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TWISTED CONJUGACY IN CERTAIN
PL-HOMEOMORPHISM GROUPS*

P. SANKARAN

Abstract. The aim of these notes is to establish the R∞-property for certain

classes of PL-homeomorphism groups which include certain generalizations

of the Richard Thompson group F . We shall describe the Bieri-Neumann-

Strebel invariant Σ(G) associated to a group G and how it is applied to decide

on the R∞-property. We shall construct a family G of finitely generated

PL-homeomorphism groups of the interval [0, 1] each of which has the R∞-

property, such that G has cardinality the continuum, and, members G are

pairwise non-isomorphic.

1. Introduction

Let φ : G → G be an endomorphism of an infinite group G. We say that

two elements x, y ∈ G are φ-twisted conjugates if there exists a g ∈ G such that

y = g.x.φ(g−1). This is an equivalence relation on G and the equivalence classes

are called φ-twisted conjugacy classes. When φ equals the identity, the twisted

conjugacy relation is the same as the usual conjugacy relation inG. The cardinality

#R(φ) of the set R(φ) of all φ-twisted conjugacy classes is called the Reidemeister

number of φ. If the Reidemeister number of every automorphism of G is infinite,

one says that G has the property R∞ or that G is an R∞-group.

The notion of the Reidemeister number arose in fixed point theory. The notion

of twisted conjugacy arises in other areas, such as representation theory, number

theory, besides topology. The problem of determining which (finitely generated)

infinite groups has property R∞ was first formulated by Fel’shtyn and Hill [15].

It was shown by Levitt and Lustig [23] that non-elementary torsion free word

hyperbolic groups have the R∞-property. (They in fact proved a stronger property

which readily implies the property R∞.) This was extended to all non-elementary

hyperbolic groups by Fel’shtyn. This prompted Fel’shtyn and Hill to conjecture

that groups with exponential growth have the property R∞. This was resolved in

* The (modified) text of the 26th Srinivasa Ramanujan Memorial Award Lecture delivered at

the 81st Annual Conference of the Indian Mathematical Society held at the Visvesvaraya Nati-

onal Institute of Technology, Nagpur - 440 010, Maharashtra, during the period December 27-

30, 2015.

2010 Mathematics Subject Classification : 20E45

Key words and phrases: PL-homeomorphisms, twisted conjugacy, Sigma theory.

c© Indian Mathematical Society, 2016 .
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2 P. SANKARAN

the negative by Gonçalves and Wong [20]. They also showed that the property

R∞ is not a geometric property, by showing that it is not inherited by finite

index subgroups. For example, the fundamental group of the Klein bottle has

the property R∞ but not Z2. The Fel’shtyn-Hill problem of classifying groups

according as whether or not they have the R∞-property has now become an active

research area. Depending on the class of groups under consideration the resolution

of the problem draws results and techniques from several branches of mathematics,

such as geometric group theory [13], combinatorial group theory [21], C∗-algebra

[17], Lie groups and algebraic groups [26], and, very recently, number theory [19].

In this largely expository article, our aim is to show the following result,

obtained by D. L. Gonçalves, P. Sankaran, and R. Strebel.

Theorem 1.1. ([19]) There exists a family G of PL-homeomorphism groups of

the interval [0, 1] such that: (i) members of G are pairwise non-isomorphic, (ii)

each member of G is an R∞-group, and, (iii) the cardinality of G equals that of R.

We begin §2 with a brief discussion on the R∞ property and give well-known

examples of groups which have and those which do not have the R∞-property. We

introduce in §3 certain classes of PL-homeomorphism groups. In §4 we shall recall

the Bieri-Neumann-Strebel invariant and explain its relevance to the property R∞.

In §5 we shall recall the classical Gelfond-Schneider theorem and show how it can

be used to show certain PL-homeomorphism groups, which are generalizations of

Richard Thompson’s group F , have the R∞-property. We shall prove Theorem

1.1 in the §6.

2. R∞-groups

Recall from §1 that a group G has the R∞-property if the Reidemeister number

of every automorphism of G is infinite.

Suppose that

1→ N
i
↪→ G

η→ H → 1 (1)

is an exact sequence of groups and that φ is an endomorphism of G such that

φ(N) ⊂ N . Denote by φ̄ : H → H the surjective endomorphism of H that φ

induces and by φ′ the restriction of φ to N We have the following commuting

diagram of groups and their homomorphisms with exact rows:

1 → N ↪→ G
η→ H → 1

↓ φ′ ↓ φ ↓ φ̄
1 → N ↪→ G

η→ H → 1

(2)

Note that if φ is an automorphism and if φ(N) = N , then φ̄ is an automor-

phism of H.

Lemma 2.1. Let φ : G→ G be an endomorphism of a group such that φ(N) ⊂ N .

With the above notations, if R(φ̄) =∞, then R(φ) =∞. �
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TWISTED CONJUGACY IN CERTAIN PL-HOMEOMORPHISM GROUPS 3

Proof follows from the fact that if x, y ∈ G are φ-twisted conjugates, then

η(x), η(y) ∈ H are φ̄-twisted conjugates.

Note that, in the above lemma, if H is isomorphic to Zn for some positive

integer n, and if φ̄ = id, for every φ ∈ Aut(G), then G is an R∞ group.

We shall now list some classes of groups which are known to have, or not have,

the R∞-property.

Example 2.2. (1) The infinite cyclic group Z does not have the R∞ property.

Indeed R(−id) = 2. More generally, if φ : Zn → Zn is an automorphism of

Zn, it is not difficult to show that R(φ) equals the index of Im(id − φ) in Zn.

Thus R(φ) < ∞ if and only if 1 is not an eigenvalue of φ, that is, if and only if

Fix(φ) = 0.

(2) The lamplighter group Lm defined as the restricted wreath product (Z/mZ)o
Z = (Z/mZ)∞ o Z, is an R∞-group if and only if gcd(6,m) 6= 1. This result is

due to [20].

(3) The Baumslag-Solitar groups B(m,n) with gcd(m,n) = 1,m, n > 0, de-

fined in terms of the presentation 〈x, y | xymx−1 = yn〉, is anR∞-group ifm,n > 1.

This was established by Fel’shtyn and Gonçalves [14].

(4) Fel’shtyn, Leonov, and Troitsky [16] showed that a class of saturated

weakly branch groups that includes the Grigorchuk group and the Gupta-Sidki

group have the R∞-property.

(5) Fel’shtyn and Troitsky [17] showed that a finitely generated residually finite

group which is non-amenable has the R∞-property.

(6) Irreducible lattices in semisimple Lie groups of real rank at least 2 have

the R∞-property [26]. When lattice is residually finite, this result follows from

the previous example. Although any lattice in a semisimple linear Lie group is

residually finite, it is known that there are irreducible lattices in certain simple

Lie groups which are not residually finite.

(7) The groups SL(n,R), GL(n,R), n > 2, have the R∞-property when R is

an infinite integral domain with trivial automorphism group (for example, R = Q)

or when R is an integral domain of characteristic zero and for which Aut(R) is

a torsion group (for example, K = Z). This result is due to Nasybullov [27].

Recently this result has been extended to certain Chevalley groups of Lie type

over fields of characteristic zero [28].

3. PL-homeomorphisms of the interval

Denote by PLo(R) the group of all orientation preserving piecewise linear

(PL) self-homeomorphisms of the reals. We denote by PLo(I) the group of ori-

entation preserving PL-homeomorphisms of an interval [0, b], b > 0. It is regarded

as the subgroup of PLo(R) consisting of those homeomorphisms of R which are

identity outside I. A linear isomorphism [0, 1] ∼= [0, b] induces an isomorphism
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4 P. SANKARAN

PLo(I) ∼= PLo([0, 1]). However, it would be convenient to allow b to be an arbitrary

positive real number. We shall be particularly interested in subgroups of PLo(I)

consisting of elements whose slopes (that is, the finitely many values of its deriva-

tives at smooth points) and whose break-points (that is, the finitely many points

of (0, b) where the element fails to be differentiable) would be suitably restricted.

An example of such a group is the Richard Thompson’s group F ⊂ PLo([0, 1])

consisting of elements whose slopes are in the multiplicative group generated by

2 ∈ R×>0 and whose break points are dyadic rationals m/2n,m, n ∈ N.

The group F , as well as the similarly defined group T of homeomorphisms of

the circle S1 = [0, 1]/{0, 1} that contains F , were discovered by Richard Thompson

[34] in the course of his research on some problems in logic. See [24]. The group T

is the first known example of a finitely presented infinite simple group. Since its

discovery, the group F has been observed to arise very naturally in many different

branches of mathematics. It is a long standing open problem to decide whether F

is an amenable group or not. For a survey of basic properties of these groups, see

[12].

The construction of the groups F and T have been generalized by G. Higman

[22], R. Bieri and R. Strebel [3], [4], and K. S. Brown [10].

Let P ⊂ R∗>0 be a non-trivial subgroup of the multiplicative group of the

positive reals, and let A ⊂ R be a non-zero subgroup of the additive group of real

numbers. Suppose that λ.a ∈ A for all λ ∈ P, a ∈ A. Thus A is a Z[P ]-module

and A is dense in R. Bieri and Strebel [3] introduced the group G(I;A,P ) of all

PL-homeomorphisms f : I → I which have break-points in A ∩ I and slopes in

P . Although they considered the cases where the interval was allowed to be the

whole of R or [0,∞), we shall only consider the case when I = [0, b], b > 0. We will

assume that b ∈ A. We shall be particularly interested in the slope of elements of

f ∈ G(I;A,P ) at the end-points 0, b, where it is understood that slope at an end

point of I refers to the value of the appropriate one-sided derivative of f at that

point. The groups that we shall consider here will be finitely generated subgroups

of the group G(I;A,P ) for appropriate I, A, and P . It is an open problem to

classify which of the groups G(I;A,P ) are finitely generated when I = [0, b]. Bieri

and Strebel [4] showed that the following conditions are necessary: (i) b ∈ A, (ii)

P is finitely generated, (iii) A is finitely generated as a ZP -module and the ZP -

module A/(IP.A) is finite, where IP is the kernel of the augmentation ZP → Z. It

appears that, besides Example 3.1(i) below, only two other examples of G(I;A,P )

are known to be finitely generated. See [4] for details as well as the results when

I is the whole of R or a ray.

We observe that there are homomorphisms λ0, λ1 : PLo(I)→ R×>0, defined as

λ0(f) = limt→0+ f
′(t) =: f ′(0), λ1(f) = limt→b− f

′(t) =: f ′(b) which are referred
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TWISTED CONJUGACY IN CERTAIN PL-HOMEOMORPHISM GROUPS 5

to as the slopes at 0, b respectively of f . Note that the restrictions of these homo-

morphisms, again denoted by the same symbols λ0, λ1, to G(I;A,P ) have images

equal to P . Composing with the homomorphism log : R×>0 → R (where log de-

notes the natural logarithm) we obtain homomorphisms χj = log ◦λj : PLo(I)→
R, j = 0, 1, into the additive group of the reals. We shall denote their restrictions

to any subgroup of PLo(I) also by the same symbols χj , j = 0, 1.

Example 3.1. (i) Let I = [0, 1], P = 〈n1, . . . , nk〉, A = Z[1/n] where n1, . . . , nk >

1 are integers and n = n1 . . . nk. It is known that the group G(I;A,P ) is finitely

presented; see [30]. In this case Im(χ0) =
∑

1≤j≤k Z log nj = Im(χ1) ⊂ R.
(ii) Let G be generated by a finite set of elements S = {f1, . . . , fm} ⊂

Po(I), I = [0, 1] such that ∪1≤j≤msupp(fj) = (0, b), where each fj is identity

near at least one of the end points 0, 1. (Here supp(f) = {x ∈ I | f(x) 6= x} is

the support of f .) We order the generators fj , 1 ≤ j ≤ m so that the first k of

them are identity near b and the remaining generators are identity near 0. Then

Im(χ0) =
∑

1≤j≤k Z log f ′j(0), Im(χ1) =
∑
k<j≤m Z log f ′j(1).

(iii) Let I = [0, 1]. For s ∈ R, s 6= 0, define fs : I → I be the unique

piecewise linear homeomorphism which has the property that the slopes f ′(0) =

exp(s), f ′(1) = exp(−s) and f has exactly one break-point in (0, 1). Let S be a

finite set of real numbers and let G denote the subgroup of PLo(I) generated by

fs, s ∈ S. In this case Im(χ0) = Im(χ1) =
∑
s∈S Zs. Observe that f−1s = f−s. It

is easily seen that conjugation by the homeomorphism t→ 1− t of the interval I

induces an involutive automorphism θ : G→ G where θ(fs) = f−s = f−1s ∀s ∈ S.

It follows that θ ◦ χj = χ1−j = −χj , j = 0, 1.

4. The Σ-invariant and its generalizations

Let G be a finitely generated group with infinite abelianization G/[G,G].

(Here [G,G] denotes the commutator subgroup of G.) Consider the real vec-

tor space Hom(G,R). An element of Hom(G,R) is called a character. One has

an equivalence relation on Hom(G,R) \ {0} where χ ∼ χ′ if there exists a positive

real number r such that χ = rχ′. The equivalence classes are called character

classes. The set of character classes is denoted S(G). Since any character class

[χ] is a ray R>0χ, it is clear that S(G) is homeomorphic to the sphere Sd−1,

where d = dimR Hom(G,R) which is also the rank of G/[G,G]. Note that if

f : G → H is a homomorphism of groups, then we have the induced homomor-

phism f∗ : Hom(H,R)→ Hom(G,R). If f is an isomorphism of groups, then f∗ is

an isomorphism of real vector spaces. In this case f∗ induces a homeomorphism

of the character spheres f∗ : S(H)→ S(G) where f∗([χ]) = [χ ◦ f ]. This yields a

(right) action of Aut(G) on S(G).

Given a non-zero character χ : G → R, one has a monoid Gχ := {g ∈ G |
χ(g) ≥ 0}. Note that Gχ depends only on [χ]. Bieri, Neumann, and Strebel
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6 P. SANKARAN

introduced the following invariant for a finitely generated group G:

Σ(G) ={[χ] ∈ S(G) | [G,G] is finitely generated

over a finitely generated submonoid of Gχ}.

Note that if [G,G] is finitely generated, then Σ(G) = S(G), on the other hand,

for a non-abelian free group the invariant is the empty set. The invariant Σ(G)

originated in the work of Bieri and Strebel [2]. Brown [11] gave a characterization

of Σc(G) := S(G)\Σ(G) that involves actions of G on R-trees and is applicable to

groups which are not necessarily finitely generated. It was shown in [1] that Σ(G)

is an open set.

Perhaps a definition that helps to visualise what constitutes Σ(G) is the one in

terms of the Cayley graph, which we now recall. Let S ⊂ G be a finite generating

set. Let C = C(G,S) denote the Cayley graph of G with respect to S ∪S−1. Thus

the vertices of C are elements of G and two distinct vertices u, v form an edge if

u−1v ∈ S ∪S−1. Given a non-zero character χ : G→ R consider the full subgraph

Cχ ⊂ C with vertices χ−1([0,∞)). It turns out that if C′ = C(G,S′) is the Cayley

graph of G with respect to another finite generating set S′, then Cχ is connected

if and only if C′χ is. One has Σ(G) = {[χ] ∈ S(G) | Cχ is connected.} See [32] for

further details.

There are also higher Σ-invariants that are homotopical and homological gen-

eralizations of Σ(G), denoted Σm(G) ⊂ S(G),m ≥ 1, with Σ(G) = Σ1(G); see

[5].

The paper of Bieri, Neumann, and Strebel [1] contains a wealth of exam-

ples, although, in general, it is difficult to compute Σ(G). The following theorem

describes it when G is a PL-homeomorphism group of I = [0, b] satisfying two

properties. A group G ⊂ PL0(I) is called irreducible if there is no G-fixed point

in the open interval (0, b). Thus, if G is not irreducible, then it is a subgroup of a

product G1×G2 where G1 ⊂ PLo([0, b0]), G2 ⊂ PLo([b0, b]) for some 0 < b0 < b.

Definition 4.1. Two characters χ, η : G→ R of a finitely generated group G are

said to be independent if η(ker(χ)) = η(G), χ(ker(η)) = χ(G).

It is clear that independent characters are R-linearly independent in the vec-

tor space Hom(G,R). However, taking G = Z2, very simple examples can be

constructed to show that the converse is not true.

Recall the characters χ0, χ1 : G→ R defined earlier where G ⊂ PL0(I).

Theorem 4.2. (Bieri-Neumann-Strebel [1, Theorem 8.1]) Let I = [0, b], b > 0.

Let G be a finitely generated subgroup of PL0(I) which is irreducible. Suppose

that χ0, χ1 are independent. Then Σc(G) := S(G) \ Σ(G) equals {[χ0], [χ1]}.

The R∞-property for the Thompson group F was first established by Bleak,

Felsh’tyn and Gonçalves [6] using the structure of its automorphism group from
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TWISTED CONJUGACY IN CERTAIN PL-HOMEOMORPHISM GROUPS 7

the work of [7], [9]. The same result was obtained by Gonçalves and Kochloukova

[18] using Σ-theory without using the knowledge of Aut(F ). They applied their

approach to many different classes of groups, including the groups Fn,0 := G([0, n−
1];Z[1/n], 〈n〉).

We outline the main ideas involved in applying Σ-theory to the twisted con-

jugacy problem. First one shows that Σc(G) or Σ1(G) admits a fixed point under

the action of the automorphism group Aut(G) of G. This happens, for example,

when Σc(G) is a finite set contained in an open hemisphere of S(G); see [18]. If

χ : G → R represents such a fixed point [χ] ∈ S(G), and if Im(χ) is cyclic, then

χ ∈ Hom(G,R) itself is fixed under the action of Aut(G) on Hom(G,R). Applying

Lemma 2.1 to the short exact sequence 1 → ker(χ) ↪→ G → Im(χ) → 1, we see

that for any φ ∈ Aut(G), the induced homomorphism φ̄ : Im(χ)→ Im(χ) (in the

commutative diagram (2)) is the identity map. (Note that ker(χ) = ker(rχ) ∀r ∈
R>0.) Consequently R(φ) =∞ and we conclude that G is an R∞-group.

5. Rigid subgroups and transcendental characters

In order to successfully apply Σ-theory to the R∞ problem, it does not suffice

to know that the induced map on the character sphere of an automorphism φ ∈
Aut(G) admits a fixed point [χ] ∈ S(G). One needs to know that the character χ

itself is fixed under the induced isomorphism φ∗ on Hom(G,R). There is a class of

finitely generated abelian subgroups of R such that if Im(χ) belongs to that class

and if φ∗([χ]) = [χ], then χ ◦ φ = χ ∈ Hom(G,R) for any automorphism φ of G.

This is the class of rigid groups introduced in [19], which we now define.

Definition 5.1. Let A ⊂ R be a non-trivial finitely generated abelian group. Let

U(A) denote the group {r ∈ R\0 | rA = A} (under multiplication). We call U(A)

the unit group of A. We say that A is rigid if U(A) = {1,−1}.
Any infinite cyclic subgroup contained R is rigid. Also if A is rigid, so is

λA = {λa | a ∈ A} for any non-zero real number λ.

Example 5.2. (i) Let A = Z[
√

2]. Then U(A) is the group of units in the ring A,

which is the ring of integers of the number field Q(
√

2). In particular it contains

the cyclic group generated by (
√

2 + 1).

(ii) Let A = Z + Z
√

2 + Z
√

3. Then A is rigid.

(iii) Let A ⊂ R is the group with Z-basis 1, α, . . . , αn−1 where α ∈ R is transcen-

dental. Then A is rigid.

We have the following proposition whose proof we omit, referring the reader

to [19]. Recall that an algebraic unit is an algebraic number r such that 1/r is

also an algebraic number. (Thus r is a unit in the ring of all algebraic numbers.)

Proposition 5.3. Let A be a non-trivial finitely generated abelian subgroup of R.

Let r ∈ U(A). Then r = a/b for some a, b ∈ A. Also, r is an algebraic unit of

degree at most rank(A).
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Definition 5.4. Let A be a non-trivial finitely generated subgroup of R. We

say that A is transcendental if a, b ∈ A are non-zero, then a/b is rational or is

transcendental. We say that a (non-zero) character χ : G → R is transcendental

if Im(χ) is transcendental.

In view of the above proposition, if χ is transcendental, then Im(χ) is rigid.

Example 5.5. If s1, . . . , sn is Q-linearly independent, then A =
∑

1≤j≤n Zsj is

transcendental. Indeed if r = s/t where s =
∑
ajsj , t =

∑
bjsj ∈ A \ {0} and

r ∈ Q then rt− s = 0 contradicting our hypothesis that s1, . . . , sn, are Q-linearly

independent unless rbj = aj for every j, in which case r ∈ Q.

Lemma 5.6. Let α1, . . . , αn ∈ R be positive algebraic numbers. Then A =

Z logα1 + . . .+ Z logαn is transcendental.

Proof. This is immediate from the famous theorem discovered independently by

A. O. Gelfond and T. Schneider [29], which we now recall. Suppose that α, γ are

algebraic numbers, γ is not rational, and 0 6= α 6= 1. Then the Gelfond-Schneider

theorem asserts that (any value of) αγ = β is transcendental.

Let a =
∑
j aj logαj ∈ A, a 6= 0. Thus a = logα where α :=

∏
j α

aj
j . Since

a 6= 0, α 6= 1. As the αj are algebraic, so is α. Let b ∈ A, b 6= 0, so that b = log β,

with β algebraic. Then γ := b/a = log β/ logα = logα β, which implies that

β = αγ . As both α and β are algebraic, by the Gelfond-Schneider theorem, either

γ = b/a is rational or is transcendental. �

We have the following theorem. Recall the definition of G(I;A,P ).

Theorem 5.7. Let P the multiplicative group of positive algebraic numbers, and

let A = Q. Let b ∈ A be positive and let I = [0, b]. Let G ⊂ G([0, 1], A, P ) be a

subgroup generated by elements f1, . . . , fn such that (i) ∪1≤j≤nfj = (0, b), and, (ii)

for some positive integer k < n, f1, . . . , fk are identity in a neighbourhood of b, and

fk+1, . . . , fn are identity in a neighbourhood of 0. Then G has the R∞-property.

Proof. Our hypotheses (i) and (ii) imply that G is irreducible and that the char-

acters χ0, χ1 are independent. Hence by Theorem 4.2, Σc(G) = {[χ0], [χ1]}.
Let αj = f ′j(0), βj = f ′j(1). Then Im(χ0) =

∑
1≤j≤k Z logαj and Im(χ1) =∑

k<j≤n Z log βj . Since αj , βj , 1 ≤ j ≤ n are positive algebraic numbers, by the

above lemma χ0, χ1 are transcendental.

Suppose that φ ∈ Aut(G). If φ∗([χ0]) = [χ0], then we must have φ∗(χ0) = χ0

by transcendence of χ0. If φ∗([χ0]) = [χ1], then [χ0 ◦ φ] = [χ1] and [χ1 ◦ φ] = [χ0]

since φ∗ is a homeomorphism of Σc(G). It follows that χ0 ◦ φ = rχ1, χ1 ◦ φ =

sχ0 for some positive reals r, s. Hence χ0 = rsχ0 which implies that r = 1/s

by transcendence of χ0. Now it is clear that φ∗(χ0 + rχ1) = χ0 + rχ1 =: χ.

Independence of χ0, χ1 implies that χ 6= 0. So by Lemma 2.1 we conclude that

R(φ) =∞. This completes the proof. �
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The groups G(I;A,P ) considered in Example 3.1(i) are finitely generated and

irreducible. Moreover, by Lemma 5.6, χ0, χ1 are transcendental characters. By

the above theorem we conclude that these groups have the R∞-property.

6. Proof of Theorem 1.1

Fix integers k, l such that k > l ≥ 1 and let S := (S0, S1), where S0, S1

are subsets of R>0, #S0 = k,#S1 = l with S0 being Q-linearly independent.

Let GS ⊂ PL0([0, 1]) be the group generated by elements fs, s ∈ S0 and gt, t ∈
S1 defined uniquely by the following requirements: (i) f ′s(0) = exp(s), g′t(1) =

exp(t), limx↗3/4 f
′(x) = exp(−s), limx↘1/4 g

′
t(x) = exp(−t), (ii) supp(fs) =

(0, 3/4), supp(gt) = (1/4, 1), and, (iii) fs (resp. gt) has exactly one break point

in (0, 3/4) (resp. in (1/4, 1)). We observe that GS is irreducible since the union

of supports of fs, s ∈ S0, and gt, t ∈ S1, equals (0, 1). The characters χ0, χ1 :

GS → R are independent since Im(χ0) is generated by χ0(fs) = s, s ∈ S0

and χ1(fs) = 0, ∀s ∈ S0 and Im(χ1) is generated by χ1(gt) = t, t ∈ S1,

χ0(gt) = 0, ∀t ∈ S1. Thus, by Theorem 4.2, Σc(GS) = {[χ0], [χ1]}. Since

rank(Im(χ0)) = k > l = rank(Im(χ0)), there does not exist any real num-

ber r > 0 such that Im(χ0) = Im(rχ1). It follows that for any automorphism

φ : GS → GS , φ∗(χ0) = χ0 ◦ φ 6= rχ1 for any r ∈ R. Hence φ induces the identity

map of Σc(GS) and we must have φ∗([χ0]) = [χ0]. Our hypothesis on S0 implies

that Im(χ0) is transcendental and hence rigid by Proposition 5.3. So φ∗(χ0) = χ0

and we conclude GS is an R∞ group.

We need the following lemma. When k = 1, the lemma asserts that tr.degQR =

#R. The proof would have been a lot simpler if only we had used the continuum

hypothesis.

Lemma 6.1. Let k be a positive integer. There exists a collection T of k-elements

subsets A ⊂ R such that the following properties hold: (i) The subfield Q(A) of R is

transcendental over Q of transcendence degree tr.degQQ(A) = k. (ii) If A,B ∈ T
are distinct, then tr.degQQ(A ∪B) = 2k, (iii) #T = #R.

Proof. It is evident that there is a non-empty collection T satisfying conditions

(i), (ii). If Tα∈J is an increasing chain of such collections indexed by an ordered

set J , then TJ = ∪α∈JTα also satisfies conditions (i) and (ii). Hence by the

maximum principle, there exists a maximal such collection T . We claim that (iii)

holds for this T . Clearly T is infinite. Suppose that #T < #R. Consider the

subfield F := Q(∪A∈T A) ⊂ R. Since T and ∪A∈T A have the same cardinality,

the field F also has the same cardinality as T . It follows that F is a proper

subfield of R. Let F ⊂ C be the algebraic closure F and let K := F ∩ R. Then

#T = #F = #F = #K. If tr.degKR ≤ #T , then R has a K-vector space basis

having cardinality at most equal to #T and so #R = #K = #T , a contradiction.

So tr.degKR > #T . Therefore R must contain infinitely many elements which
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are algebraically independent over K. We let A0 be a set of consisting of k such

elements. Then T ∪{A0} is a strictly bigger collection than T and satisfies (i) and

(ii), contradicting the maximality of T . Hence we must have #T = #R. �
Proof of Theorem 1.1: Fix integers k > l ≥ 1. Fix a set S1 ⊂ R of cardinality

l. Consider the collection A of all pairs A = (A0, S1) with A0 ∈ T with T as in

the above lemma. By the discussion preceding the lemma we know that GA is an

R∞-group for all A ∈ A.

Let A = (A0, S1), B = (B0, S1) ∈ A be distinct; thus A0, B0 ∈ T are distinct.

We claim that GA and GB are not isomorphic. Suppose, on the contrary, f : GA →
GB is an isomorphism. Then f induces a homeomorphism f∗ : Σc(GA)→ Σc(GB).

Write λ0, λ1 : GA → R and ηj : GB → R for the restrictions of χj : PLo(I) → R.

We must have f∗([ηj ]) = [λj ], j = 0, 1, since otherwise [λ1] = [η0 ◦ f ] = f∗([η0])

which is impossible since rank(λ1) = l < k = rank(η0) = rank(η0 ◦ f). Now

[η0 ◦ f ] = [λ0] implies that η0 ◦ f = rλ0 for some r > 0. So Im(η0 ◦ f) = r.Im(λ0).

As Im(η0 ◦ f) = Im(η0) is the free abelian group with basis B0 whereas Im(λ0)

is free abelian with basis A0 we must have rA0 ⊂ Im(η0). Let a1, a2 ∈ A0 be

two distinct elements. (Here we are using the hypothesis that k ≥ 2.) Then

a2/a1 = c/d for some c, d ∈ Im(η0). This means that a2 ∈ Q(B0)(a1). Varying a2

we see that A0 ⊂ Q(B0 ∪ {a1}). Hence the transcendence degree of Q(A0 ∪B0) is

at most k + 1 < 2k. This contradicts property 6.1 (ii) of T . This completes the

proof of Theorem 1.1. �
Remark 6.2. (i) The above proof is slightly different from the one given in [19],

although the construction of the groups GS is the same.

(ii) If, in the construction of GS we let k = l = 1, then GS is isomorphic to the

Thompson group F . This follows from the main theorem of [8].

(iii) I do not know if the groups in Example 3.1(iii) have the R∞-property, except

when G is infinite cyclic (in which case the group does not have the R∞-property).

Acknowledgments. I thank Department of Atomic Energy, Government of In-

dia, for partial financial support.
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Abstract. The space Lt(X) consisting of all complex valued functions f on

a compact Hausdorff space X such that lim
t→x

f(t) exists for every x ∈ X is

a commutative supnorm C∗-algebra containing the algebra of all continuous

functions on X; contained in the algebra of all bounded functions on X; whose

Gel’fand space is the disjoint union of X and the set of all the nonisolated

points of X; and the Gel’fand topology of which is not the usual topology

of the disjoint union. This together with analogous algebras of differentiable

functions, results into several new Banach algebras of functions presumably

unexplored.

The present note is addressed to M.Sc./M.Phil. students, as well as to college

teachers, demanding familiarity with compact Hausdorff spaces and weak topol-

ogy; and is aimed at illuminating an uncharted terrain. It is based on the concept

of limit of real or complex valued functions defined on a topological space, in par-

ticular on A ⊂ R. We consider functions with limits (a class larger than continuous

functions) which was evolved while one of the authors was engaged in [4]. The

central idea, not usually highlighted in teaching of Calculus, is that boundedness

of continuous functions on a closed interval is essentially due to existence of limits,

and not involving continuity at all. We aim to highlight some aspects of functional

analytic nature that arise from this and that are believed to be unexplored. We

shall deal with complex valued functions defined on a compact Hausdorff space X.

It would suffice to consider X to be a closed and bounded interval [a, b] ⊂ R.

We define the limit of a function at a point in a topological space as follows.

For a topological space X, x ∈ X, Ux is the set of all neighbourhoods of x in X.

If {x} ∈ Ux, then we say that x is an isolated point of X. For {x} 6= U ∈ Ux,

U (x) denotes the deleted neighbourhood U \ {x} of x. Let X,Y be topological

spaces, x ∈ X, y ∈ Y and f : X → Y be a function. We define lim
t→x

f(t), denoted

by `x(f), as follows. If x is an isolated point of X, then lim
t→x

f(t) = f(x). If x is

2010 Mathematics Subject Classification : Primary 46J40; Secondary 46J10

Key words and phrases : Functions with limit, C∗-algebra, Gel’fand space.
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not an isolated point, then lim
t→x

f(t) = y if for every V ∈ Uy, there exists U ∈ Ux
such that f(U (x)) ⊂ V . It is easy to see that when X ⊂ R, in particular when

X = [a, b], this coincides with the usual ε − δ definition of limit. We also refer

to section 14 in reference [5] for this consideration of limit values of functions. A

function f : X → C is continuous on X if it is continuous at every x ∈ X; i.e., if

for every x ∈ X, lim
t→x

f(t) = f(x) as done in Calculus. This is equivalent to the

statement that f−1(G) is open in X for all open sets G ⊂ C as done in Topology.

Let C(X) (respectively B(X)) be the set of all functions f : X → C that are

continuous on X (respectively bounded on X). Note that lim
t→x

f(t) depends on

the domain in which it is computed. For example, the limits of the characteristic

function of Z, at an integer, are different when computed in Z and in R. However,

for a continuous function this is never a case because at the point of continuity of

a function, the limit of the function at the point coincides with the value of the

function at that point.

An algebra A is a vector space over C which is also a ring such that for all

x, y ∈ A and the scalar α, (αx)y = α(xy) = x(αy). For simplicity, we assume that

A contains the unit element (= the multiplicative identity). Let Lt(X) consist

of all functions f : X → C for which lim
t→x

f(t) exists for all x ∈ X. It is easily

seen (by working out “algebra of limits”) that Lt(X) is an algebra with pointwise

operations and complex conjugation as the involution and C(X) is a subalgebra

of Lt(X).

Let Y = {x ∈ X : x is not an isolated point of X}. If Y = ∅, then X is finite

because of its compactness. In this case, one easily observes that B(X) = Lt(X) =

C(X) = Cn, where n is the number of points in X. To avoid this triviality, we

assume now onwards that Y 6= ∅ so that X is not a finite set. Let

F(Y ) = {f : Y → C : support of f is finite};

FY (X) = {f : X → C : support of f is finite and is contained in Y }.
As the algebras F(Y ) ∼= FY (X) under the map f ∈ FY (X) → f |Y ∈ F(Y ).

Let f ∈ FY (X). We claim that the set of discontinuities of f is supp(f). For

this, let x ∈ supp(f). Being finite, supp(f) is closed giving supp(f) = {y ∈ Y :

f(y) 6= 0}. Since X is Hausdorff, there is U ∈ Ux with U ∩ supp(f) = {x}. Now let

ε = |f(x)|/2 and V = {y ∈ X : |f(x)|2 < |f(y)|}. Clearly U ∩V = {x}, which is not

open in X as x is not an isolated point of X. Thus V cannot be open and hence

f cannot be continuous at x. Now let x /∈ supp(f). If x is an isolated point of X,

then f is continuous at x. Now let x ∈ Y . Since supp(f) is finite, there is U ∈ Ux
such that U ∩ supp(f) = ∅. Hence for any ε > 0, f(U) ⊂ {z ∈ C : |f(x)| < ε}
giving the continuity of f at x. Thus supp(f) is the set of discontinuities of f .

It also follows that FY (X)∩C(X) = {0}. Thus FY (X) ⊕ C(X) ⊂ Lt(X). The

following example shows that this inclusion is proper.
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Example 1. Let X = [0, 1]. Then Y = X. Define f : [0, 1] → C by f(t) =
∞∑
n=1

1
nχ{ 1

n}
, where χ{ 1

n}
denotes the characteristic function of { 1n}. It is easily

seen that f ∈ Lt([0, 1]) but f 6∈ FY (X)⊕ C(X).

Recall [1] that an algebra norm on an algebra A is a norm ‖ · ‖ on A making

it a normed linear space and satisfying the norm inequality ‖xy‖ ≤ ‖x‖‖y‖ for

all x, y ∈ A. Presence of a norm on A makes it a metric space with the metric

d(x, y) = ‖x− y‖. A is a Banach algebra if (A, d) is complete. In a Banach alge-

bra, the algebraic structure and the topological (metric) structure are intertwined

through norm inequality and completeness. It is worth noting that though every

vector space admits a norm making it a normed linear space, not every algebra

can be made into a normed algebra with an algebra norm. This points to a strong

interplay between Algebra and Topology in Banach algebras which constitute a fas-

cinating aspect of the subject [2], [3]. Though interesting, but apparently difficult,

is the problem of algebraically characterizing an algebra that is a Banach algebra

under some norm. A Banach algebra A with an involution x ∈ A 7→ x∗ ∈ A
satisfying (x+ y)∗ = x∗ + y∗, (λx)∗ = λx∗ and (xy)∗ = y∗x∗ for all x, y ∈ A and

λ ∈ C is called a Banach ∗-algebra. A Banach ∗-algebra A is called a C∗-algebra

if its norm satisfies ‖x∗x‖ = ‖x‖2. For a bounded function f : X → C, we define

the supnorm ‖f‖∞ = sup
x∈X
|f(x)|. A continuous function on a compact space is

bounded resulting in C(X) ⊂ B(X). The following refines this.

Proposition 2. For a compact Hausdorff topological space X, Lt(X) is a commu-

tative C∗-algebra with 1; C(X) is a closed ∗-subalgebra of Lt(X) and (Lt(X), ‖ · ‖∞)

is a closed ∗-subalgebra of (B(X), ‖ · ‖∞).

Proof. Let x ∈ X be a nonisolated point of X. Then there is Ux ∈ Ux such that

|f(t) − `x(f)| < 1 (giving |f(t)| < 1 + |`x(f)|) for all t ∈ U
(x)
x . Consequently,

|f(t)| < 1 + |`x(f)| + |f(x)| = Cx, (say), for all t ∈ Ux. If x is an isolated point

of X, we set Ux = {x} and Cx = |f(x)|. Appealing to the compactness of X, we

find x1, x2, . . . , xn ∈ X such that
n
∪
i=1

Uxi
= X. This forces |f(y)| ≤ max{Cxi

: i =

1, 2, . . . , n} for all y ∈ X. Thus f ∈ B(X).

Let f ∈ B(X) be a limit point of Lt(X). Let x ∈ X. If x is an isolated

point of X, then lim
t→x

f(t) exists and equals f(x). So, we assume that x is not an

isolated point of X. Let ε > 0. For each n ∈ N, choose fn ∈ Lt(X) such that

‖f − fn‖∞ < 1
n . Let n1 ∈ N be such that 1

n1
< ε

4 . Then for any fixed n,m ≥ n1,

and t ∈ X,

|`x(fn)− `x(fm)|

≤ |`x(fn)− fn(t)|+ |fn(t)− fm(t)|+ |fm(t)− `x(fm)|

≤ |`x(fn)− fn(t)|+ |fn(t)− f(t)|+ |f(t)− fm(t)|+ |fm(t)− `x(fm)|
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≤ |`x(fn)− fn(t)|+ ‖fn − f‖∞ + ‖fm − f‖∞ + |fm(t)− `x(fm)|

< |`x(fn)− fn(t)|+ ε

2
+ |fm(t)− `x(fm)|. (1)

Since fn, fm ∈ Lt(X), we obtain U ∈ Ux such that |`x(fi)−fi(t)| < ε
4 , for t ∈ U (x)

for i = m,n. By this and (1), |`x(fn) − `x(fm)| < ε for all n,m ≥ n1. Thus

`x(fn) is Cauchy in C. Let l = lim
n→∞

`x(fn). Fix an integer n2 > n1 such that

|`x(fn)− l| < ε
3 for all n ≥ n2. Fix V ∈ Ux such that |fn2

(t)− `x(fn2
)| < ε

3 for all

t ∈ V (x). This gives,

|f(t)− l| ≤ |f(t)− fn2(t)|+ |fn2(t)− `x(fn2)|+ |`x(fn2)− l|

≤ ‖f − fn2‖∞ +
ε

3
+
ε

3

<
ε

4
+
ε

3
+
ε

3
for all t ∈ V (x)

< ε.

Hence lim
t→x

f(x) = l, proving that f ∈ Lt(X). Thus Lt(X) is closed in B(X). �

For each x ∈ X, the limit lim
t→x

f(x) = `x(f), (f ∈ Lt(X)) can be reinterpreted

exhibiting a flavour typical of Functional Analysis. For f ∈ Lt(X), define a

function `(f) : X → C, `(f)(x) = `x(f). Then `(f) ∈ C(X). This defines

` : f ∈ Lt(X) 7→ `(f) ∈ C(X). The map ` : Lt(X) → C(X) is surjective algebra

homomorphism; and f ∈ C(X) if and only if `(f) = f . For any f ∈ Lt(X),

‖`(f)‖∞ ≤ ‖f‖∞ showing that ` is continuous. Thus E = ker ` is a closed ideal,

and Lt(X) = C(X) ⊕ E. The map ` is not a (strict) contraction, and has a

multitude of fixed points.

A multiplicative linear functional on a Banach algebra A is a linear function

f : A → C such that f(xy) = f(x)f(y), for all x, y ∈ A. The Gel’fand space

4(A) is the set of all nonzero multiplicative linear functionals on A. Notice that

a multiplicative linear functional on A is necessarily continuous; and this is just

a tip of the iceberg. Automatic continuity of natural maps from A or into A is

an exciting aspect of Banach Algebra Theory exhibiting deep connection between

Algebra and Topology in A [2]. For x ∈ A, define x̂ : 4(A)→ C by x̂(f) = f(x),

(f ∈ 4(A)). The Gel’fand topology on 4(A) is the weakest topology making the

functions in the family {x̂ : x ∈ A} continuous. It is the relative topology on4(A)

from the product topology on CA; and is also the restriction of the weak ∗-topology

on the Banach space dual A∗ of (A). The Gel’fand space is a compact Hausdorff

space [3]. The map x ∈ A 7→ x̂ ∈ C(4(A)) is called the Gel’fand transform of

x. The Gel’fand-Naimark Theorem states that if A is a commutative C∗-algebra

with identity, then x ∈ A 7→ x̂ ∈ C(4(A)) is an isometric ∗-isomorphism between

A and C(4(A)). Thus Lt(X) ∼= C(4(Lt(X))); and it is important to recognize

the Gel’fand space 4(Lt(X)).
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For x ∈ X, we define `x, νx : Lt(X) → C by `x(f) = lim
t→x

f(t) and νx(f) =

f(x), (f ∈ Lt(X)). Then `x, νx are multiplicative linear functionals on Lt(X).

We set Xν = {νx : x ∈ X};X` = {`x : x ∈ Y }, X̃ = Xν ∪ X`. Let x, y be

two distinct points of X. Since C(X) separates points of X, we get f ∈ C(X)

such that f(x) 6= f(y). Thus νx(f) 6= νy(f). Also `x(f) = νx(f) = f(x) and

f(y) = νy(f) = `y(f). Hence `x(f) 6= `y(f). Therefore, all elements of Xν are

distinct and all elements of X` are distinct. Now we show that `x 6= νx for any

x ∈ Y . So, let x ∈ Y . Then x is not an isolated point of X. Let f be the

characteristic function of {x}. Then f is not continuous, `x(f) = 0 6= 1 = νx(f).

Finally, we show that `y 6= νx for any x ∈ X, y ∈ Y . For that let x ∈ X, y ∈ Y be

two distinct points. Since the characteristic function f of {x} is continuous at y,

`y(f) = 0. But νx(f) = 1. Thus Xν ∩X` = ∅, guaranteing that X̃ is a well-defined

set.

Identifying Xν and X` with subsets of X, the disjoint union topology on X̃

is the weakest topology in which the inclusion maps Xν → X̃ and X` → X̃ are

continuous.

Theorem 3. For a compact Hausdorff topological space X, the Gel’fand topology

on 4(Lt(X)) = X̃ is strictly stronger than the disjoint union topology.

Proof. As observed earlier, X̃ ⊂ 4(Lt(X)). Let M be a maximal ideal of Lt(X).

Assume that there is no x in X such that M = ker(νx) or M = ker(`x). By the

maximality of M , M 6⊂ ker(νx) and also M 6⊂ ker(`x) for any x ∈ X. Hence for

each x ∈ X, we fix fx, gx ∈ M such that fx /∈ ker(νx), gx /∈ ker(`x). If necessary,

multiplying each by its complex conjugate, we assume that fx, gx ≥ 0. Since

lim
t→x

gx(t) = `x(g) > 0, there is Ux ∈ Ux such that gx(t) > 0 for all t ∈ U (x)
x . But

then hx = fx+gx > 0 on Ux. If necessary, replacing Ux by a smaller neighbourhood

of x, we assume that hx(t) > `x(hx)
2 for all t ∈ Ux. But then hx(t) 6= 0 6= `t(hx)

for all t ∈ Ux. By the compactness of X, there exists x1, x2, . . . , xn ∈ X such that

X =
n
∪
i=1

Uxi
. But then h =

n∑
i=1

hxi
> 0 on X and h ∈ Lt(X). Hence `x( 1

h ) exists

for all x ∈ X. This shows that h is invertible in Lt(X). But by the construction of

h, it is clear that h ∈M and so, M cannot be a proper ideal, a contradiction. Thus

we assert that there exists x ∈ X such that M = ker(νx) or M = ker(`x). The

following shows that the Gel’fand topology is strictly stronger than the disjoint

union topology.

Claim:

(1) Each {νx} ⊂ Xν is open in X̃. Consequently, Xν is discrete and X` is

compact.

(2) X` ∪ {νx : x is an isolated point of X} is homeomorphic to X.

(1) Fix νx ∈ Xν . Let f = χ{x}, the characteristic function of x. Consider the open

set N(νx, f,
1
2 ) = {ϕ ∈ 4(Lt(X)) : |ϕ(f)−νx(f)| < 1

2} = {ϕ ∈ 4(Lt(X)) : |ϕ(f)−
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1| < 1
2} in 4(Lt(X)). Then νx ∈ N(νx, f,

1
2 ) and `y(f) = 0 for all y ∈ X with

y 6= x. Hence `y /∈ N(νx, f,
1
2 ). If x is not an isolated point, then `x(f) = 0. So,

`x /∈ N(νx, f,
1
2 ). If x is an isolated point, then `x /∈ X`. Thus `y /∈ N(νx, f,

1
2 ) for

any y ∈ X. Clearly, for any y ∈ X with y 6= x, |νy(f)− νx(f)| = 1. Consequently,

νy /∈ N(νx, f,
1
2 ). Hence, N(νx, f,

1
2 ) = {νx}, completing the proof.

(2) Without loss of generality, we assume that X has no isolated point. This case

reduces the proof to show that X` is homeomorphic to X. Define ι : X → X` by

ι(x) = `x. Since X is compact Hausdorff, its topology is the weak topology given

by C(X). To consider its basic open set, let f ∈ C(X) and G ⊂ C be open in

C. Clearly, f ∈ Lt(X). Denoting the Gel’fand transform of f ∈ Lt(X), by f̂ , we

see using the continuity of f that f(x) = νx(f)(= f̂(νx)) = `x(f)(= f̂(`x)). Thus

νx ∈ f̂−1(G)⇔ `x ∈ f̂−1(G)⇔ x ∈ f−1(G). Consequently, ι(f−1(G)) = {`x : x ∈
f̂−1(G)} is open in X`. Thus ι is a homeomorphism. �

This leaves open the problem of intrinsically (using pointset topology only,

without a reference to Lt(X)) describing the Gel’fand topology on X̃. The next

obvious question is the problem of determination of closed ideals of Lt(X). We

may recall [2] that I is a closed ideal of C(X) if and only if I = IK for a closed

K ⊂ X, where IK = {f ∈ C(X) : f(x) = 0 for all x ∈ K}.
Remark 4.

(1) As the subspaces of X̃, X` is homeomorphic to X \ {x : x is an isolated

point of X} and Xv is discrete. Also f̂ redefines each f ∈ Lt(X) on X` to

reclaim the continuity of f at points `x(= ι(x)), where f is not continuous.

(2) One obtains the nonunital analogue of Lt(X) by considering X to be

locally compact Hausdorff and replacing Lt(X) by Lt0(X), the set of all

f ∈ Lt(X) vanishing at infinity. Also, Lt(X∗) is the unitization of Lt0(X),

where X∗ is the one point compactification of X.

(3) Lt(X) also suggests the investigation of its C1-analogue, viz., the algebra

Lt1[0, 1] = {f : [0, 1] :→ C : f ′ exists on [0, 1] and f ′ ∈ Lt[0, 1]} with

‖f‖1 = ‖f‖∞+ ‖f ′‖∞. Then C1[0, 1] ⊂ Lt1[0, 1] ⊂ C[0, 1]. The inclusions

are proper as f(x) =

x2 sin( 1
x ), x ∈ (0, 1]

0, otherwise.
is in Lt1[0, 1] but not in

C1[0, 1] and g(x) = |x| is not in Lt1[0, 1]. One can analogously define

Ltn[0, 1] containing Cn[0, 1]. For the algebra B1[0, 1] = {f : [0, 1] → C :

f ′ exists on [0, 1] and f ′ is bounded}, Lt1[0, 1] ⊂ B1[0, 1]; and B1[0, 1] is

contained in the Banach algebra of Lipschitz functions

Lip[0, 1] := {f ∈ C[0, 1] : f ′ exists a.e. on [0, 1] and f ′ ∈ L∞[0, 1]}.

Thus one gets a large collection of new normed algebras of functions. Note

that
∞
∩
n=1
Ltn[0, 1] =

∞
∩
n=1

Cn[0, 1] = C∞[0, 1].
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(4) The Banach algebra C(X) for a compact Hausdorff space X, enjoys a spe-

cial status in Functional Analysis. It manifests its intrinsic beauty through

several noble theorems like Riesz Representation Theorem, Gel’fand-Naim-

ark Theorem, Banach-Stone Theorem, Stone-Weierstrass Theorem and

Ascoli-Arzela Theorem. It would be interesting to search for analogues of

these celebrated theorems for Lt(X), it being a half brother of C(X).

(5) If X = [a, b] ⊂ R, then f ∈ Lt[a, b] if and only if for all x ∈ [a, b], both the

left limit f(x−) as well as the right limit f(x+) exist and are equal. One

may consider algebras Lt−([a, b]) and Lt+([a, b]) consisting of functions

having left limits and right limits respectively. Each of these algebras

contains monotonic functions as well as functions of bounded variations;

and Lt[a, b] ⊂ Lt+[a, b]∩Lt−[a, b]. Though the functions therein need not

be bounded, the determination of their Gel’fand spaces makes sense.
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Abstract. In this note we present a decomposition of Catalan’s infinite

product for e leading to a new infinite product for e. Further, a general-

ization of Catalan’s result is also obtained that yields products for en.

1. Introduction

The number e, often called the Euler number, sought entry into mathemat-

ics unobtrusively through a table of logarithms in the appendix to the Mirifici

logarithmorum canonis constructio (1619), a posthumous work of John Napier

(1550–1617). However, as Cajori [1] observed, the notion of a “base” is inappli-

cable to his system and it was not recognised at that time that these logarithms

were based on e. Napier used 1−10−1 as his ‘given’ number which raised to power

107 is very nearly e−1.

It was Leonhard Euler (1707–1783) who identified the number using the no-

tation e in his letter dated November 25, 1731 to Goldbach wherein he wrote “e

denotes that number whose hyperbolic logarithm is equal to 1”. He used e again

five years later in Mechanica (1736) which was its first appearance in print. He

gave full treatment to e in his Introductio in Analysin Infinitorum (Book I, 1748)

where he established the equality of the limit definition and the series represen-

tation: e = lim
n→∞

(
1 +

1

n

)n

=
∞∑

m=0

1

m!
, and evaluated e to twenty three decimal

places (Ch. VII, §122) and gave a continued fraction representation (Ch. XVIII)

for e−1
2 .

2. Decomposition of Catalan’s product

Eugène Charles Catalan (1814–94) discovered the following infinite product

[2].

e =
2

1

(
4

3

)1/2(
6 · 8
5 · 7

)1/4(
10 · 12 · 14 · 16

9 · 11 · 13 · 15

)1/8

· · · (1)

2010 Mathematics Subject Classification : 11Y60, 33B15, 40A20, 60C05

Key words and phrases : Euler’s number, Infinite product, Catalan’s product, Stirling’s

formula, central binomial coefficients.
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22 AMRIK SINGH NIMBRAN AND PAUL LEVRIE

which can also be written as

e = lim
m→∞

2m+1∏2m−1
k=1 (2k + 1)

1
2m
.

We will prove a generalization of this formula at the end of this note.

Pippenger [3] obtained the following product in 1980.

e

2
=

(
2

1

)1/2(
2 · 4
3 · 3

)1/4(
4 · 6 · 6 · 8
5 · 5 · 7 · 7

)1/8

· · · . (2)

Since 1
2 + 1

4 + 1
8 + 1

16 + · · · = 1, we have 2 = 21/221/421/8 · · · . So multiplying

the last product by 2, we get Catalan’s product for e.

In 2010, Sondow and Yi [4] derived a few Catalan-type products including

e

4
=

(
2

3

)1/2(
4 · 6
5 · 7

)1/4(
8 · 10 · 12 · 14

9 · 11 · 13 · 15

)1/8

· · · . (3)

The following two products provide a decomposition of Catalan’s product —

one having terms with factors of the type 4m and the other with factors 4m+ 2.

e

2
=

(
4

3

)1/3(
8 · 8
5 · 7

)1/6(
12 · 12 · 16 · 16

9 · 11 · 13 · 15

)1/12

· · · . (4)

e

4
=

2

3

(
6 · 6
5 · 7

)1/2(
10 · 10 · 14 · 14

9 · 11 · 13 · 15

)1/4

· · · . (5)

The formula (4) is believed to be new while a variant form of (5) occurs in [4].

To verify that (4) × (5) indeed yields Catalan’s product, we multiply both

sides of (5) by 2, take the cube root of the two sides and then multiply the two

products getting(e
2

)4/3
=

(
42

32

)1/3(
62 · 82

52 · 72

)1/6(
102 · 122 · 142 · 162

92 · 112 · 132 · 152

)1/12

· · · ,

that is, (e
2

)1/3
=

(
4

3

)1/6(
6 · 8
5 · 7

)1/12(
10 · 12 · 14 · 16

9 · 11 · 13 · 15

)1/24

· · ·

which on raising to the third power and then multiplying by 2 results in Catalan’s

product. Hence, proving one product will validate the other.

Now (5) can be written as

e

4
=

(
2

(
1

3

))(
2

(
3 · 3
5 · 7

)1/2
)(

2

(
5 · 5 · 7 · 7

9 · 11 · 13 · 15

)1/4
)
· · · .

We observe that the numerator of a factor equals the denominator of the preceding

factor so that all factors except the last reduce to 2 after cancellation of the

common factors. So the nth partial product is given by

2n

[(2n + 1)(2n + 3)(2n + 5) · · · (2n+1 − 1)]
1

2n−1

=
2n∏2n−1

k=2n−1(2k + 1)
1

2n−1

.
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Hence we have to prove that

e = lim
n→∞

2n+2∏2n−1
k=2n−1(2k + 1)

1

2n−1

. (6)

Replacing 2n−1 by m, it is sufficient to prove that e = lim
m→∞

8m∏2m−1
k=m (2k + 1)

1
m

.

Using Stirling’s formula n! ∼ (n/e)
n
√

2πn (n → ∞) and the following

asymptotic formula for the central binomial coefficients(
2n

n

)
∼ 4n√

πn
(n→∞)

we find

lim
m→∞

8m∏2m−1
k=m (2k + 1)

1
m

= lim
m→∞

16m

m

√
m!
(
4m
2m

) = e

from which (4) follows.

3. Generalization of Catalan’s product

Sondow and Yi gave this product and conjectured that one can generalize it

and Catalan’s product to a product for a power of e1/K , K ∈ N \ {1}
e2/3√

3
=

(
3

2

)1/3(
3 · 6 · 6 · 9
4 · 5 · 7 · 8

)1/9

(
9 · 12 · 12 · 15 · 15 · 18 · 18 · 21 · 21 · 24 · 24 · 27

10 · 11 · 13 · 14 · 16 · 17 · 19 · 20 · 22 · 23 · 25 · 26

)1/27

· · · .

Since 1
3 + 1

9 + 1
27 + · · · = 1

2 , we have
√

3 = 31/331/931/27 · · · . So multiplying the last

product by
√

3, multiplying the numerators/denominators by the same numbers

and then raising the two sides to the third power, we obtain

e2 =
33

2 · 3

(
6393

4 · 5 · 6 · 7 · 8 · 9

)1/3(
123153183213243273

10 · 11 · 12 · · · 27

)1/9

· · · . (7)

This is the case n = 3 of the following general formula that yields products for

en−1, n ∈ N

en−1 =
nn

n!

∞∏
m=1

(∏(n−1)nm−1

k=1 (nm + kn)n∏(n−1)nm

k=1 (nm + k)

) 1
nm

. (8)

Cancelling the common factors, we can rewrite the partial product of (8) as

nn

n!

p∏
m=1

(∏(n−1)nm−1

k=1 (nm + kn)n∏(n−1)nm

k=1 (nm + k)

) 1
nm

=
nn

n!

p∏
m=1

(∏(n−1)nm−1

k=1 (nm−1 + k)nnn∏(n−1)nm

k=1 (nm + k)

) 1
nm

=
nn

n!

p∏
m=1

(
n(n−1)n

m ∏(n−1)nm−1

k=1 (nm−1 + k)n∏(n−1)nm

k=1 (nm + k)

) 1
nm
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=
nn

n!
np(n−1)

p∏
m=1

∏(n−1)nm−1

k=1 (nm−1 + k)
1

nm−1∏(n−1)nm

k=1 (nm + k)
1

nm

=
nn

n!
np(n−1)

n!∏(n−1)np

k=1 (np + k)
1

np

=
nnnp(n−1)∏(n−1)np

k=1 (np + k)
1

np

.

Now we want to evaluate the limit of this expression (with n fixed) as p → ∞.

Note that this is the special case with ` = np of

nn`n−1∏(n−1)`
k=1 (`+ k)

1
`

=
nn`n−1(
(n`)!
`!

)1/` .
Using Stirling’s formula, we find that

lim
`→∞

nn`n−1(
(n`)!
`!

)1/` = lim
`→∞

en−1

n
1
2`

= en−1.

(8) is now an immediate consequence and (1) a special case (n = 2). We conclude

with the formula for n = 4 that

e3 =
44

2 · 3 · 4

(
84124164

5 · 6 · 7 · · · 15 · 16

)1/4(
204244 · · · 644

17 · 18 · 19 · · · 63 · 64

)1/16

· · · . (9)
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Abstract. While Fatou’s lemma in measure theory is well known, his lemma

on the power series ring over integers is perhaps not so well known. In this

note we describe this lemma, present its generalisation to Dedekind domains

and finally apply it to integrality questions on number fields.

1. Introduction

We begin with some preliminaries. An algebraic number field K is a subfield

of the field of complex numbers C which is a finite extension of Q. A complex

number α which satisfies a non-zero polynomial with integer coefficients is called

an algebraic number. For α ∈ C, if there exists a monic polynomial f(x) ∈ Z[x]

such that f(α) = 0 then α is called an algebraic integer.

Let K be a number field and α ∈ K. The trace of α in K, denoted by

TrK/Q(α), is defined to be the sum
n∑
i=1

σi(α), where σi’s are the distinct field

embeddings of K in C fixing Q. It is an standard result that the trace of an

algebraic number is an element of Q and the trace of an algebraic integer is an

element in Z. However, the converse is not true, i.e. an algebraic number with

integral trace need not be an algebraic integer. One such example is α = 1√
2
.

During a number theory course by David Goss, John Lame asked the following

question.

Question 1. Suppose α is an algebraic number such that TrQ(α)/Q(αi) ∈ Z for

all i ≥ 1. Does it imply that α is an algebraic integer?

The answer to this question is given positively by many mathematicians. In fact,

this has been known since 1915, due to George Pólya, where he proved it using

Fatou’s lemma.

In this regard, we first recall Fatou’s lemma. Any rational function p(x)
q(x) where

p(x), q(x) 6= 0 ∈ Q[x], can be written as a Laurent series with coefficients in

Q. Fatou’s lemma gives a sufficient condition for such a rational function to be

a rational function over Z with the denominator having constant term 1. More

precisely,

2010 Mathematics Subject Classification : 11R04, 13F05, 13F25

Key words and phrases : Fatou’s lemma, Formal power series, Dedekind domain.

c© Indian Mathematical Society, 2016 .
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26 ABHISHEK T. BHARADWAJ

Theorem 1.1 (Fatou’s lemma). If f(x) ∈ Z[[x]]∩Q(x), then f(x) can be written

as g(x)
h(x) where g(x), h(x) are in Z[x] having no common factors and h(0) = 1.

When we say f(x) ∈ Z[[x]] ∩ Q(x), we mean that it is a rational function

which admits a formal power series expansion with coefficients in Z. To illustrate,

consider the rational function 1
1−x ∈ Q(x). It can also be viewed as a formal power

series in Z[[x]], i.e. there is an element f(x) ∈ Z[[x]] such that (1− x)f(x) = 1 in

Z[[x]]. One can check that f(x) =
∑∞
n=0 x

n.

In this article, we present an analogue of Fatou’s lemma which is in general

true for any Dedekind domain (see §3 for definition and other properties).

Theorem 1.2 (Fatou’s lemma for Dedekind domains). Let A be a Dedekind do-

main and K be its field of fractions. If f(x) ∈ A[[x]] ∩ K(x) then f(x) can be

written as g(x)
h(x) where g(x),h(x) ∈ A[x], having no common factor in K[x] and

h(0) = 1.

2. Fatou’s lemma

We begin with the definition of the order and the content of an element f(x) =∑∞
n=0 anx

n ∈ Z[[x]].

Definition 2.1. The order of f 6= 0 is the smallest integer n such that an 6= 0.

We denote it by ω(f). By definition, ω(0) = +∞.

Note that the order can be defined for formal power series with coefficients in

any ring.

Proposition 2.1. Let A be an integral domain. Then for f, g ∈ A[[x]],

ω(fg) = ω(f) + ω(g).

Proof. Let

f :=
∞∑
n=0

anx
n and g :=

∞∑
n=0

bnx
n.

Let us assume ω(f) = i, ω(g) = j. Thus we can write

f =
∞∑
n=0

an+ix
n+i and g =

∞∑
n=0

bn+jx
n+j ,

where ai, bj 6= 0. Hence

fg = aibjx
i+j +

∞∑
m=1

(
m∑
k=0

ak+ibm−k+j

)
xm+i+j .

Clearly, ω(fg) = i+ j = ω(f) + ω(g). �

Remark 2.1. If A is not an integral domain then ω(fg) ≥ i+ j = ω(f) + ω(g).

Definition 2.2. For f ∈ Z[[x]], the content of f is defined to be the non-negative

generator of the ideal generated by coefficients {ai|i ≥ 0}. We denote it by c(f).
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Note that the ideal generated by the coefficients of f is generated by a single

element, since Z is a principal ideal domain, and therefore the content of a power

series with coefficients in Z is well defined.

Lemma 2.1 (Gauss lemma). Let f, g ∈ Z [[x]]. Then c(fg) = c(f)c(g).

Proof. If f = 0 or g = 0, then the equality is clear. Hence we will assume that

f and g 6= 0. We can write f =c(f)f̃ and g =c(g)g̃, where f̃ ,g̃ ∈ Z [[x]]. Hence

fg =c(f)c(g)f̃ g̃. We can take c(f), c(g) = 1 and we have to show that c(fg) = 1.

Suppose not. Then there exists some prime p such that p|c(fg). We have

a natural surjection Φ : Z [[x]] −→ Z/pZ [[x]] ,
∞∑
n=0

anx
n 7→

∞∑
n=0

ānx
n. Since

p|c(fg), Φ(fg) = 0 whereas Φ(f),Φ(g) 6= 0, because c(f), c(g) = 1. We obtain a

contradiction as Z/pZ [[x]] is a integral domain. �

Proof of Theorem 1.1 We write f(x) =c(f)f̃(x), where c(f̃)=1. We will prove

the theorem for f̃(x) and observe that the theorem will also hold for f(x). So

we can assume that c(f) = 1. Let f(x) = g1(x)
h1(x)

= ag̃(x)

bh̃(x)
, where g1(x) and h1(x)

∈ Q [x] are co-prime, g̃(x) and h̃(x) ∈ Z[x] and a and b are integers. We have

bh̃(x)f(x) = ag̃(x). Upon applying Lemma 2.1

bc(h̃)c(f) = ac(g̃) =⇒ bc(h̃) = ac(g̃).

Therefore

f(x) =
ag̃(x)

bh̃(x)
=
ac(g̃)g(x)

bc(h̃)h(x)
=
g(x)

h(x)
.

Here g(x) and h(x) ∈ Z [x] , have no common factor and c(g) = c(h) = 1. We

observe that h(0) 6= 0, because if h(0) = 0 then by Proposition 2.1 we have

ω(hf) = ω(h) + ω(f) = ω(g) =⇒ ω(g) > 0 =⇒ g(0) = 0

which contradicts the fact that g and h have no common factor. Since g(x) and h(x)

are co-prime in Q [x], there exists u(x) and v(x) ∈ Q [x] such that

u(x)g(x) + v(x)h(x) = 1.

This equation can be rewritten as

du(x)
g(x)

h(x)
+ dv(x) =

d

h(x)
,

where d is a non zero integer such that du(x) and dv(x) ∈ Z [x]. Thus d
h(x) ∈ Z [[x]].

We set P̃ (x) := d
h(x) . Applying Lemma 2.1 we get

h(x)P̃ (x) = d =⇒ c(h)c(P̃ ) = c(d) =⇒ c(P̃ ) = d.

Therefore d
h(x) = P̃ (x) = dQ̃(x) for some Q̃(x) ∈ Z [[x]]. We get Q̃(x) = 1

h(x) and

Q̃(0) = 1
h(0) ∈ Z, hence h(0) = ±1. We then write f(x) = h(0)g(x)

h(0)h(x) to obtain the

result as stated in the theorem. �
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Remark 2.2. The phrases ‘two polynomials g(x), h(x) have no common factor’

and ‘two polynomials g(x), h(x) are co-prime’ are not equivalent. It depends on

the ring. For example the polynomials g(x) = x and h(x) = x2 + 2 have no

common factor in Z [x] but they are not co-prime in Z [x]. This is because the

ideal (x, x2 + 2) = (2, x) does not generate the whole ring Z [x]. However we note

that these two polynomials are co-prime in Q [x].

3. Gauss lemma for Dedekind domains

We begin by recalling some definitions.

Definition 3.1. A ring in which every ideal is finitely generated is called noether-

ian ring. An equivalent definition is that any increasing chain of ideals becomes

stationary at a finite stage.

Example 3.1. Z, k [x, y] where k is a field are examples of noetherian rings. An

example of a non noetherian ring is Z [S] where S = {xi|i ∈ N}.

Definition 3.2 (Dedekind domains). Let A be an integral domain. We say that

A is a Dedekind domain if

(1) A is noetherian.

(2) Every non zero prime ideal of A is maximal.

(3) A is integrally closed in its field of fractions K (i.e any element of K

satisfying a monic polynomial with coefficients in A is an element of A)

Here are some examples of Dedekind domains.

Example 3.2. Z,Z
[√

3
]
,Z
[
1+
√
−3

2

]
,Z
[√
−5
]
.

From now on, we consider A to be a Dedekind domain. We state an important

property for A which will be used in the subsequent sections.

Theorem 3.1. Any non zero ideal I of A can be written as a product of powers

of prime ideals of A.

For a proof of the above Theorem, one can refer [1], Chapter 3, Page 57-60. The

above theorem can be seen as a unique factorization property for the non zero

ideals of A. In the proofs the following elementary fact is used.

For some non zero prime ideal P and an ideal I of A P | I ⇐⇒ I ⊂ P.
Throughout the section we denote the i-th coefficient of f ∈ A [[x]] as a

(f)
i .

Similar notation is used for the i-th coefficient of g ∈ A [[x]].

Definition 3.3. The content of f is the ideal in A generated by
{
a
(f)
i |i ≥ 0

}
. We

denote it by c(f).

Note that in Definition 2.2 we took the non negative generator of the ideal when

A = Z.

Lemma 3.1 (Gauss lemma for Dedekind domains). Let f ,g ∈ A [[x]]. Then

c(fg) =c(f)c(g).
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Proof. If f = 0 or g = 0, then the equality is clear. Hence we can assume that f, g

6= 0. By Theorem 3.1 we can write c(f) and c(g) as product of powers of prime

ideals, say as c(f) =
∏k
i=1 P

ei
i , c(g) =

∏k
i=1 P

fi
i , where ei, fi ≥ 0 ei + fi > 0 .

We write the factorization in this way so as to have the same indexing set.

For any non zero prime ideal P, consider the natural surjection ΨP :A [[x]] →
A/P [[x]]. If f ∈ Ker(ΨP), then ai ∈ P for all i, thus c(f) ⊂ P, that is P|c(f).

We claim that P1, . . .Pk are the only divisors of c(fg). In fact, ΨP(fg) = 0 then

ΨP(f)ΨP(g) = 0 =⇒ ΨP(f) = 0 or ΨP(g) = 0 =⇒ P|c(f) or P|c(g).

The factorisation of c(f) and c(g) ensures the above claim. Also, for all 1 ≤ i ≤
k, a

(f)
j ∈ Peii and a

(g)
j ∈ P

fi
i for all j. Therefore,∑

j+j′=n

a
(f)
j a

(g)
j′ ∈ P

ei+fi
i for all n =⇒ c(fg) ⊂ Pei+fii for all 1 ≤ i ≤ k

=⇒
k∏
i=1

Pei+fii |c(fg).

It remains to show that Pei+fi+1
i - c(fg). Assume the contrary. Let j,m be the

smallest index of the coefficients of f and g such that a
(f)
m ∈ Peii \ P

ei+1
i and

a
(g)
j ∈ Pfii \ P

fi+1
i . Set k = m+ j and consider the kth coefficient of the product

fg. By our assumption this is an element of Pei+fi+1
i . Observe that

k∑
n=0

a(f)n a
(g)
k−n ∈ P

ei+fi+1
i =⇒ a(f)m a

(g)
j +

k∑
n=0,n6=m

a(f)n a
(g)
k−n ∈ P

ei+fi+1
i

=⇒ a(f)m a
(g)
j ∈ P

ei+fi+1
i .

We have a contradiction to the choice of m and j. Hence the theorem is proved. �

4. Fatou’s lemma for Dedekind domains

We now proceed to prove Theorem 1.2 by modifying the proof of Theorem

1.1. A proof of this theorem can also be found in [2], Page 15-16.

Proof of Theorem 1.2 Let f(x) = g1(x)
h1(x)

= ag̃(x)

bh̃(x)
where g1(x) and h1(x) ∈

K [x] are co-prime, ag̃(x) and bh̃(x) ∈ A[x] for some a and b ∈ A. We can write

f(x) = g(x)
h(x) with g(x) and h(x) ∈ A [x] after cancellation of common factors and

let h(x) :=
r∑
i=0

hix
i. As in the proof of Theorem 1.1 we observe that h(0) 6= 0 and

there exists d ∈ A such that d
h(x) ∈ A [[x]]. Let P̃ (x) := dxr−1

h(x) =
∞∑
n=0

bnx
n. By

comparing the coefficients of the formal power series P̃ (x)h(x) with dxr−1, we get

hibk = −
r∑
j=0
j 6=i

hjbk−j+i = −

i−1∑
j=0

hjbk−j+i +
r∑
i+1

hjbk−j+i

 , (1)

for all 1 ≤ i ≤ r, k ≥ r− 1. We claim that c(h) = (h0). Suppose not. Let P be a

non zero prime ideal such that Pc(h)|(h0). If

Pc(h)|(hi) (2)
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for all 1 ≤ i ≤ r, then we get a contradiction as this implies Pc(h)|c(h), proving

the claim. So assuming the contrary, it is enough to prove (2) and we prove it by

induction.

Let k ≥ r − 1 be such that Pc(P̃ ) - (bk). In order to prove (2) for each i in the

induction step, it is enough to prove that

Pc(P̃ )c(h)|(hibk). (3)

We write (hi) = c(h)Ai and (bk) = c(P̃ )Bk, where Ai and Bk are ideals of A. By

Lemma 3.1, we get P | (AiBk) and since P - (bk), P | Ai therefore proving (2) in

the induction step.

We now prove the equation (2) for all 1 ≤ i ≤ r by induction. We denote

S<i :=
i−1∑
j=0

hjbk−j+i and S>i :=
r∑

j=i+1

hjbk−j+i.

Therefore equation (1) can be re-written as hibk = −(S<i + S>i). For i = 1, we

have S<1 = h0bk ∈ Pc(h)c(P̃ ) and from the minimality of k, S>1 ∈ Pc(h)c(P̃ ).

Therefore, h1bk ∈ Pc(h)c(P̃ ). Hence (2) is true for i=1. Suppose, (2) is true

for i < t where t ≤ r. For i = t, we get S<t ∈ Pc(P̃ )c(h) by the induction step

Pc(h)|(hi) for i < t and S>t ∈ Pc(P̃ )c(h) by the minimality of k, i.e., Pc(P̃ )|(bk−j)
for positive integer j > 0. Therefore, hibk ∈ Pc(h)c(P̃ ). Hence (2) is true for i = t.

By induction, (2) is thus true for all 1 ≤ i ≤ r. Therefore c(h) = (h0). Now we

can write h(x) = h0q(x) = h0
r∑
i=0

qix
i with q0=1. It remains to show that h0 ∈ A∗.

Observe that

h(x)f(x) = g(x) =⇒ h0q(x)f(x) = g(x) =⇒ h0|g(x).

Since g(x) and h(x) have no common factors, this implies that h0 is an invertible

element in A. Writing f(x) =
h−1
0 g(x)

h−1
0 h(x)

=
h−1
0 g(x)
q(x) , we get the theorem. �

We next proceed to answer Question 1.

5. Application of Fatou’s lemma

A conjugate of an algebraic number α is a root of the minimal polynomial of

α. In the following theorem, we call α, an algebraic number and let K := Q (α).

For theorems about splitting field and Galois Theory, one can refer [3].

Theorem 5.1. If TrK/Q(αi) ∈ Z for all i ≥ 1, then α is an algebraic integer.

Proof. Let [K : Q] = n and f(x) :=
n∏
i=1

(1 − αix) where αi are the distinct con-

jugates of α over Q with α1 = α. Let L be the splitting field of the polyno-

mial f(x) over Q. Consider the generating function of trace of powers h(x) :=
∞∑
i=0

TrK/Q(αi)xi. We have TrK/Q(αi) =
n∑
j=1

αij . Substituting this in the equation

we get

h(x) =
∞∑
i=0

 n∑
j=1

αij

xi =
n∑
j=1

∞∑
i=0

αij x
i.
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When viewed this as an element of L(x) we get

h(x) =
n∑
j=1

1

1− αjx
=

n∑
i=1

n∏
j=1
j 6=i

(1− σj(α)x)

f(x)
=
g(x)

f(x)
,

where σj are the distinct field embeddings of K in C. The coefficients of the poly-

nomial g(x) is invariant for all σ ∈ Gal(L/Q) (as σ maps αj to its conjugates )

and hence is an element of Q[x]. Also g(x) and f(x) have no common factors. It

follows from Theorem 1.1 that f(x) and g(x) ∈ Z[x] with f(0) = 1. Consider the

reciprocal polynomial xnf( 1
x ) =

∏n
i=1(x − αi). Clearly it is the minimal monic

polynomial of α with coefficients in Z[x]. Hence α is an algebraic integer. �

6. Complementary modules

Before starting this section, we recall that any submodule of a finitely gener-

ated module over a Principal ideal domain is finitely generated. The statement

along with a few basic properties of complementary modules will help us prove

Theorem 5.1. Let A be a Dedekind domain, K its field of fractions, E be a fi-

nite extension of K. The trace of an element β in E is the trace of the linear

transformation Trβ : E 7→ E, Trβ(x) := βx. It is denoted by TrEK(β).

Remark 6.1. When A = Z, both the definitions of Trace are equivalent.

Definition 6.1 (Complimentary module). Let L be an additive subgroup of E

which is also an A module. We define the complementary module L′ as L′ ={
x ∈ E | TrEK(xL) ⊂ A

}
.

Note that L′ is also an A module.

Proposition 6.1. Let α1 . . . αk be an basis of E over K. If L = Aα1 + · · ·+Aαk

then L′ = Aα′1 + · · ·+Aα′k where α′i are dual basis with respect to the trace.

The proof of this proposition can be found in [4], Chapter 3, Page 57-58. Along

with this we also mention an equivalent condition for checking, whether a number

is algebraic integer.

Proposition 6.2. The following are equivalent for a complex number α

(1) α is an algebraic integer.

(2) Z [α] is a finitely generated Z module.

Refer [1], Chapter 2, Page 15-16 for the proof. Now we present a proof of Theorem

5.1.

Proof of Theorem 5.1. Let L = Zα+ · · ·+Zαn−1 where n = [Q(α) : Q]. From the

hypothesis, the complementary module L′ contains Z [α]. By Proposition 6.1, L′

is finitely generated as a Z module, therefore we see that Z [α] is finitely generated

as a Z module and hence by Proposition 6.2 we prove that α is an algebraic

integer. �
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This was proved independently by Hendrik Lenstra and Paul Ponomarev. The

above theorem was improved by Bart De Smit who showed that it is enough to

check the Traces of algebraic number α for the powers till n + n log2 n, where

n = Q(α), to find out whether α is an algebraic integer. We mention the precise

statement below.

Let A be a Dedekind domain with quotient field K of characteristic 0. For

each prime p of K, let vp : K∗ 7→ Z be the normalised p adic valuation.

Theorem 6.1. Let n be a positive integer. Define b to be the maximum of the num-

bers m+mvp(m) where p ranges over all the primes of K and m ∈ {1, 2, . . . n}.
Let L be a K module of dimension n and α ∈ L. If there exists a ≥ b such that

TrLK(αi) ∈ A for all i with a− n ≤ i ≤ a, then α is integral over A.

The proof uses results from Local fields which is beyond the scope of the present

article. More details about the proof can be found in [5].

Remark 6.2. We note that the bound is strict, in the sense that a smaller bound

does not guarantee that α is integral. This can be shown by taking α = 1√
2
. We

see that α is not an algebraic integer as the minimal polynomial of α over Q is

f(x) = x2 − 1
2 . Here the upper bound is four and we observe that Tr

Q(α)
Q (αi) is an

integer for 1 ≤ i ≤ 3.
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Abstract. We present here some series obtained by leaving out terms from

the ζ(2) series and changing the sign scheme in the original series. Some of

Euler’s results are used for establishing our formulas. Similar series involving

Catalan’s constant G are treated at the end.

1. Introduction

Leonhard Euler (1707–1783) gained instant fame by solving the Basel problem

which asked for the exact sum of the series
∑∞
n=1

1
n2 . First posed in 1644 by

Pietro Mengoli, the problem figured in Jacob (also known as James or Jacques)

Bernoulli’s 1689 treatise Tractatus de seriebus infinitis that formed pages 241–306

of his posthumous work Ars Conjectandi (1713) published in Basel, the hometown

of Euler and the Bernoullis. Stating the problem, Bernoulli wrote on p.254:

The last sentence translated into English (by the author) reads as: “If anyone

should find and communicate to us, what has so far eluded our efforts, we shall be

highly grateful to him.”

Stirling [13, p.29] computed ζ(2) to nine (8 correct) decimal places but could

not find its closed form. Jacob Bernoulli’s younger brother Johann Bernoulli tried

but failed and suggested it to Euler who began initially by computing numerical

approximations of some of the partial sums of the series and found various ex-

pressions for the desired sum (definite integrals, other series) but these did not

help. He eventually cracked the problem in 1734 by analogy using an audacious

approach — extending the logic valid for a polynomial of finite degree to an in-

finite series treated as a polynomial of infinite degree. Taking the Taylor series

2010 Mathematics Subject Classification : 11Y60, 33B15, 65B10

Key words and phrases : Basel problem; ζ(2); Catalan’s constant; Trigamma function.
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34 AMRIK SINGH NIMBRAN AND PAUL LEVRIE

expansion of the sine function, he divided its two sides by the argument to get:

sinx

x
=
x0

1!
− x2

3!
+
x4

5!
− x6

7!
+ . . .

Treating the right hand side as a polynomial in x, and using the fact that the zeros

of the left hand side are precisely ±π, ±2π, ±3π, . . . , he wrote:

sinx

x
=
(

1− x

π

)(
1 +

x

π

)(
1− x

2π

)(
1 +

x

2π

)
· · · (1)

=

(
1− x2

π2

)(
1− x2

(2π)2

)(
1− x2

(3π)2

)
· · ·

Therefore,

x0

1!
− x2

3!
+
x4

5!
− x6

7!
+ · · · =

(
1− x2

π2

)(
1− x2

(2π)2

)(
1− x2

(3π)2

)
· · ·

Setting x2 = y, the polynomial reduces to a polynomial in y whose roots are

π2, 4π2, 9π2, · · · . Since the constant term in the polynomial is +1, the negative of

the linear term, namely 1
3! , equals the sum of the reciprocals of all roots. Hence,

1

π2
+

1

4π2
+

1

9π2
+ · · · = 1

6
,

that is,

1 +
1

22
+

1

32
+

1

42
+ · · · = π2

6
.

But Euler’s fruitful method was open to serious objection. Granting that sin x
x

can be expressed as an infinite product of linear factors corresponding to the non-

zero roots of the equation sinx = 0, there is a lurking possibility that all roots

may not be real; in that case the whole exercise would be invalid. Realizing this,

Euler worked to validate his method. Sandifer [12] remarks that Euler gave four

distinct solutions to the Basel problem — three in [5] and a fourth in [6]. Many

more have appeared since then. We evaluate ζ(2) by using Euler’s formula given

in [7, Ch.X, §178]

π

n

cos mπn
sin mπ

n

=
1

m
− 1

n−m
+

1

n+m
− 1

2n−m
+

1

2n+m
− · · · .

Multiplying both sides of the formula by n and setting m
n = x gives

π cot(πx) =
1

x
− 1

1− x
+

1

1 + x
− 1

2− x
+

1

2 + x
− . . . . (2)

Note that this equation can be deduced from (1): After multiplying by x, we take

the logarithmic derivative of both sides and replace x by πx.

Differentiating (2) with respect to x yields

π2 csc2(πx) =
1

x2
+

1

(1− x)2
+

1

(1 + x)2
+

1

(2− x)2
+

1

(2 + x)2
+ . . .

for all x 6= kπ with k integer (for a rigorous proof, see [9]).
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Setting x = 1
2 in the above expansion, we get

π2 =
4

1
+

4

1
+

4

32
+

4

32
+

4

52
+

4

52
+ · · · =⇒

∞∑
n=1

1

(2n− 1)2
=
π2

8
.

We now get ζ(2) by using the relation
∞∑
n=1

1

(2n− 1)2
=
∞∑
n=1

1

n2
− 1

22

∞∑
n=1

1

n2
.

In the rest of the paper, we will evaluate series whose general terms consist

of reciprocals of two squares and the sums, involving ζ(2) and Catalan’s constant,

can be written with only real radicals.

2. Non-alternating series

Recall the trigamma function denoted by ψ′(z), z 6= 0,−1,−2, . . . :

ψ′(z) =
d

dz
ψ(z); ψ(z) =

d

dz
ln Γ(z) =

Γ′(z)

Γ(z)
= −γ +

∞∑
k=0

(
1

k + 1
− 1

k + z

)
,

and defined by the infinite series [11, p.144, 5.15.1]: ψ′(z) =
∞∑
k=0

1

(k + z)2
.

Some special values are: ψ′(1) =
π2

6
, ψ′

(
1

2

)
=
π2

2
, ψ′

(
1

4

)
= π2 + 8G, where

G =
∞∑
k=0

(−1)k

(2k + 1)2
is Catalan’s constant.

The trigamma function satisfies the reflection formula [11, p.144, 5.15.6]

ψ′(1− z) + ψ′(z) = −π d

dz
cot(πz) =

π2

sin2(πz)
.

For 1 ≤ ` < m and gcd(`,m) = 1, setting z = `
m (m = 2, 3, 4, . . .) yields

Theorem 1.
∞∑
k=0

[
1

(mk + `)2
+

1

(mk + (m− `))2

]
=

(
π/m

sin(`π/m)

)2

.

Now m = 2, 3, 4, 6 give these four formulas (also deducible from Euler’s ζ(2)):

∞∑
k=0

[
1

(2k + 1)2
+

1

(2k + 1)2

]
=
π2

4
, (3)

∞∑
k=0

[
1

(3k + 1)2
+

1

(3k + 2)2

]
=

4π2

27
, (4)

∞∑
k=0

[
1

(4k + 1)2
+

1

(4k + 3)2

]
=
π2

8
, (5)

∞∑
k=0

[
1

(6k + 1)2
+

1

(6k + 5)2

]
=
π2

9
. (6)
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Further, m = 5, 8, 10, 12, 15, 16, 20, 24, 30 result in the following.
∞∑
k=0

[
1

(5k + 1)2
+

1

(5k + 4)2

]
=

2(5 +
√

5)π2

125
, (7)

∞∑
k=0

[
1

(5k + 2)2
+

1

(5k + 3)2

]
=

2(5−
√

5)π2

125
. (8)

∞∑
k=0

[
1

(8k + 1)2
+

1

(8k + 7)2

]
=

(2 +
√

2)π2

32
, (9)

∞∑
k=0

[
1

(8k + 3)2
+

1

(8k + 5)2

]
=

(2−
√

2)π2

32
. (10)

∞∑
k=0

[
1

(10k + 1)2
+

1

(10k + 9)2

]
=

(3 +
√

5)π2

50
, (11)

∞∑
k=0

[
1

(10k + 3)2
+

1

(10k + 7)2

]
=

(3−
√

5)π2

50
. (12)

∞∑
k=0

[
1

(12k + 1)2
+

1

(12k + 11)2

]
=

(2 +
√

3)π2

36
, (13)

∞∑
k=0

[
1

(12k + 5)2
+

1

(12k + 7)2

]
=

(2−
√

3)π2

36
. (14)

∞∑
k=0

[
1

(15k + 1)2
+

1

(15k + 14)2

]
=

2

(
4 +
√

5 +
√

3(5 + 2
√

5)

)
π2

225
, (15)

∞∑
k=0

[
1

(15k + 2)2
+

1

(15k + 13)2

]
=

2

(
4−
√

5 +
√

3(5− 2
√

5)

)
π2

225
, (16)

∞∑
k=0

[
1

(15k + 4)2
+

1

(15k + 11)2

]
=

2

(
4 +
√

5−
√

3(5 + 2
√

5)

)
π2

225
, (17)

∞∑
k=0

[
1

(15k + 7)2
+

1

(15k + 8)2

]
=

2

(
4−
√

5−
√

3(5− 2
√

5)

)
π2

225
. (18)

∞∑
k=0

[
1

(16k + 1)2
+

1

(16k + 15)2

]
=

(2 +
√

2)(2 +
√

2 +
√

2)π2

128
, (19)

∞∑
k=0

[
1

(16k + 3)2
+

1

(16k + 13)2

]
=

(2−
√

2)(2 +
√

2−
√

2)π2

128
, (20)

∞∑
k=0

[
1

(16k + 5)2
+

1

(16k + 11)2

]
=

(2−
√

2)(2−
√

2−
√

2)π2

128
, (21)
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∞∑
k=0

[
1

(16k + 7)2
+

1

(16k + 9)2

]
=

(2 +
√

2)(2−
√

2 +
√

2)π2

128
. (22)

∞∑
k=0

[
1

(20k + 1)2
+

1

(20k + 19)2

]
=

(3 +
√

5)(4 +
√

10 + 2
√

5)π2

400
, (23)

∞∑
k=0

[
1

(20k + 3)2
+

1

(20k + 17)2

]
=

(3−
√

5)(4 +
√

10− 2
√

5)π2

400
, (24)

∞∑
k=0

[
1

(20k + 7)2
+

1

(20k + 13)2

]
=

(3−
√

5)(4−
√

10− 2
√

5)π2

400
, (25)

∞∑
k=0

[
1

(20k + 9)2
+

1

(20k + 11)2

]
=

(3 +
√

5)(4−
√

10 + 2
√

5)π2

400
. (26)

∞∑
k=0

[
1

(24k + 1)2
+

1

(24k + 23)2

]
=

(2 +
√

3)(4 +
√

2 +
√

6)π2

288
, (27)

∞∑
k=0

[
1

(24k + 5)2
+

1

(24k + 19)2

]
=

(2−
√

3)(4−
√

2 +
√

6)π2

288
, (28)

∞∑
k=0

[
1

(24k + 7)2
+

1

(24k + 17)2

]
=

(2−
√

3)(4 +
√

2−
√

6)π2

288
, (29)

∞∑
k=0

[
1

(24k + 11)2
+

1

(24k + 13)2

]
=

(2 +
√

3)(4−
√

2−
√

6)π2

288
. (30)

∞∑
k=0

[
1

(30k + 1)2
+

1

(30k + 29)2

]
=

(7 + 3
√

5)

(
(9−

√
5) +

√
3(10 + 2

√
5)

)
π2

1800
, (31)

∞∑
k=0

[
1

(30k + 7)2
+

1

(30k + 23)2

]
=

(7− 3
√

5)

(
(9 +

√
5) +

√
3(10− 2

√
5)

)
π2

1800
, (32)

∞∑
k=0

[
1

(30k + 11)2
+

1

(30k + 19)2

]
=

(7 + 3
√

5)

(
(9−

√
5)−

√
3(10 + 2

√
5)

)
π2

1800
, (33)

∞∑
k=0

[
1

(30k + 13)2
+

1

(30k + 17)2

]
=
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(7− 3
√

5)

(
(9 +

√
5)−

√
3(10− 2

√
5)

)
π2

1800
. (34)

Further series with m = 2n, m = 3 · 2n and m = 5 · 2n can also be evaluated by

using the three general formulae:

cos
π

2n+1
=

√
2 +

√
2 +

√
2 + · · ·+

√
2 +
√

2

2
,

where 2 under the square root occurs n times, with n ∈ N.

cos
π

3 · 2n
=

√
2 +

√
2 +

√
2 + · · ·+

√
2 +
√

3

2
,

where 2 under the square root occurs n− 1 times, with n ∈ N.

cos
π

5 · 2n
=

√√√√
2 +

√
2 +

√
2 + · · ·+

√
2 +

√
10+2

√
5

2

2
,

where 2 under the square root occurs n− 1 times, with n ∈ N.

3. Alternating series

Again, for 1 ≤ ` < m and gcd(`,m) = 1 (m = 2, 3, 4, . . .), we have

Theorem 2.
∞∑
k=0

(−1)k
[

1

(mk + `)2
− 1

(mk + (m− `))2

]
=

(
π/m

sin(`π/m)

)2

cos
`π

m
.

Proof. We give a proof of Theorem 2 for ` = 1. Analogous proofs can be devised

for other values as well. Observe that Euler gave this partial fraction expansion

in [7, Ch.X, §178]:

π

n sin mπ
n

=
1

m
+

1

n−m
− 1

n+m
− 1

2n−m
+

1

2n+m
+

1

3n−m
− 1

3n+m
− · · ·

which on putting m = 1 and replacing π
n by z gives

z

sin z
= 1 +

z

π − z
− z

π + z
− z

2π − z
+

z

2π + z
+

z

3π − z
− z

3π + z
− · · ·

that is,

1

sin z
=

+∞∑
k=−∞

(−1)k

z − kπ
. (35)

Taking the derivative of the two sides of (35) with respect to z yields

cos z

sin2 z
=

+∞∑
k=−∞

(−1)k

(z − kπ)2
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for z 6= nπ with n integer (see [9] for a rigorous proof), which on putting z = − π
m

and then multiplying both sides by
(
π
m

)2
becomes(

π/m

sin(π/m)

)2

cos
π

m
=

+∞∑
k=−∞

(−1)k

(km+ 1)2
.

We may rewrite the right hand side as
+∞∑

k=−∞

(−1)k

(km+ 1)2
=

−1∑
k=−∞

(−1)k

(km+ 1)2
+
∞∑
k=0

(−1)k

(km+ 1)2

and
−1∑

k=−∞

(−1)k

(km+ 1)2
=
∞∑
k=1

1

(−1)k(−km+ 1)2
=
∞∑
k=1

(−1)k

(km− 1)2

which equals the second term in the left hand side of Theorem 2 because

−
∞∑
k=0

(−1)k

(mk + (m− 1))2
= −

∞∑
k=1

(−1)k−1

(m(k − 1) + (m− 1))2
=
∞∑
k=1

(−1)k

(mk − 1)2
.

�
For m = 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30 we get these sums

∞∑
k=0

(−1)k
[

1

(3k + 1)2
− 1

(3k + 2)2

]
=

2π2

27
. (36)

∞∑
k=0

(−1)k
[

1

(4k + 1)2
− 1

(4k + 3)2

]
=

√
2π2

16
. (37)

∞∑
k=0

(−1)k
[

1

(5k + 1)2
− 1

(5k + 4)2

]
=

π2

25

(
3√
5

+ 1

)
, (38)

∞∑
k=0

(−1)k
[

1

(5k + 2)2
− 1

(5k + 3)2

]
=

π2

25

(
3√
5
− 1

)
. (39)

∞∑
k=0

(−1)k
[

1

(6k + 1)2
− 1

(6k + 5)2

]
=

√
3π2

18
. (40)

∞∑
k=0

(−1)k
[

1

(8k + 1)2
− 1

(8k + 7)2

]
=

π2(2 +
√

2)
3
2

64
, (41)

∞∑
k=0

(−1)k
[

1

(8k + 3)2
− 1

(8k + 5)2

]
=

π2(2−
√

2)
3
2

64
. (42)

∞∑
k=0

(−1)k
[

1

(10k + 1)2
− 1

(10k + 9)2

]
=

π2

10
√

10

√
5 +

11√
5
, (43)

∞∑
k=0

(−1)k
[

1

(10k + 3)2
− 1

(10k + 7)2

]
=

π2

10
√

10

√
5− 11√

5
. (44)

∞∑
k=0

(−1)k
[

1

(12k + 1)2
− 1

(12k + 11)2

]
=

π2
√

2

288

(√
3 + 1

)3
, (45)
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∞∑
k=0

(−1)k
[

1

(12k + 5)2
− 1

(12k + 7)2

]
=
π2
√

2

288

(√
3− 1

)3
. (46)

∞∑
k=0

(−1)k
[

1

(15k + 1)2
− 1

(15k + 14)2

]

=

(√
6(5 +

√
5)3/2 + (3

√
5 + 1) + 3

√
10(7 + 3

√
5)

)
π2

900
,

(47)

∞∑
k=0

(−1)k
[

1

(15k + 2)2
− 1

(15k + 13)2

]

=

(√
6(5−

√
5)3/2 + (3

√
5 − 1) + 3

√
10(7− 3

√
5)

)
π2

900
,

(48)

∞∑
k=0

(−1)k
[

1

(15k + 4)2
− 1

(15k + 11)2

]

=

(√
6(5 +

√
5)3/2 − (3

√
5 + 1)− 3

√
10(7 + 3

√
5)

)
π2

900
,

(49)

∞∑
k=0

(−1)k
[

1

(15k + 7)2
− 1

(15k + 8)2

]

=

(√
6(5−

√
5)3/2 − (3

√
5 − 1)− 3

√
10(7− 3

√
5)

)
π2

900
.

(50)

∞∑
k=0

(−1)k
[

1

(16k + 1)2
− 1

(16k + 15)2

]
=
π2(2 +

√
2)

256

(√
2 +

√
2 +
√

2

)3

, (51)

∞∑
k=0

(−1)k
[

1

(16k + 3)2
− 1

(16k + 13)2

]
=
π2(2−

√
2)

256

(√
2 +

√
2−
√

2

)3

, (52)

∞∑
k=0

(−1)k
[

1

(16k + 5)2
− 1

(16k + 11)2

]
=
π2(2−

√
2)

256

(√
2−

√
2−
√

2

)3

, (53)

∞∑
k=0

(−1)k
[

1

(16k + 7)2
− 1

(16k + 9)2

]
=
π2(2 +

√
2)

256

(√
2−

√
2 +
√

2

)3

. (54)

∞∑
k=0

(−1)k
[

1

(20k + 1)2
− 1

(20k + 19)2

]

=

(
π(1 +

√
5)

80

)2(√
3 +
√

5 +

√
5−
√

5

)3

, (55)
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∞∑
k=0

(−1)k
[

1

(20k + 3)2
− 1

(20k + 17)2

]

=

(
π(
√
5− 1)

80

)2(√
3−
√
5 +

√
5 +
√
5

)3

, (56)

∞∑
k=0

(−1)k
[

1

(20k + 7)2
− 1

(20k + 13)2

]

=

(
π(
√
5− 1)

80

)2(√
5 +
√
5−

√
3−
√
5

)3

, (57)

∞∑
k=0

(−1)k
[

1

(20k + 9)2
− 1

(20k + 11)2

]

=

(
π(
√
5 + 1)

80

)2(√
3 +
√
5−

√
5−
√
5

)3

. (58)

∞∑
k=0

(−1)k
[

1

(24k + 1)2
− 1

(24k + 23)2

]

=

(
π(1 +

√
3)

48

)2√
2
(
4 +
√
2 +
√
6
) 3

2
, (59)

∞∑
k=0

(−1)k
[

1

(24k + 5)2
− 1

(24k + 19)2

]

=

(
π(
√
3− 1)

48

)2√
2
(
4−
√
2 +
√
6
) 3

2
, (60)

∞∑
k=0

(−1)k
[

1

(24k + 7)2
− 1

(24k + 17)2

]

=

(
π(
√
3− 1)

48

)2√
2
(
4 +
√
2−
√
6
) 3

2
, (61)

∞∑
k=0

(−1)k
[

1

(24k + 11)2
− 1

(24k + 13)2

]

=

(
π(
√
3 + 1)

48

)2√
2
(
4−
√
2−
√
6
) 3

2
. (62)

∞∑
k=0

(−1)k
[

1

(30k + 1)2
− 1

(30k + 29)2

]
=(√

3(11 + 5
√
5) +

√
2(65 + 29

√
5)

)(
(9−

√
5) +

√
3(10 + 2

√
5)

)
π2

7200
, (63)

∞∑
k=0

(−1)k
[

1

(30k + 7)2
− 1

(30k + 23)2

]
=(√

3(−11 + 5
√
5) +

√
2(65− 29

√
5)

)(
(9 +

√
5) +

√
3(10− 2

√
5)

)
π2

7200
, (64)



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

42 AMRIK SINGH NIMBRAN AND PAUL LEVRIE

∞∑
k=0

(−1)k
[

1

(30k + 11)2
− 1

(30k + 19)2

]
=(√

3(11 + 5
√
5)−

√
2(65 + 29

√
5)

)(
(9−

√
5)−

√
3(10 + 2

√
5)

)
π2

7200
, (65)

∞∑
k=0

(−1)k
[

1

(30k + 13)2
− 1

(30k + 17)2

]
=(√

3(11− 5
√
5) +

√
2(65− 29

√
5)

)(
(9 +

√
5)−

√
3(10− 2

√
5)

)
π2

7200
. (66)

Remark. Choi [4] gives a long proof (involving integrals) of (37) while (41), (45),

(51), (55) occur differently as formulas (10)–(13) without proofs.

Note that (39) can easily be established by using earlier results:

∞∑
k=0

(−1)k
[

1

(5k + 2)2
− 1

(5k + 3)2

]

=
∞∑
k=0

(
(−1)2k

[
1

(10k + 2)2
− 1

(10k + 3)2

]
+(−1)2k+1

[
1

(10k + 7)2
− 1

(10k + 8)2

])
=
∞∑
k=0

[
1

(10k + 2)2
− 1

(10k + 3)2
− 1

(10k + 7)2
+

1

(10k + 8)2

]

=
1

4

∞∑
k=0

[
1

(5k + 1)2
+

1

(5k + 4)2

]
−
∞∑
k=0

[
1

(10k + 3)2
+

1

(10k + 7)2

]

=
(5 +

√
5)π2

250
− (3−

√
5)π2

50
=

(3
√

5− 5)π2

125
.

4. Series involving Catalan’s constant

Catalan’s constant was introduced in 1865 by the Franco-Belgian mathemati-

cian Eugène Charles Catalan (1814-94). He used the symbol G to denote the

constant and defined it on page 20 of [2] by means of an alternating series and on

page 33 by means of an integral

G =
∞∑
n=0

(−1)n

(2n+ 1)2
=

∫ 1

0

arctanx

x
dx.

Mark the close connection of the defining formula G and π2

8 =
∑∞
n=0

1
(2n+1)2 . The

constant G is important in enumerative combinatorics and commonly appears in

combinatorial problems. It also occurs occasionally in certain classes of sums

and definite integrals. Finch finds “a fascinating and unexpected occurrence” of

Catalan’s constant [8, pp.5-6]. The constant also pops up frequently in relation
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to the Clausen function and in the values of the trigamma function at fractional

arguments. It is also known to surface in 3-manifold geometric topology where it is

a rational multiple of the volume of an ideal hyperbolic octahedron, and therefore

of the hyperbolic volume of the complement of the Whitehead link. The hyperbolic

volume of the complement of the Whitehead link is 4 times Catalan’s constant.

It is “arguably the most basic constant whose irrationality and transcendence

(though strongly suspected) remain unproven.”[1, p.849] The irrationality of G

would imply that the volume of the unique hyperbolic structure on the Whitehead

link complement is irrational. Till date, it is not known that any hyperbolic 3-

manifold has irrational volume.

Catalan investigated G again in 1883 [3]. The Inverse tangent integral was

studied by Glaisher and in particular by Ramanujan. Mathematicians including

Ramanujan looked for rapidly converging series for G. The first author worked

on a series of Ramanujan in [10]. Both authors have recently found some fast

converging series (not yet published) for this constant.

All the series given above are of this form

1


+

−
+0·

 1

22


+

−
+0·

 1

32


+

−
+0·

 1

42


+

−
+0·

 · · ·


+

−
+0·

 1

n2


+

−
+0·

 · · ·
where for each term a choice is made: a plus sign, a minus sign or skip the next

term. (The series defining Catalan’s constant is also of this form.) For instance,

for the series (36)

1

12
− 1

22
− 1

42
+

1

52
+

1

72
− 1

82
− 1

102
+

1

112
+

1

132
− 1

142
− 1

162
+

1

172
+ . . .

the choice made is a repetition of the pattern − (+0·) − + (+0·) +, since the series

is obtained from the original Basel series by changing the sign of the second term,

omitting the next term, again changing the sign of the next one and so on.

Using a similar trick as the one used in the introduction, we can find the sum

of other similar series. For instance, it is easy to see that

S = 1 +
1

32
− 1

52
− 1

72
+

1

92
+

1

112
− 1

132
− 1

152
+

1

172
+ · · ·

= 1 +
1

32
+

1

52
+

1

72
+

1

92
+ · · · − 2

(
1

52
+

1

72
+

1

132
+

1

152
+ · · ·

)
=
π2

8
− 2

∞∑
k=0

[
1

(8k + 5)2
+

1

(8k + 7)2

]
.

Note that we can rearrange S also as follows

S = 1− 1

32
+

1

52
− 1

72
+

1

92
− 1

112
+· · · +2

(
1

32
− 1

52
+

1

112
− 1

132
+

1

192
− 1

212
+ · · ·

)
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= G+ 2
∞∑
k=0

[
1

(8k + 3)2
− 1

(8k + 5)2

]
.

Equating the two forms of S we can derive

∞∑
k=0

[
1

(8k + 3)2
+

1

(8k + 7)2

]
=

1

2

(
π2

8
−G

)
(67)

which is equivalent to

∞∑
k=0

1

(4k + 3)2
=

1

2

(
π2

8
−G

)
⇔ ψ′

(
3

4

)
= π2 − 8G.

Formula (67) combined with (3) then yields

∞∑
k=0

[
1

(8k + 1)2
+

1

(8k + 5)2

]
=

1

2

(
π2

8
+G

)
(68)

or
∞∑
k=0

1

(4k + 1)2
=

1

2

(
π2

8
+G

)
⇔ ψ′

(
1

4

)
= π2 + 8G.

We now use (67) and (10) to deduce

∞∑
k=0

[
1

(8k + 5)2
− 1

(8k + 7)2

]
=

1

2

(
G− π2

√
2

16

)
. (69)

Formula (68) combined with (10) gives

∞∑
k=0

[
1

(8k + 1)2
− 1

(8k + 3)2

]
=

1

2

(
G+

π2
√

2

16

)
. (70)

Similarly, using (67) we obtain

T = 1 +
1

32
+

1

52
− 1

72
− 1

92
− 1

112
+

1

132
+

1

152
+

1

172
− 1

192
− · · ·

= 1 +
1

32
+

1

52
+

1

72
+

1

92
+ · · · − 2

(
1

72
+

1

92
+

1

112
+

1

192
+ · · ·

)
=
π2

8
− 2

∞∑
k=0

[
1

(12k + 7)2
+

1

(12k + 11)2
+

1

9(8k + 3)2
+

1

9(8k + 7)2

]

=
π2

8
− 2

∞∑
k=0

[
1

(12k + 7)2
+

1

(12k + 11)2

]
− 1

9

(
π2

8
−G

)
.

But we also have

T = 1− 1

32
+

1

52
− 1

72
+

1

92
− · · ·+ 2

(
1

32
− 1

92
+

1

152
− 1

212
+ · · ·

)
= G+

2

9
G =

11

9
G.
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Equating both results one gets

∞∑
k=0

[
1

(12k + 7)2
+

1

(12k + 11)2

]
=

1

18
(π2 − 10G) (71)

and, using (13) and (14) one gets

∞∑
k=0

[
1

(12k + 1)2
+

1

(12k + 5)2

]
=

1

18
(π2 + 10G). (72)

In terms of ψ′ this can be expressed as

ψ′
(

1

12

)
+ ψ′

(
5

12

)
= 8π2 + 80G, ψ′

(
7

12

)
+ ψ′

(
11

12

)
= 8π2 − 80G. (73)
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Abstract. In the present work, we introduce a class of functions which

extends the well-known basic hypergeometric function 1φ1[z] with the aid of

a q-analogue of entire function f(z) =
∑
n≥1

zn

n!n
considered by P. C. Sikkema

[Differential Operators and Equations, Djakarta, P. Noordhoff N. V.,1953].

For this function, the difference equation, eigen function property and the

contiguous functions relations are derived. The work characterizes the q-

Exponential function and hence the trigonometric and hyperbolic functions.

1. Introduction

Let 0 < q < 1. A q-analogue of the factorial function

(a)n =

{
1, if n = 0

(a+ 1)(a+ 2)...(a+ n− 1), if n ∈ N,
(1)

is defined by

(qa; q)n =

{
1, if n = 0

(1− qa)(1− qa+1)...(1− qa+n−1), if n ∈ N.
(2)

Also, in the notation [3, Eq.(1.2.29), p.6]

(qa; q)∞ =
∏
n≥0

(1− qa+n),

we have [3, Eq.(1.2.30), p.6]

(qa; q)n =
(qa; q)∞

(qa+n; q)∞

for arbitrary n. The q-Gamma function defined by [3, Eq.(1.10.1). p.16]

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x,

admits an alternative expression:

(qa; q)n =
Γq(a+ n)

Γq(a)
(1− q)n (3)

2010 Mathematics Subject Classification : 30D10; 33D05; 33D15; 34A35

Key words and phrases : Basic hypergeometric function; q-derivative; q-integral; eigen func-

tion; q-contiguous function.

c© Indian Mathematical Society, 2016 .
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which verifies as q → 1−, the well known relation: (a)n = Γ(a+n)
Γ(a) . As a

justification to call (qa; q)n a q-analogue of the factorial, it is easy to see that

(qα; q)n
(1− q)n

=
(1− qα)

(1− q)
(1− qα+1)

(1− q)
(1− qα+2)

(1− q)
· · · (1− qα+n−1)

(1− q)
→ α (α+ 1) (α+ 2) · · · (α+ n− 1)

as q → 1 and this equals n! when α = 1.

In these terminologies, it is known that a basic hypergeometric series [3, Eq.

(1.2.22), p. 4]

1φ1

[
a; q, z

b;

]
=

∑
n≥0

(qa; q)n
(qb; q)n

[
(−1)n q(

n
2)
] zn

(q; q)n
(4)

defines an entire function of z where b 6= 0,−1,−2, . . . .

Let us consider the series ∑
n≥1

zn

(q; q)nn
(5)

as a q-form of the series
∑
n≥1

zn

n!n representing an entire function due to Sikkema

[8, p. 6]. The series in (5) leads us to an extension of (4) which we define as

follows.

Definition 1.1. For <(`) ≥ 0, a, z ∈ C, and b, c ∈ C \ {0,−1,−2, . . .} = C1,

define the function Ψ by

Ψ

[
a; q, z

b; (c : `);

]
=

∑
n≥0

(qa; q)n
(qb; q)n

(−1)n q(
n
2)

(qc; q)`nn

zn

(q; q)n
. (6)

We shall call this function to be q-`-Ψ hypergeometric function and in brief, the q-

`-Ψ function. As q → 1, this q-`-Ψ function approaches to our ordinary analogue,

the `-Hypergeometric function [2, Def.1]:

H

[
a; z

b; (c : `);

]
=

∑
n≥0

(a)n
(b)n (c)`nn

zn

n!
, (7)

where (α)n = Γ(α+n)
Γ(α) , a, `, z ∈ C with <(`) ≥ 0, and b, c ∈ C \ {0,−1,−2, . . .}.

2. Main Results

In this section, we prove certain properties of q-`-Ψ function (6) namely, differ-

ence equation, eigen function property and contiguous function relations. We first

investigate the convergence behavior of the series in (6). Throughout the work,

we take

(qa; q)n (−1)n qn(n−1)/2

(qb; q)n (qc; q)`nn (q; q)n
= ξn.
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2.1. Convergence. The absolute convergence of series in (6) is however evident

due to the presence of the factor q(
n
2), we verify that the series indeed represents

the entire function.

Theorem 2.1. If 0 < q < 1, <(`) ≥ 0 then q-`-Ψ function is an entire function

of z.

Proof. In view of the formula (3), we have

|ξn|
1
n =

∣∣∣∣ (qa; q)n q
n(n−1)/2

(qb; q)n (qc; q)`nn (q; q)n

∣∣∣∣
1
n

=

∣∣∣∣Γq(b)Γq(a)

∣∣∣∣ 1n ∣∣∣∣Γq(a+ n)

Γq(b+ n)

∣∣∣∣ 1n ∣∣∣∣Γq(c) (1− q)−n

Γq(c+ n)

∣∣∣∣` q(n−1)/2 (1− q)−1

Γ
1
n
q (n+ 1)

.

Here applying the Stirling’s formula of q-Gamma function [7, Eq.(2.25), p. 482]:

Γq(z) ∼ (1 + q)
1
2 Γq2

(
1

2

)
(1− q) 1

2−z e
θqz

1−q−qz , for large |z|, 0 < θ < 1, (8)

we further have for large n,

|ξn|
1
n ∼

∣∣∣∣Γq(b)Γq(a)

∣∣∣∣ 1n
∣∣∣∣∣∣ (1 + q)

1
2 Γq2

(
1
2

)
(1− q) 1

2−(a+n) e
θ qa+n

1−q−qa+n

(1 + q)
1
2 Γq2

(
1
2

)
(1− q) 1

2−(b+n) e
θ qb+n

1−q−qb+n

∣∣∣∣∣∣
1
n

×
∣∣Γ`q(c) (1− q)−`n

∣∣∣∣∣∣(1 + q)
1
2 Γq2

(
1
2

)
(1− q) 1

2−(c+n) e
θ qc+n

1−q−qc+n

∣∣∣∣`
× q(n−1)/2 (1− q)∣∣∣∣(1 + q)

1
2 Γq2

(
1
2

)
(1− q) 1

2−(n+1) e
θ qn+1

1−q−qn+1

∣∣∣∣ 1n
.

Hence using the Cauchy-Hadamard formula, we find
1

R
= lim

n→∞
sup n

√
|ξn|

= lim
n→∞

Γ`q(c) (1− q)c`− `2 +1

(1 + q)
`
2 Γ`q2

(
1
2

) q(n−1)/2 = 0,

provided <(`) ≥ 0 and 0 < q < 1. �

Remark 2.2. Here if ` = 0 then q-`-Ψ function reduces to the basic hypergeometric

function 1φ1(a; b; q, z), z ∈ C.

2.2. q-Difference Equation. The difference equation of q-`-Ψ function occurs

for ` ∈ N ∪ {0}, which is obtained by introducing the following operator.

Definition 2.3. Let f(z) =
∑
n≥1

an,q z
n, 0 6= z ∈ C, p ∈ N ∪ {0} and α ∈ C.

Define

p∆
θq
α f(z) =


∑
n≥1

an,q (qα; q)pn−1 (qα−1 θq − qα−1 + 1)pn zn, if p ∈ N

f(z), if p = 0
, (9)
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where the difference operator θq is defined by

θqf(z) = f(z)− f(zq). (10)

The operator defined in (9) leads us to construct an infinite order differential

operator as given below.

Definition 2.4. Let f(z) =
∑
n≥1

an,q z
n, 0 6= z ∈ C, p ∈ N ∪ {0} and α, β ∈ C.

We define the operator

βΛ
θq
(α,p)f(z) =

[{
p∆

θq
α

}{
qβ−1θq − qβ−1 + 1

}
θq
]

(−q) f
(
z

q

)
, (11)

where p∆
θq
α is as defined in (9).

Note 2.5. The operators `∆
θq
c and θq do not commute.

By means of above operator, we construct difference equation of q-`-Ψ func-

tion.

Theorem 2.6. For ` ∈ N ∪ {0}, a, z ∈ C, and b, c ∈ C1, the function w =

Ψ

[
a; q, z

b; (c : `);

]
satisfies the difference equation[

bΛ
θq
(c,`) − z(q

aθq − qa + 1)
]
w = 0, (12)

where the operator bΛ
θq
(α,p) is as defined in (11).

Unlike the finite order operators that act on operand in straightforward man-

ner, here the operator (9) acts on w subject to a condition; which is stated and

proved as

Lemma 2.7. If ` ∈ N ∪ {0}, a, z ∈ C, b, c ∈ C1, and

w = Ψ

[
a; q, z

b; (c : `);

]
=
∑
n≥0

ξn z
n

then the operator bΛ
θq
(c:`) :=

∑
n≥0

fn,q(a, b, (c : `); z) is applicable to the q-`-Ψ

function provided that the series∑
n≥0

ξn fn,q(a, b, (c : `); z)

converges (cf. [8, Definition 11, p.20]).

Proof. Let us put

(qa; q)n (−1)n+1q(n−1)(n−2)/2

(qb; q)n (qc; q)`nn
= An, (13)

then
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bΛ
θq
(c,`)w =

[{
`∆

θq
c

}{
qb−1θq − qb−1 + 1

}
θq
]∑
n≥0

ξn (−q)
(
z

q

)n
=

[{
`∆

θq
c

}{
qb−1θq − qb−1 + 1

}
θq
]∑
n≥0

An
zn

(q; q)n

=
[{
`∆

θq
c

}{
qb−1θq − qb−1 + 1

}]∑
n≥0

An
(1− qn)

(q; q)n
zn

=
[{
`∆

θq
c

}{
qb−1θq − qb−1 + 1

}]∑
n≥1

An
zn

(q; q)n−1

=
{
`∆

θq
c

}∑
n≥1

An
(q; q)n−1

(
qb−1(zn − znqn)− zn(qb−1 − 1)

)
=

{
`∆

θq
c

}∑
n≥1

An
(q; q)n−1

(1− qb+n−1) zn

=
∑
n≥1

An
(q; q)n−1

(1− qb+n−1) (qc; q)`n−1

(
qc−1θq − qc−1 + 1

)`n
zn.

Here a little computations provide us(
qc−1θq − qc−1 + 1

)`n
zn = (1− qn+c−1)`n zn.

We thus have

bΛ
θq
(c,`)w =

∑
n≥1

An (qc; q)`n−1

(q; q)n−1
(1− qb+n−1)(1− qn+c−1)`n zn

=
∑
n≥1

(qa; q)n (−1)n+1q(n−1)(n−2)/2 zn

(qb; q)n−1 (qc; q)`n−`n−1 (q; q)n−1

(14)

=
∑
n≥0

ξn (1− qa+n) zn+1 (15)

=
∑
n≥0

fn,q(a, b, (c : `); z), say.

To complete the proof of lemma, it suffices to show that∑
n≥0

an,q fn,q(a, b, (c : `); z) =
∑
n≥0

(qa; q)2
n (1− qa+n) (−1)nqn(n−1)/2 zn+1

(qb; q)2
n (qc; q)2`n

n (q; q)2
n

is convergent. For that, take

|µn| = |an,q fn,q(a, b, (c : `); z)| =
∣∣∣∣ (qa; q)2

n (1− qa+n) (−1)nqn(n−1)/2 zn+1

(qb; q)2
n (qc; q)2`n

n (q; q)2
n

∣∣∣∣
=

∣∣∣∣∣
(

Γq(a+ n)

Γq(a)

)2(
Γq(b)

Γq(b+ n)

)2(
Γq(c) (1− q)−n

Γq(c+ n)

)2`n
∣∣∣∣∣

×

∣∣∣∣∣
(
qn(n−1)/2 (1− q)−1

Γq(n+ 1)

)2

(1− qa+n) zn+1

∣∣∣∣∣
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∼
∣∣∣∣Γq(b)Γq(a)

∣∣∣∣2 |Γ2`n
q (c) zn+1|

∣∣∣∣∣∣ (1 + q)
1
2 Γq2

(
1
2

)
(1− q) 1

2−a−n e
θ qa+n

1−q−qa+n

(1 + q)
1
2 Γq2

(
1
2

)
(1− q) 1

2−b−n e
θ qb+n

1−q−qb+n

∣∣∣∣∣∣
2

× qn(n−1) (1− q)−2`n2∣∣∣∣(1 + q)
1
2 Γq2

(
1
2

)
(1− q) 1

2−c−n e
θ qc+n

1−q−qc+n

∣∣∣∣2`
× (1− qa+n) (1− q)−2∣∣∣∣(1 + q)

1
2 Γq2

(
1
2

)
(1− q) 1

2−n−1 e
θ qn+1

1−q−qn+1

∣∣∣∣2
.

Then

lim
n→∞

|µn|
1
n ∼ lim

n→∞

|Γ2`
q (c)| |z| (1− qa+n)

1
n

|(1 + q)`| Γ2`
q2

(
1
2

)
(1− q)`−2`c

q(n−1) = 0,

whenever ` ∈ N ∪ {0} as 0 < q < 1. �

Proof. (of Theorem 2.6). From (15) we get

bΛ
θq
(c,`)w =

∑
n≥0

ξn (1− qa+n) zn+1

= z
∑
n≥0

ξn (qazn − qaznqn − qazn + zn)

= z
∑
n≥0

ξn (qaθq − qa + 1) zn = z (qaθq − qa + 1) w,

and hence (12) follows. �

2.3. Eigen function property. In order to obtain q-`-Ψ function as an eigen

function, we need to define yet another operator using following definition.

Definition 2.8. Let f(z) =
∑
n≥1

an,q z
n, |z| < R, z 6= 0, R > 0 and α ∈ C with

<(α) > 0. Define

Iαq f(z) =
z−α

1− q
Iq
(
zα−1f(z)

)
, (16)

where the q-integral of function is given by [3, Eq.(1.11.1), p. 19]

Iqf(z) =

z∫
0

f(t)dqt = z (1− q)
∑
n≥0

f(zqn) qn. (17)

Definition 2.9. Let f(z) =
∑
n≥0

an,q z
n, |z| < R, z 6= 0, R > 0. Define

αE(γ:p)
β f(z) =

[
Iαq z−1

βΛ
θq
(α,p)

]
f(z), (18)

where βΛ
θq
(α,p) and Iαq are as defined in (11) and (16) respectively.

The following theorem establishes the eigen function property with respect to the

operator (18).
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Theorem 2.10. If ` ∈ N∪ {0} then the q-`-Ψ function is an eigen function with

respect to the operator aE(c:`)
b defined in (18). That is,

aE(c:`)
b

(
Ψ

[
a; q, λz

b; (c : `);

])
= λ Ψ

[
a; q, λz

b; (c : `);

]
, λ ∈ C. (19)

Proof. The applicability of this operator to the q-`-Ψ function follows from Lemma

2.7. Now for z 6= 0,

aE(c:`)
b

(
Ψ

[
a; q, λz

b; (c : `);

])
=

Iaq z−1
bΛ

θq
(c,`)

∑
n≥0

λn ξn z
n

 .
For each n, putting

λn (qa; q)n (−1)n+1 q(n−1)(n−2)/2

(qb; q)n−1 (qc; q)`n−`n−1 (q; q)n−1

= Bn,

in view of (14) one gets

aE(c:`)
b

(
Ψ

[
a; q, λz

b; (c : `);

])
= Iaq z

−1

∑
n≥1

Bn z
n


=

z−a

1− q
Iq

∑
n≥1

Bn z
a+n−2


=

z−a

1− q
∑
n≥1

Bn z(1− q)
∑
k≥0

(zqk)a+n−2 qk

=
z−a

1− q
∑
n≥1

Bn z(1− q) za+n−2
∑
k≥0

qk(a+n−1)

=
∑
n≥1

Bn
zn−1

1− qa+n−1
= λ

∑
n≥0

λn ξn z
n,

and thus the theorem is proved. �

2.4. Contiguous function relations. The contiguous function relations for ba-

sic hypergeometric series have been derived by Swarttouw [9]. Our attempt in this

direction led us to following two identities:

(qb−1 − qa)Ψ = qb−1(1− qa)Ψ(a+)− qa(1− qb−1)Ψ(b−) (20)

and

(1− qb)Ψ = (1− qa)Ψ(a+, b+)− (qb − qa)Ψ(b+, zq), (21)

in which the function notations carry the following meaning. We take

Ψ = Ψ

[
a; q, z

b; (c : `);

]
,

then
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Ψ(a+) := Ψ

[
aq; q, z

b; (c : `);

]
, Ψ(a−) := Ψ

[
aq−1; q, z

b; (c : `);

]
,

Ψ(a+, b+) := Ψ

[
aq; q, z

bq; (c : `);

]
, Ψ(b+, zq) := Ψ

[
a; q, zq

bq; (c : `);

]
.

The functions Ψ(b+),Ψ(b−),Ψ(c+),Ψ(c−) etc. are defined similarly. Now, with

ξn =
(qa; q)n (−1)n qn(n−1)/2

(qb; q)n (qc; q)`nn (q; q)n

as before, we have Ψ =
∑
n≥0

ξn z
n whence the following series representations are

evident.

Ψ(a+) =
∑
n≥0

1− qa+n

1− qa
ξn z

n, Ψ(a−) =
∑
n≥0

1− qa−1

1− qa+n−1
ξn z

n,

Ψ(b+) =
∑
n≥0

1− qb

1− qb+n
ξn z

n, Ψ(b−) =
∑
n≥0

1− qb+n−1

1− qb−1
ξn z

n, (22)

Ψ(c+) =
∑
n≥0

(1− qc)`n

(1− qc+n)`n
ξn z

n, Ψ(c−) =
∑
n≥0

(1− qc+n−1)`n

(1− qc−1)`n
ξn z

n.

If Θq = zDq, where Dq is as defined in (33) then,

ΘqΨ =
∑
n≥0

(1− qn)

(1− q)
ξn z

n. (23)

From (23), we have(
qaΘq +

1− qa

1− q

)
Ψ = qa

∑
n≥0

(1− qn)

(1− q)
ξnz

n +
1− qa

1− q
∑
n≥0

ξnz
n

=
1

1− q
∑
n≥0

(1− qa+n) ξn z
n =

1− qa

1− q
Ψ(a+). (24)

Also,(
qb−1Θq +

1− qb−1

1− q

)
Ψ = qb−1

∑
n≥0

(1− qn)

(1− q)
ξnz

n +
1− qb−1

1− q
∑
n≥0

ξnz
n

=
1

1− q
∑
n≥0

(1− qb+n−1) ξnz
n =

1− qb−1

1− q
Ψ(b−). (25)

Now, elimination of Θq from (24) and (25) yields (20). Next, from (13) and by

using the technique adopted in the proof of Lemma 2.7, we have

{ `∆θq
c }θq (−q) Ψ(z/q) =

{
`∆

θq
c

}
θq

∑
n≥0

An
zn

(q; q)n


=

{
`∆

θq
c

}∑
n≥0

An
1− qn

(q; q)n
zn
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=
{
`∆

θq
c

}∑
n≥1

An
zn

(q; q)n−1


=

∑
n≥1

An
(q; q)n−1

(qc; q)`n−1

(
qc−1θq − qc−1 + 1

)`n
zn

=
∑
n≥1

An (qc; q)`n−1

(q; q)n−1
(1− qn+c−1)`nzn.

Thus,

{ `∆θq
c }θq (−q) Ψ(z/q) =

∑
n≥1

(qa; q)n (−1)n+1q(n−1)(n−2)/2 zn

(qb; q)n (qc; q)`n−`n−1 (q; q)n−1

=
∑
n≥0

(qa; q)n+1 (−1)nqn(n−1)/2 zn+1

(qb; q)n+1 (qc; q)`nn (q; q)n

= z
∑
n≥0

1− qa+n

1− qb+n
ξn z

n (26)

= z
1− qa

1− qb
Ψ(a+, b+). (27)

Now putting

1− qa+n

1− qb+n
= 1 +

qb+n − qa+n

1− qb+n

in (26) we find that

{ `∆θq
c }θq (−q) Ψ(z/q) = z

∑
n≥0

(
1 +

qb+n − qa+n

1− qb+n

)
ξnz

n

= z

∑
n≥0

ξnz
n +

∑
n≥0

qb − qa

1− qb
1− qb

1− qb+n
ξn (zq)n


= z

[
Ψ +

qb − qa

1− qb
Ψ(b, zq)

]
. (28)

The relation (21) now follows from (27) and (28).

3. Particular q-`-Ψ functions

3.1. q-`-Ψ Exponential Function. In (6), if the parameters a and b are absent

and z is replaced by −z then

0Ψ1
0

[
−; q, −z
−; (c : `);

]
=
∑
n≥0

qn(n−1)/2 zn

(qc; q)`nn (q; q)n
, (<(`) ≥ 0). (29)

This function characterizes the q-Exponential function. In fact, for c = 1, qc = q

hence the above series would reduce to (cf. [1, Def.5, p.249])

0Ψ1
0

[
−; q, z

−; (q : `);

]
=
∑
n≥0

qn(n−1)/2 zn

(q; q)`n+1
n
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which enables us to define the q-`-Ψ Exponential function as follows.

Definition 3.1. The q-`-Ψ Exponential function is denoted and defined by

E`Ψ(z; q) =
∑
n≥0

qn(n−1)/2 zn

(q; q)`n+1
n

, (30)

for all z ∈ C and <(`) ≥ 0.

Remark 3.2. Obviously, E0
Ψ(z; q) = Eq(z), and E`Ψ(0; q) = 1.

Eventually, when the parameters a and b are absent, the difference equation

obtained in Theorem 2.6 would reduce to the form(
Λ
θq
(1,`) − z

)
w = 0, (31)

which is satisfied by w = E`Ψ(z; q). This can be verified as follows.(
Λ
θq
(1,`)

)
w = {`∆

θq
1 } θq q E`Ψ

(
z

q
; q

)
={`∆

θq
1 } θq

∑
n≥0

q(n−1)(n−2)/2

(q; q)`n+1
n

zn

={`∆
θq
1 }

∑
n≥0

q(n−1)(n−2)/2

(q; q)`n+1
n

(1− qn)zn

=
∑
n≥1

q(n−1)(n−2)/2 (q; q)`n−1 (θq)
`n zn

(q; q)`nn (q; q)n−1

=
∑
n≥1

q(n−1)(n−2)/2 (q; q)`n−1 (1− qn)`n zn

(q; q)`nn (q; q)n−1

=
∑
n≥1

q(n−1)(n−2)/2 (q; q)`n−1 z
n

(q; q)`nn−1 (q; q)n−1

=
∑
n≥1

q(n−1)(n−2)/2 zn

(q; q)`n−`n−1 (q; q)n−1

= z w.

Note 3.3. The case ` = 0 in (31) yields the equation (∆q − z) w = 0, where

∆q := Λ
θq
(1,0) and w = Eq(z).

In order to derive eigen function property for generalized q-`-Ψ exponential

function, we introduce one more differential operator below.

Definition 3.4. Let f(z; q) =
∞∑
n=0

an,q z
n, |z| < R,R > 0, p ∈ N∪{0}. Define an

operator

pΩ
Dz
q

α =


∑
n≥1

an,q (qα; q)pn−1 ((1− q) Dz
q)
pn zn, if p ∈ N

f(z; q), if p = 0
, (32)

where Dz
q is the q-hyper-Bessel type operator given by (see e.g. [4, 5, 6]).

(Dz
q)
n = DqzDq . . . DqzDq︸ ︷︷ ︸

n derivatives

in which Dq is the usual q-Derivative operator given by [3, Ex.(1.12), p. 22]
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Dqf(z) =
f(z)− f(zq)

z(1− q)
. (33)

Definition 3.5. Let f(z; q) =
∞∑
n=0

an,q z
n, |z| < R,R > 0, p ∈ N∪{0}. Define an

operator

pDqMf(z; q) =
({

pΩ
Dz
q

1

}
θq q

)
f

(
z

q
; q

)
, (34)

where pΩ
Dz
q

1 is as defined in (32).

In view of this, we have

Theorem 3.6. If ` ∈ N ∪ {0} then the q-`-Ψ Exponential function is an eigen

function of the operator `DqM . That is,

`DqM
(
E`Ψ(λz; q)

)
= λ E`Ψ(λz; q), λ ∈ C. (35)

Proof. Observe that

`DqM
(
E`Ψ(λz; q)

)
=

({
`Ω

Dz
q

1

}
θq

)∑
n≥0

λn q(n−1)(n−2)/2 zn

(q; q)`n+1
n


=

{
`Ω

Dz
q

1

}∑
n≥1

λn q(n−1)(n−2)/2 zn

(q; q)`nn (q; q)n−1


=

∑
n≥1

λn q(n−1)(n−2)/2

(q; q)`nn (q; q)n−1
(q; q)`n−1 ((1− q)Dz

q)
`nzn,

and, for n ∈ N,

(1− q)`n
(
Dz
q

)`n
zn = (1− qn)`n zn−1. (36)

Hence

`DqM
(
E`Ψ(λz; q)

)
=

∑
n≥1

λn q(n−1)(n−2)/2

(q; q)`nn (q; q)n−1
(q; q)`n−1 (1− qn)`n zn−1

=
∑
n≥1

λn q(n−1)(n−2)/2 zn−1

(q; q)`n−`n−1 (q; q)n−1

=
∑
n≥0

λn+1 qn(n−1)/2 zn

(q; q)`n+1
n

= λ E`Ψ(λz; q),

which completes the proof. �

3.2. q-`-Ψ Trigonometric Functions. We consider the q-`-ψ Exponential func-

tion with arguments ±iz and observe that
1

2

[
E`Ψ(iz; q) + E`Ψ(−iz; q)

]
=

1

2

∑
n≥0

qn(n−1)/2 (iz)n

(q; q)`n+1
n

+
∑
n≥0

qn(n−1)/2 (−iz)n

(q; q)`n+1
n
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=
1

2

[
1− iz

((q; q)1)`+1

q2(2−1)/2z2

(q; q)2`+1
2

+ . . .+ 1 +
iz

(q; q)`+1
1

q2(2−1)/2z2

(q; q)2`+1
2

− . . .

]

=
1

2

[
2

(
1− q2(2−1)/2 z2

(q; q)2`+1
2

+
q4(4−1)/2 z4

(q; q)4`+1
4

− . . .
)]

=
∑
n≥0

q2n(2n−1)/2 z2n

(q; q)2`n+1
2n

, (37)

and likewise,

1

2i

[
E`Ψ(iz; q)− E`Ψ(−iz; q)

]
=
∑
n≥0

q2n(2n+1)/2 z2n+1

(q; q)2`n+`+1
2n+1

. (38)

Then the series on the right hand side of (37) and (38) enable us to extend the

q-cosine and q-sine functions respectively which are denoted here by Cos`Ψ(z; q)

and Sin`Ψ(z; q). In fact, for any z ∈ C,
1

2

[
E`Ψ(iz; q) + E`Ψ(−iz; q)

]
:= Cos`Ψ(z; q), (39)

and
1

2i

[
E`Ψ(iz; q)− E`Ψ(−iz; q)

]
:= Sin`Ψ(z; q), (40)

which imply that

E`Ψ(iz; q) = Cos`Ψ(z; q) + i Sin`Ψ(z; q). (41)

Remark 3.7. It is noteworthy that Cos0
Ψ(z; q) = Cosq(z), and Sin0

Ψ(z; q) = Sinq(z).

Further, simple calculations show that

Cos`Ψ(0; q) =
1

2

[
E`Ψ(0; q) + E`Ψ(0; q)

]
= 1,

Sin`Ψ(0; q) =
1

2i

[
E`Ψ(0; q)− E`Ψ(0; q)

]
= 0.

Note 3.8. If f(z; q) =
∞∑
n=0

an,q z
n and g(z; q) =

∞∑
n=0

bn,q z
n, |z| < R then for

α, β ∈ R and p ∈ N ∪ {0},

pDqM (α f(z; q) + β g(z; q)) = α pDqM (f(z; q)) + β pDqM (g(z; q)). (42)

Remark 3.9. The operator (34) when acts on (39) and (40), yields

(1). `DqM (Cos`Ψ(z; q)) = − Sin`Ψ(z; q) and (2). `DqM (Sin`Ψ(z; q)) = Cos`Ψ(z; q)

respectively.

Just as the functions sin z and cos z are solutions of equation d2y
dz2 + y = 0,

these generalized functions are also solutions of a differential equation shown in

the following theorem.

Theorem 3.10. The generalized q-`-Ψ Cosine and Sine functions are solutions

of the differential equation

( `DqM )
2
ν + ν = 0.
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Proof. Note first that from (35),

`DqM (E`Ψ(iz; q)) = i(E`Ψ(iz; q))).

Hence,

(`DqM )
2

(E`Ψ(iz; q))= `DqM ( `DqM (E`Ψ(iz; q)))= `DqM (i(E`Ψ(iz; q))) = −E`Ψ(iz; q).

In view of (41), this may be written as

(`DqM )
2

(Cos`Ψ(z; q) + i Sin`Ψ(z; q)) = −(Cos`Ψ(z; q) + i Sin`Ψ(z; q)).

By making an appeal to the property (42) and comparing real and imaginary

parts, we find that

(`DqM )
2

Cos`Ψ(z; q) + Cos`Ψ(z; q) = 0,

and

(`DqM )
2

Sin`Ψ(z; q)+Sin`Ψ(z; q) = 0. �

3.3. q-`-Ψ Hyperbolic Functions. From the Definition 3.1,

1

2

[
E`Ψ(z; q) + E`Ψ(−z; q)

]
=

1

2

[ ∞∑
n=0

qn(n−1)/2 zn

(q; q)`n+1
n

+
∞∑
n=0

qn(n−1)/2 (−z)n

(q; q)`n+1
n

]

=
1

2

[
1 +

z

(q; q)`+1
1

+
q2(2−1) z2

(q; q)2`+1
2

+ . . .− 1− z

(q; q)`+1
1

− q2(2−1) z2

(q; q)2`+1
2

− . . .

]

=
1

2

[
2

(
1 +

q2(2−1) z2

(q; q)2`+1
2

+
q4(4−1) z4

(q; q)4`+1
4

+ . . .

)]
=

∞∑
n=0

q2n(2n−1) z2n

(q; q)2`n+1
2n

, (43)

and

1

2

[
E`Ψ(z; q)− E`Ψ(−z; q)

]
=

1

2

[ ∞∑
n=0

qn(n−1)/2 zn

(q; q)`n+1
n

−
∞∑
n=0

qn(n−1)/2 (−z)n

(q; q)`n+1
n

]

=
1

2

[
1 +

z

(q; q)`+1
1

+
q2(2−1) z2

(q; q)2`+1
2

+ . . .− 1− −z
(q; q)`+1

1

− q2(2−1) z2

(q; q)2`+1
2

− . . .

]

=
1

2

[
2

(
z

(q; q)`+1
1

+
q3(3−1) z3

(q; q)3`+1
3

+
q5(5−1) z5

(q; q)5`+1
5

+ . . .

)]
=

∞∑
n=0

q2n(2n+1) z2n+1

(q; q)2`n+`+1
2n+1

. (44)

From the first and second series of the right hand side of (43) and (44), we ex-

tend the hyperbolic q-Cosine and q-Sine functions which are denoted here by
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Cosh`Ψ(z; q) and Sinh`Ψ(z; q) respectively. In fact, for any z ∈ C,
1

2

[
E`Ψ(z; q) + E`Ψ(−z; q)

]
:= Cosh`Ψ(z; q), (45)

and
1

2

[
E`Ψ(z; q)− E`Ψ(−z; q)

]
:= Sinh`Ψ(z; q), (46)

which together imply that

E`Ψ(z; q) = Cosh`Ψ(z; q) + Sinh`Ψ(z; q). (47)

Remark 3.11. Cosh0
Ψ(z; q) = Coshq(z), and Sinh0

Ψ(z; q) = Sinhq(z).

In particular, from Remark 3.2

Cosh`Ψ(0; q) =
1

2

[
E`Ψ(0; q) + E`Ψ(0; q)

]
= 1,

Sinh`Ψ(0; q) =
1

2

[
E`Ψ(0; q)− E`Ψ(0; q)

]
= 0.

Parallel to Theorem 3.10, we have

Theorem 3.12. The hyperbolic q-`-Ψ Cosine and Sine functions are solutions of

the differential equation

(`DqM )
2
ν − ν = 0.

Proof. It is seen from (45), (42) and (35) that

(`DqM )
2

Cosh`Ψ(z; q)− Cosh`Ψ(z; q)

= (`DqM )
2

(
E`Ψ(z; q) + E`Ψ(−z; q)

2

)
−
(
E`Ψ(z; q) + E`Ψ(−z; q)

2

)
=

1

2

[
E`Ψ(z; q) + E`Ψ(−z; q)− E`Ψ(z; q)− E`Ψ(−z; q)

]
= 0.

Likewise

(`DqM )
2

Sinh`Ψ(z; q)− Sinh`Ψ(z; q) = 0

follows. �
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Abstract. Let f(x) =
n∑

i=0
aix

i be a polynomial with coe�cients from the

ring Z of integers satisfying either (i) 0 < a0 ≤ a1 ≤ · · · ≤ ak−1 < ak <

ak+1 ≤ · · · ≤ an for some k, 0 ≤ k ≤ n− 1; or (ii) |an| > |an−1|+ · · ·+ |a0|
with a0 6= 0. In this paper, it is proved that if |an| or |f(m)| is a prime number

for some integer m with |m| ≥ 2 then the polynomial f(x) is irreducible over

Z.

1. Introduction

One of the major themes in the development of number theory is the rela-

tionship between prime numbers and irreducible polynomials. There are better

methods to determine prime numbers than to determine irreducible polynomials

over the ring Z of integers. In 1874, Bouniakowsky [1] made a conjecture that

if f(x) ∈ Z[x] is an irreducible polynomial for which the set of values f(Z+) has

greatest common divisor 1, then f(x) represents prime numbers in�nitely often.

Bouniakowsky conjecture is true for polynomials of degree 1 in view of the well

known Dirichlet's Theorem for primes in arithmetic progression's; however it is still

open for higher degree polynomials. The converse of the Bouniakowsky conjecture,

viz. if f(x) is an integer polynomial such that the set f(Z+) has in�nitely many

prime numbers, then f(x) is irreducible over Z, is true; because if f(x) = g(x)h(x)

where g(x), h(x) ∈ Z[x], then at least one of the polynomials g(x), h(x), say g(x)

takes the values ±1 in�nitely many times which is not possible, since the polyno-

mials g(x) + 1 and g(x)− 1 can have at most �nitely many roots over the �eld of

complex numbers. In this paper, we give a proof (using elementary methods) of

a similar version of the converse for a special class of polynomials with a weaker

hypothesis. Indeed we prove the following theorem.

Theorem 1.1. Let f(x) = anx
n+an−1x

n−1+· · ·+a1x+a0 ∈ Z[x] be a polynomial

which satis�es one of the following conditions:

(i) 0 < a0 ≤ a1 ≤ · · · ≤ ak−1 < ak < ak+1 ≤ · · · ≤ an for some k, 0 ≤ k ≤ n− 1;

* The �nancial support from IISER Mohali is gratefully acknowledged by the authors.

2010 Mathematics Subject Classi�cation : 12E05.

Key words and phrases : Irreducible polynomials, Integer polynomials.

c© Indian Mathematical Society, 2016 .
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(ii) |an| > |an−1|+ · · ·+ |a0| with a0 6= 0.

Suppose that |an| is a prime number or |f(m)| is a prime for some integer m with

|m| ≥ 2. Then f(x) is irreducible in Z[x]. Further if |m| is the rth power of some

integer, then f(xr) is irreducible in Z[x].
It may be pointed out that a similar result is proved in [3, Theorem 1] with a

di�erent hypothesis.

2. Preliminary Results

Let the set {z ∈ C : |z| < 1} be denoted by C, where C denotes the complex

numbers. The following proposition proved in [2, Proposition 2.3] will be used in

the sequel. We omit its proof.

Proposition 2.A. Let f(x) =
n∑

l=0

alx
l ∈ Q[x] and suppose that ai 6= 0 and aj 6= 0

for some 0 ≤ i < j ≤ n. Suppose further that∑
0≤l≤n;l 6=t

|al| ≤ qt|at| (1)

for some 0 ≤ t ≤ n, with t 6= i and t 6= j, and some q ∈ R with 0 < q ≤ 1. If f(x)

has a zero α ∈ {z ∈ C|q ≤ |z| ≤ 1}, then equality holds in (1) and α2(j−i) = 1.

Now we prove two elementary lemmas which are of independent interest as well.

Lemma 2.1. Let f(x) = anx
n + · · · + a0 ∈ Z[x] be a polynomial such that 0 <

a0 ≤ a1 ≤ · · · ≤ ak−1 < ak < ak+1 ≤ · · · ≤ an−1 ≤ an for some k, 0 ≤ k ≤ n− 1.

Then f(x) has all zeros in the set C.
Proof. We �rst show that f(x) has all zeros in {z ∈ C : |z| ≤ 1}. Suppose to

the contrary that f(x) has a zero α with |α| > 1. Then α is a root of F (x) =

(x− 1)f(x) = anx
n+1 + (an−1 − an)xn + · · ·+ (a0 − a1)x− a0. Therefore in view

of the hypothesis and the assumption |α| > 1, we have

|anαn+1| ≤ a0 + (a1 − a0)|α|+ · · ·+ (an − an−1)|α|n

< a0|α|n + (a1 − a0)|α|n + · · ·+ (an − an−1)|α|n = |anαn|
which is a contradiction as an > 0. Now we show that |α| < 1. Assume that

|α| = 1. Observe that the coe�cients of xk and xk+1 in F (x) are negative and

other coe�cients except an are non-positive. Thus the hypothesis of Proposition

2.A is satis�ed for t = n + 1, i = k, j = k + 1 and q = 1. By this proposition, we

have α2 = 1, which is impossible as f(1) and f(−1) are easily seen to be non-zero

using the hypothesis. �

Lemma 2.2. Let f(x) ∈ Z[x] be a polynomial having all its zeros in the set C. If

there exists an integer m with |m| ≥ 2 such that |f(m)| is a prime number, then

f(x) is irreducible in Z[x].

Proof. Suppose to the contrary that f(x) = g(x)h(x), where g(x), h(x) ∈ Z[x] and
neither g(x) nor h(x) is a unit in Z[x]. In view of the hypothesis, at least one of

|g(m)|, |h(m)| equals to 1. Say |g(m)| = 1. It follows that either g(x) is a unit in
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Z[x] or deg(g(x)) ≥ 1. If deg(g(x)) ≥ 1, then we can write g(x) = c
k∏

i=1

(x − αi),

where αi ∈ C and k ≥ 1. Keeping in mind that |αi| < 1 and |m| ≥ 2, we have

|g(m)| = |c
k∏

i=1

(m− αi)| ≥ |c|
k∏

i=1

(|m| − |αi|) > |c|
k∏

i=1

(|m| − 1) ≥ 1,

which gives |g(m)| > 1, leading to a contradiction. So we have that g(x) is a unit

in Z[x], which is again a contradiction and hence the lemma is proved. �

Arguing as in the above lemma, the following lemma can be easily proved.

Lemma 2.3. Let f(x) ∈ Z[x] be a polynomial having all its zeros in the set

{z ∈ C : |z| > 1}. If |f(0)| is a prime number, then f(x) is irreducible in Z[x].

3. Proof of the Theorem 1.1.

Note that if f(x) satis�es condition (i) of the theorem, then in view of Lemma

2.1, it has all its zeros inside the unit circle C = {z ∈ C : |z| < 1}. Observe that if
(ii) holds and |α| ≥ 1, then

|f(α)| ≥ |an||α|n −
n−1∑
j=0

|aj ||α|j ≥ |α|n
|an| − n−1∑

j=0

|aj |

 ≥ 1,

so f(α) 6= 0. Thus, in case f(x) satis�es condition (ii) of the theorem then all

its roots lie in C. As a0 6= 0 by hypothesis, it now follows that all roots of the

polynomial xnf( 1x ) = g(x)(say) lie in the set {z ∈ C : |z| > 1}. Therefore when

|an| = |g(0)| is a prime number then g(x) is irreducible over Z by virtue of Lemma

2.3 and hence is f(x). If there exists an integer m with |m| ≥ 2 such that |f(m)|
is prime then f(x) is irreducible over Z in view of Lemma 2.2. It only remains to

be shown that if |m| is a rth power of some integer then f(xr) is irreducible over

Z. Since all the roots of f(x) lie in C, therefore so do the roots of f(±xr). As

|f(m)| is a prime number, the desired assertion follows from Lemma 2.2.

The following examples are quick applications of Theorem 1.1.

Example 3.1. Let 22
n

+ 1 be a prime number for some n ∈ N. Then the

polynomial F (x) = (22
n

+ 1)xn + an−1x
n−1 + · · ·+ a1x+ a0 with 1 ≤ a0 ≤ · · · ≤

ak−1 < ak < ak+1 ≤ · · · ≤ an−1 ≤ 22
n

+1 for some 1 ≤ k ≤ n− 1 is irreducible by

Theorem 1.1.

Example 3.2. Let F (x) = 10x5 + 3x4 + 2x3 + x2 + 1 be a polynomial. Since

F (2) = 389 is a prime, F (x) is irreducible in view of Theorem 1.1.

Example 3.3. Let f(x) = 251x10 + 210x9 − 211x8 + 215x7 − 216x6 − 1 be a

polynomial. One can check that f(2) = 261 − 1 is a prime number (Mersenne

prime) and f(x) satis�es condition (ii) of the Theorem 1.1. Therefore f(x) is

irreducible in Z[x] in view of Theorem 1.1.

Acknowledgement: The authors are thankful to the anonymous referee for the

valuable suggestions towards the improvement of the article.
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Abstract. We give an overview of the three fundamental theorems, i.e.,

Open Mapping Theorem, Closed Graph Theorem and Uniform Boundedness

Principle of functional analysis via the Zabreiko’s lemma.

1. Introduction

We state the three fundamental theorems of functional analysis, namely, the

open mapping theorem, the closed graph theorem and the uniform boundedness

principle and give the details of proofs of these theorems by using the Zabreiko’s

lemma [9]. We also provide some comments, observations and applications of

these results. The developments discussed here could not be seen in many books

of functional analysis including [5, 4]. All the linear spaces considered here are

over the same field of scalars, real or complex. The Hahn-Banach Theorem implies

that for a normed linear space X, the dual space X∗ (the normed linear space of

the continuous linear functionals on X) is nonempty (as one can easily construct

a continuous linear functional on one dimensional spaces) and moreover, there are

sufficiently many bounded linear functionals to separate points of X, i.e., for any

two points x1, x2 ∈ X there is a x′ ∈ X∗ such that x′(x1) = 0 and x′(x2) = 1.

The Banach space X∗∗ = (X∗)∗ is called the second dual of X. Every x ∈ X can

be identified as an element of X∗∗ by the evaluation formula

x(x′) = x′(x),

i.e., X can be viewed as a subspace of X∗∗. To indicate that there is some sym-

metry between X, X∗ and X∗∗ we write

x′(x) = 〈x′, x〉.

In general X 6= X∗∗. Spaces for which X = X∗∗ are called reflexive spaces.

Standard examples of reflexive spaces are: finite dimensional Banach spaces,

Hilbert spaces, lp spaces, 1 < p < ∞ (with usual norms). However, l1 and

2010 Mathematics Subject Classification : 46A30, 46A22

Key words and phrases : Zabreiko’s lemma, subadditive functional, open mapping theorem,

closed graph theorem, uniform boundedness principle.
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l∞ (with usual norms) are nontrivial spaces which fail to be reflexive. Uniform

boundedness principle is perhaps the strongest Banach space result having impor-

tant applications. For example,

1. in deriving global (uniform) estimates from pointwise estimates.

2. in showing convergence of quadrature formula, in proving divergence of Fourier

series of continuous functions at points and in various summability methods.

3. in a way, it says: to show a subset B of a Banach space is bounded, it suffices

to ‘look’ at B through the bounded linear functionals.

If a mapping T from a set X to a set Y is bijective then there exists a map T−1

from Y to X; if X and Y are linear spaces and T is additionally a linear map then

so is T−1; if X and Y are Banach spaces and T is additionally bounded also, then

T−1 is bounded as well - the fact that is known as the ‘open mapping theorem’

(formally stated in section 3) and is used to study perturbation technique in the

theory of numerical differential equations.

For Banach spaces X and Y , one defines the two algebraic operations on X×Y
in the usual pointwise manner and can define norm on it by ||(x, y)|| = ||x||+ ||y||,
x ∈ X , y ∈ Y . For a linear transformation T : X → Y , its graph is then given

by {(x, T (x))|x ∈ X} and is denoted by G(T ). Obviously, it is a subset of X × Y
and we say that the graph of T is closed if G(T ) is a closed subset of X × Y .

It is easy to see [8, p. 132] that the graph of any continuous map from a

topological space E to a Hausdorff space F is closed in the product space E×F . In

the present context, clearly therefore, graph of a continuous linear transformation

from a Banach space X to a Banach space Y is closed. The fact that the converse

of this is also true is the well known closed graph theorem (formally stated in

section 3).

The third theorem is the uniform boundedness principle which says that a

pointwise bounded family of continuous linear transformations from a Banach

space to a normed linear space is uniformly bounded, the formal statement of

which is given in the section 3.

To our knowledge Zabreiko’s work [9] is not cited in many functional analysis

books except [3, 6]. The present article addresses the proofs of said fundamental

theorems in very simple and lucid manner. We hope that these proofs will reach

to a large audience in the field of functional analysis. For more details see [9, 3].

Earlier Helson [1, 2], using an absolutely original approach, proved a better result

than the uniform boundedness principle via probabilistic methods ([1], MR0461090

(57#1075), by D. A. Herrero ).

2. Seminorm and Countably Subadditive Property

We restrict ourselves to real vector spaces, define a seminorm on such a vector

space and derive its several properties.
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Definition 1. A seminorm (or a prenorm) on a real vector space X is a real

valued function p on X such that the following conditions are satisfied.

(i) p is positively homogeneous, i.e., p(αx) = |α|p(x), x ∈ X, α real;

(ii) p is subadditive, i.e., p(x+ y) ≤ p(x) + p(y) ∀x, y ∈ X.

For example, if X and Y are normed spaces and T is a linear transformation

from X to Y , then T induces a seminorm on X through the function x 7→ ||Tx||
from X to R as can be seen from the following. Indeed,

(i) αx 7→ ||T (αx)|| = ||αT (x)|| =| α | ||Tx||, x ∈ X, α real;

(ii) x+ y 7→ ||T (x+ y)|| = ||Tx+ Ty|| ≤ ||Tx||+ ||Ty||, ∀x, y ∈ X.
Of course a norm is a seminorn if we take T = I - the identity operator on the

space X (= Y ). Suppose p is a seminorm on a vector space. Then p(0) = 0, since

p(0) = p(0.0) = 0p(0) = 0. It is also nonnegative as 0 = p(0) = p(x + (−x)) ≤
p(x) + p(−x) = p(x) + | − 1|p(x) = 2p(x), i.e., p(x) ≥ 0.

Thus a seminorm is a function on a vector space that satisfies the definition

of a norm except that the value of the seminorm of a nonzero vector is allowed to

be zero.

Let (xn) be a sequence in a normed linear space X and

sm =
m∑
n=1

xn, m = 1, 2, · · · .

The series
∞∑
n=1

xn is said to be convergent in X if the sequence sm of its partial

sums converges in X, i.e., there exists x ∈ X such that sm → x as m → ∞; we

then write x =
∑∞
n=1 xn and call it the sum of the series.

Definition 2. A nonnegative function f on a normed linear space X is said to be

countably subadditive if

f(
∞∑
n=1

xn) ≤
∞∑
n=1

f(xn)

for each convergent series
∞∑
n=1

xn in X.

For example, a norm of a normed linear space is always countably subadditive.

More generally, a continuous seminorm on a normed linear space is countably

subadditive. The following lemma due to Zabreiko [9] is a converse of this when

X is a Banach space. See [9, 3] for its proof.

Lemma 1. [Zabreiko’s lemma] Every countably subadditive seminorm on a Ba-

nach space is continuous.

Note that the Zabreiko’s lemma does not extend to all the normed linear

spaces. In this regard we have the following counterexample.

Example 1. Let Y be the space of finitely nonzero sequences under pointwise

operations and equipped with the maximum norm. It can be checked that this Y
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is not a Banach space. The function p : Y → R defined by p(y) =
∞∑
i=1

|yi|, y =

(y1, y2, y3, ...) can be checked to be a seminorm on Y. However p is not continuous

on Y as x(n) = (1, 1, ...1, 0, 0, 0, ...), with first n-components 1, belongs to Y ,

||x(n)||∞ = 1, for all n = 1, 2, 3, ... but p(x(n)) = n for all n. 2

3. Fundamental Theorems

Theorem 1. (Open Mapping Theorem)[8, 9, 3]. If X and Y are Banach spaces

and T is a continuous linear transformation of X onto Y , then T is an open

mapping, i.e., if U is open in X then T (U) is open in Y .

Proof. First assume that the image of U = B(0, 1) = {x ∈ X| ||x|| < 1} by T is

open in Y . Let V be an open subset of X. If x ∈ V then B(x, r) = x + rU ⊆ V

for some positive integer r. Hence, T being linear,

T (x) + rT (U) ⊆ T (V ),

i.e., T (V ) includes the neighborhood T (x) + rT (U) of T (x). It follows that T (V )

is open. Thus the theorem will be proved once it is shown that T (U) is open in

Y .

Now for each y ∈ Y , let p(y) = inf {||x|| : x ∈ X, Tx = y}. Then p is well

defined as T is onto. We will show that p is countably subadditive seminorm on

Y . In fact, if y ∈ Y and α is a nonzero scalar then {x : x ∈ X, Tx = αy} =

{αx : x ∈ X, Tx = y}, and hence

p(αx) = inf {||αx|| : x ∈ X, Tx = y} = |α| inf{||x|| : x ∈ X, Tx = y} = |α| p(y).

Since p(0y) = 0 = |0|p(y) whenever y ∈ Y , it follows that

p(αy) = |α| p(y) ∀ scalar α and each y ∈ Y.

Next, let
∞∑
n=1

yn be a convergent series in Y . We show that p(
∞∑
n=1

yn) ≤
∞∑
n=1

p(yn).

If
∞∑
n=1

p(yn) = ∞, the result follows. Assume that
∞∑
n=1

p(yn) < ∞. Take any

positive ε and fix it. Let (xn) be a sequence in X such that Txn = yn and

||xn|| < p(yn) + ε
2n for each n. Then

∞∑
n=1
||xn|| ≤

∞∑
n=1

p(yn) + ε, a finite number.

Thus
∑∞
n=1 ‖xn‖ converges. Since X is a Banach space,

∞∑
n=1

xn converges. Now,

T (
∞∑
n=1

xn) =
∞∑
n=1

T (xn) =
∞∑
n=1

yn; and since p(y) ≤ ||x||, we get

p(
∞∑
n=1

yn) ≤ ||
∞∑
n=1

xn|| ≤
∞∑
n=1

||xn|| <
∞∑
n=1

p(yn) + ε.

Since ε > 0 is arbitrary, it follows that p is a countably subadditive. Setting yn = 0

for n ≥ 3, finite additivity of p obviously follows. p being countably subadditive

seminorm in Y , it is continuous by Zabreiko’s lemma. Now observe that

T (U) = {y ∈ Y : y = Tx for some x ∈ U} = {y ∈ Y : p(y) < 1} = p−1(−∞, 1),
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and hence T (U) is open. This completes the proof. �

A one-to-one map from one topological space onto another topological space

is a homeomorphism iff it is both continuous and open. Combining this with the

above theorem we get the following result.

Corollary 1. Every one-one and onto bounded linear operator on a Banach space

is a homeomorphism.

Note that this corollary is also named as the bounded inverse theorem.

Theorem 2. (Closed graph theorem)[8, p.238],[9, 3]. If X and Y are Banach

spaces and T : X → Y is a linear transformation then T is continuous if its graph

is closed.

Proof. Let us consider the map p(x) = ||Tx|| for all x ∈ X. We prove that p

defines a countably subadditive seminorm. Observe that p(x+ y) = ||T (x+ y)|| ≤
||Tx||+ ||Ty|| = p(x) + p(y), and p(αx) = ||T (αx|| = |α|||Tx|| = |α|p(x), i.e, p is

a seminorm on X. Next we show that p is countably subadditive.

Let
∞∑
n=1

xn be a convergent series in X. To show that p(
∞∑
n=1

xn) ≤
∞∑
n=1

p(xn),

i.e, ||T (
∞∑
n=1

xn)|| ≤
∞∑
n=1
||T (xn)||, which is obviously true if

∞∑
n=1
||T (xn)|| = ∞.

Hence, assume that
∞∑
n=1
||T (xn)|| < ∞. Then Y being Banach space, it follows

that
∞∑
n=1

Txn converges. Since
m∑
n=1

xn →
∞∑
n=1

xn , T (
m∑
n=1

xn) =
m∑
n=1

Txn →
∞∑
n=1

Txn

as m → ∞,

(
m∑
n=1

xn,
m∑
n=1

Txn

)
∈ G(T ) for each m and G(T ) is closed, it follows

that T (
∞∑
n=1

xn) =
∞∑
n=1

Txn. Therefore

||T (
∞∑
n=1

xn)|| = ||
∞∑
n=1

Txn|| ≤
∞∑
n=1

||Txn||,

which shows that p is countably subadditive. Hence p is continuous by Zabreiko’s

lemma, i.e., ∀ε > 0, ∃a δ > 0, such that |p(x) − p(0)| < ε whenever ||x|| < δ,

i.e, ||Tx|| < ε whenever ||x|| < δ. Hence T is continuous. �

Theorem 3. (Uniform Boundedness Principle)[8, p.239],[9, 3]. If F = {Ti} is a

family of continuous linear transformations from a Banach space X into a normed

linear space Y with the property that {Ti(x)} is a bounded subset of Y for each

x in X, i.e., sup{||Ti(x)|| : Ti ∈ F} is finite for each x in X, then {||Ti||} is a

bounded set of scalars, i.e., sup{||Ti|| : Ti ∈ F} is finite.

This is also known as the Banach-Steinhaus Theorem.

Proof. Let p(x) = sup {||Tx|| : T ∈ F} for each x ∈ X, then p is finite valued.

We will show that p defines a countably subadditive seminorm. Observe that

p(αx) = sup { ‖T (αx)‖ : T ∈ F} = |α| sup {‖T (x)‖ : T ∈ F} = |α| p(x)
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for each x ∈ X and each scalar α. If
∑∞
n=1 xn is a convergent series in X and

T ∈ F , then T being continuous we have

‖T

( ∞∑
n=1

xn

)
‖ = ‖

∞∑
n=1

Txn‖ ≤
∞∑
n=1

‖Txn‖ ≤
∞∑
n=1

p(xn),

i.e., p(
∞∑
n=1

xn) ≤
∞∑
n=1

p(xn).

In particular, letting xn = 0 when n ≥ 3, one gets p(x1+x2) ≤ p(x1)+p(x2), i.e, p

is countably subadditive seminorm on X. Therefore p is continuous by Zabreiko’s

lemma. Hence ∃ δ > 0 such that p(x) ≤ 1 whenever ||x|| ≤ δ. It follows that for

x 6= 0, ||δ x
||x|| || = δ ⇒ p(δ x

||x|| ) ≤ 1, which means δp(y) ≤ 1 for all y ∈ B(0, 1).

Thus p(y) ≤ δ−1 for all y ∈ B(0, 1). Therefore ‖T (x)‖ ≤ δ−1 for all T ∈ F
and for all x ∈ B(0, 1). Therefore ‖T‖ ≤ δ−1 for all T ∈ F . This completes the

proof. �
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Abstract. In this expository article we describe some of the fundamental

questions in Manifold Topology and the obstruction groups which give an-

swers to the questions.

1. Introduction and some basic concepts

In Topology we study spaces and properties of spaces which are invariant

under ‘deformation’. For example, we do not distinguish between a solid rubber

ball and a solid rubber cube because one can be deformed into another without

tearing. Next, we can build new spaces by gluing ‘simple’ pieces. For example,

take two 2-discs and glue them along their boundaries, we get a sphere. See the

following picture.

This way one constructs very complicated useful spaces and then, we ask when

are any two such objects same under deformation. To answer such questions we

need to define invariants of spaces which remain same under deformations. Many

a time this method is useful to give answers in negative and also sometime one

finds a complete set of invariants to give a positive answer.

Note that, there are mainly two kinds of deformations (or equivalences) we

deal with in this subject; one is ‘homeomorphism’ and the other is ‘homotopy

equivalence’. The first one only ‘stretches’ the underlying space without tearing

and the second one ‘squeezes’ or ‘thickens’ the underlying space continuously.

There are various other kinds of deformations we come across, e.g., weak

homotopy equivalence, simple homotopy equivalence, diffeomorphism and

PL-homeomorphism.

We urge the reader to look at the reference [16], or any other text book on

Algebraic Topology for the remainder of this section.
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dary: 57N37.
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1.1. Homotopy Theory.

Definition 1.1.1. Two topological spaces X and Y are called homeomorphic if

there are continuous maps f : X → Y and g : Y → X such that f ◦ g = idY and

g ◦ f = idX , here id∗ denotes the identity map. When this happens we call f (or

g) a homeomorphism.

Definition 1.1.2. Two continuous maps f, g : X → Y are called homotopic

if there is a continuous map F : X × I → Y , such that F (x, 0) = f(x) and

F (x, 1) = g(x), for all x ∈ X. If x0 ∈ X and y0 ∈ Y are given such that

f(x0) = y0 and g(x0) = y0, then f and g are called homotopic relative to base

point if, in addition, F (x0, t) = y0 for all t ∈ I.

Definition 1.1.3. Two topological spaces X and Y are called homotopy equivalent

if there are continuous maps f : X → Y and g : Y → X such that f ◦ g is

homotopic to idY and g ◦ f is homotopic to idX . When this happens we call f (or

g) a homotopy equivalence.

Obviously, homeomorphism is stronger than homotopy equivalence, but there

are times when homotopy equivalence implies homeomorphism. These kinds of

instances are major breakthroughs in Topology.

In this article we will be considering spaces which are ‘CW -complexes’ and

‘manifolds’. CW -complexes are spaces which are built from the following sub-

spaces of Rn.

Dn = {(x1, x2, . . . , xn) ∈ Rn |
i=n∑
i=1

x2i ≤ 1}.

Here, Dn is called an n-disc and n its dimension. The boundary ∂Dn is defined as

{(x1, x2, . . . , xn) ∈ Rn |
∑i=n
i=1 x

2
i = 1}, it is also called the (n − 1)-sphere Sn−1.

These subspaces are the simple pieces we referred above.

To avoid unnecessary hypothesis, we define a finite CW -complex. We begin

with a finite set A with discrete topology. Then, consider finitely many maps φ1i :

S0 → A, for i = 1, 2, . . . , j1. Construct the quotient space X1 of the disjoint union

A ∪i=j1i=1 D1
i , where each D1

i is a copy of D1, under the relation: φ1i (x) is identified

with x where x ∈ S0. Suppose we have constructed Xn−1. Next, consider continu-

ous maps φni : Sn−1 → Xn−1, for i = 1, 2, . . . , jn, and construct the quotient space
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X := Xn of Xn−1 disjoint union with jn copies of Dn, in a similar way as defined

in the case n = 1. X is called a finite CW -complex and Xk is called its k-skeleton.

Above we show the construction of a CW -complex pictorially. Also, we say Xk

is obtained from Xk−1 by attaching jk k-discs by the characteristic maps φki , for

i = 1, 2, . . . , jk. Note that each Dki − Sk−1 is embedded in X and is called a k-

cell. The maximum value of k, for which X has a k-cell but no cells of higher

dimensions, is called the dimension of the CW -complex. We call X finite as there

are only finitely many cells in X. We can similarly define an infinite CW -complex

which has finitely many cells in each dimension. To define CW -complex with

arbitrary number of cells in each dimension is tricky and we avoid it here.

A subspace Y of a CW -complex X is called a subcomplex of X if Y is closed in

X and is a union of cells of X. We call the pair (X,Y ) a CW -pair. The dimension

of the pair (X,Y ) is defined considering the cells in X which are not in Y , and

the k-skeleton of the pair (X,Y ) is defined as Y ∪Xk. Therefore, the dimension

of the pair (X,Y ) could be less than the dimension of Y .

There is yet another class of spaces called polyhedra which is a special class of

CW -complexes, in this case the attaching maps are injective.

In this article by a ‘complex’ we will always mean a CW -complex.

Example 1.1.1. Let X0 = {∗} be a singleton and let φ11, φ
1
2 : S0 → X0 be the

obvious maps. Then X1 is the one point union (or wedge) of two circles, called

the figure eight. It is a finite complex. More generally, a wedge of finitely many

spheres of (different dimensions) is also a finite complex.

Next, we define manifolds and give examples.
Definition 1.1.4. A Hausdorff second countable space M is called a topological

manifold with boundary if any point x ∈M has a neighborhood V homeomorphic

to an open set in Rn+ = {(x1, x2, . . . , xn) ∈ Rn | xn ≥ 0}, for some n. V is called an

Euclidean neighborhood of x. n is called the dimension of M if the same n works

for all points of M . The points on M which corresponds to the points in Rn+ with

xn = 0 are called the boundary points. A compact manifold with empty boundary

is called closed. Similarly, one defines smooth or differentiable manifolds. There is

yet another class of manifolds called piecewise linear or PL-manifolds.
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By ‘invariance of domain’ (see Theorem 1.2.2), if M is connected then the

dimension of M is well-defined. Below we give examples of closed manifolds of

dimensions 1 and 2. An example of a manifold with boundary is Dn. One can

construct many other examples of manifolds with boundary by removing Euclidean

neighborhoods of points from a manifold. The figure eight is a space which is not

a manifold, the 0-cell is the troubling point.

For some basics on manifold theory see the book [6] or any other book on

manifolds. But, we recall the concept of tangent space which is intuitive. In

the case of differentiable manifolds, by Whitney embedding theorem, a compact

manifold M of dimension n can be embedded in the Euclidean space RN , for

N ≥ 2n. Now, we consider the set TM of disjoint union of all lines in RN which

are tangent to the manifold at some point. The collection of these lines form a

manifold of dimension 2n. And the set of all lines tangent to M at a given point is

the translate of some n-dimensional vector subspace of RN . Therefore, there is a

map TM →M which becomes a vector bundle projection of rank n (see Definition

1.2.1), called the tangent bundle of M . For example, one can show that for S1 the

tangent bundle is, in fact, the cylinder S1 × R. Also, the tangent bundle of Rn is

the trivial bundle Rn × Rn.

Next, we recall a very crucial and important theorem in Homotopy Theory,

called the Whitehead theorem which is used to study many fundamental questions

in Manifold Topology, we will see in the next section. There are algebraic in-

variants called homotopy groups associated to topological spaces. It is defined as

the homotopy classes of base point preserving maps from the n-sphere Sn with a

base point to the topological space X with a base point, say x0. It is denoted by

πn(X,x0). For n ≥ 1 this set has a group structure and for n = 0 it is the set

of all path components of X. For n = 1 it is called the fundamental group of the

space. The Whitehead theorem says the following.

Theorem 1.1.1. Let X and Y be complexes and f : (X,x0) → (Y, f(x0)) be a

map. If the induced homomorphisms fq∗ : πq(X,x0) → πq(Y, f(x0)) are isomor-

phisms for all x0 ∈ X and q ≥ 1 and a bijection for q = 0, then, f is a homotopy

equivalence.
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When the hypothesis of the theorem is satisfied, f is called a weak homotopy

equivalence. See Theorem 7.5.9 and Corollary 7.6.24 in [16] for a proof and related

materials.

For finite dimensional complexes, even a stronger statement is true. If X

and Y are k-dimensional and f : X → Y induces isomorphisms on homotopy

groups for all q < n, for some n > k and induces a surjective homomorphism for

q = n, then f is a homotopy equivalence. This implies that although a homotopy

equivalence induces isomorphisms on homotopy groups in all dimensions; for finite

complexes, the converse is true with a weaker assumption. That is, we only need

to assume that f induces isomorphism in homotopy groups in low dimensions,

although for most finite complexes there are nonzero homotopy groups in arbitrary

high dimensions. This fact is very crucial in the proofs of many theorems in

Manifold Topology as we highlighted above.

At this point we inform the reader about the significance of the theory of

covering spaces, which is intimately related to fundamental group.

Definition 1.1.5. Given a topological space X, a covering space is defined to

be a topological space Y together with a continuous map p : Y → X, called

covering map, which has the following property: given any point x ∈ X, there is

a neighborhood U of x in X, such that p−1(U) is a disjoint union of open sets Si,

i ∈ I, of Y and p|Si : Si → U is a homeomorphism for all i ∈ I. Here I is an

indexing set.

For example, any homeomorphism is a covering map. An example of a covering

Non-trivial covering projection

map which is not a homeomorphism is the exponential map R → S1. A pictorial

view of this covering map is given above.

One then defines, given a fixed space X, its universal covering space X̃ to be

the maximal element in the category of all covering spaces of X. For technical

reason, we need to assume that the space X is connected, locally path connected
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and semilocally simply connected, to ensure existence of the universal cover of X.

Let us call such a space a nice space. Complexes are nice spaces.

The study of covering spaces helps us to understand the fundamental group

well, through group action on spaces. (We recall here that, we say a group G

acts on a space if there is a group homomorphism from G to the group of home-

omorphisms of the space.) In fact, if X has a universal covering space, then the

fundamental group G of X acts on X̃, so that the quotient X̃/G = X. This is the

first instance one sees a connection between topological spaces and groups. This

also transfers a topological problem into a problem in group theory and solves

topological problems with the help of group theory and vice versa. For example,

using covering space theory it becomes easy to prove that subgroup of a free group

is free. Also, one checks using the above mentioned example that the fundamental

group of the circle is infinite cyclic, which in turn proves the following Brouwer

fixed point theorem in dimension 2.

Theorem 1.1.2. For any map f : D2 → D2, there is a point x ∈ D2 such that

f(x) = x.

In fact, this is true for Dn also, which requires the concept of homology theory.

1.2. Homology Theory. Homology theory is basically ‘formal sum’ of maps or

of subspaces of a space, and then introducing ‘natural’ relations among elements

of these sums to define invariants of the space. Initially, the subject is difficult

to appreciate, but after certain amount of work one sees beautiful applications,

which otherwise are impossible to see. One indication we have already given in

the Brouwer fixed point theorem. Another advantage of this subject, in contrast

to homotopy theory, is that the invariants, although defined in a difficult way, are

not very difficult to compute.

The very first example is H0(X), of a topological space X. It is by definition,

the free abelian group generated by the path components of X. Note that, if two

spaces are homotopy equivalent then they have isomorphic H0(−).

Let us define this group differently, which will give the motivation for the

definition of higher dimensional invariants.

Let C0(X) be the free abelian group generated by the points of X, and C1(X)

be the free abelian group generated by all continuous maps σ1 : [0, 1] → X.

Define ∂1 : C1(X) → C0(X) by partial1(σ1) = σ1(1)− σ1(0), for all σ1 ∈ C1(X).

Then, ∂1 is a homomorphism of abelian groups. It can be shown that H0(X) is

isomorphic to C0(X)/∂1(C1(X)). Let ∂q be the convex hull of the vectors ei ∈ Rn,

for i = 0, 1, 2, . . . , n, where e0 = (0, 0, . . . , 0) and ei = (0, 0, . . . , 1, . . . , 0), where 1

is at the i-th place. Note that ∂1 = [0, 1]. Now, more generally, define Cq(X) to

be the free abelian group generated by all continuous maps σq : ∂q → X. Next,

define the map (called boundary map) ∂q : Cq(X)→ Cq−1(X) by
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∂q(σq) = σ0
q − σ1

q . . .+ (−1)qσqq .

Here, σiq evaluated at (x1, x2, . . . , xq−1) ∈ ∂q−1 is equal to σq evaluated at

(x1, x2, . . . , 0(i − th), . . . , xq−1) ∈ ∂q. σiq is said to be the i-th face of σq. One

now checks that ∂q−1 ◦ ∂q = 0 for all q. Define Ci(X) = 0 if i ≤ −1. We call

{C∗(X), ∂∗} the singular chain complex of X. It is easily checked that the kernel

Zq of ∂q contains the image Bq of ∂q+1. Define the q-the singular homology group

of X as the quotient group Zq/Bq and it is denoted by Hq(X,Z). For a complex

X, there is a similar object called cellular chain complex, denoted by {S∗(X), ∂∗}.
The group Sq(X) is defined as the free abelian group generated by the q-cells of

X. In this particular case the boundary map is defined using singular homology

theory. But, one can show that the singular and cellular homology (that is the

homology of the chain complex S∗(X)) are isomorphic for complexes.

One can define the homology H∗(X,A;Z) of pairs (X,A) by defining the

associated chain complex as the quotient chain complex {C∗(X,A), ∂∗}, where

Ci(X,A) = Ci(X)/Ci(A).

Also, one constructs a dual class of groups {C∗(X)} whose elements Ci(X)

are defined as hom(Ci(X),Z) and define coboundary maps δi : Ci(X)→ Ci+1(X).

Now, renaming Ci(X) as C−i(X) one gets a chain complex and the homology

groups of this chain complex are called the (integral) cohomology groups of X, and

is denoted by Hi(X,Z).

Below we give couple of well known examples of homology computation.

Example 1.2.1. Hn(Rm,Z) = 0 for n 6= 0 and H0(Rm,Z) = Z. This is also true

for any contractible space. A space is contractible if the identity map is homotopic

to the constant map.

Example 1.2.2. Hn(Sm,Z) = 0 if n 6= m and n,m 6= 0. H0(Sm,Z) = Hm(Sm,Z)

= Z if m 6= 0. And H0(S0,Z) = Z× Z, Hn(S0,Z) = 0 for n 6= 0.

Now, we motivate the reader to the notion of orientability and few more

concepts we need.

In Topology sometimes it is helpful to embed a space X into another space

Y and look at its ‘surroundings’ or the ‘complement’ to understand X and Y .

Probably, the first such situation one observes is in General Topology, where, one

can show that a space X is Hausdorff if and only if the image of the embedding

X → X × X, sending x 7→ (x, x) is closed with respect to the product topology

on X ×X.

We want to study such surroundings of a manifold and more generally, for

complexes later. We begin with one example. Consider the following picture

of a cylinder and a Möbius band. Both of these spaces are obtained as quo-

tients of the square [0, 1] × [0, 1] under certain identifications of its boundary.
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In the cylinder case (0, t) is identified with (1, t) and in the Möbius band case (0, t)

is identified with (1, 1 − t) for all t ∈ [0, 1]. The middle line {( 1
2 , t)‖ t ∈ [0, 1]}

goes to the mid circles in the cylinder and in the Möbius band. Therefore we have

got embedding of the circle in the two different spaces. We leave it an exercise to

check that the cylinder and the Möbius bands are not homeomorphic.

There is yet another aspect to these two examples. Replace [0, 1] × [0, 1] by

[0, 1]×R and do the same identifications, one gets the open cylinder and the open

Möbus band. Now, over each point on the mid circle in each of the example, there

lies the real line R. This gives the impression of a bundle of real lines on the circle.

But we get two different spaces although they look the same locally, that is around

any point of the mid circle the two spaces look like (ε, 1 − ε) × R. One can show

these are the only two different R-bundle spaces over the circle. This motivates

the following definition.

Definition 1.2.1. A surjective continuous map p : E → B is called a fiber bundle

projection, E is called the total space and B is called the base space if the following

are satisfied. Each point b ∈ B has a neighborhood Ub, such that p−1(Ub) is

homeomorphic to p−1(b) × Ub by a homeomorphism f with p|p−1(Ub) = π2 ◦ f .

Here π2 denotes the second projection. It is called a vector bundle of rank n if the

fibers p−1(x) = Rn for all x ∈ B and the restriction of f to each fiber is a linear

isomorphism. It is called a trivial bundle if Ub can be taken to be the whole space

B.

We now see an important aspect associated to the Möbius band and cylinder,

which is crucial in Manifold Topology. Consider the mid circles in the two exam-

ples. Draw a line L at some point, say c, on the mid circle and perpendicular to

the circle and give a direction to the line. Now start moving the line, keeping it

perpendicular to the circle, along the circle in a fixed direction. When we reach

the point c, the direction of the line gets reversed in the case of Möbius band and

remain the same in the cylinder case. This gives the fundamental concept of ori-

entability of manifolds. This is also intimately related to the concept of homology

of manifolds. Let us try to understand this phenomenon differently. Consider an-

other line T at the point c which is tangent to the mid circle of the Möbius band.

Then, L and T form a basis of the tangent space of the manifold at c. Now, as
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we move the frame {L, T} along the circle maintaining the position and direction

of the lines and come back to c, we see the basis of the tangent space changed to

another one with the change matrix having determinant negative in the case of

Möbius band. But there is no change in the cylinder case.

We state a theorem, whose proof can be found in any Differential Topology

book.

Theorem 1.2.1. Let M be a closed manifold of dimension n. Then the following

are equivalent.

1. Hn(M,Z) = Z.

2. The following statement holds for the image C of any embedding of the

circle S1 in the manifold. At any point on C, take any framing F1 (that is, a basis

of the tangent space of M at the point), and then move along the circle with the

framing, when we come back to the point again, we get another framing F2. Then,

the determinant of the matrix which sends the framing F1 to F2 is positive.

If one of the conditions in the statement of the theorem is satisfied then, we

call the manifold orientable. In such a situation one of the generators of Hn(M,Z),

denoted [M ], is called the fundamental class or the orientation class of M . Once

an orientation class is fixed, the manifold is called oriented. One can show that

the top homology is either trivial or infinite cyclic for any closed manifold.

In this context we make a definition which we will require later.

Definition 1.2.2. A map f : M → N between two n-dimensional closed oriented

manifolds is said to be of degree k if f∗([M ]) = k[N ].

For example, the map S1 → S1 defined by z 7→ zk has degree k.

Now, take two Möbius bands and attach their boundaries together to get the

Klein bottle or attach a disc to the boundary of the Möbius band to get the real

projective plane. By the above theorem and the remark following it, both these

manifolds are not orientable and their top homology is trivial. Furthermore, note

that the open Möbius band is embedded in both the examples, this embedding is

called the normal bundle of the mid circle in the embedding. Similarly the open

cylinder is embedded in the torus, and in this case also this embedded object is

called the normal bundle of the mid circle. Therefore, we see examples where the

normal bundles can be trivial or non-trivial depending on the ambient manifold.

In fact, one can show that if the submanifold (in our case the mid circle) and the

ambient manifold are both orientable, the normal bundle of the submanifold is

always trivial.

We recall Poincaré duality theorem which gives an important relationship

between homology and cohomology of an oriented manifold.

Theorem 1.2.2. Let M be a closed oriented manifold of dimension n. There is

an isomorphism, called the duality isomorphism, obtained by taking cap product

with the fundamental class
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∩[M ] : Hk(M,Z)→ Hn−k(M,Z)

for all k.

Using homology theory one can also prove the following very important in-

variance of domain theorem.

Theorem 1.2.3. If an open set in Rn is homeomorphic to an open set in Rm,

then m = n.

This theorem is needed to ensure the well-definedness of dimension of a con-

nected manifold.

1.3. Algebra. Here we recall some basic Algebra used in this article.

Let R be a ring with unity. An (left) R-module M is an abelian group together

with an action of R, that is a map R ×M → M , sending (r,m) to an element,

denoted by rm, of M satisfying the following properties. For all r, r1, r2 ∈ R and

m,m1,m2 ∈ M , (r1 + r2)m = r1m + r2m, r(m1 + m2) = rm1 + rm2, (r1r2)m =

r1(r2m) and 1m = m. Equivalently, an R-module structure on an abelian group M

is nothing but a ring homomorphism from R to the endomorphism ring End(M)

of M . For example, any abelian group is a Z-module.

In this article we mostly consider the (integral) group ring Z[G] of a group G.

The group ring, by definition, consists of the formal finite sums Σki=1rgigi, where

gi ∈ G and rgi ∈ Z, for i = 1, 2, . . . , k. Equivalently, the group ring can be defined

as the set of maps f : G→ Z, such that f takes zero value on all but finitely many

elements in G, and the operations are defined by the following. Given f and g in

Z[G], f + g : G → Z denotes the map (f + g)(α) = f(α) + g(α) and fg denotes

the map (fg)(α) = Σα=uvf(u)g(v). The summation is well defined since there are

only finitely many elements of G on which f or g takes nonzero values.

We now give a special example which we require in this article. Let X be a nice

space and X̃ be its universal cover. Then, one knows that the fundamental group

G of X acts on X̃ as a group of covering transformations. That is, we have a map

G × X̃ → X̃, so that the induced map from G to the group of homeomorphisms

of X̃ is a homomorphism. It is easy to check that this induces a homomorphism

from G to the group of isomorphisms of Ci(X̃) for each i. It now follows that each

Ci(X̃) becomes a free Z[G]-module. When X is a complex then also one can get

such a module structure, by using the induced complex structure on the universal

cover. For example, one gives a complex structure on R lifting a complex structure

on S1 using the exponential map and then make Si(R), a free Z[Z]-module.

We now recall the definition and some examples of a particular class of R-

modules, which are useful in Topology.

Definition 1.3.1. A projective R-module is by definition a direct summand of a

free R-module. That is, an R-module P is called projective, if there exists another

R-module Q such that P ⊕R Q is isomorphic to a free R-module.
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Of course, free R-modules are projective. We now give an example of an

R-module which is projective, but not free.

Example 1.3.1. Let R = Z6 and M = Z3 ⊕R Z2, then M = R, and Z3 and Z2

are R-modules and hence they are projective. Obviously, they are not free.

Acknowledgement. I would like to thank C. S. Aravinda for inviting me to write

this article and for many suggestions. Also, thanks to the referee for carefully

reading the article and for critical comments and suggestions.

2. Some questions

To motivate the reader we begin with some of the fundamental questions in

this subject.

• When is a topological space homotopy equivalent to a finite complex?

• When is a finite complex homotopy equivalent to a compact manifold?

• Are two homotopy equivalent closed manifolds homeomorphic? That is, we

are asking about the uniqueness of the manifold in the previous question.

The examples given below, which show that the answer to the above questions

are in general no, follow the same order as the questions.

• Note that, the necessary conditions the space should satisfy are those known

properties of a finite complex which are invariant under homotopy equivalence. We

may not need to assume all these properties at a time. At some point we will see

that only some of the properties are enough or we will hit on an obstruction.

We begin with the number of path components. We know this number is ho-

motopy invariant, that is, if two spaces are homotopy equivalent then they have

the same number of path components. Therefore, if we want our finite complex

to be path connected, then we have to assume that the space we started with

should also be path connected. Compactness need not be preserved under homo-

topy equivalence, so we do not consider this. The most basic homotopy invariant

we study in Algebraic Topology is the fundamental group. A finite complex has

finitely generated fundamental group. Therefore, the wedge of infinitely many

circles or the Euclidean plane with all points whose both coordinates are integers

deleted, can never be homotopy equivalent to a finite complex, as they have in-

finitely generated fundamental groups. The further conditions we need to put on

the space are discussed in the next section.

• First, note that any finite complex is homotopy equivalent to a compact

manifold with nonempty boundary. This can be obtained by first taking a compact

polyhedron homotopy equivalent to the finite complex, and then taking the regular

neighborhood of the polyhedron after embedding it in some Euclidean space. We

see this with an example. Consider the figure eight embedded in R2. The regular

neighborhood is shown in the picture below, which is a 2-dimensional manifold

with three boundary components.
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Therefore, the question is to ask for a closed manifold. Next, recall that

a manifold has vanishing homology groups in higher dimensions, therefore, the

complex should not have cells of arbitrary high dimensions. For example, the

wedge of spheres Sn for n = 1, 2, . . . can never be homotopy equivalent to any

closed manifold. Hence the complex should be assumed to be finite dimensional.

Furthermore, homological properties are homotopy invariants, for example, the

homology groups must satisfy Poincaré duality (Theorem 1.2.2). There are further

conditions required which are described in the next section.

We now give examples of finite complexes which are not homotopy equivalent

to closed manifold as they do not satisfy Poincaré duality.

Example 2.0.1. Let X be the figure eight. Then Hi(X,Z) = 0 for i ≥ 2, since

X is an one-dimensional complex. Therefore, if there is any manifold homotopy

equivalent to X, then it must be one-dimensional. Note that, H1(X,Z) has rank

2, but an orientable closed one-dimensional manifold must have first homology of

rank 1 by Poincaré duality. For a similar reason (taking homology with coefficient

in Z2) it follows that X is not homotopy equivalent to any closed non-orientable

manifold. Similarly, one shows that the wedge of two spheres of the same dimension

also gives an example of a finite complex not homotopy equivalent to any closed

manifold.
• There are homotopy equivalent manifolds which are not homeomorphic.

For example, the lens spaces L(7, 1) and L(7, 2) are homotopy equivalent but

not homeomorphic. There is another kind of equivalence called simple homotopy

equivalence which lies in between homotopy equivalence and homeomorphism. We

will study this later in this article. It can be shown that the above two spaces are

not even simple homotopy equivalent.

These questions were well studied over the last several decades. The White-

head group Wh(G), reduced projective class group K̃0(Z[G]), and the surgery L-

groups Ln(Z[G]) of the fundamental group G contain the answers to the above and

many more questions. Mainly, the breakthrough on classifying manifolds started

during 1960 to 1970. Then, there were results proved about computing the above

obstruction groups for small classes of groups. Several conjectures were formulated
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which still remain open. The second breakthrough happened with works which use

geometry and controlled topology. Apart from geometry and controlled topology,

Frobenius induction technique was also found to be very useful. Finally, in 1993

Farrell and Jones formulated an important conjecture, now popularly known as

Farrell-Jones Isomorphism conjecture ([5]), which captures the subject in a sin-

gle statement and implies all the previous conjectures. Since then, an enormous

amount of work has been done by many authors and it is still an ongoing front

line area of research to prove the Isomorphism conjecture for different classes of

groups.

In this article we describe the above obstruction groups and see how they

answer the questions. Also, we recall some of the classical results. In a future

article we plan to review the development that took place during the last two

decades.

The subject we are exposing in this article is enormous and, therefore, we urge

the reader to look at the sources in the reference list to know more about it.

3. In more detail

In this section we see exactly the conditions needed and how the obstruction

groups appear in solving the questions in the previous section. We have already

recalled many of the basics required in this section. There are times when we will

use some new concepts, which we do not recall due to technical reason. We refer

the reader to look at the corresponding sources. But this lacking will not prevent

the reader from understanding the core ideas behind the proofs.

3.1. Reduced projective class group K̃0(−). Recall the definition of homotopy

equivalence. There are two conditions which need to be satisfied. We start with

the following definition.

Definition 3.1.1. A space X is said to be dominated by another space Y if there

are maps f : X → Y and g : Y → X so that g ◦ f ' idX . And X is called finitely

dominated if in addition Y is a finite complex.

Note that this is half of saying that X is homotopy equivalent to Y . It is also

known that if X is finitely dominated then it is homotopy equivalent to a countable

complex, which can be checked using some facts from [12] (or see Theorem 3.9 of

[19] or Exercise G6 in Chapter 7 of [16]). In fact, the mapping telescope of f ◦ g
becomes homotopy equivalent to X. Therefore, to investigate whether a space X

is homotopy equivalent to a finite complex, we can assume that X is a complex.

But, to show whether a complex is homotopy equivalent to a finite complex, one

needs more difficult work. This is answered in a very important and celebrated

series of papers by C.T.C. Wall (see [22] and [23]). This leads to an obstruction

which lies in an abelian group called the reduced projective class group and denoted

by K̃0(Z[π1(X)]). Interestingly, the answer to this question depends only on the

fundamental group of X.
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Before going further let us define reduced projective class group of a ring. Let

R be a ring with unity. Let P denote the free abelian group generated by the set

of all isomorphism classes of finitely generated projective R-modules. Let K0(R)

be the quotient of P by the relations [P ] + [Q] = [P ⊕ Q] where [P ], [Q] ∈ P.

Note that, K0(R) is a covariant functor from the category of rings with unity to

the category of abelian groups. Thus the homomorphism Z→ R sending 1 to the

unity of R induces a map i : K0(Z)→ K0(R). The reduced projective class group

K̃0(R) is by definition the quotient K0(R)/i(K0(Z)). By abusing notation we will

denote elements of K̃0(R) by the same notation [P ]. For details on the projective

class groups see [15] or any standard book on Algebraic K-theory. Below we give

some examples.

Example 3.1.1. Let R = Z, the ring of integers. Then one knows that, since Z is

a principal ideal domain, any finitely generated projective module over Z is free.

Therefore, we have K̃0(Z) = 0. Same conclusion holds if R is a field.

In this subject one encounters only integral group ring Z[G] of a group G. See

Section 4 for more on this. Although, more abstract coefficients are considered for

the purpose of a general framework and applications in other areas of Mathematics.

Recall that, any finitely dominated space is homotopically equivalent to a

(countable) complex, and hence up to homotopy such a space is nice.

Let X be a nice space and X̃ be its universal cover. Then, recall that C∗(X̃)

is a chain complex of free R(= Z[G])-module. In general Ci(X̃) is a very large R-

module. On the other hand if X were a finite complex then it follows that S∗(X̃)

is a finite chain complex of finitely generated free R-module. For an arbitrary nice

space we can make the situation better by assuming that X is finitely dominated.

C.T.C. Wall proves that in this case S∗(X̃) is chain equivalent to a finite chain

complex of finitely generated projective R-modules, say P∗(X). Consider the ob-

ject χ(P∗(X)) = Σi(−1)i[Pi(X)] ∈ K̃0(R). χ(P∗(X)) is called the Wall finiteness

obstruction of the space X.

Theorem 3.1.1 (C.T.C. Wall). Let X be a finitely dominated space and R =

Z[π1(X)]. Then X is homotopy equivalent to a finite complex if and only if

χ(P∗(X)) = 0 in K̃0(R). Furthermore, given an element ω in K̃0(R) there is

a finitely dominated space X ′ with fundamental group isomorphic to π1(X), such

that ω = χ(P∗(X
′)).

This gives a complete solution to the first problem. But computing the reduced

projective class group of a group is another story. We will talk about it in the

next section.

3.2. Surgery groups L∗(−). If we want a finite complex to be homotopy equiv-

alent to a closed (orientable) manifold there are several more necessary conditions

needed. One such condition is that the homology of the complex must satisfy
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Poincaré duality as mentioned in Section 1. Such a complex is called a Poincaré

complex. We give the precise definition below.

Definition 3.2.1. LetX be a connected finite complex and for some n, Hn(X,Z) '
Z. Let [X] ∈ Hn(X,Z) be a generator such that the cap product with [X] gives

an isomorphism Hq(X,Z) → Hn−q(X,Z) for all q. Then X is called a Poincaré

complex with fundamental class [X] and dimension n.
The second condition needed is the existence of a bundle over the complex,

which has properties similar to the normal bundle of a manifold embedded in some

Euclidean space. We describe this below.

Let M be a closed connected oriented smooth manifold of dimension n. By

the Whitney Embedding Theorem we can embed this manifold in Rn+k ⊂ Sn+k

for k ≥ n. Let νM be the normal bundle of M in Sn+k. Let τM be the tangent

bundle of M . Then τM ⊕ νM is the product bundle as M ⊂ Sn+k − {∞} = Rn+k.

Let N be the subset of νM consisting of vectors of length < ε, with respect to

some Riemannian metric, for some ε > 0. Then N is an open neighborhood of

M in Sn+k and in fact diffeomorphic to the total space E(νM ) of νM . The one

point compactification of E(νM ) is called the Thom space of νM . On the other

hand the one point compactification N∗ of N is homeomorphic to Sn+k/Sn+k−N .

Hence, we get a map α : Sn+k → N∗ ' T (νM ). One can check that α induces

an isomorphism Hn+k(Sn+k,Z) → Hn+k(T (νM ),Z) and sends the canonical gen-

erator of Hn+k(Sn+k,Z) to the generator of Hn+k(T (νM ),Z), which comes from

the fundamental class [M ] via the Thom isomorphism. In this sense this map is

of degree 1.

Therefore, for a Poincaré complex X to be homotopy equivalent to a closed

oriented smooth manifold it is necessary that there should be a real vector bundle

ξ on X and a degree 1 map α : Sn+k → T (ξ). The Thom space T (ξ) in this

generality is defined as follows. Consider the fiber bundle ξ∗ over X obtained by

taking the one point compactification of the fibers of the bundle ξ. The bundle ξ∗

admits a section s : X → ξ∗, sending a point of X to the point at infinity of the

fiber over the point. Then T (ξ) is defined as the quotient of the total space of ξ∗

by s(X).

Once this information is given we can apply Thom Transversality Theorem

to homotope α to β so that β−1(X) (:= K) is a (oriented) submanifold of Sn+k.

Furthermore, the map β restricted to the normal bundle νK of K gives a lin-

ear bundle map onto ξ and β|K is of degree 1. A data of this type as in the

following commutative diagram is called a normal map and is denoted by (f, b),

νM
f //

��

ξ

��
M

b // X
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where, M is a closed connected smooth oriented manifold, X is a Poincaré complex,

νM is the normal bundle in some embedding of M in Sn+k, and b is a degree 1

map. Here we remark that not all Poincaré complexes admit a normal map. See

the example on p.32-33 in [11]. We saw that this map b is obtained from the

Transversality Theorem but it is nowhere close to being a homotopy equivalence.

In the simply connected and odd high dimension case, in fact, b can be homotoped

to a homotopy equivalence ([2]). In the general case, the next general step is to

apply Surgery theory to b to get another normal map, which is normally cobordant

to the previous one, and to try to get closer to a homotopy equivalence. To achieve

this we need that b induces isomorphisms on the homotopy groups level and then

apply Whitehead theorem (Theorem 1.1.1).

We digress here a bit to show how surgery works to get rid of some homo-

topy group element from the kernel of bq∗. Let M = S1 × S1 as in the picture.

And, suppose we want to get rid of the fundamental group element generated

by the first circle, which lies in the kernel of b1∗ : π1(M,m) → π1(X, b(m)).

In the picture we show a tubular neighborhood of the circle, this is an embed-

ded S1 × D1 (also called an 1-handle). Note that ∂(S1 × D1) = ∂(D2 × S0).

Now remove the interior of this handle and replace it by D2 × S0. This is called

the surgery on the 1-handle. The resulting manifold is a 2-sphere and b can be

extended to this new manifold as the restrictions of b to the circles S1 × S0 are

homotopic to the constant maps. This new b1∗ does not have any kernel.

More generally, suppose an element α in the kernel of bq∗ is represented by

the embedding of Sq in M . Since both these manifolds are orientable, the normal

bundle of the image of Sq in M is trivial and hence this image gives rise to an

embedding of Sq × Dn−q (take the disc bundle of the normal bundle), called a q-

handle, in M , where M is n-dimensional. A surgery along this q-handle is removing

the interior of Sq × Dn−q and attaching Dq+1 × Sn−q−1 to the resulting manifold.

This operation kills the kernel element α.

These surgery operations can be done up to dimension < [n2 ] and, therefore, by

Poincaré duality the main problem lies in dimension [n2 ]. The complication in this

middle dimension gives rise to the Wall’s Surgery obstruction group Lhn(Z[π1(X)]).
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That is, given a normal map (f, b), there is an obstruction σ(f, b), which lies in

the group Lhn(Z[π1(X)]), whose vanishing will ensure that the normal map can

be normally cobordant to another normal map (f ′, b′), where b′ is a homotopy

equivalence. See [24].

Remark 3.2.1. These surgery groups depend only on the fundamental group

and on its orientation character ω : π1(X) → Z2. Here, as we are dealing with

the oriented case, this homomorphism is trivial. In the general situation we need

to incorporate ω in the the surgery groups. But in this article we avoid it for

simplicity.

Remark 3.2.2. The upper script ‘h’ to the notation of the surgery groups is due to

‘homotopy equivalence’. There are problems, when one asks for ‘simple homotopy

equivalence’ in the normal map. Then a different surgery problem appears and

gives rise to the surgery groups Ls∗(Z[−]). There are many other decorated surgery

groups for different surgery problems, like L
〈−∞〉
n (Z[−]). But all of them coincide,

once we have the lower K-theory vanishing result of the group. This is checked

using Rothenberg’s exact sequence. For example, if the Whitehead group of a

group G vanishes, then, Lhn(Z[G]) = Lsn(Z[G]) for all n.

Remark 3.2.3. One further remark is that the surgery groups are 4-periodic.

That is, Lhn(Z[−]) = Lhn+4(Z[−]) for all n and, in fact, is true for all decorations.

This is obtained by showing that the surgery obstruction of a normal map on a

complex X of dimension n is same as the surgery obstruction of the corresponding

normal map on X × CP2.

To end this subsection we give a nice application of surgery theory.

Theorem 3.2.1. There are infinitely many distinct closed manifolds homotopy

equivalent to the projective space CPk for k ≥ 3. And, this is true in any of the

categories; topological, smooth or piecewise linear (PL).

3.3. Whitehead group Wh(−). Once we have established that a complex is

homotopy equivalent to a manifold, the next question is about the uniqueness of

the manifold. In surgery theory one gets two such manifolds M1 and M2 (when

they exist) as h-cobordant, which we define below.

Definition 3.3.1. Let M1 and M2 be two connected closed n-dimensional mani-

folds. A compact manifold W of dimension n+ 1 with two boundary components

M1 and M2 is called a cobordism between M1 and M2. In such a situation M1

and M2 are called cobordant. If the inclusions Mi ⊂W are homotopy equivalences

then W is called an h-cobordism between M1 and M2. And M1 and M2 are called

h-cobordant.

Using Morse Theory, one can show that two closed manifolds are cobordant if

and only if one of the manifolds can be obtained from the other by finitely many

surgery operations.
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Given such an h-cobordism W there is an obstruction τ(W,M1), which lies

in a quotient (called the Whitehead group and is denoted by Wh(π1(M1))) of the

K1 of the integral group ring of the fundamental group of M1. When dimW ≥ 6

the element τ(W,M1) ∈ Wh(π1(M1)) has the following property: τ(W,M1) = 0

implies that W is homeomorphic to M1 × I where I = [0, 1]. This is called

the s-cobordism theorem stated below as Theorem 3.4.1. See [9] and [10]. One

consequence of this theorem is the Poincaré conjecture in high dimensions.

There are similar interpretation of the reduced projective class groups and

negative K-groups in terms of some ‘special’ kind of h-cobordism called bounded

h-cobordism. See [14] for some more on this matter.

We now recall the original interpretation of the Whitehead group, which says

that given a homotopy equivalence f : K → L between two connected finite com-

plexes K and L there is an element τ(f) ∈ Wh(π1(K)) whose vanishing ensures

that the map f is homotopic to a simple homotopy equivalence. See [4]. We al-

ready gave a hint to this in Section 2. We describe this important subject below

to a certain extent.

The simple homotopy equivalences lie in between homotopy equivalences and

homeomorphisms. Even in such a classical vast area of topology the most basic

question is not yet answered; namely, if any homotopy equivalence between two

finite aspherical complexes is homotopic to a simple homotopy equivalence, which

is known as Whitehead’s conjecture in K-theory. There is an even stronger con-

jecture which asks; if any homotopy equivalence between two aspherical manifolds

is homotopic to a homeomorphism. This is known as Borel’s conjecture. Recall

that, a connected complex X is called aspherical if πi(X) = 0 for all i ≥ 2, or

equivalently, the universal cover of X is contractible. A result of Chapman says

that any homeomorphism of complexes is a simple homotopy equivalence. So, the

first step to prove the Borel’s conjecture is to verify Whitehead’s conjecture in

K-theory.

As far as the Borel’s conjecture is concerned, dimension 2 is understood com-

pletely in the topological, piecewise linear or smooth category. Perelman’s proof

of the Thurston’s Geometrization conjecture completes the picture in dimension 3.

Recall that, in dimension ≤ 3 any manifold supports a unique topological, piece-

wise linear or smooth structure. In dimension greater or equal to 5 an enormous

literature exists; where there are enough machinery, language to attack a problem.

The critical dimension is 4. In this dimension even the s-cobordism theorem is

not yet known. So far this is proved for 4-manifolds with some restriction on the

fundamental group; namely, groups with subexponential growth. Also another in-

teresting fact is that a 4-manifold can support infinitely many smooth structures.

Even our familiar Euclidean 4-space R4 has infinitely many smooth structures.
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3.4. Simple homotopy equivalence and Whitehead group. The reference

for this subsection is [4]. Let K and K ′ be two finite complexes. A homotopy

equivalence f : K → K ′ is called a simple homotopy equivalence provided f is

homotopic to a composition of maps of the following kind: K = K0 → K1 →
· · · → Ks = K ′ where the arrows are either an elementary expansion or collapse.

A pair of complexes (K,L) is called an elementary collapse (and we say K collapses

to L or L expands to K) if the followings are satisfied:

• K = L ∪ en−1 ∪ en where en−1 and en are not in L (ei denotes an i-cell),

• there exist a ball pair (Dn,Dn−1) and a map φ : Dn → K such that

(a) φ|∂Dn is a characteristic map for en

(b) φ|∂Dn−1 is a characteristic map for en−1

(c) φ(Pn−1) ⊂ Ln−1, where Pn−1 = Dn − Dn−1.

From the above figure the definition of an expansion (or collapse) will be clear.

Collapsing a simplex

Above is yet another example in a more concrete situation of a polyhedron.

In the example, L is a polyhedron to which we introduce the new simplex s, but

the new simplex has a face which is not the face of any other simplex, such a face

is called a free face. A free face gives the freedom to collapse without changing

the homotopy type of the complex.

We now come to a popular example of a contractible topological space which

has a 2-dimensional polyhedron structure but has no free face. This is called
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Bing’s house with two rooms. In this example one has to first expand and then

collapse. The picture explains the space. There are two rooms with two different

entrances. It is easy to see if we start filling the rooms with square blocks (which

are elementary expansions) then at the end we get a three dimensional cube, which

can be collapsed to a point as it has free faces.

Bing’s house with two rooms

There is an algebraic picture of the above topological construction, which we

describe now.

Given any homotopy equivalence f : K → K ′, there is an obstruction τ(f)

which lies in an abelian group Wh(π1(K ′)) (defined below) detecting if f is a

simple homotopy equivalence.

Let R be a ring with unity. Let GLn(R) be the multiplicative group of invert-

ible n × n matrices with entries in R and En(R) be the subgroup of elementary

matrices. By definition an elementary matrix, denoted by Eij(a), for i 6= j, has

1 on the diagonal entries, a ∈ R − {0} at the (i, j)-th position and the remaining

entries are 0. Define GL(R) = limn→∞GLn(R), E(R) = limn→∞En(R). Here

the limit is taken over the following maps:

GLn(R)→ GLn+1(R)

(
A
)
7→

(
A 0

0 1

)
.

The following lemma shows that E(R) is also the commutator subgroup of GL(R).

Lemma 3.4.1 (Whitehead’s lemma). Let R be a ring with unity. Then the com-

mutator subgroup of GL(R) and of E(R) is E(R).

Proof. At first note the following easy to prove identities.

Eij(a)Eij(b) = Eij(a+ b); (1)

Eij(a)Ekl(b) = Ekl(b)Eij(a), j 6= k and i 6= l; (2)

Eij(a)Ejk(b)Eij(a)−1Ejk(b)−1 = Eik(ab), i, j, k distinct; (3)

Eij(a)Eki(b)Eij(a)−1Eki(b)
−1 = Ekj(−ba), i, j, k distinct. (4)

Also note that any upper triangular or lower triangular matrix with 1 on the

diagonal belongs to E(R).
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Since E(R) ⊂ GL(R) we have [E(R), E(R)] ⊂ [GL(R), GL(R)]. Using (3)

we find that Eij(a) = [Eik(a), Ekj(1)] provided i, j and k are distinct. Hence

any generator of E(R) is a commutator of two other generators of E(R). Hence

E(R) = [E(R), E(R)]. We only need to check that [GL(R), GL(R)] ⊂ E(R). So

let A,B ∈ GLn(R). Then note the following identity.(
ABA−1B−1 0

0 1

)
=

(
AB 0

0 B−1A−1

)(
A−1 0

0 A

)(
B−1 0

0 B

)
.

Now we check that all the factors on the right hand side belong to E2n(R). This

follows from the following. Let A ∈ GLn(R). Then the following equality is easy

to check.(
A 0

0 A−1

)
=

(
1 A

0 1

)(
1 0

−A−1 1

)(
1 A

0 1

)(
0 −1

1 0

)
.

Again note the following.(
0 −1

1 0

)
=

(
1 −1

0 1

)(
1 0

1 1

)(
1 −1

0 1

)
.

Now recall our earlier remark that any upper triangular or lower triangular matrix

with 1 on the diagonal belong to E(R). This completes the proof of the Whitehead

Lemma. �

Definition 3.4.1. Define K1(Z[π]) = GL(Z[π])/E(Z[π]). The Whitehead group

Wh(π) of π is by definition K1(Z[π])/N . Here N is the subgroup of K1(Z[π])

generated by the 1× 1 matrices (g) and (−g), for g ∈ π.

Note that multiplying a matrix A by an elementary matrix from left (or right)

makes an elementary row (or column) operation in A. Now by applying elementary

row and column operations one can transform an invertible integral matrix to I

or −I. This shows that Wh((1)) = 0. (Though the matrix multiplication induces

the group operation in Wh(−) we write it additively, since Wh(−) is abelian.)

We recall below a transparent topological definition of Whitehead group which

is naturally isomorphic to the above one. The proof of this isomorphism is very long

and can be found in [4]. But we will give the map from this topological definition to

the algebraic definition above. For computational purposes the algebraic definition

is more useful as we will see later.

Let K be a fixed finite complex. Let W(K) be the collection of all pairs of

finite complexes (L,K) so that K is a strong deformation retract of L. For any

two objects (L1,K), (L2,K) ∈ W define (L1,K) ≡ (L2,K) if and only if L1 and

L2 are simple homotopically equivalent relative to the subcomplex K. Here by

a relative simple homotopy equivalence we mean that in the definition of simple

homotopy equivalence we do not collapse (or expand) any cells contained in K.

Let Wh(K) = W/ ≡. Let [L1,K] and [L2,K] be two classes in Wh(K). Define
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[L1,K]⊕ [L2,K] = [L1 ∪K L2,K]. Here L1 ∪K L2 is the disjoint union of L1 and

L2 identified along the common subcomplex K. This defines an abelian group

structure on Wh(K) called the topological Whitehead group of K.

Now let (L,K) be an element in W. Consider the universal cover (L̃, K̃).

It can be checked that the inclusion K̃ ⊂ L̃ is a homotopy equivalence. Equip

(L̃, K̃) with the complex structure lifted from the complex structure of (L,K).

Let S∗(L̃, K̃) be the cellular chain complex of (L̃, K̃). The covering action of

π1(L) on (L̃, K̃) induces an action on S∗(L̃, K̃) and makes it a chain complex of

Z[π1(L)]-modules. In fact, it is a finitely generated free acyclic chain complex

of Z[π1(L)]-modules. Let d be the boundary map. One can find a contraction

map δ of degree +1 of S∗(L̃, K̃) so that dδ + δd = id and δ2 = 0. Consider the

module homomorphism d+ δ :
⊕∞

i=0 S2i+1(L̃, K̃)→
⊕∞

i=0 S2i(L̃, K̃). It turns out

that this homomorphism is an isomorphism of Z[π1(L)]- modules. The image and

range of this homomorphism are finitely generated free modules with a preferred

basis coming from the complex structure on (L̃, K̃). We consider the matrix of

this homomorphism d + δ which is an invertible matrix with entries in Z[π1(L)]

and hence lies in GLn(Z[π1(L)]) for some n. We take the image of this matrix

in Wh(π1(L)). The proof that this map (say τ) sending (L,K) to this image in

Wh(π1(L)) is an isomorphism is given in [4].

Now, consider a homotopy equivalence f : K → K ′ between two finite com-

plexes. Let Mf be the mapping cylinder of the map f . Recall that, the map-

ping cylinder Mf of f is by definition, the quotient space of the disjoint union

(K × I) ∪K ′, under the identifications (k, 1) = f(k), for all k ∈ K.

Consider the pair (Mf ,K). Here K is identified with K × {0} in Mf . As f

is a homotopy equivalence it is easy to check that (Mf ,K) ∈ W. Now, we recall

that f is a simple homotopy equivalence if and only if τ([Mf ,K]) is the trivial

element in Wh(π1(K)).

Finally, we state the s-cobordism theorem. Smale proved the theorem in the

simply connected case and it is known as the h-cobordism theorem. He received

the Fields medal for this proof, which also implies the high dimensional Poincaré

conjecture.

Theorem 3.4.1 (S-cobordism theorem). (Barden, Mazur, Stallings) Let M1

and M2 be two compact connected manifolds of dimension ≥ 5 if they have empty

boundary, and of dimension ≥ 6 otherwise. Let W be an h-cobordism between M1

and M2. If τ([W,M1]) = 0 in Wh(π1(M1)) then W 'M1×I. In particular M1 '
M2. Furthermore, any element of Wh(π1(M1)) is realized by an h-cobordism.

Remark 3.4.1. An h-cobordism between M1 and M2 with τ([W,M1]) = 0, is

called an s-cobordism between M1 and M2.

Here ' denotes a homeomorphism, a piecewise linear homeomorphism or a
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diffeomorphism according as the manifolds are topological, piecewise linear or

smooth respectively.

4. Known results on K̃0(−), Wh(−) and L∗(−)

Now we come to results about computing the invariants we encountered so far,

namely the reduced projective class group, the Whitehead group and the surgery

obstruction groups.

The Whitehead conjecture in K-theory asks if Wh(π) = 0, for any finitely

presented torsion free group. This has been checked for several classes of groups:

for free abelian groups by Bass-Heller-Swan ([1]) ; for free nonabelian groups by

Stallings ([17]); for the fundamental group of any complete nonpositively curved

Riemannian manifold by Farrell and Jones ([5]); for the fundamental group of

finite CAT (0) complexes by B. Hu. ([8]). Waldhausen proved that the Whitehead

group of the fundamental group of any Haken 3-manifold vanishes ([21]). Some

results like Whitehead group of finite groups are also known: Wh(F ) = 0, when F

is a finite cyclic group of order 1, 2, 3, 4 and 6 and Wh(F ) is infinite when F is any

other finite cyclic group. Also Wh(Sn) = 0, here Sn is the symmetric group on n

letters. Below, we show by a little calculation that there is an element of infinite

order in Wh(Z5). In fact this group is infinite cyclic, but that needs a difficult

proof and we do not talk about it here.

Lemma 4.0.1. There exists an element of infinite order in Wh(Z5).

Proof. Let t be the generator of Z5. Let a = 1− t− t−1. Then

(1− t− t−1)(1− t2 − t3) = 1− t− t−1 − t2 + t3 + t− t3 + t−1 + t2 = 1.

Hence a is a unit in Z[Z5]. Define α : Z[Z5] → C by sending t to e2πi/5. Then

α sends {±g | g ∈ Z5} to the roots of unity in C. Hence x 7→ |α(x)| defines a

homomorphism from Wh(Z5) into R∗+, the nonzero positive real numbers. Next

note the following.

|α(a)| = |1− e2πi/5 − e−2πi/5| = |1− 2cos
2π

5
| ≈ 0.4.

This proves that α defines an element of infinite order in Wh(Z5). �

For Whitehead groups of general finite groups see [13]. We have already seen

that the Whitehead group of the trivial group is trivial. Next simplest question is

what is Wh(C), where C is the infinite cyclic group? Well, this has already been

computed by G. Higman in 1940 even before Whitehead group was defined.

Theorem 4.0.1 ([7]). The Whitehead group of the infinite cyclic group is trivial.

The proof is also given in [4]. One can ask for generalization of this result

in two possible directions; namely, what is Wh(Fr) and Wh(Cn)? Here Fr is

the non-abelian free group on r generators and Cn is the abelian free group on n

generators. This question has been answered completely.
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Theorem 4.0.2 ([17]). Let G1 and G2 be two groups and let G1 ∗ G2 denotes

their free product. Then Wh(G1 ∗ G2) is isomorphic to Wh(G1) ⊕Wh(G2) and

K̃0(G1 ∗G2) is isomorphic to K̃0(G1)⊕ K̃0(G2).

Using Higman’s result we get the following important corollary.

Corollary 4.0.1. Wh(Fr) = 0.

Theorem 4.0.3 ([1]). Wh(Cn) = 0.

We have already mentioned before the following result.

Theorem 4.0.4 ([21], [5], [8]). Let M be one of the following spaces: a com-

pact Haken 3-manifold, a complete nonpositively curved Riemannian manifold or

a finite CAT (0)-complex. Then Wh(π1(M)) = K̃0(Z[π1(M)]) = 0.

An important result relating Whitehead group and the reduced projective

class group is the Bass-Heller-Swan formula.

Theorem 4.0.5 ([1]). Let G be a finitely generated group. Then

Wh(G× C) 'Wh(G)⊕ K̃0(Z[G])⊕N ⊕N,
where N is some Nil-group.

Theorem 4.0.3 is, in fact, a corollary of the above formula.

As we are mostly interested in showing the vanishing of the Whitehead group

we do not recall the definition of the group N . For details see [15].

The following two corollaries are now easily deduced.

Corollary 4.0.2. K̃0(Z[Cn]) = 0.

Corollary 4.0.3. K̃0(Z[Fr]) = 0.

It is also known that K̃0(Z[G]) of any finite group G is finite. See [18].

The surgery L-groups involves extremely complicated algebra. We recall here

only the computation for the non-abelian free groups, which also gives the com-

putations for the trivial group and the infinite cyclic group.

Theorem 4.0.6 ([3]). Let Fm be a free group on m generators. Then Ln(Fm) =

Z,Zm,Z2,Zm2 for n = 4k, 4k + 1, 4k + 2, 4k + 3 respectively.
5. Open problems

Finally, to end this article we state the well known conjectures we already

mentioned in this article. These conjectures are still open.

Conjecture 1. (W. C. Hsiang) K̃0(Z[G]) of any torsion free group G vanishes.

Conjecture 2. (J. H. C. Whitehead) The Whitehead group of any torsion free

group vanishes.

Note that, using Bass-Heller-Swan formula it follows that Conjecture 2 implies

Conjecture 1.

Conjecture 3. (A. Borel) Two aspherical closed manifolds are homeomorphic if

their fundamental groups are isomorphic.

We should mention here that the above conjectures are already known for a

large class of groups. We will discuss this in a future article. To explain these

groups we need to describe many other concepts which have not been covered

here.
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Abstract. Euler proved that the number of partition of n into odd parts

equals the number of partitions of n into distinct parts. There have been

several refinements of Euler’s Theorem which have limited the size of the

parts allowed. Each is surprising and difficult to prove. This paper provides

a finite version of Glaisher’s exquisitely elementary proof of Euler’s Theorem.

1. Introduction

Euler is truly the father of the theory of the partitions of integers. He discovered

the following prototype of all subsequent partition identities.

Theorem 1. Euler’s Theorem [3]. The number of partitions of n into distinct

parts equals the number of partitions of n into odd parts.

For example, if n = 10, then the ten odd partitions of n into distinct parts are
10, 9 + 1, 8 + 2, 7 + 3, 7 + 2 + 1,

6 + 4, 6 + 3 + 1, 5 + 4 + 1, 5 + 3 + 2, 4 + 3 + 2 + 1,
and the ten partitions of n into odd parts are

9 + 1, 7 + 3, 7 + 1 + 1 + 1,

5 + 5, 5 + 3 + 1 + 1, 5 + 1 + 1 + 1 + 1 + 1,

3 + 3 + 3 + 1, 3 + 3 + 1 + 1 + 1 + 1, 3 + 1 + 1 + 1 + 1 + 1 + 1 + 1,

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1.

Euler’s proof was an elegant use of generating functions. If D(n) denotes the

number of partitions of n into distinct parts and O(n) denotes the number of

partitions of n into odd parts, then it is immediate (just by multiplying out the

products and collecting terms) that∑
n≥0

D(n)qn =
∞∏

n=1

(1 + qn) (1.1)

and ∑
n≥0

O(n)qn =
∞∏

n=1

(1 + q2n−1 + q2(2n−1) + · · · ) (1.2)

=
∞∏

n=1

1

1− q2n−1
.

2010 Mathematics Subject Classification : 11P81, 65A19
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100 GEORGE E. ANDREWS

Euler’s proof is then an algebraic exercise:∑
n≥0

D(n)qn =
∞∏

n=1

(1 + qn) =
∞∏

n−1

1− q2n

1− qn

=
∞∏

n−1

1

1− q2n−1
=
∑
n≥0

O(n)qn. (1.3)

It was J. W. L. Glaisher [5] who in 1883 found a purely bijective proof of Euler’s

Theorem. Glaisher’s mapping goes as follows: start with a partition of n into odd

parts (here fi is the number of times (2mi − 1) appears as a part):

f1(2m1 − 1) + f2(2m2 − 1) + · · ·+ fr(2mr − 1). (1.4)

Now write each fi in its unique binary representation as a sum of distinct powers

of 2, i.e., now we have (with a1(i) < a2(i) < · · · )
r∑

i=1

fi(2mi − 1) =
r∑

i=1

(2a1(i) + 2a2(i) + · · ·+ 2aj(i))(2mi − 1)

=
r∑

i=1

(
2a1(i)(2mi − 1) + · · ·+ 2aj(i)(2mi − 1)

)
(1.5)

and this last expression is the image partition into distinct parts. To make

Glaisher’s maps concrete, let us return to the case n = 10.

9 + 1 → 1 · 9 + 1 · 1 → 9 + 1

7 + 3 → 1 · 7 + 1 · 3 → 7 + 3

7 + 1 + 1 + 1 → 1 · 7 + 3 · 1 → 1 · 7 + (2+1) · 1 → 7 + 2 + 1

5 + 5 → 2 · 5 → 10

5 + 3 + 1 + 1 → 1 · 5 + 1 · 3 + 1 · 2 → 5 + 3 + 2

5 + 1 + 1 + 1 + 1 + 1 → 1 · 5 + 5 · 1

→ 1 · 5 + (4+1) · 1 → 5 + 4 + 1

3 + 3 + 3 + 1 → 3 · 3 + 1 · 1 → (2+1) · 3 + 1 · 1 → 6 + 3 + 1

3 + 3 + 1 + 1 + 1 + 1 → 2 · 3 + 4 · 1 → 6 + 4

3 + 1 + 1 + 1 + 1 + 1 + 1 + 1 → 1 · 3 + 7 · 1

→ 1 · 3 + (1+2+4) · 1 → 4 + 3 + 2 + 1

1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 → 10 · 1 → (8+2) · 1 → 8 + 2

It is clear that this map is reversible; just collect together in groups those parts

with common largest odd factor.

Now there have been a number of refinements of Euler’s Theorem which have,

in one way or another, placed restrictions on the size of the parts used. Bousquet-

Mélou and Eriksson [1] have a version in which their “lecture hall partitions”
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occur. Nathan Fine [4] has a version involving the Dyson rank. I. Pak [6] devotes

Section 3 of his exhaustive study of partition identities to a variety of refinements

of Euler’s Theorem.

The point of this short note is to provide a simple Glaisher style proof of the

following finite version of Euler’s Theorem due to Bradford, Harris, Jones, Ko-

marinski, Matson, and O’Shea that was first stated in [2].

Theorem [2; Sec. 3]. The number of partitions of n into odd parts each ≤ 2N

equals the number of partitions of n into parts each ≤ 2N in which the parts ≤ N

are distinct.

It should be noted that the bijective proofs in [2] as well as those by Bousquet-

Melou and Erickson in [1] and Yee in [7] prove much more than the above theorem

and are thus much more complicated than our Glaisher-like bijection.

2. First proof of the theorem

This result has an Eulerian proof that has exactly the simplicity of Euler’s

original proof.

Let ON (n) denotes the number of partitions of n in which each part is odd

and ≤ 2N , and DN (n) denotes the number of partitions of n in which each part

is ≤ 2N and all parts ≤ N are distinct. Thus∑
n≥0

ON (n)qn =

N∏
n=1

1

1− q2n−1

and ∑
n≥0

DN (n)qn =
N∏

n=1

1 + qn

1− qN+n
.

Finally∑
n≥0

DN (n)qn =
N∏

n=1

1− q2n

(1− qn)(1− qN+n)
=

∏N
n=1(1− q2n)∏2N
n=1(1− qn)

=
N∏

n=1

1

1− q2n−1
=
∑
n≥0

ON (n)qn.

3. A Glaisher-type proof

Now we return to Glaisher’s proof, with the following alteration, namely, for

each odd part (2mi − 1) (all being ≤ 2N) there is a unique ji ≥ 0 such that

N < (2mi − 1)2ji ≤ 2N.

Now instead of rewriting each fi completely in binary, we write fi (with

a1(i) < a2(i) < · · · < am(i) < fi) as 2a1(i) + 2a2(i) + · · · + 2am(i) + gi2
ji ,

where, of course, gi might be 0. Thus, instead of (1.5) we now have
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r∑
i=1

fi(2mi − 1) =
r∑

i=1

(2a1(i) + 2a2(i) + · · ·+ 2am(i) + gi2
ji)(2mi − 1)

=
r∑

i=1

(
2a1(i)(2mi − 1) + 2a2(i)(2mi − 1) + · · ·

)
+

r∑
i=1

gi2
ji(2mi − 1)

and the latter expression is a partition wherein the parts ≤ N are distinct and

each is ≤ 2N .

As an example, let us consider a partition of 78 into odd parts each ≤ 2N = 2 · 6:

11 + 11 + 7 + 7 + 5 + 5 + 5 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3.

Now 11 and 7 lie in (6, 12], 2 · 5 ∈ (6, 12], and 4 · 3 ∈ (6, 12]. Hence this partition is

2 · 11 + 2 · 7 + 3 · 5 + 9 · 3

= 2 · 11 + 2 · 7 + (1 + 2) · 5 + (1 + 2 · 4) · 3

= 11 + 11 + 7 + 7 + 5 + 10 + 3 + 2 · (4 · 3)

= 11 + 11 + 7 + 7 + 5 + 10 + 3 + 12 + 12

and this last expression has all parts ≤ 12 and no repeated parts ≤ 6.

My thanks to Drew Sills and Carla Savage for alerting me to references [2] and [7].
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A SIMPLE PROOF OF THE
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Abstract. In this short note we give a proof of the Fundamental Theorem

of Algebra using elementary complex analysis.

1. Fundamental Theorem of Algebra

For x ≥ 0, we define ([1])

log+ x = max{log x, 0} =

{
log x, x ≥ 1,

0, 0 ≤ x < 1.

Then

log x = log+ x− log+ 1

x
for x > 0. (1.1)

Now we recall a well known result from Complex Analysis ([2]):

For every holomorphic function g defined in a simply connected domain D ⊆ C
which never vanishes in D ⊆ C, there exists a holomorphic function h : D ⊆ C→
C such that g(z) = eh(z) for all z ∈ D ⊆ C.

In view of this, if f(z) is a non constant analytic function having no zero in

| z |≤ r (0 < r <∞), then log f(z) is also analytic in | z |≤ r.
Then by Cauchy’s Theorem of Residues we have

log f(0) =
1

2πi

∫
|z|=r

log f(z)

z
dz =

1

2π

∫ 2π

0

log f(reiθ)dθ. (1.2)

Actually equation (1.2) implies that log f(0) is the average value of log f(z) taken

on | z |= r. Now by taking the real parts from both the sides of equation (1.2)

and then applying equation (1.1), we get

log | f(0) | =
1

2π

∫ 2π

0

log | f(reiθ) | dθ (1.3)

=
1

2π

∫ 2π

0

log+ | f(reiθ) | dθ − 1

2π

∫ 2π

0

log+ 1

| f(reiθ) |
dθ. (1.4)

Let P (z) = a0 + a1z + a2z
2 + ... + anz

n (an 6= 0) be a non-constant polynomial

over C. Assume on the contrary that P (z) has no zero in C. It is clear that

2010 Mathematics Subject Classification : 30D20
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104 BIKASH CHAKRABORTY

(1) 1
|P | < 1 for sufficiently large r because |P | → ∞ as r → ∞ (where z :=

reiθ), and

(2) | P (z)
anzn

|→ 1 for sufficiently large r.

Then equation (1.4) yields that when r →∞

log | P (0) | =
1

2π

∫ 2π

0

log+ | P (reiθ) | dθ

= n log r +O(1).

But log r is unbounded as r →∞. Hence our assumption is wrong. It follows that

P has atleast one, and hence exactly n, zeros in C.

Acknowledgement. The author thanks the anonymous referee for the valuable

remarks and suggestions towards the improvement of this article.
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ATREYEE BHATTACHARYA
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Abstract. In this short article we give a brief description of plane curves

with a focus on regular curves. We talk about one of the fundamental the-

orems in the theory of plane curves, famously known as Hopf’s Umlaufsatz

and try to present a (more or less) self contained proof of the same.

In mathematics a given object is studied from various aspects (such as analytic,

geometric, topological, algebraic, etc.) and relating different descriptions or prop-

erties of the same object often leads to a deeper understanding. More specifically,

in the theory of curves and surfaces (or smooth manifolds in general) one tries to

relate their local (geometric) and global (topological) properties and if possible,

understand to what extent the local properties of these spaces control the global

ones. For example, the famous Gauss-Bonnet theorem (see [1]) says that the sign

of the total Gaussian curvature (a geometric data which also hints at the shape of

the surface) of a closed oriented surface is essentially determined by its topology.

In the context of nice plane curves one would like to ask a similar but simpler

question. Can one interpret the total curvature of a plane-curve (i.e., the integral

of curvature of the curve) in terms of its topological properties? In this short dis-

cussion we talk about a celebrated result due to H. Hopf famously known as Hopf’s

Umlaufsatz which addresses this issue. Umlaufsatz is a German word translating

in to circulation rate in English. It is one of the most fundamental theorems in

the study of plane curves that relates a local (geometric) characteristic of a plane

curve (provided by its curvature) to a global (topological) characteristic, namely,

the number of times the curve revolves around a point. The theorem in particular,

says that a closed plane curve without self- intersections can revolve only once

around a point.

1. Describing a curve in the Plane

For the purpose of this note we will restrict to plane curves i.e., curves sitting

in the Euclidean plane. A plane curve is commonly visualized as a bent line drawn

in the Euclidean plane. In other words, a straight line in the plane is a line that is

2010 Mathematics Subject Classification : 53A04.
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106 ATREYEE BHATTACHARYA

not curved. A few well known plane curves are circle, parabola, ellipse, hyperbola,

Figure 1. Plane curves.

etc. There are several ways for describing a plane curve mathematically. Perhaps

the simplest description of a plane curve (including a straight line) would be as

a set of points in the Euclidean plane satisfying some mathematical constraints.

More precisely, a plane curve C is a set of points in R2 defined by

C = {(x, y) ∈ R2 : f(x, y) = c}
where f : R2 → R is a (preferably smooth) function and c is a constant. This

describes a plane curve as a level set of f and such a curve is often called a level

curve. Previously mentioned plane curves can all be described as level curves as

follows.

(1) The straight line L of slope m passing through the origin (0, 0) is the level

curve L = {(x, y) ∈ R2 : y −mx = 0}.

(x,mx)

y − axis

x− axis(0, 0)

y = mx

Figure 2. The straight line through origin with slope m

(2) The circle C of radius r centered at the origin is the level curve

C = {(x, y) ∈ R2 : x2 + y2 = r}.

x

y

(0, 0)

x2 + y2 = 1

(1, 0)

(0, 1)

(0,−1)

(−1, 0)

Figure 3. The circle of unit radius centered at origin
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(3) The parabola P with its vertex at the origin and focus at the point (1, 0) is

the level curve P = {(x, y) ∈ R2 : y2 − 4x = 0}.
y

x

y2 = 4x

Figure 4. Parabola

(4) An ellipse E with x and y-axes as major and minor axes respectively is

represented as the level curve E = {(x, y) ∈ R2 : (x2/a2) + (y2/b2) = 1}.

(0, 0)

x2

a2 + y2

b2 = 1

x

y

(a, 0)

(0, b)

(0,−b)

(−a, 0)

Figure 5. An ellipse

(5) A hyperbola H with center at the origin and the transverse axis aligned with

the x-axis has the describing set {(x, y) ∈ R2 : (x2/a2)− (y2/b2) = 1}.

(0, 0)

(−a, 0) (a, 0)

x2

a2 −
y2

b2 = 1

y

x

Figure 6. A hyperbola

The above description of a plane curve is not useful in understanding the infini-

tesimal behaviour or the analytic properties of a curve. For this purpose a given

plane curve is often viewed as a path traversed by a point moving in the plane.

For instance, if γ(t) denotes the position vector of a moving point at time t, one

obtains a plane curve described by the function γ of a scalar parameter t taking

vector values in the Euclidean plane. Then one can talk about the velocity γ′ and
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acceleration γ′′ of the moving point which provide significant information about

the corresponding curve. The following formal definition makes things precise.

Definition 1.1. A parametrized plane curve is a map γ : I → R2 where I ⊂ R
is an interval. A parametrized curve γ is smooth if it is a smooth (infinitely

differentiable) map. Moreover, a smooth parametrized curve γ is

(1) regular if the velocity vector γ′ is no-where vanishing i.e., γ′(t) = dγ
dt 6= 0

for all t ∈ I and

(2) unit speed or parametrized by arclength if γ′ has unit length i.e.,

‖γ′(t)‖ = 1 for all t ∈ I where ‖.‖ denotes the Euclidean norm (i.e.,

for γ(t) = (γ1(t), γ2(t)), the length of the vector γ′(t) = (γ′1(t), γ′2(t))T

((γ′1(t), γ′2(t))T is the column vector i.e., the transpose of (γ′1(t), γ′2(t))) is

given by ‖γ′(t)‖2 = γ′1(t)
2

+ γ′2(t)
2
).

The interval I in this definition can be bounded, unbounded, open, closed or

half-open. A parametrized curve γ is called a parametrization of the plane curve

described by the image (Im(γ) ⊂ R2) of the map γ.

γ(t)

γ(t0)

γ′(t0)

Figure 7. A regular parametrized plane curve

We will focus on regular parametrized curves. This excludes the trivial

parametrized curve given by the constant map γ : t 7→ p0, ∀t ∈ I (p0 is a fixed

point in R2). For computational purposes it sometimes helps to work with unit

speed curves. In the following examples well known plane curves discussed so far

are realized as regular parametrized curves.

Example 1.2. (1) A straight line can be viewed as the locus of a point moving in

the plane with a constant (non-zero) velocity, described as the regular parametri-

(1,m)

y − axis

x− axis(0, 0)

γ(t)

γ(t) = t(1,m)

Figure 8. Parametrized straight line
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zed curve γ : R → R2 defined by γ(t) = p + tv where p ∈ R2 denotes the initial

position and v ∈ R2−{0} the initial velocity of the moving point. In particular, the

straight line passing through the origin with slope m 6= 0 is the locus of a moving

point starting from the origin and moving with constant velocity v = (1,m) (cf.

figure 8).

(2) The circle of radius r at any point (x0, y0) ∈ R2 can be viewed as the regular

parametrized curve γ : R → R2 given by γ(t) = (x0 + r cos t, y0 + r sin t). In fact,

it suffices to define γ on the closed interval [0, 2π].

(3) The parabola with vertex at the origin and focus at (1, 0), can be described as

a regular parametrized curve γ : R→ R2 defined by γ(t) = (t2, 2t).

(4) The ellipse described before can be viewed as the regular parametrized curve

γ : R→ R2 defined by γ(t) = (a cos t, b sin t) where a, b are as before.

(5) The hyperbola as before can be viewed as the regular parametrized curve γ :

R→ R2 defined by γ(t) = (a cosh t, b sinh t) where a, b are as before.

Let us see a few more examples of parametrized curves.

Example 1.3. (1) The logarithmic spiral (cf. figure 9) is the regular

parametrized curve γ : R→ R2 defined by γ(t) = (et cos t, et sin t).

Figure 9. Logarithmic Spiral

(2) The astroid is the parametrized curve γ : R → R2 defined by γ(t) =

(cos3 t, sin3 t).

(3) The tractrix is the regular parametrized curve γ : (0, π2 )→ R2 defined by

γ(t) = (sin t, cos t + ln tan(t/2)). The curve γ is not regular when defined

on the open interval (0, π) as γ′(π2 ) = 0.

A parametrized curve γ is much more than Im(γ) (i.e., the set of points in the

plane lying on the curve) as it also indicates with how much speed and in which

direction the point is moving to trace the curve. This information is provided by

the velocity vector. We will only consider regular parametrized curves which have

well-defined, non-vanishing velocity vectors.
1.1. Reparametrization of plane curves. One can show that a given plane

curve can be described as different parametrized curves. This is natural as the same

path can be travelled with different speed and velocity. In fact, both the smooth
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parametrized curves γ, σ : R → R2 defined by γ(t) = (t2, 2t), and σ(t) = (4t2, 4t)

describe the parabola with vertex (0, 0) and focus (1, 0). Thus the parametrization

of a given plane curve is not unique. One would like to understand the relation

between two different parametrizations of the same curve.

Definition 1.4. Let γ : I → R2 be a parametrised curve as before. A parametrised

curve σ : Ĩ → R2 (Ĩ ⊂ R an interval) is said to be a reparametrization of γ if

there is a smooth bijective map φ : Ĩ → I (called a change of parameter) such

that the inverse map φ−1 : I → Ĩ is also smooth and σ = γ ◦ φ i.e., σ(t) = γ(φ(t))

for all t ∈ Ĩ .
As φ and φ−1 are both smooth maps, interchanging their role one can view γ as

a reparametrization of σ. Also, any parametrized curve γ : I → R2 as above can be

thought as a reparametrization of itself via the trivial change of parameter, namely,

the identity map of I. One further observes that if σ : Ĩ → R2 is a reparametriza-

tion of γ : I → R2 and γ a reparametrization of η : Î → R2 with respective

changes of parameter φ : Ĩ → I and ψ : I → Î, then σ is a reparametrization of

η with change of parameter ψ ◦ φ : Ĩ → Î. It thus follows that on the space of

parametrized plane curves reparametrization defines an equivalence relation.

Example 1.5. (1) Cosider regular parametrized curves γ, σ : R → R2 de-

fined by γ(t) = (r cos t, r sin t) and σ(t) = (r sin t, r cos t). Both describing

the circle of radius r centred at the origin. It is easy to see that σ is a

reparametrization of γ, with change of parameter φ : R → R given by

φ(t) = π
2 − t.

(2) Recall the smooth parametrized curves γi : R → R2 (i=1,2) defined by

γ1(t) = (t2, 2t) and γ2(t) = (4t2, 4t) describing the parabola with vertex

at the origin and focus at (1, 0). It follows that γ2 is a reparametrization

of γ1 with the change of parameter φ : R→ R defined by φ(t) = 2t.

One wonders what kind of properties of a parametrized curve remain

unchanged under a reparametrization. We observe the following.

Proposition 1.6. A reparametrisation of a regular parametrized curve is regular.

Proof. This is a direct consequence of the chain rule of differentiation. Let γ :

I → R2 be a regular parametrised curve and σ : Ĩ → R2 be a reparametrization

of γ with a change of parameter φ : Ĩ → I i.e., σ(t) = γ(φ(t)) for all t ∈ Ĩ . Then

φ′(t) is never zero as according to the chain rule one has 1 = (φ−1 ◦ φ)′(t) =

(φ−1)′(φ(t)) · φ′(t). Again applying the chain rule it follows that for all t ∈ Ĩ ,

σ′(t) = (γ ◦ φ)′(t) = γ′(φ(t)) · φ′(t) 6= 0. �

An immediate consequence is that a regular curve can not have a reparametriza-

tion that is not regular. The smooth parametrized curves γ : R → R2 and

σ : R → R2 defined respectively by γ(t) = (t2, 2t) and σ(t) = (t6, 2t3) both

describe the parabola with vertex (0, 0) and focus (1, 0), but while γ is regular, σ
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is not (as σ′(0) = (0, 0)). Thus none of them can be realized as a reparametriza-

tion of the other. This also shows that a plane curve can have both regular and

non-regular parametrizations.

Another property of a smooth parametrized curve that does not change under

a reparametrization is the length as described below. One would expect so as

the length of a path does not depend on the speed at which it is travelled and a

paramerization is one particular description of a plane curve as a path traced by

a moving point.

Definition 1.7. Let γ : [a, b] → R2 be a smooth parametrised curve where [a, b]

is a closed interval. The length of γ denoted by l(γ), is defined by

l(γ) =

∫ b

a

‖γ′(t)‖dt.

More generally, given any smooth curve γ : I → R2 defined on any interval I ⊂ R
(not necessarily closed) and any fixed t0 ∈ I, the arc-length of γ starting at the

point γ(to) is the function s : I → R defined by

s(t) = l(γ|[t0, t]) =

∫ t

t0

‖γ′(τ)‖dτ.

This definition matches our intuition about the length and arclength of a

curve. In fact, If s is the arc-length of a curve γ as above, then ds
dt = ‖γ′(t)‖ i.e.,

if γ(t) stands for the position of a moving point at time t, ds
dt gives the rate of

change of position along the curve. according to this definition the circle of radius

r (centered at (0, 0)) as the regular parametrized curve γ : [0, 2π] → R2 defined

by γ(t) = (r cos t, r sin t) has length 2πr. The following result unravels a crucial

property of the length of a curve.

Proposition 1.8. The length of a smooth parametrized curve is unchanged by

reparametrization.

Proof. Let γ : [a, b] → R2 be a smooth parametrised curve and σ : [c, d] → R2 be

a reparametrization of γ with a change of parameter φ : [c, d] → [a, b] satisfying

σ = γ ◦ φ. Then

l(σ) =

∫ d

c

‖σ′(t)‖dt =

∫ d

c

‖γ′(φ(t))‖|φ′(t)|dt (chain rule)

=

∫ b

a

‖γ′(s)‖ds (putting s = φ(t)) = l(γ).

Here the fact that φ is either strictly increasing or decreasing (i.e., φ′(t) is either

positive or negative for all t ∈ [c, d]) is used. �

Not all properties are preserved under reparametrizations. Recall that a regu-

lar parametrized curve being the locus of a moving point in the plane also indicates

a specific direction in which it moves. This direction is given by the velocity (vec-

tor) of the curve. In the proof of Proposition 1.6 the key fact is that for a change
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of parameter φ : Ĩ → I, φ′(t) is either positive or negative. Thus, as a consequence

of chain rule of differentiation again, the direction of a regular parametrized curve

(i.e., the direction of its velocity) is either preserved or reversed by a reparametriza-

tion depending on the sign of the derivative of corresponding change of parameter.

Definition 1.9. Let γ : I → R2 be a parametrised curve, σ : Ĩ → R2 a

reparametrization of γ with a change of parameter φ : Ĩ → I i.e., σ(t) = γ(φ(t))

for all t ∈ Ĩ . Then φ is called orientation preserving (or reversing) if φ′(t) > 0

(or < 0) for all t ∈ Ĩ .
Clearly, a change of parameter is either orientation preserving or reversing.

We consider a couple of simple examples.

Example 1.10. (1) The change of parameter φ(t) = t (φ(t) = −t) is orien-

tation preserving (reversing).

(2) The change of parameters discussed in Example 1.5 (1) and (2) are respec-

tively orientation reversing and preserving.

1.2. Unit speed curves. It was mentioned in the previous section that for purely

technical reasons working with unit speed curves is preferred at times. But to

begin with one needs to have a few examples of such curves at one’s disposal and

if possible, identify curves that can be realized as unit speed curves. As unit speed

curves are regular and regularity is preserved by reparametrization, it follows that

almost immediately that regularity is a necessary condition for a parametrized

curve in order to admit a unit speed reparametrization. It turns out to be also a

sufficient condition.

Proposition 1.11. A regular parametrized curve can be reparametrized as a unit

speed curve.

Proof. Consider a regular parametrized curve γ : I → R2. Fixing some t0 ∈ I,

consider the arc-length function s : I → R of γ starting at the point γ(to) given

by

s(t) = l(γ|[t0, t]) =

∫ t

t0

‖γ′(τ)‖dτ.

Then ds
dt = ‖γ′(t)‖ 6= 0 as γ is regular. Thus s is strictly monotonically increasing

and smooth. Consider the smooth bijection s : I → s(I) = J (J ⊂ R is an interval)

and let φ = s−1 : J → I. Then it follows from Inverse Function Theorem (see [?] for

details) that φ is also smooth. Thus φ can be treated as an orientation preserving

change of parameter as using chain rule one obtains φ′(t) = 1/‖γ′(φ(t))‖. This

implies

‖(γ ◦ φ)′(t)‖ = ‖γ′(φ(t))‖ · |φ′(t)| = 1,

which completes the proof. (This proof justifies the name ‘curve parametrized by

arc length’ for a unit speed curve.) �

Two simple examples are discussed here.
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(a) Simple closed curve (b) Closed curves

Figure 10

Example 1.12. (1) Recall from Example 1.2(1) that the straight line is the

regular parametrized curve γ : R → R2 defined by γ(t) = p + tv (p ∈ R2

and v ∈ R2−{0} as before). Consider the change of parameter φ : R→ R
defined by φ(t) = t

‖v‖ (obtained by inverting the arc-length function of γ).

Then the reparametrization γ̃ given by γ̃(t) = (γ ◦ φ)(t) = p + t v
‖v‖ is a

unit speed curve.

(2) The circle of radius r centered at any point (x0, y0) ∈ R2, viewed as the

regular parametrized curve γ : R→ R2 given by γ(t) = (x0 + r cos t, y0 +

r sin t), can be reparametrized by arc-length as the unit speed curve γ̃ :

R→ R2 defined by γ(t) = (x0 + r cos tr , y0 + r sin t
r ).

One might ask if unit speed reparametrizations are unique and if not, then one

would like to understand the relation between any two unit speed reparametriza-

tions of a regular parametrized curve. Since the reparametrization is an equiva-

lence relation, it follows that any two different unit speed reparametrizations will

be reparametrizations of each other as well. One further observes the following.

Lemma 1.13. Let γ̃ : Ĩ → R2 and σ : J → R2 be two unit speed reparametrizations

of a regular parametrized curve γ : I → R2. Then the change of parameter function

φ : Ĩ → J satisfying γ̃ = σ ◦ φ is defined by φ(t) = ±t+ c for a constant c ∈ R.

Proof. Using chain rule of differentiation one can see that

1 = ‖γ̃′(t)‖ = ‖σ′(φ(t)) · φ′(t)‖ = ‖σ′(φ(t))‖ · |φ′(t)| = |φ′(t)|.
On integration this yields that φ(t) = ±t+c where c is the integrating constant. �
1.3. Simple closed curves.

Definition 1.14. A parametrized curve γ : R → R2 is said to be periodic

with period L if for each t ∈ R, γ(t) = γ(t + L) holds for a number L > 0

and for any number L′ with 0 < L′ < L, γ(t) = γ(t + L′) does not hold for

all t ∈ R. We would call a plane curve closed if it admits a (regular) periodic

parametrization. Moreover, a closed curve is called simple if it has a (regular)

peroidic parametrization γ : R → R2 with period L such that for each t ∈ R, the

restricted map γ|[t,t+L) is injective.

From the definition it follows almost immediately that a closed curve encloses

itself around a point and a simple closed curve is a closed curve without self-

intersections other than the point where it closes itself (cf. figures 10(a) and

10(b)). For example, the circle of unit radius centered at the origin is a closed
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curve together with a unit speed periodic parametrization γ : R→ R2 with period

L = 2π defined by γ(t) = (cos t, sin t). In fact, using this parametrization one

further observes that the unit circle centered at the origin is a simple closed curve.

From now on we will focus on unit speed parametrizations of simple closed curves.

2. Hopf’s Umlaufsatz

2.1. Curvature of plane curves. How does one describe the curvature of a

(plane) curve? An intuitive description would be ‘something’ that decides how

much curved the curve is i.e., how far it is from being straight. A curve does not

necessarily bend uniformly at all points on itself and the curvature might vary as

a point moves along the curve, but overall it should depend only on the shape

of the curve and not on a particular description (or parametrization) of it. Also,

the straight line should have zero curvature and more bent a curve is at a point,

more should be the curvature. In particular, circles with bigger radii should have

smaller curvatures. One can formalize these intuitions mathematically as follows.

Henceforth we will stick to unit speed plane curves. Let γ : I → R2 be such a

curve. One can talk about its normal vector at each point namely, a unit vector

perpendicular to the tangent (or velocity) vector γ′(t). Then the normal vector is

also no where vanishing at each point on the curve just like the tangent vector. In

fact, one can see that at each point γ(t) there are exactly two choices for the unit

normal vector namely, the vectors obtained by rotating the tangent vector γ′(t) by

90 degrees in the anti-clockwise and clockwise directions. We choose the normal

vector at γ(t) as the unit vector n(t) obtained by rotating γ′(t) by 90 degrees

anti-clockwise direction i.e,

n(t) =

(
0 −1

1 0

)
· γ′(t).

Then for a unit speed plane curve γ as above its normal vector n(t) and acceleration

vector γ′′(t) are scalar multiple of each other where the scalar depends on the time

parameter t. To see this first note that γ has unit speed i.e.,

‖γ′(t)‖2 = 〈γ′(t), γ′(t)〉 = 1, ∀ t ∈ I
where 〈., .〉 is the usual dot product of vectors in R2. Differentiating this from both

sides one obtains

2〈γ′(t), γ′′(t)〉 = 〈γ′′(t), γ′(t)〉+ 〈γ′(t), γ′′(t)〉 = 0,

which in particular shows that γ′′(t) (just like n(t),) is perpendicular to γ′(t) for

each t ∈ I and one can write γ′′(t) as a scalar multiple of n(t) (with the scalar

depending on t) as follows : γ′′(t) = κ(t).n(t).

This observation leads to the following definition.

Definition 2.1. Let γ : I → R2 be a unit speed plane curve with normal vector

n(t) and γ′′(t) = κ(t).n(t). Then the scalar function κ : I → R is called the signed

curvature and its absolute value the curvature of γ.
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γ(t)

γ′(t)

γ′′(t)

n(t)

k > 0

π/2

n(t)

π/2
γ′(t)

γ′′(t)γ(t)

k < 0

(a) Positive Curvature (b) Negative Curvature

Figure 11

This only defines the curvature of a unit speed curve. As a regular parametrized

plane curve can be reparametrized as unit speed curves, one can attempt to define

the curvature of such a curve γ (of non-unit speed) to be that of an orientation-

preserving unit-speed reparametrization of γ provided the curvature of any such

unit speed reparametrization of a given regular curve is the same. This is asserted

by the following lemma.

Lemma 2.2. Let γ̃ : Ĩ → R2 and σ : J → R2 be two unit speed reparametrizations

of a regular parametrized curve γ : I → R2. Then γ̃ and σ have the same curvature.

But the signed curvature of γ̃ is the opposite to that of σ if the change of parameter

φ : Ĩ → J with γ̃ = σ ◦ φ is orientation reversing.

This follows using the definition of curvature and Lemma 1.13. One needs to

further check if the definition of curvature matches our intuitive understanding as

discussed in the beginning of this section. Firstly, recall that a unit speed straight

line γ : R → R2 given by γ(t) = p + tv where p, v ∈ R2 and ‖v‖ = 1, has zero

acceleration (γ′′(t) = 0) and hence zero curvature (i.e., k(t) = 0 for all t ∈ R).

The curvature of a circle of radius r is computed in the following example.

Example 2.3. Recall from Example 1.12(2) that the circle of radius r centered

at a point (x0, y0) ∈ R2, is the unit speed curve γ̃ : R → R2 defined by γ(t) =

(x0 + r cos tr , y0 + r sin t
r ). The tangent vector is γ′(t) = (− cos tr , sin

t
r )T and

acceleration vector is γ′′(t) = − 1
r (cos tr , sin

t
r )T . Also the normal vector is

n(t) =

(
0 −1

1 0

)
· γ′(t) = −(cos

t

r
, sin

t

r
)T

and hence the curvature for all t ∈ R, is the constant k(t) = 1
r which matches to

our intuition.

It follows immediately that the curvature of a parametrized curve is positive

when the curve turns in the direction of its normal vector (cf. figure) and negative

otherwise.

2.2. Winding number. Consider a unit speed curve γ : I → R2 (I = [a, b] is a

closed interval). Then its velocity vector γ′(t) is a unit vector in the Euclidean

plane and one can write γ′(t) = (cos θ(t), sin θ(t))T where θ(t) represents the angle

the vector makes with x-axis and is unique upto addition of an integer multiple of
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2π. Moreover as a consequence of the following lemma it follows that the angle also

changes smoothly with time and is uniquely determined by the number θ(b)−θ(a).

Lemma 2.4. Given a unit speed curve γ : I → R2 (I is a closed interval) there

exists a smooth function θ : I → R such that one has

γ′(t) = (cos θ(t), sin θ(t))T .

Further if θ1, θ2 : I → R are two such smooth functions satisfying the above equa-

tion, then there exists k ∈ Z such that θ1 = θ2 + 2kπ.

y − axis

x− axisθ(t0)

γ′(t)

γ(t)

γ′(t)

θ(t1)

θ(t2)

Figure 12. A trigonometric function θ

Proof. Consider the four semicircles SR, SL, ST , SB all contained in the unit circle

S1 described by

SR = {(x, y)T ∈ S1 : x > 0},

SL = {(x, y)T ∈ S1 : x < 0},

ST = {(x, y)T ∈ S1 : y > 0},

SB = {(x, y)T ∈ S1 : y < 0}.

First assume that the entire image γ′(I) is contained in one of the semi-circles

above, say for definiteness, γ′([a, b]) ⊂ SR i.e., γ′1(t) > 0 for all t ∈ I where

γ(t) = (γ1(t), γ2(t)) (and thus γ′(t) = (γ′1(t), γ′2(t))T ). Then one can write

γ′2(t)

γ′1(t)
=

sin θ(t)

cos θ(t)
= tan θ(t).

The smooth solution to this trigonometric equation is of the form

θ(t) = arctan
(γ′2(t)

γ′1(t)

)
+ 2kπ, k ∈ Z

which is uniquely determined for a fixed value of θ(a). If γ′(I) is contained in one

of the other three semi-circles, a similar argument shows the existence of a smooth

trigonometric function θ with desired properties.

Now consider the general situation when γ′(I) is not entirely contained in one

of the semi-circles above. In that case, one can divide the closed interval I = [a, b]

into n+1 subintervals a = t0 < t1 < · · · < tn = b such that for each i = 0, · · · , n−1,

γ′[ti, ti+1] is contained in one of the four semi-circles. Specifying a particular
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θ(a) one can obtain a unique smooth function θ : [a, t1] → R satisfying γ′(t) =

(cos θ(t), sin θ(t))T . This determines θ(t1) and proceeding as before one obtains a

unique smooth continuation θ : [a, t2] → R satisfying γ′(t) = (cos θ(t), sin θ(t))T .

Repeating this finitely many times one finally obtains the desired smooth function

θ : [a, b]→ R. �

The lemma leads to the following definition.

Definition 2.5. Let γ : R→ R2 be a unit speed periodic curve with period L and

θ : R→ R be a trigonometric scalar function as in Lemma 2.4. Then the winding

number of γ denoted by nγ is defined to be

nγ =
1

2π
(θ(L)− θ(0)).

This definition makes sense as the difference (θ(L) − θ(0)) is well defined

irrespective of the choice of θ. As γ′(L) = γ′(0) it follows from Lemma 2.4 that the

nγ is actually a whole number: in fact, cos θ(L) = cos θ(0) and sin θ(L) = sin θ(0)

together imply that eiθ(L) = eiθ(0) i.e., θ(L)− θ(0) = 2kπ for some k ∈ Z.

Example 2.6. Recall that the circle of radius r centered at a point (x0, y0) ∈ R2,

is the unit speed curve γ : R→ R2 defined by γ(t) = (x0+r cos tr , y0+r sin t
r ) with

tangent vector γ′(t) = (− sin t
r , cos tr )T = (cos( tr + π

2 ), sin( tr + π
2 ))T , is a periodic

curve with period L = 2πr. The trigonometric function θ : R → R can be chosen

to be θ(t) = t
r + π

2 and hence the winding number is

nγ =
1

2π
(θ(2πr)− θ(0)) = 1.

How the winding number changes under reparametrization is answered by the

following result.

Lemma 2.7. Let γ, σ : R → R2 be two unit speed periodic curves. If σ is a

reparametrization of γ with a change of parameter φ : R→ R satisfying γ = σ ◦φ,
then nσ = ±nγ in accordance with the fact that φ is orientation preserving or

reversing.

Proof. First, recall from Lemma 1.13 that φ(t) = ±t + c depending on whether

φ is orientation preserving or reversing. Then it follows that γ and σ both have

the same period say, L. Let θ be a trigonometric function for σ as in Lemma 2.4.

If φ is orientation preserving, then one can check that the function θ̃ defined by

θ̃ = θ◦φ serves as a trigonometric function for γ as in that case φ(t) = t+c implies

γ′(t) = σ′(t+ c) = (cos(θ(t+ c)), sin(θ(t+ c)))T = (cos(θ̃(t)), sin(θ̃(t)))T .

Also, since γ′(t) = γ′(t + L) for all t ∈ R, the trigonometric function θ̂ given by

θ̂(t) = θ̃(t+ L) satisfies

γ′(t) = (cos θ̂(t), sin θ̂(t))T

i.e., θ̂ also serves as atrigonometric function for γ as in Lemma 2.4. Combining all

these facts one obtains
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2π(nγ − nσ) = (θ̃(L)− θ̃(0))− (θ(L)− θ(0))

= (θ̃(L)− θ̃(0))− (θ̃(L− c)− θ̃(−c))

= (θ̃(0)− θ̃(−c))(θ̂(0)− θ̂(−c)) = 0.

In the orientation reversing case i.e., when φ(t) = −t+ c and θ is a trigonometric

function for σ as in Lemma 2.4, then one can see that θ̃ = θ◦φ+π is a trigonometric

function for γ. Then arguing similarly as in the orientation preserving case the

result follows. �

2.3. Relating curvature to winding number. There is a natural relation be-

tween the curvature and winding number of a unit speed plane curve. Intuitively

one would think that if a curve has positive (signed) curvature at a point then

it has to curve to the left and has to close itself at some point, thus completing

a winding and increasing the winding number. This is summed up mathemati-

cally in the following result using a geometric description of signed curvature. The

following can be thought as the one dimensional analogue of the Gauss-Bonnet

Theorem for closed orientable surfaces.

Theorem 2.8. Let γ : R → R2 be a unit speed periodic curve with period L and

signed curvature κ : R→ R. Then the winding number nγ is given by

nγ =
1

2π

∫ L

0

κ(t)dt.

Proof. Using Lemma 2.4 one writes γ′(t) = (cos θ(t), sin θ(t))T for a

trigonometric function θ : R→ R. Differentiating with respect to t one obtains

γ′′(t) = (− sin θ(t) · θ′(t), cos θ(t) · θ′(t))T .
On the other hand one has

γ′′(t) = κ(t) · n(t) = κ(t)(− sin θ(t), cos θ(t))T

using

n(t) =

(
0 −1

1 0

)
· γ′(t).

Then it follows that κ(t) = θ′(t) = dθ
dt i.e., the signed curvature is the rate of

change of the angle the velocity vector makes with the x-axis. One can further

use Fundamental Theorem of Calculus to conclude

1

2π

∫ L

0

κ(t)dt =
1

2π

∫ L

0

θ′(t)dt =
1

2π
(θ(L)− θ(0)) = nγ .

�

One would intuitively imagine that a unit speed periodic plane curve with

winding number of modulus > 2 must wind twice around a point i.e., it must

have some self-intersections while one also knows that the winding number of a

unit speed circle (which is a simple closed curve) has modulus 1. Putting these

threads together it is only natural to ask if the absolute value of winding number
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x0

X

x0

x

Y

(a) Star Convex Region (b) Not a star Convex Region

Figure 13

of a simple closed curve is 1. The following theorem answers this question in the

affirmative.

Theorem 2.9 (Hopf’s Umlaufsatz). The winding number of a simple closed curve

parametrized by arc-length is ±1.

In order to prove the above theorem a small lemma is needed.

Definition 2.10. A set X ⊂ R2 is said to be star-convex with respect to a

point x0 ∈ X if for each point x ∈ X the straight line segment joining x and x0 is

contained in X (i.e., tx+ (1− t)x0 ∈ X for each t, 0 ≤ t ≤ 1).

Lemma 2.11. Let X ⊂ R2 be a star-convex set with respect to some x0 ∈ X.

For any continuous map f : X → S1 there exists a continuous map θ : X → R
satisfying

f(x) = (cos θ(x), sin θ(x))T , ∀ x ∈ X

where θ is uniquely determined by the value of θ(x0).

Note that putting X = [0, 1], x0 = 0 and f = γ′ Lemma 2.11 reduces to

Lemma 2.4. The only difference is that for a general continuous function f the

trigonometric function θ is only continuous, not smooth.

Proof. Let x ∈ X be an arbitrary but fixed point. As the line segment joining x

and x0 is contained in X, the map fx : [0, 1]→ S1 given by fx(t) = f(tx+(1−t)x0)

is well defined and continuous. Now arguing in a similar manner as in Lemma 2.4 it

follows that there is a unique continuous map θx : [0, 1]→ R satisfying θx(0) = θ0

(some chosen constant) and fx(t) = (cos(θx(t)), sin(θx(t)))T .

Note that, using uniqueness of θx for each x ∈ X as above one can see that

any θ with desired properties, if exists, has to satisfy θx(t) = θ(tx + (1 − t)x0)

which in particular says that θ(x) = θx(1). This uniquely determines θ provided it

exists. To see the existance, define θ : X → R by θ(x) = θx(1) where θx for each

x ∈ X is as above. Then, by construction,

f(x) = fx(1) = (cos(θx(1)), sin(θx(1)))T = (cos(θ(x)), sin(θ(x)))T
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and θ(x0) = θx0(1) = θ0. It only remains to prove the continuity of θ. The

continuity argument is quite similar to the argument used in Lemma 2.4.

Choose x ∈ X and ε > 0. Let 0 = t0 < t1 < · · · < tN = 1 be a partition of [0, 1]

such that for each i = 0, · · · , N, fx([ti, ti+1]) is entirely contained in one of the four

semi circles described in Lemma 2.4. For any y ∈ X sufficiently close to x one has

‖fx(t) − fy(t)‖ < ε for any t ∈ [0, 1] using continuity of f. As a result choosing ε

sufficiently small and N sufficiently large one can show that for each i = 0, · · · , N,
fx([ti, ti+1]) and fy([ti, ti+1]) both lie in the same semi-circle as mentioned. Using

a inductive argument similar to Lemma 2.4 on N (the number of subintervals in

the partition) one obtains the following trigonometric expressions

θx(t) = arctan

(
f1x(t)

f2x(t)

)
+ 2kπ, θy(t) = arctan

(
f1y (t)

f2y (t)

)
+ 2kπ,

(if the images are contained in the left or right semicircle) and

θx(t) = arccot

(
f2x(t)

f1x(t)

)
+ 2kπ, θy(t) = arccot

(
f2y (t)

f1y (t)

)
+ 2kπ,

(if the images are contained in the upper or lower semicircle) where k ∈ Z, fx(t) =

(f1x(t), f2x(t))T and fy(t) = (f1y (t), f2y (t))T . Thus the continuity of θ is obtained as

a consequence of the same of functions f, arctan and arccot. �

With the aid of Lemma 2.11, one can prove Theorem 2.9 as follows.

Proof. Let γ : R → R2 be a unit speed simple closed curve with period L. Then

Im(γ) = {γ(t) = (γ1(t), γ2(t)) : t ∈ R} = γ([0, L]) is compact and the value

sup{γ1(t) : t ∈ R} is attained at some t = t0 (say). Without loss of gener-

ality assume that sup{γ1(t) : t ∈ R} = γ1(0) (if not, consider the unit speed

reparametrization of γ with the change of parameter t 7→ t + t0 having the same

winding number as γ). Also, γ′(0) = (γ′1(0), γ′2(0))T = (0, γ′2(0))T (as γ1(0) is the

maximum value for the smooth function γ1 : R → R). Since γ has unit speed,

γ′2(0) = ±1. Assume without loss of generality γ′(0) = (0, 1)T (if not, consider the

unit speed reparametrization of γ with the change of parameter t 7→ −t resulting

at most a change of sign for the winding number).

Consider the triangular region X = {(t, s) ∈ R2 : 0 ≤ t ≤ s ≤ L} (cf. figure)

which is star-convex with respect to the origin. Define f : X → S1 by

f(t, s) =


γ(s)−γ(t)
‖γ(s)−γ(t)‖ , t < s, (t, s) 6= (0, L);

γ′(t), s = t;

−γ′(0) (t, s) = (0, L).

Then f is a continuous map as γ|[0,L] is smooth and injective. By Lemma 2.11

there is a continuous map θ : X → R uniquely determined by θ(0, 0), satis-

fying f(t, s) = (cos(θ(t, s)), sin(θ(t, s)))T , ∀ (t, s) ∈ X. Also γ′(t) = f(t, t) =

(cos(θ(t, t)), sin(θ(t, t)))T means that t 7→ θ(t, t) is a trigonometric function for γ
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as in Lemma 2.4. Then the winding number nγ is given by

nγ =
1

2π
(θ(L,L)− θ(0, 0)).

To see that nγ has unit modulus, we first claim that the map t 7→ f(0, t) is not

surjective and its image does not contain the unit vector (1, 0)T ∈ S1. Assume the

contrary. If f(0, t) = (1, 0)T for some t ∈ (0, L), then it follows that γ1(t) > γ1(0),

a contradiction to the fact that γ1(0) is the maximum value of all γ1(t). Also

f(0, L) = −γ′(0) = (0,−1)T and f(0, 0) = γ′(0) = (0, 1)T are both perpendicular

to (1, 0)T establishing the claim. Now for each k ∈ Z, there is a homeomorphism

ψk : (2πk, 2π(k+1))→ S1− (1, 0)T defined by ψk(t) = (cos t, sin t)T such that the

composite map ψ−1k ◦ f : X → (2πk, 2π(k + 1)) is contunuous satisfying

f(t, s) = (cos((ψ−1k ◦ f)(t, s)), sin((ψ−1k ◦ f)(t, s)))T , ∀ (t, s) ∈ X.
Then using Lemma 2.11, one can assume θ = ψ−1k ◦ f for some k ∈ Z. Then

from f(0, 0) = γ′(0) = (0, 1)T and f(0, L) = −γ′(0) = (0,−1)T follows that

θ(0, 0) = π
2 + 2πk and θ(0, L) = 3π

2 + 2πk. This yields θ(0, L) − θ(0, 0) = π

Similarly showing that the image of the map t 7→ f(t, L) does not contain the unit

vector (−1, 0)T , one can further show that θ(L,L)− θ(0, L) = π and thus

nγ =
1

2π
(θ(L,L)− θ(0, 0)) = θ(L,L)− θ(0, L) + θ(0, L)− θ(0, 0) = 1.

�

Remark 2.12. Combining Theorems 2.9 and 2.8 one obtains a nice geometric de-

scription of the average signed curvature of a simple closed plane curve in terms of

the infinitesimal change of angle between the velocity vector and a fixed direction.

2.3.1. Significance of Hopf’s Umlaufsatz. Hopf’s Umlaufsatz together with the

Four Vertex theorem and the Isopereimetric Inequality (see [1] for details) are three

key results in the theory of plane curves. These results collectively characterize

plane curves; in particular, simple closed curves and convex curves (see [1] for

definition). As a detailed discussion on these topics is beyond the scope of this

article, an interested reader is referred to [1] and [2] for further study of plane

curves. It turns out that Hopf’s Umlaufsatz is an instrumental step used in the

characterization of convex plane curves and in the proof of both the Four Vertex

theorem and the Isopereimetric Inequality, too. Theorem 2.9 is also used in the

proof of the Gauss-Bonnet theorem.
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0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

This sequence owes its name to the Italian mathematician Leonardo of Pisa (c. 1170 –

c. 1250), who, owing to his being a scion of the Bonacci family, is known as Fibonacci.

Fibonacci earned a lasting place in the development of European mathematics

through his book Liber Abaci. This book brought to Europe the decimal system of

the Indians, which Fibonacci learned from scholars in Bugia (in present-day Algeria). In

this book, we encounter the Fibonacci numbers through a whimsical problem of highly

improbable reproducing rabbits. I will not repeat the details of this story here, since we

will soon see a more sensible way to interpret this sequence.

Stigler’s law of eponymy (discovered by Robert K. Merton) says that no scientific

discovery is named after its original discoverer. And so it is with the Fibonacci numbers,

which can be traced back to the Indian prosodist Virahanka (6th to 8th century), building

on the chanda sutras of Pingala (4th century BCE)1.

Sanskrit (like many Indian languages) has distinct long and short syllables. Pingala

and Virahanka were interested in generating and counting all the different patterns of

syllables satisfying certain constraints. Pingala, for example, asked for all the patterns

with a short and b long syllables, for fixed numbers a and b.

For example, with 2 short and 2 long syllables there are six possible patterns:

1122, 1213, 2112, 2121, 2211.

Here 1 denotes a short syllable and 2 denotes a long one. Writing C(a, b) for the number

of patterns with a short and b long syllables, Pingala discovered the recurrence relation

C(a, b) = C(a− 1, b) + C(a, b− 1),

which he presented in the form of a triangle of numbers which he called the Meru Pras-

taara. In accordance with Stigler’s law, the Meru Prastaara is called Pascal’s triangle.

1See A history of Pingala’s combinatorics, by Jayant Shah; available from

www.northeastern.edu/shah/papers/Pingala.pdf
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Along with the initial condition that C(0, 0) = 1, this rule determines all the numbers

C(a, b). Indeed, the number C(a, b) is the binomial coefficient
(
a+b
a

)
.

A natural notion of the length of a line of verse is the amount of time it measures

out. If a short syllable is taken to measure out one time unit, and a long syllable 2 time

units, then the total number of time units in a pattern is obtained by simply adding up

the digits that represent it; for example, 122212 is 1 + 2 + 2 + 2 + 1 + 2 = 10 beats long.

Let Fn denote the number of patters with n beats. For such a pattern there are two

possibilities. If it ends with a 2, then it is obtained from a unique pattern of length n−2

by appending a 2. If it ends with a 1, then it is obtained from a unique pattern of length

n− 1 by appending a 1. Thus

Fn = Fn−1 + Fn−2,

a relation which, along with initial conditions F0 = 1, F1 = 1, determines the Fibonacci

sequence. This identity can be used to define Fibonacci numbers for positive as well as

negative indices. Indeed, we may rewrite it as Fn = Fn+1 − Fn+1 to define F−1, F−2

etc. The ratios of successive terms, namely the numbers Fn/Fn−1 converge to a definite

limit, which is (1 +
√

5)/2, and is known as the golden ratio, and denoted by φ.

The book titled “The Fibonacci Resonance (and other new golden ratio discoveries)”

by Clive N. Menhinick is devoted to the Fiboanacci sequence and the golden ratio. It falls

into the genre of recreational mathematics, and uses only high-school level mathematics.

A six-hundred-page book on a simple sequence and an irrational number? But the

Fibonacci sequence and the golden ratio have a cult following. They even play a role

in Dan Brown’s bestseller The Da Vinci Code. They apparently appear in contexts as

diverse as post-impressionist art, pineapples and fractals. A somewhat disconnected,

sometimes unconvincing, account of these appearances forms the first chapter of Men-

hinick’s book.

The second chapter introduces something called the Ori32 geometry. It involves

dividing the circle into 32 equal angles. There are inexplicable references to digital SLR

cameras. But the significance of this construction was lost on me.

The next chapter introduces the great discovery of this book, namely the “Fibonacci

Resonance” mentioned in the title. It refers to the identity:

Fn = Fsφ
n−s + Fn−s(−φ)−s for all integers n and s.

This identity is not difficult to prove, but in it, Menhinick searches for, and claims to

find, deep visual, accoustic and analytic meaning. He then goes on to generalize it to

other sequences which are defined by recurrence relations similar to the ones defining the

Fibonacci sequence (he calls these Lucas sequences). Once again, the discussion is at

once grandiose, disconnected, rambling, and ultimately unconvincing.

The last Chapter is a collection of articles on how the golden ratio appears in Sci-

ence. This includes a nice discussion of Penrose’s aperiodic tilings and quasicrystals. It

draws heavily from Martin Gardner [Penrose Tiles and Trapdoor Ciphers, Mathematical

Association of America, Wahsington DC, 1989].

The mathematical content of this book is negligible. The new discoveries promised in

the title are simple exercises. However, the author is a good story-teller with a repertoire

of good stories. Many passages are interesting, and the book covers a range of topics. This

book demonstrates that one does not need a great deal of mathematical background to

ask questions, and enjoy the process of mathematical discovery (even if these discoveries
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are not going to win the acclaim of the mathematical community). Take at bedtime,

with a pinch of salt2.

Amritanshu Prasad

The Institute of Mathematical Sciences

CIT campus, Taramani Chennai-600 113, Tamilnadu, India

E-mail : amriprasad@gmail.com

2This prescription was spotted on Rahul Siddharthan’s website rsidd.online.fr, accessed:

15th September 2016.
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The Mathematics Student ISSN: 0025-5742

Vol. 85, Nos. 3-4, July-December, (2016), 127-136

PROBLEM SECTION

In the last issue of the Math. Student Vol. 85, Nos. 1-2, January-June (2016),

we had invited solutions from the floor to the remaining problems 12, 13, 14, 15,

16 and 17 of the MS, 84, 3-4, 2015 as well as to the eight new problems 1, 2, 3, 4,

5, 6, 7 and 8 presented therein till October 31, 2016.

We received one correct solution from the floor to each of the Problems 12 &

15 of MS, 84, 3-4, 2015 and we publish here the solution received from the floor to

the Problem 12 and Proposer’s crisp solution to the Problem 15. No solution was

received from the floor to the remaining problems 13, 14, 16 and 17 of the MS,

84, 3-4, 2015 and hence we provide in this issue the Proposer’s solution to these

problems also.

We also received six correct solutions from the floor to the Problem 3, one

correct solution from the floor to the Problem 7 and two correct solutions from

the floor to the Problem 8 of the MS, 85, 1-2, 2016. We publish Proposer’s

crisp solution to these problems in this issue. Readers can try their hand on the

remaining problems 1, 2, 4, 5 and 6 till April 30, 2017.

In this issue we first present five new problems. Solutions to these problems as

also to the remaining 1, 2, 4, 5 and 6 of MS, 85, 1-2, 2016, received from the

floor till April 30, 2017, if approved by the Editorial Board, will be published in

the MS, 86, 1-2, 2017.

MS-2016, Nos. 1-2: Problem-9: Proposed by S. K. Tomar .

Equation of small motion in a uniform elastic solid medium is given as

(λ+ µ)5 (~5 · ~u) + µ52 ~u = ρ~̈u, (0.1)

where λ and µ are Lame’s parameters; ρ and ~u represent respectively the

density and displacement vector. Superposed dot represents the temporal

derivative and other symbols have their usual meanings.

Using Lie symmetry method, show that (0.1) leads to two waves propa-

gating with distinct speeds.

MS-2016, Nos. 1-2: Problem-10: Proposed by Purusottam Rath, CMI,

Chennai; submitted through Clare D’Cruz.

Let n ≥ 5 be a natural number. How many distinct topologies, not

necessarily Hausdorff, can be given to the alternating group An so that it

becomes a topological group?

c© Indian Mathematical Society, 2016 .
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MS-2016, Nos. 3-4: Problem-11: Proposed by B. Sury.

If a strictly increasing function f : R → R satisfies f(2t − f(t)) = t =

2f(t)− f(f(t)) ∀t ∈ R then prove that ∃ c ∈ R 3 f(t) = t+ c for all t.

MS-2016, Nos. 1-2: Problem-12: Proposed by George E. Andrews and Emeric

Deutsch..

Show that the number of parts having odd multiplicities in all partitions

of n is equal to the difference between the number of odd parts in all partitions

of n and the number of even parts in all partitions of n.

Example: n = 5. The partitions 5′, 4′1′, 3′2′, 3′11, 221′, 2′1′11, 1′1111

have 10 parts with odd multiplicities (marked with ′). On the other hand, the

number of odd parts is 15

(5, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
while the number of even parts is 5

(4, 2, 2, 2, 2).

MS-2016, Nos. 1-2: Problem-13: Proposed by Aritro Pathak, Dept. of Math-

ematics, Brandeis University, Waltham, Massachusetts, 02453 USA;

currently: 12 East Road, Jadavpur, Kolkata-700032, West bengal, India. E-mail:

ap323@brandeis.edu ; submitted through B. Sury.

If f : R→ R is a differentiable function satisfying the conditions |f ′(x)| ≤
|f(x)| and f(0) = 0 then show that f(x) = 0 for all x ∈ R. Give also a proof

that uses only the Mean Value Theorem.

Solution from the floor: MS-2015, Nos. 3-4: Problem 12: Let ABC be

a triangle with medians AD,BE, and FC. Construct semicircles with diameters

BD,DC, and BC outwardly. Let TA be the circle tangent to the three semicircles

with diameters BD,DC, and BC, and let A′ be the center of TA. Define B′ and

C ′ cyclically. Then give a synthetic (pure geometric) proof of the fact that the

segments AA′, BB′, and CC ′ are concurrent. (Solution submitted on 10-10-2016

by Diyath Nelaka Pannipitiya; No 286, High-Level Road, Maharagama, 10280,

Sri Lanka; diyathnp@yahoo.com).

Solution. Let AB = 4t, BC = 4r and CA = 4s. Then BD = DC = 2r. Let A′′

be the point where BC and AA′ meet each other. Define B′′ and C ′′ cyclically.

Let us find the radius of TA first. Let x be the radius of TA. Let O be the center

of the semicircle with diameter BD. Notice that the line segment OA′ passes

through the tangent point of the semicircle with center O and TA. And 4ODA′

is a right triangle with ∠A′DO = 90o. Then by the Pythagoras theorem we have,

(r + x)2 = r2 + (2r − x)2. Which implies x = (2/3)r.
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Without loss of generality consider ∠BCA.

Case 1: ∠BCA < 90o. (Refer Figure-1)

Figure 1

Because 4BAF and 4AFC are right triangles, by Pythagoras theorem, we have

AF 2 = AB2 −BF 2 = AC2 − FC2,

that is,

16t2 −BF 2 = 16s2 − (4r −BF )2 = 16s2 − 16r2 + 8rBF −BF 2.

Hence
BF = (2/r)(t2 + r2 − s2). (0.2)

Therefore

AF 2 = 16t2 −BF 2 = 16t2 − (4/r2)(t2 + r2 − s2)2

= (4/r2)(2r2t2 + 2t2s2 + 2s2r2 − t4 − s4 − r4) = (M2/r2),

where M = 2(2r2t2 + 2t2s2 + 2s2r2 − t4 − s4 − r4)
1/2

. Hence AF=(M/r).

Observe that 4DA′′A′ and 4AA′′F are similar triangles. Therefore

A′′F

DA′′
=

AF

DA′
=

(M/r)

2r − (2r/3)
=

3M

4r2
,

and hence

A′′F = (3M/4r2)DA′′. (0.3)

In view of Figure-1, from (0.2) and (0.3), we get

(2/r)(t2 + r2 − s2) = BF = BD +DA′′ +A′′F

= 2r +DA′′ +
3M

4r2
DA′′ = 2r +

3M + 4r2

4r2
DA′′

which gives

DA′′ = 8r(t2 − s2)/(4r2 + 3M). (0.4)
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Therefore

BA′′

A′′C
=

2r +DA′′

2r −DA′′
=

2r +
8r(t2 − s2)

4r2 + 3M

2r − 8r(t2 − s2)

4r2 + 3M

=
3M + 4(r2 + t2 − s2)

3M + 4(r2 + s2 − t2)
. (0.5)

Similarly we can show that
CB′′

B′′A
=

3M + 4(s2 + r2 − t2)

3M + 4(s2 + t2 − r2)
(0.6)

and
AC ′′

C ′′B
=

3M + 4(t2 + s2 − r2)

3M + 4(t2 + r2 − s2)
. (0.7)

Case 2: ∠BCA > 90o. (Refer Figure-2)

Figure 2

In an exactly the similar way as in the Case 1 we can show that

BA′′

A′′C
=

3M + 4(r2 + t2 − s2)

3M + 4(r2 + s2 − t2)
, (0.8)

CB′′

B′′A
=

3M + 4(s2 + r2 − t2)

3M + 4(s2 + t2 − r2)
(0.9)

and
AC ′′

C ′′B
=

3M + 4(t2 + s2 − r2)

3M + 4(t2 + r2 − s2)
. (0.10)

Case 3: ∠BCA = 90o. (Refer Figure 3)

We have an immediate result
t2 = r2 + s2. (0.11)

Using this we then get

(M2/4) = 2r2t2 + 2t2s2 + 2s2r2 − t4 − s4 − r4

= 2(r2 + s2)t2 + 2r2s2 − r4 − s4 − t4

= 2(r2 + s2)2 + 2r2s2 − r4 − s4 − (r2 + s2)2 = 4r2s2,

and hence
M = 4rs. (0.12)
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Figure 3

Let X be the point on the extended line segment AC such that ∠A′XA = 90o.

Observe that AX is a tangent line segment to the semicircle whose diameter is

BC. Thus A′X = 2r and 4AA′′C and 4AA′X are similar triangles. Therefore

(A′′C/2r) = (AC/AX) = (4s/(4s+ (4r/3)), which in turn implies

A′′C = (6sr/(3s+ r)). (0.13)

Therefore BA′′ = 4r −A′′C = 4r − (6sr/(3s+ r)), and hence

BA′′ =
2r(3s+ 2r)

3s+ r
. (0.14)

It follows that

BA′′

A′′C
=

3s+ 2r

3s
. (0.15)

Similarly we can show that

CB′′

B′′A
=

3r

3r + 2s
(0.16)

and

AC ′′

C ′′B
=
s(3r + 2s)

r(3s+ 2r)
. (0.17)

Notice that (0.15), (0.16) and (0.17) can be obtained from (0.5), (0.6) and (0.7) (or

from (0.8), (0.9) and (0.10)) respectively, by using the relations (0.11) and (0.12).

Therefore in general
BA′′

A′′C
=

3M + 4(r2 + t2 − s2)

3M + 4(r2 + s2 − t2)
(0.18)

CB′′

B′′A
=

3M + 4(s2 + r2 − t2)

3M + 4(s2 + t2 − r2)
(0.19)

AC ′′

C ′′B
=

3M + 4(t2 + s2 − r2)

3M + 4(t2 + r2 − s2)
(0.20)
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Thus for any triangle we have

BA′′

A′′C
× CB′′

B′′A
× AC ′′

C ′′B
=

3M + 4(r2 + t2 − s2)

3M + 4(r2 + s2 − t2)

× 3M + 4(s2 + r2 − t2)

3M + 4(s2 + t2 − r2)
× 3M + 4(t2 + s2 − r2)

3M + 4(t2 + r2 − s2)
= 1.

It follows by Ceva’s theorem that AA′′, BB′′ and CC ′′ are concurrent, and there-

fore AA′, BB′ and CC ′ are also concurrent. This proves the claim.

Remark 0.1. This result was mentioned (without proof) by the proposer, first on

December 22, 2000 in the ‘Hyacinthos’ group devoted to triangle geometry. More

properties of the point of concurrence of AA’, BB’ and CC’ (and other analogous

points) can be found at

http://faculty.evansville.edu/ ck6/encyclopedia/ETCPart3.html

where it is listed as triangle center X(3590). In particular, it lies on Kiepert

hyperbola corresponding to the angle arctan(2/3).

Solution by the Proposer B. Sury: MS-2015, Nos. 3-4: Problem 13: Let

S =

(
0 1

1 0

)
and T =

(
1 1

0 1

)
. Determine the semigroup generated by these two

matrices (note that we are not allowed to take negative powers of the matrices).

Solution. We shall show that the semigroup generated by S and T consists of all

2 × 2 integer matrices with non-negative entries and determinant ±1. It is clear

that every matrix in the semigroup generated by S and T must have non-negative

integer entries and determinant ±1 as this is true of S and T . The main point is to

show that any matrix M =

(
a b

c d

)
with a, b, c, d ≥ 0 integers and ad− bc = ±1

is in the semigroup generated by S, T . We argue by induction on min(a, b, c, d).

We may assume min(a, b, c, d) = a because the columns or rows of M may be

permuted simply by multiplying by S on the right or left respectively.

Firstly, if a = 0, then the determinant condition det (M) = ±1 forces b = c = 1

and det (M) = −1. Thus,

M =

(
0 1

1 d

)
= ST d.

Assume now that min(a, b, c, d) = a > 0. Therefore, either d > b or d > c.

In case d > b we write

M =

(
a b

c d

)
=

(
1 0

1 1

)(
a b

c− a d− b

)
= STS

(
a b

c− a d− b

)
.

Similarly, in case d > c we write

M =

(
a b

c d

)
=

(
b− a a

d− c c

)(
0 1

1 1 =

)(
b− a a

d− c c

)
ST.
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By repeatedly applying the above step and, by induction on the minimum of the

entries, it follows that M is in the semigroup generated by S and T .

Solution by the Proposer B. Sury: MS-2015, Nos. 3-4: Problem 14:

Let F ∈ Q[X] be a polynomial of degree at least 2. If F gives a bijection on a

subset S of Q, then prove that S must be finite.

Solution. Let F =
∑n

i=0 ciX
i ∈ Q[X] have degree n > 1. Suppose S is an

infinite set of rational numbers permuted by F . The polynomial

F (X − cn−1
ncn

) +
cn−1
ncn

permutes the infinite set S + (cn−1/(ncn)) and its coefficient of Xn−1 is zero. By

renaming, we may assume that F =
∑n

i=0 ciX
i ∈ Q[X] with cn−1 = 0. Write

F =
1

d

n∑
i=0

aiX
i

with ai, d ∈ Z. Consider an arbitrary, fixed element (p/q) of S. Write p0 = p, q0 =

q and f(pi/qi) = pi+1/qi+1 in irreducible fractions with positive denominators for

all i ∈ Z. We have

qi+1(anp
n
i + an−2p

n−2
i q2i + · · ·+ a0q

n
i ) = dpi+1q

n
i .

Since n ≥ 2, q2i divides qi+1an. In particular, if |an| < qi+1, then qi < qi+1.

We deduce: there are infinitely many k < 0 such that qk ≤ |an|; otherwise, we

would have a strictly decreasing sequence of natural numbers.

Now, there exists M > 0 such that |F (x) > |x| for |x| > M . Fix such an M and

let |F (x)| ≤ N for all |x| ≤ M . We will show that the sequence {pr/qr : r < 0}
is periodic. Suppose |pk/qk| > max(M,N) for some k. Then, since |pk/qk| =

|F (pk−1/qk−1)| > N , we must have |pk−1/qk−1| > M and, therefore

|pk/qk| = |F (pk−1/qk−1)| > |pk−1/qk−1|.

We claim that |pk−2/qk−2| < |pk/qk| also. Indeed, if not, then

|pk−2/qk−2| ≥ |pk/qk| > M.

Looking at the F -values |pk−1/qk−1| = |F (pk−2/qk−2)| > |pk−2/qk−2| so that

|pk/qk| > |pk−1/qk−1| > |pk−2/qk−2| ≥ |pk/qk|

a contradiction. In this manner, we inductively get that For each r > 0,

|pk−r/qk−r| < |pk/qk|. As we observed, there are infinitely many s > 0 such

that q−s ≤ |an|, a fixed number. Hence, there must exist arbitrarily large s such

that p−s/q−s = p−t/q−t for some t 6= s. This clearly implies that the sequence

{pr/qr : r < 0} is periodic and hence, by taking F -values, the whole sequence

{pr/qr} is periodic.

We considered an arbitrary p0/q0 element of S and showed that it is a part of

a periodic F -orbit. So, S is a union of finite F -invariant sets. As each such
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finite F -invariant set contains a rational number with denominator bounded by

|an| (observed in the beginning), these subsets are only finitely many. Therefore,

S is finite.

Solution by the Proposer B. Sury: MS-2015, Nos. 3-4: Problem 15: If

N is a positive integer which is a multiple of a number of the form 99 · · · 9 where

9 is repeated n times, then show that N has at least n non-zero digits. More

generally, prove that if b > 1 and bn − 1 divides a, then the base-b expression of a

has at least n non-zero digits.

Solution. We prove the general statement of which the first one is a special case.

Let m be the minimal number of non-zero digits of any non-zero multiple of bn−1.

Among all multiples with m non-zero digits, suppose A = a1b
k1 + · · ·+ amb

km has

the smallest digit-sum. Here 0 ≤ ai < b and k1 > k2 > · · · > km. The key claim

is that the powers ki are all distinct mod n. If this is proved, then it would follow

that the number C = a1b
r1 + · · · + amb

rm where ri < n and ri ≡ ki mod n, is a

multiple of bn−1 but is less than or equal to (b−1)(1+b+ · · ·+bn−1) < bn. Thus,

C = bn−1 and so m = n. Let us prove now that ki’s are distinct mod n. Suppose

i < j and ki ≡ kj mod n. Choosing d large enough such that kj + dn > k1,

consider the number B = A − aibki − ajbkj + (ai + aj)b
kj+dn. This is a multiple

of bn − 1 as B −A = aib
ki(bkj−ki+dn − 1) + ajb

kj (bdn − 1).

Note that by minimality of the number m of non-zero digits, the number ai + aj

must be ≥ b. But, then the digit-sum of B is clearly (digit-sum for A)− ai− aj +

1 + (ai +aj− b) which is less than the digit-sum for A. This contradicts the choice

of A. Therefore, the claim is proved.

Correct solution was also received from the floor from:

Diyath Nelaka Pannipitiya; (No 286, High-Level Road, Maharagama, 10280,

Sri Lanka; diyathnp@yahoo.com ; received on 10-10-2016)

Solution by the Proposer Mathew Francis : MS-2015, Nos. 3-4: Prob-

lem 16: Let S1, S2, . . . , Sk be subsets of a universe U =
⋃
Si such that the union

of no t of them covers U . Then prove that there exist t+ 1 sets among them that

are pairwise incomparable.

Solution. We may use Dilworth’s theorem. The minimum number of chains that

cover the partial order equals the cardinality of the maximum antichain. Consider

the partial order formed by the given subsets. We need to show here that the

maximum antichain cardinality is at least t+ 1. That is, the minimum number of

chains to cover the partial order is at least t+ 1.

Suppose t chains can cover. Then take the maximal subset from each chain and

this collection of t subsets would cover all the elements in U . Else, if x ∈ U is not

covered, there exists some Si containing x and this Si is not in any of the chains,

for else the maximal subset from that chain would contain x also.
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Solution by the Proposer Mahender Singh: MS-2015, Nos. 3-4:

Problem 17: Let G be a finite group of order n and let φ be the Euler’s to-

tient function. It is easy to see that if G is cyclic then |Aut(G)| = φ(n). Is the

converse true?

Solution. For solution to this problem, refer the theorem in the paper: ‘J. C.

Howarth, On the power of a prime dividing the order of the automorphism group

of a finite group, Proc. Glasgow Math. Assoc. 4 (1960), 163-170’

The solution in the aforementioned reference for this simple looking problem in-

volves quite intricate analysis of finite group theory. The proposer, and possibly

some of the readers as well, would be interested to know if there are simpler solu-

tions.

Solution by the Proposer B. Sury: MS-2016, Nos. 1-2: Problem 03:

Show that the number 11 · · · 122 · · · 25 where 1 is repeated 2015 times and 2 is

repeated 2016 times, is a perfect square.

Solution. If 1 occurs n times and 2 occurs n + 1 times, then the number is

(11 · · · 1) × 10n+2 + (22 · · · 2) × 102 + 25 which simplifies to (102n+2 + 10n+2 −
200)/9+25 = ((10n+1 +5)/3)2 which is a perfect square as 10n+1 +5 is a multiple

of 3.

Correct solutions were also received from the floor from:

Hari Kishan; (Department of Mathematics, D. N. College, Meerut, UP, India ;

harikishan10@rediffmail.com ; received on 20-05-2016)

Bikash Chakraborty; (Research Fellow, Department of Mathematics, Univer-

sity of Kalyani, Kalyani-741235, West Bengal, India; bchakraborty@klyuniv.ac.in ,

bikashchakraborty.math@yahoo.com ; received on 21-05-2016)

Subhash Chand Bhoria; (Corporal, Air Force Station, Bareilly-243002, Tech-

nical Flight, UP, India; scbhoria@yahoo.com ; received on 23-05-2016)

Dasari Naga Vijay Krishna; (Dasari Naga Vijay Krishna, Department of Math-

ematics, Keshava Reddy Educational Instutions, Kurnool, Machilipatnam-521 001,

Andhra Pradesh, India ; Vijay9290009015@gmail.com ; received on 25-05-2016)

Manjil P. Saikia; (Fakultät für Mathematik, Oskar-Morgenstern-Platz 1,

Universität Wien, 1090 Vienna, Austria; manjil.saikia@univie.ac.at ; received on

08-06-2016)

Diyath Nelaka Pannipitiya; (No 286, High-Level Road, Maharagama, 10280,

Sri Lanka; diyathnp@yahoo.com ; received on 10-10-2016)

Solution by the Proposer Purusottam Rath: MS-2016, Nos. 1-2:

Problem 07: Let M = (aij) be an n × n matrix with aij ∈ R and |aij | ≤ 1.

Show that the absolute value of determinant of M is at most nn/2. When does

equality hold?
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Solution. |det(M)| is the Euclidean volume of a parallelopiped with sides at

most
√
n. Thus the volume is at most the product of the sides which is maximal

when the sides are orthogonal and are of length
√
n, that is, when |aij | = 1 and

MM t = nI

Correct solution was also received from the floor from:

Manjil P. Saikia; (Fakultät für Mathematik, Oskar-Morgenstern-Platz 1,

Universität Wien, 1090 Vienna, Austria; manjil.saikia@univie.ac.at ; received on

08-06-2016)

Solution by the Proposer Purusottam Rath: MS-2016, Nos. 1-2: Prob-

lem 08: let A and B be finite subsets of integers. Consider the set A+B given

by
A+B := {a+ b : a ∈ A, b ∈ B}.

Show that |A+B| ≥ |A|+ |B| − 1.

Solution. Translation is allowed and hence translate A and B so that Max(A) =

Min(B) = 0. Observe now that A ∪B ⊂ A+B.

Correct solutions were also received from the floor from:

Manjil P. Saikia; (Fakultät für Mathematik, Oskar-Morgenstern-Platz 1,

Universität Wien, 1090 Vienna, Austria; manjil.saikia@univie.ac.at ; received on

08-06-2016)

Diyath Nelaka Pannipitiya; (No 286, High-Level Road, Maharagama, 10280,

Sri Lanka; diyathnp@yahoo.com ; received on 10-10-2016)

———–
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