This article has an educational character and is designed for undergradu-
ate student with background in complex variables and differential equa-
tion. The author believes it will be interesting also to all nature-curious
mathematicians.

Vector fields on the plane
For convenience, we identify the -plane with the complex z-plane by set-
ting z = x + iy = (x,y). Vectors in standard position (starting from the
origin), and complex numbers are also identified, as in equation (1) below.

Suppose now we have a fluid on the complex plane, described by the ve-
locity vector field

V (z) = V (x,y) =< u,v >= u + iv, (1)

defined everywhere except, possibly, at the origin. Every point (particle)
M(x,y) has velocity V =< u(x,y),v(x,y) >. Governed by this velocity vec-
tor field, the particles move on streamlines. A streamline (trajectory) is a
curve, at each point of which, the velocity vector is tangent to that curve.
If the smooth curve L is defined by the parametric equations

x = x(t), y = y(t), t1 ≤ t ≤ t2, (2)

then L is a streamline for the velocity vector field (1) if and only if the
tangent vector < x′ , y′ > and the velocity vector < u,v > are parallel at
every point (x,y) on L.
Some simple definitions from vector calculus are needed. Let G be a
closed, positively oriented (counterclockwise) smooth curve surrounding
a convex domain D. We can think that D is a just a disk. The integral

Cir(V : G) =
∮
G
V dr =

∮
G
udx+ vdy, (3)

(where dr =< dx,dy >) defines the circulation of the vector field along the
curve. Nonzero circulation indicates the presence of whirls inside D.
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We also define the flux through the curve

Flux(V : G) =
∮
G
udy − vdx. (4)

Nonzero flux indicates the appearance or disappearance of fluid inside ,
i.e. the presence of sources or sinks. We now formally define a vortex, a
source and a sink.
Definition 1. A point M is called a vortex for the vector field V , if there is
a neighborhood U of M such that the circulation Cir(V : G) on any circle
G ⊂U centered at M is nonzero.
Shortly, at a vortex the fluid spins, not necessarily appearing or disappear-
ing.
Definition 2. With M and U as above, the point is called a source, if
Flux(V : G) > 0 and a sink, if Flux(V : G) < 0 for every circle G ⊂ U cen-
tered at M.
In these definitions we do not require M to be in the domain of the field.
It may be a singular point.
Before proceeding further, recall that multiplying one complex number z
by the exponential eiα produces a counterclockwise rotation about O by
the angle with radian measure α.
When considering a flat fluid with possibly one source/sink, it is reason-
able to assume that the fluid is described by a two-dimensional velocity
vector field V with possibly one singularity at the origin, which may be a
sink, or a source, and/or a vortex (or neither), and there are no other sinks
or sources except O. We also do not permit the presence of any whirls
which are not centered at O. It is natural to assume that this field is rota-
tionally invariant with respect to the origin O. Here are the exact condi-
tions:
(A) The vector field V = u + iv is smooth, i.e. u,v have continuous partial
derivatives everywhere except, possibly, at the origin O .
(B) The vector field has no sinks or sources anywhere except, possibly, at
the origin O, and also no whirls. This means both integrals (3), (4) are zero
for every closed curve whose interior is separated from O.
(C) V is rotationally invariant, that is, eiαV (z) = V (eiαz) for all z , 0,α ∈
(0,π). When we rotate the plane about the origin at angle α, the picture
we see does not change.
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Now we will give a simple characterization of such vector fields and will
show that their streamlines are equiangular spirals.

Spiral Vortex Theorem. A vector field V satisfies (A), (B) and (C), if and
only if it has the form

V (z) = c/z̄ (5)

where c = a+ ib is a complex constant. When a , 0 and b , 0, the stream-
lines of this field are equiangular spirals with polar equation

r = r0e
kt , −∞ < t <∞ (6)

where r = r(0) is an arbitrary real constant (initial condition) and k =
a/b. When b = 0, the streamlines are rays going from O to infinity (Figure
5 below). When a = 0 the stream lines are concentric circles centered at
the origin (Figure 4).

Proof of the Theorem. Suppose the vector field , (where u = u(x,y), v =
v(x,y)), satisfies the above conditions. LetD be an arbitrary disk separated
from the origin with boundary G. Then condition (B) implies in view of
Green’s theorem that

Cir(V : G) =
∮
G
udx+ vdy =

∮ ∮
D

(vx −uy)dxdy = 0

and also

Flux(V : G) =
∮
G
udy − vdx =

∮ ∮
D

(ux + vy)dxdy = 0

.
Since the disk D is arbitrary, we conclude that

ux − vy = 0, uy + vx = 0,

everywhere except possibly, at the origin. These two equations are the
Cauchy-Riemann equations for the function V (z) = u − iv. Therefore, this
function is holomorphic on the entire complex plane indented at the ori-
gin. It has a Laurent series convergent for every z , 0,

V (z) =
∞∑

n=−∞
cnz

n.
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According to property (C), we have e−iαV (z) = V (eiαz) for every α ∈ (0,π).
This gives e−iαcn = eiαncn, or cn = eiα(n+a)cn for every integer n. This im-
plies cn = 0 for every n , −1 and, therefore, V (z) = c−1/z. We conclude
that

V (z) = c/z̄

with the complex constant c = c̄−1.
One surprising result from this theorem is that the vector field V is zero
at infinity!
It is clear from the above considerations that any vector field of the form
(5) satisfies (A), (B), and (C).
We continue now with the proof to show that the streamlines of (5) are
equiangular spirals. Let c = a + ib, where a, b are real. With z = x + iy
equation (5) can be written in the form:

V (z) = V (x,y) =
〈ax − by
|z|2

,
bx+ ay
|z|2

〉
.

.
Consider the system of differential equations:

x′ = ax − by y′ = bx+ ay (7)

where x = x(t), y = y(t). The vector field < x′ , y′ > defined by this system is
parallel to V (x,y) at each point, therefore the streamlines of V are deter-
mined by the solutions of (7). When b , 0 this system is equivalent to the
second order differential equation

x′′ − 2ax′ + (a2 + b2)x = 0

together with y = (ax − x′)/b. The general solution of (7) is easy to find:

x(t) = Ceatcos (bt −γ)x, y(t) = Ceatsin (bt −γ) (8)

where C ≥ 0, 0 ≤ γ < 2π are constants. This is a family of equiangular
spirals depending on the two parameters C and γ . When a = 0 we have
concentric circles, which can be viewed as a particular case of (6) with
k = 0 (Figure 4). When b = 0 we have rays going from the origin O to
infinity with slope y/x = −tan γ (Figure 5).
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Figure 4

Figure 5

When b , 0, we can re-scale the paramete, bt −γ → t and setting a/b = k

we can write the solution in the form

x(t) = r0e
ktcos t, y(t) = r0e

ktsin t (9)

which is equivalent to equation (6) in polar coordinates, if we consider t
to be the polar angle. The proof is complete. �
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It is interesting to compute the circulation of the vector field (6) on some
circle G with center at the origin O. Keeping in mind that the function

V (z) = u − iv =
c̄
z

=
a− ib
z

is holomorphic we write:

Cir(V : G) =
∮
G
udax+ vdy = Re

∮
G

(u − iv)d(x+ iy) = Re
∮
G

a− ib
z

dz = 2πb

and the flux through that circle is

Flux(V : G) =
∮
G
udy − vdx = Im

∮
(u − iv)d(x+ iy) = Im

∮
G

a− ib
z

dz = 2πa

Therefore, Cir(V : G) and Flux(V : G) are independent of the radius of
G and also of each other. They are determined only by the complex con-
stant c = a + ib which can be arbitrary. When a = 0, the streamlines are
concentric circles centered at O. We observe a vortex with no generation
or disappearance of fluid. The case a > 0 corresponds to a source, and the
case a < 0 to a sink. In our model, sources and sinks behave the same way,
only the streamlines have different directions. It is clear from the equa-
tions (8) that when a > 0 the point (x(t), y(t)) moves away from the source
at the origin O, and when a < 0 the point (x(t), y(t)) moves toward the
sink at O. When b = 0 (no whirls!), the streamlines, as mentioned above,
are radial rays; b > 0 corresponds to positive (counterclockwise) circula-
tion (rotation about the vortex) and b < 0 indicates a clockwise circulation.
The characteristic angle of the spirals is α = arccot (a/b), as represented in
Figure 3.

A simple tornado

Tornadoes and hurricanes are three dimensional formations. In order to
construct a simple model of tornado, we extend the spiral motion from the
horizontal xy-plane to three dimensions, along the vertical z-axis (the letter
z plays now a different role - it will be used for the third Cartesian coordinate).
Our starting point is the system (7) which we replace by a 3× 3 system of
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linear differential equations with real coefficients:

x′ = a11x+ a12y + a13z, y
′ = a21x+ a22y + a23z, z

′ = a31x+ a32y + a33z (10)

The characteristic equation of the real matrix [aij ] is a third order algebraic
equation with real coefficients and it may have only real roots or two com-
plex conjugate roots and one real. Since we want the xy-projection of the
vector field < x′ , y′ , z′ > to satisfy two dimensional system (7), we exclude
the case of all real roots, because this case brings to exponential growth
or decay of the solutions in all dimensions. With two complex conjugate
eigenvalues and one real eigenvalue, the system (10) splits into a direct
product of one 2 × 2 real system of the form (7) for x, y and one single
equation for the third variable z, which can be put in the simple form

z′ = pz.

There are no other possibilities. The two complex eigenvalues bring equa-
tions (9) and the real eigenvalue, say, p, brings to the solution z(t) = z0e

pt

of the third equation. The general solution is

x(t) = r0e
ktcost

y(t) = r0 e
k t sin t

z(t) = z0e
pt

where −∞ < t <∞ and r0, z0 are real constants. This is a family of spiral
curves on the surface

x2 + y2 =M2z2k/p

(M is a constant). When k = p we have conchospirals, that is, spirals on
the cone x2 +y2 =M2z2 (see [2]). The tornado shape appears when we take
k < p < 0 < min{r0, z0}.
A streamline is shown in Figure 6 together with its projection on the xy-
plane.
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Figure 6

Final notes
Bathtub vortices have been discussed, for instance, in [6]. Many books on
complex variables include two-dimensional fluid flows. This is done very
well in the classical book [10]. The topic is included sometimes in books
on fluid mechanics [11, 12]. Vortices and sinks/sources, however, are often
treated separately and the spiral shape does not appear ([10] and [11] are
exceptions). A combination of one vortex and one sink, also called a spiral
vortex, is mentioned as a model of tornado in [12], p. 231: “A tornado
may be approximated by a two-dimensional vortex and a sink, except in a
region near the origin, and this is an example of good agreement between
a real and ideal fluid”.

In order to show that the vector field (5) has spiral streamlines we
could integrate the function V (z) = c̄/z and come to the complex poten-
tial (a − ib)log(z), which provides the combination of one vortex and a
source/sink [3, 10]. Using the system (7) instead, we avoid the multival-
ued complex logarithm. Systems of differential equations have been used
very efficiently to describe vector fields with one singularity ([1, 4]).
Real world tornados and hurricanes are very complex formations while
our model provides only a rough approximation. More about tornados
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can be found in [9]. There is a resemblance to a spiral vortex in the
form of some spiral galaxies like M51, M81, M100 and M101. Univer-
sity of Rochester researchers have fitted recently the spiral arms of M51
with pieces of equiangular spirals and discovered a good match in [7]
(see Figure 7, courtesy of the authors).

Figure 7. Galaxy M51

Some galaxies possibly behave like cosmic hurricanes in slow motion, where
the density increases toward the center which plays the role of a sink/source.
Interesting comments on this topic can be found on pp. 120-123 in [8].

Acknowledgment: Hurricane Bonnie and Galaxy M51 on Figures 1 and
2 are correspondingly from the NASA and the NASA/IPAC Extragalactic
(NED) free databases.
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Abstract. In this paper, an innovative method has been devised to
generate family of Pythagorean n-tuples from a given n-tuple called
seed Pythagorean n-tuple. Since a given or seed Pythagorean n-tuple
may always not be known, therefore, a formula for generating a seed
Pythagorean n-tuple has also been derived and then used for generat-
ing n-tuples. While a seed Pythagorean n-tuple may have some terms
repeating many times but family of Pythagorean n-tuples populated
from a seed n-tuple will not have repeating terms unless our require-
ment needs so. Formula for a seed Pythagorean n-tuple is based on
simple identity upon which certain mathematical operations have been
performed. This method of generation of n-tuples is unattempted, un-
precedented, easy to derive and hence is equally comprehensible to
students and scholars alike.

1. INTRODUCTION

If x1, x2 and x3 is a Pythagorean triple, then x21 + x22 =x23. According
to the Law of Trichotomy, either x1 > x2 or x1 < x2 or x1 = x2. If
x1 = x2,, then x23 = 2 · x21. Since x1, x2 and x3 all are integers, therefore,

x3 being equal to
√

2 · x1 can never be rational. Hence two equal integers
can never be a part of Pythagorean triple.

Let these numbers x1, x2 and x3 be unequal. We can write, say x1
as (a1 · x + a), x2 as (b1 · x + b) and x3 as (c1 · x + c) where a1, b1, c1
and a, b, c are rational numbers and x ∈ R. For these numbers to be a
Pythagorean triple, we must have

(a1 · x + a)2 + (b1 · x + b)2 = (c1 · x + c)2

Simplification yields a quadratic equation

x2 ·
(
a21 + b21 − c21

)
+ 2 · x (a1 · a + b1 · b− c1 · c) + a2 + b2 − c2 = 0,

i.e.

P · x2 + Q · x + R = 0,
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Key words and phrases: Pythagorean Triples, Quadruples, Quintuples, n-tuples

c© Indian Mathematical Society, 2020 .
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where

P =
(
a21 + b21 − c21

)
,

Q = 2 · (a1 · a + b1 · b− c1 · c) ,
R = a2 + b2 − c2.

This quadratic equation has two roots

x =

(
−Q±

√
Q2 − 4P ·R

)
2P

.

But our requirement is that the quadratic must have rational roots. This is
possible if the quadratic is transformed into a linear equation. That requires
coefficient of x2 in the quadratic must be zero i.e. P = 0 or a21+b21−c21 = 0.
That further requires that the choice of a1, b1 and c1 be such that

a21 + b21 − c21 = 0

Therefore, we need a seed Pythagorean triple a1, b1 and c1 which trans-
forms the quadratic equation into a linear equation and then

x = −R

Q

where R and Q have values as already stated. Putting the value of x
so obtained from above linear equation in (a1 · x + a), (b1 · x + b) and
(c1 · x + c) will generate Pythagorean triples. Since a , b and c can be
assigned a number of rational values, therefore a number of Pythagorean
triples can be generated. If the triples so generated are in fractions then
multiplying these with the lowest common multiplier LCM, will give integer
values. Multiplication with LCM used in the paper will be referred to as
‘normalisation’ henceforth. Above method can be generalised to generate
Pythagorean n-tuples

(a1 · x + A1), (a2 · x + A2), (a3 · x + A3), . . . , (an · x + An).

Being Pythagorean n-tuple,

(a1 · x + A1)
2 + (a2 · x + A2)

2 + (a3 · x + A3)
2 + . . .+ (an−1 · x + An−1)

2

= (an · x + An)2.

Putting the coefficient of x2 equal to zero i.e.

a21 + a22 + a23 + . . . a2n−1 − a2n = 0

means we need a seed Pythagorean n-tuple. On simplification of above said
equation,

x =
F

G

where
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F = A2
n − (A2

1 + A2
2 + A2

3 + · · ·+ A2
n−1)

G = 2 {(a1 ·A1 + a2 ·A2 + a3 ·A3 + · · ·+ an−1 ·An−1)− an ·An } ,
a1, a2, a3, . . . , an as already stated are a given seed Pythagorean n-

tuple and A1, A2, A3, . . . An have rational values as assigned by us.
Assigning different rational values of A1, A2, A3, . . . An will give dif-
ferent values of x and hence different sets of n-tuples. This proves Lemma
1.1.

Lemma 1.1. (a1 · x + A1), (a2 · x + A2), (a3 · x + A3), . . . , (an · x + An),
after normalisation, are Pythagorean n-tuples, when x = F

G where F and
G have values as already stated and a1, a2, a3, . . . , an is a given seed
Pythagorean n-tuple and A1, A2, A3, . . . An have rational values as
assigned by us. Putting different real rational values of A1, A2, A3, . . . An

will give different values of x and hence different sets of Pythagorean n-
tuples after normalisation.

It is, therefore, essential, according to Lemma 1.1 that one seed
Pythagorean n-tuple must be known for populating n-tuples. But there are
certain n-tuples where n has special values and n-tuples can be generated
without a given seed Pythagorean n-tuple. One such special Pythagorean
n-tuple is where n = m2 + 1. Consider the identity

12 + 12 + 12 + . . . repeated (n− 1) times = (n− 1) = m2 (1.1)

Assuming first term as x1, second term as (x1 + a2) , third term as (x1 + a3)
. . . so on and (n− 1) th term as (x1 + an−1) in left hand side and nth term
in right hand side as (m · x1 + an) where a2, a3, a4 . . . an are real rational
quantities assigned by us but all 6= 0, and putting these terms in equation
(1.1) then

x21 + (x1 + a2)
2 + (x1 + a3)

2 + · · ·+ (x1 + an−1)
2 = (m · x1 + an)2

and since n = m2 + 1, on simplification,

x1 =
L

M
(1.2)

where

L = a2n −
(
a22 + a23 + a24 + · · ·+ a2n−1

)
,

M = 2 (a2 + a3 + a4 + · · ·+ an−1 − an ·m) .

Substituting the value of x1 given by equation (1.2) in x1, (x1 + a2), (x1 + a3),
. . . (x1 + an−1) and (m · x1 + an) gives unnormalised Pythagorean n-tuples
as

L

M
,

[
L

M
+ a2

]
,

[
L

M
+ a3

]
,

[
L

M
+ a4

]
. . .

[
L

M
+ an−1

]
,

[
m · L
M

+ an

]
(1.3)
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After multiplying with M that is LCM, normalised Pythagorean n-
tuples that satisfy the following relation (1.4) are generated

L2 + (L + a2 ·M)2 + (L + a3 ·M)2 + · · ·+ (L + an−1 ·M)2

= (m · L + an ·M)2.
(1.4)

When M = 0 then all the terms in left hand side LHS of equation (1.4)
will equal (n− 1) · L2 and the term on the right hand side RHS will be
m2 · L2 i.e. n − 1 = m2 which is the given condition. On the other hand
when L = 0, that will make

{
a2n −

(
a22 + a23 + a24 + . . . a2n−1

)}
= 0 ,

then a2, a3, a4 . . . an will be Pythagorean n-tuples. Otherwise for different
values of a2, a3, a4 . . . an, then L and M have different values, therefore,
by putting these values in equation (1.4), different sets of Pythagorean
n-tuples will be generated. This proves Lemma 1.2.

Lemma 1.2. x1, (x1 + a2) , (x1 + a3) ,. . . (x1 + an−1) and (m · x1 + an) ,
after normalisation by multiplying with least common multiplier (LCM),
are Pythagorean n-tuples when a2, a3, a4 . . . an are real rational quantities
assigned by us but all 6= 0, m is a positive integer given by relation n− 1 =
m2 and x1 = L/M where L and M have values as already stated.

Example 1.3. Generate Pythagorean n-tuples where n− 1 = 4.
Here n − 1 = m2 = 22 = 4 and total terms are 22 + 1 = 5, there-

fore, Lemma 1.2 is applicable and x1, (x1 + a2), (x1 + a3), (x1 + a4) , and
(2.x1 + a5) after normalisation are also Pythagorean n-tuples where
x1 = L/M , L = a25 − (a22+a23 + a24) and M = 2 {(a2+a3 + a4)−m · a5}.
Assuming a5 = 5, a2 = 1, a3 = 2,a4 = 3 or any value one feels like but
not {( a2 + a3 + a4)−m.a5} = 0, therefore, L = 52 −

(
12 + 22 + 32

)
= 11,

M = 2 {(1 + 2 + 3)− 10} = −8 and x1 = −11/8. Pythagorean quintuples
after normalisation are

112 + 32 + 52 + 132 = 182.

2. THEORY AND CONCEPT

With this introduction, we will proceed to populate Pythagorean n-
tuples from a given seed Pythagorean triple or quadruple or quintuple
so on. Unlike generation of Pythagorean n-tuples from roots of quadratic
equations where n can have any positive integer value, here Pythagorean
n-tuples will be generated from linear equations thus avoiding square root
part that is inherently present in solution of quadratic equations. This has
already been discussed in introduction. Obviously, this method is simple
but is applicable to special type of n-tuples. Further, this method requires
a known seed Pythagorean triple or quadruple likewise. Let the given seed
Pythagorean triple be a21 + a22 = a23 , it will be proved that this triple will
populate not only triples but special n-tuples also where n number of terms
of n-tuples is given by
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n = a21 + 2

or n = a22 + 2

or n = a21 + a22 + 1

If Pythagorean quadruples say a21 + a22 + a23 = a24 is given as seed, it will
populate not only quadruples but special n-tuples where

n = a21 + 3

or n = a22 + 3

or n = a23 + 3

or n = a21 + a22 + 2

n = a21 + a23 + 2

or n = a22 + a23 + 2

or n = a21 + a22 + a23 + 1

Similarly, if a seed Pythagorean quintuples is given, it will not only populate
quintuples but also has more options of populating n-tuples.

2.1 Populating Pythagorean triples, quadruples so on up to n-
tuples from a given seed Pythagorean triples or quadruples so on
up to n-tuples.

As is evident from the above title, in this part, procedure is given for
populating Pythagorean triples, quadruples so on up to n-tuples from a
given respective Pythagorean triple or quadruple so on up to n-tuples.
Let a given seed Pythagorean triple a, b and c satisfy the equation a2+b2 =
c2. Assume that (a · x + a1) , (b · x + b1) and (c · x + c1) as populated

Pythagorean triples, therefore, (a · x + a1)
2 + (b · x + b1)

2 = (c · x + c1)
2.

Since a2 + b2 = c2, therefore, on simplification,

x =
c21 − b21 − a21

2(a · a1 + b · b1 − c · c1)
(2.1)

where a1, b1 and c1 are real rational quantities assigned by us. By putting
different values of a1, b1 and c1, different sets of unnormalised Pythagorean
triples (a · x + a1) , (b · x + b1) and (c · x + c1) are generated and on multi-
plying with least common multiplier LCM, normalised Pythagorean triples
are generated.

Example 2.1. Let the given seed equation be a2 + b2 = c2 is 32 + 42 = 52.
Assuming that a1 = 2, b1 = 1 and c1 = 4. Therefore, from equation (2.1),

x = 16−1−4
2(3·2+4·1−5·4) = −11

20 and (a · x + a1) = 7
20 , (b · x + b1) = −24

20 and

(c · x + c1) = 25
20 .
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After normalisation, 72 + 242 = 252. By assuming other values of a1,
b1 and c1 and after normalisation, different sets of Pythagorean triples are
populated.

Coming to Pythagorean quadruples, let a, b, c and d be a given seed
Pythagorean quadruple, satisfying equation a2 + b2 + c2 = d2. Applying
Lemma 1.1, (a · x + a1) , (b · x + b1) , (c · x + c1) and (d · x + d1) will be
Pythagorean quadruple, when

(a · x + a1)
2 + (b · x + b1)

2 + (c · x + c1)
2 = (d · x + d1)

2.

Since a2 + b2 + c2 = d2, simplifying this equation

x =
d21 − c21 − b21 − a21

2 (a · a1 + b · b1 + c · c1 − d · d1)
(2.2)

where a1, b1, c1 and d1 are real rational quantities. By assuming differ-
ent real rational values of a1, b1, c1 and d1, different sets of quadruples
(a · x + a1) , (b · x + b1) , (c · x + c1) (d · x + d1) after normalisation are pop-
ulated.

Example 2.2. Let the given equation a2+b2+c2 = d2 be 32+42+122 = 132.
Assuming a1 = 2, b1 = 1, c1 = 4 and d1 = 5.
Therefore, from equation (2.2),

x =
25− 16− 1− 4

2. (3 · 2 + 4 · 1 + 12 · 4− 13 · 5)
= −2

7
and (a · x + a1) =

8

7
,

(b · x + b1) = −1

7
, (c · x + c1) =

4

7
, (d · x + d1) =

9

7
.

After normalisation, 82 + 12 + 42 = 92.

Proceeding in this way, Pythagorean quintuples, sextuples so on upto n-
tuples can be populated from the given respective seed quintuple, sextuple
so on upto n-tuples. For generalised formula for n-tuples, let the given seed
Pythagorean n-tuple is a1, a2, a3, . . . , an satisfying

a21 + a22 + a23 + · · ·+ a2n−1 = a2n

then (a1 · x + A1), (a2 · x + A2), (a3 · x + A3) upto (an · x + An) after
normalisation are Pythagorean n-tuples satisfying the relation

(a1 · x + A1)
2 + (a2 · x + A2)

2 + (a3 · x + A3)
2 + · · ·+ (an−1 · x + An−1)

2

= (an · x + An)2.

Since

a21 + a22 + a23 + · · ·+ a2n−1 = a2n,

simplification of the above equation gives

x =
F

G
(2.3)
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where

F = A2
n −

(
A2

1 + A2
2 + A2

3 + · · ·+ A2
n−1
)
,

G = 2 {(a1 ·A1 + a2 ·A2 + a3 ·A3 + · · ·+ an−1 ·An−1)− an ·An }
and A1, A2, A3 . . . An−1, An are real rational quantities.
By assuming different values of A1, A2, A3 . . . An−1, An different sets of
n-tuples (a1 · x + A1), (a2 · x + A2), (a3 · x + A3) upto (an · x + An) after
normalisation are populated.

2.1a. Special Pythagorean n-tuples from a given Pythagorean
triple, quadruple so on where n = a21 + 2 or n = a22 + 2 or
n = a21 + a22 + 1 or n = a21 + 3 or n = a22 + 3 or n = a23 + 3 or
n = a21 + a22 + 2 or n = a21 + a23 + 2 or n = a22 + a23 + 2 or n = p + 2 as
the case may be and a1,, a2, a3 . . . are terms of given Pythagorean triple,
quadruple so on.

For generation of n-tuples where the number of terms is n = a21 + 2, let the
given seed Pythagorean triple be a21 + a22 = a23. This equation a21 + a22 = a23
can also be written as(

1 + 1 + 1 . . . repeated up to a21 times
)

+ a22 = a23 (2.4)

Thus equation (2.4) has a21 + 2 terms if a22 and a23 each are not split up and
each is kept as one term. If terms a21 and a23 are kept as each one and term
a22 is split up as (1 + 1 + 1 . . . repeated up to a22 terms ) then n will equal
a22 + 2.
Coming to Pythagorean n-tuple where n = a21 + 2, terms a21 in number

are taken as x, (x + A2) (x + A3) . . . . . .
(
x + Aa21

)
, single term correspond-

ing to a2 is taken as (a2.x + B) and single term corresponding to a3 is
(a3.x + C) . For x, (x + A2) , (x + A3) . . . (x + Aa21

), (a2 · x + B) and

(a3 · x + C) to be Pythagorean n-tuples,

x2 + (x + A2)
2 + (x + A3)

2 . . .
(
x + Aa21

)2
+ (a2 · x + B) 2 = (a3 · x + C)2

It is appropriate to define Aa21
. Aa21

is
(
a21
)
th term of A and its value is

Aa21
assigned by us. If a1 is 3 then Aa21

in this case would be A9 or 9th term

of A which has that value as assigned by us. On simplification of above
equation,

x2
(
a21 + a22

)
+ 2 · x

(
A2 + A3 + A4 . . . Aa21

+ B.a2

)
+ A2

2+ A2
3 + A3

4 + ..A2
a21

+ B2

= a23 · x2 + 2 · x · C · a3 + C2

Since a21 + a22 = a23, therefore,

x = H/I (2.5)
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where

H = C2 −
(
A2

2 + A2
3 + A2

4 + · · ·+ A2
a21

+ B2
)
,

I = 2
(
A2 + A3 + A4 + · · ·+ Aa21

+ B · a2 − C · a3
)
,

A2, A3, A4, . . . , Aa21
, B and C are rational quantities assigned by us.

Putting different values of x obtained from equation (2.5) in x,(x + A2),
(x + A3) . . . (x + Aa21

) (a2 · x + B) and (a3 · x + C) and after normali-

sation will populate Pythagorean n-tuples.
For generating n-tuples where n = a21 + 3, let the given Pythagorean

quadruple be a21 + a22 + a23 = a24. This equation a21 + a22 + a23 = a24 can also
be written as(

1 + 1 + 1 . . . repeated up to a21 terms
)

+ a22 + a23 = a24 (2.6)

Thus equation (2.6) has n = a21 + 3 terms if a22, a
2
3 and a24 are taken as one

term each. Similarly, on splitting a22 or a23, n can have value a22 + 3 or
a23 + 3 terms.

In the case of terms n = a21 + 3, a21 split up as
(
1 + 1 + 1 . . . a21 terms

)
has terms a21 in number and these are taken as x, (x + A2), (x + A3) . . . . . .(
x + Aa21

)
, single term corresponding to a2 is taken as (a2 · x + B) and sin-

gle terms corresponding to a3 and a4 are (a3 · x + C) and (a4 · x + D) re-
spectively. For x, (x + A2) , (x + A3) . . . (x+Aa21

), (a2 · x + B), (a3 · x + C)

and (a4 · x + D) to be Pythagorean n-tuples,{
x2 + (x + A2)

2 + (x + A3)
2 + · · ·+

(
x + Aa21

)2}
+ (a2 · x + B) 2

+ (a3 · x + C)2

= (a4 · x + D)2

Since given seed quadruple is a21 + a22 + a23 = a24 where a21 is split up, on
simplification, it gives

x = S/T (2.7)

where

S = D2 −
(
A2

2 + A2
3 + A2

4 + · · ·+ A2
a21

+ B2 + C2
)

T = 2
(
A2 + A3 + A4 + · · ·+ Aa21

+ B · a2 + C · a3 −D · a4
)
,

A2, A3, A4 . . . Aa21
, B,C and D are rational quantities assigned by us. Then

x, (x + A2) , (x + A3) . . .
(
x + Aa21

)
, (a2 · x + B) , (a3 · x + C) and

(a4 · x + D), on substitution of the value of x obtained from equation (2.7)
and after normalisation, will be populated Pythagorean n-tuple for number
n = (a1)

2 + 3. For generating n-tuples where terms n− 1 = p + 1 = m2 .
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Let a2 + p = a2n where a2 is assumed as single term and p is assumed as
12 + 12 + 12 + . . . repeated p times and a2n is assumed as single term. For
these terms to be Pythagorean n-tuples,

a2 + (12 + 12 + 12 + . . . repeated p times) = a2n (2.8)

Thus equation (2.8) has 2 + p terms. Single term a2 is assumed as

(a · x + A)2 and terms 12 + 12 + 12 + . . . repeated p times are assumed

as (x + B1)
2 + (x + B2)

2 + (x + B3)
2 . . . (x + Bp)

2 and nth term in right
hand side as (an · x + C) then according to equation (2.8),

(a · x + A)2 + (x + B1)
2

+ (x + B2)
2 + · · ·+ (x + Bp)

2 = (an · x + C)2

On simplification, since, a2 + p = a2n , therefore,

x = U/V

where

U = C2 −
(
A2 + B2

1 + B2
2+B2

3 + · · ·+ B2
p

)
,

V = 2 {(a ·A + B1 + B2 + B3 + · · ·+ Bp)− an · C} ,
A,B1, B2, B3 . . . Bp and C are real rational quantities assigned by us.
After putting this value of x and normalisation (a.x+A), (x + B1) ,(x + B2),
(x + B3) , . . . , (x + Bp),(an · x + C) are populated Pythagorean n-tuples where
n− 1 = p + 1 = m2 and a2 + p = a2n.

2.2. Generation of Pythagorean n-tuples where n can have any
positive integer value

It is not always the case that n satisfies the conditions as detailed in the
foregoing paragraphs and n can have any positive integer value. In such
cases, the methods discussed and devised above may not be helpful. Fur-
ther, it is also difficult to remember a seed Pythagorean triple or quadruple
or n-tuple. To obviate such difficulties, a general solution is required for
generating n-tuples. For that we need to generate a seed Pythagorean n-
tuple ourselves. In paragraphs hereinafter, a method has been devised for
generating a seed Pythagorean n-tuple.

Lemma 2.3. If m is a positive integer such that n − 1 lies between
(m− 1)2 and m2 then (m + p)2 − (n− 1) can always equal x2 · (3) + x3 ·
(8) + x4 · (15) + . . . xk ·

(
k2 − 1

)
where x2, x3, . . . , xk and p are positive

integers (zero included) such that

(x2 + x3 + x4 + · · ·+ xk) ≤ (n− 1) .

Lemma 2.4. If m is an integer such that n−1 lies between (m− 1)2 and
m2 and

(m + p)2 − (n− 1) = x2. · (3) + x3 · (8) + x4 · (15) + . . . xk ·
(
k2 − 1

)
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then seed Pythagorean n-tuple is given by equation

(m + p)2 = x1 · (12) + x2 · (22) + x3 · (32) + x4 · (42) + · · ·+ xk · (k2)
where x1, x2, x3, . . . xk and p are positive integers (zero included) such
that

(x2 + x3 + x4 + · · ·+ xk) ≤ (n− 1)

and (x1 + x2 + x3 + · · ·+ xk) = (n− 1) .

Lemma 2.5. All Pythagorean n-tuples where n > 3 can have at least one
term as one.

Proof. It is obvious from Lemmas 2.3 and 2.4 that a seed n-tuple may have
terms that repeat but populated n-tuples will have terms differing from
one another unless our requirement demands so. Let Pythagorean n-tuples
have each term as 1, then

12 + 12 + 12 . . . upto n− 1 terms = n− 1 (2.9)

Left hand side (LHS) of identity (2.9) is 12 added (n− 1) times.

We will find a positive integer m so that (n− 1) lies between (m− 1)2 and

m2. That is (n− 1) > (m− 1)2 and (n− 1)< m2 or m <
(√

n− 1 + 1
)

but

>
√
n− 1. Thus m can always be determined and with that determination,

value of m2 − (n− 1) which is always a positive integer since m and n are
both positive integers, can always be found. For generalised form, we take
(m + p)2 − (n− 1) where p is any positive integer 0, 1, 2, 3, . . . so on.

Obviously, (m + p)2 − (n− 1) will again be a positive integer.

Putting (m + p)2 − (n− 1) in identity (2.9), we get

(m + p)2 −
(
12 + 12 + 12 . . . upto n− 1 terms

)
= (m + p)2 − (n− 1)(2.10)

Let (m + p)2 − (n− 1) = x2. · (3) + x3 · (8) + · · ·+ xk ·
(
k2 − 1

)
(2.11)

where x2, x3, x4, . . . xk are positive integers including 0 such that

(x2 + x3 + x4 + · · ·+ xk) ≤ (n− 1) .

Equation (2.11) is always achievable by increasing value of p from 0 to 1
to 2 to 3 so on till it is satisfied. That proves Lemma 2.3. On putting the
value of (m + p)2 − (n− 1) from equation (2.11) into equation (2.10),

(m + p)2 −
(
12 + 12 + 12...upto n− 1 terms

)
= x2 · (3) + · · ·+ xk · (k2 − 1)

On transposing
(
12 + 12 + 12 . . . upto n− 1 terms

)
to right hand side and

rearranging,

(m + p)2 = (x1) ·
(
12
)

+ x2 ·
(
22
)

+ (x3) ·
(
32
)

+ · · ·+ (xk) · (k2) (2.12)

where x1 = {(n− 1)− (x2 + x3 + x4 + · · ·+ xk)} and can have any integer
value including 0. That makes

x1 + x2 + x3 + x4 + · · ·+ xk = n− 1 (2.13)
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Derivation of equations (2.12) and (2.13) proves Lemma 2.4. On splitting
up, equation (2.12) can be written as

(m + p)2 =
(
12 + 12 + . . . x1 times

]
+
(
22 + 22 + . . . x2 times

)
+
(
32 + 32 + 32 + . . . x3 times

)
+ . . .

+
(
k2 + k2 + k2 + . . . xk times

) (2.14)

Left hand side of equation (2.14) has a perfect square in the form of

(m + p)2 and right hand side has sum of squares of (n−1) terms, therefore,
total number of terms are n and it fulfills all essential ingredients to be a
seed Pythagorean n-tuple. �

Given in Table 1 are some of seed Pythagorean n-tuple determined
using above said method for n varying from 3 to 1011. We have written
only single seed equation for different n except for n = 8, 13 and 500 where
two equations are provided but it is submitted, there can be infinite number
of seed equations as the value of p is increased.

Table 1. Seed Pythagorean n-tuples with varying ‘n′

N, Last Seed Pythagorean’s N-Tuples
Tuples (n) Term

n m + p (m + p)2

= x1 · (12) + x2 · (22) + x3 · (32) + x4 · (42) + · · · + xk · (k2)

3 2 + 3 52 = 1 · (32) + 1 · (42)

4 2 + 1 32 = 1 · (12) + 2 · (22)
6 3 + 1 42 = 3 · (12) + 1 ·

(
22
)

+ 1 ·
(
32
)

7 3 + 0 32 = 5 ·
(
12
)

+ 1 ·
(
22
)

8 3 + 2 52 = 5 ·
(
12
)

+ 1 ·
(
22
)

+ 1 ·
(
42
)

= 1 · (12) + 6 · (22)
9 3 + 1 42 = 7 ·

(
12
)

+ 1 · (32)
11 4 + 0 42 = 8 ·

(
12
)

+ 2 · (22)
12 4 + 1 52 = 8 ·

(
12
)

+ 2 ·
(
22
)

+ 1 · (32)
13 4 + 2 62 = 4 ·

(
12
)

+ 8 ·
(
22
)

= 8 ·
(
12
)

+ 3 · (22) + 1 ·
(
42
)

14 4 + 0 42 = 12 ·
(
12
)

+ 1 · (22)
15 4 + 2 62 = 10 ·

(
12
)

+ 2 ·
(
22
)

+ 2 · (32)
20 5 + 0 52 = 17 ·

(
12
)

+ 2 · (22)
30 6 + 1 72 = 24 · (12) + 4 ·

(
22
)

+ 1 · (32)
51 8 + 0 82 = 47 · (12) + 2 ·

(
22
)

+ 1 · (32)
100 10 + 1 112 = 95 · (12) + 2 ·

(
22
)

+ 2 · (32)
500 23 + 0 232 = 489 ·

(
12
)

+ 10 ·
(
22
)

= 497 ·
(
12
)

+ 2 ·
(
42
)

= 494 · (12) + 2 ·
(
22
)

+ 3 · (32)
2500 50 + 1 512 = 2493 · (12) + 2. ·

(
22
)

+ 4 · (52)
105 317 + 0 3172 = 9996 ·

(
12
)

+ 1 ·
(
42
)

+ 1 · (62) + 1 · (212)
1011 316228 + 0 3162282 = 99999999994 ·

(
12
)

+ 1 ·
(
32
)

+ 1 ·
(
42
)

+1 ·
(
52
)
+1 ·

(
222

)
+ 1 · (3842)
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2.3. Populating Pythagorean n-tuples from a seed Pythagorean
n-tuple

Lemma 2.6. When integer m ≥ 2 and p, x1, x2 . . . xk are positive integers
including 0 and

(m + p)2 = x1 · (12) + x2 · (22) + x3 · (32) + x4 · (42) + · · ·+ xk · (k2),

then the terms

{(x + a11) , (x + a12) , (x + a13) , . . . upto (x + a1x1) } ,
{(2x + a21) , (2x + a22) , (2x + a23) , . . . upto (2x + a2x2) } ,
{(3x + a31) , (3x + a32) , (3x + a33) , . . . upto (3x + a3x3) } ,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

{(k · x + ak1), (k · x + ak2) ,(k · x + ak3) , . . . upto (k · x + akxk
)}

and {(m + p) .x + a} after normalisation are Pythagorean n-tuples when
x = Y/Z where

Y = a2 −
[ (

a211 + a212 + a213 + · · ·+ a21x1

)
+
(
a221 + a222 + a223 + · · ·+ a22x2

)
+ · · ·+

(
a2k1 + a2k2 + a2k3 + · · ·+ a2kxk

) ]
,

Z = 2
[ (

a11 + a12 + a13 + · · ·+ a1x1

)
+ 2

(
a21 + a22 + a23 + · · ·+ a2x2

)
+ · · ·+ k

(
ak1 + ak2 + ak3 + · · ·+ akxk

)
− a (m + p)

]
and a,

[
(a11, a12, a13, . . . a1x1) , (a21, a22, a23, . . . a2x2) ,

(a31, a32, a33, . . . a3x3) . . . (ak1, ak2, ak3, . . . akxk)
]

are real rational quan-

tities assumed by us.

Proof. To utilise seed Pythagorean n-tuples given by equation (2.14), we
will take terms x1

(
12
)

i.e (12 + 12 + 12 + . . . repeatedx1 times) as{
(x + a11)

2 + (x + a12)
2 + (x + a13)

2 + · · ·+ (x + a1x1)2
}
,

terms x2.
(
22
)
i.e.(22 + 22 + 22 + . . . repeated ;x2 times) as{

(2.x + a21)
2 + (2.x + a22)

2 + (2.x + a23)
2 + . . .+ (2.x + a2x2) 2

}
,

terms x3.
(
32
)

i.e. (32 + 32 + 32 + . . . repeated x3 times) as{
(3.x + a31)

2 + (3.x + a32)
2 + (3.x + a33)

2 + . . .+ (3.x + a3x3) 2
}

,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
terms xk.

(
k2
)

i.e.(k2 + k2 + k2 + . . . repeated xk times) as{
(k.x + ak1)

2 + (k.x + ak2)
2 + (k.x + ak3)

2 + . . .+ (k.x + akxk
) 2
}

,

and term (m + p)2 as single term {(m + p) .x + a}2.
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For these terms to be Pythagorean n- tuples, these must satisfy equation
(2.14), therefore,{

(x + a11)
2 + (x + a12)

2 + (x + a13)
2 + . . .+ (x + a1x1) 2

}
+
{

(2x + a21)
2 + (2x + a22)

2 + (2x + a23)
2 + · · ·+ (2x + a2x2) 2

}
+
{

(3x + a31)
2 + (3x + a32)

2 + (3x + a33)
2 + · · ·+ (3x + a3x2) 2

}
+ · · ·+

{
(k · x + ak1)

2 + (k · x + ak2)
2 + · · ·+ (k · x + akxk

) 2
}

= {(m + p) · x + a}2
(2.15)

On expanding and arranging coefficients of of x2, x and constant term,

x2
{
x1 + x2

(
22
)

+ x3
(
32
)

+ · · ·+ xk(k2)
}

+ 2x
[

(a11 + a12 + a13 + · · ·+ a1x1)

+ 2 (a21 + a22 + a23 + · · ·+ a2x2) + 3 (a31 + a32 + a33 + · · ·+ a3x3)

+ · · ·+ k (ak1 + ak2 + ak3 + · · ·+ akxk)
]

+
[ (

a211 + a212 + a213 + · · ·+ a1x
2
1

)
+
(
a221 + a222 + a223 + · · ·+ a2x

2
2

)
+
(
a231 + a232 + a233 + · · ·+ a3x

2
3

)
+ · · ·+

(
a2k1 + a2k2 + a2k3 · · ·+ · · ·+ akx

2
k

) ]
= x2.(m + p)2 + 2.x.a. (m + p) + a2.

(2.16)

�

As (m + p)2 = x1.(1
2) + x2.(2

2) + x3.(3
2) + x4.(4

2) + · · · + xk.(k
2), on

simplification,

x = Y/Z (2.17)

where

Y = a2 −
[ (

a211 + a212 + a213 + · · ·+ a21x1

)
+
(
a221 + a222 + a223 + · · ·+ a22x2

)
+· · ·+

(
a2k1 + a2k2 + a2k3 + · · ·+ a2kxk

) ]
,

Z = 2
[ (

a11 + a12 + a13 + · · ·+ a1x1

)
+ 2

(
a21 + a22 + a23 + · · ·+ a2x2

)
+ · · ·+ k

(
ak1 + ak2 + ak3 + · · ·+ akxk

)
− a (m + p)

]
,

MEMBER'S COPY



60 NARINDER KUMAR WADHAWAN AND PRIYANKA WADHAWAN

p, a, {(a11, a12, a13, . . . a1x1) , (a21, a22, a23, . . . a2x2) ,
(a31, a32, a33, . . . a3x3) . . . (ak1, ak2, ak3, . . . akxk)} are real rational quan-
tities assigned by us. Values of m and p are already known from seed equa-
tion. When x is determined according to equation (2.17), Pythagorean
n-tuples after normalisation are given by equation (2.16).

To illustrate the formula (2.17) so derived, an example is given for
populating n-tuples from seed Pythagorean n-tuple where n = 20.

Example 2.7. For n = 20, n − 1 = 20 − 1 = 19, m must be an integer
between

√
19 and (

√
19 + 1) according to Lemma 4. Therefore, m must be

an integer between 4.359 and 5.359 i.e. m = 5. Using equation (2.11),

(m + p)2 − (n− 1) = x2. · (3) + x3 · (8) + x4 · (15) + . . . xk ·
(
k2 − 1

)
.

First taking p = 0 and to find integer values of x2, x3, x4, . . . , xk
satisfying this equation, values of m, p and n are put in equation (2.11),

(5 + 0)2 − (20− 1) = x2. · (3) + x3 · (8) + x4 · (15) + . . . xk ·
(
k2 − 1

)
or 6 = 2 · (3) + 0 · (8) + 0 · (15) + . . . 0 ·

(
k2 − 1

)
.

In this way, x2 = 2, x3 = 0, x4 = 0, . . . all other coefficients including xk
are zero. Using equation (2.13),

x1 + x2 + x3 + x4 + · · ·+ xk = n− 1

or x1 + 2 + 0 + 0 + · · ·+ 0 = 20− 1.

Therefore, x1 = 17 and using equation (2.13), seed Pythagorean n-tuple
when n = 20 is given by the identity,

(5 + 0)2 = 17 ·
(
12
)

+ 2 ·
(
22
)

+ 0 ·
(
32
)

+ 0 ·
(
42
)

+ · · ·+ 0 · (k2)
i.e. 52 = 17×

(
12
)

+ 2×
(
22
)
.

Assuming

a11 = 1, a12 = −1, a13 = 2, a14 = −2, a15 = 3, a16 = −3, a17 = 4,

a18 = −4, a19 = 5, a110 = −5, a111 = 6, a112 = −6, a113 = 7, a114 = −7,

a115 = 8, a116 = −8, a117 = 9, a21 = −9, a22 = 10, a = −10

and using equation (2.17),

Y = 100− (1 + 1 + 4 + 4 + 9 + 9 + 16 + 16 + 25 + 25 + 36 + 36 + 49

+49 + 64 + 64 + 81 + 81 + 100)

= −570,

Z = 2
[

(1− 1 + 2− 2 + 3− 3 + 4− 4 + 5− 5 + 6− 6 + 7− 7 + 8− 8 + 9)

+ 2 (−9 + 10) + 10(5)
]

= 2(9 + 2 + 50)

= 122,
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x = Y/Z = −570/122 = −285/61.

Unnormalised Pythagorean n-tuples are

− 224

61
, −346

61
, −163

61
, −407

61
,−102

61
, −468

61
, −41

61
, −529

61
,

20

61
, −590

61
,

81

61
, −651

61
,

142

61
, −712

61
,
203

61
, −773

61
,

264

61
, −1119

61
,
40

61
, −2035

61
.

Normalised Pythagorean n-tuples where n = 20, therefore, satisfy the equa-
tion,

2242 + 3462 + 1632 + 4072 + 1022 + 4682 + 412 + 5292 + 202 + 5902

+ 812 + 6512 + 1422 + 7122 + 2032 + 7732 + 2642 + 11192 + 402

= 20352.
(2.18)

By putting

a11 = 1, a12 = −1, a13 = 2, a14 = −2, a15 = 3, a16 = −3, a17 = 4,

a18 = −4, a19 = 5, a110 = −5, a111 = 6, a112 = −6, a113 = 7,

a114 = −7, a115 = 8, a116 = −8, a117 = 9, a21 = −9, a22 = 10 and

a = 11

in equation (2.17), x = 549
88 and Pythagorean n-tuples for n = 20 are

6372 + 4612 + 7252 + 3732 + 8132 + 2852 + 9012 + 1972 + 9892 + 1092

+ 10772 + 212 + 11652 + 672 + 12532 + 1552 + 13412 + 3062 + 19782

= 37132.

By putting different values of a11, a12 , a13 , . . . . . . .a, different sets of
n-tuples are populated.

In the Table 2, one set of n-tuples each for n varying from 3 to 30
are given using equation (2.17) and corresponding seed Pythagorean n-
tuples are given in Table 1. For the sake of brevity, a set of n-tuples for
each value of n that varies from 3 to 30 has not been calculated again in
this paper. Also care has been exercised in choice of values of a1x1etc.
that denominator of equation (2.17) does not turn out to be zero. It is
explicit from the Table 2 that no term of any n-tuples repeats and also
does not have a common factor. But at the same time, it is submitted that
repeating terms of n-tuples can be had by choice of values of a1x1etc. if our
requirement demands.
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Table 2: N-Tuples when n varies from 3 to 30

n
Values of a, m+p x Normalised

n-tuples
(a11, a12, . . . , a1x1),
(a21, a22, . . . , a2x2),
(a31, a32, . . . , a3x3) . . .
(ak1, ak2, . . . , akxk )

3 a = 3, a31 = 1,
a41 = −2

2 + 3 − 1
10

252 = 7
2

+ 242

4 a = 4, a11 = −1,
a21 = −2, a22 = 3.

2 + 1 − 1
11

412 = 12
2

+ 242

+ 312

6 a = −3, a11 = 1,
a12 = −1, a13 = 2,
a21 = −2, a31 = 3.

3 + 1 − 5
19

772 = 142 + 242

+ 333 + 482 + 422

7 a = 4, a11 = 1,
a12 = −1, a13 = 2,
a14 = −2, a15 = 3,
a21 = −3

3 + 0 2
5

262 = 72 + 32 + 122

+ 82 + 172 + 112

8 a = −4, a11 = 1,
a12 = −1, a13 = 2,
a14 = −2, a15 = 3,
a21 = −3, a41 = 4

3 + 2 − 14
33

2022 = 192 + 472

+ 522 + 802 + 852

+ 1272 + 762

9 a = 5, a11 = 1,
a12 = −1, a13 = 2,
a14 = −2, a15 = 3,
a16 = −3, a17 = 4,
a31 = −4

3 + 1 5
8

602 = 132 + 32

+ 212 + 112 + 292

+ 192 + 372 + 172

11 a = 6, a11 = 1,
a12 = −1, a13 = 2,
a14 = −2, a15 = 3,
a16 = −3, a17 = 4,
a18 = −4, a21 = 5,
a22 = −5

4 + 0 37
24

2922 = 612 + 132

+ 852 + 112 + 1092

+ 352 + 1332

+ 592 + 1942

+ 462

12 a = −6, a11 = 1,
a12 = −1, a13 = 2,
a14 = −2, a15 = 3,
a16 = −3, a17 = 4,
a18 = −4, a21 = 5,
a22 = −5, a31 = 6

4 + 1 − 55
48

5632 = 72 + 1032

+ 412 + 1512

+ 892 + 1992

+ 1372 + 2472

+ 1302 + 3502

+ 1232

13 a = 7, a11 = 1,
a12 = −1, a13 = 2,
a14 = −2, a15 = 3,
a16 = −3, a17 = 4,
a18 = −4, a21 = 5,
a22 = −5, a23 = 6,
a41 = −6

4 + 2 133
108

15542 = 2412 + 252

+ 3492 + 832

+ 4572 + 1912

+ 5652 + 2992

+ 8062 + 2742

+ 9142 + 1162
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14 a = −7, a11 = 1,
a12 = −1, a13 = 2,
a14 = −2, a15 = 3,
a16 = −3, a17 = 4,
a18 = −4, a19 = 5,
a110 = −5, a111 = 6,
a112 = −6, a21 = 7

4 + 0 − 13
6

842 = 72 + 192

+ 12 + 252

+ 52 + 312 + 112

+ 372 + 172

+ 432 + 232

+ 492 + 162

15 a = 9, a11 = 1,
a12 = −1, a13 = 2,
a14 = −2, a15 = 3,
a16 = −3, a17 = 4,
a18 = −4, a19 = 5,
a110 = −5, a21 = 6,
a22 = −6, a31 = 7,
a32 = −7.

4 + 2 199
108

21662 = 912 + 3072

+ 172 + 4152

+ 1252 + 5232

+ 2332 + 6312

+ 3412 + 7392

+ 2502 + 10462

+ 1392 + 13532

20 a = 11, a11 = 1,
a12 = −1, a13 = 2,
a14 = −2, a15 = 3,
a16 = −3, a17 = 4,
a18 = −4, a19 = 5,
a110 = −5, a111 = 6,
a112 = −6, a113 = 7,
a114 = −7, a115 = 8,
a116 = −8, a117 = 9,
a21 = −9, a22 = 10.

5 + 0 − 285
61

20352 = 224
2

+ 3462

+ 1632 + 4072

+ 1022 + 4682

+ 412 + 5292

+ 202 + 5902

+ 812 + 6512

+ 1422 + 7122

+ 2032 + 7732

+ 2642 + 11192

+ 402

30 a = −15, a11 = 1,
a12 = −1, a13 = 2,
a14 = −2, a15 = 3,
a16 = −3, a17 = 4,
a18 = −4, a19 = 5,
a110 = −5, a111 = 6,
a112 = −6, a113 = 7,
a114 = −7, a115 = 8,
a116 = −8, a117 = 9,
a118 = −9, a119 = 10,
a120 = −10, a121 = 11,
a122 = −11, a123 = 12,
a124 = −12, a21 = 13,
a22 = −13, a23 = 14,
a24 = −14, a31 = 15,

6 + 1 − 203
30

18712 = 1732 + 2332

+ 1432 + 2632

+ 1132 + 2932

+ 832 + 3232

+ 532 + 3532

+ 232 + 3832

+ 72 + 4132

+ 372 + 4432

+ 672 + 473
2

+ 972 + 5032

+ 1272 + 5332

+ 1572 + 5632

+ 162 + 7962

+ 142 + 8262

+ 1592
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3. RESULTS AND CONCLUSIONS

Pythagorean n-tuples x21 + x22 + x23 + . . . x2n−1 = x2n can always be
expressed as a quadratic equation in x as

x2
{(

a21 + a22+a23 + . . . a2n−1
)
− a2n

}
+ 2x {(a1 ·A1 + a2 ·A2 + a3 ·A3 + . . . an−1 ·An−1)− an ·An}
+
(
A2

1 + A2
2+A2

3 + . . . A2
n−1 −A2

n

)
= 0

where

x1 = (a1 · x + A1) , x2 = (a2 · x + A2) , x3 = (a3 · x + A3) , . . . ,

x n = (an · x + An) .

This quadratic equation can be written as

K · x2 + M · x + L = 0

and its roots as
−M ±

√
M2 − 4K · L
2K

,

where

K =
{(

a21 + a22+a23 + . . . a2n−1
)
− a2n

}
,

M = 2x {(a1 ·A1 + a2 ·A2 + a3 ·A3 + . . . an−1 ·An−1)− an ·An}
L =

(
A2

1 + A2
2+A2

3 + . . . A2
n−1
)
−A2

n

For roots to be rational requires choice of a1, a2, a3, . . . an and A1, A2, A3

. . . An which are rational quantities such that part under square root
M2 − 4K · L must be a perfect square. It may be cumbersome process to
find such values of a’s and A’s. This difficulty is obviated if the quadratic is
transformed into a linear equation, that can only be done if coefficient of x2

which is K must be zero, or
{(

a21 + a22+a23 + . . . a2n−1
)
− a2n

}
must equal to

zero or a1, a2, a3, . . . an are so chosen that these are Pythagorean n-tuple.
Quadratic equation then transforms into linear equation x = −L/M where
L and M have values as already stated. It is submitted different rational
values of A′s and a′s will give different rational values of x. Hence different
sets of n-tuples

(a1 · x + A1) , (a2 · x + A2) , (a3 · x + A3) , . . . , (an · x + An)

are generated. It is essential that there must be at least one set of known
seed Pythagorean n-tuple

{(
a21 + a22+a23 + . . . a2n−1

)
= a2n

}
to populate fur-

ther sets of Pythagorean n-tuples. It is also difficult to remember even a
single set of n-tuples for all n varying 3 onwards. To tide over this difficulty,
a formula has been devised to generate seed or known n-tuple.

(m + p)2 = (x1) .
(
12
)

+ x2.
(
22
)

+ (x3) .
(
32
)

+ (x4).
(
42
)

+ · · ·+ (xk) .(k2)

MEMBER'S COPY



GENERATION OF FAMILY OF PYTHAGOREAN n-TUPLES 65

where x1 = {(n− 1)− (x2 + x3 + x4 + · · ·+ xk)}, it can have any integer
value including 0, (x2 + x3 + x4 + · · ·+ xk) ≤ n− 1, m is a positive integer

such that (n − 1) lies between (m− 1)2 and m2, p is a positive integer
which can have any value 0, 1, 2, . . . , so on, n is number of terms of n-
tuples to be generated and x2, x3, x4, . . . xk are positive integers including
0. Once seed n-tuples are known, further sets of n-tuples can be populated
after determining x by relation,

x =
Y

Z

where Y = a2 −
[ (

a211 + a212 + a213 + · · ·+ a21x1

)
+
(
a221 + a222 + a223 + · · ·+ a22x2

)
+ · · ·+

(
a2k1 + a2k2 + a2k3 + · · ·+ a2kxk

) ]
,

Z = 2
[ (

a11 + a12 + a13 + · · ·+ a1x1

)
+ 2

(
a21 + a22 + a23 + · · ·+ a2x2

)
+ · · ·+ k

(
ak1 + ak2 + ak3 + · · ·+ akxk

)
− a (m + p)

]
and a, {(a11, a12, a13, . . . a1x1) , (a21, a22, a23, . . . a2x2) ,
(a31, a32, a33, . . . a3x3) . . . (ak1, ak2, ak3, . . . akxk)} are real rational quan-
tities assigned by us. Values of m and p are already known from seed equa-
tion. When x is determined, Pythagorean n-tuples given by the following
relations are populated by putting the x and normalisation.

{(x + a11)
2 + (x + a12)

2 + (x + a13)
2 + . . .+ (x + a1x1) 2}

+
{

(2x + a21)
2 + (2x + a22)

2 + (2x + a23)
2 + · · ·+ (2x + a2x2) 2

}
+
{

(3x + a31)
2 + (3x + a32)

2 + (3x + a33)
2 + · · ·+ (3x + a3x2) 2

}
+ · · ·+

{
(k · x + ak1)

2 + (k · x + ak2)
2 + · · ·+ (k · x + akxk

) 2
}

= {(m + p) · x + a}2
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Abstract. Given two externally-tangent, unequal circles in a plane,

what are the lengths of the two axes of the smallest-area ellipse that

covers them both? We solve the problem using single-variable calculus.

We also pose several exercises and open problems.

1. Genesis of the Problem

When my wife invites guests for dinner, it befalls on me to set the table.

On one occasion, she instructed me to set the round table for eight people,

making sure that each person will have a dinner plate and a bread plate

side-by-side. Very obediently, I set the 16 plates—alternately placing dinner

plates and bread plates. When all the guests were seated at the table, each

facing a dinner plate, a mild confusion arose as to which bread plate each

person should use—the one to the left of their dinner plate, or the one to

the right? Fortunately, the confusion evaporated when my wife served a

gluten-free bread to one of the guests—who has dietary restriction—putting

it on the bread plate to his left. Thereafter, by induction, everyone knew

they should use the bread plate to the left of their dinner plate.

These guests were my wife’s “Fiber Friends” (a neighborhood ladies

sewing and knitting group) and their spouses. During the after-dinner

conversation, I proposed that Fiber Friends take on the task of knitting

elliptical place mats on which both the dinner plate (26 cm in diameter) and

the bread plate (16 cm in diameter) would fit. This would bid goodbye to

the confusion we had experienced earlier. Always ready for new challenges,

2010 Mathematics Subject Classification: 52C15

Key words and phrases: Tangent, normal, in-circle, elliptical function, Heron’s

formula, intermediate value theorem

c© Indian Mathematical Society, 2020 .
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Fiber Friends were happy to entertain my proposal; but they demanded

that I minimize their time on task by ensuring that the ellipse is as small

as possible.

I retreated to my study; put on my mathematician’s hat, and scribbled

on many a note pad to determine the lengths of the two axes. Below is the

result of my discovery. I suggest you drop this paper; and go to discovery

mode, . . . after perhaps playing this one guessing game stated in Figure 1.

All figures are drawn using the computing environment R.

Figure 1. Which of the four suggested ellipses, each cover-

ing the two externally-tangent, coplanar circles of diameters

26 cm and 16 cm, has the smallest area? Name these ellipses

A, B, C, D in increasing (decreasing) order of lengths of the

major (minor) axis.

When you return to the paper, you will find in successive sections these

seven topics:

(a) Some relevant properties of an ellipse;

(b) The largest circle that fits inside each part of an ellipse when partitioned

by a line orthogonal to the major axis (and parallel to the minor axis);

(c) The solution to a simpler problem—one in which the two circles are

equal in size;

(d) The solution to the general problem involving unequal circles;

(e) Some exercises solvable with ideas already in this paper;
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(f) Fitting additional circles inside the smallest-area ellipse; and

(g) Open problems involving several non-overlapping circles.

Problems of minimization and maximization, perhaps under one or

more constraints, often require use of calculus, but not always. Person-

ally I am partial to those optimization problems for which Euclidean plane

geometry suffices. Here, we have used single-variable calculus. We invite

readers to discover a more elementary solution. A good reference for other

interesting geometric optimization problems is [3].

2. Properties of an ellipse

In a fixed plane, there are two fixed points (called the foci) at a distance

of 2c ≥ 0 from each other. The set of all points in the plane whose distances

from the two foci add up to a constant 2a, with a > c, is called an ellipse.

The midpoint between the two foci is called the center of the ellipse. Any

line segment passing through the center and terminated by the ellipse is

called a diameter. The largest diameter of an ellipse passes through the

two foci; it is called the major axis; and it is of length 2a. The shortest

diameter of an ellipse is called the minor axis; and it is of length 2b, where

b2 = a2 − c2. The two axes are orthogonal to each other. The eccentricity

of this ellipse is defined by e = c/a =
√

1− b2/a2. In the special case when

eccentricity e = 0, we have c = 0 and a = b; that is, the two foci to coincide

(at the center) and the ellipse reduces to a circle of radius a = b.

Next, let us look at the analytic expression for an ellipse. The total

distance of any point (x, y) on an ellipse E from its two foci (∓c, 0) is a

constant 2a. That is,√
(x+ c)2 + y2 +

√
(x− c)2 + y2 = 2a,

Or equivalently, (after some algebraic simplifications)

x2

a2
+
y2

b2
= 1 (2.1)

describes the equation of an ellipse with foci (∓c, 0) [hence, center (0, 0)],

half major axis a ≥ c and half minor axis b =
√
a2 − c2 ≥ 0 in horizontal

and vertical orientations respectively. Alternatively, given a and b, we can

rewrite c =
√
a2 − b2. Hence, the two foci are at (±c, 0) = (±ea, 0). See

Figure 2 below.
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In particular, when a = b, (2.1) yields the equation of a circle of radius

r = a = b. Equation (2.1) also tells us that an ellipse is a vertical compres-

sion (by a factor b/a) of a circle of radius a, or a horizontal expansion (by

a factor a/b) of a circle of radius b. Consequently, the area of the ellipse E
is π ab.

Figure 2. In a plane, the collection of all points that are

equidistant from two fixed points (called foci) constitutes an

ellipse. The tangent and the normal at a point on the ellipse

can be identified by their intercepts.

2.1. The tangent and the normal at a given point on the ellipse.

Differentiating the implicit function (2.1) and rearranging the terms, we

note that the slope of the tangent at a point (x, y) on the ellipse E is

dy

dx
= −x/a

2

y/b2
= −xb

2

ya2
. (2.2)

Given a point P (u, v) on E (assume, without loss of generality, that P

is in the first quadrant), using (2.2), the tangent to the ellipse through P

is given by

y = v − ub2

va2
(x− u) =

b2

v

[
v2

b2
− ux

a2
+
u2

a2

]
=
b2

v

[
1− ux

a2

]
;
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or equivalently,

ux

a2
+
vy

b2
= 1. (2.3)

The tangent intersects the x-axis at (a2/u, 0) and the y-axis at (0, b2/v).

The normal (the line orthogonal to the tangent) to the ellipse through

P (u, v) is given by

y = v +
va2

ub2
(x− u) =

va2

ub2
x− v

[
a2

b2
− 1

]
=

v

b2

[
a2x

u
− c2

]
;

or equivalently,

a2x

uc2
− b2y

vc2
= 1. (2.4)

The normal intersects the x-axis at (uc2/a2, 0) = (ue2, 0) and the y-axis at

(0,−vc2/b2). Thus, if the normal to the ellipse through P intersects the

x-axis at Q(q, 0), then

q = uc2/a2 = e2u. (2.5)

Thus, the points U(u, 0) and Q(q, 0) are linearly related: As u varies

between 0 and a, the corresponding q varies between 0 and e2a. Also,

QU = u− e2u = ub2/a2. Moreover, the normal at P (u, v) bisects the angle

formed by the lines joining P (u, v) to the two foci.

2.2. The largest in-circle passing through a point on the ellipse.

Given a point P (u, v) on the ellipse E , the largest circle Cu passing through

P and residing inside E has a center at Q(ue2, 0) and a radius QP given by

QP = b

√
1− e2u2

a2
(2.6)

since in view of the Pythagorean theorem,

QP 2 = QU2 + UP 2 =

[
ub2

a2

]2
+ v2 =

u2b4

a4
+ b2

[
1− u2

a2

]
= b2

[
1− u2

a2

(
1− b2

a2

)]
= b2

[
1− e2u2

a2

]
.

Moreover, Cu is also internally tangent to E at P ′(u,−v), by vertical reflec-

tion symmetry.
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2.3. The largest in-circle given its center on the major axis of the

ellipse. Let us invert the process discussed in the previous subsection.

Here we want to construct the largest circle with center Q(q, 0) that fits

inside the ellipse E . By vertical reflection symmetry, the center must be

on the major axis. Also, in view of horizontal symmetry, without loss of

generality, we assume q > 0.

Given any q ∈ [0, ec) = [0, e2a), the largest circle with center (q, 0) that

fits inside the ellipse E is internally tangent to ellipse E at two points (u, v)

and (u,−v), where u = q/e2 = qa2/c2 and v = b
√

1− u2/a2. In view of

(2.6), this in-circle has radius r given by

r = b

√
1− q2

e2a2
= b

√
1− q2

c2
;

or equivalently, q2/c2 + r2/b2 = 1. Thus, r is an elliptic function of q ∈
[0, ec) = [0, e2a). See the thick curve in Figure 3 to the left of the point Z

given by

Z(ec, b
√

1− e2) = a(e2, 1− e2).

On the other hand, given any q ∈ [ec, a], the largest circle with center

(q, 0) inside the ellipse E is internally tangent to ellipse E at only one point,

(a, 0); and this circle has radius a−q, which is a linear function of q ∈ [ec, a].

See the thick line in Figure 3 to the right of the point Z.

Combining the two cases, Figure 3 depicts the radius r(q) of the largest

in-circle with center (q, 0), as a function of q ∈ [0, a], given by

r(q) =

b
√

1− q2/c2 if q < ec

a− q if ec ≤ q ≤ a.
(2.7)

Differentiating (2.7) with respect to q, we have

r′(q) =

−qb2/(rc2) if q < ec

−1 if ec ≤ q ≤ a.
(2.8)

In particular, r′(ec−) = −1 = r′(ec+). Hence, Z is the unique point of

contact between a line of slope −1 (shown by the dashed line) passing

through (a, 0) and the inner ellipse q2/c2 + r2/b2 = 1 (shown by the dashed

curve), which is a horizontal compression of the outer ellipse E by a factor

e.
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Figure 3. The radius r(q) (thick curve) of the largest in-

circle with center (q, 0), is an elliptic function of q ∈ [0, ec)

and a linear function of q ∈ [ec, 1].

3. The largest in-circles on the two sides of a vertical

partitioning line

A vertical line (that is, a line orthogonal to the major axis and parallel

to the minor axis) x = l, where −a ≤ l ≤ a, divides the ellipse E into two

(unequal) parts. Let us fit the largest in-circles within the two parts of the

ellipse on the two sides of the dividing line. See Figure 4.

Invoking vertical reflection symmetry, we note that the centers of the

in-circles are on the major axis. Let the in-center in the part-ellipse on the

right side of the dividing line be Q(q, 0). We can find the in-radius in one

of two ways: (a) we can find the distance between Q and x = l; that is, the

in-radius is q− l; and (b) we can use (2.7). Equating these two expressions

for the in-radius, we can solve for both the in-center and the in-radius of

the largest circle that fits inside the right part-ellipse in the following three

cases.

Case 1: (a− 2b2/a < l ≤ a). The in-radius is r = (a− l)/2 = q− l; and

the in-center is q = (a+ l)/2. Thus, ec < q ≤ a.
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Figure 4. The largest in-circle within the right-part of an

ellipse partitioned by a vertical line x = l has center (q, 0)

and radius r = q−l. Likewise, for the left-part of the ellipse.

Case 2: (−b < l ≤ a − 2b2/a). Starting from (2.7), we obtain the

following chain of equations:

b
√

1− q2/c2 = q − l,(q
c

)2
+

(
q − l
b

)2

= 1,

b2q2 + c2(q − l)2 = b2c2,

a2q2 − 2c2lq − c2(b2 − l2) = 0. (3.1)

Solving (3.1) for q, we obtain the center of the in-circle on the right part-

ellipse. Since we must also have q ≥ max(0, l), the only admissible solution

is

q = e2l + eb
√

1− l2/a2. (3.2)

Thus, 0 < q ≤ ec. Moreover, the radius of the in-circle on the right part-

ellipse is

r = q − l = −(1− e2)l + eb
√

1− l2/a2. (3.3)

Case 3: (l ≤ −b). The in-center is (0, 0) and the in-radius is b. Thus,

q = 0.

MEMBER'S COPY



THE SMALLEST ELLIPSE 75

Likewise, the center of the largest in-circle in the left-part of the ellipse

can be obtained by reflecting the entire diagram on the y-axis, which causes

the dividing line to become x = −l, and then fitting the largest in-circle to

the right of x = −l. Again, let the in-center be (q, 0). Note that irrespective

of the value of l, positive or negative, we have q ≥ 0. In fact, if l ≥ b (or

−l ≤ −b), then q = 0 and R = b. But if −a + 2b2/a < l < b, then q > 0,

and we can find the in-radius using (2.7); but now the in-radius equals q+ l.

Hence, simply replacing l by −l in (3.2), we obtain q as

q = −e2l + eb
√

1− l2/a2. (3.4)

and replacing l by −l in (3.3), we obtain the corresponding in-radius R as

R = q + l = (1− e2)l + eb
√

1− l2/a2. (3.5)

Note that when l = 0, by symmetry, we have R = r; and when l > 0, we

have R > r. Finally, if −a < l < −a+2b2/a, the in-center is ((−a+ l)/2, 0)

and the in-radius is (a+ l)/2).

4. The smallest ellipse covering two equal circles

In particular, if l = 0, then for the part-ellipse on the right of x = 0, we

obtain from (3.1) the in-center (q, 0), where q = bc/a = be, and from (3.3)

the in-radius r = be. The same is true (by invoking horizontal reflection

symmetry) for the part-ellipse on the left side of x = 0. Thus, the two

in-circles are equal in radius; that is, r = R = be.

Conversely, any ellipse that covers the two externally tangent equal

circles of radii r = R must necessarily satisfy r = be = (b/a)
√
a2 − b2; or

equivalently, a2r2 = b2(a2 − b2). Hence,

a2 =
b4

b2 − r2
. (4.1)

Our goal is to minimize the area πab of the covering ellipse. Equiva-

lently, we must minimize a2b2, subject to (4.1). Writing B = b2, we must

solve a single-variable minimization problem:

Minimize

B > r2
B3

B − r2
. (4.2)

Differentiating with respect to B the objective function g(B) = B3/(B−r2)
in (4.2), we get g′(B) = 3B2/(B − r2) − B3/(B − r2)2. The first-order

condition for minimization is g′(B) = 0; or equivalently, B2[3(B − r2) −
B] = 0. Moreover, since B > r2, the only admissible critical value is
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B = 3r2/2. The second derivative of the objective function is g′′(B) =

6B/(B − r2) − 6B2/(B − r2)2 + 2B3/(B − r2)3, which when evaluated at

the critical value yields g′′(3r2/2) = 18 > 0, satisfying the second-order

condition for minimization. Hence, the optimal value of the half-minor

axis is b =
√
B =

√
3/2 r. Thereafter, using (4.1), the optimal value of the

half-major axis is a = (3/
√

2) r =
√

3 b. Figure 5 shows the smallest-area

ellipse that covers two externally-tangent, coplanar unit circles.

Figure 5. The smallest-area ellipse that covers two

externally-tangent, coplanar unit circles has major axis

AA′ = 3
√

2, minor axis BB′ =
√

6, and area π 3
√

3/2.

Remark 4.1. The smallest-area ellipse that covers two equal, coplanar cir-

cles satisfies the following properties: Triangles ABB′ and A′BB′, con-

structed by joining each endpoint of the major axis to both endpoints of

the minor axis BB′ are equilateral, of side length
√

6. The two points of

tangency between the ellipse and either circle, together with the origin O,

form an equilateral triangle, PP ′O or SS′O, of side length
√

3. The four

points of tangency between the ellipse and the two circles—P, P ′, S′, S—

form a rectangle of length 3 and width
√

3 respectively.

To learn about the smallest-area ellipse that covers three or more non-

overlapping, coplanar equal circles, see [4].

MEMBER'S COPY



THE SMALLEST ELLIPSE 77

5. The smallest ellipse covering two unequal circles

Let us continue the discussion, which we started in Section 3, for the

more general situation when l 6= 0. Indeed now, (3.1) is a genuine quadratic

equation. We study three mutually exclusive and exhaustive cases:

Case 1 (l ≥ (2e2 − 1)a = (c2 − b2)/a). The largest circle inside the

part-ellipse on the right side of x = l has center at (q, 0), with q ≥ e2a, and

radius r = (a− l)/2.

Case 2 (−b ≤ l ≤ (c2 − b2)/a). From (3.3), we have

r =
1

2a

[
−2b2l +

√
4b4l2 + 4a2b2(a2 − b2 − l2)

]
= − b

2

a2
l +

b

a2

√
(a2 − b2)(a2 − l2). (5.1)

Case 3 (l < −b). The largest circle inside the part-ellipse on the right

side of x = l has center at (0, 0) and radius r = b.

Likewise, if l > b, then the largest circle inside the part-ellipse on the

left side of x = l has center at (0, 0) and radius R = b. If (c2−b2)/a < l ≤ b,
then replacing l by −l in (5.1), we get

R =
b2

a2
l +

b

a2

√
(a2 − b2)(a2 − l2). (5.2)

Finally, if l < (c2 − b2)/a, then R = (a+ l)/2.

Adding (5.1) and (5.2), we get R + r = (2b/a2)
√

(a2 − b2)(a2 − l2);
and subtracting (5.1) from (5.2), we get R− r = (2b2/a2) l. Then(
R+ r

2

)2 a4

b2
= (a2 − b2)(a2 − l2) = (a2 − b2)

[
a2 −

(
R− r

2

)2 a4

b4

]
;

or equivalently, (
R+r
2

)2
a2 − b2

+

(
R−r
2

)2
b2

=
b2

a2
. (5.3)

So far, we have fitted the largest-area in-circles within each part-ellipse

of a given ellipse partitioned by a vertical line. Now let us reverse the

process: Given two externally-tangent circles, we want to fit the smallest-

area ellipse that covers them both. Henceforth, without loss of generality,

let us assume r = 1 and R > 1. [If r 6= 1, we simply replace R by R/r;

work out all quantities, and then at the end we replace them all by their

r-multiples.]
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Suppose that there are two externally-tangent circles, with radii r = 1

and R > 1, whose diameters through the point of tangency is horizontal

in orientation. The circle CR+1 with diameter given by the concatenation

of the diameters of the two circles (and hence with radius (R + 1)) covers

them both. Our objective is to find the smallest-area ellipse that covers

both circles. So, starting from CR+1, we reduce the vertical minor axis at the

cost of possibly increasing the horizontal major axis, always ensuring that

the modified ellipse barely covers the two given circles. In this continuum

of choices, the ellipse at the other extreme, denoted by ER, has half-minor

axis b = R. (The subscript of an ellipse denotes the length of the half-minor

axis.) The corresponding half major-axis turns out to be a = R + 2 when

R ≥ 2. Moreover, if R is sufficiently large, say R ≥ R̄ (we will discover the

threshold R̄ in Subsection 5.4), then ER is indeed the smallest-area ellipse

that covers both the circles. On the other hand, if R < R̄, then ER, though

it covers both the circles, is not the smallest-area ellipse that covers both

the circles. In this case, let us denote the smallest-area ellipse by E∗, and

its half-major and half-minor axes by a∗ and b∗ respectively. Note that

R < b∗ < R + 1 < a∗. But what are their exact values? We discover them

using single-variable calculus.

Every ellipse, with half-major axis a and half-minor axis b, that covers

both of the given circles must satisfy (5.3). To simplify the algebra, let us

substitute

A = a2; B = b2; K = [(R− 1)/2]2; L = [(R+ 1)/2]2.

Note that L−K = R. Then (5.3) becomes

L

A−B
+
K

B
=
B

A
;

or equivalently, LBA + K(A − B)A = B2(A − B); or KA2 − (B − L +

K)BA+B3 = 0; or(
R− 1

2

)2

A2 − (B −R)BA+B3 = 0. (5.4)

Solving this quadratic equation in A as a function of B, and rejecting the

larger solution (since our goal is to minimize the area πab of the covering

ellipse, or equivalently, to minimize AB, subject to (5.4)), we only consider
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the smaller root

A =
2B

(R− 1)2

{
B −R−

√
D
}

(5.5)

where

D = (B −R)2 − (R− 1)2B = B2 − (R2 + 1)B +R2 = (B − 1)(B −R2).(5.6)

Thus, we face a single-variable minimization problem:

Minimize

B > R2

2B2

(R− 1)2

{
B −R−

√
D
}
. (5.7)

Differentiating the objective function in (5.7) with respect to B and

equating the derivative to 0, we obtain the solution (leaving the details to

interested readers)

Bopt =
1

48

{(
25R2 + 2R+ 25

)
+ 5(R+ 1)

√
25(R− 1)2 + 4R

}
. (5.8)

Furthermore, we have the following bounds on Bopt

R2 +
R(R+ 1)

24
< Bopt < R2 +

(R+ 1)2

24
+ 1. (5.9)

Indeed, Bopt is closer to the left bound than to the right bound in (5.9) as

seen in Figure 6 where we graph the optimal half-minor axis b∗ =
√
Bopt

as a function of R ∈ [1, 4), together with its associated bounds obtained by

taking square-roots in (5.9).

Substituting Bopt, given in (5.8), into (5.5), we obtain the optimal value

Aopt. Thereafter, we compute the half major axis of the smallest-area ellipse

E∗ as a∗ =
√
Aopt, and its area as π a∗b∗.

Remark 5.1. In (5.8), taking limit as R → 1+, we see that Bopt → 3/2.

Thus, the result of Section 4 can be recovered from the results of this

section.

Remark 5.2. For 1 < R < 2, the smallest-area ellipse E∗ is tangential to each

of the given circles at two points vertically symmetric about the major axis.

For R ≥ 2, E∗ is tangential to the larger circle at two symmetric points; and

it is tangential to the smaller circle at only one point—the point farthest

from the larger circle. The center of E∗ coincides with the center of the

larger circle only when R is sufficiently large, say R ≥ R̄, which we shall

discover in Subsection 5.4.
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Figure 6. The length of the half-minor axis b∗, of the

smallest-area ellipse covering two externally-tangent, copla-

nar circles with radii 1 : R, as a function of R ∈ [1, 4), and

the associated bounds obtained from (5.9).

In the next few subsections, we illustrate the theory developed above

by computing the dimensions of the smallest-area ellipse that covers two

externally-tangent circles of given radii r and R, and depicting that ellipse.

In Subsection 5.4, we discover the threshold R̄.

5.1. The smallest ellipse covering two externally-tangent circles

of radii 1 : 2. Specializing to R = 2, from (5.8) we get Bopt = (43 +

5
√

33)/16 = 4.482676. Thereafter, from (5.5), we obtain Aopt = (61 +

19
√

33)/16 = 10.63417. Hence, the smallest-area ellipse that covers two

circles of radii 1 and 2 has half-major axis a =
√
A = 3.2610 and half-

minor axis b =
√
B = 2.1172, shown in Figure 7. Its area is πab = 6.9042π.

5.2. The smallest ellipse covering two externally-tangent circles of

radii 1 : 3. Specializing to R = 3, from (5.8) we get Bopt = (16+5
√

7)/3 =

9.742919. Thereafter, from (5.5), we obtain Aopt = (86 + 37
√

7)/9 =

20.43253. Hence, the smallest-area ellipse that covers two circles of radii

1 and 2 respectively has half-major axis a =
√
A = 4.5202 and half-minor

axis b =
√
B = 3.1214, shown in Figure 8. Its area is πab = 14.1094π.
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Figure 7. The smallest-area ellipse covering two

externally-tangent, coplanar circles with radii 1 : 2

touches the smaller circle at one point.

Figure 8. The smallest-area ellipse covering two

externally-tangent, coplanar circles with radii 1 : 3

touches the smaller circle at one point.

5.3. The smallest ellipse covering two externally-tangent circles of

radii 8 : 13. Since r 6= 1, we simply replace R by R/r=13/8=1.625; work

out all quantities, and then replace them by their r-multiples. Specializing

to R = 13/8 = 1.625, from (5.8) we get Bopt = 3.0667. Thereafter, from

(5.5), we obtain Aopt = 7.9029. Hence, the smallest-area ellipse that covers

two circles of radii 8 cm and 13 cm respectively has half-major axis a =

8
√
Aopt = 22.48966 cm and half-minor axis b = 8

√
Bopt = 14.0095 cm,

shown in Figure 9. Its area is πab = 315.07π.
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Figure 9. The smallest-area ellipse covering two

externally-tangent, coplanar circles with diameters 16

cm and 26 cm has an approximate major axis 45 cm, an

approximate minor axis 28 cm, and touches each of the

given circles at two distinct points.

We are now ready to answer the quiz we had posed in Figure 1. Indeed,

Ellipses A–D have half axes of lengths (a, b) = (22.0, 14.4), (22.5, 14.01),

(23.0, 13.8), (23.5, 13.6) respectively, with associated products ab = 316.8,

315.2, 317.4, 319.6 (correct to one decimal place). Hence, Ellipse B is the

smallest-area ellipse (among A–D) that covers both plates. To keep matters

simple, I recommended that Fiber Friends knit elliptical place mats with

major axis 45 cm and minor axis 28 cm (instead of 44.979 cm and 28.019

cm respectively).

5.4. The threshold R̄ above which ER is optimal. We mentioned ear-

lier that when R is sufficiently large, say R ≥ R̄, then the smallest-area

ellipse that covers two externally-tangent, coplanar circles of radii 1 and R

is ER, whose half-axes lengths are a = (R+2) and b = R, and whose center

is exactly at the center of the larger circle. What is this threshold R̄?

We use the methodology of this section to compute the optimal half-

axes lengths for some chosen values of R ∈ [1.2, 4.5]. These are depicted
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in Figure 10 and tabulated in Table 1. Extensive computations (not docu-

mented here) show that R̄ = 3.970797 · · · .

Figure 10. The symbol S plots (a, b), the half-

axes lengths of E∗, for some choices of R =

1.2, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5 (going from bottom-left to

top-right). The solid curve shows a =
√
A as a function of

b =
√
B via (5.5) as b ranges over (R,R+ 0.5). The dotted

curve shows the implicit function ab = (R + 2)R. When

R ≥ R̄ ≈ 3.9708, the optimal ellipse is ER.

6. Exercises

We pose some exercises that readers can solve using no more advanced

mathematics than those used in this paper.

Exercise 6.1. In Table 1, the ratio of optimal half-axes a∗/b∗ decreases

from 1.73 to 1.45 as R increases from 1 to 3. By the intermediate value

theorem, there exists a unique number R = R1 for which a∗/b∗ = R1.

Discover R1 [Answer: 1.60874, which is slightly smaller than the golden
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Table 1. The lengths of the half-axes of the smallest-area

ellipse that covers two externally-tangent, coplanar circles

of radii 1 and R

R b∗ a∗ a∗/b∗ a∗b∗ R(R+ 2)

1.0 1.224745 2.121320 1.732051 2.598076 3.00

1.2 1.368481 2.334289 1.705752 3.194430 3.84

1.5 1.632993 2.666667 1.632993 4.354648 5.25

1.625 1.751188 2.811207 1.605314 4.922952 5.89

2.0 2.117233 3.261007 1.540220 6.904312 8.00

2.5 2.616811 3.883837 1.484187 10.16327 11.25

3.0 3.121365 4.520236 1.448160 14.10931 15.00

3.5 3.628101 5.163846 1.423291 18.73496 19.25

3.9 4.034341 5.681873 1.408377 22.92261 23.01

R ≥ 3.9708 R R+ 2 1 + 2/R R(R+ 2) R(R+ 2)

3.9708 3.9708 5.9708 1.503677 23.70885 23.70885

4.0 4.0 6.0 1.5 24.00 24.00

4.5 4.5 6.5 1.444444 29.25 29.25

ratio (
√

5 + 1)/2 = 1.61803. See [5] to learn about the definition and some

fascinating properties of the golden ratio.]

Exercise 6.2. Assuming r = 1, what is the smallest value of R > 1 such

that the smallest-area ellipse E∗ covering the two externally-tangent circles

is tangential to the smaller circle at only one point? [Answer: R = 1.5, in

which case a∗ = 8/3 = b2∗, and a∗/b∗ = 1.633.]

Exercise 6.3. A lamina is in the shape of an ellipse with its two axes

measuring 2a and 2b respectively. Cut out from this lamina two discs whose

total area is maximized. What are the radii of these two discs? Specialize

your answer when the two axes of the lamina measure (a) 28 cm and 45

cm, (b) 28 cm and 38 cm.

Hint: Partition the ellipse with a vertical line x = l (with 0 ≤ l ≤ b)

and draw in-circles in the right- and left-part ellipses with in-radii r and

R given by (5.1) and (5.2) respectively. Choose l to maximize π(R2 + r2);

or equivalently, to maximize (2b2 − a2)l2. [Answer: If a ≥
√

2 b, then take

l = 0; that is, cut out the largest circle from each half ellipse partitioned

by the minor axis. But if b ≤ a <
√

2b, then take l = b; that is, cut out the
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circle with the minor axis as diameter and then cut out another circle of

diameter (a− b) towards either extremity of the major axis. The circles in

the special cases have diameters (a) 22.5 cm and 22.5 cm; (b) 28 cm and 5

cm.]

Exercise 6.4. The following optimization problems deal with spheres,

hemispheres, cones and cylinders; but they can be solved using Euclidean

plane geometry. Readers may formulate and solve other similar problems.

(1) What are the height and the radius of a right circular cone that cov-

ers a sphere of radius 1, and has the smallest volume? [Answer: The

smallest-volume cone has height 4, radius
√

2 and volume π 8/3.]

(2) What are the height and the radius of a right circular cone that

covers a hemisphere of radius 1, and has the smallest volume? [An-

swer: The smallest-volume cone has height
√

3, radius
√

3/2 and

volume π 3
√

3/2.]

(3) What are the height and the radius of a right circular cylinder

that is inscribed in a sphere of radius 1, and has the maximum

volume? [Answer: The largest-volume cylinder has height 2/
√

3,

radius
√

2/3 and volume π 4/(3
√

3).]

(4) What are the height and the radius of a right circular cone that is

inscribed in a sphere of radius 1, and has the maximum volume?

[Answer: The largest-volume cone has height 4/3, radius 2
√

2/3

and volume π 32/81.]

7. Fitting additional circles within E∗

Let us return to the motivating scenario which led us to the discovery

of the smallest-area ellipse that covers two externally-tangent, coplanar

(unequal) circles.

Among Fiber Friends, my wife was the first to knit an elliptical place

mat with the recommended axes lengths of 28 cm and 45 cm. She tested if

the two plates of diameters 26 cm and 16 cm would fit on it; and she was

pleased with the result. Then all at once it dawned on her that she would

like the guests to put also their water glass (frustum of a cone with base

diameter 6 cm) and their cylindrical tea cup (with diameter 8 cm) on the
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same place mat when the two plates are already on it. Is it possible to do

so without any part of the objects protruding outside the place mat?

My wife continued her experiment; and soon found that it is possible

to place the glass, but not the cup. While she went to look for a smaller

cup in the cupboard, my curiosity flared up: What is the largest diameter

of a cylindrical cup that will fit on this place mat in the presence of these

dinner plate and bread plate? Let us now solve this new problem.

Let us rotate by 180o the place mat together with the dinner plate and

the bread plate on it. See Figure 11, where the bread plate is to the right

of the dinner plate—in violation of proper dinner etiquette! You will soon

see that it is a small price to pay compared to the simplicity of notation

that will result.

Figure 11. In the presence of the dinner plate and the

bread plate, the water glass G with base-diameter 6 cm eas-

ily fits on the smallest-area elliptical place mat. But what is

the largest-diameter cylindrical cup C that also fits on the

place mat?

Let O(0, 0) denote the origin of the elliptical place mat with half axes

a = 22.5, b = 14 in horizontal and vertical orientations respectively. Then

the center of the dinner plate is at D(−6.5, 0) and that of the bread plate

is at B(14.5, 0). We have plenty of flexibility to casually place the glass in
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the fourth quadrant. Let us place the largest possible cylindrical cup in the

first quadrant, tangential to the two plates, and touching the periphery of

the ellipse at P (u, v). Let the radius of this largest cup be γ, and let its

center be at C(t, p), with t, p > 0.

Now we will show that p and t are functions of γ. From C drop a

perpendicular which meets the major axis at T (t, 0). Writing the area of

triangle CDB in two different ways—first as half base (DB = 21) times

height (CT = p), and then by using Heron’s formula (see [6])—we note

that

p =
2

21

√
8 (13) γ (21 + γ). (7.1)

Also, using the Pythagorean theorem, we have BT =
√

(8 + γ)2 − p2.
Next, substituting (7.1), we get BT = 8− (5/21) γ. Hence,

t = OT = OB −BT =
13

2
+

5

21
γ. (7.2)

Next, we will show that u (and in view of (2.1), v = b
√

1− u2/a2) is a

function of p and t, and hence of γ. Let PC meet the major axis at Q(q, 0).

From (2.5), we know that q = e2u. Since P,C,Q are colinear, the slope of

PQ equals the slope of CQ, or equivalently

v =
p(u− q)
t− q

=
pu(1− e2)
t− e2u

=
p(1− e2)
t/u− e2

.

Equating the two expressions for v discussed above, we have

p(1− e2)
t/u− e2

= b

√
1− u2

a2
. (7.3)

The left-hand-side of (7.3) is an increasing function of u ∈ [0, t/e2] taking

values in the range [0,∞). The right-hand-side, being the boundary in the

first quadrant of an ellipse, is a decreasing, positive function on the same

domain with a maximum value of b at u = 0. Hence, by the intermediate

value theorem, there exists a unique u ∈ (t, t/e2) that satisfies (7.3); and

the solution u can be expressed as a function of p and t, and hence of γ.

Finally, v, being equal to the right hand side of (7.3), is also expressible as

a function of γ.

We leave the analytic expression for γ to the interested reader. Here

we evaluate it iteratively. We start with an initial proposed value for γ,

say 3 cm. We calculate p using (7.1) and t using (7.2). Then we calculate

u from the implicit equation (7.3). Next, we obtain v by evaluating either
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side of (7.3). Finally, we compute PC =
√

(u− t)2 + (v − p)2. If PC is

more than (less than) the proposed value of γ, we increase (decrease) γ.

We repeat the computations all over again, until PT is reasonably close

to the proposed γ; and then we stop. We found the numerical solution to

be γ = 3.76. Thus, the largest-diameter cup that fits on the smallest-area

ellipse in the presence of the two given plates is 7.52 cm. If you know a

tea cup salesperson, pass on the message that there is a customer in my

household if only the salesperson will ensure the cups have just the right

diameter.

8. Open Problems: Covering several non-overlapping circles

In this paper, we have found the smallest-area ellipse that covers two

externally-tangent, coplanar circles, and then fitted one (or two) more

biggest possible circles inside that ellipse. More generally, given three or

more non-overlapping circular discs in a plane, what are the lengths of

the two axes of the smallest-area ellipse that will cover all discs? This is

a challenging global nonlinear optimization problem for which multistart

strategies are studied in [1]. Website [4] depicts packing up to 24 unit discs

within the ellipse with the smallest known area. Maplesoft (see [7]) has an

application that optimizes packing circles in the smallest-area ellipse.

For packing ellipsoids in the n-dimensional space (n ≥ 2), Birgin et

al. in [2] introduces continuous and differentiable nonlinear programming

models and algorithms, and gives illustrative numerical experiments using a

simple multi-start strategy combined with a clever choice of starting guesses

and a nonlinear programming local solver.

We are pleased to have opened the door to a new research for you.

Won’t you enter in?
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Abstract. In this note, our aim is to provide several short proofs of
the infinitude of primes, and we believe that the proofs have novelty
value.

1. Introduction

The first proof of the infinitude of primes is attributed to the ancient
Greek mathematician Euclid. There are many proofs known for the infini-
tude of primes, and all proofs at least make use of the fact that any positive
integer greater than 1 can be written as a product of prime numbers. For a
nice historical survey and 183 different proofs of the infinitude of primes, we
refer the reader to [5]. Our first proof will use the fundamental theorem of
arithmetic which states that every integer greater than 1 is either a prime or
it is the product of a unique combination of prime numbers. In our second
and third proofs, we will make use of a significant property of the Jacobson
radical.

In abstract algebra, rings are one of the most basic algebraic structures.
Recall that a ring R is a set equipped with two binary operations called
addition and multiplication such that the addition is associative and com-
mutative while the multiplication is associative and distributive over the
addition. Moreover, there exist an additive identity 0 and an additive in-
verse −x for any x ∈ R. Furthermore, there exists a multiplicative identity
1. If the multiplication is also commutative, then R is said to be a commu-
tative ring. For example, the set of integers Z is a commutative ring under
the usual addition and multiplication. An element u ∈ R is called a unit, if

2010 Mathematics Subject Classification: 11A41, 16N20
Key words and phrases: prime numbers, divisibility, ring
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there exists an element v ∈ R such that uv = 1 = vu. A subset I of R is
said to be an ideal if r(x − y)s ∈ I for all x, y ∈ I and r, s ∈ R. An ideal
M of R is called a maximal ideal if M 6= R and there is no proper ideal of
R containing M . One can show that every proper ideal is contained in a
maximal ideal using Zorn’s lemma.

The Jacobson radical of a commutative ring R, denoted by J(R), is the
intersection of all maximal ideals of R. For example, the Jacobson radical
J(Q) of rational numbers Q is {0}. The Jacobson radical of the finite ring
Z/12Z is 6Z/12Z, because its all maximal ideals are 2Z/12Z and 3Z/12Z.
As all maximal ideals of integers are of the form pZ for a prime number p,
the Jacobson radical J(Z) of integers is

J(Z) =
⋂
p∈P

pZ,

where P is the set of prime numbers. This will be a key point for our second
and third proofs.

2. The Proofs

The following lemma, which describes the elements of the Jacobson
radical in terms of invertible elements, will be crucial in our second and
third proofs. Details can be found in [4].

Lemma 2.1. For any commutative ring R, we have

(1) 1− x is a unit for each x ∈ J(R).
(2) The Jacobson radical is the largest ideal such that 1−x is a unit for

each x ∈ J(R).

Proof. For the first part, suppose that 1− x is a non-unit, where x ∈ J(R).
Then, the ideal I generated by 1 − x is a proper ideal of R. Hence, it is
contained in a maximal ideal M . Now, we see that both x and 1−x belong
to M which in turn implies that 1 ∈ M . It is a contradiction. Therefore,
1− x is a unit.

For (2), let A be an ideal such that 1− a is a unit for each a ∈ A. We
need to prove that A ⊆ J(R). In order to see this, it is enough to show
that A ⊆ M for any maximal ideal M of R. Suppose that there exists a
maximal ideal M which does not contain A. Then, we have A + M = R

and so 1 = a + m with a ∈ A and m ∈ M . Since m = 1 − a is a unit,
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this yields that M = R. It is a contradiction. Therefore, A ⊆ M for any
maximal ideal M of R. �

Now we are ready to give three different and new proofs of the infinitude
of primes.

Theorem 2.2. There are infinitely many prime numbers.

1st Proof. Suppose that there are finitely many prime numbers and list
them as p1, . . . , pn. Choose an arbitrary integer a ≥ 0 and let P be the
product p1 · · · pn which is clearly not 0. Then, the positive integer aP 2 +P

is divisible by all prime numbers p1, . . . , pn. However, for any prime p,
we see that p2 does not divide aP 2 + P as p2 does not divide P by the
fundamental theorem of arithmetic. Hence, using the fundamental theorem
of arithmetic again, we obtain that aP 2 + P = P , which in return yields
that a = 0. In other words, all positive integers are equal to 0. Thus, 0 is
the only integer. This is a contradiction, and the proof is completed. �

2nd Proof. Suppose that there are finitely many prime numbers and list
them as p1, . . . , pn, where p1 = 2. Then, the ideal piZ is a maximal ideal
for every prime number pi. In fact, p1Z, . . . , pnZ are all the maximal ideals
in the ring of integers Z as we mentioned in the introduction. Hence, the
Jacobson radical J(Z) is the intersection of all maximal ideals p1Z, . . . , pnZ:

J(Z) =
n⋂

i=1

piZ = (p1 · · · pn)Z.

Note that the only units of Z are −1 and 1. Since p1 · · · pn ∈ J(Z) and it is
bigger than 1, we have that 1 − p1 · · · pn is a negative unit by Lemma 2.1.
So, 1 − p1 · · · pn = −1 which implies that p1 · · · pn = 2. This yields that
2 is the only prime number. It is a contradiction and therefore there are
infinitely many prime numbers. �

3rd Proof. Let x be an arbitrary integer in the Jacobson radical J(Z).
Then, the additive inverse −x of x is also in J(Z), because J(Z) is an ideal.
By Lemma 2.1, we have that 1−x and 1+x are units in Z. In other words,
for any x ∈ J(Z) we have that 1− x and 1 + x are in {−1, 1}. This is only
possible when x is equal to 0. Thus, J(Z) = {0}. However, we know that

J(Z) =
⋂
p∈P

pZ,
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where P denotes the set of all prime numbers. Therefore, this implies that
there must be infinitely many primes. Because, if there were finitely many
primes p1, . . . , pn, then the non-zero product p1 . . . pn would be in J(Z). �

Concluding comments

In this short note, we gave several novel proofs of the infinitude of
primes. There are various techniques to prove the infinitude of primes. To
illusturate analysis, topology (see [2]), series and Ramsey theory can yield
the infinitude of primes. Our proofs used the fundamental theorem of arith-
metic and a fact from ring theory.

In the litarature, the infinitude of primes was also proved using infinite
combinatorics, see [1] and [3]. In [1], the p-adic valuation is useful for the
proof. In our first proof, a similar approach in an more elementary and
short way was applied.

There are similarities between Furstenberg’s topological proof and our
second and third proofs. Furstenberg defined open sets of Z as arbitrary
unions of infinite arithmetic progressions. Thus, any infinite arithmetic
progression aZ+ b is both open and closed. Then, if there are finitely many
primes, it follows that ⋃

p∈P
pZ = Z \ {±1}

is closed. Thus, {±1} must be open, but it does not contain any infinite
arithmetic progression. In our proofs, we considered the intersection

J(Z) =
⋂
p∈P

pZ.

If there are finitely many primes, then in the above topology J(Z) should be
open. Similarly, this yields a contradiction, as we indicated that J(Z) = {0},
which is a finite set. In our second proof, one can obtain that the arithmetic
progression 1 + p1 . . . pnZ (it is open in the mentioned topology) is finite
and again one gets a contradiction.

Acknowledgement: We are grateful to the referee for the comments which
improved the quality of the paper.
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1. Historical Background

1.1. Establishment of Royal Asiatic Society. A positive development
during the rule of the British East India Company in India was the creation
of institutions for compiling knowledge about the county and its culture —
its society, history, religion, laws, customs, languages and literature. The
British civil servants played a pivotal role in this development. Sir William
Jones (1746–94)1, an Anglo-Welsh philologist and jurist who came to India
in 1783 to serve as judge of the supreme court at Calcutta, established
the Asiatic Society of Bengal on January 15, 1784 with the support and
encouragement of Warren Hastings, the then Governor-General of Bengal.
Jones learnt Sanskrit and in his 1786 presidential address to the Society, he
postulated the common ancestory of Sanskrit, Latin, and Greek. Till 1828
only Europeans were allowed to be members of the Society; few Indians
zamindars were admitted as members in 1829. Sir James Macikintosh, a
British judge for Bombay, followed the example of Jones and founded the
Literary Society of Bombay in 1804. It became an associate society of the
Royal Asiatic Society2 in 1838 and started publishing its journal in 1841.
The Madras Literary Society came into existence in 1812 and became in
1830 an Auxiliary of the Royal Asiatic Society. It began to publish the
Madras Journal of Literature and Science in mid thirties.

1.2. Charles Whish on medieval Keralese mathematics. Charles M.
Whish (1794–1833), a member of the Madras Civil Service of the East In-
dia Company, in an article read on December 15, 1832 and published in
1834 Transactions of the Royal Asiatic Society of Great Britain and Ire-
land, brought to the notice of the West infinite series for the inverse tan-
gent, cosine and sine functions and some series for π expressed in Sanskrit
verses extracted from four books — Tantra Sangraha, Yuc(k)ti Bhasha,
C(K)arana-Padhati, and Sadratnamala. Whish ascribed Tantrasangraha to

1He was the third child of William Jones (1675–1749), an able mathematician and a
close friend of Sir Isaac Newton and Sir Edmund Halley, known for his first use (in 1706)
of the symbol π for the ratio of the circumference of a circle to its diameter.

2The Royal Asiatic Society of Great Britain and Ireland founded on March 15, 1823
by the eminent Sanskrit scholar, Henry Thomas Colebrooke and received its charter from
King George IV on the 11th August 1824 ‘for the investigation of subjects connected with
and for the encouragement of science, literature and the arts in relation to Asia’.
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Talaculattúra Nambutiri of Kerala. This 1500 A.D. treatise on astronomy is
now said to be composed by Nīlakantha Somayaji (1444–1545 AD). About
the second book that he used, Whish promised at the end of his paper: “A
farther account of the Yucti-Bhasha, the demonstrations of the rules for the
quadrature of the circle by infinite series, with the series for the sines, cosines,
and their demonstrations, will be given in a separate paper.” However, he3

could not do so as he died prematurely on 14 April, 1833. He attributed
Yukti-bhāsā, a commentary on the Tantrasangraha in Malayalam (the na-
tive language of Kerala), to Cellalura Nambutiri who has now been identified
as Jyesthadeva (1500–1610 AD), a student of Nīlkantha. Karana-paddhati
(1733 AD), the third book from which Whish quoted, he attributed to Nu-
tunagriha Sóma Súta: “The author of the Carana Padhati, whose grandson
is now alive in his seventieth year, was Pathumana Sóma Yaji, a Nambutiri
Brahmana of Tirusivapura (Trichur) in Malabar.” He observed that “Sóma
Yaji was not, however, inventor of the system by which he formed his infinite
series.”

1.3. A sample of π series in medieval Keralese mathematics. Whish
quoted various extracts from the Tantra Sangraha. The first quotation is
concerned with “proportion between the diameter and the circumference”.
Whish translated the quoted verses as: “Multiply the diameter by 4, and
from it subtract and add alternately the quotients obtained by dividing four
times the diameter by the odd numbers 3, 5, 7, 9, 11, &c, do thus to the
extent required; and having fixed a limit, take half the even number next
less than the last odd divisor for a multiplier, and its square plus one for a
divisor. Multiply four times the diameter by the multiplier, and divide the
product by the divisor, and add it or subtract it, according to the sign of the
last quote in the series, from the sum of the series; thus the circumference
of the given diameter will be is obtained very correctly.”

The quotation converts into the following approximation formula:

c ≈ 4d− 4d

3
+

4d

5
− 4d

7
+ · · ·+ (−1)k−1

4d

2k − 1
+ (−1)k

4dk

4k2 + 1
. (1.1)

3We find the following entry in the The Madras Journal of Literature and Science,
published under the auspices of the Madras Literary Society and Auxiliary of the Royal
Asiatic Society: “To J. C. Whish, Esq., the Library is indebted for a large collection of
works, chiefly in Sanskrit, but in Malyalam character, written on palm-leaves, and prin-
cipally comprising the Vedas, and other religious and philosophical works of the Hindus.
This large collection was made by his late brother, C. M. Whish, Esq., of the Madras Civil
Service during a course of many years that he was resident on the Western coast of the
Southern Peninsula of India.” Volume VIII, July–December 1838 (No 20 July 1838; No,
21 – October 1838, p.216) p.375
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Whish then quotes “a verse explaining more fully the correction by which
this series is brought to greater perfection.” We get the following formula:

π ≈ 4

[{
1− 1

3
+

1

5
− 1

7
+ · · ·+ (−1)k−1

1

2k − 1

}
+ (−1)k

k2 + 1

k(4k2 + 1)

]
.

(1.2)
The quoted verses do not occur in Tantrasangraha but forms part of an

anonymous commentary (vyakhya) on it.4 An alternative reading is given in
K. V. Sarma’s edition (V.V.B. Institute of Sanskrit and Indological Studies,
Panjab University, Hoshiarpur, 1977, p.10) of Tantrasangraha with Yuk-
tidipika (a commentary in verse on the first four chapters) and Laghuvivrti
(concise commentary in prose on the last four chapters) of Shankara, younger
brother of Nīlakantha.

A commentary (c.1530) on Nīlakantha’s Tantrasangraha (c.1500) in the
regional Malayalam language of Kerala titled Yukti-bhasa5 was written by
Jyesthadeva (1500–1610 AD), a student of Nīlkantha. It presents detailed
demonstrations of the famous results attributed to Madhava (c.1350–1425)
of Sangamagrama –modern Irinjalakuda, located about 21 km. south of the
district town of Thrissur (meaning the abode of Lord Siva), a part of the
erstwhile Cochin state and now in the modern state of Kerala in South India
— such as infinite series for the arc-tangent and the sine functions, π series
and the estimation of correction terms and their use in the generation of
faster convergent series. According to local tradition Mādhava was a teacher
of Paramesvara (1360–1455 AD) who was the father of Damodara (1400–
1500), the teacher of Nīlkantha. One of Nilakantha’s pupils was Citrabhanu
(1475–1550) whose student Narayana (c. 1500–1575) completed one of the
major texts of the Kerala school, Kriyakramakari.

The next extract converts into the following famous formula:

π =
√

12

[
1− 1

3 · 3
+

1

5 · 32
− 1

7 · 33
+

1

9 · 34
− 1

11 · 35
+ · · ·

]
. (1.3)

2. A simple proof of a π series of Madhava

I now come to the series for which I have devised a very simple proof.
Knopp [1, p.268, Ex. 107 (d) & (e)] gives these two related series as exercises
for proof:

∞∑
n=1

(−1)n−1
(2n− 1)3

(2n− 1)4 + 4
= 0. (2.1)

4The Sanskrit text is now available with English translation as Tantrasaṅgraha of
Nīlakantha Somayāj̄i (eds.) K. Ramasubramanian and M.S. Sriram, Springer and Hin-
dustan Book Agency, 2011.

5An English translation as Ganita-yukti-Bhāsā (Rationales in Mathematical Astron-
omy) of Jyesthadeva by (eds.) K.V. Sarma, K. Ramasubramanian, M.D. Srinivas and
M.S. Sriram, 2 volumes, Springer and Hindustan Book Agency, 2008.
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∞∑
n=1

(−1)n−1

(2n− 1){(2n− 1)4 + 4}
=

π

16
. (2.2)

Knopp gives no indication as to who gave these series. The series (2.2)
occurs in [5, p.514] on the basis of which it appears in [2, p.70, eq(3)] [3,
p.95] [4, p.2, B.3]. The series is attributed to Madhava. I have taken the
following extract from a Sanskrit text edited by K.V. Sarma.

Whish translated these verses as: “Divide the diameter multiplied by
16 severally by the fifth power of the odd numbers [1, 3, 5, 7, 9 . . . ], adding
to each fifth power four times its root; of the quotes thus obtained subtract
the sum of the second, fourth, sixth, &c. from that of the first, third, fifth,
and seventh, the remainder will be the circumference of the circle whose
diameter was taken.” This gives an infinite series noted below:

c =
16d

15 + 4 · 1
− 16d

35 + 4 · 3
+

16d

55 + 4 · 5
− 16d

75 + 4 · 7
+ · · ·

which results in the series (2.2).

Proof. The series (2.2) can be written as

π

16
=

1

4

∞∑
n=1

(−1)n+1

2n− 1
−1

4

∞∑
n=1

(−1)n+1(2n− 1)3

(2n− 1)4 + 4
=

π

16
−1

4

∞∑
n=1

(−1)n+1(2n− 1)3

(2n− 1)4 + 4

which implies that
∞∑
n=1

(−1)n+1(2n− 1)3

(2n− 1)4 + 4
= 0.

To establish this, let

Sm =

m∑
n=1

(−1)n+1(2n− 1)3

(2n− 1)4 + 4
.

We notice that

S1 =
1

5
=

(−1)1+1

4 · 12 + 1
,

S2 =
1

5
− 27

17
= − 2

17
=

(−1)2+12

4 · 22 + 1
,
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S3 =
2

17
+

125

629
=

3

37
=

(−1)3+13

4 · 32 + 1
which suggests

Sk =
(−1)k+1k

4 · k2 + 1
.

Assume the result true for m = k, we shall show it true for m = k + 1.
It is easy to verify that (2n+ 1)4 + 4 = (4n2 + 1)(4n2 + 8n+ 5). Now

Sk+1 = Sk +
(−1)k+2(2k + 1)3

(2k + 1)4 + 4
=

(−1)k+1k

4k2 + 1
+

(−1)k+2(2k + 1)3

(4k2 + 1)(4k2 + 8k + 5)
.

That is,

Sk+1 =
(−1)k+1k

4k2 + 1
− (−1)k+1(2k + 1)3

(4k2 + 1)(4k2 + 8k + 5)
.

Or,

Sk+1 =
(−1)k+1

4k2 + 1

[
(4k3 + 8k2 + 5k)− (8k3 + 12k2 + 6k + 1)

4k2 + 8k + 5

]
.

That is,

Sk+1 =
(−1)k+2

4k2 + 1

[
(4k3 + k) + (4k2 + 1)

4k2 + 8k + 5

]
.

Or,

Sk+1 =
(−1)k+2(k + 1)

4(k + 1)2 + 1
.

So, the result assumed true for m = k has been shown to be true for
m = k + 1. Therefore,

lim
k→∞

Sk = lim
k→∞

(−1)k+1k

4k2 + 1
= lim

k→∞

(−1)k+1

4k + 1
k

= 0

which establishes Madhava’s series. �
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Abstract. In this paper, we have generalized the concept of binomial
coefficient to the genomial numbers using the second order generalized
Fibonacci numbers. We prove that these numbers are always integers
and obtain some of its divisibility properties.

1. Introduction

In [1], Benjamin and Plott introduced the notion of Fibonomial numbers
and studied various properties related to them. In this paper we generalize
this concept and introduce genomial numbers for the second order gener-
alized Fibonacci numbers. We also derive number of interesting results
related with these numbers. The proofs involve the elementary concepts of
binomial coefficients and the generalized Fibonacci numbers.Kalman and
Mena [3] defined the generalized Fibonacci sequence as follows:
Definition: For any positive integers a and b, the generalized Fibonacci
numbers are defined by the recurrence relation

F (a,b)
n = aF

(a,b)
n−1 + bF

(a,b)
n−2 ;n ≥ 2 (1.1)

Where F (a,b)
0 = 0 and F (a,b)

1 = 1.
First few terms of this sequence are 0, 1, a, ‘a2 + b, a3 + 2ab, a4 +

3a2b+ b2. Clearly, F (1,1)
n = Fn, the traditional nth Fibonacci number. The

extended Binet formula for F (a,b)
n is given by F (a,b)

n = αn−βn

α−β , where

α = a+
√
a2+4b
2 and β = a−

√
a2+4b
2
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Shah and Shah [6] introduced the generalized Lucas numbers L(a,b)
n de-

fined by the recurrence relation

L(a,b)
n = aL

(a,b)
n−1 + bL

(a,b)
n−2 ;n ≥ 2 (1.2)

where L(a,b)
0 = 2 and L(a,b)

1 = a.
They derived many interesting results related with these numbers. They

also obtained the extended Binet formula for L(a,b)
n as L(a,b)

n = αn + βn,
where α = a+

√
a2+4b
2 and β = a−

√
a2+4b
2 . Clearly L(1,1)

n = Ln, the traditional
Lucas number.

We first derive some of the interesting relations between generalized
Fibonacci number F (a,b)

n and generalized Lucas number L(a,b)
n , which will

be required for the study of genomial numbers.

2. Properties of generalized Fibonacci numbers

The following combination gives interesting result relating F (a,b)
n and

L
(a,b)
n

Lemma 2.1. 2F
(a,b)
n = F

(a,b)
r L

(a,b)
n−r + L

(a,b)
r F

(a,b)
n−r ; n and r are any positive

integers such that r ≤ n

Proof. Using the extended Binet formula for both the sequences, the right
side of the result can be expressed as:
F

(a,b)
r L

(a,b)
n−r+L

(a,b)
r F

(a,b)
n−r =

(
αr−βr

α−β

)
(αn−r + βn−r)+(αr + βr)

(
αn−r−βn−r

α−β

)
= 2(αn−βn)

α−β = 2F
(a,b)
n ,which proves the required result. �

The following result expresses the product of a generalized Fibonacci
number and generalized Lucas number as a generalised Fibonacci numbers.

Lemma 2.2. L(a,b)
n F

(a,b)
n = F

(a,b)
2n

Proof. Since F (a,b)
n = αn−βn

α−β , we write F
(a,b)
2n

F
(a,b)
n

= α2n−β2n

αn−βn = (αn+βn)(αn−βn)
αn−βn =

αn + βn = L
(a,b)
n , as required �

We use the above results for the study of a new class of genomial num-
bers for the second order generalized Fibonacci numbers introduced in the
following section.
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3. Genomial numbers

In a one-page note [2] published in 1915, Fontene suggested a general-
ization of binomial coefficients, replacing the natural numbers by the terms
of an arbitrary sequence {An} of real or complex numbers. Since 1964,

there has been an accelerated interest in the Fibonomial coefficients

[
m

k

]
F

,

which correspond to the choice An = Fn, thus are defined, for 1 ≤ k ≤ m,in
the following way:[

m

k

]
F

= F ∗
m

F ∗
k×F

∗
m−k

where F ∗m = Fm × Fm−1 × · · · × F2 × F1

In 2014, Koshy [5] introduced Pellnomial numbers

[
n

r

]
which corre-

sponds to the choice An = Pn; where Pn is the nth Pell number and dis-
cussed some of its interesting properties. Using the similar method, we

introduce genomial numbers

[
n

r

]
which correspond to the choice .

We define [
n

r

]
=

F
(a,b)∗
n

F
(a,b)∗
r F

(a,b)∗
n−r

; 0 ≤ r ≤ n (3.1)

where F (a,b)∗
n = F

(a,b)
n × F (a,b)

n−1 × · · · × F
(a,b)
2 × F (a,b)

1 , F
(a,b)∗
0 = 1

The immediate question which now arises is whether every genomial
number is an integer? Although it is not obvious from the definition, but
we will prove later that genomial numbers are indeed (positive) integers..

It follows from (3.1) that

[
n

0

]
= 1,

[
n

1

]
= F

(a,b)
n and

[
n

r

]
=

[
n

n− r

]
3.1. A Recurrence Relation : We use (3.1) to state the following recur-
rence relation for the genomial numbers.

Lemma 3.1.

[
n

r

]
=

[
n− 1

r − 1

]
× F

(a,b)
n

F
(a,b)
r

From lemma 3.1 and 2.2, the following corollary follows immediately.

Corollary 3.2.

[
2n

n

]
=

[
2n− 1

n− 1

]
× L(a,b)

n
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We next obtain the additional recurrence relation for

[
n

r

]
in terms of

generalized Lucas numbers.

Lemma 3.3.

[
n

r

]
= 1

2

{[
n− 1

r

]
L
(a,b)
r +

[
n− 1

r − 1

]
L
(a,b)
n−r

}
Proof. Using lemma 2.1, we write

2

[
n

r

]
F

(a,b)
n =

[
n

r

]
F

(a,b)
r L

(a,b)
n−r+

[
n

r

]
L
(a,b)
r F

(a,b)
n−r =

[
n− 1

r − 1

]
F

(a,b)
n L

(a,b)
n−r+[

n− 1

r

]
L
(a,b)
r F

(a,b)
n .

Thus, 2

[
n

r

]
=

[
n− 1

r − 1

]
L
(a,b)
n−r +

[
n− 1

r

]
L
(a,b)
r , as desired.

�

We now use lemma 3.3 to confirm that every genomial number is a
positive integer.

Theorem 3.4. Every genomial number

[
n

r

]
;n ≥ 0 is a positive integer.

Proof. We establish this using the strong version of induction. Result is
clearly true for n = 0, 1. Assume that it is true for all nonnegative integers
not exceeding 1 ≤ r ≤ n− 1.

Then by induction hypothesis, both

[
n− 1

r

]
and

[
n− 1

r − 1

]
are positive inte-

gers.

Since L(a,b)
i ≥ 1 is an integer for every i ≥ 1 and

[
n

0

]
is a positive integer,

it now follows from lemma 3.3 that

[
n

r

]
is always a positive integer. �

As an illustration, if we consider n = 6 and r = 2. we have,

[
6

2

]
=

F
(a,b)∗
6

F
(a,b)∗
2 ×F (a,b)∗

4

= a8+7a6b+16a4b2+13a2b3+3b4 which is a positive integer

for any choice of positive integers a and b.
What follows is an easy consequence of corollary 3.2 afte we prove the-

orem 3.4
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Corollary 3.5. L(a,b)
n |

[
2n

n

]
This result shows that every generalized Lucas number is a factor of

some genomial number. Obviously, the result is dependent on the value of
n only.

To illustrate this, consider n = 3. Then L(a,b)
3 = a3 + 3ab and

[
6

3

]
=

a9 + 8a7b+ 22a5b2 + 23a3b3 + 6ab4 = (a6 + 5a4b+ 7a2b2 + 2b3)(a3 + 3ab).

Thus L(a,b)
3 |

[
6

3

]
.

This divisibility property does not depend on the values of a and b.

3.2. Divisibility: In 2014, Koshy [5] gave two interesting divisibility prop-
erties m

gcd(m,n) |
(
m
n

)
and m−n+1

gcd(m,n) |
(
m
n

)
We show that they have their counterparts for genomial numbers too.

Lemma 3.6. F
(a,b)
m

gcd(F
(a,b)
m ,F

(a,b)
n )

|

[
m

n

]

Proof. Let d = gcd(F
(a,b)
m , F

(a,b)
n ). Then by means of Euclidean algorithm,

we write d = AF
(a,b)
m +BF

(a,b)
n ; for some integers A and B. So that

d

[
m

n

]
= A

[
m

n

]
F

(a,b)
m +B

[
m

n

]
F

(a,b)
n = A

[
m

n

]
F

(a,b)
m +B

[
m− 1

n− 1

]
F

(a,b)
m

=

(
A

[
m

n

]
+B

[
m− 1

n− 1

])
F

(a,b)
m , which yields the desired result.

�

Lemma 3.7. F
(a,b)
m−n+1

gcd(F
(a,b)
m+1 ,F

(a,b)
n )

|

[
m

n

]

Proof. Using definition (3.1) we observe that

[
m

n

]
=

[
m

n− 1

]
F

(a,b)
m−n+1

F
(a,b)
n

. Let

d = gcd
(
F

(a,b)
m+1, F

(a,b)
n

)
. But by [3] it is known that gcd

(
F

(a,b)
m+1, F

(a,b)
n

)
=

F
(a,b)
gcd(m+1,n). Then d = F

(a,b)
gcd(m+1,n) = F

(a,b)
gcd(m−n+1,n) = gcd

(
F

(a,b)
m−n+1, F

(a,b)
n

)
= AF

(a,b)
m−n+1 +BF

(a,b)
n ; for some integers A and B. So that

d

[
m

n

]
= A

[
m

n

]
F

(a,b)
m−n+1 +B

[
m

n

]
F

(a,b)
n
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= A

[
m

n

]
F

(a,b)
m−n+1 +B

[
m

n− 1

]
F

(a,b)
m−n+1

= (A

[
m

n

]
+B

[
m

n− 1

]
)F

(a,b)
m−n+1 which yields the desired result. �

3.3. A Genomial Identity: The following identity due to Gould [4](
n−a
r−a
)(

n
r+a

)(
n+a
r

)
=
(
n−a
r

)(
n+a
r+a

)(
n
r−a
)
for binomial coefficients is well known.

Interestingly, Gould’s identity can be imitated for genomials too as shown
in the following result:

Lemma 3.8.

[
n− a
r − a

][
n

r + a

][
n+ a

r

]
=

[
n− a
r

][
n+ a

r + a

][
n

r − a

]
; r+a ≤

n.

Proof. Using the definition of genomial numbers, the left hand side of the
result becomes,[

n− a
r − a

][
n

r + a

][
n+ a

r

]
=

F
(a,b)∗
n−a

F
(a,b)∗
r−a F

(a,b)∗
n−r

× F
(a,b)∗
n

F
(a,b)∗
r+a F

(a,b)∗
n−r−a

× F
(a,b)∗
n+a

F
(a,b)∗
r F

(a,b)∗
n−r+a

=

F
(a,b)∗
n−a

F
(a,b)∗
r F

(a,b)∗
n−r−a

× F
(a,b)∗
n+a

F
(a,b)∗
r+a F

(a,b)∗
n−r

× F
(a,b)∗
n

F
(a,b)∗
r−a F

(a,b)∗
n−r+a

=

[
n− a
r

][
n+ a

r + a

][
n

r − a

]
,which

proves the required result.
�

In particular, lemma 3.3 yields the following identity:[
n− 1

r − 1

][
n

r + 1

][
n+ 1

r

]
=

[
n− 1

r

][
n+ 1

r + 1

][
n

r − 1

]
. Thus the product

of the six genomial numbers with all the possible adjacent permutations of
n and r is always a perfect square.
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Abstract. The aim of this paper is to establish some fixed point and
common fixed points theorems in the setting of S-metric space under
an implicit relation. Our results extend, unify and generalize several
known results from the current existing literature.

1. Introduction and Preliminaries

Fixed point theory is one of the most important topic in the development
of nonlinear analysis. It is well known that Banach’s contraction mapping
theorem is one of the pivotal results of functional analysis. A mapping
F : X → X where (X, d) is a metric space, is said to be a contraction if
there exists a ∈ [0, 1) such that for all x, y ∈ X,

d(F (x), F (y)) ≤ a d(x, y). (1.1)

If the metric space (X, d) is complete then the mapping satisfying (1.1) has
a unique fixed point. Inequality (1.1) implies continuity of F . In recent
time the study of fixed point theory in metric space is very interesting field
and attract many researchers to investigated different results on it.

In 2006, Mustafa and Sims [17] introduced a new structure of generalized
metric spaces which are called G-metric spaces as a generalization of metric
spaces (X, d) to develop and introduce a new fixed point theory for various
mappings in this new structure. In 2007, Sedghi et al. [20] introduced
D∗-metric space which is a modification of D-metric spaces and proved
some fixed point theorems in D∗-metric spaces. Later on many authors
have studied the fixed point theorems in generalized metric spaces (see, for

2010 Mathematics Subject Classification: 54H25, 54E99.
Key words and phrases: Fixed point, common fixed point, implicit relation, S-metric
space.
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example [1, 2, 5, 6, 7, 9, 12, 13, 23, 24]). Also, we refer (see, [3], [11], [14],
[15], [16], [27]) to the reader.

In 2012, Sedghi et al. [21] introduced the notion of S-metric space
which is a generalization of a G-metric space and D∗-metric space. In [21]
the authors proved some properties of S-metric spaces. Also, they obtained
some fixed point theorems in S-metric space for a self-map.

In 2013, Gupta [8] introduced the concept of cyclic contraction on S-
metric space and proved some fixed point theorems on S-metric spaces
which generalized the results of Sedghi et al. [21]. In 2014, Sedghi and
Dung [22] have proved a general fixed point theorem in S-metric space
using implicit relation and as application they obtained many analogous of
fixed point theorems in metric spaces for S-metric spaces. In 2015, Prudhvi
[18] proved some fixed point theorems on S-metric spaces which extend and
improve the results of Sedghi and Dung [22].

The main purpose of this paper is to establish some fixed point and
common fixed point theorems in S-metric space under an implicit relation.
Our results extend, generalize and unify several known results from the
existing literature.

We need the following definitions and lemmas in the sequel.

Definition 1.1. ([21]) Let X be a nonempty set and S : X3 → [0,∞) be a
function satisfying the following conditions for all x, y, z, t ∈ X:

(SM1) S(x, y, z) = 0 if and only if x = y = z;
(SM2) S(x, y, z) ≤ S(x, x, t) + S(y, y, t) + S(z, z, t).
Then the function S is called an S-metric on X and the pair (X,S) is

called an S-metric space or simply SMS.

Example 1.2. ([21]) Let X = Rn and ‖.‖ a norm on X, then S(x, y, z) =

‖y + z − 2x‖+ ‖y − z‖ is an S-metric on X.

Example 1.3. ([21]) Let X = Rn and ‖.‖ a norm on X, then S(x, y, z) =

‖x− z‖+ ‖y − z‖ is an S-metric on X.

Example 1.4. ([22]) Let X = R be the real line. Then S(x, y, z) = |x −
z| + |y − z| for all x, y, z ∈ R is an S-metric on X. This S-metric on X is
called the usual S-metric on X.

Lemma 1.5. ([21], Lemma 2.5) In an S-metric space, we have S(x, x, y) =

S(y, y, x) for all x, y ∈ X.

MEMBER'S COPY



FIXED POINT RESULTS UNDER IMPLICIT RELATION IN S-METRIC SPACES 113

Lemma 1.6. ([21], Lemma 2.12) Let (X,S) be an S-metric space. If xn →
x and yn → y as n→ +∞ then S(xn, xn, yn)→ S(x, x, y) as n→ +∞.

Definition 1.7. ([21]) Let (X,S) be an S-metric space.
(1) A sequence {xn} in X converges to x ∈ X if S(xn, xn, x) → 0 as

n → +∞, that is, for each ε > 0, there exists n0 ∈ N such that for all
n ≥ n0 we have S(xn, xn, x) < ε. We denote this by limn→+∞ xn = x or
xn → x as n→ +∞.

(2) A sequence {xn} inX is called a Cauchy sequence if S(xn, xn, xm)→
0 as n,m→ +∞, that is, for each ε > 0, there exists n0 ∈ N such that for
all n,m ≥ n0 we have S(xn, xn, xm) < ε.

(3) The S-metric space (X,S) is called complete if every Cauchy se-
quence is a convergent sequence.

Definition 1.8. Let T be a self mapping on an S-metric space (X,S).
Then T is said to be continuous at x ∈ X if for any sequence {xn} in X

with xn → x implies that Txn → Tx as n→ +∞.

Definition 1.9. ([21]) Let (X,S) be an S-metric space. A mapping T : X →
X is said to be a contraction if there exists a constant 0 ≤ L < 1 such that

S(Tx, Tx, Ty) ≤ LS(x, x, y)

for all x, y ∈ X. If the S-metric space (X,S) is complete then the mapping
defined as above has a unique fixed point.

Now, we introduce an implicit relation to investigate some fixed point
and common fixed point theorems in S-metric spaces.

Definition 1.10. (ImplicitRelation) Let Ψ be the family of all real
valued continuous functions ψ : R4

+ → R+, for four variables. For some
k ∈ [0, 1), we consider the following conditions.

(R1) For x, y ∈ R+, if x ≤ ψ(y, y, x, x+2y
2 ), then x ≤ ky.

(R2) For x ∈ R+, if x ≤ ψ(0, 0, x, x2 ), then x = 0.
(R3) For x ∈ R+, if x ≤ ψ(x, 0, 0, x), then x = 0, since k ∈ [0, 1).

2. Main Results

In this section we shall prove some fixed point and common fixed point
theorems under an implicit relation in the setting of S-metric spaces.
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Theorem 2.1. Let T be a self-map on a complete S-metric space (X,S)

and

S(Tx, Tx, Ty) ≤ ψ
(
S(x, x, y), S(x, x, Tx), S(y, y, Ty),

S(x, x, Ty) + S(y, y, Tx)

2

)
(2.1)

for all x, y ∈ X and some ψ ∈ Ψ. Then we have
(1) If ψ satisfies the condition (R1) and (R2), then T has a fixed point.

Moreover, for any x0 ∈ X and the fixed point x, we have

S(Txn, Txn, x) ≤
( 2kn

1− k

)
S(x0, x0, Tx0).

(2) If ψ satisfies the condition (R3) and T has a fixed point, then the
fixed point is unique.

Proof. (1) For each x0 ∈ X and n ∈ N, put xn+1 = Txn. It follows from
(2.1), (SM2) and Lemma 1.5 that
S(xn+1, xn+1, xn+2) = S(Txn, Txn, Txn+1)

≤ ψ
(
S(xn, xn, xn+1), S(xn, xn, Txn), S(xn+1, xn+1, Txn+1),

S(xn, xn, Txn+1) + S(xn+1, xn+1, Txn)/2
)

= ψ
(
S(xn, xn, xn+1), S(xn, xn, xn+1), S(xn+1, xn+1, xn+2),

S(xn, xn, xn+2) + S(xn+1, xn+1, xn+1)/2
)

= ψ
(
S(xn, xn, xn+1), S(xn, xn, xn+1), S(xn+1, xn+1, xn+2),

S(xn, xn, xn+2)/2
)

≤ ψ
(
S(xn, xn, xn+1), S(xn, xn, xn+1), S(xn+1, xn+1, xn+2),

2S(xn, xn, xn+1) + S(xn+2, xn+2, xn+1)/2
)

= ψ
(
S(xn, xn, xn+1), S(xn, xn, xn+1), S(xn+1, xn+1, xn+2),

2S(xn, xn, xn+1) + S(xn+1, xn+1, xn+2)/2
)
.

Since ψ satisfies the condition (R1), there exists k ∈ [0, 1) such that

S(xn+1, xn+1, xn+2) ≤ kS(xn, xn, xn+1) ≤ kn+1S(x0, x0, x1). (2.2)
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Thus for all n < m, by using (SM2), Lemma 1.5 and equation (2.2), we
have

S(xn, xn, xm) ≤ 2S(xn, xn, xn+1) + S(xm, xm, xn+1)

= 2S(xn, xn, xn+1) + S(xn+1, xn+1, xm)

. . .

≤ 2[kn + · · ·+ km−1]S(x0, x0, x1)

≤
( 2kn

1− k

)
S(x0, x0, x1).

Taking the limit as n,m → +∞, we get S(xn, xn, xm) → 0, since 0 <

k < 1. This proves that the sequence {xn} is a Cauchy sequence in the
complete S-metric space (X,S). By the completeness of the space, we have
limn→+∞ xn = x ∈ X. Moreover, taking the limit as m→ +∞ we get

S(xn, xn, x) ≤
(2kn+1

1− k

)
S(x0, x0, x1).

It implies that

S(Txn, Txn, x) ≤
( 2kn

1− k

)
S(x0, x0, Tx0).

Now we prove that x is a fixed point of T . By using inequality (2.1) again
we get

S(xn+1, xn+1, Tx) = S(Txn, Txn, Tx)

≤ ψ
(
S(xn, xn, x), S(xn, xn, Txn), S(x, x, Tx),

S(xn, xn, Tx) + S(x, x, Txn)

2

)
= ψ

(
S(xn, xn, x), S(xn, xn, xn+1), S(x, x, Tx),

S(xn, xn, Tx) + S(x, x, xn+1)

2

)
.

Note that ψ ∈ Ψ, then using Lemma 1.6 and taking the limit as n→ +∞,
we get

S(x, x, Tx) ≤ ψ
(

0, 0, S(x, x, Tx),
S(x, x, Tx)

2

)
.

Since ψ satisfies the condition (R2), then S(x, x, Tx) ≤ k.0 = 0. This shows
that x = Tx. Thus x is a fixed point of T .
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(2) Let x1, x2 be fixed points of T with x1 6= x2. We shall prove that
x1 = x2. It follows from equation (2.1) and Lemma 1.5 that

S(x1, x1, x2) = S(Tx1, Tx1, Tx2)

≤ ψ
(
S(x1, x1, x2), S(x1, x1, Tx1), S(x2, x2, Tx2),

S(x1, x1, Tx2) + S(x2, x2, Tx1)

2

)
= ψ

(
S(x1, x1, x2), S(x1, x1, x1), S(x2, x2, x2),

S(x1, x1, x2) + S(x2, x2, x1)

2

)
= ψ

(
S(x1, x1, x2), 0, 0,

S(x1, x1, x2) + S(x1, x1, x2)

2

)
= ψ

(
S(x1, x1, x2), 0, 0, S(x1, x1, x2)

)
.

Since ψ satisfies the condition (R3), then we get

S(x1, x1, x2) ≤ k S(x1, x1, x2),

implies

S(x1, x1, x2) = 0, since 0 < k < 1.

This shows that x1 = x2. Thus the fixed point of T is unique. This
completes the proof. �

Theorem 2.2. Let T1 and T2 be two self-maps on a complete S-metric
space (X,S) and

S(T1x, T1x, T2y) ≤ ψ
(
S(x, x, y), S(x, x, T1x), S(y, y, T2y),

S(x, x, T2y) + S(y, y, T1x)

2

)
(2.3)

for all x, y ∈ X and some ψ ∈ Ψ. Then T1 and T2 have a unique common
fixed point in X.

Proof. For each x0 ∈ X. Put x2n+1 = T1x2n and x2n+2 = T2x2n+1 for
n = 0, 1, 2, . . . . It follows from (2.3), (SM2) and Lemma 1.5 that
S(x2n+1, x2n+1, x2n) = S(T1x2n, T1x2n, T2x2n−1)

≤ ψ
(
S(x2n, x2n, x2n−1), S(x2n, x2n, T1x2n), S(x2n−1, x2n−1, T2x2n−1),

S(x2n, x2n, T2x2n−1) + S(x2n−1, x2n−1, T1x2n)/2
)

= ψ
(
S(x2n, x2n, x2n−1), S(x2n, x2n, x2n+1), S(x2n−1, x2n−1, x2n),
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S(x2n, x2n, x2n) + S(x2n−1, x2n−1, x2n+1)/2
)

= ψ
(
S(x2n, x2n, x2n−1), S(x2n, x2n, x2n+1), S(x2n−1, x2n−1, x2n),

S(x2n−1, x2n−1, x2n+1)/2
)

≤ ψ
(
S(x2n, x2n, x2n−1), S(x2n, x2n, x2n+1), S(x2n−1, x2n−1, x2n),

2S(x2n−1, x2n−1, x2n) + S(x2n+1, x2n+1, x2n)/2
)

= ψ
(
S(x2n, x2n, x2n−1), S(x2n, x2n, x2n−1), S(x2n+1, x2n+1, x2n)/2

)
Since ψ satisfies the condition (R1), there exists k ∈ [0, 1) such that

S(x2n+1, x2n+1, x2n) ≤ kS(x2n, x2n, x2n−1) ≤ k2nS(x1, x1, x0). (2.4)

Thus for all n < m, by using (SM2), Lemma 1.5 and equation (2.4), we
have

S(xn, xn, xm) ≤ 2S(xn, xn, xn+1) + S(xm, xm, xn+1)

= 2S(xn, xn, xn+1) + S(xn+1, xn+1, xm)

. . .

≤ 2[kn + · · ·+ km−1]S(x0, x0, x1)

≤
( 2kn

1− k

)
S(x0, x0, x1).

Taking the limit as n,m → +∞, we get S(xn, xn, xm) → 0, since 0 <

k < 1. This proves that the sequence {xn} is a Cauchy sequence in the
complete S-metric space (X,S). By the completeness of the space, we have
limn→+∞ xn = x ∈ X. Now we have to prove that x is a common fixed
point of T1 and T2. For this, consider

S(x2n+1, x2n+1, T1x) = S(T1x2n, T1x2n, T1x)

≤ ψ
(
S(x2n, x2n, x), S(x2n, x2n, T1x2n), S(x, x, T1x),

S(x2n, x2n, T1x) + S(x, x, T1x2n)

2

)
= ψ

(
S(x2n, x2n, x), S(x2n, x2n, x2n+1), S(x, x, T1x),

S(x2n, x2n, T1x) + S(x, x, x2n+1)

2

)
.
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Note that ψ ∈ Ψ, then using Lemma 1.6 and taking the limit as n→ +∞,
we get

S(x, x, T1x) ≤ ψ
(

0, 0, S(x, x, T1x),
S(x, x, T1x)

2

)
.

Since ψ satisfies the condition (R2), then S(x, x, T1x) ≤ k.0 = 0. This
shows that x = T1x for all x ∈ X. Similarly, we can show that x = T2x.
Thus x is a common fixed point of T1 and T2.

Now to show that the common fixed point of T1 and T2 is unique. For
this, let u be another common fixed point of T1 and T2, that is, T1u =

T2u = u with x 6= u. Then we have to show that x = u. It follows from
equation (2.3) and Lemma 1.5 that

S(x, x, u) = S(T1x, T1x, T2u)

≤ ψ
(
S(x, x, u), S(x, x, T1x), S(u, u, T2u),

S(x, x, T2u) + S(u, u, T1x)

2

)
= ψ

(
S(x, x, u), S(x, x, x), S(u, u, u),

S(x, x, u) + S(u, u, x)

2

)
= ψ

(
S(x, x, u), 0, 0,

S(x, x, u) + S(x, x, u)

2

)
= ψ

(
S(x, x, u), 0, 0, S(x, x, u)

)
.

Since ψ satisfies the condition (R3), then we get

S(x, x, u) ≤ k S(x, x, u),

implies

S(x, x, u) = 0, since 0 < k < 1.

Thus, we get x = u. This shows that x is the unique common fixed point
of T1 and T2. This completes the proof. �

Theorem 2.3. Let T1 and T2 be two continuous self-maps on a complete
S-metric space (X,S) and

S(T p1 x, T
p
1 x, T

q
2 y) ≤ ψ

(
S(x, x, y), S(x, x, T p1 x), S(y, y, T q2 y),

S(x, x, T q2 y) + S(y, y, T p1 x)

2

)
(2.5)

MEMBER'S COPY



FIXED POINT RESULTS UNDER IMPLICIT RELATION IN S-METRIC SPACES 119

for all x, y ∈ X, where p and q are some integers and some ψ ∈ Ψ. Then
T1 and T2 have a unique common fixed point in X.

Proof. Since T p1 and T q2 satisfy the conditions of Theorem 2.2. So T p1 and
T q2 have a unique common fixed point. Let z be the common fixed point.
Then, we have

T p1 z = z ⇒ T1(T
p
1 z) = T1z

⇒ T p1 (T1z) = T1z.

If T1z = z0, then T p1 z0 = z0. So, T1z is a fixed point of T p1 . Similarly,
T2(T

q
2 z) = T2z. Now, using equation (2.5) and Lemma 1.5, we obtain

S(z, z, T1z) = S(T p1 z, T
p
1 z, T

p
1 (T1z))

≤ ψ
(
S(z, z, T1z), S(z, z, T p1 z), S(T1z, T1z, T

p
1 (T1z)),

S(z, z, T p1 (T1z)) + S(T1z, T1z, T
p
1 z)

2

)
= ψ

(
S(z, z, T1z), S(z, z, z), S(T1z, T1z, T1z),

S(z, z, T1z) + S(T1z, T1z, z)

2

)
= ψ

(
S(z, z, T1z), 0, 0,

S(z, z, T1z) + S(z, z, T1z)

2

)
= ψ

(
S(z, z, T1z), 0, 0, S(z, z, T1z)

)
.

Since ψ satisfies the condition (R3), then we get

S(z, z, T1z) ≤ k S(z, z, T1z),

implies

S(z, z, T1z) = 0, since 0 < k < 1.

Thus, we have z = T1z for all z ∈ X. Similarly, we can show that z = T2z.
This shows that z is a common fixed point of T1 and T2. For uniqueness of
z, let v 6= z be another common fixed point of T1 and T2. Then clearly v
is also a common fixed point of T p1 and T q2 which implies v = z. Hence T1
and T2 have a unique common fixed point. This completes the proof. �
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Theorem 2.4. Let {Tα} be a family of continuous self mappings on a com-
plete S-metric space (X,S) satisfying

S(Tαx, Tαx, Tβy) ≤ ψ
(
S(x, x, y), S(x, x, Tαx), S(y, y, Tβy),

S(x, x, Tβy) + S(y, y, Tαx)

2

)
(2.6)

for α, β ∈ Ψ with α 6= β and x, y ∈ X. Then there exists a unique u ∈ X
satisfying Tαu = u for all α ∈ Ψ.

Proof. For x0 ∈ X, we define a sequence as follows:

x2n+1 = Tαx2n, x2n+2 = Tβx2n+1, n = 0, 1, 2, . . . .

It follows from (2.6), (SM2) and Lemma 1.5 that

S(x2n+1, x2n+1, x2n) = S(Tαx2n, Tαx2n, Tβx2n−1)

≤ ψ
(
S(x2n, x2n, x2n−1), S(x2n, x2n, Tαx2n), S(x2n−1, x2n−1, Tβx2n−1),

S(x2n, x2n, Tβx2n−1) + S(x2n−1, x2n−1, Tαx2n)/2
)

= ψ
(
S(x2n, x2n, x2n−1), S(x2n, x2n, x2n+1), S(x2n−1, x2n−1, x2n),

S(x2n, x2n, x2n) + S(x2n−1, x2n−1, x2n+1)/2
)

= ψ
(
S(x2n, x2n, x2n−1), S(x2n, x2n, x2n+1), S(x2n−1, x2n−1, x2n),

S(x2n−1, x2n−1, x2n+1)/2
)

≤ ψ
(
S(x2n, x2n, x2n−1), S(x2n, x2n, x2n+1), S(x2n−1, x2n−1, x2n),

2S(x2n−1, x2n−1, x2n) + S(x2n+1, x2n+1, x2n)/2
)

= ψ
(
S(x2n, x2n, x2n−1), S(x2n, x2n, x2n−1), S(x2n+1, x2n+1, x2n),

2S(x2n, x2n, x2n−1) + S(x2n+1, x2n+1, x2n)/2
)
.

Since ψ satisfies the condition (R1), there exists k ∈ (0, 1) such that

S(x2n+1, x2n+1, x2n) ≤ kS(x2n, x2n, x2n−1) ≤ k2nS(x1, x1, x0). (2.7)
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Thus for all n < m, by using (SM2), Lemma 1.5 and equation (2.7), we
have

S(xn, xn, xm) ≤ 2S(xn, xn, xn+1) + S(xm, xm, xn+1)

= 2S(xn, xn, xn+1) + S(xn+1, xn+1, xm)

. . .

≤ 2[kn + · · ·+ km−1]S(x0, x0, x1)

≤
( 2kn

1− k

)
S(x0, x0, x1).

Taking the limit as n,m→ +∞, we get S(xn, xn, xm)→ 0, since
(

2kn

1−k

)
→ 0

as n → +∞. This proves that the sequence {xn} is a Cauchy sequence in
the complete S-metric space (X,S). By the completeness of the space, there
exists p ∈ X such that xn → p ∈ X as n → +∞. By the continuity of Tα
and Tβ , it is clear that Tαp = Tβp = p. Therefore p is a common fixed point
of Tα for all α ∈ Ψ.

In order to prove the uniqueness, let us take another common fixed
point, w of Tα and Tβ where p 6= w. Then using equation (2.6) and Lemma
1.5, we obtain

S(p, p, w) = S(Tαp, Tαp, Tβw)

≤ ψ
(
S(p, p, w), S(p, p, Tαp), S(w,w, Tβw),

S(p, p, Tβw) + S(w,w, Tαp)

2

)
= ψ

(
S(p, p, w), S(p, p, p), S(w,w,w),

S(p, p, w) + S(w,w, p)

2

)
= ψ

(
S(p, p, w), 0, 0,

S(p, p, w) + S(p, p, w)

2

)
= ψ

(
S(p, p, w), 0, 0, S(p, p, w)

)
.

Since ψ satisfies the condition (R3), then we get

S(p, p, w) ≤ k S(p, p, w),

implies

S(p, p, w) = 0, since 0 < k < 1.
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Thus, we get p = w for all w ∈ X. This shows that p is a unique common
fixed point of Tα for all α ∈ Ψ. This completes the proof. �

Next, we give an analogues of fixed point theorems in metric spaces
for S-metric spaces by combining Theorem 2.1 with ψ ∈ Ψ and ψ satisfies
conditions (R1), (R2) and (R3). The following corollary is an analogue of
Banach’s contraction principle.

Corollary 2.5. Let (X,S) be a complete S-metric space. Suppose that the
mapping T : X → X satisfies the following condition:

S(Tx, Tx, Ty) ≤ LS(x, x, y)

for all x, y ∈ X, where L ∈ [0, 1) is a constant. Then T has a unique fixed
point in X. Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.1 with ψ(u, v, w, z) = Lu for
some L ∈ [0, 1) and all u, v, w, z ∈ R+. �

The following corollary is an analogue of R. Kannan’s result in [10].

Corollary 2.6. Let (X,S) be a complete S-metric space. Suppose that the
mapping T : X → X satisfies the following condition:

S(Tx, Tx, Ty) ≤ L1 [S(x, x, Tx) + S(y, y, Ty)]

for all x, y ∈ X, where L1 ∈ [0, 12) is a constant. Then T has a unique fixed
point in X. Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.1 with ψ(u, v, w, z) = L1(v+

w) for some L1 ∈ [0, 12) and all u, v, w, z ∈ R+. Indeed, ψ is continuous.
First, we have ψ(y, y, x, x+2y

2 ) = L1(y+ x). So, if x ≤ ψ(y, y, x, x+2y
2 ), then

x ≤
(

L1
1−L1

)
y with

(
L1

1−L1

)
< 1. Thus, T satisfies the condition (R1).

Next, if x ≤ ψ(0, 0, x, x2 ) = L1(0 + x) = L1x, then x = 0, since L1 <
1
2 < 1. Thus, T satisfies the condition (R2).

Finally, if x ≤ ψ(x, 0, 0, x) = L1.0 = 0, then x = 0. Thus, T satisfies
the condition (R3). �

The following corollary is an analogue of S. K. Chatterjae’s result in [4].

Corollary 2.7. Let (X,S) be a complete S-metric space. Suppose that the
mapping T : X → X satisfies the following condition:

S(Tx, Tx, Ty) ≤ L2 [S(x, x, Ty) + S(y, y, Tx)]
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for all x, y ∈ X, where L2 ∈ [0, 12) is a constant. Then T has a unique fixed
point in X. Moreover, T is continuous at the fixed point.

Proof. The assertion follows using Theorem 2.1 with ψ(u, v, w, z) = L2z for
some L2 ∈ [0, 1) and all u, v, w, z ∈ R+. Indeed, ψ is continuous. First,
we have ψ(y, y, x, x+2y

2 ) = L2

(
x+2y
2

)
. So, if x ≤ ψ(y, y, x, x+2y

2 ), then

x ≤
(

2L2
2−L2

)
y with

(
2L2
2−L2

)
< 1. Thus, T satisfies the condition (R1).

Next, if x ≤ ψ(0, 0, x, x2 ), then x = 0 since L2 < 1. Thus, T satisfies the
condition (R2).

Finally, if x ≤ ψ(x, 0, 0, x) = L2x, then x = 0 since L2 < 1. Thus, T
satisfies the condition (R3). �

The following corollary is an analogue of S. Reich’s result in [19].

Corollary 2.8. Let (X,S) be a complete S-metric space. Suppose that the
mapping T : X → X satisfies the following condition:

S(Tx, Tx, Ty) ≤ a1 S(x, x, y) + a2 S(x, x, Tx) + a3 S(y, y, Ty)

for all x, y ∈ X, where a1, a2, a3 ≥ 0 are constants with a1 + a2 + a3 < 1.
Then T has a unique fixed point in X. Moreover, if a3 < 1

2 , then T is
continuous at the fixed point.

Proof. The assertion follows using Theorem 2.1 with ψ(u, v, w, z) = a1u +

a2v+a3w for some a1, a2, a3 ≥ 0 are constants with a1 +a2 +a3 < 1 and all
u, v, w, z ∈ R+. Indeed, ψ is continuous. First, we have ψ(y, y, x, x+2y

2 ) =

a1y + a2y + a3x. So, if x ≤ ψ(y, y, x, x+2y
2 ), then x ≤

(
a1+a2
1−a3

)
y with(

a1+a2
1−a3

)
< 1. Thus, T satisfies the condition (R1).

Next, if x ≤ ψ(0, 0, x, x2 ) = a1.0 + a2.0 + a3.x = a3x, then x = 0 since
a3 < 1. Thus, T satisfies the condition (R2).

Finally, if x ≤ ψ(x, 0, 0, x) = a1.x+ a2.0 + a3.0 = a1x, then x = 0 since
a1 < 1. Thus, T satisfies the condition (R3). �

Example 2.9. Let X = R be the usual S-metric space as in Example 1.4.
Now, we consider the mapping T : X → X by T (x) = x

10 for all x ∈ [0, 1].
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Then

S(Tx, Tx, Ty) = |Tx− Ty|+ |Tx− Ty|

= 2|Tx− Ty| = 2
∣∣∣( x

10

)
−
( y

10

)∣∣∣
=

1

5
|x− y|

≤ 2

5
|x− y|

=
1

5

(
2|x− y|

)
= µS(x, x, y)

where µ = 1
5 < 1. Thus T satisfies all the conditions of Corollary 2.5 and

clearly 0 ∈ X is the unique fixed point of T .

Example 2.10. Let X = R be the usual S-metric space as in Example 1.4.
Now, we consider the mapping T : X → X by T (x) = x

5 for all x ∈ [0, 1].
Then

S(Tx, Tx, Ty) = |Tx− Ty|+ |Tx− Ty|

= 2|Tx− Ty| = 2
∣∣∣(x

5

)
−
(y

5

)∣∣∣
=

2

5
|x− y|

≤ 4

9
|x− y|

≤ 1

3

[4

3
|x|+ 4

3
|y|
]
.

S(x, x, Tx) = 2|x− Tx| = 4

3
|x|.

S(y, y, Ty) = 2|y − Ty| = 4

3
|y|.

Now, we have

S(Tx, Tx, Ty) ≤ 1

3
[S(x, x, Tx) + S(y, y, Ty)]

= q[S(x, x, Tx) + S(y, y, Ty)]

where q = 1
3 <

1
2 . Thus T satisfies all the conditions of Corollary 2.6 and

clearly 0 ∈ X is the unique fixed point of T .
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Example 2.11. Let X = R be the usual S-metric space as in Example 1.4.
Now, we consider the mapping T : X → X by T (x) = x+2

3 for all x ∈ [0, 1].
Then

S(Tx, Tx, Ty) = |Tx− Ty|+ |Tx− Ty|

= 2|Tx− Ty| = 2
∣∣∣(x+ 2

3

)
−
(y + 2

3

)∣∣∣
=

2

3
|x− y|.

S(x, x, Ty) = 2|x− Ty| = 2

3
|3x− y − 2|.

S(y, y, Tx) = 2|y − Tx| = 2

3
|3y − x− 2|.

Now, we have

S(Tx, Tx, Ty) ≤ 2

7
[S(x, x, Ty) + S(y, y, Tx)]

= δ[S(x, x, Ty) + S(y, y, Tx)]

where δ = 2
7 <

1
2 . Thus T satisfies all the conditions of Corollary 2.7 and

clearly 1 ∈ X is the unique fixed point of T .

Conclusion

In this paper, we establish some fixed point and common fixed point the-
orems satisfying an implicit relation in the framework of S-metric spaces.
Also, we give some examples in support of our results. Our results extend,
unify and generalize several results from the existing literature.
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Abstract. In this paper, we prove a uniqueness result of the differen-
tial polynomial (fn)(k) and the differential polynomial P [fq] of mero-
morphic function fq, when they share a small function. Our result
generalize some earlier results.

1. Introduction and Main Results

Throughout this paper, we use the standard notations of the Nevanlinna
theory of meromorphic functions as explained in ( [12, 21, 22]). Let f and
g be two non-constant meromorphic functions defined in the open complex
plane C. If for some b ∈ C ∪ {∞}, f and g have the same set of b-points
with the same multiplicities, then we say that f and g share the value b
counting multiplicities (CM) and if we do not consider the multiplicities,
then f and g are said to share the value b ignoring multiplicities (IM). If
b =∞, then the zeros of f − b means the poles of f .
A meromorphic function a = a(z) (6≡ 0,∞) is called a small function with
respect to f provided that T (r, a) = S(r, f) as r → ∞, r 6∈ E, where E is
a set of positive real numbers with finite Lebesgue measure. We say that f
and g share a IM(CM) according to f − a and g − a share 0 IM(CM). We
denote by S(f) the collection of all small functions with respect to f .

The subject on sharing values between entire function with its deriva-
tives was first studies by Rubel and Yang ([20]). In 1977, they proved the
following result.

2010 Mathematics Subject Classification: 30D35
Key words and phrases: Meromorphic function, Differential polynomial, Weighted
sharing, Uniqueness

© Indian Mathematical Society, 2020 .
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Theorem 1.1. Let f be a non-constant entire function. If f and f ′ share
two distinct finite complex numbers a, b CM, then f = f ′.

In 1979, Mues and Steinmetz ([19]) obtained the same result but in
relax sharing condition as follows.

Theorem 1.2. Let f be a non-constant entire function. If f and f ′ share
two distinct finite complex numbers a, b IM, then f = f ′.

Subsequently, similar considerations have been made with respect to
higher derivatives and more general differential expressions as well. Above
theorem motivate researchers to study the relation between an entire func-
tion and its derivative counterpart for one CM shared value. In this di-
rection, in 1996, the following famous conjecture was proposed by Brück
([8]).

Conjecture 1.3. Let f be a non-constant entire function such that the
hyper order ρ2(f) of f is not a positive integer or infinite, where

ρ2(f) = lim sup
r→∞

log log T (r, f)

log r
.

If f and f ′ share a finite value a CM, then f ′−a
f−a = c, where c is a non-zero

constant.

Very recently many results have been published concerning the above
conjecture ([5, 6, 9, 11, 15, 16, 18]). Next we recall the following definitions.

Definition 1.4. Let p be a positive integer. Let f be a meromorphic func-
tion and a ∈ S(f).

(i) Np)(r,
1

f−a) denotes the counting function of those a-points of f
whose multiplicities are not greater than p, where each a-point is counted
only once.

(ii) N (p(r,
1

f−a) denotes the counting function of those a-points of f
whose multiplicities are not less than p, where each a-point is counted only
once.

(iii) Np(r,
1

f−a) denotes the counting function of those a-points of f ,
where an a-point of f with multiplicity m is counted m times if m ≤ p and
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p times if m > p.

We denote δp(a, f) by the quantity

δp(a, f) = 1− lim sup
r→∞

Np(r,
1

f−a)

T (r, f)
.

Clearly 0 ≤ δ(a, f) ≤ δp(a, f) ≤ δp−1(a, f) ≤ .... ≤ δ2(a, f) ≤ δ1(a, f) =

Θ(a, f).

Definition 1.5. Suppose f and g share a IM and let z0 be a zero of f − a
of multiplicity p and a zero of g − a of multiplicity q.

(i) By NL(r, 1
f−a) we denote the reduced counting function of those a-

points of f and g where p > q ≥ 1; NL(r, 1
g−a) is defined similarly.

(ii) By N1)
E (r, 1

f−a) the counting function of those a-points of f and g
where p = q = 1,
and

(iii) by N (2
E (r, 1

f−a) the counting function of those a-points of f and g
where p = q ≥ 2, where each such zero is counted only once.

Relaxation of the sharing is done on the basis of the following notion of
weighted sharing as introduced in ([13, 14]).

Definition 1.6. Let l be a non-negative integer or infinity and a ∈ S(f) ∩
S(g). We denote by El(a, f) the set of all zeros of f − a, where a zero of
multiplicity m is counted m times if m ≤ l and l + 1 times if m > l. If
El(a, f) = El(a, g), we say that f, g share the function a with weight l. We
write f and g share (a, l) to mean that f and g share the function a with
weight l. Since El(a, f) = El(a, g) implies that Es(a, f) = Es(a, g) for any
integer s (0 ≤ s < l), if f, g share (a, l), then f, g share (a, s). Moreover,
we note that f and g share the function a IM or CM if and only if f and g
share (a, 0) or (a,∞) respectively.

In 2008, Zhang and Lü ([25]) considered the uniqueness of the n-th
power of a meromorphic function sharing a small function with its k-th
derivative and proved the following theorem.

Theorem 1.7. Let k (≥ 1), n (≥ 1) be integers and f be a non-constant
meromorphic function. Also let a(z) (6≡ 0,∞) be a small function with
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respect to f . Suppose fn − a and f (k) − a share (0, l). If l =∞ and

(3 + k)Θ(∞, f) + 2Θ(0, f) + δ2+k(0, f) > 6 + k − n

or, l = 0 and

(6 + 2k)Θ(∞, f) + 4Θ(0, f) + 2δ2+k(0, f) > 12 + 2k − n,

then fn ≡ f (k).

In the same paper, Zhang and Lü ([25]) posted the following question:

Question 1.8. What will happen if fn and (f (k))
s share a small function

?

In 2014, with the notion of weighted sharing of small function Banerjee
and Majumder ([3]) prove two theorems, one of which improved Theorem
1.7 where together answer the Question 1.8.

Theorem 1.9. Let k (≥ 1), n (≥ 1) be integers and f be a non-constant
meromorphic function. Also let a(z)(6≡ 0,∞) be a small function with re-
spect to f . Suppose fn − a and f (k) − a share (0, l). If l ≥ 2 and

(3 + k)Θ(∞, f) + 2Θ(0, f) + δ2+k(0, f) > 6 + k − n

or l = 1 and

(k +
7

2
)Θ(∞, f) +

5

2
Θ(0, f) + δ2+k(0, f) > 7 + k − n

or l = 0 and

(6 + 2k)Θ(∞, f) + 4Θ(0, f) + δ2+k(0, f) + δ1+k(0, f) > 12 + 2k − n,

then fn ≡ f (k).

Theorem 1.10. Let k (≥ 1), n (≥ 1), m (≥ 2) be integers and f be a non-
constant meromorphic function. Also let a(z)(6≡ 0,∞) be a small function
with respect to f . Suppose fn − a and (f (k))m − a share (0, l). If l ≥ 2 and

(3 + 2k)Θ(∞, f) + 2Θ(0, f) + 2δ1+k(0, f) > 7 + 2k − n

or l = 1 and

(2k +
7

2
)Θ(∞, f) +

5

2
Θ(0, f) + 2δ1+k(0, f) > 8 + 2k − n

or l = 0 and

(6 + 3k)Θ(∞, f) + 4Θ(0, f) + 3δ1+k(0, f) > 13 + 3k − n,
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then fn ≡ (f (k))m.

In order to improve the results of Zhang ([23]), Li and Huang ([17])
obtain the following theorem.

Theorem 1.11. Let k (≥ 1), l (≥ 0) be integers and f be a non-constant
meromorphic function. Also let a(z)(6≡ 0,∞) be a small function with re-
spect to f . Suppose f − a and f (k) − a share (0,l). If l ≥ 2 and

(k + 3)Θ(∞, f) + δ2(0, f) + δ2+k(0, f) > k + 4

or l = 1 and

(k +
7

2
)Θ(∞, f) +

1

2
Θ(0, f) + δ2(0, f) + δ2+k(0, f) > k + 5

or l = 0 and

(6 + 2k)Θ(∞, f) + 2Θ(0, f) + δ2(0, f) + δ2+k(0, f) + δ1+k(0, f) > 2k + 10,

then f ≡ f (k).

Next we give the following definition.

Definition 1.12. Let n0j , n1j , n2j , ..., nkj be non-negative integers. The
expression

Mj [f ] = (f)n0j (f (1))n1j (f (2))n2j ...(f (k))nkj

is called a differential monomial generated by f of degree d(Mj) =
k∑

i=0
nij

and weight ΓMj =
k∑

i=0
(i + 1)nij . Let aj ∈ S(f) and aj 6≡ 0 (j = 1, 2, ..., t).

The sum P [f ] =
t∑

j=1
ajMj [f ] is called a differential polynomial generated by

f of degree d(P ) = max{d(Mj) : 1 ≤ j ≤ t} and weight ΓP = max{ΓMj :

1 ≤ j ≤ t}. The numbers d(P ) = min{d(Mj) : 1 ≤ j ≤ t} and k (the
highest order of the derivative of f in P [f ]) are called respectively the lower
degree and the order of P [f ]. The differential polynomial P [f ] is said to be
homogeneous if d(P ) = d(P ), otherwise P [f ] is called a non-homogeneous
differential polynomial. Also, we define Q := max{ΓMj − d(Mj) : 1 ≤ j ≤
t}.

Using the notion of differential polynomial Bhoosnurmath and Kabbur
([7]) proved the following theorem.

MEMBER'S COPY



132 DILIP CHANDRA PRAMANIK, JAYANTA ROY AND AFSAR HOSSAIN SARKAR

Theorem 1.13. Let f be a non-constant meromorphic function and a(z)

be a small function such that a(z) 6≡ 0,∞. Let P [f ] be a non-constant
differential polynomial in f . If f and P [f ] share the value a IM and

(2Q+ 6)Θ(∞, f) + (2 + 3d(P ))δ(0, f) > 2Q+ 2d(P ) + d(P ) + 7,

then f ≡ P [f ].

Motivated by such uniqueness investigations, Charak and Lal ([10]) con-
sidered the possible extension of Theorems 1.9-1.13 in the direction of the
question of Zhang and Lü ([25]) up to differential polynomial considering
weighted sharing.

Theorem 1.14. Let f be a non-constant meromorphic function and n be
a positive integer and a(z) (6≡ 0,∞) be a small function with respect to f .
Let P [f ] be a non-constant differential polynomial of f . Suppose fn−a and
P [f ]− a share (0, l). If l ≥ 2 and

(3 +Q)Θ(∞, f) + 2Θ(0, f) + d(P )δ(0, f) > Q+ 5 + 2d(P )− d(P )− n,

or, l = 1 and

(
7

2
+Q)Θ(∞, f) +

5

2
Θ(0, f) + d(P )δ(0, f) > Q+ 6 + 2d(P )− d(P )− n,

or, l = 0 and

(6 + 2Q)Θ(∞, f) + 4Θ(0, f) + 2d(P )δ(0, f) > 2Q+ 4d(P )− 2d(P ) + 10−n,

then fn ≡ P [f ].

Regarding above results, a natural question is what can be said when
a non-constant differential polynomial (fn)(k) share a small meromorphic
function a with P [f q]. In this paper we prove that under certain essential
conditions (fn)(k) ≡ P [f q].

Theorem 1.15. Let k (≥ 1), n (≥ k+ 2), q (≥ 1), l (≥ 0) be integers and
f be a non-constant meromorphic function. Also let a (6≡ 0,∞) ∈ S(f) and
P [f q] be a non-constant differential polynomial of f q such that n 6= qd(P ).
Suppose (fn)(k) − a and P [f q]− a share (0, l). If l ≥ 2 and

(Q+ 3)Θ(∞, f) + qd(P )δk+2(0, f) + nδk+2(0, f
n) > Q+ 3 + qd(P ), (1.1)
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or, l = 1 and

(Q+ k+7
2 )Θ(∞, f) + qd(P )δk+2(0, f) + nδk+2(0, f

n)

+nδk+1(0, f
n) > Q+ k+7

2 + qd(P ) + n, (1.2)

or l = 0 and

(2Q+ 6 + 2k)Θ(∞, f) + qd(P )δk+1(0, f) + 2nδk+1(0, f
n)

+qd(P )δk+2(0, f) + nδk+2(0, f
n) > 2Q+ 2k + 2qd(P ) + 6 + 2n, (1.3)

then (fn)(k) ≡ P [f q].

2. Lemmas

In this section we present some lemmas needed in the sequel. Let F ,
G be two non-constant meromorphic functions. We shall denote by H the
following function

H =

(
F ′′

F ′
− 2

F ′

F − 1

)
−
(
G′′

G′
− 2

G′

G− 1

)
. (2.1)

Lemma 2.1. Let q(≥ 1) be an integer. Let f be a non-constant meromor-
phic function and P [f q] be differential polynomial of f q. Then

m

(
r,
P [f q]

f qd(P )

)
≤ (d(P )− d(P ))m(r,

1

f q
) + S(r, f).

Proof. The proof can be obtain along the same line as the proof of Lemma
2.4 in [4]. �

Lemma 2.2. [1] Let f and g be two non-constant meromorphic functions.
(i) If f and g share (1, 0), then

NL

(
r,

1

f − 1

)
≤ N(r, f) +N(r,

1

f
) + S(r, f).

(ii) If f and g share (1, 1), then

2NL

(
r, 1

f−1
)

+ 2NL

(
r, 1

g−1
)

+N
(2
E

(
r, 1

f−1
)

−Nf>2

(
r, 1

g−1
)
≤ N(r, 1

g−1)−N(r, 1
g−1).

Lemma 2.3. [24] Let f be a non-constant meromorphic function and p, k
be two positive integers. Then

Np(r,
1

f (k)
) ≤ T (r, f (k))− T (r, f) +Np+k(r,

1

f
) + S(r, f),
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Np(r,
1

f (k)
) ≤ Np+k(r,

1

f
) + kN(r,∞, f) + S(r, f),

where
N(r,

1

f (k)
) = N1(r,

1

f (k)
).

Lemma 2.4. [2] Let F and G share (1, l) and H 6≡ 0, then

N(r,H) ≤ N(r, F ) +N (2(r,
1
F ) +N (2(r,

1
G) +NL(r, 1

F−1)

+NL(r, 1
G−1) +N0(r,

1
F ′ ) +N0(r,

1
G′ ) + S(r, f).

Lemma 2.5. [5] For any two non-constant meromorphic functions f and
g,

Np(r, fg) ≤ Np(r, f) +Np(r, g).

Lemma 2.6. Let p, q be positive integers. Let f be a non-constant mero-
morphic function and P [f q] be a differential polynomial of f q. Then

Np

(
r,

1

P [f q]

)
≤ qd(P )Np+k(r,

1

f
) +QN(r, f) + S(r, f).

Proof. For any non-constant meromorphic function f , Np(r, f) ≤ Ns(r, f)

if p ≤ s. Now by Lemma 2.3 and Lemma 2.5 we have

Np

(
r, 1

P [fq ]

)
≤
∑t

j=1Np

(
r, 1

Mj [fq ]

)
+ S(r, f)

= Np

(
r, 1

M1[fq ]

)
+Np

(
r, 1

M2[fq ]

)
+ ....+Np

(
r, 1

Mt[fq ]

)
+ S(r, f)

= Np

(
r, 1∏k

i=0((fq)(i))
ni1

)
+Np

(
r, 1∏k

i=0((fq)(i))
ni2

)
+ .....+

+Np

(
r, 1∏k

i=0((fq)(i))
nit

)
+ S(r, f)

≤
∑k

i=0 ni1Np

(
r, 1

((fq)(i))

)
+
∑k

i=0 ni2Np

(
r, 1

((fq)(i))

)
+ .....+

+
∑k

i=0 nitNp

(
r, 1

((fq)(i))

)
+ S(r, f)

≤
∑k

i=0(ni1 + ni2 + ...+ nit)
{
Np+i

(
r, 1

fq

)
+ iN(r, f q)

}
+ S(r, f)

≤ max1≤j≤t

{∑k
i=0 nijqNp+k

(
r, 1f

)}
+ max1≤j≤t

(∑k
i=0 i.nij

)
N(r, f)

+S(r, f) = qd(P )Np+k(r, 1f ) +QN(r, f) + S(r, f).

This completes the proof of the lemma. �
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Lemma 2.7. Let n, k, q be positive integers such that n ≥ (k+2). Let f be a
non-constant meromorphic function and P [f q] be a differential polynomial
of f q. Let us define F = (fn)(k)

a and G = P [fq ]
a , where a ∈ S(f). Then

FG 6≡ 1.

Proof. On contrary assume FG ≡ 1. So (fn)(k).P [f q] = a2. Therefore
N(r, f) = S(r, f) and N(r, 1f ) = S(r, f). Now in view of 1st fundamental
theorem and using Lemma 2.1 we have

(n+ qd(P ))T (r, f) ≤ T
(
r, a2

fn+qd(P )

)
+ S(r, f)

≤ T
(
r, (f

n)(k)

fn . P [fq ]

fqd(P )

)
+ S(r, f)

≤ T
(
r, (f

n)(k)

fn

)
+ T

(
r, P [fq ]

fqd(P )

)
+ S(r, f)

≤ N
(
r, (f

n)(k)

fn

)
+m

(
r, (f

n)(k)

fn

)
+N

(
r, P [fq ]

fqd(P )

)
+m

(
r, P [fq ]

fqd(P )

)
+ S(r, f)

≤ k
(
N(r, f) +N(r, 1f )

)
+N(r, P [f q]) + qd(P )N(r, 1f )

+q
(
d(P )− d(P )

)
T (r, f) + S(r, f).

That is (n+ qd(P ))T (r, f) ≤ S(r, f), which is a contradiction. �

Lemma 2.8. Let q be a positive integer. Let f be a meromorphic function
and P [f q] be a differential polynomial generated by f q. Then

m(r, P [f q]) ≤ d(P )m(r, f q) + S(r, f).

Proof. The proof can be obtain along the same line as the proof of Lemma
2.6 in [4]. �

Lemma 2.9. Let q be a positive integer. Let f be a non-constant meromor-
phic function and P [f q] be a differential polynomial of f q. Then S(r, P [f q])

can be replaced by S(r, f).

Proof. From Lemma 2.8 it is clear that T (r, P [f q]) = O(T (r, f)) and so the
lemma follows. �

Lemma 2.10. Let q be a positive integer. Let f be a meromorphic function
with a pole of order p ≥ 1 at z0. If P [f q] be a differential polynomial of f q

whose coefficient are analytic at z0, then P [f q] has a pole at z0 of order at
most qpd(P ) + ΓP − d(P ).

Proof. Let f be a meromorphic function with a pole of order p ≥ 1 at z0
and P [f ] defined as in Definition 1.12. Then by simple calculation P [f q]
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has a pole at z0 and its order is at most

max
1≤j≤t

{
k∑

s=0

(qp+ s)nsj

}
= max

1≤j≤t

{
(qp− 1)

k∑
s=0

nsj +
k∑

s=0

(s+ 1)nsj

}
≤ (qp− 1)d(P ) + ΓP

= qpd(P ) + ΓP − d(P ).

This completes the proof of the lemma. �

3. Proof of the Main Theorem

Proof of Theorem 1.15.

Proof. Let F = (fn)(k)

a and G = P [fq ]
a . Then F − 1 = (fn)(k)−a

a and
G − 1 = P [fq ]−a

a . Since (fn)(k) and P [f q] share (a, l), it follows that F
and G share (1, l) except at zeros and poles of a. By Lemma 2.9 we have
S(r, P [f q]) = S(r, f). Therefore N(r,G) = N(r, f) + S(r, f) = N(r, F ).

Suppose H 6≡ 0. Then from (2.1) and Lemma 2.4 we have m(r,H) =

S(r, f), and

NE
1)(r, 1

F−1) ≤ N(r, 1
H ) + S(r, f)

≤ T (r,H) + S(r, f) = N(r,H) + S(r, f)

≤ N(r, F ) +N (2(r,
1
F ) +N (2(r,

1
G) +NL(r, 1

F−1)

+NL(r, 1
G−1) +N0(r,

1
F ′ ) +N0(r,

1
G′ ) + S(r, f). (3.1)

By the 2nd Fundamental Theorem of Nevanlinna, we have

T (r, F ) + T (r,G) ≤ 2N(r, f) +N(r, 1
F ) +N(r, 1

F−1) +N(r, 1
G)

+N(r, 1
G−1)−N0(r,

1
F ′ )−N0(r,

1
G′ ) + S(r, f), (3.2)

where N0(r,
1
F ′ ) denote the counting function of zeros of F ′, which are not

the zeros of F (F − 1) and N0(r,
1
G′ ) is defined similarly.
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Case 1: l ≥ 1. Then by (3.1), we obtain

N
(
r, 1

F−1
)

+N
(
r, 1

G−1
)

= NE
1)
(
r, 1

F−1

)
+NE

(2
(
r, 1

F−1

)
+NL

(
r, 1

F−1
)

+NL

(
r, 1

G−1
)

+N
(
r, 1

G−1
)

+ S(r, f)

≤ N(r, F ) +N (2(r,
1
F ) +N (2(r,

1
G) + 2NL

(
r, 1

F−1
)

+ 2NL

(
r, 1

G−1
)

+N0(r,
1
F ′ ) +N0(r,

1
G′ ) +NE

(2(
r, 1

F−1
)

+N
(
r, 1

G−1
)

+ S(r, f). (3.3)

Subcase 1.1: l = 1. In this case we have,

NL

(
r,

1

F − 1

)
≤ 1

2
N(r,

1

F ′
|F 6= 0)

≤ 1

2
N(r, F ) +

1

2
N(r,

1

F
) + S(r, f), (3.4)

where N(r, 1
F ′ |F 6= 0) denotes the zeros of F ′, which are not the zeros of F .

Therefore by (3.4) and Lemmas 2.2, 2.3 we have

2NL(r, 1
F−1) + 2NL(r, 1

G−1) +NE
(2

(r, 1
F−1) +N(r, 1

G−1)

≤ N(r, 1
G−1) +NL(r, 1

F−1) + S(r, f)

≤ N(r, 1
G−1) + 1

2N(r, F ) + 1
2N(r, 1

F ) + S(r, f)

≤ N(r, 1
G−1) + 1

2N(r, f) + 1
2N(r, 1

(fn)(k)
) + S(r, f)

≤ N(r, 1
G−1) + 1

2N(r, f) + 1
2Nk+1(r,

1
fn ) + k

2N(r, f) + S(r, f)

≤ N(r, 1
G−1) +

(
k+1
2

)
N(r, f) + 1

2Nk+1(r,
1
fn ) + S(r, f). (3.5)

So from (3.3) and (3.5), we get

N(r, 1
F−1) +N(r, 1

G−1) ≤ N(r, f) +N (2(r,
1
F ) +N (2(r,

1
G)

+N(r, 1
G−1) + k+1

2 N(r, f) +Nk+1(r,
1
fn )

+N0(r,
1
F ′ ) +N0(r,

1
G′ ) + S(r, f)

≤ k+3
2 N(r, f) +N (2(r,

1
F ) +N (2(r,

1
G) + T (r,G)

+Nk+1(r,
1
fn ) +N0(r,

1
F ′ ) +N0(r,

1
G′ ) + S(r, f). (3.6)
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Now from (3.2), (3.6), and Lemmas 2.3, 2.6 we get

T (r, F ) ≤
(
k + 3

2
+ 2

)
N(r, f) +N(r,

1

F
) +N(r,

1

G
)

+ N (2(r,
1

F
) +N (2(r,

1

G
) +Nk+1(r,

1

fn
) + S(r, f)

≤ k + 7

2
N(r, f) +N2(r,

1

F
) +N2(r,

1

G
) +Nk+1(r,

1

fn
) + S(r, f)

≤ k + 7

2
N(r, f) + T (r, F )− nT (r, f) +Nk+2(r,

1

fn
)

+ Nk+1(r,
1

fn
) +QN(r, f) + qd(P )Nk+2(r,

1

f
) + S(r, f),

which implies

nT (r, f) ≤
(
Q+ k+7

2

)
N(r, f) + qd(P )Nk+2(r,

1
f )

+Nk+2(r,
1
fn ) +Nk+1(r,

1
fn ) + S(r, f).

So (
Q+ k+7

2

)
Θ(∞, f) + qd(P )δk+2(0, f) + nδk+2(0, f

n)

+nδk+1(0, f
n) ≤ Q+ k+7

2 + qd(P ) + n,

which contradicts (1.2).

Subcase 1.2: l ≥ 2. In this case we have

2NL(r, 1
F−1) + 2NL(r, 1

G−1) +NE
(2

(r, 1
F−1)

+N(r, 1
G−1) ≤ N(r, 1

G−1) + S(r, f),

and from (3.3) we obtain

N(r, 1
F−1) +N(r, 1

G−1) ≤ N(r, f) +N (2(r,
1
F ) +N (2(r,

1
G)

+N(r, 1
G−1) +N0(r,

1
F ′ ) +N0(r,

1
G′ ) + S(r, f)

≤ N(r, f) +N (2(r,
1
F ) +N (2(r,

1
G) + T (r,G)

+N0(r,
1
F ′ ) +N0(r,

1
G′ ) + S(r, f). (3.7)

Now from (3.2), (3.7), and Lemmas 2.3, 2.6 we get

T (r, F ) ≤ 3N(r, f) +N(r, 1
F ) +N (2(r,

1
F ) +N(r, 1

G) +N (2(r,
1
G) + S(r, f)

≤ 3N(r, f) +N2(r,
1
F ) +N2(r,

1
G) + S(r, f)

≤ 3N(r, f) + T (r, F )− nT (r, f) +Nk+2(r,
1
fn )
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+QN(r, f) + qd(P )Nk+2(r,
1
f ) + S(r, f),

which implies

nT (r, f) ≤ (Q+ 3)N(r, f) +Nk+2(r,
1
fn ) + qd(P )Nk+2(r,

1
f ) + S(r, f)

≤ (Q+ 3){1−Θ(∞, f)}T (r, f) + n(1− δk+2(0, f
n))T (r, f)

+qd(P )(1− δk+2(0, f))T (r, f) + S(r, f)

⇒ (Q+ 3)Θ(∞, f) + qd(P )δ2+k(0, f) + nδk+2(0, f
n) ≤ Q+ 3 + qd(P ),

which violates assumption (1.1).

Case 2 : l = 0. Then we have

N
1)
E

(
r, 1

F−1
)

= N
1)
E

(
r, 1

G−1
)

+ S(r, f),

N
(2
E

(
r, 1

F−1
)

= N
(2
E

(
r, 1

G−1
)

+ S(r, f).

Now by (3.1), we have

N(r, 1
F−1) +N(r, 1

G−1) = N
1)
E (r, 1

F−1) +N
(2
E (r, 1

F−1)

+NL(r, 1
F−1) +NL(r, 1

G−1) +N(r, 1
G−1) + S(r, f)

≤ N1)
E (r, 1

F−1) +NL(r, 1
F−1) +N(r, 1

G−1) + S(r, f)

≤ N(r, F ) +N (2(r,
1
F ) +N (2(r,

1
G) + 2NL(r, 1

F−1) +NL(r, 1
G−1)

+N(r, 1
G−1) +N0(r,

1
F ′ ) +N0(r,

1
G′ ) + S(r, f). (3.8)

Therefore from (3.2), (3.8), and Lemmas 2.2, 2.3 and 2.6 we get

T (r, F ) ≤ 3N(r, f) +N(r,
1

F
) +N (2(r,

1

F
) +N(r,

1

G
) +N (2(r,

1

G
)

+ 2NL(r,
1

F − 1
) +NL(r,

1

G− 1
) + S(r, f)

≤ 3N(r, f) +N2(r,
1
F ) +N2(r,

1
G) + 2NL(r, 1

F−1) +NL(r, 1
G−1) + S(r, f)

≤ 3N(r, f) + T (r, F )− nT (r, f) +Nk+2(r,
1
fn ) +QN(r, f)

+qd(P )Nk+2(r,
1
f ) + 2NL(r, 1

F−1) +NL(r, 1
G−1) + S(r, f),

which implies

nT (r, f) ≤ (Q+ 3)N(r, f) +Nk+2(r,
1
fn ) + qd(P )Nk+2(r,

1
f ) + 2N(r, 1

F )
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+2N(r, F ) +N(r, 1
G) +N(r,G) + S(r, f).

≤ (2Q+ 6 + 2k)N(r, f) + qd(P )Nk+2(r,
1
f ) + qd(P )Nk+1(r,

1
f )

+2Nk+1(r,
1
fn ) +Nk+2(r,

1
fn ) + S(r, f)

≤ (2Q+ 6 + 2k){1−Θ(∞, f)}T (r, f) + qd(P )(1− δk+1(0, f))T (r, f)

+2n(1− δk+1(0, f
n))T (r, f) + qd(P )(1− δ2+k(0, f))T (r, f)

+n(1− δ2+k(0, fn))T (r, f) + S(r, f)

Therefore

(2Q+ 6 + 2k)Θ(∞, f) + qd(P )δk+1(0, f) + 2nδk+1(0, f
n)

+qd(P )δk+2(0, f) + nδk+2(0, f
n) ≤ 2Q+ 2k + 2qd(P ) + 6 + 2n,

which contradicts (1.3).

Next suppose H ≡ 0. Integrating twice we get
1

F − 1
=

C

G− 1
+D, (3.9)

where C 6= 0 and D are constants.
Here the following three cases can arise.
Case I: D 6= 0,−1. If z0 be a pole of f with multiplicity p, by Lemma 2.10,
F and G have a pole at z0 with multiplicities np+k and qpd(P )+ΓP −d(P )

respectively. This contradicts (3.9). Thus it follows that N(r, f) = S(r, f).
Also it is clear that N(r,G) = N(r, f) = S(r, f). From (3.9) we get

G− 1

C
=

F − 1

D + 1−DF

Therefore N
(
r, 1

F−D+1
D

)
= N(r,G) = S(r, f).

Now by the Second Fundamental Theorem of Nevanlinna and Lemma 2.3,
we have

T (r, F ) ≤ N(r, F ) +N(r,
1

F
) +N

(
r,

1

F − D+1
D

)
+ S(r, f)

≤ N(r, F ) +N(r,
1

F
) +N(r,G) + S(r, f)

≤ 2N(r, f) + T (r, F )− nT (r, f) +Nk+1(r,
1

fn
) + S(r, f).
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nT (r, f) ≤ (k + 1)N(r,
1

fn
) + S(r, f)

≤ (k + 1)T (r, f) + S(r, f),

which contradicts n ≥ k + 2.

Case II: D = 0. Then from (3.9), we get G = CF − (C − 1). Therefore
if C 6= 1 then
N(r, 1

G) = N(r, 1
F−C−1

C

).
Again by the Nevannlina 2nd Fundamental Theorem and Lemma 2.3, 2.6
we get

T (r, F ) ≤ N(r, F ) +N(r,
1

F
) +N

(
r,

1

F − C−1
C

)

≤ N(r, f) + T (r, F )− nT (r, f) +Nk+1(r,
1

fn
) +N(r,

1

G
) + S(r, f),

which implies

nT (r, f) ≤ N(r, f) +Nk+1(r,
1

fn
) +QN(r, f) + qd(P )Nk+1(r,

1

f
) + S(r, f)

≤ (Q+ 1){1−Θ(∞, f)}T (r, f) + n{1− δk+1(0, f
n)}T (r, f)

+ qd(P ){1− δk+1(0, f)}T (r, f) + S(r, f)

⇒ (Q+ 1)Θ(∞, f) + nδk+1(0, f
n) + qd(P )δk+1(0, f) ≤ Q+ 1 + qd(P ),

which is a contradiction to (1.3).

Therefore C = 1 and so F ≡ G and hence (fn)(k) ≡ P [f q].
Case III: D = −1. Then from (3.9) we have

1

F − 1
=

C

G− 1
− 1

Therefore if C 6= −1, then N(r, 1
G) = N

(
r, 1

F− C
C+1

)
. Proceeding as in

Case II we get a contradiction.
Therefore C = −1 and so FG = 1, which contradicts Lemma 2.7.

�
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Abstract. Maximal surfaces in the Lorentz-Minkowski space E3
1 are the natural coun-

terparts of the minimal surfaces in R3 in the sense that both are critical points of the
area functional giving rise to zero mean curvature surfaces. Though similar theories have
been developed for these two kinds of objects, they are very different in terms of their
singularities. In this article, we review various types of singularities arising in the theory
of maximal surfaces till date. We also present special constructions related to these types
of singularities.

1. Introduction

Minimal surfaces are the surfaces in R3 having zero mean curvature. For example
the catenoid, helicoid and the Enneper surfaces in Figure 1 are few examples of minimal
surfaces. Now in place of R3 if we consider the Lorentz-Minkowski space E3

1 (see Section

Figure 1. Minimal surfaces: Catenoid, Helicoid, Enneper surface

2) which is R3 as vector space but with a different metric called the Lorentz metric, we
obtain the maximal surfaces as the spacelike zero mean curvature surfaces. These have
the special property that they are locally area maximizing. But a striking fact here is, in

2010 Mathematics Subject Classification: 5302, 53A10, 53A40
Key words and phrases: Maximal surface, Lorentz Minkowski space, singularity, Generalised maximal
immersions

c© Indian Mathematical Society, 2020 .
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contrast to the minimal surfaces, the maximal surfaces naturally allow singularities. The
main purpose of this article is to explore various possible singularities arising in the existing
theory of maximal surfaces.

A smooth map X : Ω ⊂ R2 → E3
1 defined on a domain Ω is said to be a generalised

maximal immersion if almost everywhere on Ω, X is a spacelike immersion having zero
mean curvature. These are precisely defined in Definition 2.2 and 3.1. It is in the same way
the generalised minimal immersions were defined in [1]. Lorentzian catenoid, Lorentzian
helicoid and Lorentzian Enneper surface in Figure 2

Figure 2. Lorentzian - Catenoid, Helicoid, Enneper surface

are few examples of generalised maximal immersions. We will discuss all these examples
in detail along with many others in the later sections.

For a generalised minimal or maximal immersion X defined on a domain Ω ⊂ R2, the
points p ∈ Ω for which Rank(dX|p) < 2 are called the singular points of X. Although
maximal and minimal immersions have similar theories, their singularities behave very
differently. In particular, for the generalised minimal immersions the singularities are
all isolated whereas the singularities of generalised maximal immersions are mostly non-
isolated. This makes the singularity theory important and rich in the case of generalised
maximal immersions. In recent years it has drawn attention of various mathematicians
and in [3], [4], [5], [6], [9], [12], [13], [19], [18], [20] etc. various aspects of singularities have
been studied including detection of types and constructions of singularities. In this article
we review many such results regarding singularities of generalised maximal immersions

The article is organised as follows. In Section 2 we introduce the Lorentz-Minkowski
space E3

1 and define the maximal immersions. Section 3 starts with the definition of gen-
eralised maximal immersions followed by the introduction of various types of singularities
which appear on a generalised maximal immersion. In Section 4 we discuss about construc-
tions of generalised maximal immersions with prescribed set of singularities available from
various above mentioned articles. In Section 5 we discuss about generic and nongeneric
singularities.
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2. Maximal immersions

We start with an introduction to the Lorentz-Minkowski space, details can be found in
[15], [7] for example.

The 3-dimensional Lorentz-Minkowski space E3
1 is the vector space R3 equipped with a

bilinear form 〈 , 〉 : R3×R3 → R defined by 〈(u1, u2, u3), (v1, v2, v3)〉 := u1v1 +u2v2−u3v3

for u = (u1, u2, u3), v = (v1, v2, v3) ∈ R3. In the literature this is called the Lorentz metric.
A vector v ∈ E3

1 is called

• a lightlike vector if 〈v, v〉 = 0 and v 6= 0.
• a timelike vector if 〈v, v〉 < 0

• a spacelike vector if v = 0 or 〈v, v〉 > 0.

Let P be a 2-dimensional subspace of E3
1. Then the restriction of 〈 , 〉 to P can be either

positive definite or of index 1 or degenerate. P is called

• a lightlike subspace if restriction metric on P is degenerate
• a timelike subspace if restriction metric on P is of index 1
• a spacelike subspace if restriction metric on P is positive definite.

In particular the restriction metric on a timelike or spacelike subspace is nondegenerate.
Such subspaces are called nondegenerate subspaces. Here we note that the metric on E3

1 is
a nondegenerate metric. Now if {p1, p2} is a basis of P , the nondegeneracy of the restriction
metric is equivalent to the condition det(gij) 6= 0 where gij := 〈pi, pj〉 for i, j ∈ {1, 2}. It
is also easy to see that for a spacelike subspace P , 〈v, v〉 > 0 for v 6= 0 , v ∈ P .

Example 2.1. The subspaces V = span{(0, 1, 0), (1, 1, 0)}, W = span{(1, 0, 1), (1, 1, 0)}
and Z = span{(0, 1, 1), (1, 0, 0)} of E3

1 are examples of spacelike, timelike and lightlike
subspace respectively.

A vector w ∈ E3
1 is said to be perpendicular to a subspace V ⊂ E3

1, written as w ⊥ V ,
if 〈w, v〉 = 0 for all v ∈ V .

Proposition 2.1. [15] Let P be a 2-dimensional spacelike subspace and v ⊥ P, v 6= 0.
Then v is a timelike vector.

Proof. Since the restriction metric is positive definite on P , we can find a basis {p1, p2} of
P such that 〈p1, p2〉 = 0. Also since v 6= 0 and v ⊥ P , v /∈ P . Therefore {p1, p2, v} becomes
a basis of E3

1. Now take a timelike vector t ∈ E3
1 and write it as t = c1p1 + c2p2 + c3v.

Then 〈t, t〉 = c2
1〈p1, p1〉+ c2

2〈p2, p2〉+ c2
3〈v, v〉 < 0. This implies 〈v, v〉 < 0. �

The Lorentz metric on E3
1 gives many interesting and very different results (from those

in the usual metric on R3) which change the theory completely. We mention one of such
results here:

MEMBER'S COPY



148 PRADIP KUMAR, SAMIR KUMAR HAZRA AND VIDISHA KAIRAM

Proposition 2.2 ([15] Proposition 2.2.). Let v, w ∈ E3
1 be two lightlike vectors. Then

〈v, w〉 = 0 if and only if v and w are dependent.

Now let M and N be two smooth manifolds with dimM = m and let f : M → N be a
smooth map. Then df |p: Tp(M)→ Tf(p)(N) is a linear map for all p ∈M . The maximum
possible rank of this linear map is m and the set Sing(f) := {p ∈M : rank(df |p) < m} is
said to be the set of singular points of f .

For example if we take the map ‘cross cap’

fcc(u, v) = (u2, v, uv) ; (u, v) ∈ R2 (2.1)

then it has singularity at (0, 0).

Definition 2.2 (Maximal immersion [15]). Let Ω ⊂ R2 be a domain with parameters
(u, v). A smooth map X : Ω ⊂ R2 → E3

1 is said to be a maximal immersion if

(i) dX|p= (Xu(p), Xv(p)) has rank=2(full rank) for all p ∈ Ω

(ii) span{Xu(p), Xv(p)} is a spacelike subspace for all p ∈ Ω

(iii) mean curvature of X is zero.

Remark 2.3. A map X : Ω ⊂ R2 → E3
1 satisfying only first two conditions is said to be a

spacelike immersion.

Remark 2.4. Our definition of maximal immersion is a local definition. More generally,
maximal immersions are defined as spacelike immersions X : M2 → E3

1 with zero mean
curvature. Here M2 is a 2-dimensional manifold. In the case of a spacelike immersion,
M2 necessarily becomes orientable [15]. Moreover if one starts with a compact manifold
then the boundary ∂M2 6= ∅ [15].

Our main goal in this article is to describe the singularities of a maximal immersion.
Therefore we always assume our maximal immersions to be defined on a domain (open,
connected) Ω ⊂ R2.

Remark 2.5. We recall here a fact proved in [15]. Let Ω be a bounded domain with
boundary. Let X : Ω→ E3

1 be a spacelike immersion. Then X has zero mean curvature if
and only if it is a critical point of the area functional for all variations of X that fixes the
boundary and these are locally area maximizing. Therefore the name "maximal" is justified.
These maximal immersions in E3

1 are the counterparts of the minimal immersions in R3

(with metric given by the usual dot product), minimal immersions in R3 are locally area
minimising.

The parameters (u, v) are said to be isothermal for X if 〈Xu, Xv〉 = 0 and |Xu|= |Xv|>
0 where |−|=

√
|〈−,−〉|. The spacelike immersion in E3

1 is locally area maximising is
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equivalent to the fact that mean curvature of the immersion is zero. And this is equivalent
to the fact that there are isothermal parameters (u, v) such that each coordinate map
Xi ; i ∈ {1, 2, 3} is a harmonic map where X = (X1, X2, X3).

Let X : Ω→ E3
1 be a maximal immersion in isothermal parameters (u, v). Let us define

φi : Ω→ C3 by

φi :=
∂Xi

∂z
, where

∂

∂z
:=

1

2

(
∂

∂u
− i ∂

∂v

)
. (2.2)

Since {Xi} are harmonic {φi} become analytic. Now the parameters are isothermal
implies φ1

2 + φ2
2 − φ3

2 = 0 and |φ1|2+|φ2|2−|φ3|2> 0. Conversely suppose X : Ω → E3
1

is a harmonic (i.e. each Xi is harmonic function ) in some parameters (u, v) satisfying
these two conditions. Then X turns out to be a maximal immersion. Therefore we have
an equivalent definition of maximal immersions as follows:

Definition 2.6. [3] Let X ≡ (X1, X2, X3) : Ω→ E3
1 be a smooth map. Then X is said to

be a maximal immersion if X is harmonic and

(i) φ1
2 + φ2

2 − φ3
2 ≡ 0

(ii) |φ1|2+|φ2|2−|φ3|2> 0

where {φi} are defined as above.

Example 2.7 (Lorentzian Catenoid). Let Ω := {z ∈ C : 0 < |z|< 1} and X : Ω → E3
1 be

defined as

X(u, v) =

(
u

2

(
1− 1

u2 + v2

)
,
v

2

(
1− 1

u2 + v2

)
,−1

2
log(u2 + v2)

)
. (2.3)

Here we have φ1 = 1
2

(
1+z2

z2

)
, φ2 = i

2

(
1−z2

z2

)
and φ3 = −1

z . These φi’s satisfy the
conditions given in the Definition 2.6. Therefore the map X given by the equation (2.3)
is a maximal immersion. This is called the Lorentzian catenoid or sometimes maximal
catenoid.

Example 2.8 (Lorentizian Helicoid). Let us take Ω as in the previous example and define
X by

X(u, v) =

(
−v
2

(
1 +

1

u2 + v2

)
,
u

2

(
1 +

1

u2 + v2

)
, tan−1(v/u)

)
(2.4)

In this case we have φ1 = i
2

(
1+z2

z2

)
, φ2 = −1

2

(
1−z2

z2

)
and φ3 = −i

z . It can be checked that
X defined in this way is a maximal immersion known as Lorentzian helicoid or maximal
helicoid.
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Example 2.9 (Lorentzian Enneper Surface). Again we take the same Ω as above and
define X by

X(u, v) =

(
u+

u3

3
− uv2,−v − v3

3
+ u2v, v2 − u2

)
(2.5)

Here we have φ1 = 1 + z2, φ2 = i
(
1− z2

)
and φ3 = −2. Also, X becomes a maximal

immersion as before, this is called the Lorentzian Enneper surface.

Let us now try to generalise the notion of maximal immersions by relaxing the first
condition in Definition 2.2, that is we allow the map X to have singularities. So in this
situation rank(dX|p) ≤ 2. The next proposition describes the singular points of X in
terms of the functions {φi}.

Proposition 2.3. rank(dX|p) < 2 if and only if |φ1(p)|2+|φ2(p)|2−|φ3(p)|2= 0.

Proof. The first condition in Definition 2.6 implies that the parameters u, v(say) are isother-
mal. Since

∂X1

∂u

2

+
∂X2

∂u

2

− ∂X3

∂u

2

+
∂X1

∂v

2

+
∂X2

∂v

2

− ∂X3

∂v

2

= 〈Xu, Xu〉+ 〈Xv, Xv〉,

|φ1|2+|φ2|2−|φ3|2= 0 if and only if 〈Xu, Xu〉 + 〈Xv, Xv〉 = 0. But since 〈Xu, Xu〉 =

〈Xv, Xv〉, we obtain 〈Xu, Xu〉 = 〈Xv, Xv〉 = 0. Then either Xu is zero or Xv is zero or
both the vectors Xu and Xv are lightlike. Now since 〈Xu, Xv〉 is also zero, this implies
the vectors {Xu, Xv} are dependent, i.e rank(dX|p) < 2. Here we use the fact that two
lightlike vectors {x, y} are dependent if and only if 〈x, y〉 = 0.

Conversely, if {Xu, Xv} are dependent, without loss of generality assume Xu = cXv

for some c ∈ R. Then |φ1|2+|φ2|2−|φ3|2= 〈Xu, Xu〉+ 〈Xv, Xv〉 = 0 as the parameters are
isothermal.

�

3. Generalised maximal immersions and singularities

We are now ready to define the central objects of this article:

Definition 3.1 (Generalised maximal immersion [3]). Let X : Ω→ E3
1 be a non-constant

harmonic map. Then X is said to be a generalised maximal immersion if

(i) φ1
2 + φ2

2 − φ3
2 ≡ 0

(ii) |φ1|2+|φ2|2−|φ3|2 6≡ 0

where {φk} are defined as in equation 2.2.

Now the Proposition 2.3 above allows us to define the singularity set of a generalised
maximal immersion X as follows:
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Definition 3.2. Let X : Ω→ E3
1 be a generalised maximal immersion. The singularity set

of X is the set

Sing(X) := {p ∈ Ω : |φ1(p)|2+|φ2(p)|2−|φ3(p)|2= 0} (3.1)

A singular point p ∈ Sing(X) is said to be an isolated singular point if there exist
a neighbourhood U(p) of p such that U(p) ∩ Sing(X) = {p}. Otherwise p is called a
non-isolated singular point.

Example 3.3. Let Ω := {z :∈ C : 0 < |z|< 2}, then the expressions of X as given in
Example 2.7, 2.8 and 2.9 turn out to be generalised maximal immersions. In each case
Sing(X) := {z ∈ C : |z|= 1}.

Remark 3.4. In an analogous way as in Definition 3.1 one can consider the non-constant
harmonic maps X : Ω ⊂ R2 → R3 satisfying the conditions

(i) φ1
2 + φ2

2 + φ3
2 = 0

(ii) |φ1|2+|φ2|2+|φ3|2 6≡ 0.

Such maps are called the generalised minimal immersions. Similarly the singularity set here
is Sing(X) := {p ∈ Ω : |φ1(p)|2+|φ2(p)|2+|φ3(p)|2= 0}. Clearly since {φi} are analytic,
Sing(X) in this case is discrete. Which is in clear contrast to the case of a generalised
maximal immersion, the later are not always discrete but curves in most of the cases. This
makes the singularities of generalised maximal immersions an important area of research.

3.1. Types of singularities of generalised maximal immersions: As our aim is to
understand the nature of generalised maximal immersions X : Ω → E3

1 near the singular
points, we can suitably take our domain Ω to be simply connected containing some sin-
gularities of X. In the starting of this section, we have seen that a generalised maximal
immersions may have isolated singularities and non isolated singularities.

Here we introduce various types of non-isolated singularities which appear on X. These
have been discussed in [6], [3], [12], [9], [4], [13], [19], [18], [20] etc. The following list is not
exhaustive.

3.1.1. Admissible singularity. In this subsection we will define admissible singularities and
various types of these which can appear on generalised maximal immersions.

Definition 3.5. Let us set W := Ω \ Sing(X). Then p ∈ Sing(X) is called an admissible
singular point if the following conditions hold:

(i) on a neighborhood Up of p, there exists a C1-differentiable function β : Up∩W → R+

such that the Riemannian metric β ·ds2 extends to a C1-differentiable Riemannian
metric on Up. Here ds2 is the pullback metric on Ω via X.
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(a) Lorentz Enneper
Surface: Weierstrass
data: {g = z, f = 1}.
This has all generic
singularity on |z|= 1.

(b) Weier-
strass data:
{g = z, f = z}
and z = 0 is an
isolated singular-
ity. This is not a
maxface around
z = 0.

(c) Lorentzian
helicoid: Weier-
strass data
{g = z, f = i/z2}.
This has folded
singularity on each
|z|= 1.

(d) Lorentzian
catenoid: Weier-
strass data
{g = z, f = 1/z2}.
This has shrunken
singularity on
|z|= 1.

Figure 3. Maximal immersions

(ii) dX|p 6= 0.

In a later part (discussion after the Definition 3.12) of this article we shall discuss
a representation of generalized maximal immersions using which checking whether some
singularities are admissible or not becomes easy. This was introduced by Umehara and
Yamada in [12].

Following [12], we shall see in section 5.2 that any generalised maximal immersion
X : Ω → E3

1 as a map X : Ω → R3 is a frontal (definition given in section 5.2). Few of
them having admissible singularities become front. As a frontal (also as a front), there
are various types of admissible singularities which can appear on generalised maximal
immersions. Few (1 to 5 below) of these we mention below.

To define these singularities we need the notion of A−equivalence discussed in [9], we
define it here:

Definition 3.6 (A−equivalence). Two smooth maps X : Ω ⊂ R2 → E3
1 and Y : V ⊂

R2 → E3
1 are said to be A−equivalent at the points p ∈ Ω and q ∈ V if there exists

a local diffeomorphism η of R2 with η(p) = q and a local diffeomorphism Φ of E3
1 with

Φ(X(p)) = Y (q) such that Y = Φ ◦X ◦ η−1.

(1) Swallowtails: X is said to have swallowtail singularity at p ∈ Ω if at p ∈ Ω and
(0, 0) ∈ R2, X is A-equivalent to fsw(u, v) = (3u4 +u2v, 4u3 +2uv, v) ; (u, v) ∈ R2

(2) Cuspidal edge singularties : X is said to have cuspidal edge singularities at p ∈
Ω if at p ∈ Ω and (0, 0) ∈ R2, X is A-equivalent to fce(u, v) = (u2, u3, v) ; (u, v) ∈
R2.
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Figure 4. From top left to bottom right: cuspidal edge, swallowtail, cus-
pidal butterfly, cuspidal cross cap, and S−1 singularity.

(3) Cuspidal butterflies X is said to have cuspidal butterflies singularity at p ∈ Ω

if at p ∈ Ω and (0, 0) ∈ R2, X is A-equivalent to fcb(u, v) = (u, 4v5 + uv2, 5v4 +

2uv) ; (u, v) ∈ R2.

(4) Cuspidal crosscaps: X is said to have cuspidal crosscaps at p ∈ Ω if at p ∈ Ω

and (0, 0) ∈ R2, X is A-equivalent to fccc(u, v) = (u, v2, uv3) ; (u, v) ∈ R2

(5) Cuspidal S−1 singularities X is said to have cuspidal butterflies singularity at
p ∈ Ω if at p ∈ Ω and (0, 0) ∈ R2, X is A-equivalent to fcs(u, v) = (u, v2, v3(u2 −
v2)) ; (u, v) ∈ R2.

The Lorentzian Enneper surface as in Example 2.9 has singularities at {z ∈ C : |z|= 1}.
The points z = ±1,±i are swallowtails,
eiπ/4, ei3π/4, ei5π/4, ei7π/4 are cuspidal crosscaps and the remaining points on the unit circle
are cuspidal edge singularities.

At this moment it is not clear how the types of singularities were determined here, this
will be very clear from Table 1, [9] and [20] once we learn about the Weierstrass-Enneper
representation (3.10) and Weierstrass data.

Now we define the following type of admissible singularities, we present the definition
given in [18].

Definition 3.7 (Generalized cone-like singularity and cone-like singularity). Let∑
0 be the connected component of the set of all admissible singular points on a generalised

maximal immersion X : Ω → E3
1. Then each point of

∑
0 is called a generalized cone-like

singular point if
∑

0 is compact and the image X(
∑

0) is a single point. Moreover, if there
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is a neighborhood U of
∑

0 such that X(U \
∑

0) is embedded then each point of
∑

0 is
called a cone-like singular point.

In [4], the authors use the name shrinking singularity for the cone-like singularity we
defined here. For the Lorentzian catenoid as in example 2.7 see that every point z such
that |z|= 1 is a cone-like singular point.

Cone-like singularity is also defined by Kobayashi in [6] but not as a point in the domain
of X : Ω→ E3

1 but as a point in the image set of X. We mention it here.
Conelike Singularity (as in [6]): Let q = (x0, y0, z0) ∈ X(Ω), the closure of the

image set of X. Then q is called a cone-like singularity of X if the following conditions are
satisfied:

(i) In a neighbourhood Uq of q, X(Ω) is the graph of a smooth function χ defined on
U \ (x0, y0), where U is a neighbourhood of (x0, y0) in the (x, y)-plane

(ii) On U \ (x0, y0), χ < z0 or χ > z0. By setting χ(x0, y0) = z0, χ is continuous on U
(iii) lim(x,y)→(x0,y0)(χ

2
x + χ2

y) = 1.

Let
∑

0 := X−1(q) ⊂ Ω. It is clear from the condition (i) that there is a neighborhood
U of

∑
0 such that X(U \

∑
0) is an embedding. Therefore by Lemma 2.1 [8], every point in∑

0 is an admissible singularity. [Actually by lemma 2.1, the Gauss map has to be one-one
and if X = (φ1, φ2, φ3) then φ3(z) 6= 0. These two facts together imply that singularities
are admissible.]

As per Kobayashi [6], for the Lorentzian catenoid in Example 2.7 the pre-image set (in
the domain) of (0, 0, 0) is {z : |z|= 1} and all these points are cone-like singularities, these
are admissible too.

Definition 3.8. Folded singularity: We call an admissible singular point p ∈ Ω a folded
singular point if it has a neighborhood U(p) that can be reparametrised as X : U(0) ⊂ R2 →
E3

1 with p = 0 and parameters u and v such that the singular points are on the u-axis and
Xv(u, 0) ≡ 0.

For the Lorentzian helicoid in example 2.8, every point z such that |z|= 1 is a folded
singular point. Under the map X the set {z : |z|= 1} is mapped to the helix.

3.1.2. Curvilinear singularity. This type of singularity may or may not be admissible,
let us define it here.

Definition 3.9 (Curvilinear singularties). We call p ∈ Ω a curvilinear singular point if
there is a neighbourhood U(p) ⊂ Ω of p and a regular embedded curve γ : I → U(p); γ(0) =

p such that γ(I) = U(p) ∩ Sing(X) and X ◦ γ is one-to-one on I.
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All the curvilinear singularities on the Lorentzian helicoid are folded singularities which
are admissible too. However, as discussed in [4] (After Definition 2.2, [4]), there are gener-
alised maximal immersions having curvilinear singularities which are not admissible. Con-
struction of such generalised maximal immersions can be done using the singular Björling
problem. We shall be discussing it in the next section.

Singularities on the generalised maximal immersions

Non isolated

Admissible

As front or frontal

Cuspidal crosscaps Cuspidal edges Swallowtails Cuspidal butterflies Cuspidal S−1

Generalized cone-like

cone-like

Folded

Non admissible

Isolated

3.2. Weierstrass-Enneper representation and Maxfaces. Any generalised maximal
immersion locally can be written in a special form called the Weierstrass-Enneper repre-
sentation, this can be found in [5], [12], [9] etc. Using this representation constructing
examples of generalised maximal immersions with prescribed set of singularities becomes
easy, we explain it here:

Theorem 3.10 (Weierstrass-Enneper representation [3, 12]). A generalised maximal im-
mersion X : Ω ⊂ R2 → E3

1 defined on simply connected domain Ω can be written as

X(z) = Re

∫ z

z◦

φ(z) where φ(z) =

(
1

2
(1 + g2)ω,

1

2
i(1− g2)ω, −gw

)
; z ∈ Ω (3.2)

for some z0 ∈ Ω, some meromorphic function g with |g|6≡ 1 and a holomorphic 1-form
ω on Ω such that the poles of g with order m are zeros of ω of order at least 2m. Here
{g, ω = f(z)dz} is called the Weierstrass data for X.

The Weierstrass data of the Lorentzian catenoid, Lorentzian helicoid and Lorentzian
Enneper surface (with suitable simply connected domain Ω) described in the Examples
2.7, 2.8, 2.9 are given in the Figures 3a,3c, 3d.

For the generalised maximal immersion with Weierstrass data {g, fdz}, the singularity
set (Definition 3.2) is given by the zeros of

|φ1|2+|φ2|2−|φ3|2=
1

2
(1− |g|2)2||f |2. (3.3)
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Denote A1 := {p ∈ Ω : |g(p)|= 1} and A2 := {p ∈ Ω : f(p) = g(p)2f(p) = 0}. Then by
proposition 2.3, p ∈ Ω is a singular point if and only if p ∈ A1∪A2. In general, A1∩A2 6= ∅.
Singular points in A2 \ A1 are isolated but singular points in A1 can not be isolated (as
proved by Romero in [3]).

Example 3.11.

• In Example 2.7 the Lorentzian catenoid has Weierstrass data {g, fdz} ≡ {z, dz
z2 }.

Clearly as f = 1
z2 has no zeros, all the singularities in this case lie in A1.

• Let us take the Weierstrass data to be {g, fdz} ≡ {z, zdz} defined on the disk
D = {z : |z|< 1

2}. Then as |g|6= 1 in the domain D the singularities come from the
zeros of f , here the only singular point is z = 0. So in this case singularity lies in
A2 only. This generalised maximal immersion is shown in Figure 3b.
• In the same way one can obtain many such examples with A1 ∩ A2 6= ∅ also, for
example {g, fdz} = {z, (z − 1)dz}.

As we have seen above, the singularities of a generalised maximal immersion can be
easily obtained from the corresponding Weierstrass data. In fact we can say much more
about the singularities by just analysing the Weierstrass data further, in particular in
[12], [9] Fujimori et al. obtained very useful criteria to determine the types of admissible
singularities. This is given in Table 1.

Definition 3.12. [12] A generalised maximal immersion is called a maxface if all its sin-
gular points are admissible.

The generalised maximal immersion X having the Weierstrass data {g, fdz} is a max-
face if and only if (1 + |g|2)2|f |2> 0. This is because the map X is a maxface if and only
if the map

F (z) :=

∫ z

z0

(
1

2
(1 + g2)fdz,

1

2
i(1− g2)fdz, −gfdz

)
(3.4)

is a Lorentzian null immersion [12]. Moreover F is an immersion is equivalent to the fact
that

|dF1|2+|dF2|2+|dF3|2= (1 + |g|2)2|f |2> 0.

So the above discussion implies that p is a singularity of the maxface X if and only if
|g(p)|= 1 and f(p) 6= 0.

4. Constructing Generalised Maximal Immersions

So far we have seen examples of various types of generalised maximal immersions
and their singularities but for the moment what we do not know is how to construct a
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Let α := g′

g2f
β := g

g′α
′ γ := g

g′β
′ and at p,

Re(α) 6= 0 Im(α) 6= 0 ⇔ p is a cuspidal edge
Re(α) 6= 0 Im(α) = 0 Re (β) 6= 0 ⇔ p is a swallotail
Re(α) 6= 0 Im(α) = 0 Re (β) = 0 Im(γ) 6= 0 ⇔ p is a cuspidal butterlfly
Re(α) 6= 0 Im(α) 6= 0 Im(β) = 0 Re(γ) 6= 0 ⇔ p is a cuspidal S−1
Re(α) 6= 0 Im(α) 6= 0 Im (β) 6= 0 ⇔ p is a cuspidal crosscap

Table 1

generalised maximal immersion with some prescribed type of singularity. In this section
we will see how to do this in some of the cases.

4.1. By selecting suitable Weierstrass data. From the description given in Table 1 we
know that by selecting suitable {g, fdz} we can construct maxfaces which have swallowtail,
cuspidal cross cap and cuspidal edge type singularities. In view of that Kim and Yang in
[4] proposed the following construction to find the required {g, fdz} for few singularities
as in Table 2.

Let us consider the following functions defined on a simply connected domain Ω con-
taining (0, 0):

α(z) := A0 +A1z +A2z
2 +A3z

4 + · · ·

and
β(z) = B0 +B1z +B2z

2 +B3z
4 + · · ·

where Ai, Bj are real numbers and at least one of A0 and B0 must be nonzero. That is we
have α(0)− iβ(0) 6= 0. Now we set

g(z) = eiz, f(z) = (α(z)− iβ(z)) e−iz. (4.1)

Then at z = 0, the functions {g, f} satisfy the conditions to become the Weierstrass data
of a maxface.

Now some easy calculation shows

g′

g2f
=

i

α(z)− iβ(z)
and

g

g′

(
g′

g2f

)′
=

α′(z)− iβ′(z)
−(α(z)− iβ(z))2

.

Moreover we have
i

α(0)− iβ(0)
=
−B0 + iA0

A2
0 +B2

0

and

α′(0)− iβ′(0)

−(α(0)− iβ(0))2
=

[A1(A2
0 −B2

0) + 2A0B0B1] + i[2A0B0A1 −B1(A2
0 −B2

0)]

−(A2
0 +B2

0)2
.
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B0 6= 0 A0 6= 0 ⇔ z = 0 is a cuspidal edge
B0 6= 0 A0 = 0 A1 6= 0 ⇔ z = 0 is a swallowtail
B0 = 0 A0 6= 0 B1 6= 0 ⇔ z = 0 is a cuspidal crosscap

Table 2

Now using the above calculation and the description in Table 1 one can easily obtain
Table 2. By choosing suitable values for A0, A1, B0 and B1 in Table 2 we get the Weier-
strass data from (4.1) and then putting this data in (3.2) we construct the generalised
maximal immersion having some required type of singularity.

4.2. From the singular Björling problem for the generalised maximal immersion.
Discussion of this section is based on [4] and [13].

Let I be an open interval and γ : I → E3
1 be a null real analytic curve. Also let

L : I → E3
1 be a null real analytic vector field such that 〈γ′, L〉 ≡ 0 and at least one of

them is not identically zero. Such {γ, L} is known as a singular Björling data.
The singular Björling problem asks for existence of a generalised maximal immersion

X : Ω→ E3
1 where I ⊂ Ω and Ω a simply connected domain such that X(u, 0) = γ(u) and

∂X

∂v

∣∣∣∣
(u,0)

= L(u).

In [4],[13] we see that there exists a solution of the singular Björling problem if the
analytic extension of the function g

g(u) :=


L1 + iL2

L1 − iL2
; if γ′ vanishes identically

γ1
′ + iγ2

′

γ1
′ − iγ2

′ ; if L vanishes identically

satisfies |g(z)|6≡ 1.
Then the generalised maximal immersion X : Ω→ E3

1 given by (for u0 ∈ I fixed),

X(z) = γ(u0) +Re

(∫ z

u0

γ′(w)− iL(w)dw

)
(4.2)

is known to be the solution of the singular Björling problem.
It has singularity set at least on I. By choosing γ and L suitably we can construct

many examples from (4.2), few of them can be seen in [4].

4.3. By finding suitable Lorentzian null immersion. A holomorphic map F = (F1, F2, F3) :

Ω→ C3 is said to be a Lorentzian null immersion if

(1) (dF1)2 + (dF2)2 − (dF3)2 = 0 and
(2) |dF1|2+|dF2|2+|dF3|2> 0.
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By [12], we know that if the Lorentzian null immersion satisfies

|dF1|2+|dF2|2−|dF3|2 6≡ 0 (4.3)

then f = Re(F) is a maxface. The singularities of f are the points where equation (4.3)
vanishes.

4.4. By finding a suitable harmonic map. Discussion in this part is based on [13].
We can identify E3

1 by C×R. Let F = (h,w) : Ω→ C×R be a smooth map such that
hzz = 0 and wzz = 0 with hzhz̄ − w2

z = 0 and |hz ||hz̄| 6≡ 1. Then in [13] it is proved that such
F turns out to be a generalised maximal immersion.

For such h, as in [13], we have

w(z) = 2Re

∫ z

z0

√
hzhzdz + w(z0) (4.4)

where integration is on any path from z0 to z.
The singularity set of such a generalised maximal immersion is {z ∈ Ω : |hz|= |hz̄|}. In

this setting, to find a generalised maximal immersion, we find suitable harmonic map h and
then w by the equation (4.4). The pair (h,w) will be a generalised maximal immersion.
We illustrate this in the example below:

Example 4.1 (Lorentzian Catenoid). Ω = C−{0} and h(z) = 1
2

(
z − 1

z

)
, w(z) = 1

2 log(zz).
Then we define F : C − {0} → C × R, F (z) = (h(z), w(z)). We have hzhz − w2

z = 0 and
hzz = wzz = 0 for all z ∈ Ω. Here |hz| is not identically equal to |hz̄|. Only on |z|= 1,
|hz|= |hz̄|.

4.5. By finding conjugates of the generalised Maximal immersions. To every gen-
eralised maximal immersion X defined on a simply connected domain Ω, there is a har-
monic conjugate X∗ of X on Ω. Since the sets {Xu, Xv} and {X∗u, X∗v} are simultaneously
dependent or independent by the Cauchy-Riemann equations, the singularity sets of X
and X∗ are the same. The immersion X∗ turns out to be a generalised maximal immer-
sion with same set of singularities but the nature of singularities may get changed, some
examples are given in Table 3 (see [4], [9]). General discussion about how does the the na-
ture of singularities change after perturbation or conjugation is something not completely
explored.

5. general discussion

Let Ω ⊂ R2 be a simply connected domain and X : Ω → E3
1 a generalised maximal

immersion with Weierstrass data on Ω given by {g, fdz}. Then we have X(z) = Re(F (z))

where F (z) is given by equation (3.4).
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X X∗

Folded (as in Lorentzian helicoid) Conelike (as in Lorentzian catenoid)
Swallowtail Cuspidal crosscap

Cuspidal edge Cuspidal edge
Cuspidal butterflies Cuspidal S−1 singularties

Table 3

5.1. Generalised maximal immersion with isolated singularity. Now let p ∈ Ω be
an isolated singularity of X, then from the discussion following Theorem 3.10 we must
have f(p) = (g(p))2f(p) = 0 and |g(p)|6= 1. Also we have

Xz =

(
1

2
(1 + g2)f,

1

2
i(1− g2)f, −gf

)
and Xz =

(
1

2
(1 + g2)f,

−1

2
i(1− g2)f, −gf

)
.

As for an isolated singularity Xz(p) = (0, 0, 0) = Xz(p), dXp must vanish. So at
an isolated singular point of a generalised maximal immersion, every direction is a null
direction as defined and discussed by Whitney in [14]. Here we quickly revise the main
results from [14]:
We call a point p ∈ Ω a ‘Whitney’ singularity for a map f : Ω ⊂ R2 → R3 if it is isolated
and the following conditions are satisfied:

• C1 : after a suitable change of coordinates around p, fx(p) = 0 and fy(p) 6= 0 in
new coordinates (x, y) and
• C2 : ∂f

∂y |p,
∂2f
∂x2 |p, ∂

2f
∂x∂y |p are linearly independent vectors.

In [14], Whitney proved that any map which satisfies the above conditions C1 and C2

is A− equivalent to the cross cap

fcc(u, v) = (u2, v, uv) ; (u, v) ∈ R2; at the point p and (0, 0). (5.1)

Moreover by Theorem 2, [14], any smooth map f which does not satisfy C1 or C2, with
a small perturbation f can be changed to one satisfying C1 and C2.

From the above discussion we see that any generalised maximal immersion as map from
Ω→ R3 with isolated singularity is very near (in sup norm) to the cross cap fcc.

5.2. Generalised maximal immersion with non-isolated singularity. Discussion of
this section is based on [9], [12], [16], [17] etc.

Let X : Ω→ E3
1 be a generalised maximal surface with non-isolated singularity p ∈ Ω.

Then X has a representation given by (3.2) with F as in (3.4). We consider X as map
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from Ω→ R3 given by (3.2). We have

Xu ×Xv = −2iFz × Fz̄ = (|g|2 − 1)|f |2(1 + |g|2, 2Re g, 2Im g)

where ‘×′ is the formal Euclidean cross product. If we define n : Ω→ R3 given by

n :=
1√

(1 + |g|2)
2

+ 4|g|2
(1 + |g|2, 2Re g, 2Im g)

then n is a unit vector field. Moreover Xu and Xv as vector in R3, we clearly have
〈Xu,n〉 = 〈Xv,n〉 = 0. Here 〈, 〉 is formal Euclidean inner product.

Any smooth map χ : Ω ⊂ R2 → R3 having such n is said to be a frontal, it is defined
in the following way:

Definition 5.1. Let U ⊂ R2 be a domain and χ : U → R3 be any smooth map. Then
χ is said to be a frontal if there exists a smooth unit vector field n : U → R3 such that
np ⊥ span{∂χ∂u |p,

∂χ
∂v |p} for all p ∈ U .

Corresponding to every frontal χ there is an obvious map called the Legendrian map
L : U → R3 × S2 defined by L(u, v) := (χ(u, v), n(u, v)), clearly L is smooth. Using this
map now we define fronts:

Definition 5.2. A frontal χ : U ⊂ R2 → R3 is called a front if the Legendrian map L for
χ is an immersion.

When a smooth map χ : U ⊂ R2 → R3 is also a frontal then one often talks about
singularities of χ in terms of a function λ : U → R defined by λ(u, v) := ~n · ( ~χu × ~χv),
precisely the zeros of the function λ are said to be the singular points of the frontal χ. In
this case a singular point p ∈ U is said to be nondegenerate if dλ|p does not vanish, else
it is said to be degenerate. Singularities of a front are defined as the singularities of the
corresponding frontal.

In particular any generalised maximal immersion X : Ω → R3 as map is always a
frontal. Then, as is expected, p ∈ Ω is a singularity of X as generalised maximal immersion
if and only if p is a singularity of X as frontal. Moreover if p is a nondegenerate singularity
of X as frontal then as a generalised maximal immersion p is not an isolated singularity
and p has to satisfy the condition |g(p)|= 1 where g is the meromorphic function in the
Weierstrass data of X.

Though the generalised maximal immersions can always be seen as frontals, they are
not always fronts. In [12] Umehara and Yamada proved that for a maxface (particular
class of generalised maximal immersions) X with Weierstrass data {g, fdz}, X is a front
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on a neighborhood of p and p is a nondegenerate singular point(as frontal) of X if and only
if Re

(
g′

g2f

)∣∣∣
p
6= 0.

In [16], up to A-equivalence, the singularities of a front at a nondegenerate singular
point have been studied and in [12] and [9] this equivalence has been described directly in
terms of the corresponding Weierstrass data in the case of maxfaces. This description is
given in Table 1.

For a maxface with Weierstrass data {g, w}, since ω(p) 6= 0 for a singular point p, in
some complex coordinate we can write w = dz, moreover g(p) 6= 0 as |g(p)|= 1. Therefore
on a simply connected neighbourhood U of p there is an analytic function h such that
g = eh. In [9] a maxface generated by the Weierstrass data {eh, dz} is denoted by fh. Let
O(U) be the set of holomorphic functions defined on U . This set can be endowed with the
compact open C∞-topology. Now for an arbitrary compact subset K ⊂ U define S(K)

to be the set of all holomorphic functions h ∈ O(U) such that the singularities on the set
K of the corresponding maxface fh are cuspidal edges, swallowtail or cuspidal cross caps.
Then Fujimori et al. in [9] proved that S(K) is an open and dense subset of O(U).
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Abstract Let µ denote the standard Wiener measure on C the space of

all continuous functions defined on the interval [0, 1] and all vanishing at

0. νn denotes the translate of µ by fn ∈ C : νn(A) = µ(A − fn). Let

P = µ × µ × .... and Q = ν1 × ν2 × ν3 × ...... be the product measures on

product space C(∞) = C × C × C × ..... Imposing certain natural condi-

tions on the sequence (fn) we prove Q� P and, more importantly, exhibit

explicitly the Radon-Nikodym derivative dQ
dP (x), x ∈ C(∞).

Introduction.

Let C denote the space of all continuous functions defined on [0, 1],

all vanishing at zero and equipped with the uniform metric ρ. The Borel

σ-field of C is denoted by C . Let F ⊂ C, F = {f} be the family of

all the absolutely continuous functions with square (Lebesgue) integrable

Lebesgue deivatives {f ′}. i.e.,

vf =
1∫
0

(
f ′(t)

)2
dt <∞ (1)

Let µ denote the standard Wiener measure on C . For A ∈ C and f ∈ F,

define ν(A) = νf (A) = µ(A − f). So defined, νf is a probability measure

on C .

Let fn ∈ F, n ≥ 1 be such that

v =
∑
n
vn =

∑
n

1∫
0

(
f ′n(t)

)2
dt <∞ (2)

Write νfn = νn and qn =
n∑
j=1

vj . Note qn → v (3)
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c© Indian Mathematical Society, 2020 .

165

MEMBER'S COPY



166 R. P. PAKSHIRAJAN

Facts

(a) Let Fτ = {f : f ∈ F, vf ≤ τ}.
(a1) If fn ∈ Fτ , n ≥ 1 and if ρ(fn, f)→ 0, then f ∈ Fτ .

(a2) Fτ is a compact subset of C (ref. pp 126 - 128, [5]). (4)

(b) Kakutani dichotomy (ref. [3])

LetQn, Pn be probability measures on the measurable space (Ωn, Sn), n =

1, 2, 3, .... Let Q =
⊗
Qn,P =

⊗
Pn denote the product measures on the

product measurable space (Ω, S ). Let for each n, Qn, Pn be mutually

absolutely continuous with respect to each other Qn ∼ Pn. Then Q ∼ P or

the measures Q,P will be mutually singular (Q ⊥ P). The first case occurs

iff
∞∏
1

∫
Ωn

(
dQn
dPn

) 1
2

dPn > 0. (5)

If Qn = β and if Pn = α for all n then Q ⊥ P unless α ≡ β.

In general, it is not easy to explicitly exhibit dQ
dP when the condition (5)

holds. In the paricular important case considered in the Theorem below,

this has been possible.

(c) Cameron-Martin (ref. [1])

If f ∈ F then νf � µ and the Radon-Nikodym derivative
dνf
dµ (x) = e−

1
2
vf+uf (x), x ∈ C (6)

where vf =
1∫
0

(
f ′(t)

)2
dt and uf (x) =

1∫
0

f ′(t) dx(t) a stochastic integral.(7)

To avoid trivialities, assume with no loss of generality that none of the

translaing functions is identically zero.

When µ is the underlying measure,

uf has normal distribution with zero mean and variance vf . (8)

We note vf is necessarily positive since vf = 0 would imply f ′(t) = 0 for

almost all t (Lebesgue measure). It would then follow from this that f is

not absolutely continuous.

We introduce some notation. For identification convenience let Cn =

C, Cn = C , C(n) is the cartesian product of Cj , 1 ≤ j ≤ n; C(∞) is

the cartesian product of Cj , j ≥ 1; C (n) =
n⊗
j=1

Cj ; C (∞) =
(∞)⊗
j=1

; µn =

µ; νn as in (3); Pn = µ1 × µ2 × .... × µn, P = µ1 × µ2 × ........, Qn =

ν1 × ν2 × ....× νn, Q = ν1 × ν2 × ...., the product measures.

Using (6) and properties of product measures we have
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dQn

dPn
(x1, x2, ..., xn) = e

n∑
j=1
{− 1

2
vj+uj(xj)}

, xj ∈ Cj , 1 ≤ j ≤ n (9)

For x ∈ C(∞), write Uj(x) = Uj(x1, x2, .....) = uj(xj). So defined on

C(∞), the Ujs are C (∞)- measurable, they form a sequnce of independent

variables, both under P as well as Q. Under P , Uj will have a zero mean

normal distribution with vj for its variance. Consider Q̃n defined on C (∞)

by prescribing Q̃n(E) = Qn(E ∩C(n)) for E ∈ C (∞). Similar extension for

Pn can be defined. We will then have:

dQ̃n

dP̃n
(x) = e

− 1
2
qn+

n∑
j=1

Uj(x)

, x ∈ C(∞) (10)

We note there exists a metric d for C(∞): (d(x, y) =
∞∑
n=1

1
2n

ρ(xn, yn)
1+ρ(xn, yn)),

ref. pp 197, 199, 243-244, [6] ) under which it is a complete and separable

metric space, the product topology being equivalent to the resulting metric

topology; the product σ-field being the same as the Borel σ- field.

The object of this paper is to prove the following

Theorem. (i) Mτ = {νf : f ∈ Fτ} is a compact subset of M the space

of all probability measures on C endowed with the Prohorov metric π.

(ii) Q ⊥ P if P = µ × µ × ..... and Q = νf × νf × ......, f ∈ F arbitrary

but fixed.

(iii) When the underlying measure is P ,

Relation (2) ⇔
∑
n
Un converges in distribution ⇔

∑
n
Un(x) exists for

P - almost all x.

Further the limit variable U would be normally distributed with mean 0

and variance v.

(iv) If µn = µ and Qn = νn and if (2) holds, then Q ∼ P
(v) If (2) holds, then with Pn, Qn as in (iv), dQ

dP (x) = e−
1
2
v+U(x)

Proof. (i) Let (νn) be an arbitrary sequence in (M, π). Since Fτ is a com-

pact set (ref. Fact (a2)), sequence (fn) (corresponding to the νns) contains

a ρ-convergent subsequence, say, (fj) converging to, say, f0. By Fact (a1),

f0 ∈ Fτ . Let A ∈ C be an arbitrary closed subset. Hence A− f0 would be

a closed set. Given ε > 0, there is N such that ρ(fn, f0) < ε for all n ≥ N .
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Let Sε = {f : f ∈ C, ‖f‖ < ε}. We note A− f0 + Sε =
⋃
f∈A

(f − f0 + Sε).

Since Sε is an open set, f − f0 + Sε and hence A− f0 + Sε would be open

sets. Further A−f0 ⊂ A−f0 +Sε. Thus A−f0 +Sε is an ε- neighbourhood

of the closed set A− f0. Also lim
ε↓0
{A− f0 + Sε} = A− f0. Now,

νj(A) = µ(A− fj) ≤ µ(A− f0 + Sε) for all large j

≤ µ(A− f0) (setting ε = 1
n and letting n→∞) = ν0(A)

This is equivalent to saying νj
w−→ ν0. By this we have proved that every

sequence of elements in (Mτ ) contains a π-convergent subsequence, con-

verging to an element in Mτ . That Mτ is a compact set follows now.

Remark

The following arguments fall a little short of proving the claim but

shows that Mτ is sequentially relatively compact.

Since (C, ρ) is a complete and separable metric space, measure µ is tight

(ref. p44, Theorem 1.9.4, [5] ). Hence given ε > 0 there is a compact set

K ⊂ C such that µ(K) > 1− ε. Since K is a compact set and since Fτ is

a compact set (ref. (3)), it follows

K = K ⊕ Fτ = {g + f : g ∈ K and f ∈ Fτ} is a compact set.

For f ∈ Fτ , νf (K) ≥ νf (K ⊕ {f}) = νf (K + f)

= µ(K + f − f) = µ(K) > 1− ε. Thus

Mτ is a tight family. This implies the claim, again using the separability

and completeness of (C, ρ). (ref. [3])

(ii) This follows immediately from the general result quoted at (5). Even

so it is felt desirable to establish Q ⊥ P by steps special for the problem

on hand.

Q ⊥ P if
∞∏
1

∫
C

(
dνn
dµ (x)

) 1
2

dµ(x) = 0. i.e., if
∞∏
1
e−

1
4
vf
∫
C

e
uf (x)

2 dµ(x) = 0.

i.e., if
∞∏
1
e−

1
4
vf
∞∫
−∞

e
y
2

1√
vf2π

e
− 1

2
y2

vf dy = 0

i.e., if
∞∏
1
e−

1
8
vf
∞∫
−∞

1√
v2π

e
− 1

2vf
{y−vf}2

dy = 0 i.e., if
∞∏
1
e−

vf
8 = 0

which is obviously true, since vf > 0 and hence e−
vf
8 < 1.

(iii) It has already been noted that, under measure P , the Uns form an

independent sequence of normal variables with EUn = 0 and EU2
n = vn.
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Hence Ee
it

n∑
j=1

Uj

=
n∏
j=1

EeitUj =
n∏
j=1

e−
1
2
vnt2 = e−

1
2
qnt2 . Hence

∞∑
n=1

Un con-

verges in distribution if and only if qn (which is a monotonic increasing

sequence) has a finite limit. i.e., if and only if (2) holds.

Suppose now
∞∑
n=1

Un converges in distribution. Hence, by what has just

been proved, qn → v <∞. This implies
∞∏
n=1

EeitUn = e−
1
2
vt2 > 0 for all val-

ues of t. Now appeal to Theorem 2.7(i) converse part, p115 [2] and conclude

that
∞∑
n=1

Un converges with P -measure 1. Proof in the reverse direction is

trivial since convergence wp1 implies convergence in distribution.

(iv)
∫
C

(
dνn
dµ (x)

) 1
2 dµ(x) =

∫
C

(
e−

1
2
vn+un(x)

) 1
2 dµ(x)

= e−
1
4
vn
∫
C

e
1
2
un(x) dµ(x)

= e−
1
4
vn
∞∫
−∞

e
1
2
y 1√

vn2π
e−

y2

2vn dy

= e−
vn
8

∞∫
−∞

1√
vn2π

e−
1

2vn
(y2−yvn+ 1

4
v2n) dy = e−

1
8
vn

leading to
∞∏
n=1

∫
C

(
dνn
dµ (x)

) 1
2 dµ(x) = e

− 1
8

∞∑
n=1

vn
> 0 appealing to (2).

That Q ∼ P follows now.

(v) Let E ∈ C (∞) be arbitrary. Let An = (E ∩C(n)) ×Cn+1 ×Cn+2......

and note An ↓ E. We have :

Q(E) = lim
n→∞

Q(An) = lim
n→∞

Q̃n(An) = lim
n→∞

∫
C(∞)

χAn
(x) dQ̃n

dP̃n
(x) dPn(x)

= lim
n→∞

∫
C(∞)

χAn
(x)e

− 1
2
qn+

n∑
j=1

Uj(x)

dPn(x)

= lim
n→∞

∫
C(∞)

χAn
(x)e

− 1
2
qn+

n∑
j=1

Uj(x)

dP (x) (11)

Since, under P ,
n∑
j=1

Uj is normally distributed, taking the limit under the

integral sign in (11) would be justified if it is justified in the case of
∞∫
−∞

ey 1√
qn2π

e
− y2

2qn dy. i.e., if justified in the case
∞∫
−∞

e|y|
√
qn 1√

2π
e−

1
2
y2 dy.

Justification in this case is available since qn → v <∞. Hence, taking limit
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under the integral sign,

Q(E) =
∫
E

e−
1
2
v+U(x) dP (x)

This being true for every E ∈ C (∞), it follows that dQ
dP (x) = e−

1
2
v+U(x) �

REFERENCES

[1] R. H. Cameron and W. T. Martin, Transformation of Wiener integrals

under translations, Ann. of Math. 45, 386 - 396 (1944).

[2] J. L. Doob, Stochastic Processes, John Wiley & Sons, Inc., New York

(1952).

[3] S. Kakutani, On equivalence of infinite product measures, Ann. of Math.,

49, 214 - 224 (1948).

[4] MIT OpenCourseWare, Fall 2013, 11/27/2013, Therem 2, p2

[5] R. P. Pakshirajan, Probability Theory, Hindustan Book Agency, New

Delhi, (2013).

[6] R. Vaidyanathaswamy, Treatise On Set Topology. The Indian Mathe-

matical Society, 1947.

R. P. Pakshirajan

Formerly at Mysore University, Mysore .

E-mail : vainatheyarajan@yahoo.in

MEMBER'S COPY



The Mathematics Student ISSN: 0025-5742
Vol. 89, Nos. 3-4, July-December (2020), 171–176

A NECESSARY AND SUFFICIENT CONDITION FOR 2
TO BE A PRIMITIVE ROOT OF 2P + 1

V. P. RAMESH, R. THANGADURAI, M. MAKESHWARI AND SASWATI SINHA

(Received : 02 - 03 - 2020 ; Revised : 26 - 08 - 2020)

Abstract. Let p be an odd prime such that 2p+1 is a prime or prime
power. Then, in this article, we prove that 2 is a primitive root of 2p+1

if and only if p ≡ 1 (mod 4).

1. Introduction

Gauss proved that the multiplicative group (Z/nZ)∗ is cyclic if and only
if n = 2, 4, pk or 2pk for all odd primes p and for all positive integers k. For
such integers n, the generators are called primitive roots of n. Indeed, while
studying the periods of rational numbers of the form 1/p for a prime p 6= 2

or 5, Gauss proved the above result and he conjectured that 10 is a primi-
tive root of p for infinitely many primes p. Later E. Artin generalized this
conjecture and gave a heuristic argument for a quantitative form of this con-
jecture and nowadays, it is well-known as Artin’s primitive root conjecture
[4]. Due to these conjectures there are many efforts leading to discoveries
around primitive roots of n, to list a few [1, 4, 5, 6].

We will first set up some notations. For any x ∈ R, [x] denotes the
greatest integer function i.e., the largest integer less than or equal to x. A
prime p is said to be a Sophie Germain prime [2] if 2p+1 is also a prime. It
is expected that there is an infinitude of such primes. Let σ be an element
of the symmetric group Sn. It is easy to observe that the following relation
is an equivalence relation. For i, j ∈ {1, 2, 3, . . . , n}, we say i ∼ j if there
exists k ∈ Z such that σk(i) = j. The equivalence classes of this relation
are called orbits of σ. Furthermore, σ ∈ Sn is said to be a cycle of length `,

2010 Mathematics Subject Classification: 11A07, 11A41, 20F05
Key words and phrases: primitive root, Sophie Germain prime, permutation, orbits of
permutation
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if one of its orbits has ` elements and rest of them have only one element.

In this article, we prove the following results.

Theorem 1.1. Let p be an odd prime such that 2p+1 is a prime or prime
power. Then 2 is a primitive root of 2p+ 1 if and only if p ≡ 1 (mod 4).

Lemma 1.2. Let p be an odd prime such that 2p+ 1 = qk for some prime
q and some integer k ≥ 2. Then q = 3, k is a prime number and p ≡ 1

(mod 4).

Lemma 1.3. For any natural number k, we have[
2φ(3

k)

3k

]
≡ 1 (mod 3),

where φ is the Euler’s totient function.

Corollary 1.4. For any natural number `,[
2φ(3

`)

3`

]
divides

[
2φ(3

`+1)

3`+1

]
.

From Gauss we know that “For a prime p, if a is a primitive root of p
and p2, then a is a primitive root of p` for all ` ≥ 3”. We consider a special
case of this statement, namely for a = 2, p = 3 and in this article we present
the following result which is a stronger result for this special case.

Lemma 1.5. For any k ∈ N, 2 is a primitive root of 3k.

Though, Lemma 1.5 can be proved using the above result of Gauss, in
this article we have invoked Lemma 1.3 to give a self-contained proof of
this lemma. It is to be noted that these lemmas are useful while proving
Theorem 1.1.

In 1969, D. J. Aulicino and Morris Goldfeld [1] have studied the permu-

tation (n!) defined as (n!) =
n−1∏
k=0

(1, 2, . . . , (n− k)), i.e., the product of first

n cycles. They observed a connection between a primitive root of 2n+1 and
the permutation (n!) having only one orbit (which is called as a transitive
permutation) and proved that for any natural number n, the permutation
(n!) is transitive if and only if 2n+ 1 is a prime for which 2 is a primitive
root [1]. Therefore, we have the following natural corollary from Theorem
1.1.
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Corollary 1.6. Let p be an odd prime. Then the permutation (p!) is tran-
sitive if and only if 2p+ 1 is prime and p ≡ 1 (mod 4).

We performed a few computations with primes up to 3 × 106 and
observed that about 4.515% of primes in the above range are such that
2p + 1 is also prime with 2 as a primitive root. Furthermore, the primes
13, 1093 and 797161 are the only primes in the above range for which 2

is a primitive root and 2p + 1 is not prime. It is easy to observe that
for the above listed primes, 2p + 1 is an odd power of 3, namely 27 =

33, 2187 = 37 and 1594323 = 313. We have also estimated that for the prime
p = 6957596529882152968992225251835887181478451547013, 2p+1 = 3103

with 2 as a primitive root. It is worth mentioning here that the powers of
3 in the representations of 2p+ 1 are also primes.

We state the following lemma (see Theorem 2 of [3]) which will be used
while proving Theorem 1.1.

Lemma 1.7. Let p be an odd prime such that 2p+1 is also a prime. Then,
we have

(1) 2p+ 1 divides 2p − 1, if p ≡ 3 (mod 4);
(2) 2p+ 1 divides 2p + 1, if p ≡ 1 (mod 4).

2. Proofs of Lemmas 1.2, 1.3 and 1.5

Proof of Lemma 1.2. Let p be an odd prime such that 2p + 1 = qk for
some prime q and for some integer k ≥ 2. Clearly, q ≥ 3. Therefore,

2p = qk − 1 = (q − 1)(1 + q + q2 + · · ·+ qk−1).

Since q ≥ 3, by the unique factorization in integers, we conclude that 2 =

q − 1 and p = 1 + q + q2 + · · ·+ qk−1. Thus, we get

q = 3 and p = 1 + 3 + 32 + · · ·+ 3k−1.

Since 32m ≡ 1 (mod 4) and 32m+1 ≡ −1 (mod 4), we see that k must be
an odd integer. For otherwise, we get p ≡ 0 (mod 4), a contradiction to p
being prime. Since k is an odd integer, we get p ≡ 1 (mod 4).

Now, suppose k is not prime, equivalently k = mn for some 1 < m,n <

k, then 3m − 1 and 3n − 1 are factors of 3k − 1 since

3k − 1 = (3m − 1)(1 + 3m + 32m + · · ·+ 3(n−1)m)
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which is a contradiction. �

Proof of Lemma 1.3. Now we prove Lemma 1.3 by induction on k. When
k = 1, it is clearly true. We shall assume the result for k = ` and we prove
for `+ 1. Since 2φ(3

`) ≡ 1 (mod 3`), we get

2φ(3
`) =

[
2φ(3

`)

3`

]
3` + 1. (2.1)

Taking the 3-rd power both sides and since 3 · φ(3`) = φ(3`+1) we get

2φ(3
`+1) =

[
2φ(3

`)

3`

]3
33` +

[
2φ(3

`)

3`

]2
32`+1 +

[
2φ(3

`)

3`

]
3`+1 + 1.

On simplification, we get,[
2φ(3

`+1)

3`+1

]
=

[
2φ(3

`)

3`

][2φ(3`)
3`

]2
32`−1 +

[
2φ(3

`)

3`

]
3` + 1

 .

And, by induction hypothesis, the lemma follows. �

Proof of Lemma 1.5. Now, we prove Lemma 1.5 by induction on k. Since
2 is a primitive root of 3, we shall assume that 2 is a primitive root of 3`

for some integer ` ≥ 2 and we prove that 2 is a primitive root of 3`+1.
Let the order of 2 modulo 3`+1 be d. Then, d | φ(3`+1) = 2 · 3`. Since

2 is a primitive root of 3`, we get φ(3`) | d and therefore it is clear that
d = 2 · 3`−1 or 2 · 3`. By Lemma 1.3, we see that

3 6
∣∣∣ [2φ(3`)

3`

]
⇐⇒ 3`+1 6 | 22·3`−1 − 1 (from (2.1)).

Hence, we get d 6= 2 ·3`−1 and d = 2 ·3`. And therefore 2 is a primitive root
of 3`+1. �

3. Proof of Theorem 1.1

Proof. Let p be an odd prime such that 2p+ 1 = qk for some odd prime q
and for some natural number k.
Case 1. k = 1, i.e. both p and 2p+ 1 are primes.

Let us assume that 2 be a primitive root of 2p + 1 and we prove that
p ≡ 1 (mod 4). Suppose, p 6≡ 1 (mod 4), then 2p ≡ 1 mod 2p + 1 from
Lemma 1.7 which is a contradiction to 2 being a primitive root of 2p + 1.
Conversely, if p ≡ 1 (mod 4), then again from Lemma 1.7, we have 2p ≡ −1
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mod 2p + 1 which implies 2p 6≡ 1 mod 2p + 1 and hence 2 is a primitive
root of 2p+ 1.
Case 2. k > 1, i.e. 2p+1 = qk for some odd prime q and for some natural
number k ≥ 2.

Now, by Lemma 1.2, we conclude that q = 3, k is an odd integer and
p ≡ 1 (mod 4). Conversely, from Lemma 1.5, it follows that 2 is a primitive
root of 2p+ 1. �
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PROBLEM SECTION

In Volume 89 (1-2) 2020 of the Mathematics Student, we had invited so-

lutions from the floor, till September 30, 2020 to the old Problems 1, 2,

3, 4, 5 and 7 mentioned in the Math. Student Vol. 88 (3-4) 2019 as well

as solutions to the eight new problems which were proposed in the Math.

Student Vol. 89 (1-2) 2020.

As regards to solutions to Problems mentioned in MS 88 (3-4) 2019, we

received three correct solutions to Problem 2 and one solution to Problem

1 that was not complete. One solution to problem 4 was received but it

was not correct. We did not receive solutions to other problems so we are

printing below the solutions provided by the proposers of the Problems.

Problem 3 of this Volume is interesting and we give some more time to

researchers to submit their solutions to this problem.

As far as solutions to Problems in MS 89(1-2) 2020 are concerned, we

received two correct solutions to Problem 1, one correct solution to Problem

2, two correct solutions to Problem 3 and two correct solutions to Problem

4. We publish these solution in this section.

We first present nine new problems. We invite Solutions to these

problems, solutions to the remaining problems of MS 89 (1-2) 2020 and

solution to Problem 3 of MS 88 (3-4) 2019 from the researchers till March

15, 2021. Correct solutions received from the researchers by March 15, 2021

will be published in the MS 90 (1-2) 2021.

The following five problems have been proposed by Prof. B. Sury, In-

dian Statistical Institute, Bangalore. Prof. Sury is the President of the

IMS for the year 2019-20.

MS 89 (3-4) 2020 : Problem 1. Note that (x, y) 7→ (y,−x) is a bijec-

tion of the plane. In contrast, show that there is no bijection f from R3

to itself such that for any two points P 6= Q, the line joining P and Q is

perpendicular to the line joining f(P ) and f(Q).

© Indian Mathematical Society, 2020 .
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MS 89 (3-4) 2020 : Problem 2. Find all positive integral solutions of

a3 = b2 + p3 where p is a prime and 3 and p do not divide b.

MS 89 (3-4) 2020 : Problem 3. A positive integer is written in each

square of an 100 by 100 chess board. The difference between the numbers

in any two adjacent squares that share an edge is at the most 10. Prove

that at least six squares must contain the same number. Generalize?

MS 89 (3-4) 2020 : Problem 4. In a meeting, n participants sit around

a table and are served drinking water in the following manner. First, any

one of the participants is selected and served. Then, moving clockwise, one

participant is skipped and the next is served. The next two are skipped,

and the next one is served; the next 3 are skipped and the next person is

served and so on. After a while, everyone has been served water at least

once. Prove that if n > 1, it cannot be odd.

MS 89 (3-4) 2020 : Problem 5. For any continuous function f on

[−1/2, 3/2], prove that∫ 3/2

−1/2
f(3x2 − 2x3)dx = 2

∫ 1

0
f(3x2 − 2x3)dx;

∫ 3/2

−1/2
xf(3x2 − 2x3)dx = 2

∫ 1

0
xf(3x2 − 2x3)dx;

∫ 3/2

−1/2
x2f(3x2 − 2x3)dx = 2

∫ 1

0
(3x/2− x2/2)f(3x2 − 2x3)dx.

The following problem has been proposed by Dr. Siddhi Pathak, De-

partment of Mathematics, Pennsylvania State University, State College,

PA 16802, USA.

MS 89 (3-4) 2020 : Problem 6. Let Q+ denote the set of positive

rational numbers, and P : Q+ → N be defined as P (m/n) = mn for

gcd(m,n) = 1. Show that ∑
q∈Q+

1

P (q)2
=

5

2
.
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The following two problems are proposed by Dr. Anup Dixit, Depart-

ment of Mathematics, Chennai Mathematical Institute, Chennai. Earlier

he was associated with Queen’s University, Ontario, Canada.

MS 89 (3-4) 2020: Problem 7. For a real number x, let bxc denotes

the largest integer ≤ x. Evaluate

∞∑
n=1

(−1)b
√
4n+1c

n(n+ 1)
.

MS 89 (3-4) 2020: Problem 8. Let a1, a2, · · · , an be positive real num-

bers all ≥ 1. Let G denote its geometric mean given by G = (a1a2 · · · an)1/n.

Show that

1

1 + a1
+

1

1 + a2
+ · · ·+ 1

1 + an
≥ n

1 +G
.

Prof. Ram Murty, Queen’s University, Canada proposed the following

problem.

MS 89 (3-4) 2020: Problem 9. Prove that

∞∑
n=1

nn

n!
αn

is transcendental for every non-zero algebraic α satisfying |α| < 1/e.

Solutions to the Old Problems

MS 88 (3-4) 2019: Problem 1. (Proposed by Prof. B. Sury) Let the

sequence {En} be defined by tan(t) + sec(t) =
∑

n≥0Ent
n/n!. Show that

En’s are positive integers. Find an interpretation of En as counting per-

mutations of 1, · · · , n of a particular type.
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Solution (by Prof. B. Sury).

Call a sequence of distinct positive integers {a1, a2, · · · , an} alternating if

a1 > a2 < a3 > a4 < · · ·

Call a sequence reverse alternating, if

a1 < a2 > a3 < a4 > · · ·

One may talk of alternating and reverse alternating permutations in Sn.

For instance, the 5 reverse alternating permutations of 1, 2, 3, 4 are

2143, 3142, 3241, 4132, 4231.

Clearly, the number of alternating permutations of 1, 2, · · · , n equals the

number of reverse alternating permutations via the bijection given by

ai 7→ n+ 1− ai.

Call this common number en; we will show that en = En in the problem.

For this, we will obtain a recursion satisfied by the en’s as follows. For any k-

element subset S of {1, 2, · · · , n}, choose a reverse alternating permutation

a1 < a2 > a3 < · · · ak

of S and a reverse alternating permutation

b1 < b2 > b3 < · · · bn−k

of the complement of S. Clearly the permutation

ak, ak−1, · · · , a2, a1, n+ 1, b1, b2, · · · , bn−k

of 1, 2, · · · , n + 1 is alternating or reverse alternating according as k is

even or odd. Moreover, for each of the
(
n
k

)
choices for the SET Sk =

{a1, · · · , ak}, ek choices of a reverse alternating permutation a1, a2, · · · , ak
of Sk and en−k choices of a reverse alternating permutation of the com-

plement {1, 2, · · · , n, n+ 1} \ Sk, we get each alternating permutation and

each reverse alternating permutation of {1, 2, · · · , n+1} once each. In other

words, we have the recursion

2en+1 =
n∑
k=0

(
n

k

)
eke− n− k
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where we have put e0 = 1 for convenience. We form a generating function

by multiplying the recursion by tn+1

(n+1)! and summing for n ≥ 0, we have

g(t) =
∑
n≥0

en
tn

n!

satisfying 2g′(t) = 1 + g(t)2 and g(0) = 1.

Solving this initial value problem, we obtain

g(t) = tan(t) + sec(t)

which proves that en = En, and hence, our assertion.

MS 88 (3-4) 2019 : Problem 2 (Proposed by B. Sury).

Prove that a cubic integer polynomial ax3 + bx2 + cx+ d where ad is odd

and bc is even must have an irrational root.

Mr. Shivam Jadhav, IIT, Delhi provided the solution to this prob-

lem on June 2, 2020. The solution is given below.

Solution.

f(x) = ax3 + bx2 + cx+ d a, b, c, d ∈ Z (1)

We will prove the statement by contradiction. Assume that f(x) has

no irrational roots. Also we know that ad is odd and bc is even . Then we

can write

f(x) = (α1x+ β1)(α2x+ β2)(α3x+ β3) αi, βi ∈ Z ∀ i = 1, 2, 3. (2)

=⇒

a = α1α2α3 (3)

b = α1α2β3 + α1β2α3 + β1α2α3 (4)

c = α1β2β3 + β1β2α3 + β1α2β3 (5)

d = β1β2β3 (6)
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Case 1 :

If ad is odd =⇒ both a, d must be odd , which further =⇒ all αi, βi

must be odd . Which means that b, c are odd and bc is odd since product

of three odd integers is odd and sum of three odd integers is odd.But it’s

not true .

Case 2 :

If bc is even either one of them is even or both of them . In either scenario

for that to happen at least one αi and one βi must be even . Which implies

that ad is even. But it’s not true .

Hence the assumption that f(x) has no irrational roots is false. So f(x)

must have an irrational root.

bf Mr. Prajnanaswaroopa, Amity University, Coimbtore and Mr. Prith-

wijit De, HBCSE, Mumbai have also provided correct solutions to this

problem.

MS 88 (3-4) 2019 : Problem 4 (Proposed by Prof. B. Sury).

Find the number an of permutations σ of 1, · · · , n such that there is NO

triple i < j < k with σ(j) < σ(i) < σ(k). For instance, a2 = 2 while a3 = 5.

Further, find all n for which an is odd.

Solution 4 (by Prof. B. Sury).

The study of the number an of “321-avoiding” permutations is due to R.

Stanley. It is convenient to define for any permutation σ, a new function σ

by

σ(i) := |{1 ≤ j ≤ i : σ(j) ≥ σ(i)}|.

Now, if there is NO triple i < j < k with σ(j) < σ(i) < σ(k), then every

i < j satisfying σ(i) > σ(j) also satisfies σ(i) > σ(j + 1). Hence,

σ(j) ≤ σ(j + 1).

That is, σ is a monotonic function.

Conversely, if σ is monotonic, we claim there is NO triple i < j < k with

σ(j) < σ(i) < σ(k).

If there were such a triple, consider the sequence

σ(j), σ(j + 1), · · · , σ(k).
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Then, there must be two consecutive terms σ(l), σ(l + 1) in this sequence

such that

σ(l) < σ(i) < σ(i+ 1).

In this case, any m < l+1 such that σ(m) > σ(l+1) also satisfies m < l and

σ(m) > σ(l). Also, i < l and σ(i) > σ(l) whereas σ(i) < σ(l+1). Therefore,

we would have σ(l) is strictly larger than σ(l + 1), a contradiction.

Thus, the number an sought is exactly the number of monotonic functions

θ from {1, 2 · · · , n} to itself such that θ(i) ≤ i for all i ≤ n.

Counting these is of independent interest and it is usually done by counting

lattice paths (Dyck words) on the integer lattice from the lower left corner

to the right upper corner of an n×n square grill where each step is either to

the right ot upwards and the path never goes above the diagonal. Calling R

and U as unit steps to the right and upwards respectively, we have words in

R and U . Counting the number of all words, and subtracting the number

of those words which correspond to going above the diagonal, we have the

number

an =

(
2n− 1

n− 1

)
=

(
2n− 1

n− 2

)
=

1

n+ 1

(
2n

n

)
.

These are called the Catalan numbers.

As the power of 2 dividing a binomial coefficient
(
n
r

)
is given by the number

of carry-overs when the binarye xpansion of r and n− r are added (this is

due to Kummar and Legendre), it is easy to see that the number of carry-

overs when the binarye xpansion of n is added with itself can equal the

power of 2 dividing n+ 1 (equivalent to the oddness of an) if, and only if,

n+ 1 is a power of 2.

MS 88 (3-4) 2019 : Problem 5 (Proposed by Prof. B. Sury).

The mixed fraction 915742
638 equals 91 + 9 = 100. It involves all the digits

1 to 9 once. Find all such mixed fraction expressions with the value 100.

Further, find mixed fractions for 20, 40 and 72 also.

Solution (by Prof. B. Sury).

This problem is due to the famous puzzlist Henry Dudeney. As he men-

tions, it can be “done by patient trial, and there is a singular pleasure in

discovering each correct arrangement.”

To understand how to rule about many possibilities, look at an expres-

sion like 100 = 915742
638 = 91 + 9 as given in the problem. Similarly, consider

MEMBER'S COPY



184 PROBLEMS SECTION

100 = w+f where w is a whole number like 91 above and the fraction f has

an integer value (like 9 above). If we were to have a 5 in the whole number

w, we would be forced to have 5 or 0 in the numerator or denominator of f ;

so, 5 is ruled out in w. If the whole number w ends in 9, then the fraction

is like 21 or 31 etc. But then the last digits of numerator and denominators

of f are the same which is not allowed. An expression like 100 = 98 + 2

with 2 equal to a fraction involving the 7 digits 1, 2, 3, 4, 5, 6, 7 is checked

to be impossible, Note that the fraction involves either 7 digits or 8 digits

totally in its numerator and denominator because the whole number w has

1 or 2 digits. Moreover, we can argue to show the following concerning

the “digital root” (its value modulo 9 but with 0 taken as 9; that is, the

number obtained by adding all the digits and repeating this process until

we get a one-digit number) of the numerator and the denominator of the

fraction f . As he digital root of all 9 digits is 9, for a given whole number

w, the digital root of the numerator and of the denominator can have only

one choice (if there is a choice at all).

For example, 100 = 96 + f means the fraction f = n/d = 4 and the digital

roots of d and of n = 4d add up to the digital root of 1+2+3+4+5+7+8

(the digits other than those in 96) which is 3. Hence, the digital root of

n+ d = 5d which is 3 gives that 5d modulo 9 is 3 and hence d mod 9 is 6.

In this manner, we may restrict possibilities. The final answer is that there

are exactly 11 mixed fractions of the form for 100. These are

96
2148

537
, 96

1752

438
, 96

1428

357
, 94

1578

263
,

91
7524

836
, 91

5823

647
, 91

5742

638
, 82

3546

197
,

81
7524

396
, 81

5643

297
, 3

69258

714
.

For 20, 40, 72 we have mixed fractions

20 = 6
13258

947
, 40 = 27

5148

396
, 72 = 59

3614

278
.

MS 88 (3-4) 2019 : Problem 7 (Proposed by Prof. J. R. Patadia).

If a set E = {nk : k = 1, 2, · · · } of natural numbers satisfy the con-

dition
nk+1

nk
≥ q > 1 for all k, then show that Supn∈N R2(E,n) < ∞,

where R2(E,n) = number of different representations of n as n = ±nr ±
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ns, nr, ns ∈ E

Solution (by Prof. J. R. Patadia).

Observe that n1 < n2 < n3 < · · · < nk < nk+1 < · · · < nk+s < · · · for all

k, s ∈ N. Since
nk+1

nk
≥ q > 1 for all k, we have, for any k, s ∈ N,

nk+s
nk

=
nk+s
nk+s−1

· nk+s−1
nk+s−2

· · · nk+1

nk
≥ q · q · q · · · q = qs.

Thus,

ns increases at least as rapidly as qs for every s ∈ N. (*)

Now consider any n ∈ N.

Suppose n = ns + nr or n = ns − nr, 1 ≤ r < s, r, s ∈ N, and nr, ns ∈ E
In case n = ns + nr,

n

2
=
ns + nr

2
<

2ns
2

= ns < ns + nr = n, that is,
n

2
< ns < n. (7)

In case n = ns − nr, obviously n < ns. On the other hand, n > ns − ns
q =

ns
q−1
q , as ns

nr
≥ q. It follows that

n < ns <
nq

q − 1
. (8)

Now, n is arbitrary, and in view of (*), number of ns satisfying (1) or (2)

is bounded, the bound depending only on q, and hence the conclusion.

MS 89 (1-2) 2020 : Problem 1 (Proposed by Prof. Ram Murty, Queen’s

University, Canada).

Let p be a prime number and suppose that f : Z/pZ → Q is a non-zero

function. We may view f as a function on the natural numbers by setting

f(n) to be f(a) when n ≡ a mod p. Suppose that
∑p

a=1 f(a) = 0. Show

that
∞∑
n=0

f(n)

n!

is transcendental.

Dr. Siddhi Pathak, Department of Mathematics, Pennsylvania State

University, State College, PA 16802, USA provided the solution to this

problem. In fact, she proves a more general statement. Her solution is

presented below.
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Solution. We will prove the following more general statement: Let f :

Z→ Q be a non-zero periodic function, with period q ≥ 2. Then the series

Sf (z) :=

∞∑
n=0

f(n)

n!
zn

is transcendental for every non-zero algebraic value of z.

The convergence of the above series is immediate from the Stirling’s

formula, namely,

n! ∼
(n
e

)n√
2πn, as n→∞,

and the fact that |f(n)| is bounded.

One can view f as a function on Z/qZ. The Fourier transform of f can

then be defined as

f̂(a) :=
1

q

q∑
b=1

f(b)e−2πiab/q,

and the Fourier inversion formula gives

f(b) =

q∑
a=1

f̂(a)e2πiab/q.

Replacing the above expression for f(n) in the given series leads to

Sf (z) =
∞∑
n=0

zn

n!

q∑
a=1

f̂(a)e2πian/q =

q∑
a=1

f̂(a)
∞∑
n=0

(z ζaq )n

n!
,

where ζq = e2πi/q. Using the series expansion of the exponential function,

we obtain that

Sf (z) =

q∑
a=1

f̂(a) exp (z ζaq ). (9)

Let {α1, · · · , αr} be a maximal Q-linearly independent subset of the set

{ζaq : 1 ≤ a ≤ q}. Thus, for each 1 ≤ a ≤ q, we can write

ζaq =

r∑
j=1

cj(a)αj , cj(a) ∈ Q.

On expressing cj(a) in their reduced form with positive denominators, let

M be the maximum of their denominators. Thus, M cj(a) ∈ Z. Inserting
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this back in (9), we get

Sf (z) =

q∑
a=1

f̂(a)
m∏
j=1

exp (z αj)
cj(a) =

q∑
a=1

f̂(a)
m∏
j=1

exp
(z αj
M

)M cj(a)
. (10)

Suppose that cj(a) ≥ 0 for all 1 ≤ a ≤ q and 1 ≤ j ≤ m. Then the

above equation expresses Sf (z) as a polynomial in exp (z αj/M) over Q.

Moreover, if {αj : 1 ≤ j ≤ m} are Q-linearly independent, then so are the

numbers {z αj
M

: 1 ≤ j ≤ m
}
,

for a non-zero algebraic number z. Hence, by the Lindemann-Weierstrass

theorem, the numbers exp (z αj/M), for 1 ≤ j ≤ m are algebraically inde-

pendent. Therefore, if f̂(a) 6≡ 0 (that is f 6≡ 0), then Sf (z) is transcenden-

tal.

Now assume that cj(a) < 0 for some 1 ≤ a ≤ q and 1 ≤ j ≤ m. Further

suppose that Sf (z) = β ∈ Q. Define

dj :=

0 if cj(a) ≥ 0 for 1 ≤ a ≤ q,

max1≤a≤q −cj(a) otherwise.

Multiplying both sides of (10) with

m∏
j=1

exp(z αj/M)M dj ,

gives

β

m∏
j=1

exp
(z αj
M

)M dj
−

q∑
a=1

f̂(a)

m∏
j=1

exp
(z αj
M

)M cj(a)+M dj
= 0.

Thus, the numbers exp(z αj/M) satisfy a polynomial over Q. By the

Lindemann-Weierstrass theorem, this polynomial should be identically zero.

This is possible only if all monomials in the above polynomial are of the

same form, that is, cj(a) = 0 for all 1 ≤ a ≤ q and 1 ≤ j ≤ m. This is

clearly a contradiction. Hence, Sf (z) is transcendental.

We also received a solution to this problem by Prof. B. Sury.
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MS 89 (1-2) 2020 : Problem 2 (Proposed by Prof. Ram Murty, Queen’s

University, Canada).

Prove that for n ≥ 1,

n∑
k=1

(−1)k+1

(
n

k

)
1

k2
=

n∑
k=1

Hk

k

where Hn = 1 + 1/2 + · · ·+ 1/n.

Prof. B. Sury provided the solution to this problem. The solution by

Prof. Sury is given below.

Solution. It is well known and easy to check (the binomial transform) that

if

an =
n∑
r=0

(−1)r
(
n

r

)
br,

then

bn =
n∑
r=0

(−1)r
(
n

r

)
ar.

In view of this, proving the asserted equality

n∑
k=1

(−1)k+1

(
n

k

)
1

k2
=

n∑
k=1

Hk

k

where Hk =
∑k

r=1
1
r becomes equivalent to showing that

n∑
k=1

(−1)k+1

(
n

k

) k∑
r=1

Hr

r
=

1

n2
.

Note that
∑k

r=1
Hr
r =

∑
1≤i≤j≤k

1
ij .

So, we need to prove

n∑
k=1

(−1)k+1

(
n

k

) ∑
1≤i≤j≤k

1

ij
=

1

n2
.

In this form, this was posed as problem 11164 in the American Mathemat-

ical Monthly in the year 2005 by Dias-Barrero. Instead of recalling the

solution, we describe below a generalization due to W. Chu and Q. L. Yan

which proves much more:
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n∑
k=1

(−1)k+1

(
n

k

) ∑
1≤i1≤···≤ir≤k

1

i1i2 · · · ir
=

1

nr
.

In fact, this is itself a consequence of the formal identity of rational func-

tions:
n∑
k=0

(−1)k
(
n

k

)(
x+ k

k

)−1 ∑
0≤i1≤···≤ir≤k

1

(x+ i1) · · · (x+ ir)
=

x

(x+ n)r+1
· · · (♠)

evaluated at x = 1 (and taking n − 1 in place of n). We give Chu’s proof

of this now.

Use the relation (
n

k

)(
x+ k

k

)−1
=

(
x+ n

n− k

)(
x+ n

n

)−1
.

Denoting by L, the left hand side of (♠), we have(
x+ n

n

)
L =

∑
0≤i1≤···≤ir≤n

1

(x+ i1) · · · (x+ ir)

n∑
k=ir

(−1)k
(
x+ n

n− k

)
.

Let us now use the well known binomial identity

n∑
k=ir

(−1)k
(
x+ n

n− k

)
= (−1)ir

(
x+ n

n− ir

)
x+ ir
x+ n

· · · (A)

We have then(
x+ n

n

)
L =

1

x+ n

∑
0≤i1≤···≤ir−1≤n

1

(x+ i1) · · · (x+ ir−1)

n∑
ir=ir−1

(−1)ir
(
x+ n

n− ir

)
.

We use (A) once again to the rightmost sum; that is,

n∑
ir=ir−1

(−1)ir
(
x+ n

n− ir

)
= (−1)ir−1

(
x+ n

n− ir−1

)
x+ ir−1
x+ n

.

We obtain (
x+ n

n

)
L =

1

(x+ n)2

∑
0≤i1≤···≤ir−1≤n

1

(x+ i1) · · · (x+ ir−2)

n∑
ir−1=ir−2

(−1)ir−1

(
x+ n

n− ir−1

)
.
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Repeating this a total of r times, we finally obtain(
x+ n

n

)
L =

1

(x+ n)r

(
x+ n

n

)
x

x+ n

which immediately gives the asserted identity

L =
x

(x+ n)r+1
.

MS 89 (1-2) 2020 : Problem 3 (Proposed by Dr. Siddhi Pathak).

Let f : R \ {1} → R be an integrable function satisfying the condition that

f(x)f

(
1− 1

x

)
= −x

for all x ∈ R \ {0, 1}. Suppose that f(x) > 0 for x > 1. Then show that∫ ∞
2

(f(x)− 1)2dx = 1.

Mr. Prithwijit De, HBCSE, Mumbai gave the correct solution to the

problem. The solution by him is presented below.

Solution. Observe that each of the transformations

(1) x→ 1/x,

(2) x→ 1− x,

(3) x→ 1

1− x
is a bijection on R\{0, 1}. Making the first and the second transformations

in succession leads to

f

(
1

1− x

)
f(x) = − 1

1− x
(11)

for all x ∈ R\{0, 1}. The third one transforms the given functional equation

to

f

(
1− 1

x

)
f

(
1

1− x

)
=

1− x
x

(12)

for all x ∈ R \ {0, 1}.{
f(x)f

(
1− 1

x

)}
.

{
f

(
1

1− x

)
f(x)

}
= (f(x))2

{
f

(
1− 1

x

)
f

(
1

1− x

)}
=

x

1− x
(13)
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whence by virtue of (2) we obtain

(f(x))2 =

(
x

1− x

)2

(14)

for all x ∈ R \ {0, 1}. As f(x) > 0 for x > 1, f(x) =
x

x− 1
on (2,∞) and∫ ∞

2
(f(x)− 1)2dx =

∫ ∞
2

dx

(x− 1)2
= 1. (15)

It is easy to see that f(x) =
x

x− 1
satisfies the given functional equation

for all x ∈ R \ {0, 1}.

MS 89 (1-2) 2020 : Problem 4 (Proposed by Dr. Anup Dixit).

Let a, b, c be positive real numbers. Show that

3a

4b+ 5c
+

3b

4c+ 5a
+

3c

4a+ 5b
≥ 1. (1)

Dr. Yagub N. Aliyev, ADA University, School of IT and Engineer-

ing, Baku, Azerbaijan provided the solution to the problem on June 24,

2020. The solution by him is presented below. Mr. Desari Naga Vijay

Krishna, Machilipatnam, A. P. also submitted the correct solution to the

problem.

Solution. The following inequality is well known and follows directly from

Cauchy-Schwarz’s inequality:

α2

x
+
β2

y
+
γ2

z
≥ (α+ β + γ)2

x+ y + z
. (2)

Let us write our inequality as

3a2

4ab+ 5ac
+

3b2

4bc+ 5ab
+

3c2

4ac+ 5bc
≥ 1. (3)

By (2),

3a2

4ab+ 5ac
+

3b2

4bc+ 5ab
+

3c2

4ac+ 5bc
≥ 3(a+ b+ c)2

9ab+ 9bc+ 9ac
. (4)

It remains to prove that

(a+ b+ c)2

3ab+ 3bc+ 3ac
≥ 1, (5)
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which is obvious.

MS 89 (1-2) 2020 : Problem 6 (Proposed by Prof. M. M. Shikare).

Let G be a graph with 10 vertices. Among any three vertices of G, at least

two are adjacent. Find the least number of edges that G can have. Find a

graph with this property.

Mr. Shivam Jadhav, IIT, Delhi provided solution to this problem

on June 4, 2020. Solution provided by him is produced below.

Solution. The answer is 20 edges. The graph satisfying the property asked

in the question is a pair of K5. The details are given below.

Consider a graph G satisfying the properties mentioned in the question.

Let the v be one of the vertex of G. Let S be the set of vertices not adjacent

to v and S does not contain v.

Case 1 : deg(v) ≤ 2. We have |S| ≥ 7.

Then in order to satisfy the property the sub-graph formed by S must be

complete. So the number of edges is more than 20.

Case 2 : deg(v) = 3. Then |S| = 6.

In order to satisfy the property the sub-graph formed by S must be com-

plete. There will be 3 edges more so that the property is not violated . Let

p, q, r be adjacent to v. There is an edge in each of (p, q, x) (p, r, y)

and (q, r, z), where x, y, z are three distinct vertices in S. So the tota l

number of edges is 15 + 3 + 3 = 21 which is greater than 20.

Thus every vertex of G is of degree at least 4 and hence G has at least

20 edges (by Handshaking Lemma).

The graph G

The graphs G consists of a pair of two copies of K5.
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