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10. Miroslav Kureš MMXV-numbers 123-125

11. Aksha Vatwani A simple proof of the Wiener-Ikehara tauberian 127-134
theorem

12. Ajai Choudhary An ancient diophantine problem from the Bijaganita
of Bhaskaracharya

135-139

13. S. H. Kulkarni completeness and invertibility 141-145

14. Neelabh Deka A conjecture on prime numbers 147

15. Satya Deo Colored Topolgical Tverberg Theorem of Blagojevic,
Matschke and Ziegler

149-158

16. Arul Shankar Laws of composition and arithmetic statistics: 159-172
and from Gauss to Bhargava

Xiaoheng Wang

17. S. S. Khare Book-Review 173-176

18. N. K. Thakare Book-Review 177

19. - Problem Section 179-186

*******



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

iv



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

The Mathematics Student ISSN: 0025-5742

Vol. 84, Nos. 3-4, July-December (2015), 01-23

WAVE PROPAGATION IN LOCAL AND
NONLOCAL MICROSTRETCH ELASTIC MEDIA*

S. K. TOMAR

Abstract. The present article is concerned with the propagation of plane

waves in microstretch solid and fluid media. The article has been divided

into two parts. Part-I contains the exploration of the possibility of propaga-

tion of plane waves in local microstretch solid and fluid media of infinite

extent. It has been found that five basic waves may travel through an

infinite microstretch media of either solid or liquid nature consisting of two

sets of coupled longitudinal waves, two sets of coupled transverse waves and

an uncoupled longitudinal micro-rotational wave. All the waves are found

to be dispersive and attenuating in nature when propagating through mi-

crostretch fluid, while they are dispersive but not attenuating when propa-

gating through microstretch solid medium. The phase speeds and attenuation

coefficients are computed numerically for specific models and depicted graph-

ically. Reflection phenomenon of dilatational wave from stress free bound-

ary of a local microstretch fluid half-space has also been investigated. The

nature of dependence of various reflection coefficients against the angle of

incidence have also been displayed through graphs. Part-II contains first a

brief introduction to nonlocal theory of elasticity and then governing equa-

tions and constitutive relations for nonlocal microstretch elastic solids have

also been derived. These equations and relations of local microstretch solids

medium are fully recovered when nonlocality parameter is neglected. It has

also been shown that the waves traveling through nonlocal microstretch solid

medium are influenced by nonlocality parameter of the medium and remain

dispersive as well.

1. Introduction

Eringen and his coworker (1964a,b) have developed the theory of micro-elastic

solids in the later half of the previous century, in which local deformation of

material points in any of its volume element has been considered. This means that

each tiny particle of a continua is considered as a tiny deformable body and Eringen

asserted that this tiny body can undergo deformation similar to entire body. This

theory is based upon the following intuitive idea: The mathematical model of

* The text (modified) of the 28th P. L. Bhatnagar Memorial Award Lecture delivered at the

80th Annual Conference of the Indian Mathematical Society held at the Indian School of Mines,

Dhanbad, Jharknand, during December 27-30, 2014.

2010 Mathematics Subject Classification: 74B99, 74J10, 74J20.

Keywords and Phrases: Microstretch, nonlocal waves, reflection, phase speed, attenuation.

c⃝ Indian Mathematical Society, 2015 .
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2 S. K. TOMAR

the continuum theory assumes that the mass is a continuous measure so that a

continuous mass density ρ exists in a volume element dV that is infinitesimally

small. Molecular theories of matter has shown that when volume △V is less

than a limit, say △V ∗, such is not the case. Therefore, on physical grounds, the

mathematical volume element dV is an idealization of a volume △V ≥ △V ∗. If we

desire to refine our theory so that we can explain mechanical phenomena contained

in △V < △V ∗, we must consider the deformations of the material contained in the

volume △V . To this end, we assume that the ‘macro-mass element’ dM contains

continuous mass distributions, so that the total macro-mass dM is the average of

all masses in dV. Therefore, a continuous mass distribution is assumed to exist

at each point of dV such that the average of local masses over dV gives the total

mass dM. This implies that the continuum theory is valid at each point of a

macro-element dV, however, we must take some statistical averages to obtain the

micro-deformation theory of continuous media [see Eringen and Suhubi (1964a)].

Basically, Eringen and his co-workers assumed the existence of three directors at

the center of a tiny particle and said that it can deform and rotate about its center

of mass. In micropolar theory of elasticity, these three directors at the center of

mass of the tiny particle are assumed to be rigid, so that it cannot deform, but

may rotate during the deformation of the body. The rotation of tiny particle about

its center of mass enable to add an extra kinematic variable in the theory. Linear

theory of micropolar elasticity was presented by Eringen in the year 1966, which

is an extension of classical theory of elasticity and a special case of micromorphic

theory. In classical theory of elasticity, particle is allowed to undergo translation

only, giving rise to three degrees of freedom, while in micropolar theory of elasticity,

the particle can under go rotation independently, in addition to translation and

thereby giving six degrees of freedom. Hence, micropolar theory of elasticity is

an extension of classical theory of elasticity. Moreover, since the directors of

the tiny particle of micropolar material are assumed to be rigid and preventing

it to deform implies that micropolar elasticity is a special case of micromorphic

theory of elasticity. Later, Eringen (1990) relaxed the condition of rigidness of

directors and allowed that the directors can stretch (contract or extend) in their

directions only, giving birth to the theory of microstretch elasticity. Thus, in

microstretch theory of elasticity, there are seven degrees of freedom, namely, three

of translation, three of rotation and one of scalar microstretch. Hence, the theory

of microstretch elasticity is again an extension of micropolar theory of elasticity

and a special case of micromorphic theory. In microstretch theory of elasticity,

the surface element is subjected to not only with a force stress but with a couple

stress and a microstress vector also. Here in micropolar elasticity, the force stress

and couple stress are asymmetric, while in classical elasticity the force stress is
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symmetric. The concept of microstress vector has been introduced corresponding

to microstretch coordinate. His book on Micro-continuum Field Theories is worth

notable, which is in two volumes for solid and fluent bodies that possess inner

structure. This book contains the field theories of micromorphic, microstretch

and micropolar continua-known as theory of 3M continua.

Enormous problems of waves and vibrations in 3M continuum elastic media

have been attempted by several researchers in the past. Some notables among them

includes Tomar and Kumar (1999), Singh (2001, 2002), Tomar and Singh (2003),

Midya (2004), Eremeyev (2005), Tomar and Singh (2006), Hsia et al. (2006), Singh

and Tomar (2008), Tomar and Rani (2011). The problems of reflection of waves

from boundary surfaces of a continuum are of fundamental interest since long.

Keeping in view the fact that elastic waves traveling through an elastic medium

carry a lot of information about the medium through which they travel, these

problems of reflection and transmission of waves from boundary surfaces are of

great help in the exploration of materials on either sides of the boundary surface.

Keeping in view several applications of the problems of reflection of elastic

waves, we have considered a problem of reflection of an elastic wave from the

free surface of a microstretch fluid half-space. The existence of such a model

can be found in geophysics. A set of coupled longitudinal waves propagating

through the half-space is assumed to strike obliquely at the free boundary surface.

Using Eringen’s theory of micro-continuum materials, the phase speeds of possible

waves propagating in microstretch fluid and solid media are presented. Governing

equations of motion are solved in the relevant media through potential method

to find the speeds of propagation of various waves. It is found that the reflection

coefficients are functions of angle of incidence and elastic properties of the fluid half

space. Numerical calculations have been carried out for a specific model by taking

Aluminium matrix with randomly distributed epoxy spheres as microstretch solid

medium, while microstretch fluid is taken arbitrarily with suitably chosen values of

elastic parameters. The computed results obtained have been depicted graphically.

Governing equations and constitutive relations for nonlocal microstretch elastic

solid medium have been developed by standard method. The exploration analysis

of possible propagation of waves in nonlocal microstretch solid medium has also

been performed.
Part-I

2. Governing equations and relations

The constitutive relations and equations of motion without body load and

body couple densities in a uniform microstretch continua are given as in the

following [see Eringen (1999)].

Constitutive relations.

For Microstretch Solid:
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tskl = (λ0sΥ
s + λsu

s
r,r)δkl + µs(u

s
l,k + usk,l) + κs(u

s
l,k + ϵlkmϕ

s
m), (1)

ms
kl = αsϕ

s
r,rδkl + βsϕ

s
k,l + γsϕ

s
l,k + b0sϵmlkΥ

s
,m, (2)

ms
k = α0sΥ

s
,k + b0sϵklmϕ

s
l,m. (3)

For Microstretch Fluid:

tfkl = (λ0fΥ
f + λf u̇

f
r,r)δkl + µf (u̇

f
l,k + u̇fk,l) + κf (u̇

f
l,k + ϵlkmϕ̇

f
m), (4)

mf
kl = αf ϕ̇

f
r,rδkl + βf ϕ̇

f
k,l + γf ϕ̇

f
l,k + b0f ϵmlkΥ

f
,m, (5)

mf
k = α0fΥ

f
,k + b0f ϵklmϕ̇

f
l,m, (6)

Here, trkl (r = s, f) is the force stress tensor; mr
kl is the couple stress tensor; mr

k

is the microstress vector; δkl is the Kronecker delta and ϵklm is the permutation

symbol. The quantities λr, µr, κr, αr, βr, γr, λ0r, λ1r, α0r and b0r, (r = f, s)

are the elastic moduli in the corresponding medium. The ur and ϕr are the

displacement and microrotation vectors, respectively, in the relevant medium, Υs

is scalar microstretch in solid medium and Υf corresponds to microstretch rate

in the fluid medium. A dot over an entity represents the temporal derivative,

while a comma (,) in the subscript represents the spatial derivative, e.g., u̇fk,k =

∂2uk
∂t ∂xk

, etc.

Equations of motion.

For Microstretch Solid:

c213s∇(∇ · us)− c223s∇× (∇× us) + c23s∇× ϕs + ω2
0s∇Υs = üs (7)

c245s∇(∇ · ϕs)− c25s∇× (∇× ϕs) + c26s(∇× us − 2ϕs) = ϕ̈
s
, (8)

c27s∇2Υs − c28sΥ
s − c29s∇ · us = Ϋs. (9)

For Microstretch Fluid:

c213f∇∇ · u̇f − c223f∇×∇× u̇f + c23f∇× ϕ̇
f
+ ω2

0f∇Υf = üf , (10)

c245f∇∇ · ϕ̇
f
− c25f∇×∇× ϕ̇

f
+ c26f (∇× u̇f − 2ϕ̇

f
) = ϕ̈

f
, (11)

c27f∇2Υf − c28fΥ
f − c29f∇ · u̇f = Υ̇f , (12)

where

c21s =
λs + 2µs

ρs
, c22s =

µs

ρs
, c23s =

κs
ρs
, c24s =

αs + βs
ρsjs

, c25s =
γs
ρsjs

,

c26s =
κs
ρsjs

, c27s =
2α0s

ρsjs
, c28s =

2λ1s
ρsjs

, c29s =
2λ0s
ρsjs

, ω2
0s =

λ0s
ρs
,

c213s = c21s + c23s, c223s = c22s + c23s, c245s = c24s + c25s.

c21f =
λf + 2µf

ρf
, c22f =

µf

ρf
, c23f =

κf
ρf
, c24f =

αf + βf
ρf jf

, c25f =
γf
ρf jf

,
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c26f =
κf
ρf jf

, c27f =
2α0f

ρf jf
, c28f =

2λ1f
ρf jf

, c29f =
2λ0f
ρf jf

, ω2
0f =

λ0f
ρf

,

c213f = c21f + c23f , c223f = c22f + c23f , c245f = c24f + c25f .

Here the quantities ρr and jr, (r = s, f) are the density and micro-inertia in the

relevant medium. Other symbols have their usual meanings.

Eringen (1999) have shown that the following inequalities among the

elastic moduli should be satisfied in order to have the dissipation function to be

non-negative

3λr + 2µr + κr ≥ 3λ20r
λ1r

, 3αr + βr + γr ≥ 0, 2µr + κr ≥ 0, α0r ≥ 0,

γr + βr ≥ 0, λ1r ≥ 0, κr ≥ 0, γr − βr ≥ 0, (r = s, f). (13)

3. Wave propagation

3.1. Microstretch Solid. Decomposing the vectors us and ϕs into scalar po-

tentials qs, ξs; and vector potentials Ψs,Πs through Helmholtz decomposition

theorem as

{us,ϕs} = ∇{qs, ξs}+∇× {Ψs,Πs}, ∇ · {Ψs,Πs} = 0. (14)

Inserting (14) into equations (7)-(9), we obtain

(c21s + c23s)∇2qs + ω2
0sΥ

s = q̈s, (15)

(c22s + c23s)∇2Ψs + c23s∇×Πs = Ψ̈s, (16)

(c24s + c25s)∇2ξs − 2c26sξ
s = ξ̈s, (17)

c25s∇2Πs + c26s∇×Ψs − 2c26sΠ
s = Π̈s, (18)

c27s∇2Υs − c28sΥ
s − c29s∇2qs = Ϋs. (19)

We see that equations (15) and (19) are coupled through qs and Υs; equations

(16) and (18) are coupled through Ψs and Πs, while equation (17) is uncoupled

in ξs.

For a wave traveling in the positive direction of a unit vector n, we consider

the form of various quantities as

{qs, ξs,Ψs,Πs,Υs} = {as, bs,As,Bs, cs} exp {ιks(n · r− vst)}, (20)

where as, bs,As,Bs, cs are constants, r = xî + yĵ + zk̂ is the position vector,

vs is the speed of propagation, ks is the wavenumber connected with vs through

the relation ω = ksvs, ω being the circular frequency and ι =
√
−1. Using the

expressions of qs and Υs from (20) into (15) and (19), we obtain the speeds of

waves associated with qs given by

v21s,2s =
1

2a1s

(
−a2s ±

√
a22s − 4a1sa3s

)
, (21)

where
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6 S. K. TOMAR

a1s = ω2 − c28s, a2s = (c21s + c23s)(c
2
8s − ω2)− ω2

0sc
2
9s − c27sω

2 and

a3s = (c21s + c23s)c
2
7sω

2.

The displacement vector us given by

us = ∇qs = ιksasn exp {ιks(n · r− vst)}
is parallel to the direction of wave propagation n, therefore the waves associated

with the potential qs are longitudinal in nature. Hence the speeds v1s and v2s

correspond to the speeds of set of coupled longitudinal waves. Each set of coupled

longitudinal wave will consists of scalar microstretch along with the displacement.

Similarly, inserting the expressions of Ψs and Πs into (16) and (18), we get

the speeds of waves given by

v23s,4s =
1

2A1s

(
−A2s ±

√
A2

2s − 4A1sA3s

)
, (22)

where

A1s = 2c26s − ω2, A2s = ω2c25s − (c22s + c23s)(2c
2
6s − ω2) + c23sc

2
6s,

A3s = −c25sω2(c22s + c23s).

Parfit and Eringen (1969) have already shown that these speeds are the speeds of

two sets of coupled transverse waves. Each set of coupled waves is transverse in

nature consists of microrotation and displacement perpendicular to it.

Next, inserting the expression of ξs from the above relation into equations

(17), we obtain the speeds of the wave corresponding to the potential ξs in the

microstretch solid denoted by v5s given by

v25s =
ω2(c24s + c25s)

ω2 − 2c26s
. (23)

The microrotation vector Φs is given by

Φs = ∇ξs = ιksbsn exp {ιks(n · r− vst)},

thus, the wave corresponding to potential ξs is longitudinal in nature and comes

into existence due to rotation of the micro-elements of the medium. This wave

is called as Longitudinal micro-rotational wave. It is easy to see at once that the

speeds of all the waves of micropolar elasticity can be recovered as a special case

of present formulation. If we neglect the presence of microstretch property from

the microstretch solid medium by considering λ0s = λ1s = α0s = 0 then we are

left with a1s = ω2, a2s = −ω2(c21s + c23s), a3s = 0. We see from (31)) that

v21s = 0 and v22s = c21s + c23s which is the speed of longitudinal displacement wave

of micropolar elasticity. The speeds of coupled transverse waves and longitudinal

microrotational wave given by (22) and (23) respectively are exactly the same as

that of micropolar elasticity as they are not affected by the microstretch property

of the medium at all [see also Parfit and Eringen (1969)].
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3.2. Microstretch Fluid. On similar lines as in microstretch solid medium, we

decompose the vectors uf and ϕf into scalar potentials qf , ξf and vector potentials

Ψf ,Πf as

{uf ,ϕf} = ∇{qf , ξf}+∇× {Ψf ,Πf}, ∇ · {Ψf ,Πf} = 0. (24)

and inserting into equations (10) - (12), we obtain

(c21f + c23f )∇2q̇f + ω2
0fΥ

f = q̈f , (25)

(c22f + c23f )∇2Ψ̇f + c23f∇× Π̇f = Ψ̈f , (26)

(c24f + c25f )∇2ξ̇f − 2c26f ξ̇
f = ξ̈f , (27)

c25f∇2Π̇f + c26f∇× Ψ̇f − 2c26fΠ̇
f = Π̈f , (28)

c27f∇2Υf − c28fΥ
f − c29f∇2q̇f = Υ̇f . (29)

We consider{
qf , ξf ,Ψf ,Πf ,Υf

}
= {af , bf ,Af ,Bf , cf} exp {ιkf (n · r− vf t)}, (30)

Inserting the expressions of qf and Υf into (25), (29); Ψf and Πf into equations

(26), (28) and ξf into equations (27), we obtain the speeds of various waves given

by

v21f,2f =
1

2a1f

(
−a2f ±

√
a22f − 4a1fa3f

)
. (31)

v23f,4f =
1

2A1f

(
−A2f ±

√
A2

2f − 4A1fA3f

)
, (32)

v25f =
−ιω2(c24f + c25f )

(ω + 2ιc26f )
, (33)

where

a1f = c28f − ιω,

a2f = ω
[
(c21f + c23f )(ω + ιc28f )− ιω2

0fc
2
9f + ωc27f

]
,

a3f = ιω3c27f (c
2
1f + c23f ), A1f = 2c26f − ιω,

A2f = ω
[
(c22f + c23f )(ω + 2ιc26f )− ιc23fc

2
6f + ωc25f

]
,

A3f = ιω3c25f (c
2
2f + c23f ).

It is easy to see that the displacement vector uf and the microrotation vector Φf

are
{uf ,Φf} = ∇{qf , ξf} = ιkf{af , bf}n exp {ιkf (n · r− vf t)},

showing that they are along the direction of propagation of wave. Thus the wave

corresponding to the potentials qf , Υf and ξf are longitudinal in nature. Clearly,

the waves associated with qf , Υf are coupled waves and will be called coupled

longitudinal waves, while the wave corresponding to ξf is uncoupled and will be

called longitudinal micro-rotational wave. The speeds v1f and v2f are the speeds of

two sets of coupled longitudinal waves, v3f , v4f are the speeds of two sets of coupled



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

8 S. K. TOMAR

transverse waves and the speed v5f is the speed of longitudinal microrotational

wave. Note that all the phase speeds of existing waves are complex valued and

depend on frequency, indicating that they are dispersive and attenuating in nature.

In general, for a wave propagating with complex phase speed c, the phase

speed V and the corresponding attenuation coefficient Q can be computed from

the following formula
c−1 = V −1 + ιω−1Q.

From this formula, the phase speed and attenuation coefficient are given by

V =
c2R + c2I
cR

, Q = −ω cI
(c2R + c2I)

, (34)

where cR is the real part of c and cI is the imaginary part of c.

4. Reflection of coupled longitudinal waves from flat boundary of

a microstretch fluid half-space

Here, we shall investigate the reflection phenomena of a set of coupled

longitudinal waves striking obliquely at the free boundary surface of a microstretch

fluid medium. Let M = {z ≥ 0,−∞ < x, y < ∞} be the region occupied by the

microstretch fluid. Let x − y be the free surface of the half-space M and z-axis

is vertically downward in to the microstretch fluid medium. We consider a two-

dimensional problem in x− z plane, so that

v = (v1(x, z, t), 0, v3(x, z, t)), ϕ = (0, ϕy(x, z, t), 0), Υ = Υ(x, z, t).

Let us consider a set of coupled longitudinal waves propagating with speed v1f

having amplitude A0 and striking the boundary surface z = 0 making an angle

θ0 with the z-axis. To satisfy the boundary conditions on the boundary surface

z = 0, it is necessary to assume the existence of following reflected waves:

(i) a set of coupled longitudinal waves of amplitude A1 propagating with speed

v1f and making an angle θ1 with the normal.

(ii) a similar set of coupled longitudinal waves of amplitude A2 propagating with

speed v2f and making an angle θ2 with the normal.

(iii) a set of coupled transverse waves of amplitude A3y propagating with speed

v3f and making an angle θ3 with the normal.

(iv) a similar set of coupled transverse waves of amplitude A4y propagating with

speed v4f and making an angle θ4 with the normal. The schematic diagram of the

problem has been depicted in Figure 1.

The full wave structure in the half-space M is given by

qf = A0 exp[ιk0(x sin θ0 − z cos θ0)− ιω0t]

+A1 exp[ιk1(x sin θ1 + z cos θ1)− ιω1t]

+A2 exp[ιk2(x sin θ2 + z cos θ2)− ιω2t],

(35)
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ξf = ζ0A0 exp[ιk0(x sin θ0 − z cos θ0)− ιω0t]

+ ζ1A1 exp[ιk1(x sin θ1 + z cos θ1)− ιω1t]

+ ζ2A2 exp[ιk2(x sin θ2 + z cos θ2)− ιω2t],

(36)

 

              Free boundary surface z = 0 

                       X 

                                                                                                                                                                  

              

              ),(
11 �A  

                                                                                                                    

                         ),(
22 �A                                  

                  ),(
00 �A               ),(

33 �yA   

                      ),(
44 �yA  

                                                Micro-stretch Fluid 

        Half-Space: M                                                                                                              

                                                                               

                  Z             

 

 

Figure 1. Schematic diagram of the problem.

Ψf =
∑
p=3,4

ĵApy exp[ιkp(x sin θp + z cos θp)− ιωpt], (37)

Πf =
∑
p=3,4

(̂
iBpx + k̂Bpz

)
exp[ιkp(x sin θp + z cos θp)− ιωpt], (38)

The constantsA andB occurring in (37) and (38) are related to each other through

the following relations

Bpx = −ιkpηp cos θpApy, Bpz = ιkpηp sin θpApy,

ηp =
c26f

k2pc
2
5f + 2c26f − ιkpvpf

. (39)

The coupling coefficients ζ0, ζ1 and ζ2 occurring in (36) are given by

ζn = c29fk
2
n

[
k2nc

2
7f + c28f − ιknvnf

]−1
, (n = 0, 1, 2). (40)

4.1. Boundary conditions. Since the boundary surface of the microstretch fluid

half-space M is free from stresses, therefore the boundary conditions would be the

vanishing of stresses, couples stresses and first vector moment at the boundary

surface. These boundary conditions can be written in mathematical form as: At

the surface z = 0, we have

tzz = tzx = mzy = mz = 0. (41)
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Making use of (4)-(6) and (24), these boundary conditions in potential form can

be written as: At the surface z = 0

λ0fξ
f + λf∇2qf + (2µf + κf )

(
∂2qf

∂z2
+
∂2Ψf

y

∂x∂z

)
= 0, (42)

(2µf + κf )
∂2qf

∂x∂z
+ µf

∂2Ψf
y

∂x2
− (µf + κf )

∂2Ψf
y

∂z2
+ κf

(
∂Πf

z

∂x
− ∂Πf

x

∂z

)
= 0, (43)

b0f
∂ξf

∂x
+ γf

(
∂2Πf

x

∂z2
− ∂2Πf

z

∂z∂x

)
= 0, (44)

α0f
∂ξf

∂z
+ b0f

(
∂2Πf

z

∂x2
− ∂2Πf

x

∂x∂z

)
= 0. (45)

Inserting the expressions of various potentials from (35) to (38) into (42) to (45),

making use of Snell’s law given by

k0 sin θ0 = k1 sin θ1 = k2 sin θ2 = k3 sin θ3 = k4 sin θ4 (46)

and assuming that all frequencies match at the boundary surface, we obtain the

following system of equations given by

k20

[
λf + (2µf + κf ) cos

2 θ0 −
λ0fζ0
k20

]
A0

+ k21

[
λf + (2µf + κf ) cos

2 θ1 −
λ0fζ1
k21

]
A1

+ k22

[
λf + (2µf + κf ) cos

2 θ2 −
λ0fζ2
k22

]
A2

+ k23(2µf + κf ) sin θ3 cos θ3A3y

+k24(2µf + κf ) sin θ4 cos θ4A4y = 0, (47)

k20(2µf + κf ) sin θ0 cos θ0(A0 −A1)− k22(2µf + κf ) sin θ2 cos θ2A2

+ k23
[
µf cos 2θ3 + κf cos

2 θ3 − κfη3
]
A3y

+k24
[
µf cos 2θ4 + κf cos

2 θ4 − κfη4
]
A4y = 0, (48)

b0f [k0 sin θ0ζ0(A0 +A1) + k2 sin θ2ζ2A2]

+γf
[
k33 cos θ3η3A3y + k34 cos θ4η4A4y

]
= 0, (49)

α0f [k0 cos θ0ζ0(A1 −A0) + k2 cos θ2ζ2A2]

−b0f
[
k33 sin θ3η3A3y + k34 sin θ4η4A4y

]
= 0. (50)

The equations (47) - (50) can be written in matrix form as

X Z = Y, (51)
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where X = (aij)4×4 whose elements in non-dimensional form are given in

Appendix-A, Y = (−1 + 1 − 1 + 1)t, and Z = (z1 z2 z3 z4)
t. The

expressions of zi are given as

z1 =
A1

A0
, z2 =

A2

A0
, z3 =

A3y

A0
, z4 =

A4y

A0
.

These quantities are known as reflection coefficients corresponding to the set of

reflected coupled longitudinal waves with speed v1f , set of reflected coupled longi-

tudinal waves with speed v2f , set of reflected coupled transverse waves with speed

v3f and set of reflected coupled transverse wave with speed v4f respectively. On

solving the matrix equation (67) using Cramer’s rule, one can obtain the reflection

coefficients

zj =
∆j

∆
, (j = 1, 2, 3, 4), (52)

where notations ∆ and ∆j are well understood; ∆j can be obtained by usual

method.

Remark: This problem of reflection of coupled longitudinal waves from the free

surface of a microstretch fluid half-space has been already investigated by Tomar

and Rani (2011), where there is an error in the computation of second boundary

condition, namely tzx = 0. This has led to enormous error in the numerical

computations too. The correct one has been presented here.

Part-II

5. The nonlocal theory of elasticity

Under this theory, the points undergo translational motion as in the classical

case. The stress at a point x depends not only at the strain at that point, but also

on the strains at all other points x′ in a region near that point. This observation

is in accordance with the atomic theory of lattice dynamics and experimental

observation on phonon dispersion. In a limiting case, when the effects of strains at

points other than x are neglected, one recovers classical (local) theory of elasticity.

The local dependence of a physical quantity (the effect r) at a point x of space

at time t on another physical quantity (the cause p) at the same point x and at

the same time t has the general form

r(x, y, z, t) = r(p(x, y, z, t))

This is local dependence relation. There are three types of nonlocality (1) Spatial

nonlocality (2) Temporal nonlocality (3) Mixed nonlocality.

In spatial nonlocality, the effect R at a point x at a time t depends on the causes

at all other points x′ at the same instant of time

R(x, y, z, t) =

∫
V

α(|x− x′|, ζ)r(p(x′, y′, z′, t))dx′dy′dz′
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In temporal nonlocality (material with memory), the effect R at a point x at a

time t depends on the history of causes at the point x over all preceding times and

at the present instant

R(x, y, z, t) =

∫ t

−∞
β(t′ − t, ϵ)r(p(x, y, z, t′))dt′

If we consider simultaneously the effects of memory and spatial nonlocalness, we

have an effect R at the point x at time t that depends on the causes at all spatial

points x′ and at all times t′ ≤ t

R(x, y, z, t) =

∫ t

−∞

∫
V

γ(|x− x′|, t− t′, ζ, ε)r(p(x′, y′, z′, t′))dx′dy′dz′dt′

The functions α(|x− x′|, ζ), β(t′ − t, ε) and γ(|x− x′|, t − t′, ζ, ε) are called the

nonlocal kernels and describe the influence of nonlocality. Here the quantities

ζ =
Li

Le
and ε =

Ti
Te

, Li is internal characteristic length (Lattice parameter, size

of grain), Le is the external characteristic length(wave length), Ti is the internal

characteristic time (relaxation time, time for a signal to travel between molecules),

Te is the external characteristic time (the time of application of the external action,

period of vibration). Certain properties of spatial nonlocal kernel

(a) α(|x− x′|, ζ) has a maximum at |x− x′|,
(b) α(|x− x′|, ζ) quickly tends to zero as |x− x′| increases,
(c) α(|x− x′|, ζ) is continuous function of |x− x′|,
(d) limζ→0 α(|x− x′|, ζ) = δ(|x− x′|),
(e)
∫
V
α(|x− x′|, ζ)dV (x′) = 1.

Eringen (1983) has proposed that

α(|x− x′|, ζ) = 1

8(πη)3/2
exp

(
−|x− x′|2

4η

)

where η =
a2

4e20
; a is the lattice parameter and e0 is the corresponding parameter,

which can be determined either by experiment or by applying the theory of atomic

lattice. For stress - strain relation, if cause is the strain eij and the effect is the

stress τij , then

τij(x, y, z, t) = cijkmekm(p(x, y, z, t))

τij(x, y, z, t) =

∫
V

αijkm(|x− x′|, ζ)ekm(p(x′, y′, z′, t))dx′dy′dz′

τij(x, y, z, t) =

∫ t

−∞
βijkm(t′ − t, ε)ekm(p(x, y, z, t′))dt′

τij(x, y, z, t) =

∫ t

−∞

∫
V

γijkm(|x− x′|, t− t′, ζ, ε)ekm(p(x′, y′, z′, t′))dx′dy′dz′dt′
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It can be seen that stress-strain relation of local elasticity can be obtained

when Le >> Li, that is ζ → 0, since

lim
ζ→0

αijkm(|x− x′|, ζ) = cijkmδ(|x− x′|)

and ∫
f(x)δ(x− a)dx = f(a).

Hence in the long wave limit, the nonlocal theory of elasticity reduces to classical

elasticity. Thus we see that nonlocal theory of elasticity is significant in the short

wave limit, which agrees with the theory of atomic lattice. It is well known that

the micropolar theory of elasticity deals with the granular bodies, e.g., a material

having doumb-bell type molecules. The microstructure of such material plays very

important role in the problems of waves and vibrations, particularly, in the case

of waves having high frequency or short wave length. Thus, in this case ζ ̸= 0,

rather in this case ζ ≈ 1. This is how the micropolar theory of elasticity lies in

the domain of nonlocal elasticity. In the subsequent section, the symbols adopted

in Part-I have not been borrowed as such, but the symbols followed analogously

which are standard and well understood.

6. Waves in nonlocal microstretch solid

The free energy density function F for a linear, nonlocal microstretch solid is

as follows [Eringen (2002)]

2F = 2F0 −
2ρ0
T0

CTT ′ − C1(T
′ψ + Tψ′)−Dk(T

′γk + Tγ′k)

−Akl(T
′ϵkl + Tϵ′kl)−Bkl(T

′γkl + Tγ′kl) + U,

where U is the strain energy density function given by

2U =
ρ0
T0
CTT ′ + CSψψ′ + CS

k (ψ
′γk + ψγ′k) +AS

kl(ψ
′ϵkl + ψϵ′kl)

+BS
kl(ψ

′γkl + ψγ′kl) + CS
klγ

′
kγl +AS

klm(γ′kγlm + γkγ
′
lm)

+Aklmnϵ
′
klϵmn +Bklmnγ

′
klγmn + Cklmn(ϵ

′
klγmn + ϵklγ

′
mn),

where

ϵkl = ul,k − ϵklmϕm, γkl = ϕk,l, γk = ψ,k . (53)

All these constitutive moduli possess the following symmetries

Aklmn(x,x
′) = Aklmn(x

′,x) = Amnkl(x
′,x),

Bklmn(x,x
′) = Bklmn(x

′,x) = Bmnkl(x
′,x), etc.

The expressions of requisite tensors are given as [Eringen (2002)]

tkl =

∫
V

[−Akl(x,x
′)T (x′) +AS

kl(x,x
′)ψ(x′) +AS

mkl(x,x
′)ψ,m (x′)

+Aklmn(x,x
′)ϵmn(x

′) + Cklmn(x,x
′)γmn(x

′)]dV (x′),
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mkl =

∫
V

[−Blk(x,x
′)T (x′) +BS

lk(x,x
′)ψ(x′) +BS

mlk(x,x
′)ψ,m (x′)

+ Cmnlk(x,x
′)ϵmn(x

′) +Blkmn(x,x
′)γmn(x

′)]dV (x′),

mk =

∫
V

[−Dk(x,x
′)T (x′) + CS

k (x,x
′)ψ(x′) + CS

kl(x,x
′)ψ,l (x

′)

+AS
klm(x,x′)ϵlm(x′) +BS

klm(x,x′)γlm(x′)]dV (x′),

s− t =

∫
V

[−C1(x,x
′)T (x′) + CS(x,x′)ψ(x′) + CS

k (x,x
′)ψ,k (x,x

′)

+AS
kl(x,x

′)ϵkl(x
′) +BS

kl(x,x
′)γkl(x

′)]dV (x′).

For isotropic microstretch solid, the material moduli are given as (see Eringen,

2002)

Dk = CS
k = 0, Akl = β0δkl, Bkl = BS

kl = 0, CS = λ1,

AS
kl = λ0δkl, CS

kl = α0δkl, AS
klm = 0, BS

klm = b0ϵklm,

Aklmn = λδklδmn + (µ+ κ)δkmδln + µδknδlm,

Bklmn = αδklδmn + γδkmδln + βδknδlm and Cklmn = 0.

The material moduli are functions of |x′ − x|. With these values, the above

constitutive equations reduce to

tkl =

∫
V

{[−β0(|x− x′|)T (x′) + λ0(|x− x′|)ψ(x′) + λ(|x− x′|)ϵrr(x′)]δkl

+[µ(|x− x′|) + κ(|x− x′|)]ϵkl(x′) + µ(|x− x′|)ϵlk(x′)} dV (x′), (54)

mkl =

∫
V

[b0(|x− x′|)ϵmlkψ,m (x′) + α(|x− x′|)γrr(x′)δkl

+β(|x− x′|)γkl(x′) + γ(|x− x′|)γlk(x′)]dV (x′), (55)

mk =

∫
V

[α0(|x− x′|)ψ,k (x′) + b0(|x− x′|)ϵklmγlm(x′)]dV (x′), (56)

s− t =∫
V

[−C1(|x− x′|)T(x′) + λ1(|x− x′|)ψ(x′) + λ0(|x− x′|)ϵkk(x′)]dV(x′).

(57)

Consider the relation between nonlocal and local elastic moduli

λ(|x− x′|)
λ

=
µ(|x− x′|)

µ
=
κ(|x− x′|)

κ
=
λ0(|x− x′|)

λ0
=
β0(|x− x′|)

β0

=
α0(|x− x′|)

α0
=
b0(|x− x′|)

b0
=
λ1(|x− x′|)

λ1
=
α(|x− x′|)

α
=
C1(|x− x′|)

C1
(58)

=
β(|x− x′|)

β
=
γ(|x− x′|)

γ
= G(|x− x′|).
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Eringen (1984) has already shown that the function G satisfies

(1− ϵ2∇2)G = δ(|x− x′|), (59)

where ϵ = e0a. Employing the operator (1 − ϵ2∇2) on (54)-(57) after using (58)

and (59), we obtain

(1− ϵ2∇2)tkl = tCkl = (λ0ψ(x) + λϵrr(x))δkl + (µ+ κ)ϵkl(x) + µϵlk(x), (60)

(1− ϵ2∇2)mkl = mC
kl = b0ϵmlkψ,m (x) + αγrr(x)δkl + βγkl(x) + γγlk(x), (61)

(1− ϵ2∇2)mk = mC
k = α0ψ,k (x) + b0ϵklmγlm(x), (62)

(1− ϵ2∇2)(s− t) = (s− t)C = λ1ψ(x) + λ0ϵkk(x), (63)

in the absence of temperature field and employing the property
∫
f(x)δ(x− a)dx

= f(a). For a nonlocal isotropic microstretch solid, the field equations are [Eringen

(2002)]

tkl,k + ρ(fl − ül) = 0, (64)

mkl,k + ϵlmntmn + ρ(ll − jϕ̈l) = 0, (65)

mk,k + (t− s) + ρ

(
l − 1

2
j0ψ̈

)
= 0, (66)

Now, using the relations (53) and (60)-(63) into the field equations (64)-(66),

we obtain

λ0ψ,l + (λ+ µ)uk,kl + (µ+ κ)ul,kk + κϵlkmϕm,k + ρ(1− ϵ2∇2)(fl − ül) = 0, (67)

(α+ β)ϕk,kl + γϕl,kk + κϵlmnun,m − 2κϕl + ρ(1− ϵ2∇2)(ll − jϕ̈l) = 0, (68)

α0ψ,kk − λ1ψ − λ0uk,k + ρ(1− ϵ2∇2)

(
l − 1

2
j0ψ̈

)
= 0. (69)

Introducing the scalar potentials (q, ξ) and vector potentials (U,Π) through

Helmholtz decomposition of vectors as

{u,ϕ} = ∇{q, ξ}+∇× {U,Π}; ∇ · {U,Π} = 0, (70)

and inserting it into (67) to (69), we obtain

λ0ψ + (λ+ 2µ+ κ)∇2q = ρ(1− ϵ2∇2)q̈, (71)

(µ+ κ)∇2U+ κ∇×Π = ρ(1− ϵ2∇2)Ü, (72)

(α+ β + γ)∇2ξ − 2κξ = ρj(1− ϵ2∇2)ξ̈, (73)

γ∇2Π+ κ∇×U− 2κΠ = ρj(1− ϵ2∇2)Π̈, (74)
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α0∇2ψ − λ1ψ − λ0∇2q =
ρj0
2

(1− ϵ2∇2)ψ̈. (75)

For plane waves propagating in the positive direction of a unit vector n, we have

{q, ψ, ξ,U,Π} = {a1, b1, c1,A0,B0} exp{ιk(n · r− V t)}. (76)

where a1, b1, c1 are scalar constants,A0,B0 are vector constants and V is the phase

speed. The circular frequency ω is defined by ω = kV, k being the wavenumber.

Inserting the expressions of q and ψ from (76) into equations (71) and (75),

and then eliminating a1 or b1, we obtain a quadratic equation in V 2, whose roots

are given by

V 2
1,2 =

1

2A

(
−B ±

√
B2 − 4AC

)
, (77)

where

A = ω2 − c27, B = −ω2(c26 − ϵ2ω2)− c28λ0 −A(c21 + c23 − ϵ2ω2),

C = ω2(c21 + c23 − ϵ2ω2)(c26 − ϵ2ω2),

λ0 =
λ0
ρ
, c21 =

λ+ 2µ

ρ
, c23 =

κ

ρ
, c26 =

2α0

ρj0
, c27 =

2λ1
ρj0

, c28 =
2λ0
ρj0

.

It is easy to see that the wave associated with q is longitudinal in nature. We

see that q is coupled with ψ, therefore the associated wave will be called as

coupled longitudinal waves. Thus, there exist two sets of coupled longitudinal

waves traveling with speeds V1 and V2, each set of which consists of a longitudinal

displacement wave associated with microstretch property.

Inserting the expression of ξ from (76) into (73), we obtain

V 2
5 = (c24 + c25 − ϵ2ω2)

(
1− 2ω2

0

ω2

)−1

,

where

c24 =
γ

ρj
, c25 =

α+ β

ρj
, ω2

0 =
κ

ρj
.

This is the speed of longitudinal micro-rotational wave whose counterpart has

been already explored by Parfitt and Eringen (1969) in local micropolar elastic

medium.

Next, inserting the expressions of U and Π from (76) into (72) and (74); then

eliminating A0 or B0, we obtain a quadratic equation in V 2 whose roots are given

by

V 2
3,4 =

1

2A∗

(
−B∗ ±

√
B∗2 − 4A∗C∗

)
,

where

A∗ = ω2 − 2ω2
0 , B∗ = −ω2(c24 − ϵ2ω2)− c23ω

2
0 −A∗(c22 + c23 − ϵ2ω2),

C∗ = ω2(c22 + c23 − ϵ2ω2)(c24 − ϵ2ω2), c22 =
µ

ρ
.
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The quantities V 2
3,4 are the speeds of sets of coupled transverse waves whose counter

part have already been explored by Parfitt and Eringen (1969).

We see that the speeds of coupled longitudinal waves given by V 2
1,2, coupled

transverse waves given by V 2
3,4 and longitudinal microrotational wave given by

V 2
5 depend on frequency and nonlocality parameters. Hence all the waves are

dispersive and influenced by the nonlocality of the medium. At a glance, it can be

verified that these expressions of speeds reduce to speeds of corresponding waves

of micropolar elasticity in the absence of microstretch and nonlocality parameters

of the medium (see Parfitt and Eringen, 1969).
7. Computational Results

In order to have better idea of phase speeds and their corresponding atten-

uations, if any, of the waves propagating through microstretch media, we have

computed them for a specific model. For this purpose, the values of various pa-

rameters concerning the relevant microstretch media have been given below. For

microstretch solid medium, the values have been borrowed from Kiris and Inan

(2008), while those of microstretch fluid medium, they have been borrows from

Abd-Alla et al. (2011).
For local microstretch solid

Symbol V alue Unit Symbol V alue Unit

λs 7.5869× 109 N m−2 γs 2049.3 N

µs 1.896× 109 N m−2 λ0s 4.8184× 102 N

κs 1.425× 105 N m−2 λ1s 3.4654× 104 N

αs 82.358 N α0s 1.7309× 104 N

b0s 1.96× 104 N βs 110.70 N

js 1.96× 10−7 m2 ρs 2.192× 103 Kg m−3

For local microstretch fluid

Symbol V alue Unit Symbol V alue Unit

λf 1.5× 109 N s m−2 γf 0.0126× 108 N s

µf 0.7× 109 N s m−2 λ0f 0.15× 105 N s

κf 0.011× 109 N s m−2 λ1f 0.2× 104 N s

αf 0.0111× 105 N s α0f 0.12× 105 N s

b0f 0.15× 105 N s βf 0.0122× 104 N s

jf 0.00140× 10−6 m2 ρf 1.0× 103 Kg m−3

Figures 2, 3 and 4 depict the variation of phase speeds of coupled longitudinal

waves, coupled transverse waves and longitudinal micro-rotational wave in local

microstretch solid medium with angular frequency varying from 0 to 104π.

It can be observed from Figure 2 that phase speeds of coupled longitudi-

nal waves are dispersive in the low frequency range, while they are almost non-

dispersive in high frequency rage. The phase speed of second set of coupled longi-

tudinal waves propagating with speed v2s is relatively less than that of the wave
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Figure 2. Two sets of coupled longitudinal waves in microstretch solid.
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Figure 3. Two sets of coupled transverse waves in microstretch solid.
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Figure 4. Longitudinal microrotational wave in microstretch solid.

propagating with speed v1s. The variation of phase speeds of coupled transverse

waves with angular frequency has been shown through Figure 3. One can notice

from this figure that the set of coupled transverse waves propagating with speed

v3s is relatively less than that of the other set of coupled transverse waves at each

value of frequency considered. Both these waves are also highly dispersive in the

low frequency range, while less dispersive in high frequency range. It can be seen

from Figure 4 that longitudinal micro-rotational wave propagating with speed v5s

is also highly dispersive in low frequency range. The pattern of variation of phase

speed of waves propagating with speeds v1s, v4s and v5s with frequency ω is similar.
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Figure 5. First set of coupled longitudinal waves in microstretch fluid
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Figure 6. Second set of coupled longitudinal waves in mi-

crostretch fluid.
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Figure 7. First set of coupled transverse waves in microstretch fluid.

Figures 5-9 depict the variation of phase speeds and corresponding attenuation

coefficients of coupled longitudinal waves, coupled transverse waves and longitu-

dinal micro-rotation wave with angular frequency varying from 0 to 104π in local

microstretch fluid medium. It can be seen that both the sets of coupled longitu-

dinal waves propagating with speed v1f and v2f are greatly depend on frequency

and hence highly dispersive, while their attenuation pattern is different. The at-

tenuation coefficient of coupled longitudinal waves propagating with speed v1f

depends on frequency, while that of the coupled dilatational waves propagating
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Figure 8. Second set of coupled transverse waves in microstretch fluid.

with speed v2f hardly depends on frequency. From Figures 7 and 8, it is inter-

esting to note that one of the sets of coupled transverse waves propagating with

speed v3f is dispersive and its corresponding attenuation coefficient depends on

frequency. However, the coupled transverse waves propagating with speed v4f is

not dispersive at all and its corresponding attenuation coefficients is also indepen-

dent of frequency. The similar behavior is also observed about the longitudinal

micro-rotational wave propagating with speed v5f as shown in Figure 9.
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Figure 9. Longitudinal microrotational wave in microstretch fluid.

Figure 10 depicts the nature of dependence of various reflection coefficients

due to incidence of a set of coupled longitudinal waves propagating with speed v1f

against the angle of incidence at fixed value of angular frequency ω = 10π Hz. It

can be easily observed from this figure that the nature of dependence of different

reflection coefficient is different at each angle of incidence. But all the reflection

coefficients vanish at normal incidence, except that of the reflected wave propagat-

ing with speed as of the incident wave. This shows that the set of incident coupled

longitudinal waves comes back and does not give rise to any other reflected waves

at the boundary. This reflected coupled waves remains dominant even when the

angle of incidence runs through 00 to 900. At grazing incidence, the reflection
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Figure 10. Variation of reflection coefficients with angle of inci-

dence at ω = 10πHz.

coefficients z1 and z3 corresponding to reflected coupled dilatational waves and re-

flected coupled transverse waves respectively are appearing and remaining ones are

absent showing that reflection phenomena takes place even at grazing incidence.

8. Conclusions
(a) The possibility of propagation of plane waves has been explored in (i) Local mi-

crostretch elastic solid, (ii) Local microstretch fluid and (iii) Non-local microstretch

solid.

(b) Five basic waves may travel through an infinite microstretch media of either

solid or liquid. These waves are two sets of coupled longitudinal waves, two sets of

coupled transverse waves and an independent longitudinal micro-rotational wave.

(c) These waves are found to be dispersive and attenuating in nature when prop-

agating through microstretch fluid, while they are dispersive but not attenuating

in microstretch solid (local or non-local).

(d) All the waves propagating through the nonlocal microstretch solid medium are

found to be influenced by the nonlocality parameter of the medium.

(e) The phenomenon of reflection of a set of coupled longitudinal waves from the
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free boundary of a microstretch fluid half-space has been investigated. The various

reflection coefficients are found to depend on the angle of incidence and material

properties of the microstretch fluid half-space.

Appendix-A

a11 = a21 = a31 = a41 = 1,

a12 =
1

D1

[
λf + (2µf + κf ) cos

2 θ2 −
λ0fζ2
k22

](
k2
k0

)2

,

a13 =
1

D1
(2µf + κf ) sin θ3 cos θ3

(
k3
k0

)2

,

a14 =
1

D1
(2µf + κf ) sin θ4 cos θ4

(
k4
k0

)2

,

a22 =
1

D2
(2µf + κf ) sin θ2 cos θ2

(
k2
k0

)2

,

a23 = − 1

D2

[
κf (cos

2 θ3 − η3) + µf cos 2θ3
](k3

k0

)2

,

a24 = − 1

D2

[
κf (cos

2 θ4 − η4) + µf cos 2θ4
](k4

k0

)2

,

a32 =
1

D3
b0f sin θ2

ζ2
k22

(
k2
k0

)3

,

a33 =
1

D3
γfη3 cos θ3

(
k3
k0

)3

,

a34 =
1

D3
γfη4 cos θ4

(
k4
k0

)3

,
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Abstract. This paper seeks to enhance the convergence of Ramanujan’s fa-

mous series for Catalan’s constant by providing extra factors to the

denominator. An elementary method is illustrated to derive two infinite

classes of similar series with enhanced rate of convergence by way of in-

creasing the number of factors in the denominator. In addition, three infinite

classes of series for π
√

3 are also introduced in the paper.

1. Introduction

Catalan’s constant was introduced in 1865 by the Franco-Belgian

mathematician Eugéne Charles Catalan (1814-94). He used the symbol G to

denote the constant and defined it on page 20 of [4] by means of an

alternating series and on page 33 by means of an integral

G =
∞∑
n=0

(−1)n

(2n+ 1)2
=

∫ 1

0

arctanx

x
dx.

He investigated G again in 1883 [5] and gave a frustratingly sluggish series

G =
∞∑
n=0

22n−1(
2n
n

)
(2n+ 1)2

. (1)

Glaisher briefly discusses Catalan constant in his papers [8, 9] without using the

symbol G and defines it by means of the integral

1

2

∫ π
2

0

x

sinx
dx.

He records on page 190 of [9] this value of the constant: .91596559417721901505 . . .

Later mathematicians looked for more rapid series that converge to G faster.

To explain what I mean by a faster series, I give here a pair of series with second

series converging to 1
π at a quicker pace than the first

2010 Mathematics Subject Classification : 11Y60, 1106, 65B10, 33F05.

Key words and phrases : Catalan’s constant, Ramanujan’s series, transformation of series,

Convergence acceleration.

c© Indian Mathematical Society, 2015 .
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∞∑
n=0

(
2n
n

)2
24n(2n− 1)

= − 2

π
,

∞∑
n=0

(
2n
n

)2
24n(2n− 1)2

=
4

π
.

Ramanujan discovered a couple of rapid series for G and first gave the formula

[2, 12]
∞∑
n=0

(
2n
n

)2
24n(2n+ 1)

=
4G

π
. (2)

A whole class of series like (2) are derived in my recent paper [11].

However, these series involve computation of π followed by multiplication with

an approximate value of the infinite sum on the left hand side.

We are going to discuss here Ramanujan’s other faster series [1, 13, 14, 15]

G =
1

8

[
π ln (2 +

√
3) + 3

∞∑
n=0

1(
2n
n

)
(2n+ 1)2

]
(3)

and derive many more similar series.

This series is faster than Ramanujan’s earlier series as it involves no factor in

the numerator and has a square factor in the denominator as compared to a

single linear factor in the denominator of the previous series. However, it has

a comparative disadvantage as it involves computation of a complicated quantity,

namely π ln (2 +
√

3), which then has to be added to the approximate value of the

infinite sum in the second term.

Greg Fee [7] computed G to 300000 digits on September 29, 1996 using (3).

Robert J. Setti is reported to have computed G to 100,000,000,000 digits on April

6, 2013, but the series used for the computation is not specified.

Professor Alexandru Lupas (1942-2007), a Romanian mathematician, derived

a very fast converging series for G in 2000[10]

G =
∞∑
n=1

(−1)n−128n(40n2 − 24n+ 3)

(4n)3
(
4n
2n

)2(2n
n

)
(2n− 1)

. (4)

Bradley [3] develops some acceleration formulae based on transformations of

the log tangent integral and also treats Ramanujan series (3).

In Section 2, we consider transformations of the defining series by Catalan and

give our own results.

2. Transformation of G Series

In the first part of his paper [4], Catalan employed a method of transformation

of series to derive two efficient series including the following series (see p. 20)

G =
2909

3150
− 768

∞∑
n=1

(−1)n−1

(2n− 1)(2n+ 1)2(2n+ 3)2(2n+ 5)2(2n+ 7)
. (5)
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The series (5) transforms into the following series having only positive terms

G =
2909

3150
− 7680

∞∑
n=1

1

(4n− 3)(4n− 1)2(4n+ 1)2(4n+ 3)2(4n+ 5)2(4n+ 7)
. (6)

Catalan used series (5) to compute the first ten decimal digits recorded on page

23.

Let me now explain a simple method of transformation to derive Catalan-type

efficient series.

Leibniz discovered in 1674 his celebrated series for computing π which can be

deduced from the expansion of the arctan function

π

4
= 1− 1

3
+

1

5
− 1

7
+− · · · =

∞∑
n=1

(−1)n−1

2n− 1
. (7)

The following recurrence relation with k ∈ N is not difficult to establish

∞∑
n=1

(−1)n−1

(2n− 1)(2n+ 1)(2n+ 3) · · · (2n+ 2k − 3)(2n+ 2k − 1)

=
1

k

∞∑
n=1

(−1)n−1

(2n− 1)(2n+ 1)(2n+ 3) · · · (2n+ 2k − 5)(2n+ 2k − 3)

− 1

2k · 1 · 3 · 5 · · · (2k − 3)(2k − 1)
.

So by using the above relation, we can deduce an infinite class of series with more

and more factors in the denominator.

Note that shifting the index in the series for G, we obtain new series. For

example, the sum with denominator (2n − 1)2 is G and that with (2n + 1)2 is

1−G. Now

1

(2n− 1)2(2n+ 1)2
=

1

4

(
1

2n− 1
− 1

2n+ 1

)2

=
1

4

[
1

(2k − 1)2
+

1

(2k + 1)2
− 2

(2n− 1)(2n+ 1)

]
.

On taking the sum from 1 to ∞, the two terms involving square factors that

contain G cancel each other, leaving a constant and the term involving π. Thus

π = 4− 8
∞∑
n=1

(−1)n−1

(2n− 1)2(2n+ 1)2
. (8)

We can similarly deduce

G =
11

18
+ 8

∞∑
n=1

(−1)n−1

(2n− 1)2(2n+ 3)2
. (9)

We may combine the two classes of series to obtain some series for G. For

example, combining the sums
∑∞
n=1

(−1)n−1

(2n−1)(2n+1) and
∑∞
n=1

(−1)n−1

(2n+1)2 we obtain
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n=1

(−1)n−1

(2n−1)(2n+1)2 . Similarly, upon combination,
∑∞
n=1

(−1)n−1

(2n+1)(2n+3) and∑∞
n=1

(−1)n−1

(2n+1)2 yield
∑∞
n=1

(−1)n−1

(2n+1)2(2n+3) . The combination of the two sums in

turn leads to

G =
5

6
+ 4

∞∑
n=1

(−1)n−1

(2n− 1)(2n+ 1)2(2n+ 3)
. (10)

We shall now use this result for deriving a series with three consecutive squares.

1

(2n− 1)2(2n+ 1)2(2n+ 1)2
=

1

16

(
1

(2n− 1)(2n+ 1)
− 1

(2n+ 1)(2n+ 3)

)2

=
1

16

[
1

(2k − 1)2(2n+ 1)2
+

1

(2k + 1)2(2n+ 3)2
− 2

(2n− 1)(2n+ 1)2(2n+ 3)

]
.

Putting the values deduced earlier, we straightway obtain

G =
19

18
− 32

∞∑
n=1

(−1)n−1

(2n− 1)2(2n+ 1)2(2n+ 3)2
. (11)

We discern that when the number of consecutive square factors are odd we obtain

series for G, and when it is even we get series for π. Further, excluding the middle

factor in the odd factors yields a series with even factors for G.

G =
21131

22050
− 1536

∞∑
n=1

(−1)n−1

(2n− 1)2(2n+ 1)2(2n+ 5)2(2n+ 7)2
. (12)

G =
3919

4410
+ 24576

∞∑
n=1

(−1)n−1

(2n− 1)2(2n+ 1)2(2n+ 3)2(2n+ 5)2(2n+ 7)2
. (13)

This series has more factors in the denominator than (5) has and is therefore

relatively faster series. This way, we can keep increasing the number of factors in

denominator indefinitely.

3. Two Infinite Classes of Ramanujan-type G Series

Ramanujan’s formula has an odd square factor in the denominator. We will

derive two types of series here - those which have only odd linear factors and those

which have either consecutive linear factors or odd square factors. Though it is

easier to treat the first type of series, I would first take up the second type.

3.1. Modifications of Ramanujan’s G Series. It is easy to see that

∞∑
n=0

1(
2n
n

)
(2n+ 1)2

=

∞∑
n=1

1(
2n−2
n−1

)
(2n− 1)2

=

∞∑
n=1

2(
2n
n

)
n(2n− 1)

.

Hence, Ramanujan’s series (3) can be written as

G =
1

8

[
π ln (2 +

√
3) + 6

∞∑
n=1

1(
2n
n

)
n(2n− 1)

]
. (14)

By the Binomial Theorem
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1√
1− x2

= 1 +
1

2
x2 +

1 · 3
2 · 4

x4 +
1 · 3 · 5
2 · 4 · 6

x6 + · · · (15)

which, upon term-by-term integration, yields

arcsinx = x+
1

2

x3

3
+

1 · 3
2 · 4

x5

5
+

1 · 3 · 5
2 · 4 · 6

x7

7
+ · · · . (16)

Multiplying these two series one gets the expansion given by Euler [6]

arcsinx√
1− x2

= x+
2

3
x3 +

2 · 4
3 · 5

x5 +
2 · 4 · 6
3 · 5 · 7

x7 + · · · (17)

=
∞∑
n=1

22n−1(
2n
n

)
n
x2n−1. (18)

Putting x = 1
2 in this expansion one obtains

∞∑
n=1

1(
2n
n

)
n

=
π
√

3

9
. (19)

Observe that
∞∑
n=1

1(
2n
n

)
n

=

∞∑
n=0

1(
2n+2
n+1

)
(n+ 1)

=
∞∑
n=0

(n+ 1)2(
2n
n

)
(2n+ 2)(2n+ 1)(n+ 1)

=

∞∑
n=0

1(
2n
n

)
2(2n+ 1)

,

and hence one has
∞∑
n=0

1(
2n
n

)
(2n+ 1)

= 2
∞∑
n=1

1(
2n
n

)
n

=
2π
√

3

9
. (20)

Combination of the series (19) and (20) gives

∞∑
n=1

1(
2n
n

)
n(2n+ 1)

= 2− π
√

3

3
(21)

which, in turn, when combined with (14) yields

G =
3

2
− π
√

3

4
+
π

8
ln (2 +

√
3) + 3

∞∑
n=1

1(
2n
n

)
(2n− 1)2n(2n+ 1)

. (22)

Observe that the series (22) has three linear factors in the denominator while

Ramanujan’s series has only a square of one linear factor, but it contains an extra

term involving π
√

3 and hence requires extra effort to compute it.

The following elegant series is due to Euler
∞∑
n=1

1(
2n
n

)
n2

=
π2

18
(23)
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which can be rewritten as
∞∑
n=1

1(
2n
n

)
n2

=
∞∑
n=0

1(
2n+2
n+1

)
(n+ 1)2

=
∞∑
n=0

1(
2n
n

)
(2n+ 1)(2n+ 2)

=
∞∑
n=0

1(
2n
n

)
(2n+ 1)

−
∞∑
n=0

1(
2n
n

)
(2n+ 2)

.

Using Euler’s series and equation (20), we can deduce that
∞∑
n=0

1(
2n
n

)
(n+ 1)(2n+ 1)

=
π2

9
(24)

and
∞∑
n=1

1(
2n
n

)
(n+ 1)

=
4π
√

3

9
− π2

9
. (25)

We may combine equations (21) and (24) to deduce

∞∑
n=1

1(
2n
n

)
n(n+ 1)(2n+ 1)

= 3− π
√

3

3
− π2

9
(26)

which, in turn, when combined with (22) yields

G =
15

4
−π
√

3

2
−π

2

12
+
π

8
ln (2 +

√
3)+9

∞∑
n=1

1(
2n
n

)
(2n− 1)2n(2n+ 1)(2n+ 2)

. (27)

This series has more factors in the denominator than Ramanujan’s series but

contains two additional terms - one involving π
√

3 and the other involving π2.

We can successfully employ the method of shifting the index to deduce

∞∑
n=1

1(
2n
n

)
(2n+ 3)

,
∞∑
n=1

1(
2n
n

)
(2n+ 4)

,
∞∑
n=1

1(
2n
n

)
(2n+ 5)

, . . .

and then combine them, thereby getting more and more factors in the denominator.

Let me explain this through a recurrence relation. Observe that

∞∑
n=1

1(
2n
n

)
(2n+ 2k − 1)

=
∞∑
n=0

(n+ 1)2(
2n
n

)
(2n+ 1)(2n+ 2)(2n+ 2k + 1)

=
1

4

∞∑
n=0

1(
2n
n

)
(2n+ 2k + 1)

+
1

8k

[ ∞∑
n=0

1(
2n
n

)
(2n+ 1)

−
∞∑
n=0

1(
2n
n

)
(2n+ 2k + 1)

]

=
2k − 1

8k

∞∑
n=0

1(
2n
n

)
(2n+ 2k + 1)

+
1

8k

∞∑
n=0

1(
2n
n

)
(2n+ 1)

.

This gives a useful recurrence relation
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∞∑
n=0

1(
2n
n

)
(2n+ 2k + 1)

=
8k

2k − 1

∞∑
n=1

1(
2n
n

)
(2n+ 2k − 1)

− 1

2k − 1

∞∑
n=0

1(
2n
n

)
(2n+ 1)

.

(28)

We can similarly derive recurrence relation for the even factors. We can then

evaluate series with linear odd and even factors and combine the two. However,

the disadvantage of such series with more than three factors in the denominator

is the occurrence of the term involving π2.

Let us now proceed to have only square factors in the denominator of the

series occurring in the formula. This will avoid the term with π2. We need another

recurrence relation for this purpose

∞∑
n=1

1(
2n
n

)
(2n+ 2k + 1)2

=
∞∑
n=0

(n+ 1)2(
2n
n

)
(2n+ 1)(2n+ 2)(2n+ 2k + 3)2

=
1

4

∞∑
n=0

2n+ 2(
2n
n

)
(2n+ 1)(2n+ 2k + 3)2

=
1

4

∞∑
n=0

1(
2n
n

)
(2n+ 2k + 3)2

+
1

4

∞∑
n=0

1(
2n
n

)
(2n+ 1)(2n+ 2k + 3)2

=
1

4

∞∑
n=0

1(
2n
n

)
(2n+ 2k + 3)2

+
1

4(2k + 2)

[ ∞∑
n=0

1(
2n
n

)
(2n+ 1)(2n+ 2k + 3)

−
∞∑
n=0

1(
2n
n

)
(2n+ 2k + 3)2

]

=
1

4

∞∑
n=0

1(
2n
n

)
(2n+ 2k + 3)2

− 1

4(2k + 2)

∞∑
n=0

1(
2n
n

)
(2n+ 2k + 3)2

+
1

4(2k + 2)2

[ ∞∑
n=0

1(
2n
n

)
(2n+ 1)

−
∞∑
n=0

1(
2n
n

)
(2n+ 2k + 3)

]

=
2k + 1

4(2k + 2)

∞∑
n=0

1(
2n
n

)
(2n+ 2k + 3)2

+
1

4(2k + 2)2

[ ∞∑
n=0

1(
2n
n

)
(2n+ 1)

−
∞∑
n=0

1(
2n
n

)
(2n+ 2k + 3)

]
.

Hence, we get

∞∑
n=0

1(
2n
n

)
(2n+ 2k + 3)2

=
4(2k + 2)

2k + 1

∞∑
n=1

1(
2n
n

)
(2n+ 2k + 1)2

− 1

(2k + 1)(2k + 2)

[ ∞∑
n=0

1(
2n
n

)
(2n+ 1)

−
∞∑
n=0

1(
2n
n

)
(2n+ 2k + 3)

]
.
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Putting k = 0 this gives

∞∑
n=0

1(
2n
n

)
(2n+ 3)2

= 8
∞∑
n=1

1(
2n
n

)
(2n+ 1)2

+
1

2

[ ∞∑
n=0

1(
2n
n

)
(2n+ 1)

−
∞∑
n=0

1(
2n
n

)
(2n+ 3)

]
.

(29)

Using relevant relations/values we can now compute

∞∑
n=1

4(
2n
n

)
(2n+ 1)2(2n+ 3)2

=
∞∑
n=1

1(
2n
n

)
(2n+ 1)2

+
∞∑
n=1

1(
2n
n

)
(2n+ 3)2

−
∞∑
n=1

1(
2n
n

)
(2n+ 1)

+
∞∑
n=1

1(
2n
n

)
(2n+ 3)

.

This yields a series having two square factors in the denominator as against one

in Ramanujan’s series though it involves extra term with π
√

3

G =
23

27
− π
√

3

12
+

1

8
π ln (2 +

√
3) +

1

6

∞∑
n=1

1(
2n
n

)
(2n+ 1)2(2n+ 3)2

. (30)

We can go on like this but it would involve formidable computations.

3.2. Another Class of Ramanujan-type G Series. We may take an

alternative route to derive Ramanujan-type series which will have only linear and

odd terms in the denominator. We first obtain the series with one factor in the

denominator by splitting the right hand side of series (14) as

G =
1

8

[
π ln (2 +

√
3) + 6

∞∑
n=1

2(
2n
n

)
(2n− 1)

− 6

∞∑
n=1

1(
2n
n

)
n

]
. (31)

We now eliminate the second series on the right hand side with the help of (19)

and thereby get

G = −π
√

3

12
+
π

8
ln (2 +

√
3) +

3

2

∞∑
n=1

1(
2n
n

)
(2n− 1)

. (32)

This series is the first in an unending hierarchy of series, with ever-increasing

number of factors in the denominators, that we can construct. I shall now illustrate

my method.

Rearranging the terms of (32) and then combining with (20) gives

G = −3

2
+
π
√

3

4
+
π

8
ln (2 +

√
3) + 3

∞∑
n=1

1(
2n
n

)
(2n− 1)(2n+ 1)

. (33)

As mentioned earlier, we get this from the equation (28)

∞∑
n=1

1(
2n
n

)
(2n+ 3)

=
14π
√

3

9
− 25

3
. (34)
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Combining the series (20) and (34), we get

∞∑
n=1

1(
2n
n

)
(2n+ 1)(2n+ 3)

=
11

3
− 2π

√
3

3
. (35)

Combining the results (33) and (35), we obtain

G =
19

2
− 7π

√
3

4
+
π

8
ln (2 +

√
3) + 12

∞∑
n=1

1(
2n
n

)
(2n− 1)(2n+ 1)(2n+ 3)

. (36)

Further, we derive from the recurrence relation (28) the following series

∞∑
n=1

1(
2n
n

)
(2n+ 5)

=
74π
√

3

9
− 2009

45
. (37)

This series can be combined with previous results to obtain

∞∑
n=1

1(
2n
n

)
(2n+ 3)(2n+ 5)

=
817

45
− 10π

√
3

3
. (38)

Furthermore, we get

∞∑
n=1

1(
2n
n

)
(2n+ 1)(2n+ 3)(2n+ 5)

=
2π
√

3

3
− 163

45
. (39)

This result combined with (36) yields

G = −1019

30
+

25π
√

3

4
+
π

8
ln (2 +

√
3)

+ 72
∞∑
n=1

1(
2n
n

)
(2n− 1)(2n+ 1)(2n+ 3)(2n+ 5)

.

(40)

We can go on indefinitely like this to get G series with more and more fac-

tors in the denominator and thus having better rate of convergence than that

of Ramanujan’s series. Further, we can eliminate the term containing π
√

3 by

using two consecutive formulas. For example, add the results after multiplying

(36) by 25 and (40) by 7 to obtain

G =
1

8

[
− 1

15
+ π ln (2 +

√
3) +

∞∑
n=1

150n+ 501(
2n
n

)
(2n− 1)(2n+ 1)(2n+ 3)(2n+ 5)

]
. (41)

We may also eliminate the term containing π
√

3 by using the equations (22) and

(36) thereby getting

G =
1

6
+

1

8
π ln (2 +

√
3) +

3

2

∞∑
n=1

2n+ 7(
2n
n

)
(2n− 1)2n(2n+ 1)(2n+ 3)

. (42)

We can now combine the equations (41) and (42) to obtain a faster series

G =
1

5
+

1

8
π ln (2 +

√
3) +

1

2

∞∑
n=1

38n+ 125(
2n
n

)
(2n− 1)2n(2n+ 1)(2n+ 3)(2n+ 5)

. (43)
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Further more, we may combine the equations (40) and (30) to deduce two series

– with and without the term involving π
√

3

G =
12059

12930
− 169

1724
π
√

3 +
1

8
π ln (2 +

√
3)

− 576

431

∞∑
n=1

1(
2n
n

)
(2n− 1)(2n+ 1)2(2n+ 3)2(2n+ 5)

.
(44)

G =
2693

6840
+

1

8
π ln (2 +

√
3)

+
1

152

∞∑
n=1

676n2 + 1352n+ 307(
2n
n

)
(2n− 1)(2n+ 1)2(2n+ 3)2(2n+ 5)

.
(45)

The equations (43) and (45) have the same rate of convergence because both have

effectively four linear factors in the denominator. They can be combined to obtain

the following efficient series without any term involving π
√

3

G =
385

918
+

1

8
π ln (2 +

√
3)

− 1

102

∞∑
n=1

3380n2 + 7064n + 2535(
2n
n

)
(2n− 1)2n(2n + 1)2(2n + 3)2(2n + 5)

.
(46)

This series is morphologically same as Ramanujan’s series. It has seven linear

factors in the denominator with two in the numerator and so effectively five factors

as against two linear factors in Ramanujan’s series and thus converges to G more

speedily.
4. Two Efficient Classes of Series for π

√
3

While deriving series for G in the previous section, we developed parallel

class of series for π
√

3 whose denominator had
(
2n
n

)
. It means that the multiple

in the denominator varied – it began with 1 and rose to approach 4, given by

3 + n−1
n+1 , n ≥ 0. It would be appropriate to introduce now two classes of series

with a greater common ratio = 32.

Setting x = 1√
3

in the expansion arctanx =
∑∞
n=1(−1)n−1 x2n−1

(2n−1) yields the

following series attributed to Abraham Sharp who in 1699 calculated π to 72

decimal places

π

6
=

1√
3

∞∑
n=1

(−1)n−1
1

3n−1(2n− 1)
. (47)

Sharp’s alternating series transforms easily into one with only positive terms
∞∑
n=1

4n

32n(4n− 3)(4n− 1)
=
π
√

3

36
. (48)

We shall now explain a method to derive similar series with more factors.

It is easy to see that
∞∑
n=1

(
1

9n−1(4n− 3)
− 1

9n(4n+ 1)

)
= 1. (49)
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This can be rewritten as

∞∑
n=1

8n+ 3

32n(4n− 3)(4n+ 1)
=

1

4
. (50)

This series combined with (48) yields

∞∑
n=1

4n+ 3

32n(4n− 3)(4n− 1)(4n+ 1)
=
π
√

3

18
− 1

4
. (51)

Now consider the integral∫
dx

1 + x2
=

x

1 + x2
+ 2

∫
dx

1 + x2
− 2

∫
dx

(1 + x2)2
.

That is, ∫
dx

(1 + x2)2
=

x

2(1 + x2)
+

1

2
arctanx+ C.

Using the Binomial Theorem to expand 1
(1+x2)2 and integrating the result

term-by-term lead to∫
dx

(1 + x2)2
=

∞∑
n=1

(−1)n−1
nx2n−1

2n− 1
+ C. (52)

Evaluating the integral from 0 to 1√
3

and simplifying the result, we get

2π
√

3

3
= −3 + 8

∞∑
n=1

(−1)n−1
n

3n−1(2n− 1)
. (53)

This result can be alternatively deduced from Sharp’s series by writing it as

π

6
=

1√
3

∞∑
n=1

(−1)n−1
2n− (2n− 1)

3n−1(2n− 1)

=
1√
3

∞∑
n=1

(−1)n−1
2n

3n−1(2n− 1)
− 1√

3

∞∑
n=1

(−1)n−1
1

3n−1

=
1√
3

( ∞∑
n=1

(−1)n−1
2n

3n−1(2n− 1)
− 3

4

)
.

We may write the series on the right hand side of (53) as

∞∑
n=1

(−1)n−1
n

3n−1(2n− 1)
=

∞∑
n=0

(−1)n
n+ 1

3n(2n+ 1)

= 1−
∞∑
n=1

(−1)n+1 n+ 1

3n(2n+ 1)
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= 1−
∞∑
n=1

2n

32n−1(4n− 1)
+
∞∑
n=1

2n+ 1

32n(4n+ 1)

= 1−
∞∑
n=1

16n2 + 4n+ 1

32n(4n− 1)(4n+ 1)

= 1−
∞∑
n=1

1

9n
−
∞∑
n=1

4n+ 2

32n(4n− 1)(4n+ 1)

= 1− 1

8
−
∞∑
n=1

4n+ 2

32n(4n− 1)(4n+ 1)
.

By using this result, one derives from (53)

∞∑
n=1

4n+ 2

32n(4n− 1)(4n+ 1)
=

1

2
− π
√

3

12
. (54)

Subtracting (54) from (48) yields (51). We may rewrite (48) as

∞∑
n=1

4n+ 4

32n(4n+ 1)(4n+ 3)
=
π
√

3

9
− 4

3
. (55)

Subtracting (55) from (54), we obtain

∞∑
n=1

4n+ 5

32n(4n− 1)(4n+ 1)(4n+ 3)
=

11

12
− π
√

3

6
. (56)

The equation (51) can be rewritten as

∞∑
n=1

4n+ 7

32n(4n+ 1)(4n+ 3)(4n+ 5)
=
π
√

3

2
− 163

60
. (57)

On subtracting (57) from (56), we get a series with four factors in the denominator

∞∑
n=1

4n+ 8

32n(4n− 1)(4n+ 1)(4n+ 3)(4n+ 5)
=

109

120
− π
√

3

6
. (58)

We deduce the associated series by subtracting (56) from (51)

∞∑
n=1

4n+ 6

32n(4n− 3)(4n− 1)(4n+ 1)(4n+ 3)
=
π
√

3

18
− 7

24
. (59)

We can go on this way to derive further series in the two inter-connected classes

of series. These two relations, holding true for m = 0, 1, 2, · · · , generate

∞∑
n=1

4n+ 3m

32n
∏m+1
k=0 (4n+ 2k − 3)

−
∞∑
n=1

4n+ 3m+ 2

32n
∏m+1
k=0 (4n+ 2k − 1)

=
∞∑
n=1

(2m+ 2)(4n+ 3m+ 3)

32n
∏m+2
k=0 (4n+ 2k − 3)

(60)
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and

∞∑
n=1

4n+ 3m+ 2

32n
∏m+1
k=0 (4n+ 2k − 1)

−
∞∑
n=1

4n+ 3m+ 4

32n
∏m+1
k=0 (4n+ 2k + 1)

=
∞∑
n=1

(2m+ 2)(4n+ 3m+ 5)

32n
∏m+2
k=0 (4n+ 2k − 1)

.

(61)

I have derived these general formulas for the two classes of series:

∞∑
n=1

4n + 3m

32n
∏m+1

k=0 (4n + 2k− 3)
=

2m−2π
√

3

m! · 9
− am, (62)

where a0 = 0 and am+1 = 2
m+1 am + 1

4(m+1)1·3·5···(2m+1) , for m = 0, 1, 2, . . .

and
∞∑

n=1

4n + 3m + 2

32n
∏m+1

k=0 (4n + 2k− 1)
= bm −

2m−2π
√

3

m! · 3
, (63)

where b0 = 1
2 and bm+1 = 2

m+1 bm −
1

4(m+1)3·5·7···(2m+3) , for m = 0, 1, 2, . . .

We also have following direct formulas for am and bm :

am =
2m−2

m!

m∑
k=1

1(
2k
k

)
k

; bm =
2m−1

m!

(
1−

m∑
k=1

1(
2k
k

)
2k(2k + 1)

)
. (64)

These relations/formulas yield infinitely many pairs of series such as

∞∑
n=1

4n+ 9

32n(4n− 3)(4n− 1)(4n+ 1)(4n+ 3)(4n+ 5)
=
π
√

3

27
− 1

5
. (65)

Or equivalently,

∞∑
n=0

4n + 9

32n−3(4n− 3)(4n− 1)(4n + 1)(4n + 3)(4n + 5)
= π
√

3;

∞∑
n=1

4n+ 11

32n(4n− 1)(4n+ 1)(4n+ 3)(4n+ 5)(4n+ 7)
=

127

210
− π
√

3

9
. (66)

We can thus obtain infinitely many increasingly rapid series for π
√

3.
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Abstract. We give here a neat Taylor series for the arctan function and use

that to deduce a dozen BBP-type formulas for π. In addition, an alternative

approach for deriving more formulas is also explained.

1. Introduction

In 1995 Bailey, Borwein, and Plouffe [3] discovered a lovely formula for π:

π =
∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
.

They found it by way of “inspired guessing and extensive searching” using

Ferguson’s PSLQ integer relation finding algorithm. The “proof” followed the

discovery. Earlier, it was believed that if one wanted to determine the n-th digit

of π, one had to generate the entire sequence of the first n digits. These authors

also found an algorithm for computing individual hexadecimal or binary digits of

π. The algorithm is explained by Bailey in his note. [4]

The above-noted base-2 or binary formula allows us to compute the nth

hexadecimal or binary digit of π, without computing any of the previous

digits. Now a formula of this sort is called as BBP-type formula after the (initials

of) three co-discoverers. It may be pointed out that the new algorithm “is not

fundamentally faster than best-known schemes for computing all digits of π up to

some position.”

This notation was introduced later by D. H. Bailey and R. E. Crandall.

P (s, b, n, A) =
∞∑
k=0

1

bk

n∑
j=1

aj
(kn+ j)s

,

where s, b and n are integers, and A = (a1, a2, . . . , an) is a vector of integers. Then

the first formula becomes π = P (1, 16, 8, (4, 0, 0,−2,−1,−1, 0, 0)).

* Dedicated to the memory of late Prof. Ratan Prakash Agarwal (1925–2008), past President of

IMS and past Editor of both IMS periodicals, who encouraged me to carry on with my work in

mathematics.

2010 AMS Subject Classification: 26A24, 30D10, 33B10, 40A25.

Key words and phrases: Taylor series, expansion of arctan, BBP-type formulas, Pi

c© Indian Mathematical Society, 2015 .
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Adamchik and Wagon [1] employed Mathematica to derive an alternating

BBP-type formula. We intend to derive here some such formulas (including that

of Adamchik and Wagon) mathematically from a beautiful Taylor series expansion

of the arctan.
2. Taylor’s Theorem and A Series for Arctan

As is commonly known, a Taylor series is a power series representation of

a function as an infinite sum of terms which are evaluated from the function’s

derivatives at a single point in its domain. The Scottish mathematician James

Gregory (1638–75) communicated to John Collins (1625–1683), English

mathematician and librarian of the Royal Society, in 1670–71 a number of

results on infinite series expansions of various trigonometric functions, including

what is now known as Gregory’s series for the arctan function. His 1667 book Vera

Circuli et Hyperbolae Quadratura, reprinted in 1668 with an appendix,

Geometriae Pars, contained “the earliest enunciation”[6] of the expansions in series

of sinx, cosx, arcsinx and arccosx.

However, it is now an established fact [15, 17] that an enunciation of the inverse

tangent series is found in Sanskrit verses attributed to an Indian mathematician

Madhava (1340–1425) of Sangamagrama (near Kochi, Kerala) and quoted in the

16th century commentary Kriyakramkari on Lilavati of Bhaskaracharya (1114-

1185). The series for arctan x and other trigonometric functions are given in

Sanskrit verse in Tantrasangraha of Nilakantha (1450–1550, Kerala) and a

commentary on this work called Tantrasangraha-vyakhya of unknown

authorship. Yuktibhasa of Jyesthadeva (1500–1610), a commentary in Malalyalam

on the Tantrasangraha contains a proof of the arctan series. In his Aryabhatiya-

bhasya, a commentary on Aryabhata’s work on astronomy, Nilakantha attributes

the sine series to Madhava.[22]

Brook Taylor (1685–1731), an English mathematician, provided the general

method for the formation of such series. His method, now known as Taylor’s

theorem, appears merely as a corollary (Corollary II of Proposition VII, Theorem

III) to the corresponding theorem in Finite Differences in his 1715 work Methodus

Incrementorum Directa & Inversa[24]. But, as Duncan Gregory (1813-1844) notes,

he makes no application of it, or remark on its importance.[14]

What Taylor’s theorem in effect does is to develop a function of the algebraic

sum of two quantities into a series arranged according to the ascending power of one

of these quantities, with coefficients depending on the other. While the Binomial

Theorem expands (x + h)n in a series of powers of h, Taylor’s Theorem expands

any infinitely differentiable function of (x+h) in a similar series. The Taylor series

of an infinitely differentiable function f is given by: f(x + h) =
∑∞
n=0

hnf(n)(x)
n! ,

where f (n)(x) denotes the nth derivative of f.

If we put in this x = 0 and change h into x, we get a series named after Colin
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Maclaurin (1698–1746), who published it in his A Treatise of Fluxions[18]. It

appears in §751 of Volume II. In the next section, he refers to similar result

in Bernoulli’s Act. Erud. Lips., 1694. In a letter of Dec. 7, 1728 to the

Scottish mathematician James Stirling (1692–1770), Maclaurin refers to “a

Theorem in y[our](?) book where a Quantity is expressed by a series whose

coefficients are first, second, third fluxions, etc.” Stirling had established it on

pp.102–103 of his Methodus Differentialis [23], but he had used it earlier in a

paper entitled ‘Methodus Differentialis Newtoniana Illustrata’, published in the

Philosophical Transactions (1719) of the Royal Society[26]. Augustus De Morgan

(1806–71) rightly commented: “...both Maclaurin and Stirling would have been

astonished that a particular case of Taylor’s theorem would be called by either of

their names.”[19]

We shall now derive a Taylor series representation for arctan(x) with simple

closed-form coefficients.

Let f(x) = arctan(x) and x = cot θ = tan(π2−θ), that is, arctanx = π
2−θ = φ,

meaning that θ and φ are complementary angles. Here |x| < 1 and 0 < θ < π
2 .

So using a right-angled triangle with opposite side 1 and adjacent side x, we

immediately get 1√
1+x2

= sin θ.

The equation 1 + x2 = (sin θ)−2 leads to 2xdxdθ = −2(sin θ)−3 cos θ. That is,
dx
dθ = − (sin θ)−3 cos θ

cot θ = −(sin θ)−2. Hence, dθ
dx = − sin θ sin θ. Differentiating this,

we obtain

d2θ

dx2
= − (2 sin θ cos θ)

dθ

dx
= −(sin 2θ)(− sin2 θ) = sin2 θ sin 2θ.

Further,

d

dx
(sinn θ sin(nθ)) = n sinn−1 θ cos θ

dθ

dx
sin(nθ) + n sinn θ cos(nθ)

dθ

dx

= n sinn−1 θ
dθ

dx
[sin(nθ) cos θ + cos(nθ) sin θ]

= n sinn−1 θ(− sin2 θ) [sin(nθ + θ)]

= −n sinn+1 θ sin(n+ 1)θ.

Applying Taylor’ theorem to arctan, we obtain

arctan(x+ h) = arctanx+ h d
dx arctanx+ h2

2!
d2

dx2 arctanx+ . . .

Hence, we get

arctan(x+ h) =
(π

2
− θ
)

+ h
d

dx

(π
2
− θ
)

+
h2

2

d2

dx2

(π
2
− θ
)

+ . . .

=
(π

2
− θ
)
− hdθ

dx
− h2

2

d2θ

dx2
− h3

3!

d3θ

dx3
− h4

4!

d4θ

dx4
. . .

Now using all the results that we obtained earlier, we obtain
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arctan(x+ h) =
(π

2
− θ
)

+ h sin θ sin θ − h2

2
sin2 θ sin 2θ

+
h3

3
sin3 θ sin 3θ − h4

4
sin4 θ sin 4θ +− . . . (2.1)

We may point out here that inexplicably this arctan expansion does not appear

in modern calculus textbooks, or indeed in the numerous Taylor series tables that

exist on the web. My extensive search led me eventually to an 1841 calculus

text[14] by Gregory and [16, 25] where this series appears.

3. Series for deriving formulas for π

We now derive some relevant series.

Putting x = 0 in (2.1), that is, θ = π
2 and then seting h = x yields the

well-known Maclaurin series for arctan(x):

arctan(x) =
∞∑
n=1

(−1)n−1x2n−1

2n− 1
, −1 < x < 1. (3.1)

If we put h = −x in (2.1), then arctan(x + h) = arctan(0) = 0 and hence

0 = π
2 − θ − x sin θ sin θ − x2

2 sin2 θ sin 2θ − x3

3 sin3 θ sin 3θ − . . . , that is,

π

2
− θ = cot θ sin θ sin θ +

cot2 θ sin2 θ sin 2θ

2
+

cot3 θ sin3 θ sin 3θ

3
+ . . .

= cos θ sin θ +
cos2 θ sin 2θ

2
+

cos3 θ sin 3θ

3
+ . . . , 0 < θ <

π

2
(3.2)

On using the relation π
2 − θ = φ, the equation(3.2) transforms into an elegant

alternating series with two positive terms and two negative terms

φ = sinφ cosφ+
sin2 φ sin 2φ

2
− sin3 φ cos 3φ

3
− sin4 φ sin 4φ

4
++−− . . . , 0 < φ <

π

2
(3.3)

Putting h = −x+ 1
x = − cot θ + 1

cot θ = −2 cot 2θ in (2.1), we get

arctan

(
1

x

)
= arctan(x) + (−2 cot 2θ) sin θ sin θ − (−2 cot 2θ)2

2
sin2 θ sin 2θ

+
(−2 cot 2θ)3

3
sin3 θ sin 3θ − . . .

Since (2 cot 2θ sin θ)n =
(
cos 2θ
cos θ

)n
, we obtain

arctan(x)− arctan

(
1

x

)
=
∞∑
n=1

1

n

(
cos 2θ

cos θ

)n
sinnθ.

As x = cot θ = tan(π2 − θ) and 1
x = 1

cot θ = tan θ, it follows that

π

2
− 2θ =

∞∑
n=1

1

n

(
cos 2θ

cos θ

)n
sinnθ, 0 < θ <

π

2
. (3.4)
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Observe that

x−
√

1 + x2 =
cos θ

sin θ
− 1

sin θ
=

cos θ − 1

sin θ

=
−2 sin2( θ2 )

2 sin( θ2 ) cos( θ2 )
= − tan

θ

2
= tan

−θ
2
,

and similarly, x+
√

1 + x2 = cot θ2 = tan(π2 −
θ
2 ).

Hence, putting h = −
√

1 + x2 in (2.1), and cancelling (sin θ)n, we get

π

2
− θ

2
=
∞∑
n=1

sinnθ

n
, 0 < θ < 2π. (3.5)

We find this formula in §166, Chapter 6, Part II of Euler’s Foundations of

Differential Calculus[11].

Similarly putting h =
√

1 + x2 in (2.1), we obtain

θ

2
=
∞∑
n=1

(−1)n−1
sinnθ

n
, −π < θ < π. (3.6)

Since sinmπ = 0, cos(2m + 1)π = −1 and cos(2m)π = 1 for integer m, we can

derive (3.6) from (3.5) by simply replacing θ by π − θ.
Adding the equation (3.5) and (3.6) yields

π

4
=

∞∑
n=1

sin(2n− 1)θ

2n− 1
, 0 < θ ≤ π

2
. (3.7)

It may be pointed out that popular calculus texts such as [8] use Fourier series

to get the expansions (3.6) and (3.7). For example, for (2π-periodic) odd function

f(x), the French mathematician Jean J. B. Fourier (1768–1830) considered

f(x) = b1 sinx+ b2 sin 2x+ b3 sin 3x+ · · · =
∞∑
k=1

bk sin kx,

and to find the coefficients bn, he multiplied both sides of the last expression by

sinnx and then integrated over [0, π] to obtain∫ π

0

f(x) sinnx dx =
∞∑
k=1

bk

∫ π

0

sin kx sinnx dx.

Since ∫ π

0

sin kx sinnx dx = 0 for k 6= n and =
π

2
for k = n,

bk =
2

π

∫ π

0

f(x) sinnx dx.

By using a similar analysis, he showed that one can also expand any (periodic) even

function, whatever, into a series of cosines of multiple arcs. In fact, he asserted in

his work on the propagation of heat that one can represent “arbitrary” functions
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(not only odd or even functions) of a variable into series of sines and cosines of

multiple arcs.

If we set h = −2x+
√

1 + x2, and h = −2x−
√

1 + x2, in (2.1), we get

π

2
− 3θ

2
=
∞∑
n=1

1

n
(2 cos θ − 1)

n
sinnθ, 0 ≤ θ ≤ π

2
. (3.8)

π − 3θ

2
=
∞∑
n=1

1

n
(2 cos θ + 1)

n
sinnθ,

π

2
≤ θ ≤ π. (3.9)

4. BBP-type Formulas for π

We shall now use the expansions to derive formulas for π.

On setting θ = π
4 in (3.2) and on putting the values cos π4 = 1√

2
, sin π

4 (4n) =

0, sin π
4 (8n − 6) = 1, sin π

4 (8n − 2) = −1, sin π
4 (8n − 7) = sin π

4 (8n − 5) =
1√
2
, sin π

4 (8n− 5) = sin π
4 (8n− 3) = − 1√

2
, we get following alternating series with

three positive terms and three negative terms as every fourth term vanishes

π

4
=

(
1

2

)1

+
1

2

(
1

2

)1

+
1

3

(
1

2

)2

− 1

5

(
1

2

)3

− 1

6

(
1

2

)3

− 1

7

(
1

2

)4

+ . . .

=
∞∑
n=1

(−1)n−1

4n

(
2

4n− 3
+

2

4n− 2
+

1

4n− 1

)
,

which, on shifting the summation index, becomes

π =

∞∑
n=0

(
−1

4

)n(
2

4n+ 1
+

2

4n+ 2
+

1

4n+ 3

)
. (4.1)

Using the standard notation, it becomes π = P (1,−4, 4, (2, 2, 1, 0)). This can be

transformed, by combining two consecutive terms into one, to

π = 1
4P (1, 16, 8, (8, 8, 4, 0,−2,−2,−1, 0), or equivalently to,

π = 4
∞∑
n=0

30720n5 + 90368n4 + 100064n3 + 51292n2 + 11905n+ 981

16n(8n+ 1)(8n+ 2)(8n+ 3)(8n+ 5)(8n+ 6)(8n+ 7)
.

BBP-type formulas can be obtained by assigning Gaussian rational values to

the complex number z in the following power series expansion

ln
1

1− z
=
∞∑
n=1

zn

n
, |z| < 1.

For example, formula (4.1) can be derived by setting z = 1+i
2 and taking imaginary

parts.

Further, a BBP-type formula can also be obtained by computing integrals

obtained in the following manner, where | 1b | < 1, and if permissible swapping of

sigma and integral signs is resorted to.
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∞∑
n=0

1

bn(kn+ c)
= bc/k

∞∑
n=0

1

kn+ c

(
1

b1/k

)kn+c
= bc/k

∞∑
n=0

[
xkn+c

kn+ c

] 1

b1/k

0

= bc/k
∞∑
n=0

∫ 1

b1/k

0

xkn+c−1 dx = bc/k
∫ 1

b1/k

0

∞∑
n=0

(xk)n xc−1 dx

= bc/k
∫ 1

b1/k

0

xc−1

1− xk
dx.

Thus on putting b1/kx = y, we obtain

∞∑
n=0

1

bn(kn+ c)
= b

∫ 1

0

yc−1

b− yk
dy.

This procedure, adapted from [1, 2, 7], has been used by S. K. Lucas to derive such

formulas. Adamchik and Wagon derive, on page 854 in [2], an integral g(i) for the

case k = 4, taking variable z and constant i in place of c. On setting z = x√
2

and

replacing i by c, their integral becomes

∞∑
n=0

(
−1

4

)n
1

4n+ c
= 4

∫ 1

0

xc−1

4 + x4
dx.

We find in a standard table of integrals [10, 27]∫
dx

a4 + x4
=

1

4a3
√

2
ln
x2 + ax

√
2 + a2

x2 − ax
√

2 + a2
+

1

2a3
√

2
arctan

ax
√

2

a2 − x2
,∫

x dx

a4 + x4
=

1

2a2
arctan

x2

a2
,∫

x2 dx

a4 + x4
= − 1

4a
√

2
ln
x2 + ax

√
2 + a2

x2 − ax
√

2 + a2
+

1

2a
√

2
arctan

ax
√

2

a2 − x2
.

Computing these integrals from 0 to 1 with a =
√

2, we obtain

∞∑
n=0

(
−1

4

)n(
2

4n+ 1
+

2

4n+ 2
+

1

4n+ 3

)
= 2

(
arctan 2 + arctan

1

2

)
= π.

5. Formulae involving convergents of π

Further, we observe that

∞∑
n=0

(
−1

4

)n
1

4n+ 6
= −4

∞∑
n=1

(
−1

4

)n
1

4n+ 2
,

∞∑
n=0

(
−1

4

)n
1

4n+ 7
= −4

∞∑
n=1

(
−1

4

)n
1

4n+ 3
.

Therefore it becomes clear that
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∞∑
n=0

(
−1

4

)n(
2

4n+ 1
− 6

4n+ 2
+

5

4n+ 3
− 2

4n+ 6
+

1

4n+ 7

)

=
2

3
+
∞∑
n=1

(
−1

4

)n(
2

4n+ 1
+

2

4n+ 2
+

1

4n+ 3

)
= π − 8

3
.

Hence,
∞∑
n=1

(
−1

4

)n(
2

4n+ 1
− 6

4n+ 2
+

5

4n+ 3
− 2

4n+ 6
+

1

4n+ 7

)
= π − 8

3
−
(

2− 3 +
5

3
− 1

3
+

1

7

)
= π − 22

7
.

Luckily, collecting all the terms into one leaves only a constant in the numerator

yielding the following neat formula for the second convergent of π

π =
22

7
+ 120

∞∑
n=1

(
−1

4

)n
1

(4n+ 1)(4n+ 2)(4n+ 3)(4n+ 6)(4n+ 7)
,

which can be transformed into following series with only positive terms.

π =
22

7
− 15

∞∑
n=1

768n3 + 1984n2 + 836n+ 87(
16n−1(8n− 3)(8n− 2)(8n− 1)(8n+ 1)

(8n+ 2)(8n+ 3)(8n+ 6)(8n+ 7)

) . (5.1)

Let me touch upon the formulae involving the convergents of π. Dalzell [9]

found in 1944 the following integral and series

π =
22

7
−
∫ 1

0

t4(1− t)4

1 + t2
. (5.2)

π =
22

7
+

∞∑
n=1

(
−1

4

)n [
3(4n)!2

(8n+ 1)!
+

(4n+ 1)!2

(8n+ 3)!
− 1

2

(4n+ 2)!2

(8n+ 5)!
− (4n+ 3)!2

(8n+ 7)!

]
.

(5.3)

By partial fractions decomposition and simplification, I was able to transform

it into a ‘cousin’ of BBP-type formulas with a rapidly rising additional factor in

the denominator

π =
1

45

∞∑
n=0

(
−1

4

)n
1(
8n
4n

) ( 3183

8n+ 1
+

117

8n+ 3
− 15

8n+ 5
− 5

8n+ 7

)
(5.4)

which may be written in the form

π

2
=
∞∑
n=0

(
−1

4

)n [
820n3 + 1533n2 + 902n+ 165(

8n
4n

)
(8n+ 1)(8n+ 3)(8n+ 5)(8n+ 7)

]
.

or

π =
22

7
−

∞∑
n=1

P (n)

n(4n− 1)(8n− 1)(8n− 3)(16n+ 1)(16n+ 3)(16n+ 5)(16n+ 7)

1

24n−1
(
16n
8n

) ,
(5.5)
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P (n) = 1717985280n7 + 747324416n6 − 238713984n5 − 103697680n4

+ 6801420n3 + 2995544n2 − 21201n− 10080.

We do not know whether such ‘natural’ formulas exist for the further convergents

of π, but I could derive this ‘artificial’ formula:

π =
355

113
− 1

8 · 19 · 113

∞∑
n=2

(9546n3 − 147727n2 − 55625n+ 409063)

(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)(2n+ 5)

(
2n
n

)
24n

(5.6)

and some more formulas like this for 22
7

π =
22

7
− 1

7

∞∑
n=1

n(102n+ 231)
(
2n
n

)
(2n+ 1)(2n+ 2)(2n+ 3)(2n+ 4)(2n+ 5)(2n+ 6)24n−2

. (5.7)

6. BBP-type Formulas for π
√

3

If we set θ = π
3 in the expansion in (3.2), we get following series with two

positive terms followed by two negative terms as every third term vanishes.

π
√

3 = 18
∞∑
n=1

(−1)n−1

8n

(
2

3n− 2
+

1

3n− 1

)
,

which, on shifting the summation index, becomes

π
√

3 =
9

4

∞∑
n=0

(
−1

8

)n(
2

3n+ 1
+

1

3n+ 2

)
. (6.1)

Using the standard notation, it becomes π
√

3 = 9
4P (1,−8, 3, (2, 1, 0)), which can

be transformed into π
√

3 = 9
32P (1, 64, 6, (16, 8, 0,−2,−1, 0)), or equivalently,

π
√

3 =
9

8

∞∑
n=0

1134n3 + 2097n2 + 1188n+ 193

64n(6n+ 1)(6n+ 2)(6n+ 4)(6n+ 5)
.

Formula (4.1), discovered by Adamchik and Wagon [1, 2], finds place as entry

(16) with associated entry (15) in the compendium of such formulas [5] while (6.1)

in the associated form is entry (18).

If we put θ = π
6 in (3.2), we obtain a sluggish alternating series having five

positive terms followed by five negative terms as every sixth term vanishes and we

get following formula with non-integral base.

π =
3
√

3

64

∞∑
n=0

(
−27

64

)n [
16

6n+ 1
+

24

6n+ 2
+

24

6n+ 3
+

18

6n+ 4
+

9

6n+ 5

]
. (6.2)

We now deduce some formulas which have unit-base though Bailey’s

compendium includes only those formulas with b > 1 for exponential rather than

linear rate of convergence.

Putting θ = π
3 in (3.4) in one obtains

π = 3
√

3

[ ∞∑
n=1

(
1

3n− 2
− 1

3n− 1

)]
. (6.3)
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Putting θ = π
2 and θ = π

3 in (3.5), we get the celebrated Madhava-Leibnitz-

Gregory series

π

4
=
∞∑
n=1

(−1)n−1
1

2n− 1
. (6.4)

π =
3
√

3

2

[ ∞∑
n=0

(−1)n
(

1

3n+ 1
+

1

3n+ 2

)]
. (6.5)

Putting θ = π
3 , θ = π

4 and θ = π
6 in (3.7), we get

π = 2
√

3

[ ∞∑
n=0

(
1

6n+ 1
− 1

6n+ 5

)]
. (6.6)

π = 2
√

2

[ ∞∑
n=0

(−1)n
(

1

4n+ 1
+

1

4n+ 3

)]
. (6.7)

π = 2

[ ∞∑
n=0

(−1)n
(

1

6n+ 1
+

2

6n+ 3
+

1

6n+ 5

)]
. (6.8)

If we add the equations (6.4) and (6.7), we obtain

π = 8(
√

2− 1)

[ ∞∑
n=0

(
1

8n+ 1
− 1

8n+ 7

)]
. (6.9)

Formulae (6.3) and (6.6) appear in §176 and §177 respectively of Chapter X,

Vol. I of Euler’s Analysis[12]. Formulas (6.7) and (6.9) occur in §179 there.

Putting θ = π
4 in (3.8) or θ = 3π

4 in (3.9) yields following interesting formula.

π

4
=

∞∑
n=0

(−1)n

(1 +
√

2)4n+2

(
2 +
√

2

4n+ 1
+

2

4n+ 2
+

2−
√

2

4n+ 3

)
. (6.10)

Finally, we give following efficient alternating base-3 or ternary formula

deduced by putting θ = π
6 in (3.4).

π
√

3 =
1

3

∞∑
n=0

(
−1

27

)n(
9

6n+ 1
+

9

6n+ 2
+

6

6n+ 3
+

3

6n+ 4
+

1

6n+ 5

)
. (6.11)

In the standard notation, this is π
√

3 = 1
3P (1,−27, 6, (9, 9, 6, 3, 1, 0)). The

alternating formula (6.11) transforms into

π
√

3 = 1
81P (1, 36, 12, (243, 243, 162, 81, 27, 0,−9,−9,−6,−3,−1, 0)).

Neither of the two forms is in Bailey’s compendium which has entry (66) as

π
√

3 = 1
9P (1, 36, 12, (81,−54, 0,−9, 0,−12,−3,−2, 0,−1, 0, 0)).
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Formula (6.11) can be written as

π
√

3 =
16

9

∞∑
m=0


26085556224m9 + 126116020224m8

+262617292800m7 + 307980610560m6

+223165269504m5 + 103065777216m4

+30145041120m3 + 5342703940m2

+515537612m+ 20359495


 729n(12m+ 1)(12m+ 2)(12m+ 3)

(12m+ 4)(12m+ 5)(12m+ 7)(12m+ 8)

(12m+ 9)(12m+ 10)(12m+ 11)


To compute the five relevant integrals, we can use the following general formula

for m < 2n given in [13]∫
xm−1dx

1 + x2n
= − 1

2n

n∑
k=1

cos
mπ(2k − 1)

2n
ln(1− 2x cos

π(2k − 1)

2n
+ x2)

+
1

n

n∑
k=1

sin
mπ(2k − 1)

2n
arctan

x− cos π(2k−1)2n

sin π(2k−1)
2n

.

Motivated by the formula (6.11), S. K. Lucas discovered following formula

with a general parameter e.

π =

∞∑
n=0

(
−1

27

)n(
9e

6n+ 1
+

2
√

3− 9e

6n+ 2
+

2
√

3− 12e

6n+ 3
+

2
√

3− 9e

3(6n+ 4)
+

e

6n+ 5

)
.

The choices of e = 2
√

3/9 and e =
√

3/6 eliminate fractions, giving

π =
2
√

3

9

∞∑
n=0

(
−1

27

)n(
9

6n+ 1
− 3

6n+ 3
+

1

6n+ 5

)
= 2
√

3

∞∑
n=0

(−1)n

3n(2n+ 1)
,

which is Abraham Sharp’s formula deduced by putting x = 1√
3

in the Maclaurin’s

series for arctanx. In fact on combining two consecutive terms, Sharp’s series

leads to following another BBP-type of formula.

π
√

3 = 2
∞∑
n=0

(
1

9

)n(
3

4n+ 1
− 1

4n+ 3

)
.

Two infinite classes of formulas like that of Sharp have been derived by the author

in his recent paper[21].

More formulas can be deduced by combining the various results. I am giving

only one of these – a ‘balanced formula’, sum of whose coefficients is zero.

π
√

3 = P (1,−33, 6, (9,−3,−6,−1, 1, 0)),

π
√

3 = 1
27P (1, 36, 12, (243,−81,−162,−27, 27, 0,−9, 3, 6, 1,−1, 0)).

This may be combined with the one given in the compendium to deduce

π
√

3 = 1
27P (1, 36, 12, (243, 0,−324,−27, 54, 36,−9, 12, 12, 5,−2, 0)).
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Bailey records this formula for log 7 as the entry (70) in his compendium

ln 7 = 2
35P (1, 36, 6, (405, 81, 72, 9, 5, 0)).

We discovered this pair of formulas using the integrals approach

ln 7 =
2

32
P (1,−33, 6(9, 0, 0, 0,−1, 0)), (6.12)

ln 7 =
2

35
P (1, 36, 12(243, 0, 0, 0,−27, 0,−9, 0, 0, 0, 1, 0)). (6.13)

In sigma notation, our 4-term formula is

ln 7 =
2

243

∞∑
n=0

1

729n

(
243

12n+ 1
− 27

12n+ 5
− 9

12n+ 7
+

1

12n+ 11

)
.

We may mention that the Japanese team led by Y. Kanada of Tokyo University

used Machin like arctangent identities for computing π. But while giving similar

exponential convergence, these formulae mix bases and thus are not as good as

Ramanujan type series or BBP-type formulae.

Our discovery of these BBP-type formulas shows that results can be discovered

mathematically which a sophisticated software may fail to find. However, given

the advantage that a computer has in terms of speed, memory and precision in

computation, there is no denying the fact that advanced computing technology, in

the shape of software such as Mathematica and Maple, can be used as an adjunct

in mathematical research for discovering new mathematical results as well as for

validation of empirically obtained conjectures. The author himself used a computer

program to discover Machin-like arctangent identities for π[20].
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WHAT ALL CAN YOU HEAR FROM A DRUM?

BINOY

(Received : 14 - 03 - 2015 ; Revised : 15 - 04 - 2015)

Abstract. This article surveys some results about the spectrum of Laplacian
on bounded planar domains.

Sound, which is one of the primary modes of communication, which is
varied in an abundant way in nature has always intrigued humans. Even in
the ancient Bronze age, people performed experiments and built different shaped
drums to understand, experience and to indulge in the sensory delight induced
by this simple physical phenomenon. As our knowledge and perception of natu-
ral phenomena is evolving in parallel with dynamically growing modern science,
our understanding of principles behind sound is also advancing. An elemen-
tary observation suggests that sound is produced when materials vibrate, like
the vibrations of a string or a membrane whose boundaries are fixed. German
researcher Ernst Chladni was one of the first who started a systematic inquiry
of sound by studying the vibrating plates in 18th century. His experimental

Figure 1. A pattern on a vibrating
Chladni’s plate.

model, which is now referred as
Chladni’s Plate consists of a metal
plate fixed in its middle. When the
plate is struck, it vibrates and produces
the sound. Performing the experiment
by pouring a small amount of sand on
the plate, the wave nature of the sound
can be physically observed [see figure 1]
as the sand accumulates only at those
parts of the plate which do not oscil-
late. When the plate is struck differ-
ently not only that different sound is
heard but the pattern formed by sand
also changes; which suggests its close
relation with the sound produced. Its no wonder that in a curious mind this
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simple experiment raises several questions like how exactly this pattern is related
to the sound? How are the shape and dimensions of the plate related to the sound
we hear and the pattern formed by sand? Is there a unique way in which the
pattern of the sand, the shape of the plate and the sound produced are related to
each other?

Physical aspect of the study of sound mainly concerns its wave nature. This
wave phenomenon of a vibrating membrane or a string is very general in the
sense that the underlying mathematical principle forms the basis for several other
natural phenomena. General laws of physics related to wave motions reduce this
study into analyzing the following mathematical equation called wave equation

∂2F

∂t2
= c∆F (0.1)

where F is a function of space and time variables, c is a real number and ∆ is the
Laplacian on the space variables. It will be redundant here to explain the process
by which physicists reduce a physical phenomenon into abstract equations as any
relevant physics book would explain them [5]. Still it is worth mentioning that
in its general form wave equation stands at the core of several fields of physics
such as hydrodynamics, heat propagation, quantum mechanics etc. To see how
helpful this equation is in the study of sound, the best way will be to begin with
the simple case of a vibrating string.

1. Strings
Consider a guitar, arguably the most popular musical instrument in the world.

The 6 strings on which guitarist brushes his or her fingernail to produce chords are
attached firmly at both ends. Guitarist produces different notes on a single string
by changing the length of that part of the string which vibrates. It is these notes
which are combined in artistic manner by a musician that gives the experience of
contentment to a music lover. If the element of sensory pleasure is set aside for a
moment from the notes produced by a vibrating string, the relationship between
the notes and the length of the string is immediate. It is a stodgy but unavoidable
fact that an entry into the the world of abstractness by getting out of the realm
of music is necessary to understand this relation better.

So, consider a string of length l with its ends fixed. To simplify the scenario
assume that it has a fixed thickness and is made up of a material of uniform density.
This string can be modeled as the interval [0, l] where the fixed ends correspond
to the points 0 and l. For x ∈ [0, l] let f(x, t) be the vertical displacement of the
point x at time t. Since at the end points vibration seizes to exist, f must satisfy
f(0, t) = f(l, t) = 0 for all t, which are called as the boundary conditions. The
wave equation (0.1)1 takes the following form in this case:

1Without loss of generality, the constant c appearing in the wave equation will be set to 1
throughout this article.
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∂2f

∂t2
(x, t) = ∂2f

∂x2 (x, t). (1.1)

A careful observation of the waves formed when the string is struck shows that
there is a particular type of wave which has a fixed underlying shape but its
amplitude changes with time. These waves, which are called standing waves,
have the form f(x, t) = g(x)h(t) where g represents the basic shape and h, the
amplitude. For this form of waves, the equation (1.1) takes the following form2

g(x)h′′(t) = g′′(x)h(t)
with the corresponding boundary conditions g(0) = g(l) = 0. The following
equivalent formulation of above equation

g′′(x) + λg(x) = 0 (1.2)

h′′(t) + λh(t) = 0 (1.3)
immediately gives the solutions as

g(x) = A sin(
√
λx) +B cos(

√
λx),

and
h(t) = C sin(

√
λ t) +D cos(

√
λ t),

where A,B,C,D are real constants and λ > 0. The boundary conditions on
g, which are used to obtain λ > 0, further imply that g(x) = A sin(

√
λx) and

λ = n2π2

l2 . Notice that h represents the amplitude of the wave and hence the
constants C and D are determined by the initial state of the string and hence
by the force with which it is struck. Since the frequency of sin(α t) or cos(α t)
is α

2π , the standing waves oscillate with a frequency of 1
2l ,

2
2l ,

3
2l , · · · . Or in other

words, when struck to create a standing wave, the string vibrates with one of the
frequencies among 1

2l ,
2
2l ,

3
2l , · · · . For a musician these are “overtone series”, in

particular 1
2l is the fundamental tone or the pitch of the string.

The above analysis, which employs only elementary mathematical tools, brings
out a remarkable property; by hearing the pitch of a vibrating string which is made
up of a material of uniform density and has a given thickness, it is possible to know
the length of the string. Said in poetical terms; “one can hear the length of a
string!” As length determines the frequency of vibration of the string completely,
this demonstrates the fact that there is a unique way in which vibrating frequencies
and strings are related. Also this prompts to ask the question: What about drums?
What all can be heard from a drum?

2. Drums
For a music enthusiast, it is rather easy to recognize the notes produced by

different drums in a musical concert. As in the case of guitar, when the drumhead
- the tightly stretched membrane over the opening of the drum, which are usually
in circular shape - is struck, it causes vibrations of various frequencies. Clearly,
the size/volume of the shell - the main cylindrical body - is a major factor which

2This is nothing but the familiar separation of variable technique!
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determines the sound produced by a drum(ignoring the fact that the material also
matters!). A not so obvious fact would be to distinguish the notes produced by two
drums which have the same shell volume but with different shaped drumhead, say
one circular and other triangular. In fact this illustrates the following profound
question which is being investigated by mathematicians for a couple of centuries.

What geometrical properties of a vibrating membrane, like perimeter, area,
shape etc. are determined by the tunes it produce?

To model this problem mathematically, the stretched membrane is identified
with a domain in plane which is denoted by Ω, and assume that its boundary is
fixed along a simple closed curve Γ. Ignoring the material properties like density,
elasticity3 etc., the vibrating motion of the membrane can be seen to satisfy the
wave equation (0.1). Similar to the one dimensional case of strings, in this case
also the standing waves produced by the membrane has the form F (x, y, t) =
g(x, y)h(t); which upon substitution in (0.1) gives the following set of equations:

∆g(x, y) + λg(x, y) = 0 for (x, y) ∈ Ω
g(x, y) = 0 for (x, y) ∈ Γ

(2.1)

and
h′′(t) + λh(t) = 0.

In contrast to equation (1.2), the above set of equations (2.1) is much harder to
solve. In fact, to prove that there exist a discrete sequence of positive real num-
bers and corresponding functions which solve problems of type (2.1) was a major
challenge in mathematical physics until early 20th century. Such a sequence of
numbers are usually referred as the spectrum or eigenvalues and the associated
functions as eigenfunctions corresponding to the problem. The non triviality and
difficulties encountered by physicists and mathematicians of earlier period in deal-
ing with this seemingly simple problem is well captured in the following remark
made by British spectroscopist Sir Arthur Schuster in 1882; “To find out the dif-
ferent tunes sent out by a vibrating system is a problem which may or may not be
solvable in certain special cases, but it would baffle the most skillful mathemati-
cians to solve the inverse problem and to find out the shape of a bell by means
of the sounds which it is capable of sending out. And this is the problem which
ultimately spectroscopy hopes to solve in the case of light. In the meantime we
must welcome with delight even the smallest step in the desired direction.”

Thanks to the theory of integral equations developed in the early 20th cen-
tury, the existence of spectrum, which is a discrete increasing sequence of positive
real numbers, and associated eigenfunctions are guaranteed for problems of type
(2.1) even in much more generality [15]. For such an existence, the domain and
its boundary need to satisfy certain conditions of technical nature. To avoid an

3These properties determine the constant c in equation (0.1) which has been set to 1.
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effortful journey through the technical jungles of abstract differential equation the-
ories, the domain and boundary in problem (2.1) will be assumed to satisfy those
conditions. This whole theory is not a superfluous addition to the mere pointless
intellectual exercise of an affluent arm chair mathematician, as there are real ex-
amples to demonstrate it. Among the domains for which a complete description
of spectrum is known, easiest is the case when Ω is a rectangle. Recalling that
on planar domains ∆ = ∂

∂x2 + ∂
∂y2 , the problem can be reduced into solving a

pair of one dimensional equations like (1.2), if the function g is sought to behave
separately in each variable, that is, if g has the form g(x, y) = f(x)h(y). In that
case the spectrum is obtained as the collection of numbers of the form π2(n

2

a2 + m2

b2 )
with the corresponding combinations of trigonometric functions as eigenfunctions
where a, b are the side lengths of the rectangle Ω and n,m are positive integers.

At this point, an inquisitive reader must be wondering; whether the spectrum
obtained above for a string and rectangle consists of all possible eigenvalues? Be-
cause those were gotten by imposing extra conditions on eigenfunctions and there
is no reason why a generic eigenfunction satisfies them. This is one of the places
where the theory of infinite dimensional Hilbert spaces helps spectral analysis. In
early 20th century, German mathematician David Hilbert formulated this theory
which gives a general framework for lot of different areas of mathematics. In par-
ticular, modern theory of differential equations heavily relies on it. But how does
the spectrum and eigenfunctions of problems (1.2) and (2.1) fit into the context of
this general theory? A closer look at these problems is needed to see this. Since
Laplacian is a linear operator, that is ∆(f + g) = ∆f + ∆g and ∆(cf) = c∆f ,
where c is a constant, the finite sum and constant multiples of solutions are again
a solution. In other words a new wave is formed when two standing waves are
superimposed. This property qualifies the solution set of (1.2) and (2.1) to be
called as a linear space, which together with a properly defined inner product (a
notion of product of two function which gives a real number) constitutes an inner
product space. The general Hilbert space theory applied to the solution set then
guarantees the existence of special subsets of the whole solution space which can
be used to represent a generic element. There is no better way to call these subsets
as bases as everything else in the space can be built up with them. It turns out
that in the case of string, collection of standing waves and in the case of rectan-
gle, collection of eigenfunctions described above are bases and hence the spectrum
obtained for them contains all possible eigenvalues!

Returning to the example of a rectangle, it is now clear that the spectrum
determines the side lengths and hence the rectangle. Thus among the collection
of rectangular drums, each drum produces distinct tones. Another illuminating
feature of this example is that it sheds light on the link between the choice of
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coordinate systems and the geometry of the domain in hand. The fact that the
perpendicular sides of a rectangle can be extended to give a coordinate system for
the plane, with the corner as origin, is what lies behind the separation of variables
technique used to find the quick solution. If the domain were a disc, this technique
would not have worked! As the shape suggests, best choice would be a coordinate
system which takes into account the rotational symmetry of the disc. For a disc
it then becomes natural to choose the polar coordinate system centered at the
center of the disc. Indeed when Ω is a disc of radius r such a choice reduces
the problem (2.1) to solving a second order ordinary differential equation called
Bessel’s equation [2]. The theory of Bessel’s equation is a well developed branch
of mathematics and gives that the first non zero eigenvalue is a constant multiple
of 1

r2 . Hence among the collection of all discs, each disc has its own tones.
Evidently, the domains considered so far, rectangle and disc, are dealt with

considerable easiness, but it would be a presumptuous attempt at this point to
make any conjecture about spectrum, and its relation to a general domain and
work towards it! In fact the enigmatic nature of mathematics reveals itself at one
of its best ways when the domain is a triangle as all the elementary tools fail in this
case. But, desperation turns into excitement when the versatile mathematician
looks into the tool box and finds the proper tool to attack the problem, which in
this case is the heat trace.
2.1. Heated Drums! Presume that a heat source is kept on the drumhead Ω at
time t = 0 in such a way that the temperature on the boundary Γ is zero. Then
the propagation of heat satisfies the heat equation

∂F
∂t (x, y, t) = ∆F (x, y, t) for (x, y) ∈ Ω
F (x, y, t) = 0 for (x, y) ∈ Γ and for all t > 0.

(2.2)

Here F represents the temperature at the point (x, y) in Ω at time t. Separating
the variables, a solution of the form F (x, y, t) = g(x, y)h(t) can be seen to satisfy

∆g(x, y) + λg(x, y) = 0 for (x, y) ∈ Ω
g(x, y) = 0 for (x, y) ∈ Γ

(2.3)

and
h′(t) + λh(t) = 0.

Even though heat dissipation and sound propagation are two different phe-
nomena, both mathematically and physically, occurrence of same set of equations
(2.1) and (2.3) in their mathematical models leads to a new way of dealing the
problem. Notice that the equation which is dependent on time variable is of first
order in this case, solution of which is h(t) = e−λt where λ is one of the possible
eigenvalues. As previously mentioned, the theory of integral equations assures the
existence of the spectrum which can be arranged as 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · and
the corresponding eigenfunctions φ1, φ2, φ3, · · · which forms a basis for the solu-
tions space. Thus the function e−λktφk(x, y) is a solution of the heat equation for
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any k. Moreover, because the collection {φk}∞k=1 is a basis, a generic solution can
be expressed as F (x, y, t) =

∑∞
k=1 ak e

−λktφk(x, y) where ak’s are constants. The
advantage of expressing the solution in this form is that it gives insights about
qualitative properties of the heat diffusion. For example, the dominant term in
the infinite sum involves only λ1 and φ1 as other terms wither away quickly with
time. This suggests that some information about the distribution of heat, and
hence about the shape, nearby the source for initial time t near 0, that is imme-
diately after the source was placed on the drumhead, is encoded in λ1 and φ1.
Considerations similar to this prompts the study of heat trace associated with the
domain, which is given by

H(t) =
∞∑
k=1

e−λkt, t > 0. (2.4)

An elaborate analysis [16], details of which involve interesting and sophisticated
mathematical concepts, of heat trace for domains Ω with polygonal boundary Γ
shows that

H(t) =
∞∑
k=1

e−λkt = b1
t

+ b2√
t

+ b3 +O(e− c
t ) as t → 0

for some constant c > 0 where

b1 = A

4π , b2 = − L

8
√
π
, b3 = 1

24
∑
i

(
π

θi
− θi
π

)
where A = Area(Ω), L = Length(Γ) and θi’s are the interior angles of the polygon
Γ. When Ω is a triangle,

∑
i θi = π, hence b3 = 1

24
∑3
i=1

1
θi
− 1

24 . So far the
analysis shows that area, perimeter, and the sum of reciprocals of angles of a
triangle are spectral invariants, i.e., for triangles with identical spectrum, these
quantities would be identical. But then, is a triangle determined uniquely by its
area, perimeter and the sum of reciprocals of angles? An affirmative answer to
this question would prove that like rectangle and disc, triangle is also determined
by its spectrum among similar objects.

When it comes to deception it is doubtful that there is another subject which
poses a threat to the pole position mathematics holds. It is full of such naive ques-
tions which stand unshattered in front of utmost cunning and intricate
strategies by brilliant mathematicians for centuries. Weighed against the famous,
now solved, problem like Fermat’s last theorem which exemplifies the scenario
of proportionality in simplicity and difficulty of a statement and its proof, the
above mentioned question about triangle would feel very light. Still, its first proof
appeared in [6] uses the wave trace, an equation similar to (2.4) for the wave
equation, which is much harder to deal with than heat equation. At the same
time its second proof [9] legitimizes the metaphysical principle that the beauty of
mathematics lies in its simplicity as it uses only accessible elementary tools. This
proof underlies on the simple fact that for a triangle
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L2

4A = cot α2 + cot β2 + cot γ2 .

It remains to prove that a triple (α, β, γ) of positive real numbers satisfying α +
β+γ = π is uniquely determined by the values of g(α, β, γ) = cot α2 +cot β2 +cot γ2
and h(α, β, γ) = 1

α + 1
β + 1

γ , which is done by studying the convexity properties of
these functions.

The heat trace gives another wonderful insight into the following related prob-
lem: Suppose that two different drum heads have same area but different shapes.
Then how are their tunes related?. If two such drum heads are heated in a same
way for the same amount of time, it is reasonable to expect that the heat should
diffuse faster on the one which has bigger boundary (because on the boundary
temperature should be zero). Instinctively a related question arise: for a given
area, which planar domain has the minimal perimeter? A mere glimpse into
nature is sufficient to guess the correct answer, in fact the fascinating view of
colorful bubbles formed when a soap film is blown is just one among the
ubiquitous ways in which nature exhibits the solution of this question.
Minimization is one of the prevalent principles of nature and the spherical shape
of soap bubbles is due to the fact that among all the domains of given volume,
sphere has the minimum surface area. For the planar domain it would be the
disc which has this property. By passing the rigorous proof of this statement, and
recalling that λ1 and φ1 dominates the heat trace for large time, if a domain Ω
has the same area as that of a disc B, then it is logical to conjecture that

λ1(Ω) ≥ λ1(B).
This is the famous Faber-Krahn inequality which was proved in 1923 [2]. It is
one of the very few sharp inequalities related to spectrum in the sense that if
Area(Ω) = Area(B) and λ1(Ω) = λ1(B), then Ω must be a disc.

Though area of disc and of a domain with polygonal boundary is a
spectral invariant, as seen above using heat trace, so far it is not clear whether
such a result holds for general domains. If such a result is true, then from the
Faber-Krahn inequality it is clear that if a domain has the same spectrum as that
of a disc, then it must be the disc. Which is to say; one can hear everything from
a drum with circular shaped drumhead! A result to that effect can be proved by
studying the heat trace, but this time its the end, not the beginning of the infinite
series which comes under the scrutiny. Instead of excursing into the asymptotic
world of heat trace to prove such a result, a more elementary approach will be
worth exploring as it brings into light some interesting aspects of spectrum.
2.2. Area. In the second decade of 20th century, German mathematician Herman
Weyl proved one of the earliest asymptotic formula for the spectrum. Inspired by
a lecture delivered by the mathematical physicist H. A. Lorentz on black body
radiation, Weyl proved the formula, which is referred as Weyl’s law, using the
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techniques developed by Hilbert. Also his proof added a fresh chapter into the
folklore of blissful ironies of mathematicians as Hilbert is said to have predicted
that such a formula would not be proved in his life time, but within few months
his student Weyl proved it!

For the problem (2.1) Weyl’s formula takes the following form:

N(λ) ∼ Area(Ω)λ
4π (2.5)

where for a real number λ, N(λ) is the number of eigenvalues less than or equal to λ
and the symbol ∼ means that the two quantities become equal when λ approaches
infinity. An elementary proof of this rests on the answer to the following question:
if Ω′ is a smaller domain which is contained in Ω, then how are their eigenvalues
related? More precisely, if the spectrum of Ω and Ω′ are arranged as 0 < λ1 ≤ λ2 ≤
· · · and 0 < λ′1 ≤ λ′2 ≤ · · · respectively, then for an integer k how are λk and λ′k
related? It is apparent that merely from its implicit appearance in (2.1) or from the
formulas like heat trace which involves an infinite sum, the distinctive relations
between eigenvalues would be hard to conclude. For such an understanding a
more individualistic study of eigenvalues is needed. Earliest such attempts were
made by Rayleigh in 1870’s when his famous study of vibrating systems began.
Rayleigh observed that the conservation of energy principle, when applied suitably
for a vibrating system, the maximum of potential energy and kinetic energy of the
system should be equal and it is possible to get the natural frequencies by taking
the ratio of them [13]. It is easy to check this for the case of string as the solutions
of wave equation are explicitly known. For the membrane, suppose that a function
of the form F (x, y, t) = g(x, y)h(t) solves the wave equation where g and h satisfies
(2.1) for some λ. The velocity of this wave is obtained by taking the time derivative,
∂F
∂t = g(x, y)h′(t) and since h satisfies h′′(t) + λh(t) = 0, the maximum velocity
is equal to

√
λg(x, y). So, the maximum kinetic energy of the wave is given by

λ
∫

Ω g
2. Similarly, the maximum potential energy equals

∫
Ω |∇g|

2(constants are
ignored in both cases without loss of generality) and hence

λ =
∫

Ω |∇g|
2∫

Ω g
2

where |∇g| =
√
g2
x + g2

y and gx and gy are partial derivatives of g with respect to
x and y respectively. The ratio on RHS in above equation is known as Rayleigh
quotient. Note that above formula can be used to find an eigenvalue if and only if
the related eigenfunction is known. One of the interesting things Rayleigh proved
was if the Rayleigh quotient is computed for a suitable function, then it can not

be lower than fundamental frequency, ie; λ1 ≤
∫

Ω
|∇f |2∫
Ω
f2 , and in fact

λ1 = inf
∫

Ω |∇f |
2∫

Ω f
2 (2.6)



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

62 BINOY

where the infimum is taken over all admissible functions, those f which vanish
on boundary (to be precise, among all functions which are compactly supported
inside the domain) and the equality is achieved if and only if f is an eigenfunction.
This formula at once shows λ1 ≤ λ′1, as any admissible function on Ω′ can be
extended to an admissible function on Ω by defining it to be zero in Ω \ Ω′.

Though it seems that this method works only for λ1, Rayleigh quotients do
exist for higher eigenvalues. A short detour into the familiar world of 2×2 matrices
would clarify the essential ideas behind them.
Consider a 2× 2 diagonal matrix,

A =
[
λ1 0
0 λ2

]
with 0 < λ1 ≤ λ2. Clearly the eigenvalues of this matrix, which are the roots of
its characteristic polynomial, are λ1 and λ2. This matrix viewed as a linear map
on the plane takes a vector (x, y) into[

λ1 0
0 λ2

][
x

y

]
=
[
λ1x

λ2y

]
,

in particular A((1, 0)) = λ1(1, 0) and A((0, 1)) = λ2(0, 1), showing that (1, 0) and
(0, 1) are the corresponding eigenvectors. The important observation to make is
that the map Amerely stretches the vectors (1, 0) and (0, 1) to λ1(1, 0) and λ2(0, 1)
respectively with out changing their directions. This implies that

〈A((1, 0)), (1, 0)〉 =‖A((1, 0))‖ ‖(1, 0)‖= λ1 ‖(1, 0)‖2

and
〈A((0, 1)), (0, 1)〉 =‖A((0, 1))‖ ‖(0, 1)‖= λ2 ‖(0, 1)‖2

where the inner product is the standard dot product; 〈(x1, y1), (x2, y2)〉 = x1x2 +
y1y2 and ‖ (x1, y1)‖=

√
〈(x1, y1), (x1, y1)〉, the length of the vector (x1, y1). This

shows that

λ1 = 〈A((1, 0)), (1, 0)〉
‖(1, 0)‖2 and λ2 = 〈A((0, 1)), (0, 1)〉

‖(0, 1)‖2 .

It can be easily shown that being the smallest eigenvalue, λ1 is given by

λ1 = inf
(x,y)

〈A((x, y)), (x, y)〉
‖(x, y)‖2 (2.7)

The fact that eigenvector corresponding to λ2 is perpendicular to (1, 0) would then
imply that

λ2 = inf
(x,y)⊥(1,0)

〈A((x, y)), (x, y)〉
‖(x, y)‖2 .

Undoubtedly, order of the matrix is irrelevant as all calculations can be done
in a similar way for a n × n diagonal matrix and also the similarity between
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equations (2.6) and (2.7) should not be left unnoticed. A careful look would yield
the following properties which are crucial to the above calculations

(1) the matrix is diagonal,

(2) eigenvectors corresponding to different eigenvalues form a basis and are
perpendicular to each other with respect to the dot product4,

(3) the linear operator A is acting on a space which is of finite dimension.
As noticed earlier, Laplacian is a linear operator on the solutions space of problem
(2.1) which helps to detect a similarity with the case of 2× 2 matrices; both deal
with eigenvalues of linear operators, one defined on an infinite dimensional space
and other on a finite dimensional space. Apart from being infinite dimensional, as
of now, what is missing on the space of solutions which prevents similar calculations
is an appropriate notion of inner product which guarantees that eigenfunctions
corresponding to different eigenvalues of Laplacian form a basis as well as they
are perpendicular to each other. Also when the method is applied to the first
eigenvalue the result should be consistent with the Rayleigh quotient (2.6). Inner
products which incorporate this consistency criteria indeed exist and the solution
space with those specially defined inner products is called as the Sobolev space.5

Even then, these inner products are not an affirmation of the existence of a basis
consisting of mutually perpendicular eigenfunctions of the Laplacian. So, at this
moment it would take a giant leap of faith to infer anything about the eigenvalues
of problem (2.1) from the above glance into linear algebra. But, when such a
leap is backed by the famous spectral theory of compact self adjoint operators,
the inferences based on faiths can be turned into provable facts [15]. This theory
applied in the present context essentially proves all the three properties listed for
operators like Laplacian defined on Sobolev spaces of functions defined on suitable
domains. It is therefore possible to obtain analogous formula for eigenvalues of
problem (2.1) as in the case of matrices; if W denotes the space of admissible
functions then,

λ1 = inf
f∈W

∫
Ω |∇f |

2∫
Ω f

2

and if W1 denotes the space of all functions in W which are perpendicular to the
eigenfunctions of λ1, then

λ2 = inf
f∈W1

∫
Ω |∇f |

2∫
Ω f

2

and so on.

4Properties 1 and 2 are actually equivalent.
5Usually Sobolev space is defined as the subspace of square integrable functions which possess

weak derivatives and on it various inner products are defined. This subspace is referred as solution
space in this article.
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Proceeding as in the case of first eigenvalue, with the help of corresponding
Rayleigh quotients comparison for higher eigenvalues can now be obtained [2], i.e.,
for every integer k > 0, λk ≤ λ′k. More generally, assume that the domain Ω is filled
with pairwise disjoint smaller domains Ω1,Ω2, · · · ,Ωr, such that their boundaries
when intersecting with ∂Ω do so transversally. Then if 0 < ν1 ≤ ν2, · · · , is the
collection of all eigenvalues of problem (2.1) on domains Ω1,Ω2, · · · ,Ωr with each
eigenvalue repeated according to its multiplicity 6, then for all integers k > 0

λk ≤ νk. (2.8)

With this new information in hand, a possible way to prove the Weyl’s law would
be to approximate Ω from inside and outside by domains whose eigenvalues and
their distributions are explicitly known. As these things are known for squares,
the best choice would be to consider a grid as shown in the figure below [1].

Ω

Ωi Ωe

Ω

Figure 2

If 0 < λi1,≤ λi2, · · · and 0 < λe1 ≤ λe2 · · · are the collections of all eigenvalues
(repeated according to its multiplicity) of all squares in the domains Ωi and Ωe
respectively, then λek ≤ λk ≤ λik by the above mentioned domain monotonicity
relation. This sandwiched state of λk when used in conjunction with the easily
computable N(λi) for the domain Ωi and N(λe) for Ωe gives the Weyl’s law (2.5).

With the examples of squares, discs, polygons and Weyl’s law, which clearly
shows that area of a domain is a spectral invariant, now it is time for the question;

3. Can you hear the shape of a drum?
It is very rare that a complex mathematical question can be asked in an

aesthetic way and this famous question, which was posed by Mark Kac in 1966
[10], is an example of that. Milnor [11] had already given a negative answer to
a similar question for higher dimensional spaces in 1964. Milnor’s proof present
another intrinsic nature of the problem which is the relationship between geodesics,
which are the shortest paths connecting two nearby points in a domain, and the
eigenfunctions and eigenvalues. This is plausible as the wave always chooses the

6As in the case of matrices, the eigenvalues of Laplacian also have finite multiplicity which
can be greater than one.
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shortest path to travel. In the plane, obviously straight lines are shortest paths
connecting two points. But a bit more ingenuity is needed to understand the
notion of geodesics when the space is curved like a torus. The way a torus is
usually constructed is by identifying the opposite edges of a rectangle.

Figure 3

As this can be done with out shearing or stretching the rectangle, locally on such
a torus the distances and angles between the lines will be same as those in the
rectangle, that is to say torus is locally flat like a rectangle. But an attentive effort
would show that the geodesics in the rectangle and on the torus behave differently.
For example, there is only one geodesic connecting any two points in the rectangle
which is not true on torus! Probably the most important difference is that on torus
there are closed geodesics7 which do not exist at all on a rectangle and this implies
that unlike on rectangle, waves can travel on closed paths on a torus. This at once
suggests that though torus is locally flat like rectangle, solutions of problem (2.1)
may be different when considered on them8 and more importantly the lengths of
such closed geodesics could influence the frequency of waves and hence eigenvalues.

Now torus can be constructed by identifying the opposite edges in different
ways, like after giving a twist. In these ways from the same rectangle different
toruses can be obtained! Such constructions can also be done in an abstract way
in higher dimensions by identifying opposite edges of cubes. Milnor carefully chose
two such different toruses of dimension 16 whose closed geodesics have the same
lengths. Toruses like that were already known to be isospectral, i.e., they have
same set of eigenvalues, thus giving the first example of two different spaces with
same spectrum. It is also to be mentioned that Milnor’s is just one among several
fascinating results about the spectrum and its relations with geodesics [3, 4, 12].

Apparently Milnor’s ideas could not be used to address the case of planar
domains, which motivated Kac to ask his famous question 2 years after Milnor’s
result. The question remained elusive for another 26 years until in 1992 Gordon,
Webb and Wolpert [8] exhibited the two domains9 in figure 4 which have the same

7Geodesics which are closed curves.
8Notice that the boundary condition disappears on torus as it has no boundary!
9This picture and the brief description given are taken from the expository article [7].
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Figure 4

spectrum but are not geometrically congruent to each other. They constructed
these domains by gluing 7 copies of a model triangle T along its edges in two
different ways. If the edges of T are denoted as α, β and γ, then the only condition
for gluing is that the copies of it should be glued along matching edges.

If every eigenfunction on domain D1 can be transplanted to domain D2 and
vice versa, then both domains should have same spectrum. But how is it possible
to transplant functions from one domain to other? A look back into the case of
string gives the needed intuition to perform such an action. Suppose that F is an
eigenfunction on the interval [0, l]. Then, joining the negative of mirror reflection
of F at the end point 0, F can be extended to an eigenfunction on [−l, l]. It is the
boundary condition imposed on F which enables such a smooth extension. If a
planar domain is constructed by joining several pieces together, then an analogous
reflection principle may be used to extend eigenfunctions of small pieces beyond
their boundaries and hence to the whole domain in a smooth way. This suggests
that it may be possible to extend the restriction of an eigenfunction of D1 on the
model triangle to whole of domain D2 in a smooth way. Gordan et al. showed that
such a procedure can be performed on these two domains as illustrated in figure
5. The letters on each individual triangle on D1 is just a renaming of restrictions
of an eigenfunction F to respective pieces and on triangles on D2, the formulas
represent the pieces of transplanted function which join together to give a smooth
function. To see how the joining works, consider the top two triangles 1 and 2 in
D2, in figure 4. These triangles constitutes the bottom square in D1. In figure 5,
on the outer boundary of the top triangle in D2, the function G+ F − C is zero.
This is true because an eigenfunction of D1 will be zero on its boundary and the
edges α and β in the outer boundary are part of the boundary of D1. On the
common edge, the function takes the values G+F −C and E −D−G. But they
are equal as on this edge γ, F equals E, because its the shared edge of triangles
1 and 2 in D1 and the values of D,G, and C are equal to that of the original
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D1

AB

C
D

E

F

G

D2

E-D-G
G+F-C

E
-B

-F

D+F-A
A+C+E

B
-C

+
D

G
+
B
-A

Figure 5
eigenfunction F . Proceeding in a similar fashion it is possible to show that the
transplanted function on D2 is in fact an eigenfunction. This process when done
with changing the role of D1 and D2, shows that both domains have the same
eigenfunctions and same eigenvalues.

One may wonder why it took 28 long years for mathematicians to discover
this simple method. That’s because camouflaged behind this seemingly trivial
manipulation is a deep result which justifies all these actions in a rigorous way.
An exposition into this result, which was proved by Sunada [14] in 1984 would
require to open a new door which connects spectral theory with another area of
mathematics, the group theory.

It is the right time to stop this short expedition, as by this time the reader
must be convinced that spectral geometry, which began by asking questions about
strings and drums has been expanded vastly in last century with many facets
which links it to several other areas of mathematics; and that all aspects of it
can not be contained in a single article. Even though, several remarkable results
were proved in these years, it’s far from completely understood. There are still
numerous fundamental questions which are yet to be addressed and the best way
to finish this article is by mentioning one of them: it is not known whether there
exist two geometrically incongruent planar domains with smooth boundaries which
are isospectral!
Acknowledgment: The author highly appreciates the comments and suggestions
given by two anonymous referees which helped to improve the article.
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Abstract. For fixed positive integers m and �, we give a complete list of

integers n for which their exist mth complex roots of unity x1, . . . , xn such

that x�
1 + · · ·+ x�

n = 0. This extends the earlier result of Lam and Leung on

vanishing sums of roots of unity. Furthermore, we characterize all positive

integers n with 2 ≤ n ≤ m, for which there are distinct mth complex roots

of unity x1, . . . , xn such that x�
1 + · · ·+ x�

n = 0.

1. Introduction

Let m be a positive integer. By an mth root of unity, we mean a complex

number ζ such that ζm = 1. That is, a root of the polynomial Xm − 1. One can

easily see that the roots of Xm − 1 are distinct, in fact there are exactly m, mth

roots of unity. Using the relationship between the roots and the coefficients of a

polynomial, we see that the sum of allmth roots of unity, which is the coefficient of

Xm−1 in Xm−1, is zero. A natural question is: What are all the positive integers

n for which there exist mth roots of unity x1, . . . , xn (repetition is allowed) such

that x1 + · · ·+ xn = 0. A beautiful result of T. Y. Lam and K. H. Leung [1] gives

a complete classification of all such integers. Suppose m has prime factorization

pa1
1 . . . par

r , where ai > 0, then we have the following theorem due to Lam and

Leung.

Theorem 1.1. Let n be a positive integer. Then there are mth roots of unity

x1, . . . , xn such that x1+· · ·+xn = 0 if and only if n is of the form n1p1+· · ·+nrpr

where each ni is a non-negative integer for 1 ≤ i ≤ r.

Theorem 1.1 motivate us to ask the following question.

Question 1. Let m and � be positive integers. What are all the positive integers

n for which there exist mth roots of unity x1, . . . , xn such that x�1 + · · ·+x�n = 0 ?

Note that when � = 1, the complete answer to Question 1 is given by Theorem

1.1. However, for � ≥ 2, we do not find any results in this direction in the literature.

Our objective here is to study the case when � ≥ 2. First, we fix some notations.

Let m be a positive integer, and let Ωm denotes the set of all mth roots of unity.

2010 Mathematics Subject Classification: Primary 11L03 , Secondary 11R18.

Keywords and Phrases: Roots of unity, Power sum.

c© Indian Mathematical Society, 2015 .

69



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

70 NEERAJ KUMAR AND K. SENTHIL KUMAR

For a positive integer �, W�(m) denotes the set of all positive integers n for which

there exist n-elements x1, . . . , xn ∈ Ωm such that x�1 + · · · + x�n = 0. When

� = 1, we simply denote W�(m) by W (m). With this notation, Question 1 can

be reformulated as follows: Let m and � be positive integers. What are all the

positive integers in the set W�(m) ?

It is clear that if m divides � then W�(m) is an empty set. Suppose that there

are mth complex roots of unity, say, x1, . . . , xn such that x�1 + · · ·+ x�n = 0. Since

the �th power of an mth root of unity is still an mth root of unity, the equation

x�1 + · · · + x�n = 0 with xi ∈ Ωm can be written in the form y1 + · · · + yn = 0

with yi ∈ Ωm. This shows that for any positive integer m and �, W�(m) is a

subset of W (m). It follows from Theorem 1.1 that any positive integers in the

set W�(m) must be of the form n1p1 + · · ·+ nrpr where each ni is a non-negative

integer for 1 ≤ i ≤ r. In Section 2, we give a complete list of integers in the set

W�(m) ( see Theorem 2.1). Moreover, in Section 3 we find all positive integers

n ∈ W�(m) for which there are distinctmth complex roots of unity x1, . . . , xn such

that x�1 + · · ·+ x�n = 0 ( see Theorem 3.1).

There are algebraic aspects why Question 1 is important. For instance, for a

positive integer a, denote by pa the power sum polynomial Xa
1 + · · ·+Xa

n of degree

a. Let � and k be positive integers such that � < k. In commutative algebra, one

encounters the following situation. To show that the ideal 〈p�, pk〉 generated by

the polynomials p� and pk is a prime ideal in C[X1, . . . , Xn], one needs to show

that the power sum polynomial X�
1 + · · · + X�

n does not vanish when one allows

the Xi’s to take values among the (�−k)th roots of unity [2, see proof of Theorem

3.8].

Acknowledgment: We are grateful to Professor Ram Murty for his valuable sug-

gestions regarding the paper. We also thank the referee for many useful comments

for improving the manuscript. This project was funded by the Department of

Atomic Energy (DAE), Government of India.

2. vanishing of power sums of roots of unity

Let m and � be positive integers. In this section, we completely characterize

all the positive integers in the set W�(m). More precisely, we prove the following

theorem:

Theorem 2.1. Let m and � be positive integers. Let d = (m, �) be the greatest

common divisor of m and �. Then W�(m) =W (m/d).

In other words, Theorem 2.1 says that: For any positive integer n, x�1 + · · ·+
x�n = 0 with xi ∈ Ωm if and only if y1 + · · ·+ yn = 0 with yi ∈ Ωm/d.

Proof. It is well known that Ωm, that is, the set of all mth roots of unity, form a

group with respect to the multiplication of complex numbers. In fact, it is a cyclic

group of order m, generated by the complex number ζm = cos 2π/m+ i sin 2π/m.
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There is a remarkable property about finite cyclic groups. Namely, if G is a finite

cyclic group and � is a positive integer relatively prime to the order of G, then the

map
x �−→ x� (x ∈ G) (2.1)

is an automorphism of G (In fact, all the automorphisms of G are of the form (2.1)

for some integer � which is relatively prime to the order of G). It follows that,

if � is a positive integer which is relatively prime to m then every element of Ωm

is a �th power of some element of Ωm. Thus, for an integer � which is relatively

prime to m, the equation x�1 + · · · + x�n = 0 with xi ∈ Ωm can be replaced by

y1 + · · · + yn = 0 with yi ∈ Ωm, and vice versa. This discussion proves Theorem

2.1 for the case when � is relatively prime to m.

Now assume that d > 1. Consider the map

ψd : Ωm −→ Ωm/d (2.2)

defined by x �→ xd for x ∈ Ωm. This map is clearly onto, and the kernel is exactly

Ωd. Thus, Ωm/Ωd
∼= Ωm/d. Now suppose that there are elements x1, . . . , xn ∈ Ωm

such that x�1 + · · · + x�n = 0. Then this sum can be rewritten as
(
x
�/d
1

)d

+ · · · +
(
x
�/d
n

)d

= 0. Since �/d and m are relatively prime, by the above discussion, the

latter equation can be rewritten in the form yd1 + · · · + ydn = 0 with yi ∈ Ωm.

Finally, using the map ψd, the latter sum can be realized as z1 + · · · + zn = 0

where zi ∈ Ωm/d for 1 ≤ i ≤ n. In fact, all these steps can be reversed. This

completes the proof of Theorem 2.1. �
Combining Theorems 1.1 and 2.1, we have the following corollary.

Corollary 2.1. Let m, n and � be positive integers. Let d = (m, �) be the greatest

common divisor of m and �. Then there are mth roots of unity x1, . . . , xn such that

x�1 + · · ·+ x�n = 0 if and only if n is of the form n1q1 + · · ·+nsqs where each ni is

a non-negative integer for 1 ≤ i ≤ s and q1, . . . , qs are distinct prime divisors of

m/d.

Example 2.1. Let m = 60, and let � be an integer with 1 ≤ � < 60. By Theorem

2.1, W�(m) =W (m/d) where d is the greatest common divisor of m and �. When

d varies over the divisors ofm, m/d also varies over the divisors ofm. ThusW�(m)

coincides with W (d) for some divisor d of m. On the other hand, by Theorem 1.1,

W (d) =
∑s

i=1 qiN where d = qb11 . . . qbss is the prime factorization of d. Here N

denotes the set of non-negative integers. We thus have the following table which

describe W (d) for all positive divisors d of m = 60.

3. vanishing of power sums of distinct roots of unity

Let m and � be two positive integers. For an integer n ∈ W�(m), the height
H(n; �,m) of n is defined to be the smallest positive integer h for which there are
mth roots of unity x1, . . . , xn such that x�1+ · · ·+x�n = 0 and the maximum among
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d W (d)

1 ∅
2 2N

3 3N

4 2N

5 5N

6 2N + 3N = N \ {1}
10 2N + 5N = N \ {1, 3}
12 2N + 3N = N \ {1}
15 3N + 5N = N \ {1, 2, 4, 7}
20 2N + 5N = N \ {1, 3}
30 2N + 3N + 5N = N \ {1}
60 2N + 3N + 5N = N \ {1}

the repetition of xi’s is h, that is, h is the maximum among the hi, where hi is

the number of times xi appears in the list x1, . . . , xn. When � = 1, we denote

H(n; �,m) by H(n;m). Note that H(n;m) = 1 provided 2 ≤ n ≤ m. Gary Sivek

[3] refined the work of Lam and Leung by proving that for any integers m ≥ 2 and

2 ≤ n ≤ m, H(n;m) = 1 if and only if both n and m−n are expressible as a linear

combination of the prime factors of m with non-negative integer coefficients. Here

we extend Sivek’s result to vanishing of power sums of distinct roots of unity.

Theorem 3.1. Let m and � be positive integers, and let n be an integer such that

2 ≤ n ≤ m. Let d be the greatest common divisor of m and �. Then H(n; �,m) = 1

if and only if H(n;m/d) ≤ d.

Proof. Let Ωm/d = {z1, . . . , zm/d}. Suppose that there are distinct mth roots of

unity x1, . . . , xn such that x�1 + · · · + x�n = 0. Since d is the greatest common

divisor of � and m, this equation can be rewritten in the form yd1 + · · · + ydn = 0

with y1, . . . , yn are mth roots of unity. Using the map ψd, the latter equation can

be written as
∑m/d

i=1 aizi = 0 where ai is the cardinality of the set {y1, . . . , yn} ∩
ψ−1
d (zi) for 1 ≤ i ≤ m/d. On the other hand, ψ−1

d (z) has exactly d elements for

each z ∈ Ωm/d. It follows that H(n;m/d) ≤ max{a1, . . . , am/d} ≤ d. This proves

that if H(n; �,m) = 1 then H(n;m/d) ≤ d.

Conversely, suppose that H(n;m/d) ≤ d. Then there is a partition (a1, . . . ,

am/d) of n into non-negative integers ai with ai ≤ d for 1 ≤ i ≤ m/d and∑m/d
i=1 aizi = 0. Let yi be any element of ψ−1

d (zi) for 1 ≤ i ≤ m/d. Then ψ−1
d (zi) =

yiΩd = { yix | x ∈ Ωd}. Since ai ≤ d, one can replace aizi by y
d
i (x

d
1 + · · · + xdai

)

where x1, . . . , xai are distinct elements of Ωd. Hence H(n; �,m) = H(n; d,m) = 1

since
∑m/d

i=1 ai = n. This completes the proof of Theorem 3.1. �
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SNELL’S LAW AT THE BOUNDARIES OF REAL
ELASTIC MEDIA*
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Abstract. An ideal elastic medium represents an isotropic, perfectly (loss-

less) elastic, single phase medium but a real one includes the presence of

anisotropy, porosity (multi-phase), dissipation or attenuation. The present

study considers the propagation of harmonic plane waves across the plane

boundaries of real elastic media. Snell’s law for the phenomenon of reflection

comes from the boundary conditions at the free surface of the elastic medium.

The boundary conditions at the common interface between two elastic media

yield the same law for the reflection/refraction phenomenon. Snell’s law en-

sures that the propagation of reflected / refracted waves confine to the plane

formed by the incident wave and the normal to the boundary (at the point

of incidence). It is used further to derive the propagation characteristics (ve-

locities, directions of propagation/attenuation) of reflected/refracted waves

from those of the incident wave. It may be noted that an ideal description is

a particular case of the real one but the real description can not be a simple

and straightforward extension of the ideal description.

1. Introduction

The concepts of anisotropy, dissipation, anelasticity and porosity in elastic

media have gained much attention in recent years. Applications of the relevant

studies cover a variety of fields including civil engineering, non-destructive testing,

soil mechanics, earthquake preparation, underwater acoustics, exploration seis-

mology and geophysics. The structural properties of in-situ rocks are obtained

mainly from the seismic properties such as travel times (or velocities), amplitude

information (reflection/refraction coefficients) and wave polarizations (motion of

constituent particles). These measurable quantities are affected by the presence of

anisotropy, anelasticity and porosity. Ocean covers a nearly three-fourth of earth’s

surface and sediments at ocean-bottom provide the most appropriate examples of

* This article is dedicated to the memory of my Ph.D. supervisor late Professor M. L. Gogna

(1931-2010).
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on, inhomogeneous waves.

c⃝ Indian Mathematical Society, 2015.
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saturated porous materials in the crust. In such water-saturated particulate mate-

rials, energy loss occurs due to friction in fluid flow and/or anelasticity of skeletal

frame. The texture of an ocean sediment is complicated because it is a cou-

pled multi-phase composite consisting of a solid phase of oriented grains and fluid

phases of pore water and gases. Dissipation of energy happens due to the viscous

losses at the points of inter-granular contact when there is any relative motion

between pore-fluids and skeletal frame. Then, with the presence of frame anelas-

ticity in addition to the anisotropy, the mechanics of ocean sediments becomes

further complicated. This demands more attention to the theoretical studies of

wave propagation in more realistic models of porous media.

The assumption of isotropy in the propagation of seismic waves is made for

mathematical convenience. On the contrary, seismic anisotropy is widespread in

many types of rocks at many depths in many geological and tectonic environments

and it has widespread applications in the various areas of economic and scientific

interest ([12]). Lithological and crystal alignments, pre-stresses, aligned cracks,

periodic thin layering and fluid-filled pores are identified as the major causes of

seismic anisotropy. The absence of point symmetry in pore distribution results in

the anisotropy of general type with arbitrary symmetry. Gurevich ([14]) investi-

gated that the fluid-saturated porous rocks with aligned fractures, in an isotropic

porous background, can be represented as anisotropic poroelastic aggregate.

The crustal rocks are always subjected to stresses. The slow process of creep

inside the earth creates a differential stress environment in the crust, which is

responsible for the preferential alignments in the Earth, ranging from mineral

orientations, grains, or microcracks to sedimentary folds or regional fractures.

The difference between confined tectonic stress and pore-fluid pressure conducts

the flow of fluid to a reservoir through the connected cracks. This signifies that

initial stress and crack-induced anisotropy not only coexist in the crust but will,

also, be affecting the quality/quantity of each other. For the presence of pre-stress

or aligned cracks, an elastic medium behaves anisotropic to wave propagation

([12]).

Piezoelectric materials show a unique electromechanical coupling characteris-

tic which produce electrical fields under the application of mechanical loads and

elastic deformation on applying electrical loads. Piezoelectric composites are de-

veloped to improve upon their applications in acoustic transducers/sensors, med-

ical imaging and non-destructive evaluation. These composite materials behave

anisotropic to wave propagation ([15]). The reinforcements and laminations are

the major sources of anisotropy in these materials. Physics of granular media ([13])

represents an active area of current research activity due to the presence of stress-

induced anisotropy existing there. Hence, any study of anisotropic elasticity finds
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its relevance in understanding the mechanical behaviour of composite or granular

materials ([18], [5]). A latest book by Carcione ([6]) explains the importance of

anisotropy for wave propagation studies in real materials.

The accurate analysis of observed seismic attenuation is important for the

advancement in knowing the structure of the earth. In sedimentary rocks, the

anelastic nature alone may not be able to explain the observed attenuation. Con-

fining stresses and wave-induced flow of viscous-fluid in pores and cracks are other

important factors. The presence of viscosity in pore-fluid implies relaxation phe-

nomenon, which causes wave-field dissipation. This is particularly true in explo-

ration industry and in the investigation of tectonic stress and failure where small

scale fracturing and flow of fluid into the fractures are important. The confined

stresses and shale anisotropy helps in predicting flow path for improved oil recovery

and designing hydraulic fracturing schemes. The flow mechanism to equilibrate

fluid pressure produces a great deal of seismic attenuation at high frequency.

Whatever be the sources of attenuation of seismic waves in sedimentary rocks,

mathematical models are often required to explain the decay of amplitude of waves

propagating away from the source ([2]). This demands a much deeper insight into

the process of wave propagation in dissipative models of sedimentary rocks in

the crust. These rocks can, more closely, be modeled as fluid-saturated porous

solids pervaded by aligned cracks. The fluid-saturated micro-cracks are highly

compliant and crustal rocks respond immediately to the small changes in differen-

tial stress. Hence, a pre-stressed anisotropic porous solid makes a much realistic

geophysical model to be used for seismic characterization of sedimentary or reser-

voir rocks ([14]). In particular, such a composite physical model facilitates the

parametric studies of the influence of various measurable physical properties (i.e.,

porosity, permeability, pore-fluid viscosity, frame anelasticity, initial-stress, elas-

tic/hydraulic anisotropy, crack density, etc.) on the wave characteristics.

Importance of inhomogeneous waves in single-phase viscoelastic media are

found in Borcherdt ([2], [3]) and Cerveny and Psencik ([10], [11]). Experimental

results ([3]) confirm the generation and existence of inhomogeneous body waves

and the differences in their physical characteristics from elastic body waves. Car-

cione ([7]) suggested that the differences in amplitude variation with offset (AVO)

of waves transmitted at ocean bottom depend not only on the properties of the

medium but also on the inhomogeneity of the wave. An earlier study of the author

([20]) shows that, compared to velocity, attenuation is more sensitive to the in-

homogeneity of waves propagating in dissipative anisotropic poroelastic medium.

This implies that the propagation of inhomogeneous waves may be able to explain,

mathematically, the larger attenuation of seismic waves in sedimentary regions.
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Temperature variations play a significant role in the modification of cracks and

the flow of fluid ([19]). These modifications in microcracks are responsible for the

dynamism around geothermal reservoirs and the sedimentary basins. Theory of

thermoelasticity is used to understand such dynamical systems that involve inter-

actions between mechanical work and thermal changes. With the introduction of

relaxations in temperature field, few generalised theories explain the attenuation of

waves in thermoelastic medium. However, a more realistic scheme is defined with

memory effects allowed to all the constitutive properties of thermoelastic coupling.

Analogous to the correspondence principle in classical elasticity, the complex val-

ues of appropriate constitutive quantities may define the time-harmonic material

dissipation in a thermoviscoelastic medium ([9]). Through a wonderful coinci-

dence, Biot presented the theories of, both, thermoelasticity and poroelasticity, in

the same year of 1956. Indeed, he was very much aware of the connection between

them ([1]). Using the correspondence between these two theories, the results from

thermoelasticity are often translated to solve the problems of wave propagation

in poroelasticity ([17]). This analogy between thermoelasticity and poroelastic-

ity theories can be extended to three-dimensional wave propagation in a general

anisotropic medium ([21]).

The present article illustrates the use of Snell’s law in deriving the propaga-

tion characteristics (direction, velocity, attenuation) of reflected/refracted waves

from those of the incident wave. The whole discussion is presented through 8

sections. The section 2 explains Snell’s law for reflection/ refraction as applica-

ble in optics. Snell’s law for scattering of elastic waves is explained in section

3. The section 4 illustrates the use of this law in deciding the propagation of re-

flected/refracted waves at the boundaries of an isotropic elastic medium. For the

presence of dissipation in isotropic elastic medium, a modified form of this law is

illustrated in section 5. The anisotropic interpretation of the law in the absence

of dissipation is discussed in section 6. In section 7, Snell’s law in anisotropic

viscoelastic medium is interpreted to explain the inhomogeneous propagation of

attenuated waves. The last section in this article illustrates the extension of the

various relations/derivations to poroelastic and thermoelastic media.

2. Snell’s Law
Origin of Snell’s law lies with optics and it is named after Dutch astronomer

Willebrord Snellius (1580-1626). It follows from Fermat’s principle of least travel

time, which in turn follows from the propagation of light as waves. It is used to

determine the direction of light rays through refractive media with varying indices

of refraction. Refractive index (r = c/V ) of a medium is defined as the factor by

which the speed of light-ray traveling through a refractive medium (V ) decreases

from its velocity in a vacuum (c), i.e., V = c/r. Hence, the denser the medium,
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the slower the speed of light, the higher the refractive index.

a) For reflection at a plane boundary (i.e., opaque surface), Snell’s law is inter-

preted as follows.

i) Angle of reflection is same as the angle of incidence.

ii) Reflected ray, incident ray and normal to boundary lie in same plane.

b) For reflection and refraction at a plane (transparent) boundary, Snell’s law

yields the following results.

i) Reflected ray, refracted ray, incident ray and normal to boundary lie in same

plane.

ii) Velocities (VR) and propagation directions (θR) of reflected / refracted rays

relate to the velocity (VI) and direction (θI) of incident ray as follows.
sin θR
VR

= sin θI
VI

or sin θR
sin θI

= VR

VI
= rI

rR
.

Note that for reflected ray, VR = VI yields θR = θI , i.e., angle of reflection is same

as the angle of incidence.
3. Elastic Waves

Elastic waves are the agents to extract subsurface information about the inter-

nal structure of any material body, be it a construction or a natural rock. Velocity

and attenuation are two important characteristics of wave propagation in crustal

rocks. Let an elastic medium be specified through a Cartesian coordinate sys-

tem (x1, x2, x3). For the harmonic propagation of plane waves in this medium,

displacement (u1, u2, u3) of material particles is written as follows.

uj = Sj exp {ıω(pkxk − t)}, (j = 1, 2, 3), (3.1)

where ω is angular frequency of the harmonic oscillations of the particles. Repeated

index (′k′) implies summation over k = 1, 2, 3. Slowness vector p⃗ = (p1, p2, p3) =

n̂/V provides the propagation velocity V and the propagation direction n̂. Mag-

nitude (direction) of vector (S1, S2, S3) defines the amplitude (polarisation) of the

displaced particles.

3.1. Snell’s law. The displacements (3.1) make a general solution of the wave

equation, given by

∇2u⃗ =
1

V 2

∂2u⃗

∂t2
, u⃗ = (u1, u2, u3). (3.2)

This solution needs to satisfy some conditions at the boundary of the medium

for propagation of disturbance in a bounded continuum. For an elastic medium,

boundary conditions, in general, are the continuity of disturbance (particle vibra-

tions and stresses) at every point on its boundary. The matching of magnitudes in

the boundary conditions relate the amplitudes (and energies) of reflected/refracted

waves to that of the incident wave. The phase-matching at boundary requires that

the projections (i.e., tangential components) of the slowness vectors on the bound-

ary must coincide. This yields Snell’s law, for the propagation of elastic waves in

the considered elastic medium. It is interpreted to check that
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a) the propagation directions of reflected / refracted waves lie in the plane formed

by the incident wave and the normal to the boundary (at the point of incidence).

b) the directions and velocities of reflected / refracted waves could be derived from

the direction and velocity of the incident wave.

To be more specific, we consider an incident wave, which is defined through its

i) propagation direction,

ii) attenuation direction (if medium is dissipative), and

iii) phase velocity.

Then, the relevant boundary conditions provide Snell’s law, which is used further

to find

i) the propagation direction,

ii) the attenuation direction (if medium is dissipative), and

iii) the phase velocity of each reflected / refracted wave at the boundary.

4. Isotropic Non-dissipative Medium

To start with an ideal medium, the propagation of disturbance is considered

in a homogeneous isotropic elastic solid. Such a medium is represented through

two elastic constants (i.e., Lame’s moduli, say λ, µ) and density (say, ρ). Elastic

waves in this medium are either dilatational waves (propagating with velocity α =√
(λ+ 2µ)/ρ ) or rotational waves (propagating with velocity β =

√
µ/ρ ). The

dilatational waves represent particle motion parallel to the propagation direction

(n̂) and hence are also identified as longitudinal (or P) waves. Similarly, the

rotational waves represent particle motion normal to the propagation direction

(n̂) and are also identified as transverse (or S) waves.

4.1. Reflection. In Cartesian coordinate system (x1, x2, x3), the elastic medium

occupies a half-space, which is bounded by the stress-free plane boundary x3 = 0.

In this medium, displacement are specified as follows.

Incident wave: u⃗(I) = S⃗(I) exp {ıω(p(I)k xk − t)}; p(I)k = n
(I)
k /VI , and VI = α or β.

Reflected waves: u⃗(R) = S⃗(R) exp {ıω(p(R)
k xk − t)}; p

(R)
k = n

(R)
k /VR, and

VR = α, β.

Boundary conditions (stresses vanish at x3 = 0) yields Snell’s law as p
(I)
1 =

p
(R)
1 , p

(I)
2 = p

(R)
2 . In terms of propagation directions and velocities, we have

n
(I)
1 /VI = n

(R)
1 /VR, and n

(I)
2 /VI = n

(R)
2 /VR. These relations imply that n

(R)
2 /n

(R)
1

= n
(I)
2 /n

(I)
1 , or, in spherical polar coordinates (r, θ, ϕ), we get tanϕR = tanϕI ,

i.e., same azimuth or same (vertical) plane for incident wave and reflected waves.

Then n
(I)
1 /VI = n

(R)
1 /VR is reduced to sin θR/VR = sin θI/VI , which provides

the directions of reflected waves as θR = sin−1(sin θIVR/VI). The direction-

independent velocities for reflected waves in this isotropic elastic medium (i.e.,

VR = α, β) are calculated from elastic/dynamical constants (λ, µ, ρ) for the

medium.
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4.2. Reflection & refraction. In Cartesian coordinate system (x1, x2, x3), the

plane x3 = 0 represents a welded boundary between two different isotropic elastic

θ
Τ

θR

Elastic

Elastic

θ
Ι

X1

X3

Figure 1

solids (FIGURE 1). For various waves in two connecting media, the displacements

are specified as follows.

Incident wave: u⃗(I) = S⃗(I) exp {ıω(p(I)k xk − t)}; VI = α1 or β1.

Reflected waves: u⃗(R) = S⃗(R) exp {ıω(p(R)
k xk − t)}; VR = α1, β1.

Refracted (transmitted) waves: u⃗(T ) = S⃗(T ) exp {ıω(p(T )
k xk − t)}; VT = α2, β2.

Boundary conditions (continuity of stresses and displacement) at x3 = 0

yield Snell’s law as p
(I)
1 = p

(R)
1 = p

(T )
1 , p

(I)
2 = p

(R)
2 = p

(T )
2 . This implies that

n
(I)
2 /n

(I)
1 = n

(R)
2 /n

(R)
1 = n

(T )
2 /n

(T )
1 , i.e., same (vertical) plane for incident, re-

flected and refracted waves.

Propagation directions for reflected (P and S) waves and refracted (P and S)

waves are related to the incident direction as follows.

For reflected waves: θR = sin−1(sin θIVR/VI), VR = α1, β1.

For refracted waves: θT = sin−1(sin θIVT /VI), VT = α2, β2.

Note that the velocities (αj , βj ; j = 1, 2) are calculated from the Lame’s

moduli (λj , µj) and the densities (ρj) of the corresponding elastic media.

5. Isotropic Viscoelastic Medium

Linear viscoelastic effect in an isotropic medium is represented through the

complex values for the Lame’s moduli (λ, µ). With real density (ρ), we get

complex-valued velocities (α, β) for P and S waves. Harmonic propagation of

plane waves with real frequency ω, in (x1, x2, x3) space, is given by

u⃗ = S⃗ exp {ıω(pkxk − t)}. (5.1)

Any wave propagating in a dissipative medium undergoes attenuation, which is

specified through the complex slowness vector p⃗ = (p1, p2, p3). For an attenuated
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wave, we write p⃗ = N⃗/V to determine its complex velocity V = 1/
√
(p⃗.p⃗) and a

complex (dual) phase vector N⃗ such that N⃗ .N⃗ = 1. For such a wave, the resolved

complex p⃗ = P⃗ + ıA⃗ defines its propagation vector P⃗ and attenuation vector A⃗.

The phase vector N⃗ = (N1, N2, N3) in complex slowness vector P⃗ + ıA⃗ = N⃗/V

decides the (in)homogeneous propagation of the attenuated wave.

When all Nj are real: both P⃗ and A⃗ are directed along unit vector N⃗ . Hence,

p⃗ defines the homogeneous propagation of attenuated waves.

When any of the Nj is non-real, i.e., N⃗ is a complex vector: P⃗ and A⃗ have

different directions. Hence, complex N⃗ represents the inhomogeneous propagation

of attenuated waves. To be more specific, inhomogeneity is measured as the devi-

ation from homogeneity, which accounts for the difference in directions of P⃗ and

A⃗. In other words, the angle between P⃗ and A⃗, measures the inhomogeneity of an

attenuated wave.

5.1. Reflection of attenuated wave. In Cartesian coordinate system (x1, x2, x3),

isotropic viscoelastic solid occupies the half-space x3 < 0. In this medium, we con-

sider the propagation of a harmonic attenuated plane wave, which become incident

at the plane boundary x3 = 0 (FIGURE 2). Displacement for this incident wave

is given by

u⃗(I) = S⃗(I) exp {ıω(p(I)k xk − t)}, (5.2)

where p⃗(I) = P⃗ (I)+ıA⃗(I), for propagation vector P⃗ (I) and attenuation vector A⃗(I).

X3

γR

A(R)

P(R)

P(I)A(I)

γ
Ι

θR

Viscoelastic  

θ
Ι

X1

Figure 2

Isotropy allows to study propagation in sagittal (say x1-x3) plane, without any

loss. Further, the orientations of various angles are not taken into account. Then,

from FIGURE 2, the horizontal slowness can be written as

p
(I)
1 = |P⃗ (I)| sin θI + ı|A⃗(I)| sin(θI − γI). (5.3)

where θI is the angle, which the propagation vector of the incident (P or SV )

wave makes with the normal to boundary. The angle γI ∈ [0, π/2] measures the

deviation of propagation direction from the direction of maximum attenuation.

Note that the incident attenuated wave turns homogeneous with γI = 0. In
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other words, non-zero γI measures the inhomogeneity in the propagation of the

(incident) attenuated wave in this dissipative medium. The general plane waves

propagating in a dissipative medium are inhomogeneous waves ([3]).

For an incident wave (represented by the chosen values of θI and γI) of complex

velocity VI , we have p⃗(I) = P⃗ (I) + ıA⃗(I), where

1/V 2
I = p⃗(I).p⃗(I) = |P⃗ (I)|2 + |A⃗(I)|2 + 2ı|P⃗ (I)||A⃗(I)| cos γI . (5.4)

These relations are solved into

2|P⃗ (I)|2 = ℜ(V −2
I ) +

√
ℜ(V −2

I )2 + ℑ(V −2
I )2 sec2 γI ,

2|A⃗(I)|2 = −ℜ(V −2
I ) +

√
ℜ(V −2

I )2 + ℑ(V −2
I )2 sec2 γI , (5.5)

which enables the relation (5.3) to calculate the horizontal slowness for attenuated

incident wave.

For propagation in x1-x3 plane, Snell’s law ensures that slowness of reflected

waves along x1-direction (p
(R)
1 ) is same as that of the incident wave (p

(I)
1 ), i.e.,

p
(R)
1 = |P⃗ (R)| sin θR+ı|A⃗(R)| sin(θR−γR) = |P⃗ (I)| sin θI+ı|A⃗(I)| sin(θI−γI) = p

(I)
1

or

|P⃗ (R)| sin θR = |P⃗ (I)| sin θI , (5.6)

|A⃗(R)| sin(θR − γR) = |A⃗(I)| sin(θI − γI). (5.7)

This common horizontal slowness (i.e., p
(I)
1 = p

(R)
1 = s, say) is used to calculate

the vertical slowness p
(R)
3 = p.v.

√
V −2
R − s2 for each reflected wave (p.v. stands for

principal value of complex radical). Then, the slowness vectors p⃗(R) = (s, 0, p
(R)
3 )

for reflected waves yield

P⃗ (R) = ℜ(p⃗(R)) = ℜ(s, 0, p(R)
3 ), A⃗(R) = ℑ(p⃗(R)) = ℑ(s, 0, p(R)

3 ). (5.8)

Now, for any reflected wave, its direction of propagation θR, (angle with normal

to boundary) and attenuation direction γR, (angle between propagation direction

& attenuation direction) are calculated as follows.

s = |P⃗ (R)| sin θR + ı|A⃗(R)| sin(θR − γR);

sin θR = |P⃗ (R)|−1ℜs, (5.9)

sin(θR − γR) = |A⃗(R)|−1ℑs. (5.10)
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5.2. Reflection & refraction at elastic-viscoelastic interface. One of the

two elastic media in section 4.2 is replaced with a viscoelastic medium. Then,

at elastic-viscoelastic boundary, the incident wave keeps the option of traveling

either in elastic medium or in viscoelastic medium. Obviously, in each case, the

phenomenon of reflection and refraction will be different as illustrated below.

a) Incidence through elastic medium (FIGURE 3):

A(T)

P(T)
γ

Τ

θ
Τ

θR

Viscoelastic

Elastic  

θ
Ι

X1

X3

Figure 3

The incident wave is a non-attenuated elastic wave with real velocity (VI). The

propagation of this wave along a chosen direction (i.e., angle θI) is represented

through a real slowness vector p⃗(I) = sin θI/VI . Consequently, for pre-critical

incidence, real p⃗(R) = sin θR/VR specifies the non-attenuated reflected waves. Even

for critical incidence, the horizontal slowness of any reflected wave will be real.

However, the continuing medium across the boundary is a dissipative medium,

which can afford the attenuation of refracted waves, i.e., complex slowness vector

p⃗(T ). Snell’s law ensures that the common horizontal slowness (s) is real, i.e., the

relation

p
(I)
1 = sin θI/VI = sin θR/VR

= p
(R)
1 = s = p

(T )
1 = |P⃗ (T )| sin θT + ı|A⃗(T )| sin(θT − γT )

(5.11)

must follow that γT = θT . That means a fixed direction (normal to the boundary)

for attenuation of waves refracted to dissipative medium. Propagation directions

of reflected / refracted waves, from (5.11), are given by

θR = sin−1(sVR), θT = sin−1(s|P⃗ (T )|). (5.12)

b) Incidence through viscoelastic medium (FIGURE 4):

The incident wave originates in viscoelastic medium. This wave must be an

attenuated wave represented through a complex slowness vector p⃗(I). Such a wave
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θR 

A(R)

P(R)

P(I)A(I)

γ
Ι

θ
Τ

γR

Elastic

Viscoelastic  

θ
Ι

X1

X3

Figure 4

is specified through a propagation direction (i.e., angle θI), an attenuation

direction (γI) and complex velocity (VI). Consequently, reflected waves will also

be attenuated, represented by complex slowness vectors p⃗(R). However, the con-

tinuing medium at the boundary is a non-dissipative elastic medium, which cannot

afford the attenuation of refracted waves, i.e., real slowness vector p⃗(T ). The hor-

izontal slowness of such a refracted wave can be determined from its propagation

direction (θT ) and velocity (VT ). The demand of Snell’s law for common horizontal

slowness (real s) at the boundary is met through the relation

p
(I)
1 = |P⃗ (I)| sin θI + ı|A⃗(I)| sin(θI − γI) = s

= p
(R)
1 = |P⃗ (R)| sin θR + ı|A⃗(T )| sin(θR − γR) = sin θT /VT = p

(T )
1 .

(5.13)

The above relation yields γI = θI and γR = θR. This implies that incident wave

must have a fixed direction of attenuation (normal to the boundary). Conse-

quently, the same fixed attenuation direction applies to all the reflected waves as

well. Then, we use

2|P⃗ (I)|2 = ℜ(V −2
I ) +

√
ℜ(V −2

I )2 + ℑ(V −2
I )2 sec2 θI (5.14)

to calculate the slowness s = |P⃗ (I)| sin θI . Finally, the directions of reflected and

refracted waves are given by

θR = sin−1(s|P⃗ (R)|−1), θT = sin−1(sVT ), (5.15)

where P⃗ (R) = ℜ(p⃗(R)) = ℜ(s, 0, p.v.
√
V −2
R − s2).

5.3. Reflection & refraction at viscoelastic-viscoelastic interface. Incident

wave will be an attenuated wave propagating in x1-x3 plane, as shown in FIGURE
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5. Snell’s law is defined through the common value of slowness along x1-direction

(say, s), for all the waves at the boundary.

A(T)

γ
Τ

P(T)

γR 

A(R)

P(R)

P(I)A(I)

γ
Ι

θ
Τ

θR 

Viscoelastic

Viscoelastic  

θ
Ι

X1

X3

Figure 5

For incident wave with chosen propagation direction (θI) and attenuation angle

(γI), the slowness s is defined through the relations (5.3) and (5.5). Vertical slow-

ness for any reflected or refracted wave is calculated as p
(k)
3 = p.v.

√
(V −2

k − s2), k =

R, T .

Snell’s law in this case is given by s = p
(I)
1 = p

(R)
1 = p

(T )
1 . Then P⃗ (k) =

ℜ(p⃗(k)) = ℜ(s, 0, p(k)3 ) and A⃗(k) = ℑ(p⃗(k)) = ℑ(s, 0, p(k)3 ) are used to calculate the

propagation and attenuation directions of reflected and refracted waves as follows.

sin θk = |P⃗ (k)|−1ℜs, sin(θk − γk) = |A⃗(k)|−1ℑs. (5.16)

6. Anisotropic Elastic Medium (AEM)

Every medium is anisotropic upto some extent. Isotropy is an ideal assump-

tion made only for mathematical convenience. In AEM with anisotropy up to

azimuthal isotropy, the propagation will confine to the symmetry plane only. Else,

the energy propagation in a general anisotropic medium is a three-dimensional

phenomenon. Wave motion in such a medium is not confined to a particular

plane. For propagation in a symmetry plane, the quasi-shear waves may be called

as qSP (or qSR) waves, depending upon the particle motion parallel (or normal)

to the symmetry plane. The prefix ′q′ (≡ quasi) refers to the particle motion

when polarization is not exactly longitudinal or transverse. The notations qSV

and qSH are also used for near-vertical and near-horizontal polarised shear waves,

respectively ([16]). These notations may be adequate only for propagation in a

symmetry plane but are not suitable in off-symmetry directions. In case of general

anisotropy without any symmetry, three coupled body waves propagate along a

general direction in three-dimensional space. These waves are identified as qP, qS1

and qS2, where qS1 is faster among two split-shear waves ([22]).
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For the propagation of harmonic (angular frequency ω) plane waves, we write

uj = Sj exp {ıω(pkxk − t)}, (j = 1, 2, 3). (6.1)

In slowness vector (p1, p2, p3) = p⃗ = n̂/V , the phase velocity V (n̂) will be a func-

tion of the propagation direction n̂. The vector (S1, S2, S3) defines the polarisation

of material particles. For these displacements, the equations of motion in AEM

yield an eigen-system, say

(Aik − V 2δik)uk = 0; Aik = cijklnjnl/ρ, (6.2)

where cijkl is elastic moduli tensor for the medium of density ρ. Note that the same

system, called Christoffel system, can also be obtained from the Fourier transform

of equations of motion. For non-trivial solution, this system is solved into a cubic

equation in V 2, say

C3V
6 + C2V

4 + C1V
2 + C0 = 0. (6.3)

Three roots of this equation define the phase velocities (say, V1 > V2 > V3) of three

waves (qP, qS1, qS2) propagating along n̂ in AEM. Hence, three real eigen-values

(orthogonal eigen-vectors) of the Christoffel system define the velocities (polarisa-

tions) of qP, qS1 and qS2 waves. Note that Aij involve nj . This implies that the

velocities/polarisations of the waves depend on the direction of propagation (n̂).

We see that the quasi-longitudinal (qP ) wave propagate with particle motion not

exactly (but nearly) parallel to n̂. Similarly, the two quasi-transverse (qS1, qS2)

waves propagate with particle motion not exactly (but nearly) normal to n̂.

6.1. Reflection. In Cartesian coordinate system (x1, x2, x3), AEM occupies a

half-space, which is bounded by the stress-free plane boundary x3 = 0. In this

medium, we consider the propagation of a quasi-longitudinal (or quasi-transverse)

wave along n̂, which become incident at the plane boundary x3 = 0. This inci-

dence results in three reflected (qP, qS1, qS2) waves, propagating along different

directions (n̂(R)) in AEM.

For incident wave: u⃗(I) = S⃗(I) exp {ıω(pkxk − t)}, pk = nk/VI(nk), I = qP

or qS1 or qS2. For reflected waves: u⃗(R) = S⃗(R) exp {ıω(p(R)
k xk − t)}, p(R)

k =

n
(R)
k /VR(n

(R)
k ), R = qP, qS1, qS2.

In (x1, x2, x3) space, let θ is the polar angle with x3-axis and ϕ is the azimuth

in the x1-x2 plane measured from the x1-axis to the x2-axis. So, for an incident

wave propagating along (θI , ϕI), n̂ = (sin θI cosϕI , sin θI sinϕI , cos θI) represents

the direction of incidence. This n̂ is used to calculate VI(n̂) as a root of the cubic

equation (6.3). Boundary conditions are the vanishing of stresses (at x3 = 0),

which yield Snell’s law as p1 = p
(R)
1 , p2 = p

(R)
2 . In terms of velocities and phase

directions, we have

ni
VI(n⃗)

=
n
(R)
i

VR(n⃗(R))
, (i = 1, 2), (6.4)
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where, the superscript R represents each of the three waves (qP, qS1, qS2) in AEM.

This form of Snell’s law helps to deduce the following points.

i) n2/n1 = n
(R)
2 /n

(R)
1 , imply that ϕR = ϕI . This implies that the phase directions

of all the reflected waves lie in the same vertical plane (fixed ϕ), which contains

the phase direction of incident wave. Then, for fixed ϕI , Snell’s law reduces to
sin θR

VR(θR,ϕI)
= sin θI

VI(θI ,ϕI)
.

ii) Snell’s law and n
(R)
k n

(R)
k = 1, yield

V 2
R sin2 θI − V 2

I sin2 θR = 0. (6.5)

For chosen (θI , ϕI) and thus calculated VI(θI , ϕI), the equation (6.5) relates θR

and V 2
R.

iii) Recall that, the cubic equation (6.3) from Christoffel system (6.2) also relates

V 2
R to θR (for known ϕR = ϕI). On using this relation in (6.5), we get a tran-

scendental equation in θR, which is solved for (real θR) using a numerical method

(bisection method or Newton’s method). Then, this real value of θR alongwith

ϕR (= ϕI) is used to calculate the (real) phase velocity VR of reflected wave.

iv) It may be noted that polar angle θR for each reflected wave is derived from θI .

As incidence reaches the critical angle for any of the reflected waves, this reflected

wave propagates along the boundary with velocity vc = VR(π/2, ϕI). Such a

critical angle is determined from the non-linear equation

vc sin θI − VI(θI , ϕI) = 0. (6.6)

This equation is solved for θI , with a given value of ϕI , numerically, for each of

the reflected waves. A valid root of this equation, say θc, divides the incidence

plane into two parts. For incidence beyond this angle (i.e., θI ≥ θc), no real θR

is obtained through step iii). Then, we will not be able to calculate the direction

and hence velocity of reflected waves for all incident directions. That means, the

suggested procedure calculates the directions and velocities of reflected waves pro-

vided the incidence guarantees the homogeneous reflected waves (i.e., pre-critical

incidence).

6.2. Inhomogeneous (generalised) reflection. Incident wave is chosen with

a propagation direction n̂. It is used to calculate velocity VI = V (n̂) from (6.3)

and then slowness pk = nk/VI , (k = 1, 2, 3), of the incident wave. The vector

u⃗ = S⃗ exp {ıω(p1x1 + p2x2 + p3x3 − t)} defines the displacement for the incident

wave. According to Snell’s law, the tangential slowness (p1, p2) of the incident

wave should remain same for all the reflected waves as well. Then, displacement

for the any wave in AEM is given by

u⃗ = S⃗ exp {ıω(p1x1 + p2x2 + qx3 − t)}, (6.7)
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where p1 and p2 are known (from incident wave). The unknown q represents the

vertical slowness, which should identify the different waves at the boundary.

Using the displacement (6.7) in equations of motion yields the Christoffel

system of equations in vertical slowness ′q′. Non-trivial solution of this system

requires q to satisfy an algebraic equation of degree six. Roots of this equation

(i.e., six values of q) define the existence of six waves at the boundary of AEM.

For three (out of six) values of q (say q1, q2, q3), the directions of propagation are

found to be away from the boundary and hence identify the three reflected waves.

One of the remaining three q’s is p3 = n3/VI , the vertical slowness of the incident

wave. For each of the three reflected waves, the relevant value of q is combined

with p1 and p2 to define its slowness vector. So, the directions of propagation of

the reflected waves are obtained from

n̂(R) = (p1, p2, qj)/
√
p21 + p22 + q2j , (j = 1, 2, 3). (6.8)

The velocities of reflected waves along their propagation directions are given by

Vj = 1/
√
(p21 + p22 + q2j ) (j = 1, 2, 3). (6.9)

6.3. Reflection & refraction. The previous section illustrates the procedure

to define the reflected waves when incidence takes place in AEM. The tangential

slowness of incident wave (p1, p2) is known. Snell’s law ensures the same (p1, p2) for

refracted waves transmitting to the continuing medium, which may be isotropic

or anisotropic. In case of isotropic refraction, this (p1, p2) are used directly to

calculate the directions of propagation of refracted waves propagating with known

(constant) velocities. For refraction in AEM, this (p1, p2) are used to calculate

the six q-values and then identify the three slowness vectors for refracted waves

(propagating away from boundary). On the other hand, for incidence from an

isotropic elastic medium, the incidence direction and constant velocity defines

the horizontal slowness (p1, p2) for the incident wave as well as the reflected and

refracted waves. Again, this (p1, p2) are used to calculate the slowness vectors for

refracted waves in AEM.

7. Anisotropic Viscoelastic Medium (AVM)

For propagation of plane waves in a viscoelastic anisotropic medium, various

relations in the section 6 remain the same but for different definitions of variables

and constants. The viscoelastic properties of the medium are represented through

the complex values for the elastic constants cijkl. The density of the medium

and the circular frequency retain their real values. In a viscoelastic medium, the

components of the slowness vector (p1, p2, p3) are, in general, complex. In order to

keep the expressions (6.1) for the displacement components, we write the slowness

vector p⃗ = N⃗/V , where N⃗ = (N1, N2, N3) is the complex (dual) vector such that

NjNj = 1. The variable V = 1/
√
pjpj gets a complex value with the dimension of
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velocity. With p⃗ = N⃗/V , the coefficients in the cubic equation (6.3) become the

complex functions of N⃗ . Three roots of this equation define the complex velocities

V = V (N⃗) for the three attenuated waves in AVM. The corresponding complex

eigensystem (6.2) define the complex (elliptic) polarizations of these waves.

Let two unit vectors n̂ and â, in real space, denote the propagation direction

and direction of maximum attenuation, respectively. In terms of these real unit

vectors, the complex slowness vector for an attenuated wave is expressed as

p⃗ =
1

v
n̂+ ıΛâ, (7.1)

where, v denotes the phase velocity and Λ is the attenuation coefficient. The angle

(γ) between the propagation direction and the attenuation direction is defined as

n̂.â = cos γ. (7.2)

The attenuated plane wave is called homogeneous for γ = 0 and inhomogeneous

for γ ̸= 0. However, for a given n̂, an arbitrary â (or γ) may yield a negative

value for v. This is considered a forbidden direction for anisotropic propagation

in dissipative media ([8]).

7.1. Inhomogeneous propagation. To avoid forbidden directions (due to

arbitrary attenuation angle γ), wave inhomogeneity is defined through a

non-dimensional parameter δ ∈ [0, 1) ([23]). δ = 0 represents the homogeneous

wave. For a chosen propagation direction n̂, an orthogonal direction m̂ and the

inhomogeneity parameter δ, we write

p⃗ =
1

v
[n̂+ ıηn̂+ ıδm̂] = P⃗ + ıA⃗, (7.3)

where the attenuation coefficient η and the phase velocity v are to be determined.

In relation to (7.1), the attenuation part, given by

Λâ = (
η

v
n̂+

δ

v
m̂), (7.4)

implies total attenuation (Λ) as the vector sum of two orthogonal vectors. The

part (η/v)n̂ defines the attenuation along n̂, i.e. homogeneous wave. Other part

(δ/v)m̂ represents inhomogeneous propagation.

7.2. Reflection. Let the AVM half-space is bounded above by the plane x3 = 0

in right-hand Cartesian coordinate system (x1, x2, x3). Let x3-axis be the outward

normal to its boundary. A unit vector n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ) defines

the propagation of a wave in the medium along (θ, ϕ).

7.2.1. p⃗ for inhomogeneous incident wave. Displacement for incident wave is given

by u⃗ = S⃗ exp {ıω(p1x1 + p2x2 + p3x3 − t)}. For p⃗ = N⃗/V , the resulting Christof-

fel system is solved into a complex cubic equation, which provides the complex

velocities (Vj(N⃗), j = 1, 2, 3) for three attenuated waves in AVM. So, we have a
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system of ten real unknowns in N⃗ , V, v, η, which are related through the ten real

scalar relations, given by

p⃗ =
N⃗

V
=

1

v
[n̂+ ıηn̂+ ıδm̂], p⃗.p⃗ = 1/V 2, V = V (N⃗). (7.5)

These relations are solved to obtain

N⃗ = [n̂(1 + ıη) + ıδm̂]/
√
[(1 + ıη)2 − δ2],

v2

V 2
= (1 + ıη)2 − δ2. (7.6)

The phase vector N⃗ is a vector function of η. This implies that V 2 = F (η), for

some complex function F . Then, we get

v2 = F (η)[(1 + ıη)2 − δ2]. (7.7)

Since v is real, the imaginary part of the right hand side in equation (7.7) vanishes,

i.e.,

Im{F (η)[(1 + ıη)2 − δ2]} = 0. (7.8)

The real equation (7.8) is solved numerically for the value of real unknown η. Thus

obtained η is used in the real part of the equation (7.7) to calculate the value of

v2 and hence v. From (7.7) and (7.8), the relation

v2 = [(1− η2 − δ2)2 + 4η2]Re(V 2)/(1− η2 − δ2), (7.9)

yields a positive v2, provided η2 < 1 − δ2. Sign of δ does not affect the values of

η and v. Thus, 0 ≤ δ < 1 ensures that both η and v are real.

Finally, an incident wave in AVM is specified with a propagation direction n̂,

orthogonal direction m̂ and inhomogeneity parameter δ. The values of η and v, as

calculated above, are used in (7.3) to derive the complex slowness vector p⃗ for the

(in)homogeneous incident wave.

7.2.2. p⃗ for reflected waves. According to Snell’s law, the reflected waves keep the

tangential slowness of the incident wave. That means, the vector (p1, p2, q) defines

the slowness for a reflected wave. The values of q come from the roots of a six-

degree algebraic equation, which is obtained from the Christoffel system for AVM

in vertical slowness (q). Hence, the six values of q are obtained for the values of

p1 and p2 extracted from the p⃗, which represents the incident wave.

i) For propagation in a half-space, only three among these six q-values correspond

to the three reflected waves (decaying with distance from boundary).

ii) For each of these three values of q, the slowness vector p⃗(R) = (p1, p2, q) is

resolved as N⃗/VR so that N⃗ .N⃗ = 1.

iii) For this N⃗ , complex velocities for three waves in the medium come from the

cubic equation in V 2, which is obtained from Christoffel system for AVM in V .
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iv) Then, one of these three velocities must be equal to VR. This associates the

slowness vector p⃗(R) to a particular wave-type.

v) For each reflected wave, the corresponding p⃗(R) = 1
v [n̂+ ıηn̂+ ıδm̂] is resolved

to find its phase velocity v = 1/|ℜ(p⃗(R))|, propagation direction n̂ = vℜ(p⃗(R)) and

attenuation (ηn̂+ δm̂)/v.

7.3. Reflection & refraction. The phenomenon of reflection and refraction is

considered at the interface of AVM with an isotropic viscoelastic medium. For in-

cidence in AVM, the section 7.2 illustrates the procedure to calculate the slowness

vectors of three reflected waves at the boundary of AVM. Snell’s law ensures that

the tangential slowness (p1, p2) of incident wave remains valid for refracted waves

as well. With known (p1, p2), the derivations in section 5 are used to derive the

velocities and propagation/attenuation directions of the refracted waves. On the

other hand, any incidence from the continuing isotropic medium provides (p1, p2),

which are used to calculate the six q-values in AVM. The resulting slowness vec-

tors can be analysed to identify the three refracted waves (decaying away from

the boundary). Combining these two situations, we can study the reflection and

refraction at the boundary between two dissimilar anisotropic viscoelastic media.

8. Concluding Remarks

In this study, Snell’s law is illustrated in relating the propagation characteris-

tics of reflected/refracted waves to those of the incident wave. Medium for prop-

agation starts with an ideal one, i.e., isotropic elastic, and proceeds upto the real

one, i.e., anisotropic viscoelastic composite. Anisotropy represents the presence of

pre-stresses, aligned cracks, asymmetric pores, fibre-reinforcement, piezoelectric-

ity, lamination or periodic thin layering. Viscoelasticity accounts for dissipation

from the presence of skeletal-frame anelasticity, pore-fluid viscosity or thermal re-

laxation. Various derivations in this study can be extended / modified to study

the wave propagation at the boundaries of poroelastic as well as thermoelastic

media.

Any presence of saturated pores in an isotropic elastic solid is represented

through the propagation of an additional dilatational (longitudinal) wave. That

means, an isotropic poroelastic solid supports the propagation of two dilatational

(fast P or Pf and slow P or Ps) waves alongwith a shear (or S) wave. Velocities of

these waves are derived from elastic constants and densities ([27]). The relations

emerging from Snell’s law for isotropic elastic solids extend to the additional wave

as well. Hence, for incidence in poroelastic solids, we have three options for incident

wave, i.e., Pf , Ps or S wave. Consequently, there will be three reflected / refracted

waves in poroelastic media.

In an analogous manner, anisotropic poroelastic media support the propaga-

tion of four waves ([24], [25]). Two of these waves are quasi-longitudinal (qP1, qP2)



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

SNELL’S LAW AT THE BOUNDARIES OF REAL ELASTIC MEDIA 93

and two are quasi-transverse (qS1, qS2). Propagation of these waves is governed

by a modified Christoffel system same as (6.2) but is solved into a quartic equation

in V 2. Similarly, the Christoffel system for vertical slowness (q) translates into an

algebraic equation of degree eight ([26]). However, the procedures to calculate the

velocities, propagation directions and attenuations remain unaltered but to ac-

commodate the propagation of additional wave. The replacement of slow-P wave

in porous solids with a thermal diffusive phase in thermoelastic media yields the

thermoelastic-poroelastic analogy. Hence, the procedure applicable to poroelastic

propagation can be extended to thermoelastic propagation as well.
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Abstract. We study the method of steepest descent useful in deriving

asymptotic expansions of Laplace-type integrals. We hope that this

exposition will enable presenting this technique in an undergraduate course

thereby making the diverse applications of this technique more accessible.

1. Introduction

In many physical and mathematical problems, it is desirable to understand

the asymptotic behaviour of functions as the independent parameter tends to a

limit. These functions may arise as solutions to differential equations, as integral

transforms of functions; or perhaps arise from combinatorial considerations as

generating functions of different kinds.

In his memoir “Théorie Analytique des Probabilités” in 1812, Laplace made

a fundamental advance in this subject with what appears to be the most natural

strategy in retrospect: he postulates that the largest contribution to an integral

must come from neighbourhoods of points where the integrand attains its maxi-

mum. He also suggested the discrete analogue of this philosophy: the asymptotic

behaviour of a series of positive terms in which the terms steadily increase upto a

certain point and then steadily decrease can be obtained by studying the order of

magnitude of the largest term in the series.

An extension of this philosophy to the complex plane was found by Siegel in

some unpublished manuscripts of Riemann to study the error term in the approx-

imate functional equation for the Riemann zeta function. Riemann [25, p. 428]

had also used this method in his study of hypergeometric functions. Debye [11,

p. 583] used this method to derive asymptotic expansions of Bessel functions of

higher order.

Voluminous literature has since evolved that surveying the historical develop-

ments in these few pages is out of the question. One of the points to be emphasized

is that these methods are not cookbook recipes but rather an indication of the

2010 Mathematics Subject Classification: 30E15, 41A60.

Keywords and Phrases: Laplace method, saddle point method, method of steepest descent,

Stirling’s formula.

c© Indian Mathematical Society, 2015 .
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ideas that should be brought to bear on the problem of determining asymptotic

expansions.

In order to keep the exposition reasonably short, our examples are chosen so

that they are easy to grasp and devoid of many subtleties. For a more extensive

study, we suggest the excellent accounts by Olver [20], Wong [32], Bender and

Orszag [2]. Our exposition is self-contained and is inspired by [15] and [32] begin-

ning with the basic definitions in Section 2 and a discussion of Laplace’s Method

in Section 3. The method of steepest descent is discussed at length in Section 4

closing with an illustration of this method by proving Stirling’s formula for the

complex Gamma function in Section 5.

Acknowledgement: I would like to thank Prof. Ram Murty for initiating me

into this study, guiding me with references and providing me with very insightful

remarks that improved the clarity of this exposition. Various parts of this exposi-

tion is also a part of my masters’ project report1 written under the supervision of

Prof. Ram Murty. In this connection, it is a pleasure to thank Prof. Jamie Mingo

and Prof. Ivan Dimitrov for their comments on the report (and consequently, this

paper itself).

2. Preliminaries

2.1. Asymptotic Expansions. A function f(z) which is analytic at z =∞ can

be expanded in its Laurent series, more plainly, it is given by a power series in

z−1 converging in some annulus of the form |z| > R. Recall the elementary yet

remarkable property of the partial sums pn(z) of the Laurent series of f(z):

f(z) = pn(z) + o(1) (2.1)

not only as n → ∞ but also as |z| → ∞ for a fixed n. Such expansions do not

exist when the function f is not analytic at z =∞. However, there are asymptotic

expansions which do a similar job: these are series in z−1 which are not convergent,

but, for a fixed n and for z coming from a certain sector in the complex plane, we

do have that

f(z) = pn(z) +O(z−(n+1)), |z| → ∞.
Curious and misleading terms such as “divergent” series, “semi-convergent” series2

and “convergently beginning” series3 have often been applied to these series and

consequently, there has been skepticism from leading mathematicians in the past

in discussing these series. We shall however not pursue these historical remarks

further.

The definition of an asymptotic expansion that is now widely used is commonly

attributed to Poincaré (1886).

1The report is available on my homepage: http://www.mast.queensu.ca/~knsam/
2Due to Stieltjes, 1856–1894.
3Due to Fritz Emde, 1873–1951.
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Definition 1. Let f : Ω→ C be functions on a domain Ω ⊆ C. We say that

∞∑
n=0

anz
−n (2.2)

is an asymptotic expansion for the function f as |z| → ∞ and write

f(z) ∼
∞∑
n=0

anz
−n (2.3)

if there is a sector S in the complex plane such that for every n > 0, we have

f(z) =
n∑
k=0

akz
−k + o(z−n), |z| → ∞ in Ω ∩ S. (2.4)

This is to be interpreted in the obvious degenerate manner if the function f is real

valued.

The usefulness of an asymptotic expansion is not its (lack of!) convergence

properties but the fact that, for every n > 0, the error incurred in truncating an

asymptotic expansion after first n−1 terms is O(z−n). Indeed, we have from (2.4)

that

f(z) =
n−1∑
k=0

akz
−k +O(z−n) as |z| → ∞ in Ω ∩ S. (2.5)

To amplify the difference between convergent series and asymptotic expansions,

we note that, for a fixed z, it is usually the case that the implied constant in (2.5)

grows indefinitely as n→∞ so that it is typically not possible to determine f(z)

with arbitrary precision by adding more terms of the expansion.

2.2. Uniqueness of asymptotic expansions. If a function f admits an as-

ymptotic expansion, the coefficients {an} of that expansion are determined by f .

Indeed, we have the following recursive formula

a0 = lim
z→∞

f(z) and (2.6)

am = lim
z→∞

zm

(
f(z)−

m−1∑
n=0

anz
−n

)
for m > 0. (2.7)

However, two different functions may have the same asymptotic expansion:

for example, the function e−|z| has the identically zero asymptotic expansion:

e−|z| ∼ 0 as |z| → ∞ in a sector of the form {z ∈ C : | arg(z)| < π/2− δ < π/2}.

Notation. Typically, it is the case that a function f by itself may not admit an

asymptotic expansion as defined above but there is a function g such that f/g

admits an asymptotic expansion. In such cases, we will write

f(z) ∼ g(z)× (asymptotic expansion of f/g)

by an abuse of notation.



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

98 KANNAPPAN SAMPATH

For a discussion of the calculus of asymptotic expansions, see the texts cited

in the introduction.

2.2.1. An Example. Here is a simple example to illustrate the definition.

Example 2.1 (Exponential Integral). Consider the integral4

E1(x) =

∫ ∞
x

e−z

z
dz, | arg(x)| < π

where the integral can be taken over any path from x to ∞ (since the integrand is

holomorphic on the given domain). A repeated integration by parts proves that

E1(x) =
e−x

x

n∑
k=0

(−1)kk!

xk
+ (−1)n+1(n+ 1)!

∫ ∞
x

e−z

zn+2
dz. (2.8)

We claim that, in the sector | arg(x)| 6 π − δ < π (for any δ > 0)

E1(x) ∼ e−x

x

∞∑
k=0

(−1)kk!

xk
. (2.9)

To prove this, we need an estimate on the integral in (2.8). Fix an n > 0 and let

R > 0 be given. Let x = σ + it such that |x| > R and | arg(x)| < π be arbitrary.

We use the ray =(z) = t, <(z) > σ extending from σ to∞ parallel to the real line

as the path of integration for the integral in (2.8). On this path |z| > t(= |x| sin δ)
where 0 < δ < π is such that | arg(x)| < π − δ. Thus, we have∣∣∣∣(−1)n+1(n+ 1)!

∫ ∞
x

e−z

zn+2
dz

∣∣∣∣ 6 (n+ 1)!

(sin δ)n+2

|e−xx−1|
|x|n+1

.

This completes the proof.
2.3. Watson’s Lemma. We recall the “extended” probability integral: for x ∈ C

with <(x) > 0, we have

I(x) :=

∫ ∞
−∞

exp

(
−xt

2

2

)
dt =

√
2π

x
(2.10)

where x1/2 is its principal value. To see this “extended” version, one may argue

as usual to obtain that I(x)2 = 2π
x ; it suffices to note that I(x) is analytic in the

open right half-plane {z ∈ C : <(z) > 0} by Morera’s theorem and the principle

of analytic continuation finishes the proof.

Lemma 2.1 (Watson’s Lemma, Elementary Version). Let g(z) be analytic and

bounded on a domain containing the real line and let x ∈ C be fixed with <(x) > 0.

Writing an for the Taylor coefficients of g around 0 so that

g(z) =
∞∑
n=0

anz
n, (2.11)

we have the following expansion as |x| → ∞

4Important Notation: Here and in what follows, all instances of ‘arg’ mean the principal

branch of the argument.
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∫ ∞+0i

−∞+0i

exp

(
−x

2z2

2

)
g(z) dz ∼

√
2π

( ∞∑
n=0

a2n
x2n+1

n∏
k=1

(2k + 1)

)
(2.12)

in the open right half-plane {x ∈ C : | arg(x)| < π
2 }.

Proof. We begin by noting that

g(z)−
∑2n−1
k=0 akz

k

z2n
(2.13)

is bounded and analytic in a domain containing the real axis.

For n > 2, integration by parts gives us∫ ∞
−∞

exp

(
−x

2z2

2

)
zn dz

=

∫ ∞
−∞

zn−1 exp

(
−x

2z2

2

)
z dz

= zn−1
−1

x2
exp

(
−x

2z2

2

)∣∣∣∣z=∞
z=−∞

+
n− 1

x2

∫ ∞
−∞

exp

(
−x

2z2

2

)
zn−2 dz.

Now, the first term vanishes thanks to the negative exponential and our hypothesis

that <(x) > 0. Rearranging what remains, we get, for n > 2∫ ∞
−∞

exp

(
−x

2z2

2

)
zn dz =

n− 1

x2

∫ ∞
−∞

exp

(
−x

2z2

2

)
zn−2 dz. (2.14)

Now, plugging 2n for n, we have the following for n > 1∫ ∞
−∞

exp

(
−x

2z2

2

)
z2n dz =

2n− 1

x2

∫ ∞
−∞

exp

(
−x

2z2

2

)
z2n−2 dz. (2.15)

By induction on n, we have∫ ∞
−∞

exp

(
−x

2z2

2

)
z2n dz =

∏n
k=1(2k − 1)

x2n

∫ ∞
−∞

exp

(
−x

2z2

2

)
dz

=

√
2π
∏n
k=1(2k − 1)

x2n+1
.

Now, on the one hand, we have∣∣∣∣∣
∫ ∞
−∞

exp

(
−x

2z2

2

)(
g(z)−

2n−1∑
k=0

akz
k

)
dz

∣∣∣∣∣ (2.16)

= O(1)

∣∣∣∣∫ ∞
−∞

exp

(
−x

2z2

2

)
z2n dz

∣∣∣∣
= O(1)

√
2π
∏n
k=1(2k − 1)

|x|2n+1
, (2.17)
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while on the other hand, the integrals in (2.16) vanish for odd powers of z leaving

us with the following expression for the left hand side of (2.16)∣∣∣∣∣
∫ ∞
−∞

exp

(
−x

2z2

2

)
g(z) dz −

n−1∑
k=0

a2k
√

2π

x2k+1

k∏
m=1

(2m− 1)

∣∣∣∣∣ . (2.18)

Multiplying both sides of (2.17) by x2n and letting |x| → ∞, the desired result

follows. �
Corollary 2.1. Let a, b ∈ R ∪ {±∞} such that −∞ 6 a < 0 < b 6 ∞. Let g(z)

be bounded and analytic in a domain containing the real line and let x be as in

Lemma 2.1. Then, we have the following asymptotic expansion as |x| → ∞∫ b

a

exp

(
−x

2z2

2

)
g(z) dz ∼

√
2π

( ∞∑
n=0

a2n
x2n+1

n∏
k=1

(2k + 1)

)
(2.19)

in any sector {x ∈ C : | arg(x)| 6 π
2 − δ} (δ > 0).

Proof. This follows from the following classical estimate for the tail of the normal

distribution ∫ ∞
b

e−
t2

2 dt 6
∫ ∞
b

t

b
e−

t2

2 =
1

b

[
−e− t2

2

]t=∞
t=b

=
1

b
e−

b2

2 (2.20)

The details are routine. �

2.3.1. Simple examples.

Example 2.2 (Some Examples due to Ramanujan). Here are two examples taken

from [3] due to Ramanujan:∫ ∞
1

e−au log udu ∼
∞∑
k=0

(−1)kkk

ak+1

as a → ∞. This follows easily from a generalised Watson’s Lemma ([3]). For the

second example, we define

I(α) = α−1/4

(
1 + 4α

∫ ∞
0

xe−αx
2

e2πx − 1
dx

)
.

Ramanujan proves that if α, β > 0 are such that αβ = π2, then, I(α) = I(β) and

goes on to suggest the following asympotic formula

I(α) ∼
(

1

α
+

α

π2
+

2

3

)1/4

, α→∞.

However, we note that the expansion obtained from Watson’s lemma is as follows

I(α) ∼ α−1/4 +
∞∑
n=0

In as α→∞,

where In is given by the formula

In =
4α3/4Bn(2π)n−1

n!

∫ ∞
0

e−αx
2

xn dx
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in which Bn is the nth Bernoulli number. These can be shown to be very close to

each other by Taylor expanding Ramanujan’s expansion.

Example 2.3 (Asymptotic Expansion of the Beta function). For x, y with <(x),

<(y) > 0, consider the integral

B(x, y) =

∫ 1

0

zx−1(1− z)y−1 dz =
Γ(x)Γ(y)

Γ(x+ y)
(2.21)

We view the above integral as an integral in x for a fixed y. Now, substitute

z = e−u so that we are in the situation of (a generalised) Watson’s Lemma.

Indeed, we get

B(x, y) =

∫ ∞
0

e−ux(1− e−u)y−1 du

=

∫ ∞
0

e−ux

( ∞∑
k=1

(−1)k+1u
k

k!

)y−1
du

∼ Γ(y)

xy
for a fixed y as |x| → ∞

in a sector {x ∈ C : | arg(x)| 6 π
2 − δ} (δ > 0).

3. Laplace’s Method

This method is used in determining an asymptotic expansion of functions given

by certain real integrals of the form∫ b

a

ϕ(x, t) dt (3.1)

which holds for large positive values of x. It is a powerful tool that finds ap-

plications in contemporary research in pure and applied mathematics alike. As

an example of the potential of this method, we recommend the papers of Dewar

and Murty [12, 13] where this method was used to study the Hardy-Ramanujan

asymptotic formula for the number of partitions p(n) of n and the Fourier coef-

ficients of a weakly holomorphic modular form; see also [18] where the particular

case of the elliptic modular j-function is studied using this method. This method

consists in approximating the integral based on the heuristic that the maximum

contribution to the integral comes from neighbourhoods of points where ϕ(x, t)

attains its largest values; the success of this method is more pronounced if this

largest contribution becomes more and more dominant as x→∞.

While this philosophy works for a large class of functions ϕ(x, t), it is often

useful to rewrite the integrand so that the integral under consideration becomes∫ b

a

exh(t)g(t) dt. (3.2)

The point is that, this way, we can exploit the exponential decay of the integrand

as we move away from the points where h(t) attains its maximum.
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Let us illustrate this method by determining an asymptotic expansion of the

real Gamma function as x→∞. Consider the real Gamma function

Γ(x+ 1) =

∫ ∞
0

e−ttx dt, x > −1. (3.3)

Recasting the integral as in (3.2), we have:

Γ(x+ 1) =

∫ ∞
0

e−t+x ln t dt. (3.4)

The function f(t) = −t+ x ln t attains its maximum at t = x. Thus, the point at

which the function attains its maximum keeps varying as x varies; furthermore,

the mass of the function f(t) spreads more and more around the point t = x as

x increases (see Figure 1). This motivates the substitution t = ux so that, for

5 10 15 20 25

−15

−10

−5

0

5

−t+ 3 ln(t)

−t+ 5 ln(t)

−t+ 7 ln(t)

Figure 1. Graph of the function f(t) = −t+ x ln(t) for x = 3, 5, 7.

x > 0, the integral becomes

xx+1

∫ ∞
0

ex(ln(u)−u) du. (3.5)

The function h(u) = ln(u)−u attains its maximum at u = 1. Thus, we may replace

the function h by its Taylor expansion around 1 and extend the lower limit to −∞
since significant contribution comes only from the range of integration around 1

anyway, we must have that

Γ(x+ 1) ∼ xx+1

∫ ∞
−∞

e
x

(
−1− (u−1)2

2

)
du. (3.6)
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Simplifying using the probability integral, we have

Γ(x+ 1) ∼ xx+ 1
2 e−x

√
2π. (3.7)

That this heuristic argument always leads to an asymptotic formula for (3.2) for

sufficiently nice functions g and h can be proven [23, §1.1.5].

Remark 3.1. For a proof of Stirling’s formula (3.7) from much more elementary

considerations, see [19].

4. The method of steepest descent

The method of steepest descent (sometimes also known as the saddle point

method) is an extension of Laplace’s method to the complex plane.

Let Ω be a simply connected domain in C. Let f and g be two holomorphic

functions on Ω and let γ : [0, 1]→ Ω be a piecewise differentiable curve in Ω. The

method of steepest descent aids in deriving an asymptotic formula for integrals

the form

F (t) =

∫
γ

etf(ξ)g(ξ) dξ (4.1)

for large positive values of t. For ξ = x+ iy, write f(ξ) = u(x, y) + iv(x, y). If we

are to appeal to Laplace’s philosophy, since |etf(ξ)| = etu(x,y), we should seek to

deform the contour γ to another contour γ′ in Ω which consists of points (x0, y0)

where u(x, y) is large. Note first that this deformation does not change the value

of the integral as the integrand is analytic in Ω (Cauchy’s theorem). However,

the key difficulty that we are presented with is as follows: “heuristically”, we see

that for large values of t, the function eitv(x,y) might oscillate rapidly even for

small displacements along the curve γ′ that the positive and negative swings in

the values taken by the function will tend to cancel out.

However, this suggests that there is a reasonable chance of success if we can

find a contour γ′ such that etu attains large values on those parts of the contour

where v is constant and whenever v varies, the magnitude etu is small. One can

argue that on a path where v is constant and u attains its maximum at an interior

point, say z0, we must have that f ′(z0) = 0. Thus, we seek a contour γ′ such that:

(1) γ′ passes through one or more zeroes of f ′(z).

(2) v(x, y) is constant on γ′.

A few remarks are in order about the choice of γ′. Consider the surface

S(x, y, u(x, y)) in R3. If z0 = x0 + iy0 is a zero of f ′(z), then, Cauchy-Riemann

equations

f ′(z) = ux − iuy (4.2)

imply that ux(x0, y0) = uy(x0, y0) = 0. In other words, the point (x0, y0) is a

critical point of the harmonic function u. Therefore, the point (x0, y0) is either on

the boundary of the domain Ω or is a saddle point. When this point is a saddle
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point of u, the surface is saddle-shaped near z0 (see Figure 2) and this point z0 is

in turn called a saddle point of f(z). Let us now set up some language before we

Figure 2. Saddle surfaces near saddle points of order 1 and 2.

proceed. Let z0 = x0 + iy0 be a saddle point of f . The regions in the plane where

u(x, y) > u(x0, y0) are called hills and u(x, y) < u(x0, y0) are called valleys. We

say that the saddle point z0 is of order m, m > 1, if

f ′(z0) = · · · = f (m)(z0) = 0 and f (m+1)(z0) 6= 0. (4.3)

Let ψ be a curve through the point z0 with the parameter s giving its unit speed

parametrisation. That is, (
dx

ds

)2

+

(
dy

ds

)2

= 1, (4.4)

and the direction θ of the curve at the point s is given by

cos θ(s) =
dx

ds
(s) and sin θ(s) =

dy

ds
(s). (4.5)

Call a contour ψ a steepest path if the points (x(s), y(s)) on ψ are points at which

the direction du
ds of the path u ◦ ψ on the surface S attains its extremum as θ(s)

varies. The contour ψ is called a path of steepest descent (resp. path of steepest

ascent) if the points are points of maxima (resp. minima) for du
ds .

The key fact is that the paths of constant phase (cf. (2) of our conditions on

γ′) are also steepest paths in the regions where f ′ 6= 0: indeed,

du

ds
= cos θ

∂u

∂x
+ sin θ

∂u

∂y
(4.6)

attains its extrema at points where the derivative of du
ds with respect to θ

− sin θ
∂u

∂x
+ cos θ

∂u

∂y
= − sin θ

∂v

∂y
− cos θ

∂v

∂x
= −dv

ds
(4.7)

vanishes and the second derivative of du
ds with respect to θ

− cos θ
∂u

∂x
− sin θ

∂u

∂y
=

du

ds
(4.8)
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is non-zero. Note further that γ′ is a path of steepest ascent (resp. descent) if
du
ds > 0 (resp. du

ds < 0).

Remark 4.1. The discussion above can also be paraphrased in terms of gradient

of multivariate function: a path ψ would then be called a steepest path if the

tangent vector (dx
ds ,

dy
ds ) at s of the path ψ is parallel to ∇u at ψ(s); equivalently,

we require that the normal vector (−dy
ds ,

dx
ds ) and ∇u are perpendicular (cf. (4.7)).

Suppose now that z0 is a saddle point of order m, m > 1. Then, the Taylor

expansion of f at z = z0 + reiθ around z0 is given by

f(z) = f(z0) +
rm+1

(m+ 1)!
ai(m+1)θ+ϕ + · · · (4.9)

where we have let f (m+1)(z0) = aeiϕ (a > 0). This gives us:

• the direction of the curves v(x, y) = v(x0, y0) of constant phase at z0, viz,

the solutions to the equation sin((m+ 1)θ + ϕ) = 0:

θ =
1

m+ 1
(−ϕ+ kπ), k = 0, . . . , 2m+ 1 (4.10)

• the direction of the level curves of u, viz, the solutions to the equation

cos((m− 1)θ + ϕ) = 0:

θ =
1

m+ 1

(
−ϕ+ (2k + 1)

π

2

)
, k = 0, . . . , 2m+ 1. (4.11)

This analysis tells us that the region of the plane near z0 is divided into

2(m+ 1) regions by the 2(m+ 1) level curves; the regions bounded between these

curves alternate between hills and valleys of the function u. In each valley (and

similarly, in each hill), there is a path of steepest descent (resp. ascent) meeting

a certain level curve at z0 at an angle of π
2(m+1) . (See Figure 3.) Suppose now

Figure 3. Lines of constant phase (solid) and level curves of u

(dotted) near saddle points of order 1 and 2.

that γ′ is a steepest path through z0. Then, the real part is either monotonically

increasing to or decreasing from u(x0, y0) on this path γ′. The paths γ′ lying in

valleys (viz, those along which u decreases) are paths of steepest decent.
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The thesis of the method of steepest descents is the following: by Taylor ex-

panding f near a saddle point z0, the expansion obtained by term-wise integration

is asymptotic if we can shift our contour γ to a contour γ′ lying in valleys and

passing through a saddle point between valleys.

4.1. Contribution from a saddle point. Throughout what follows, we shall

assume that z0 is a saddle point of order 1 for f . The key feature of this assumption

is that, in this case, there are two paths of steepest descent at an angle of ±π from

each other (so oppositely directed rays emanating from z0).

Expanding f in Taylor series around z0, we have (since f ′(z0) = 0):

f(z) = f(z0) +
f ′′(z0)

2!
(z − z0)2 + · · · . (4.12)

We cut down to a small neighbourhood of z0 in which

f1(z) :=
f(z)− f(z0)

(z − z0)2

is analytic. If γ̃ is the part of the curve γ in this neighbourhood, then, the saddle

point z0 contributes ∫
γ̃

exp
(
tf1(z0)(z − z0)2

)
g(z) dz (4.13)

to the integral (4.1). Since (z − z0)2f ′′(z0) is real and negative on a path of the

steepest descent, we put − 1
2ζ

2 = f1(z)(z − z0)2 so that ζ is determined as the

principal value of the square root of the appropriate quantity. This change of

variable leaves us with:

etf(z0)
∫
γ̃

exp

(
−1

2
ζ2
)
g(z)

dz

dζ
dζ. (4.14)

This puts us in the situation of Watson’s lemma showing the existence of an

asymptotic expansion. Now, we are faced with the problem of inverting the given

power series ζ(z) to get z(ζ). This is usually cumbersome.

However, getting just the leading term in the series z(ζ) is not hard and

gives us the first term of the asymptotic expansion (Watson’s lemma). Write

z − z0 = r(z)e−iϕ (recall that ϕ = arg(f ′′(z0))) so that ζ = ±r
√
|f ′′(z0)| (the

correct sign being given by the sign of the rate of change of the real part on γ̃:

thus, + would be the right sign if the real part is increasing and − otherwise). Via

Watson’s Lemma, we conclude that the amount I(z0) contributed by the saddle

point z0 is

I(z0) = ±g(z0)etf(z0)
√

2πe−iϕ√
|tf ′′(z0)|

(4.15)

This completes our discussion of the saddle point method.
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5. Stirling’s Formula

We apply the method of steepest descent to the complex Gamma function

defined as follows

Γ(z + 1) :=

∫ ∞
0

e−ssz ds, for <(x) > −1. (5.1)

We rewrite the integrand so that we have

Γ(z + 1) =

∫ ∞
0

e−s+z ln s ds. (5.2)

For z ∈ C with <(z) > 0, put s = z(1 + t) so that ds = zdt and

Γ(z + 1) = zz+1e−z
∫ ∞
−1

exp(−tz + z ln(1 + t)) dt. (5.3)

Now, analysing the function f(t) = ln(1 + t)− t, we see that the only saddle point

t = 0 of order 1 has the property that f ′′(0) = −1. In this case, the real line is

already a path of steepest descent and the sign in I(0) given by the contour is +.

Putting these facts together, we have

I(0) =
√

2π/z. (5.4)

This gives us the Stirling’s formula for the complex Gamma function

Γ(z + 1) ∼
√

2πz
(z
e

)z
(5.5)

when |z| → ∞ in any sector {z ∈ C : | arg(z)| 6 π
2 − δ <

π
2 }.

Appendix A. Historical Remarks on Stirling’s Formula

In this appendix, we indicate some references to curious historical events and

some (and by no means all!) instances of proofs of “Stirling’s” formula in the

literature.

Our story begins with Abraham de Moivre. In the second edition of his “The

Doctrine of Chances” [10, pp. 243 – 254], he considers the problem of finding

an asymptotic expression for the binomial coefficients; he introduces the normal

distribution as an error distribution and applies it to derive the normal approxima-

tion to the binomial distribution. This special case of the central limit theorem is

widely known today as de Moivre-Laplace Theorem. In particular, he announces

that

lim
n→∞

√
2n

22n

(
2n

n

)
(A.1)

is a certain number 2B−1 where B satisfies

log(B) = 1− 1

12
+

1

360
− 1

1260
+

1

1680
+ · · · . (A.2)

He proceeds to indicate that his initial investigations were limited to a study

of the magnitude of this number B until his “worthy and learned Friend Mr.

James Stirling [. . . ] found that the quantity B did denote the square-root of the
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circumference of a circle whose radius is unity”. We must note that de Moivre

proves this using Wallis’s product formula for π in his book Miscellanea Analytica

[8].

James Stirling describes his approximation to log(n!) in his book “Methodus

Differentialis” [28, Proposition 28, Example 2, pp. 149 – 152] (see also [31, 269–

275] for an annotated English translation of this work). Stirling, from more general

considerations, proves that

log(n!) =

(
n+

1

2

)
log

(
n+

1

2

)
+

1

2
log(2π)−

(
n+

1

2

)
(A.3)

− 1

24
(
n+ 1

2

) +
7

288
(
n+ 1

2

)3 ,+ · · · .
Curiously, the leading term in this expansion is attributed to W. Burnside [4]. In

the literature (as also in this paper), the following modified asymptotic expansion

obtained by de Moivre [9]

n! ∼
√

2πn
(n
e

)n
exp

(
1

12n
− 1

360n3
+

1

1260n5
− 1

1680n7
+ · · ·

)
(A.4)

has come to be known as Stirling’s series [14] and the leading term Stirling’s for-

mula. We recommend the books [30, 31] and the paper [29] by Tweddle for more

historical remarks and insightful comparisons between these asymptotic expan-

sions.

Numerous variations on Stirling’s formula has since been worked out. We close

with one due to Ramanujan

n! ∼
√
π
(n
e

)n
6

√
8n3 + 4n2 + n+

1

30
, n→∞, (A.5)

who also gives the following inequality [24] which holds for all x > 1

√
π
(x
e

)n
6

√
8x3 + 4x2 + x+

1

100
< Γ(x+ 1) <

√
π
(x
e

)n
6

√
8x3 + 4x2 + x+

1

30
(A.6)

(this is to be compared with Question 754 submitted by Ramanujan to the

J. of Indian Math. Soc., Vol. 8, p.80).

A.1. Proofs in the literature. There are numerous proofs of this ubiquitous

formula in the literature involving results of varying levels of sophistication. While

there are some elementary proofs [6, 26, 14], there are also some proofs in the

literature that appeal to Lebesgue’s dominated convergence theorem, see [27,

Chapter 8, §6] and [21]. Some proofs use various properties of the real or com-

plex Gamma functions [1, 17]. Some proofs [22, 16] motivated by probability

theory have also been given. In fact, in a remarkable reversal of historic timeline,

the central limit theorem is proven today without using Stirling’s formula and

applying this theorem to specific distributions to derive Stirling’s formula is now
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so well-known [5, 16]. A recent addition to this list is a paper with R. Murty [19] in

the last issue of “The Mathematics Student” where a very short proof of Stirling’s

formula is presented using only an elementary knowledge of Calculus.

A.2. The constant
√

2π. As we point out in our paper [19], it is non-trivial to

obtain the constant
√

2π in Stirling’s formula. It might therefore be of interest to

see how this constant is obtained in these different proofs. Table 1 summarises how

the constant π enters the proofs of Stirling’s formula cited here. It is conceivable

[31, p.271] that Stirling’s proof that C =
√

2π involves Wallis’s product formula

too.

Idea References

Wallis’ Product formula for π
2 [6], [14]

The Gaussian integral [17], [21], [22], [27], [16]

Γ( 1
2 ) =

√
π [1]

de Moivre’s formula (A.1) [19]

Table 1. The constant
√

2π

In this connection, we remark that A. J. Coleman [7] computes the Gaussian

integral using Wallis’s formula.
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AN ELEMENTARY PROOF OF

THE CONNECTEDNESS OF THE
GENERAL LINEAR GROUP GLn(C)
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Abstract. The purpose of this note is to popularize an elementary proof of

the connectedness of GLn(C). The only non-trivial fact required in this proof

is a simple consequence of the Polynomial Factor Theorem.

There are many simple deductions of the connectedness of the general linear

group GLn(C) of invertible, complex n× n matrices. However, most of these are

not really elementary. For instance, the proofs given in [2] and [4] rely on upper

triangularization and polar decomposition of matrices respectively. The purpose

of this note is to popularize a simple and elementary proof of the connectedness of

GLn(C). The idea of the proof is certainly known (see [3], Proposition 1). The only

non-trivial fact required in the proof is the following consequence of the Polynomial

Factor Theorem [1]:

Lemma 1. Let p be a polynomial in x over a field K of degree n. Then p has at

most finitely many zeros in K.

We will derive a general fact about the zero set of complex polynomials from

the preceding lemma. First a notation:

Let p be an analytic polynomial in n complex variables z1, · · · , zn. The zero

set Z(p) of p is given by

Z(p) := {(z1, · · · , zn) ∈ Cn : p(z1, · · · , zn) = 0}.

Theorem 1. Let p denote an analytic polynomial in the complex variables z1, · · · , zn.
Then Cn \ Z(p) is path-connected.

Proof. Let z, w ∈ Cn \ Z(p). Consider the straight-line path

γ(t) = (1− t)z + tw (t ∈ C).

2010 Mathematics Subject Classification: Primary 54D05, 54H11; Secondary 12D05, 30C
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Note that {t ∈ C : γ(t) ∈ Z(p)} is precisely the zero set Z(p ◦ γ) := Z. By

Lemma 1, Z is a finite subset of C. Thus γ maps the path-connected set C \ Z
continuously into Cn \ Z(p). In particular, z and w belong to the path-connected

subset γ(C \ Z) of Cn \ Z(p). �

Remark 1. One may imitate the proof of Theorem 1, and appeal to the Iden-

tity Theorem from C-analysis (instead of Lemma 1) to obtain the following:

Let f : Cn → C denote a holomorphic function in the complex variables z1, · · · , zn.
Then Cn \ Z(f) is path-connected.

Corollary 1. The general linear group GLn(C) is path-connected.

Proof. If one identifies in a natural way the space of complex n× n matrices with

Cn2

then GLn(C) can be seen as Cn2 \Z(det), where det is the analytic polynomial

which sends a matrix to its determinant. Now the desired conclusion is immediate

from Theorem 1. �
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Abstract. In this article we outline a proof of the Jordan curve theorem

which is an unpublished work of a British mathematician Graham Robert

Allan (1936-2007), Reader in Functional Analysis and Vice-Master of Churchill

College at Cambridge University, England. To the best of my knowledge,

this is the simplest proof which uses only elementary point-set topology and

complex analysis (see Andrew Browder [2]).

1. Introduction

A Jordan curve is a non-intersecting continuous loop in the complex plane

C. Another name is simple closed curve, which is a homeomorphic image of the

unit circle S1 = {z ∈ C : |z| = 1}. The celebrated theorem of Jordan states that

a simple closed curve Γ in the plane C divides the complement C − Γ into two

connected nonempty open sets, exactly one of which is bounded. The bounded

region is called the interior (or the inner region) of the curve Γ. The unbounded

component is the exterior (or the outer region) of Γ. The situation can be visualised

easily for the case of a circle in the plane. But the simple closed curve may be very

complicated, like a jigsaw puzzle, and it may be difficult to ascertain the inside

and outside of the curve.

The theorem has an interesting history. It is named after the mathematician

Camille Jordan (1838-1922). The proof of the theorem was given by Jordan in

his lectures on real analysis, and was published in his book “Cours d’analyse de

l’École Polytechnique (Gauthier-Villars, Paris, 1887, Vol. 3)”, from which a whole

generation of mathematicians learned the modern concept of rigour in analysis.

For decades, it was generally thought that the proof was imperfect. According

to Courant and Robbins [4], “the proof given by Jordan was neither short nor

simple, and the surprise was even greater when it turned out that Jordan’s proof

was invalid and that considerable effort was necessary to fill the gaps in his rea-

soning. The first rigorous proofs of the theorem were quite complicated and hard

to understand, even for many well-trained mathematicians. Only recently have

comparatively simple proofs been found”. Morris Kline, famous writer on history,

2010 Mathematics Subject Classification : Primary 30-01, Secondary 55-01, 55M05.
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philosophy, and a populariser of mathematics, wrote that “Jordan himself and

many distinguished mathematicians gave incorrect proofs of the theorem”. The

first rigorous and correct proof was given by Oswald Veblen [8]. Veblen complained

that Jordan’s proof “is unsatisfactory to many mathematicians. It assumes the

theorem without proof in the important special case of a simple polygon and of

the argument from that point on, one must admit at least that all details are not

given”.

The theorem is a standard result in algebraic topology. A complete proof may

be found in Allen Hatcher, Algebraic Topology (2002), and in other texts such as

Edwin Spanier, Algebraic Topology (1966). Recently, a proof checker was used by

a Japanese-Polish team to create a “computer-checked” proof of the theorem.

Acknowledgement. We thank the referee for a careful reading of the article

and for pointing out a couple of typos.

2. Preliminaries

Unlike the real case, the complex exponential function is not one-to-one. We

have ez = ez+2πni for a complex number z, and any integer n. However, restricting

the domain of ez to certain region, we may get a one-to-one function ez = w, and

define the inverse function log w = z.

Note that since ez 6= 0 for any z ∈ C, we can not define log 0. Therefore,

suppose that ez = w and w 6= 0. If z = x + iy, then w = ex · eiy. Therefore

|w| = ex, and y = arg w + 2πn, n ∈ Z (the set of integers). Thus the set

{log |w|+ i(arg w + 2πn) : n ∈ Z} is the set of solutions for ez = w.

Definition 2.1. If U ⊂ C is a connected open set, and f : U → C is a continuous

function such that z = ef(z) for all z ∈ U , then f is called a branch of the logarithm

log z on U . Note that 0 /∈ U .

Proposition 2.2. If U ⊂ C is a connected open set and f is a branch of log z on

U , then the set of branches of log z consists of the functions g(z) = f(z) + 2πni,

n ∈ Z.

Proof. If f is a branch of the logarithm, and n is any integer, then g(z) = f(z) +

2πni is also a branch of the logarithm, because eg(z) = ef(z). Conversely, if

f and g are both branches of log z, then for each z ∈ U , f(z) = g(z) + 2πni

for some n ∈ Z. In fact, n is the same for each z. To see this, consider the

function h(z) = 1
2πi [f(z) − g(z)]. This is a continuous function U → Z. Since U

is connected, h(U) must also be connected. Therefore there is an n ∈ Z such that

f(z) + 2πni = g(z) for all z ∈ U . This completes the proof. �

If X is a compact Hausdorff space, we denote by C(X) the space of continuous

functions f : X → C, and by C∗(X) the space of nowhere zero continuous functions

f : X → C∗, where C∗ = C−{0}. Thus C∗(X) is the space of invertible functions

in C(X). Let

exp C(X) = {ef : f ∈ C(X)}.
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This is the space of continuous functions X → C∗ which admit continuous

logarithm.

Then C∗(X) is a commutative group with pointwise multiplication, and

exp C(X) is a subgroup of C∗(X).

Definition 2.3. Define an equivalence relation ∼ in C∗(X) by f ∼ g iff (if and

only if) f/g ∈ exp C(X), that is, f/g = eh for some h ∈ C(X). Thus f ∼ g iff

f and g belong to the same coset of exp C(X), in other words, f and g represent

the same element of the quotient group HX = C∗(X)/ exp C(X).

Lemma 2.4. If f, g ∈ C(X), and |g| < |f |. then f + g ∼ f .

Proof. The condition |g| < |f | implies that f and f +g are never zero. If h = g/f ,

then |h| < 1, and so 1 + h maps X into the right half-plane

R = {z = reiθ : r > 0, −π/2 < θ < π/2}.

This means that there is a continuous function k : X → C such that 1 + h = ek.

To see this suppose that b : R → C is a continuous branch of log w on the right

half-plane R so that w = eb(w) for w ∈ R. Let k = b ◦ (1 + h). Then, for z ∈ X,

(1+h)(z) = eb(1+h)(z) = ek(z) Thus f +g = f(1+h) = fek, that is, f +g ∼ f . �

The space C(X) is a metric space with the standard metric ρ given by

ρ(f, g) = sup
z∈X
|f(z)− g(z)|.

Lemma 2.5. C∗(X) is an open set of C(X).

Proof. It is sufficient to show that if f ∈ C∗(X), there exists a ε > 0 such that

{g : ρ(f, g) < ε} ⊂ C∗(X).

The function |f(z)|, z ∈ X, is a real valued continuous function on the compact

set X. Therefore it has an absolute minimum a ∈ X so that |f(a)| < |f(z)| for

all z ∈ X. Since |f(a)| 6= 0, there is an ε such that 0 < ε < |f(a)|. Then, if

|f(z)− g(z)| < ε, g is never zero. Therefore g ∈ C∗(X). �

Corollary 2.6. For any f ∈ C∗(X), there is an ε > 0 such that if g ∈ C∗(X) is

such that ρ(f, g) < ε, then f ∼ g.

Therefore the set [f ] = {g ∈ C∗(X) : g ∼ f} is both open and closed in C∗(X).

Proof. Choose ε > 0 such that 0 < ε < |f(z)|. Then |g(z) − f(z)| < ε < |f(z)|
implies f ∼ g, by Lemma 2.4.

Clearly, the set [f ] is open. It is also closed, since its complement in C∗(X) is

the union of the other cosets which are open. �

It may be noted that exp C(X) is the connected component of the identity

element 1 in the group C∗(X).
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Theorem 2.7. Let f, g ∈ C∗(X). Then f ∼ g iff f and g are homotopic, that is,

there is a continuous map h : X × [0, 1] → C∗(X) such that h(x, 0) = f(x) and

h(x, 1) = g(x). (The map h is called a homotopy between f and g.)

Proof. If f ∼ g, then f = geh for some h ∈ C(X). The continuous map h(x, t) =

f(x)e−th(x) is then a homotopy between f and g. Conversely, if h : X × [0, 1] →
C∗(X) is a homotopy between f and g, consider the continuous map σ : [0, 1] →
C∗(X) given by σ(t) = σt ∈ C∗(X), where σt(x) = h(x, t), t ∈ [0, 1], x ∈ X. Then,

by Corollary 2.6, the set σ−1[f ] = {t ∈ [0, 1] : σt ∼ σ0} is both open and closed

in the interval [0, 1], and hence it must be the whole of [0, 1], and so σ1 ∼ σ0, or

g ∼ f . �

Note that if c is a nonzero constant function, then c ∼ 1, so c ∈ exp C(X)

Let D(a, r) = {z ∈ C : |z − a| < r} be the open disk with centre a ∈ C and

radius r. We denote the closed unit disk centred at 0 ∈ C,

D(0, 1) = {z ∈ C : |z| ≤ 1},

by ∆, and its boundary {z ∈ C : |z| = 1} (the unit circle) by T .

Corollary 2.8. If X = D(a, r), then C∗(X) = exp C(X), and the group HX is

trivial.

The result also holds for X = ∆, and also for X = [0, 1].

Proof. If f ∈ C∗(X), define h : X × [0, 1]→ C∗(X) by h(x, t) = f(tx+ (1− t)a).

Then h(x, 0) is the constant map to f(a), and h(x, 1) = f(x), so f ∼ 1, by Theorem

2.7.

For the second part, take h(x, t) = f(tx). �

Lemma 2.9. If n is an integer, then the function zn : T → C∗ does not admit a

continuous logarithm unless n = 0.

The result also holds when ∆ and T are replaced by the disk D(a, r) and its

boundary circle Γ = {z ∈ C : |z − a| = r}, and the function zn by (z − a)n.

Proof. It is required to show that if log zn exists, then n = 0. So suppose that

zn = e2πif(z) for some f ∈ C(T ). Define

h : [0, 1]→ C

by h(t) = f(e2πit), t ∈ [0, 1]. Then h(0) = f(1) = h(1). Define g : [0, 1] → C by

g(t) = h(t)− nt. Then for all t ∈ [0, 1],

e2πig(t) = e2πi(h(t)−nt) = e2πif(e
2πit) · e−2πint = 1,

since e2πif(e
2πit) = (e2πit)n. Therefore g(t) takes only integer values. Since g

is continuous, and the interval [0, 1] is connected, g must be constant. Then

g(0)− g(1) = h(0)− h(1) + n = n, or n = 0.
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For the second part note that there is a homeomorphism α : Γ→ T given by

α(z) = (z − a)/r = ζ, say. Then (z − a)n = ef(z), f ∈ C(Γ), implies ζn = eg(ζ),

where g ∈ C(T ) is given by g(ζ) = − log(rn) + f(a+ ζr). �

Corollary 2.10. If n is a nonzero integer, then the function zn : T → C∗ is not

the restriction to T of any continuous map f : ∆→ C∗.
Similarly, if n 6= 0, then the map (z − a)n : Γ → C∗ cannot be extended to a

continuous map f : D(a, r)→ C∗.

Proof. Suppose that f : ∆→ C∗ is a continuous map such that f = zn on T . Then

f ∈ C∗(∆) = exp C(∆), by Corollary 2.8. Therefore f = eg for some g ∈ C(∆),

or f |T = eg|T = ez
n

, or the restriction of g to T is the continuous logarithm of zn.

This contradicts Lemma 2.9.

The second part is obvious. �

Theorem 2.11. Let U be a bounded open set in C, and B = U−U be the boundary

of U . Then for any a ∈ U and any nonzero integer n, the function (z − a)n on B

does not admit an extension to a continuous map f : U → C∗.

Proof. Choose r > 0 such that U ⊂ D(a, r). Suppose that we have a map f : U →
C∗ such that f = (z − a)n on B. Define a map F : D(a, r) → C∗ by F = f on

U , and F = (z − a)n on D(a, r)− U . Then F is continuous, since the definitions

agree on B. Also F = (z − a)n on Γ. This contradicts Corollary 2.10. �

Recall that Tietze’s extension theorem states that if X is a metric space and

A is a closed subset of X, then any bounded continuous map f : A → C extends

to a continuous map F : X → C (see Dieudonné [4], p.89).

Lemma 2.12. Let K be a compact subset of C, and f ∈ exp C(K). Then f :

K → C∗ can be extended to a nonvanishing continuous map F on C.

Proof. We have f = eg for some continuous g : K → C. By Tietze’s extension

theorem, g has a continuous extension G : C → C. Then F = eG is the required

extension of f , and it is nonvanishing. �

Theorem 2.13. Let X be a compact subset of C. Then a sufficient condition for

the connectedness of the set C−X is that the group HX is trivial

Proof. Suppose that HX is trivial, but C−X is not connected. Then there exists

a bounded component U of C−X. Let a ∈ U , and K be a compact neighbourhood

of B = U − U in C − {a}. Then B ⊂ K ⊂ C − {a}, and the function z − a does

not vanish on K. Therefore z − a ∈ expC(K), and, by Lemma 2.12, the function

z− a extends to a continuous function F : C→ C∗. That is, the function z− a on

B extends to F : U → C∗. This contradicts Lemma 2.11. �
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We shall see in Corollary 3.8 that the condition of Theorem 2.13 is also nec-

essary.

3. Jordan curve theorem

Let X ⊂ C be compact. Then, since C−X is second countable, it is a union

of a countable number of connected components, each of which is both open and

closed. Recall that the one-point compactification C+ of C is the union of C and a

point∞ not in C, whose topology consists of all open sets of C, and all sets of the

form C+−K where K is a compact subset of C. This is the unique topology on C+

which makes it a compact Hausdorff space. A component of C−X is unbounded

iff it is a neighbourhood of the point ∞ in C+. Therefore there can be only one

unbounded component of C − X. Let U0, U1, . . . , Uk, . . . be the components of

C−X, with U0 the unbounded component. Fix points ak ∈ Uk for each k.

Lemma 3.1. If points a and b belong to the same component of C−X, and z ∈ X,

then z − a ∼ z − b. Moreover, if a ∈ U0, then z − a ∼ 1.

Proof. Since a and b belong to the same path component of C−X, there is a path

σ : [0, 1] → C − X such that σ(0) = a, and σ(1) = b. Define a continuous map

F : X×[0, 1]→ C∗ by F (z, t) = z−σ(t). Then F (z, 0) = z−a and F (Z, 1) = z−b.
Then, by Theorem 2.7, z − a ∼ z − b.

Next, if a ∈ U0, choose R > sup {|z| : z ∈ X} such that R is in the same

component U0 of a. Then Re (z − R) 6= 0 on X. So z − R has a continuous

logarithm, that is, z−R ∼ 1. Since a and R lie in the same component of C−X,

z − a ∼ z −R ∼ 1, by the first part of the lemma. �

Lemma 3.2. A continuous function f : X → C∗ given by

f =
N∏
k=1

(z − ak)nk , z ∈ X,

where n1, n2, . . . , nN are integers, does not admit a continuous logarithm unless

nk = 0 for every k.

Proof. If f = eh for some h ∈ C(X), then, by Lemma 2.12, f has an extension

F : C → C∗. Let V1 be an open set such that a1 ∈ V1 ⊂ V1 ⊂ U1. Then the

function

g =
N∏
k=2

(z − ak)nk

on X extends to a continuous function X ∪ V1 → C, which is the restriction of F .

In other words, the function (z − a1)n1 = f/g : X → C∗ extends to a continuous

map X ∪ V1 → C∗. Therefore n1 = 0 , by Theorem 2.11. Similarly, nk = 0 for

every k. �



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

THE JORDAN CURVE THEOREM 119

Theorem 3.3. If f : X → C is a rational function with no zero or pole in X,

and N is the number of bounded components of C−X, which is either an integer

≥ 0 or ∞, then

f ∼
N∏
k=1

(z − ak)nk ,

where nk are uniquely determined integers which are zero for all but finitely many

k.

Proof. The proof follows from Lemmas 3.1 and 3.2. �

Let U ⊂ C be open. Let C1(U) denote the set of all f : U → C that have

continuous first order partial derivatives. Let C1
c (U) be the set of those f ∈ C1(U)

which have compact support. Note that the support of f , denoted by supp f , is

the closure of the set of points of U where f is nonzero.

If f ∈ C1(U), define

∂f =
1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

Note that if f = u+ iv, then ∂f = 0 implies the Cauchy-Riemann equations

∂u

∂x
=
∂v

∂y
,
∂v

∂x
= −∂u

∂y
.

Therefore ∂f = 0 implies that f is holomorphic (or analytic).

Lemma 3.4. For g ∈ C1
c (U), define a function Ag on C by

(Ag)(ζ) =
1

π

∫ ∫
C

g(z)

ζ − z
dxdy, z = x+ iy.

Then Ag ∈ C1(C), A(∂g) = g, and ∂(Ag) = g.

Proof. The fact that Ag ∈ C1(C) follows by direct computations of partial

derivatives. Alternatively, we may rewrite the definition as

(Ag)(ζ) =
1

π

∫ ∫
C

g(ζ − z)
z

dxdy,

then Ag ∈ C1(C), because by the dominated convergence theorem, we may

differentiate under the sign of integration.

By a “Cauchy formula”

1

π

∫ ∫
C

∂g(z)

ζ − z
dxdy = g(ζ)

(see Rudin [6], Lemma 20.3, p. 384). The proof is simple. To see this, put

z = ζ + reiθ where r > 0 and θ is real, and put φ(r, θ) = g(ζ + reiθ). Then, by

chain rule

(∂g)(z) =
1

2
eiθ
(
∂

∂r
+
i

r

∂

∂θ

)
φ(r, θ).
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Then

1

π

∫ ∫
C

∂g(z)

ζ − z
dxdy = lim

ε→0

1

2π

∫ ∞
ε

∫ 2π

0

(
∂

∂r
+
i

r

∂

∂θ

)
φ(r, θ)dθdφ.

For each r > 0, φ is periodic of period 2π, and so the integral of ∂φ/∂θ is zero.

Therefore

lim
ε→0

1

2π

∫ 2π

0

dθ

∫ ∞
ε

∂φ

∂r
dr = lim

ε→0

1

2π

∫ 2π

0

φ(ε, θ)dθ.

As ε→ 0, φ(ε, θ)→ g(ζ) uniformly. This gives A(∂g) = g.

Finally, if h = Ag, then ∂h = ∂(Ag) = A(∂g) = g, differentiating under the

integral sign. �

Theorem 3.5 (Runge’s theorem. Approximation by rational function). If

g ∈ C1(C) and ∂g = 0 on a neighbourhood of a compact set K, then for any ε > 0,

there exists a rational function R(z) with poles outside K such that

|R(z)− g(z)| < ε

for all z ∈ K.

See Rudin [6], Theorem 13.6, p. 256 for proof.

For the next theorem we also need smooth Urysohn’s lemma. (See also Rudin

[6], Lemma 2.12, p. 39).

Lemma 3.6. If K ⊂ U ⊂ C, where K is closed and U open, then there is a

smooth function f : C→ R such that 0 ≤ f ≤ 1, f |K = 1, and supp f ⊂ U .

Proof. The open sets U1 = U and U2 = C−K form an open covering of C. Since C
is paracompact, C admits a smooth partition of unity subordinate to this covering.

This means that there exist smooth functions λ1 : C → R and λ2 : C → R such

that for each j = 1, 2, (1) 0 ≤ λj(z) ≤ 1 for all z ∈ C, (2) suppλj ⊂ Uj , and (3)

λ1(z) + λ2(z) = 1 for all z ∈ C. Then λ1 is a solution f of the problem. �

Theorem 3.7. Let f ∈ C∗(X). Then there exist uniquely determined integers

n1, n2, . . . such that nk = 0 for all but finitely many k such that

f ∼
N∏
k=1

(z − ak)nk .

Proof. By Weierstrass approximation theorem ([7], Theorem 7.24), there exists a

polynomial p in the real coordinate functions x and y such that |p− f | < ε, where

ε = minX |f |. Since ε < |f |, p does not vanish on X. Let U be a neighbourhood

of X on which p is never zero .

By the Urysohn’s lemma, there is a φ ∈ C1
c (U) such that φ = 1 in a

neighbourhood V of X. Let g = φ · ∂pp . Then g ∈ C1(C). By Lemma 3.4,

there exists h ∈ C1(C) such that ∂h = g. Let F = e−hp. Then

∂F = e−h∂p− pe−h∂h = e−h(∂p− pg) = 0
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on V , as φ = 1 on V . By Runge’s theorem, there exists a rational function

R(z) with poles outside X such that |F (ζ) − R(ζ)| < minX |F (ζ)|. Denote the

restrictions of F , p, and R to X by the same letters. Then f ∼ p, p ∼ F , and

F ∼ R (first and third following from Lemma 2.4). Thus we have found a rational

function R with neither zero nor pole in X such that f ∼ R. By Theorem 3.3

R ∼
N∏
k=1

(z − ak)nk .

This completes the proof. �

Corollary 3.8. The group HX = C∗(X)/ expC(X) is a free abelian group with

N generators, where N is the number of bounded components of C−X.

The proof follows from Lemmas 3.1, 3.2, and Theorems 3.3, and 3.7. The

elements [fk] ∈ HX , where fk : X → C is the function fk(z) = z − ak, ak ∈ Uk,

freely generate the group HX .

Corollary 3.9. If X and Y are homeomorphic compact sets in C, then X and Y

have the same number of complementary components.

Note that if φ : X → Y is a homeomorphism, then the map φ∗ : HY → HX

defined by φ∗([f ]) = [f ◦ φ], where f ∈ C∗(Y ) and [f ] ∈ HY is the coset of f , is

an isomorphism.

Corollary 3.10. If J is a Jordan curve in C, that is, J = φ(T ), where φ is a

homeomorphism of the unit circle T into C, then C − J has exactly one bounded

component. Moreover, C − J is connected when J is the homeomorphic image of

[0, 1].

The first part is the Jordan curve theorem. This now holds trivially for T ,

and therefore for any homeomorphic image of T . The second part follows from

Corollary 2.8 for X = [0, 1].

Remark 3.11. Although algebraic topology is beyond the scope of the presents

lectures, we may mention another application of the theory, which is

Alexander duality theorem for the plane. A theorem of Bruschlinsky [3] says that

if X is compact, the group HX is isomorphic to Ȟ1(X,Z), which is the first Čech

cohomology group of X with integer coefficients Z. The proof uses a little sheaf

theory. With this theorem in hand, Corollary 3.8 can obviously be interpreted in

modern language as Alexander duality theorem in the plane in the following form.

Alexander Duality Theorem. If X is a compact subset of R2, then the Čech

cohomology group Ȟ1(X,Z) is a free abelian group with N generators, where N is

the number of bounded components of the complement R2 − X. In other words,

Ȟ1(X,Z) is isomorphic to the homology group H0(R2 −X,Z).
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The proof of the main idea of this theorem is given in Eilenberg’s doctoral

thesis, and published in [5]. The arguments described above are much simpler.
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Abstract. Special integers corresponding with the current year are consi-

dered and the question of their primality is raised. To demonstrate a way

of a possible generalization, the squiggly function of a given function of two

variables is introduced.

1. The problem

The current year is 2015 and since the number 2015 can be expressed by

an interesting formula, we try to look (only recreationally) at the number 2015

through a very little of number theory. In particular, we ask: what about other

numbers satisfying this formula? Let us start.

Let p, q, p < q be two prime numbers and consider the number mp,q given by

the formula

mp,q = pq
p+p − q · (pq + q).

Observe that for p = 2, q = 3 we have m2,3 = 2015 which is represented

by MMXV in Roman numerals; and hence, we will call the numbers mp,q

the MMXV − numbers. One can easily calculate MMXV-numbers using

the following Mathematica code:

Clear[p, q, mmxv];

mmxv=p^(q^p+p)-q*(p^q+q);

maxp=3;

maxq=5;

For[p=2,p<=maxp,p++,For[q=p+1,q<=maxq,q++,If[PrimeQ[p]

&& PrimeQ[q],

Print[Subscript[m,p,q]," = ",mmxv]]]]

The following table contains the list of all the MMXV-numbers up to 10100

(in the fourth column, the last two rows constitute the single number mp,q);

and, it may be observed that none of these MMXV-numbers is a prime

number. For example, m2,7 = 2251799813684303 = 424777 · 5301134039.

2010 Mathematics Subject Classification : 11A51, 11A99.

Key words and phrases : Elementary number theory, Primality, Recreational mathematics.
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i p q mp,q

1 2 3 2015

2 2 5 134217543

3 2 7 2251799813684303

4 2 11 10633823966279326983230456482242733959

5 2 13 2993155353253689176481146537402947624255349847908183

6 3 5 11790184577738583171520872861412518665678211592275841109095721

7 2 17 397858589127829313724305798517456672080364920637878173952371181514527597

6100267002035935

In view of the fact that MMXV-numbers are very big numbers, a com-

puter testing of their primality has limitations. We present (approximate)

values of MMXV-numbers mp,q for the lowest p and the first lowest q to

them in the next table. It is verified by us that none of the MMXV-

p q mp,q

2 3 2015

3 5 1.179 × 1061

5 7 1.213 × 1011751

7 11 8.575 × 1016468575

11 13 ?

numbers with p = 2, q ≤ 1499; p = 3, q ≤ 103; p = 5, q ≤ 19 and p = 7,

q ≤ 13 is a prime number. In particular, there is no prime MMXV-number

less than 10500000.

Is it true in general that none of the MMXV-numbers is a

prime number?

(Is it well known that for a large integer n, the probability that a

random integer not greater than n is prime is very close to 1
lnn . As the

MMXV-numbers grow so fast, the conjecture about primality seems to be

almost certainly true, but one never knows.)

2. A wider mathematical background and ideas for a

generalization

Observe that when one uses eight instances of two parameters, with four

operations and parentheses, it is not surprising that one can hardly get a

target number. Therefore, let us investigate the structure of our ”nice”

formula more closely. Our formula for mp,q can be expressed as

mp,q = pf(q,p) − q · f(p, q), where f(p, q) = pq + q.

Clearly, for certain choices of the function f(p, q), say f(p, q) = pq, it is

easy to see that numbers mp,q are always composite. On the other hand,

one can not expect that there is a simple choice for the function f(p, q) for

which mp,q are always prime numbers (Let us recall that Legendre had al-

ready proved that there is no rational algebraic function which always gives
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primes; some other formulas are known, but they are extremely inefficient,

depending on some unknown real constant, etc.)

We have seen that finding of examples of f such that mp,q are always

composite numbers is not a difficult task. Similarly, it is easy to find f

providing sometimes composite numbers and sometimes primes. (We leave

it to the reader.) However, it may be difficult to decide, for a given f ,

whether mp,q are always composite numbers or not. Therefore, we introduce

some definitions.

If p, q, p < q are two prime numbers and f(p, q) is an integer valued

function, then the function mp,q = pf(q,p) − q · f(p, q) will be called the

squiggly function of the function f . Further, a squiggly function m will be

called purely composite if its values are composite numbers for all p, q.

We can now reformulate our main problem in the following way

Is the squiggly function of f(p, q) = pq + q purely composite?

To partially solve the problem, we can also search for special primes

for which the answer is positive, though it is uncertain whether it will lead

us to success. For instance, let p ≡ −1(mod 3) and q ≡ 1(mod 3) (or

analogously p ≡ 1(mod 3) and q ≡ −1(mod 3)). Then

f(p, q) = (3M − 1)3N+1 + 3N + 1 = 3M3N − · · · + 3M − 1 + 3N + 1

which is evidently divisible by 3 and hence f(p, q) too is divisible by 3.

Nevertheless, mp,q may have such a decomposition that it may not have

any dependence on this fact; see m2,7 above or

m2,13 = 19·881·14957·527741·22653453532950530050033451435576852581.
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ABSTRACT. We present a simple and elegant proof of the Wiener-Ikehara Taube-
rian theorem, relying only upon the technique of contour integration. We also
discuss some of its applications in number theory.

1. INTRODUCTION

To motivate the notion of Tauberian theorems, let us begin with a brief dis-
cussion of Abel’s theorem. Let

∑∞
n=0 anx

n, x ∈ R be a power series centered at
0 having radius of convergence 1. At the boundary of the region of convergence,
i.e. at |x| = 1, the series may converge or diverge. Abel’s theorem states that if
the series converges at a boundary point, then it is reasonably well behaved in
the sense that it is continuous at that point. More precisely, if

∞∑
n=0

an = A, (1)

then

lim
x→1−

∞∑
n=0

anx
n = A. (2)

Broadly speaking, Tauberian theorems are conditional converses of Abel’s
theorem. They derive their name from a theorem of A. Tauber [8] published
in 1897, which states that if (2) is satisfied and we have the growth condition
an = o(1/n) on the coefficients of the power series, then (1) holds. These growth
conditions were subsequently relaxed, most notably by Hardy and Littlewood.

Some of the most interesting applications of Tauberian theorems pertain to
analytic number theory. In this context, Tauberian results can be thought of as
estimates for the partial sums of coefficients of certain Dirichlet series. An im-
portant result of this type is the Wiener-Ikehara theorem. Introduced by Ikehara
[1] in 1931, it generalizes a theorem of Landau [3], by applying a Tauberian result

*Research is partially supported by an Ontario Graduate Scholarship.
2010 Mathematics Subject Classification: 11M45, 40E05.
Keywords and Phrases: The Wiener-Ikehara Theorem, Tauberian theorems, the prime number theo-
rem.
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obtained by Wiener. Proofs of this and other Tauberian theorems in the literature
are usually found to be quite involved.

A well known application of the Wiener-Ikehara theorem is to the derivation
of the prime number theorem. In 1980, Newman [4] gave an ingenious short
proof of the prime number theorem. We modify Newman’s proof to derive the
Wiener-Ikehara Tauberian theorem. That this can be done was also recognized
by Korevaar [2]. However, our presentation is simplified and our theorem more
general. We derive as a consequence an assortment of prime number theorems
following the arrangement of Serre [7].

2. THE ANALYTIC THEOREM

The following analytic theorem of Newman [4], is the key result that will be
used to prove the Tauberian theorem. The proof is an application of Cauchy’s
residue theorem. Newman’s novel idea was the insertion of a new kernel into
the relevant integral, playing a role similar to that of the Fejér kernel in standard
proofs of the Tauberian theorem.

Theorem 1. For t ≥ 0, let f(t) be a bounded and locally integrable function and let
g(s) :=

∫∞
0
f(t)e−stdt for Re(s) > 0. If g(s) has an analytic continuation to Re(s) ≥ 0,

then
∫∞
0
f(t)dt exists and equals g(0).

Proof. For T > 0, let gT (s) =
∫ T
0
f(t)e−stdt. This integral converges for all values

of s and it is easy to see that gT (s) is an entire function. We need to show that

lim
T→∞

gT (0) = g(0).

We will denote Re(s) by σ. FixR > 0 and consider the positively oriented contour
C shown in Figure 1 below. Here δ > 0 (depending on R) is chosen small enough
so that g(s) is analytic on C . Indeed, as g(s) is analytic on the line σ = 0, one can
cover the vertical strip from (0, R) to (0,−R) with open balls, on each of which
g(s) is analytic. Compactness of this strip allows one to obtain a finite subcover,
which then gives the desired δ.
We use the following notations

C+ = C ∩ {s : σ > 0}, C− = C ∩ {s : σ < 0}.

We also denote the semicircle of radius R to the left of the line σ = 0 by C−. We
will use the big O notation, treating everything other than the variables T,R and
σ as constants.

Cauchy’s theorem gives us

IC :=
1

2πi

∫
C

(g(s)− gT (s))esT
(

1 +
s2

R2

)
ds

s
= g(0)− gT (0), (3)

as the integrand is analytic inside C except for a simple pole at s = 0. We denote
the corresponding integrals over C+ and C− as IC+

and IC− respectively. Let
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(0, 0)(−δ, 0) (R, 0)(−R, 0)

C+C−

FIGURE 1. The contour C

M = supt≥0 |f(t)|. On C+, as σ > 0, we have

|g(s)− gT (s)| =
∣∣∣∣∫ ∞
T

f(t)e−stdt

∣∣∣∣ ≤M ∫ ∞
T

e−σtdt� e−σT

σ
.

Using s = Reiθ and R cos θ = σ on C+, we obtain the following estimate for the
kernel ∣∣∣∣esT 1

s

(
1 +

s2

R2

)∣∣∣∣ = eσT
∣∣∣∣ 1

Reiθ
+
eiθ

R

∣∣∣∣ = eσT
∣∣∣∣2 cos θ

R

∣∣∣∣� eσT
|σ|
R2

. (4)

Thus, the contribution to (3) from the path C+ of length πR is

|IC+
| � 1

R2

∣∣∣∣∣
∫

C+

ds

∣∣∣∣∣� 1

R
.

On C−, we examine gT (s) and g(s) separately. Consider first the integral

I1 :=
1

2πi

∫
C−

gT (s)esT
(

1 +
s2

R2

)
ds

s

As gT (s) is entire and the rest of the integrand is analytic to the left of σ = 0, we
have by Cauchy’s theorem,

I1 =
1

2πi

∫
C−

gT (s)esT
(

1 +
s2

R2

)
ds

s
.

That is, we can integrate over the semicircle C− instead of C−, with C− oriented
in the same manner as C−. Then, noting that σ < 0 in this case, we have

|gT (s)| =

∣∣∣∣∣
∫ T

0

f(t)e−stdt

∣∣∣∣∣ ≤M
∫ T

0

e−σtdt� e−σT

|σ|
,

and the estimate (4) holds on C− exactly as it did on C−. We obtain |I1| � 1/R in
the same way as done for |IC+ | above. This leaves us with the integral

I2 :=
1

2πi

∫
C−

g(s)esT
(

1 +
s2

R2

)
ds

s
.
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As C− is contained in a compact set on which g(s) is analytic, |g(s)| can be
bounded in terms of R on C−. As the estimate (4) holds on the arcs of C−, the
integrand in this region is of the order of

|σ|eσT as T →∞,

with the implicit constant depending onR. Recalling that σ < 0 in this region, the
above quantity can be compared to the real valued function xe−x, which attains
a global maximum of e−1 (as can be checked by standard derivative tests). Thus,

|σ|eσT ≤ e−1/T,

giving a bound of OR(1/T ) for the integrand over the arcs of C−. As the length
of the arcs is again a function of R which gets absorbed into the implied constant,
we see that the contribution to |I2| from the arcs of C− is OR(1/T ) as T →∞. On
the vertical strip of C−, as σ = −δ, we have

|esT | = e−δT .

The rest of the integrand of I2 is analytic in this region and hence absolutely
bounded in terms of R. The contribution to |I2| from this strip is thus OR(e−δT ).
Putting everything together, we have obtained, as T →∞,

|g(0)− gT (0)| = |IC | ≤ |IC+ |+ |I1|+ |I2|

� O

(
1

R

)
+OR

(
1

T

)
+OR(e−δT ).

As R is arbitrary, the right hand side can be made as small as needed. This
completes the proof. �

3. THE PROOF OF THE TAUBERIAN THEOREM

We establish the following version of the Tauberian theorem, applicable in
many settings.

Theorem 2. Let

G(s) =
∞∑
n=1

bn/n
s

be a Dirichlet series with non-negative coefficients, satisfying

(a) G(s) is absolutely convergent for Re(s) > 1.
(b) The function G(s) extends meromorphically to the region Re(s) ≥ 1, having no

poles except possibly a simple pole at s = 1 with residue R.
(c) B(x) :=

∑
n≤x bn = O(x).

Then, as x→∞,

B(x) = Rx+ o(x).
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We begin by making some elementary observations. For any ε > 0,∑
n≤x

bn ≤
∞∑
n=1

bn

(x
n

)1+ε
The right hand side is x1+εG(1+ε) which is of the order of x1+ε/ε sinceG(1+ε)�
1/ε. Choosing ε = (log x)−1 givesB(x)� x log x. Note that this estimate does not
use any information about the behaviour of G(s) on Re(s) = 1, except at s = 1.
Normally (c) is not needed in the general Wiener-Ikehara Tauberian theorem.
One can deduce it from the other assumptions, as indicated in the concluding
remarks. However, in practically all applications, this condition is found to be
readily available and we retain it for the sake of a shorter proof.

A natural starting point for this and indeed most proofs of the Tauberian
theorem is what is known as Abel’s trick: for Re(s) > 1, we have

G(s) = s

∫ ∞
1

B(x)

xs+1
dx. (5)

This can be derived using partial summation, as is done in Exercise 2.1.5 of [5].
We proceed to prove the above theorem.

Proof of Theorem 2. Without loss of generality, we may suppose R > 0. Indeed, if
R ≤ 0, it is enough to prove the result for G(s) +mζ(s), where ζ is the Riemann-
zeta function and m is an integer greater than |R|. For R > 0, replacing bn by
bn/R if needed, we may assume R = 1. From our discussion above, we have for
Re(s) > 1,

G(s)

s
− 1

s− 1
=

∫ ∞
1

B(x)− x
xs+1

dx (6)

After the change of variable x to eu and then s to s+ 1, we have for Re(s) > 0,

G(s+ 1)

s+ 1
− 1

s
=

∫ ∞
0

B(eu)− eu

eu
e−sudu,

which is suitable for application of Theorem 1 because the function

f(u) := (B(eu)− eu)/eu

is bounded on account of (c) and the left hand side has an analytic continuation
to Re(s) ≥ 0 by (b). Hence, by Theorem 1, the integral∫ ∞

0

B(eu)− eu

eu
du =

∫ ∞
1

B(t)− t
t2

dt (7)

converges. We will show that B(x) ∼ x as x → ∞. Suppose not. Then either
limx→∞B(x)/x does not exist or does not equal 1 if it exists. In either case, we
see that lim supx→∞B(x)/x > 1 or lim infx→∞B(x)/x < 1. Suppose the former
inequality holds (the latter case can be treated similarly). Then there exists some
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λ > 1 such thatB(x) ≥ λx for infinitely many x. As there exists x arbitrarily large
with B(x) ≥ λx and B(x) is an increasing function, we have∫ λx

x

B(t)− t
t2

dt ≥
∫ λx

x

λx− t
t2

dt

=

∫ λ

1

λx− vx
(vx)2

xdv =

∫ λ

1

λ− v
v2

dv,

which is a positive quantity c(λ) (say) depending only on λ. This gives∣∣∣∣∫ ∞
x

B(t)− t
t2

dt−
∫ ∞
λx

B(t)− t
t2

dt

∣∣∣∣ = c(λ)

For fixed λ, as x → ∞, the above integrals are tails of the convergent integral (7)

and can be made arbitrarily small, thereby giving a contradiction. This completes
the proof. �

The result can be extended to Dirichlet series with complex coefficients as
follows.
Corollary 3. Let

F (s) =
∞∑
n=1

an/n
s

be a Dirichlet series with complex coefficients. Let A(x) denote the partial sum of the
coefficients:

A(x) =
∑
n≤x

an.

Suppose there exists a Dirichlet series G(s) =
∑∞
n=1 bn/n

s with non-negative
coefficients, such that

(a) |an| ≤ bn for all n.
(b) G(s) is absolutely convergent for Re(s) > 1.
(c) The function G(s) (resp. F (s)) extends meromorphically to the region Re(s) ≥

1, having no poles except for a simple pole at s = 1 with residue R (resp. r).
(d) B(x) :=

∑
n≤x bn = O(x).

Then, as x→∞,
A(x) = rx+ o(x).

Proof. If an’s are real, we consider the series G(s)−F (s), which has non-negative
coefficients and satisfies the conditions of Theorem 2, giving∑

n≤x

(bn − an) = (R− r)x+ o(x),

as x → ∞. As B(x) = Rx + o(x), this proves the result in the case of real
coefficients. If the coefficients an are not real, we define

F ∗(s) =
∞∑
n=1

ān/n
s



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

A SIMPLE PROOF OF THE WIENER-IKEHARA TAUBERIAN THEOREM 133

so that

F =
F + F ∗

2
+ i

(
F − F ∗

2i

)
.

and apply the result for real coefficients separately to the real and imaginary part
above after checking that the necessary conditions are satisfied. �

4. APPLICATIONS

In this section we demonstrate some applications of the Tauberian theorem,
following the treatment of Serre [7] who gives a general set-up for the same in the
context of equidistribution.

We make this more precise in an abstract setting as follows. Let G be a com-
pact group and X be the space of conjugacy classes of G. Let xv be a family of
elements ofX , indexed by a countably infinite set P . LetN : P → Z be a function
taking values ≥ 2, ρ an irreducible complex representation of G with character χ.
We define

ζP(s) =
∏
v∈P

(
1− 1

(Nv)s

)−1
, L(s, ρ) =

∏
v∈P

det

(
1− ρ(xv)

(Nv)s

)−1
.

Thus, for the trivial representation ρ = 1, L(s, 1) = ζP(s).

Theorem 4. Suppose L(s, ρ) is absolutely convergent for Re(s) > 1 and extends to a
meromorphic function on Re(s) ≥ 1 with no zeros or poles except for a pole of order cχ
at s = 1. Then, ∑

Nv≤n

χ(xv) = (1 + o(1))cχ
n

log n
.

The proof of the above theorem follows by applying the Tauberian theorem
to L′/L. We refer the reader to the appendix of Chapter 1 of [7] for the same. If
Theorem 4 holds for all irreducible representations ρ 6= 1 with cχ = 0, then the
Peter-Weyl theorem allows us to deduce that the xv’s are equidistributed with
respect to the normalized Haar measure of G. Special cases of this theorem lead
to important results, among them being the prime number theorem, Chebotarev
density theorem and the Sato-Tate theorem. An excellent reference for the inter-
ested reader wishing to delve deeper into these topics is [6].

5. CONCLUDING REMARKS

As remarked earlier, the added condition (c) in Theorem 2 is not restrictive
for most practical purposes. However, it is possible to eliminate this condition
altogether. We give a brief sketch of the argument. The key idea is to notice that
the known bound B(x)� x log x implies that for any ε > 0, the function

fε(t) :=
f(t)

eεt
=

B(et)

et(1+ε)
− 1

eεt

is bounded and satisfies the conditions of Theorem 1. Applying this theorem to
fε(t) and following an elementary argument that exploits the increasing
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behaviour of the function B(et)/et(1+ε), one obtains a uniform bound on
supt≥0 |fε(t)|. Letting ε → 0, we see that f(t) must be bounded. A more detailed
proof can be found in [2].
Acknowledgment: I would like to thank Professor M. Ram Murty for several
useful discussions and helpful comments.
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[3] Landau, E., Über die Betdeutung einiger neuerer Grenzwertsätze der Herren Hardy und Axer, Prace
mat.-Fiz., 21 (1910), 97-177.

[4] Newman, D. J., Simple analytic proof of the prime number theorem, Amer. Math. Monthly, 87 (1980),
693-696.

[5] Ram Murty, M., Problems in Analytic number theory, 2nd Edition, Graduate Texts in Mathematics,
Springer, New York, 2008.

[6] Ram Murty, M. and Kumar Murty, V., Non-vanishing of L-functions and applications, Modern
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Abstract. This paper is concerned with the ancient diophantine problem of

finding two perfect squares such that both, their sum and difference, when

increased by unity, become perfect squares. Bhaskaracharya, in his 12th

century treatise on algebra, had given an elegant method of finding integer

solutions of this problem. Subsequently, only one parametric solution has

been published. We obtain an infinite sequence of parametric solutions of

this problem. All of these parametric solutions readily yield integers with the

desired property. We also obtain the complete solution in rational numbers

of this diophantine problem.

1. Introduction

Bhaskaracharya, in his 12th century treatise on algebra entitled Bijaganita,

gives an elegant method of finding integer solutions of the following two

diophantine problems which he attributes to an ancient author [1, pp. 257–259]:

“Calculate and tell, if you know, two numbers, the sum and difference of

whose squares, with one added to each, are squares: or which are so, with the

same subtracted.”

If the two numbers are taken as x and y, the first problem requires that we

solve the simultaneous diophantine equations,

x2 + y2 + 1 = u2, (1.1)

x2 − y2 + 1 = v2, (1.2)

while for the second problem, we must solve the simultaneous equations,

x2 + y2 − 1 = u2, (1.3)

x2 − y2 − 1 = v2. (1.4)

It is interesting to note that, seven centuries later, the first problem was posed

as a problem for solution in the reputed American Mathematical Monthly. A

parametric solution was published in the same journal by Drummond, namely,

2010 Mathematics Subject Classification: 11D09.

Keywords and Phrases: two quadratic functions made perfect squares.
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x = 2n2, y = 2n [3]. Bhaskaracharya was aware of this solution and in addition,

his method generates infinitely many numerical solutions in integers that cannot

be obtained by Drummond’s parametric solution (eg. x = 38, y = 34). No other

solutions of the first problem seem to have been published. In fact, Piezas [4]

has posed the question whether there are any other parametric solutions of the

problem.

With respect to the second problem, a fairly comprehensive solution is known.

Several authors have given parametric solutions that yield integer solutions of the

problem while Genocchi and Pepin have independently given the complete solution

of the problem in rational numbers (as quoted by Dickson [2, pp. 479–480]).

This paper accordingly focuses on the first problem mentioned by

Bhaskaracharya. We obtain a sequence of infinitely many parametric solutions

that yield integer solutions of the problem, the first solution in the sequence

being the parametric solution given by Drummond. We also obtain the complete

solution of the problem in rational numbers.

2. Integer Solutions of the simultaneous equations

x2 + y2 + 1 = u2, x2 − y2 + 1 = v2

The only integer solutions of equations (1.1) and (1.2) with y = 0 are readily

seen to be the trivial solutions given by (x, y, u, v) = (0, 0, ±1,±1). To obtain

solutions of (1.1) and (1.2) in which y 6= 0, we take their difference when we get,

2y2 = u2 − v2. (2.1)

The complete solution of Eq. (2.1), using the obvious solution (u, v, y) =

(1, 1, 0), as the initial known solution, is readily obtained and is given by,

u = (2p2 + q2)t, v = (2p2 − q2)t, y = 2pqt, (2.2)

where p, q, t are arbitrary integer parameters. Since y 6= 0, the three parameters

p, q, r must all necessarily be taken as nonzero.

Substituting the values of u, v and y given by (2.2) in (1.1), we get, after

suitable transpositions, the following equation:

x2 − (4p4 + q4)t2 = −1. (2.3)

To obtain integer solutions of (2.3), we take q = 1 when (2.3) may be considered as

the Pell’s equation x2−dy2 = −1 where d = 4p4+1 with an obvious solution being

given by x = 2p2, t = 1. We will use the obvious known solution of (2.3) to obtain

a sequence of infinitely many parametric solutions (xn, tn), n = 1, 2, 3, . . . .... of

Eq. (2.3). We take (x1, t1) = (2p2, 1) as the first solution of the sequence so that

x2
1 − dt21 = −1, (2.4)

where d = 4p4 + 1. Let (xn, tn) be the nth solution of the sequence so that

x2
n − dt2n = −1. (2.5)
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We recall the well-known identity related to composition of forms, namely,

(X2
1 − dX2

2 )(Y 2
1 − dY 2

2 ) = (X1Y1 + dX2Y2)2 − d(X1Y2 + X2Y1)2, (2.6)

and apply it twice so that,

(x2
n − dt2n)(x2

1 − dt2)2 = {(x2
1 + dt21)xn + 2dt1tnx1}2

− d{(x2
1 + dt21)tn + 2t1x1xn}2.

(2.7)

Now, on writing,

xn+1 = (x2
1 + dt21)xn + 2dt1tnx1, tn+1 = (x2

1 + dt21)tn + 2t1x1xn, (2.8)

it follows from (2.7), (2.4) and (2.5) that,

x2
n+1 − dt2n+1 = (−1)3 = −1. (2.9)

Since (x1, t1) = (2p2, 1) is a known parametric solution of Eq. (2.3), we can

now generate a sequence of parametric solutions of Eq. (2.3) using the recurrence

relations (2.8). These recurrence relations may be written explicitly by substi-

tuting x1 = 2p2, t1 = 1, and d = 4p4 + 1 in (2.8) when we get the following

relations:
xn+1 = (8p4 + 1)xn + 4p2(4p4 + 1)tn,

tn+1 = 4p2xn + (8p4 + 1)tn.
(2.10)

Finally, using (2.2) and noting that we have taken q = 1, we can obtain a

sequence (xn, yn), n = 1, 2, 3, . . . ...., of univariate polynomials in terms of the

parameter p such that (xn, yn) give a solution to our diophantine problem. The

first solution of this sequence is readily seen to be (x1, y1) = (2p2, 2p) which is

precisely the parametric solution given by Drummond. It follows from (2.10) and

(2.2) that the sequence of solutions (xn, yn), n = 1, 2, 3, . . . ...., is given by the

recurrence relations,

xn+1 = (8p4 + 1)xn + 2p(4p4 + 1)yn,

yn+1 = 8p3xn + (8p4 + 1)yn,
(2.11)

where p is an arbitrary parameter.

As already noted, the first parametric solution of this sequence of solutions

is given by (x1, y1) = (2p2, 2p). The next three solutions of the sequence are as

follows:

x2 = 2p2(16p4 + 3), y2 = 2p(16p4 + 1),

x3 = 2p2(256p8 + 80p4 + 5), y3 = 2p(256p8 + 48p4 + 1),

x4 = 2p2(4096p12 + 1792p8 + 224p4 + 7), y4 = 2p(4096p12 + 1280p8 + 96p4 + 1),

where, in each case, p is an arbitrary parameter.

It readily follows by induction that xn and yn are given by polynomials

of degrees 4n − 2 and 4n − 3 respectively, and the leading coefficient of both
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these polynomials is 24n−3. As the degrees of the polynomials xn form a strictly

monotonically increasing sequence of positive integers, we are assured of an infinite

sequence of distinct parametric solutions of Bhaskaracharya’s problem.

As a numerical example, taking p = 1, we get the four solutions, (x1, y1) =

(2, 2), (x2, y2) = (38, 34), (x3, y3) = (682, 610) and (x4, y4) = (12238, 10946).

3. The complete solution in rational numbers of the simultaneous

equations x2 + y2 + 1 = u2, x2 − y2 + 1 = v2

We will first obtain all rational solutions of equations (1.1) and (1.2) in which

y = 0. On substituting y = 0 in these equations, we get x2+1 = u2 and x2+1 = v2.

These equations are readily solved and their complete solution in rational numbers

is given by

x = (m2 − 1)/(2m), u = ±(m2 + 1)/(2m), v = ±(m2 + 1)/(2m), (3.1)

where m is an arbitrary nonzero rational parameter.

We will now obtain all rational solutions of equations (1.1) and (1.2) in which

y 6= 0. As in Section 2, we obtain the relations (2.2) and (2.3) where, as before, the

three parameters p, q and t are necessarily nonzero. Now (2.3) may be considered

as a quadratic equation in the variables x and t, and an obvious rational solution

of this equation is given by (x, t) = (2p2/q2, 1/q2). All solutions, in rational

numbers, of (2.3) may now be obtained by writing,

x = rz + 2p2/q2, t = sz + 1/q2, (3.2)

where r, s and z are arbitrary parameters such that (r, s) 6= (0, 0) and z 6= 0, these

conditions being necessary as otherwise we just get the obvious solution mentioned

above. With these values of x and t, Eq. (2.3) reduces to a linear equation in z,

which is readily solved, and we thus obtain the following solution of (2.3):

x = −2(p2r2 − (4p4 + q4)rs + (4p4 + q4)p2s2

q2(r2 − (4p4 + q4)s2)
,

t =
r2 − 4p2rs + (4p4 + q4)s2

q2(r2 − (4p4 + q4)s2)
.

(3.3)

We note here that on substituting r = 4p4 + q4 and s = 2p2 in (3.3), we get

the initial known solution (x, t) = (2p2/q2, 1/q2) which is thus included in the

solution (3.3).

Now, on using (2.2), we obtain the following solution in rational numbers of

equations (1.1) and (1.2):

x = −2(p2r2 − (4p4 + q4)rs + (4p4 + q4)p2s2

q2(r2 − (4p4 + q4)s2)
,

y =
2p(r2 − 4p2rs + (4p4 + q4)s2)

q(r2 − (4p4 + q4)s2)
,

u =
(2p2 + q2)(r2 − 4p2rs + (4p4 + q4)s2)

q2(r2 − (4p4 + q4)s2)
,

(3.4)
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v =
(2p2 − q2)(r2 − 4p2rs + (4p4 + q4)s2)

q2(r2 − (4p4 + q4)s2)
,

where p, q, r, and s are arbitrary rational parameters such that pq 6= 0 and (r, s) 6=
(0, 0).

It is to be noted that the elliptic curves Y 2 = 4X4 + 1 and Y 2 = X4 + 4 are

both of rank 0, and the only rational points on these curves are given by X = 0.

It follows that when the parameters p, q, r, s satisfy the conditions pq 6= 0 and

(r, s) 6= (0, 0), we will necessarily have r2 − (4p4 + q4)s2 6= 0, and thus, under

these conditions, the denominators of the values of x, y, u, v given by (3.4) are all

nonzero, and hence (3.4) always generates well-defined rational solutions. Further,

it is readily seen that, under the given conditions, the numerator of the value of

y given by (3.4) is always nonzero since p 6= 0 and the discriminant of the factor

r2−4p2rs+(4p4+q4)s2, considered as a quadratic function of r and s, is −4q4 < 0

so that this factor is always positive. Thus, the value of y given by (3.4) is always

nonzero.

We now have the complete solution in rational numbers of equations (1.1) and

(1.2). All rational solutions of equations (1.1) and (1.2) in which y = 0 are given

by (3.1) and all rational solutions in which y 6= 0 are given by (3.4).

As a numerical example, taking (p, q, r, s) = (1, 1, −1, 1) in (3.4), we get the

rational numbers 11/2 and 5 as a solution to our problem.
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COMPLETENESS AND INVERTIBILITY

S. H. KULKARNI

(Received : 03 - 07 - 2015)

Abstract. We show that two very important concepts in Functional Anal-

ysis, namely the completeness of a normed linear space and invertibility of

a bounded linear map are related to each other. This gives a possibly new

characterization of completeness.

1. Introduction
Answers to many important questions in Functional Analysis depend upon

knowing whether a certain normed linear space is complete or/and whether a

certain bounded linear map has a bounded linear inverse. Usually students do not

think that these two important ideas in Functional Analysis, namely completeness

and invertibility, have anything to do with each other. In this note, we try to draw

the attention of students to connections between these ideas.

The following well known theorem is given in many textbooks of Functional

Analysis. (See for example, [1].)

Theorem 1.1. Let T be a bounded(continuous) linear map from a Banach space

X to a normed linear space Y . Then the following are equivalent:

1. T has a bounded inverse.

2. T is bounded below and the range of T is dense in Y .

It is natural to ask what happens if the hypothesis of completeness of X is

dropped. Somehow, this question is not discussed in the textbooks. It is obvious

that (1) would still imply (2) even without completeness. But the converse is false

and it is easy to construct a counterexample. We give such an example. Further,

it is interesting to note that (2) is equivalent to the following even without the

completeness of X.

3. The transpose T ′ of T has a bounded inverse.

Even more interesting is the fact that the completeness of X is equivalent to the

invertibility of every bounded linear map satisfying (2).

2. preliminaries

We recall a few standard notations, definitions and results that are used in the

next section. For normed linear spaces X,Y , we denote by BL(X,Y ) the set of

2010 AMS Subject Classification: 46B99, 47A05.
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all bounded linear operators from X to Y . For an operator T ∈ BL(X,Y ), N(T )

denotes the null space of T and R(T ) denotes the range of T. Thus

N(T ) = {x ∈ X : T (x) = 0} and R(T ) = {T (x) : x ∈ X}.
Further, T is said to be bounded below if there exists α > 0 such that ‖T (x)‖ ≥

α‖x‖ for all x ∈ X and T is said to be invertible if there exists S ∈ BL(Y,X)

such that ST = IX , the identity map on X, and TS = IY , the identity map on Y .

The dual space X ′ of X, is the set of all bounded linear functionals on X, that is,

X ′ = BL(X,K), where K is the underlying field of real or complex numbers. For

a subset A ⊆ X, the annihilator A0 is the set of all continuous linear functionals

that vanish on A, that is, A0 := {φ ∈ X ′, φ(a) = 0 for all a ∈ A}. If A is a

subspace of X, then it follows by the Hahn-Banach Theorem, that A is dense in

X, if and only if A0 = {0}. The transpose T ′ of T ∈ BL(X,Y ) is the operator in

BL(Y ′, X ′) defined by

(T ′ψ)(x) := ψ(T (x)) for all x ∈ X and ψ ∈ Y ′. All the other notations (including

the notations for sequence spaces c00, `
1 etc.) are as in [1] and [2]. We shall make

use of the following well known results:

1. (R(T ))0 = N(T ′).

2. Every normed linear space X can be viewed as a dense subspace of a Banach

space which we shall denote by Xc. (More precisely, there is a linear isometry of

X onto a dense subspace of Xc.) The Banach space Xc is called the completion

of X. These results can be found in any book on Functional Analysis, for example

[1] and [2].
3. Notes

We begin with an example.

Example 3.1. Let X := (c00, ‖.‖1), Y := `1 and T : X → Y be given by T (x) = x

for x ∈ X. Clearly, T is bounded below, range of T is dense in Y , but T is not

onto and hence not invertible. More generally, we can consider the inclusion map

from a proper dense subspace of a normed linear space.

Remark 3.2. Note that in the above example, though T is not invertible, its

transpose T ′ is invertible. In fact, both the dual spaces X ′ of X and Y ′ of Y can

be identified with `∞ in the usual way (See [2] for details.) and with respect to

this identification T ′ becomes the identity operator on `∞.

This leads to some natural observations. First we consider some elementary

results. The following elementary result is given as an Exercise in some books.

Lemma 3.3. Let T be a bounded(continuous) linear map from a normed linear

space X to a normed linear space Y . Then R(T ) is dense in Y if and only if T ′

is injective.

Proof. Recall that R(T ) is dense in Y if and only if {0} = (R(T ))0 = N(T ′) if and

only if T ′ is injective. �
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Lemma 3.4. Let T be a bounded(continuous) linear map from a normed linear

space X to a normed linear space Y . Then the following statements are equvivalent:

1. T has a bounded inverse from R(T ) to X.

2. T is bounded below.

3. T ′ is onto.

Proof. (1) implies (2): This is easy. Suppose S : R(T )→ X is a bounded inverse

of T . Then for each x ∈ X,

‖x‖ = ‖ST (x)‖ ≤ ‖S‖‖T (x)‖, that is, ‖T (x)‖ ≥ 1
‖S‖‖x‖.

(2) implies (1) and (3): Since T is bounded below, there exists α > 0 such that

‖T (x)‖ ≥ α‖x‖ for all x ∈ X. In particular, T is injective. Hence we can define a

map S : R(T ) → X by S(y) = x for y = T (x) ∈ R(T ). This is well defined since

T is injective. It is easy to see that S is linear. Also

‖S(y)‖ = ‖x‖ ≤ 1
α‖T (x)‖ = 1

α‖y‖.
Hence S is bounded. This proves (1).

Next let φ ∈ X ′ and y ∈ R(T ). There exists unique x ∈ X such that y = T (x).

Define ψ by ψ(y) := ψ(T (x)) = φ(x). This defines ψ as a linear functional on R(T ).

Further,

|ψ(y)| = |ψ(T (x))| = |φ(x)| ≤ ‖φ‖‖x‖ ≤ ‖φ‖ 1α‖T (x)‖ = ‖φ‖ 1α‖y‖.
This shows that ψ is bounded on R(T ) and hence has a bounded (norm preserving)

extension to Y by the Hahn-Banach Theorem. We denote this extension also by

the same symbol ψ. Thus ψ ∈ Y ′ and φ = T ′(ψ). This shows that T ′ is onto.

(3) implies (2): Let x ∈ X. By the Hahn-Banach Theorem, there exists φ ∈ X ′

such that φ(x) = ‖x‖ and ‖φ‖ = 1. Further, since T ′ is onto, there exists ψ ∈ Y ′

such that φ = T ′(ψ). Now

‖x‖ = φ(x) = T ′(ψ)(x) = ψ(T (x)) ≤ ‖ψ‖‖T (x)‖, that is, ‖T (x)‖ ≥ 1
‖ψ‖‖x‖

This shows that T is bounded below. �

We now give the main theorem.

Theorem 3.5. Let T be a bounded(continuous) linear map from a normed linear

space X to a normed linear space Y . Consider the following statements:

1. T has a bounded inverse.

2. T is bounded below and the range of T is dense in Y .

3. T ′ is invertible.

Then (2) and (3) are equivalent and each is implied by (1). If, in addition, X

is a Banach space, then all the three statements are equivalent.

Proof. (1) implies (2): Obvious. Since T has a bounded inverse, R(T ) = Y . Also

T is bounded below by Lemma 3.4.

(2) if and only if (3): By Lemma 3.3, R(T ) is dense in Y , if and only if T ′ is

injective. Further, by Lemma 3.4, T is bounded below, if and only if, T ′ is onto.

Thus (2) is equivalent to the following:
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T ′ : Y ′ → X ′ is a bijection.

Hence T ′ is invertible by the Closed Graph Theorem as X ′, Y ′ are Banach spaces.

Finally, if X is a Banach space, then (2) implies (1) by Theorem 1.1 and hence

all the three statements are equivalent. �
Remark 3.6. We may further note that completeness of X is , in fact, equivalent

to the invertiblity of every bounded linear map satisfying (2). In other words, a

normed linear space X is a Banach space if and only if every bounded linear map

T from X to any normed linear space Y such that T is bounded below and the

range of T is dense in Y , is invertible. The only if part is already proved above.

To prove the if part, consider Y = Xc, the completion of X. Then there is a linear

isometry T of X onto a dense subspace Y0 of Y . (See [2] for details.) Obviously,

this T is bounded below and R(T ) = Y0 is dense in Y . Hence by the hypothesis, T

is invertible and, in particular, onto. Thus X is linearly isometric to Y and hence

complete.

Remark 3.7. It is known that the invertibility of an operator is closely related to

its spectrum. Let X be a complex normed linear space and T ∈ BL(X,X). Recall

that the spectrum σ(T ) of T is the set of all complex numbers λ such that λI − T
is not invertible. Applying Theorem 3.5 to λI − T , we obtain the known result

that σ(T ′) ⊆ σ(T ) and the equality holds if X is a Banach space. (See [2]) (The

inclusion can be strict ifX is not a Banach space. See the next example.) A natural

question is whether the converse holds. In other words, can the completeness be

also characterized in terms of spectra as follows: A complex normed linear space X

is complete if and only if σ(T ′) = σ(T ) for all T ∈ BL(X,X)? Another formulation

of the same question is as follows: Given an incomplete normed linear space X,

does there exist T ∈ BL(X,X) such that T is bounded below, its range is dense

in X and T is not invertible (that is, not onto)? Note that the above examples

and remarks do not answer this question as the spaces X and Y considered there

are different.

Example 3.8. This example shows that the inclusion σ(T ′) ⊆ σ(T ) can be strict

if X is not complete.

Let X := (c00, ‖.‖2), and T : X → X be the right shift operator given by

T (x1, x2, . . .) = (0, x1, x2, . . .) for x := (x1, x2, . . .) ∈ X. Then the dual space X ′

can be identified with `2 and the transpose T ′ of T can be identified with the left

shift operator. (See [2] for details.) Then it can be shown that

σ(T ′) = {z ∈ C : |z| ≤ 1}, the closed unit disc. On the other hand, it is easy to

see that the equation (λI − T )x = e1 = (1, 0, 0, . . .) has no solution x ∈ X for any

complex number λ. In other words, λI − T is not onto. Thus σ(T ) = C.
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A CONJECTURE ON PRIME NUMBERS

NEELABH DEKA

(Received : 11 - 07 - 2015)

Abstract. A new conjecture on prime numbers is proposed in this short

note.

Conjecture 1. Let pn denote the n-th prime number. If we choose n consecu-

tive natural numbers from the interval [2, p2n − n] such that they are divisible by

p1, p2, · · · , pn not necessarily in order, then the next set of n consecutive natural

numbers would contain at least one prime number.

For example, if n = 3, then pn = 5; and we choose three consecutive natural

numbers between 2 and 22, say 8, 9 and 10. Here 2 divides 8, 3 divides 9 and 5

divides 10. Then in the next set of three consecutive natural numbers we get 11

which is a prime.

A related conjecture would be to guess that the previous set of n consecutive

natural numbers before our choice would also contain at least one prime number.

If this conjecture is true, then we may hope to apply it to other conjectures

like Brocard’s Conjecture or Grimms’s Conjecture.
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COLORED TOPOLOGICAL TVERBERG THEOREM OF
BLAGOJEVIĆ, MATSCHKE AND ZIEGLER

SATYA DEO*

(Received : 31 - 08 - 2015 ; Revised : 10 - 10 - 2015)

Abstract. This is an expository article dealing with the colored topologi-

cal Tverberg thereom formulated and proved by Pavle Blagojević, Benjamin

Matschke and Günter Ziegler. We present the simplest of their proofs of this

theorem using the degree concept of the equivariant maps and the well known

configuration space/ test map method of the topological combinatorics.

1. Introduction

Let d ≥ 1 and r ≥ 2 and N = (d+ 1)(r− 1). The classical Tverberg Theorem

says that if we have N + 1 points in the Euclidean space Rd in general position,

then we can decompose these points into r disjoint subsets F1, F2, · · · , Fr such

that the intersection of their convex hulls viz ∩ri=1conv (Fi), is nonempty [15].

This theorem is true for any d and any r as stated above. For the case d = 2, it

was proved by B. Birch [5] in 1959. For higher dimensional space Rd, the above

theorem was conjectured by Birch and proved by H. Tverberg [15] in 1966. It is

easily seen that the above theorem can be stated as follows.

Theorem 1.1. Let 4N denote the N− simplex and f : 4N → Rd be any linear

map. Then one can find r disjoint faces σ1, σ2, · · · , σr of 4N such that

∩r1f(σi) 6= φ.

Looking at the above version of the Tverberg theorem one is naturally tempted to

ask the following topological question:

Question: If f : 4N → Rd is any continuous map, not necessarily a linear map,

can we still find a family of r disjoint faces σ1, σ2, · · · , σr of 4N such that

∩r1f(σi) 6= φ ?

The above question was first answered by BSS [4] in 1981, who proved that the

answer to above question is in affirmation provided the number r is prime. In

* The author was a Senior Scientist of the National Academy of Sciences, India, at Harish-Cha-

ndra Research Institute, Allahabad when this work was done.
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order to prove this result, BSS made use of the Borsuk-Ulam Theorem for Zp-
actions from algebraic topology. Later, M. Özaydin [14] proved that the answer to

the above question remains affirmative even if r is a prime power, say r = pk for

any k ≥ 1. These results became known as topological Tverberg theorems. The

general question for arbitrary r remained as one of the most challenging problems

of topological combinatorics until very recently when in February 2015, Florian

Frick [11] gave an example to show that the answer to the above question, when

r is not a power of prime is in negative. In fact, Frick produced an example of a

continuous map f : 4N → Rd, r, d suitably chosen, such that whenever we take

any family σ1, σ2, · · · , σr of r disjoint faces of 4N , ∩r1f(σi) = φ. This solved one

of the most important problems of topological combinatorics and the position of

topological Tverberg theorem became remarkably clear for all possible value of r.

What would be the colored version of the topological Tverberg Theorem ?

This question was first studied by Bárány, Füredi and Lovász [2] in 1990, who

proved, among other things, that if we take 21 points in the plane in general

position such that 7 are red, 7 are blue and 7 are green, then we can decompose

them into 7 triangles, each triangle having vertices of different colors, such that

their intersection is non empty. Somewhat later in 1992, Bárány and Larman [3]

studied the above question further and proved the following general result:

If we take 3r points in the plane in general position where r are of red color, r are

of blue color and r are of green color, then we can find r disjoint triangles, each

triangle having vertices of different colors, such that their intersection will be non

empty.

For higher dimensional Euclidean spaces Rd, Bárány and Larman posed the

following problem:

Given r and N = (d + 1)t ≥ (d + 1)r points in Rd, determine the smallest t

such that if we take d + 1 color classes of size ≤ t, we can find a family of r

disjoint d-simplices having vertices of different colors, such that their intersection

is nonempty.

Živaljević and Vrećica [18] (ZV in short) introduced the concept of chessboard

complexes and showed that when r is a prime, the above colored Tverberg Theorem

holds for t ≥ 2r−1. They also indicated that the theorem is true for t ≥ 4r−3 for

any r ≥ 2 due to Bertrand’s postulate that there is a prime between r and 2r. This

colored Tverberg Theorem of ZV attracted a lot of attention, but could not be

considered very satisfactory for two reasons. The first reason was that the classical

Tverberg Theorem does not appear as a special case of this Theorem, and the

second reason was that several colored points were left out unaccounted. In 2009,

Blagojević, Matschke and Ziegler (see [6]) formulated and proved a remarkable

new colored topological Tverberg Theorem which is stated as follows.



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

COLORED TOPOLGICAL ...... OF BLAGOJEVIĆ, MATSCHKE AND ZIEGLER 151

Theorem 1.2. (BMZ) Let d ≥ 1, r ≥ 2 prime and N = (d+ 1)(r− 1). Consider

the N -simplex 4N whose vertices are colored into disjoint color classes

C0, C1, · · · , Cm m ≥ d+ 1

such that for each i, the size |Ci| of these colored classes is at most r − 1. Then

given any continuous map f : 4N → Rd there exists a family of r disjoint rainbow

faces σ1, σ2, · · · , σr of 4N such that

f(σ1) ∩ · · · ∩ f(σr) 6= φ.

Here a face σi is said to be a rainbow face if each vertex of σi is of different color,

i.e., |σi ∩ Cj | ≤ 1 ∀ i, 1 ≤ i ≤ r and ∀ j, 1 ≤ j ≤ m. Note that a rainbow face

need not use all colors.

The above Theorem, to be called the BMZ Theorem in the sequel, turns out

to be very interesting topological colored Tverberg Theorem since the classical

Tverberg Theorem becomes a special case of this Theorem when the size of each

color class is one, and also since all points of 4N are accounted for. There are

at least three different proofs of the BMZ theorem. In this paper we will discuss

and explain the simplest of the three proofs which uses the concept of chessboard

complexes and the degree of an equivariant map.

2. Chessboard Complexes and the Degree of an Equivariant Map

For a simple motivation, let us consider a 5× 5 chessboard. Suppose we have

a number of rooks, not only two, that we want to put on this board so that no

rook threatens any other rook. This means in any row there can be only one rook

and similarly in any column there can be only one rook. Let us now consider

all possible placements of rooks on the above chessboard. Several placements are

clearly possible such as

•
•

•
•

•

•
•

•
•

•

Note that we can place a maximum of 5 rooks on the above chessboard. Since

a subset of a valid placement of rooks is also a valid placement, the set of all

possible valid rook placements forms a simplicial complex. The vertex set is

clearly the set of all squares and consists of 25 points. More generally, we can

consider a rectangular chessboard having m×k squares so that we get a simplicial

complex which has m.k vertices and whose simplices are all possible valid rook

placements of the above chessboard. Such a simplicial complex is known as

chessboard complex and is denoted by 4m,k. These simplicial complexes are
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very interesting and useful mathematical objects and they have several different

interpretations (see [1] [18] [19] for details). One of the most interesting results

about these simplicial complexes is their k-connectedness property for suitable k.

The following examples and observations are obvious.

(i) 4m,1 has only m vertices and no other simplex. It is clearly a discrete set.

(ii) 43,2 is a connected simplicial complex giving a triangulation of circle. To

see this suppose ∆3,2 is represented by the entries of the following matrix

d e f

a b c
.

Then all the maximal 1−simplexes are

< a, e >,< a, f >,< b, d >,< b, f >,< c, d >,< c, e >

which can be represented as

a

bc

d

e f

.

(iii) 43,3 ⊃ 43,2 as a subcomplex.

(iv) 4m,k is simplicially isomorphic to 4k,m.

(v) 4m,k is a (k − 1)-dimensional simplicial complex if m ≥ k.

In this paper we will need only the special chessboard complex 4r,r−1 where r is

a prime number. We can visualize these simplicial complexes with vertices as the

entries of a r × (r − 1) matrix with r rows and r − 1 columns as follows:

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

(1,r)

(1,1) (r−1, 1)

(r−1, r)

A maximal simplex of4r,r−1 is shown as entries joined by lines, and such a simplex

has r−1 vertices. It follows that4r,r−1 is a (r−2)-dimensional simplicial complex.

We have

Proposition 2.1. The chessboard complex 4r,r−1 is a connected (r − 2)-

dimensional orientable pseudomanifold.



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

COLORED TOPOLGICAL ...... OF BLAGOJEVIĆ, MATSCHKE AND ZIEGLER 153

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�(1,1)

(r,1) (r, r−1)

(r−1, r−1)

(1, r−1)

Proof. Consider the r × (r − 1) matrix:

A maximal simplex has r − 1 vertices and so will occupy r − 1 rows and r − 1

columns. Hence 4r,r−1 is (r − 2)-dimensional. Moreover any (r − 3)-simplex will

occupy r − 2 rows and r − 2 columns leaving one column and two rows vacant.

Therefore it can be extended to a (r − 2)-simplex only in two ways by occupying

either of the two vacant entries in the two rows and the vacant column. This

means any (r− 3)-simplex is a face of exactly two (r− 2)-simplices. Furthermore,

given any two (r − 2)−simplexes σ1, σ2 of ∆r,r−1, it is easy to see that we can

connect them by a sequence of (r − 2)−simplexes σ1 = τ0, τ1, ...., τn = σ2 such

that the intersection of any two consecutive simplexes is a (r − 3)−simplex. The

following example is enough to formulate a general argument:

σ1 = 0
τ σ =2

τ5

Now we consider a (r − 1) × r matrix with r = 6. The two 4−simplices shown

above can be connected by the following sequence of 4−simplices so that their

intersection is a 3−simplex.

1
τ

2
τ

4
τ 5

τ

3
τ

Thus 4r,r−1 is a pseudomanifold.

To see the orientability of the complex ∆r,r−1, we observe that we have r rows

and r− 1 columns. Let us order the r rows as (1, 2, ..., r). Now a (r− 2)−simplex

is determined by entries in any r − 1 rows with one entry in each column fixed.
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Let us indicate that (r−2)−simplex as (1, 2, ..., î, ..r) where the index î is omitted.

Now we give positive orientation to (1, 2, ..., î, ..r) when i is even, and negative

orientation when i is odd. Then, as in the case of n−sphere ∂σn+1, we can see

easily that any (r−3)−simplex of ∆r,r−1 will receive opposite orientations from the

two (r− 2)− simplexes of which it is a common face. Hence the above orientation

is coherent and so the pseudomanifold ∆r,r−1 is orientable. �

Let us also recall the idea of r−fold deleted join of a simplicial complex.

Definition 2.1. Let K be a simplicial complex. The r−fold deleted join, denoted

by K∗r∆ , is a simplicial complex whose vertices are the r−fold disjoint union of the

vertices of K and the simplices are given by

K∗r∆ = {σ1 ] σ2 ] · · · ] σr : σ1, σ2, ..., σr ∈ K,σ1 ∩ σ2 ∩ · · · ∩ σr = φ}.

The polyhedron of K∗r∆ can be written as

||K∗r∆ || = {t1x1 ⊕ t2x2 ⊕ ...⊕ trxr : supp(x1) ∩ supp(x2)... = φ, t1 + t2 + ..tr = 1}.

One can easily see that

(1) (σ0)∗2∆ consists of two points.

(2) (D2)∗2∆ is a disjoint union of two edges.

(3) (σ1)∗2∆ is the perimeter of a square.

3. Degree of an Equivariant map

Let σr−1 be the (r − 1)−simplex with vertex set [r] = {1, 2...., r}. Then the

boundary complex ∂(σr−1) is a triangulation of the (r−2)−sphere Sr−2 for r ≥ 2.

Its simplices can be written as < 1, 2, · · · , î, · · · , r > where î means i is omitted.

It is well known that if we orient Sr−2 by above ordering then the fundamental

homology class (orientation cycle) of Sr−2 is given by the simplicial chain ([9]

p.130)

[∂σr−1] = [
∑

(−1)i < 1, 2, · · · , î, · · · , r >]. (2.1)

On the other hand, since 4r,r−1 is also an orientable pseudomanifold of dimension

(r − 2) by Proposition 2.1, we can write the orientation cycle of 4r,r−1 as

[4r,r−1] =

[ ∑
π∈Sr

(−1)signπ < (π(1), 1), (π(2), 2), · · · , (π(r − 1), r − 1) >

]
. (2.2)

Here Sr denotes the permutation group on r symbols.

Now let us define a map ξ : 4r,r−1 → ∂σr−1 simply by projecting the

simplex < (i1, j1), (i2, j2), · · · , (ip, jp) > of 4r,r−1 onto the simplex

< i1, i2, · · · , ip > belonging to ∂σr−1. Also note that the group Sr acts on 4r,r−1

simply by k permuting the rows of 4r,r−1 whereas it acts on [r] by permuting the

vertices of σr−1. With these actions of Sr, the map ξ is a Sr-map. Under this

map, the maximal simplices of 4r,r−1 go to the maximal simplices of ∂σr−1. Let

us see what will be inverse of the simplex < 1, 2, · · · , î, · · · , r >. The preimages
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of this simplex under ξ will be all permutations < π(1), π(2), · · · , π(̂i), · · · , π(r) >

where î has been omitted and their number is clearly (r−1)! Since the orientation

cycle of the pseudomanifold 4r,r−1 is given by the simplicial chain∑
π∈Sr

(−1)signπ < (π(1), 1), (π(2), 2), · · · , (π(r − 1), r − 1) >,

we find that in homology

ξ∗[4r,r−1] = (r − 1)![∂σr−1].

This proves the following

Proposition 3.1. If ξ denotes the projection map ξ : 4r,r−1 → ∂σr−1, then

deg ξ = (r − 1)!.

Let us also recall the following result on the degree of equivariant maps (see [19],

page 9).

Proposition 3.2. Let M be a triangulated compact orientable n-dimensional

pseudomanifold. Suppose G is a finite group acting freely and simplicially on M .

Suppose S(W ) is a G−invariant sphere in a real (n + 1)−dimensional

G−representation W . Suppose S and M both have the same orientation char-

acter, i.e., each element of G either preserves the orientation of both M and S or

reverses the orientation. Then for any two G-maps f, g : M → S

deg f = deg g mod |G|.

The following proposition is a consequence of the preceding two propositions.

Proposition 3.3. For any Zr-map h : 4r,r−1 → ∂σr−1 the degree of h,

deg h ≡ deg ξ mod r

≡ ±1 mod r

i.e., deg h 6= 0.

4. Colored Topological BMZ Theorem

In this section we will present the simplest proof of the BMZ Theorem using the

degree theoretic method. In fact, BMZ gave three different proofs of their Theorem

(see [7]). One of the proofs uses the obstruction theory of algebraic topology

whereas the other uses the concepts of ideal theoretic G-index theory. Both of

these proofs are somewhat more involved and technical. The degree theoretic

proof (see [7] ) which we are going to present turns out to be the simplest of all.

However, the basic result needed for this proof is the following Reduction Lemma

(see [10] for a motivational proof of this lemma).

Lemma 1. If the BMZ theorem is true for the special coloring C0, C1 · · · , Cd+1

where |Ci| = r− 1 for all i 6= d+ 1 and |Cd+1| = 1, then the BMZ theorem is true

for all coloring C0, C1 · · · , Cm, m ≥ d+ 1, where |Ci| ≤ r − 1.
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Proof of the BMZ Theorem

Let C0, C1 · · · , Cd+1 be the d + 2 color classes of the vertices of the simplex

4N where |Ci| = r− 1 for all i 6= d+ 1 and |Cd+1| = 1. We are interested only in

rainbow faces of 4N such that the vertices of these faces must come from different

color classes. If we regard each color class Ci as discrete space, then their join

K = C0 ∗ C1 ∗ · · · ∗ Cd+1 is a simplicial complex and the vertices of its simplices

will have different colors. Therefore these simplices will be rainbow faces of 4N .

In fact, a face of 4N will be rainbow face iff it is a face of the simplicial complex

K which is a proper subcomplex of the simplicial complex 4N .
Now we consider the group Zr = [g] to be generated by the cyclic permutation

g and consider the r-fold join K∗r of K. Clearly Zr acts on K∗r by cyclically

permuting the coordinates,.i.e., by the action

g(t1x1 ⊕ t2x2 ⊕ · · · ⊕ trxr) = t2x2 ⊕ t3x3 ⊕ · · · ⊕ t1x1.

Hence K∗r is Zr-space which need not be free. However, the pairwise deleted join

K∗r(2) is a free Zr-space.

Now suppose f : 4N → Rd is any continuous map. This map restricts to a

continuous map say f : K → Rd and hence induces a continuous map in their

r-fold join

f∗r : K∗r → (Rd)∗r. (4.1)

Note that Zr acts on Rr = {(xe1 + · · ·+ xer)| xi ∈ R} by cyclicly permuting

the coordinates. This gives the regular representation of Zr on Rr. The diagonal

4 of Rr is fixed under this action and so its orthogonal compliment viz., the plane

{(x1, · · · , xr) ∈ Rr|
∑
xi = 0}

is invariant under the above action of Zr. The orthogonal plane say, Wr is therefore

a (r− 1)−dimensional representation of Zr. Now if p : Rr →W r is the projection

map, then this defines a Zr-map (Rd)∗r → (W r)d+1 by (4.2)

p(t1x1 ⊕ t2x2 ⊕ · · · ⊕ trxr) = (p(t1, · · · , tr),

p(t1x11, · · · , trxr1),

...

p(t1x1d, · · · , trxrd)).

The map f∗r in (4.1) is evidently a Zr-map. Note that a simplex of LHS is a formal

convex combination of r-tuple (σ1, · · · , σr) of rainbow faces of 4N and its image

under f∗r is a formal convex combination of r-tuple of subsets (f(σ1), · · · , f(σr))

of Rd. Clearly f(σ1)∩ · · · ∩ f(σr) 6= φ iff (f(σ1), · · · , f(σr))contains an element of

the diagonal of (Rd)∗r. Composing the map of (4.1) with (4.2), we get a Zr-map

f∗r : (C0 ∗ C1 ∗ · · · ∗ Cd+1)∗r → (W r)d+1.
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The RHS is a real vector space of dimension (d+ 1)(r − 1).

Now let us assume that the map f : 4N → Rd violates the BMZ Theo-

rem. This means whenever σ1, · · · , σr is a family of r-pairwise disjoint rainbow

faces of 4N the intersection of their images f(σ1), · · · , f(σr) will be empty, i.e.,

their images under f∗r will never be zero. Since the Zr-space (W r)d+1 − {0} is

Zr-homotopy equivalent to the (d + 1)(r − 1) − 1 = N − 1 dimensional sphere

S((W r)d+1), we get a Zr-map

g : (C0 ∗ C1 ∗ · · · ∗ Cd+1)∗r4(2)
→ S(d+1)(r−1)−1.

Since the join operation commutes with the delete join ([13]. p.108), we get a

Zr-map

g : (C0)∗r4(2) ∗ · · · ∗ (Cd)
∗r
4(2)
∗ (Cd+1)∗r4(2)

→ S(d+1)(r−1)−1.

Now observe that (Ci)
∗r
4(2)

' 4r,|Ci| is the chessboard complex for each i =

1, 2 · · · , d + 1. Furthermore, (Cd+1)∗r4(2)
= [r] is simply the discrete set with r

points. Let us denote

L = (C0 ∗ C1 ∗ · · · ∗ Cd)∗r4(2)
.

Then the LHS of the map g is L ∗ [r] which has L ∗ {1} as a subcomplex and the

latter is a cone over L. Finally consider the restriction h of the Zr-map g to L,

viz.,

h : L→ S(d+1)(r−1)−1.

Note that 4r,r−1 = 4r,|Ci| is an oriented pseudomanifold of dimension r − 2

(Proposition 2.1). Hence L = 4r,r−1 ∗ · · · ∗ 4r,r−1 ((d + 1) copies) is also an

orientable pseudomanifold of dimension (d+1)(r−2)+d = (d+1)(r−1)−1. Thus

the dimension of L = dimension of S(d+1)(r−1)−1 and so we can talk of the degree

of the map h : L → S(d+1)(r−1)−1. Since h extends to a Zr-map onto the cone

L∗{1} over L, we find that deg h = 0. But since Zr acts freely on both the spaces,

deg h 6= 0 by Proposition 3.3. This contradiction completes the proof of the BMZ

Theorem for the special coloring {C0, C1, · · · , Cd+1}. Hence, by the Reduction

Lemma, the BMZ Theorem is true for arbitrary colorings {C0, C1, · · · , Cm} where

m ≥ d+ 1 and |Ci| ≤ r − 1. This completes the proof.
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[7] Blagojević, P. V. M., Matschke, B. and Ziegler, G. M., Optimal bounds for a colored
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1. Gauss’s law of composition

In his seminal work Disquisitiones Arithmeticae of 1801, Karl Friedrich Gass

studied the action of SL2(Z), the group of integral 2×2 matrices with determinant

1, on the space of integral binary quadratic forms f(x, y) = ax2 + bxy + cy2

(a, b, c ∈ Z)*. The group SL2(Z) acts on integral binary quadratic forms by linear

substitution of variable as follows:

γ · f(x, y) = f((x, y) · γ),

where γ ∈ SL2(Z) and f is an integral binary quadratic form. This action preserves

the discriminant ∆ = b2 − 4ac of binary quadratic forms, i.e., ∆(f) = ∆(γ · f).

Gauss defined a composition law on the orbits for this action: given two integral

binary quadratic forms f and g with the same discriminants, Gauss described a

method to construct a third integral binary quadratic form h = f ◦ g, also with

the same discriminant. Furthermore, if f ′ and g′ are two integral binary quadratic

forms equivalent to f and g respectively under the action of SL2(Z), then f ′ ◦ g′ is

also equivalent to f ◦ g under the action of SL2(Z). In fact, Gauss proved that the

set of SL2(Z)-orbits on integral binary quadratic forms having a fixed discriminant

D form a finite abelian group under composition. We will denote this group by

Cl(D) and the size of Cl(D) by h(D).

Gauss formulated several conjectures regarding h(D) which have played an

enormous part in shaping number theory. The most famous of them is the

celebrated class number one conjecture.

Conjecture 1.1 (Gauss). The list of positive D such that h(−D) = 1 is: 3, 4, 7,

8, 11, 19, 43, 67, and 163.

Conjecture 1.1 has a long and illustrious history which is beautifully detailed

by Goldfeld in [23]. It is now a theorem due independently to Baker [1] and Stark

* Gauss considered only forms where b is even; however we will follow the modern point of view

and allow all three coefficients a, b, and c to be arbitrary integers.

2010 AMS Subject Classification: 11A15, 11D25, 11D41, 11E04, 11E08, 11E41, 11E76,

11H06

Key words and phrases: composition laws, arithmetic statistics.
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[40], [41]. It is worth noting that Heegner [26] had previously published an almost

complete proof of Conjecture 1.1, but his paper contained errors and was not

complete. Shortly after the work of Baker and Stark, Deuring [21] filled in the

gaps in Heegner’s work. Another conjecture regarding h(D) for negative D is the

Gauss class number conjecture.

Conjecture 1.2 (Gauss). The number of positive integers D such that h(−D) is

equal to any fixed integer is finite.

Conjecture 1.2 is a result of the combined work of Hecke [29] (Landau published

the theorem, which he attributed to a lecture by Hecke) and Heilbronn [27]. Hecke

proves that h(−D) → ∞ as D → ∞ if the generalized Riemann hypothesis is

true; Heilbronn proves that h(−D) → ∞ as D → ∞ if the generalized Riemann

hypothesis is false! The celebrated result of Siegel [33] provides a rate of growth

for h(−D):
Theorem 1.3 (Siegel). For every ε > 0, there exists a constant c > 0 such that

h(−D) > cD1/2−ε (1)

for every positive integer D.

Siegel proof is ineffective, which is to say that it does not provide a method

of computing c given ε—only a proof that such a c exists!

Very little is known about the sizes h(D) for positive D. They are expected

to behave very differently from the sizes when D is negative. For example, the

following is widely believed (though completely unknown).
Conjecture 1.4 (Gauss). There exist infinitely many positive integers D such

that h(D) = 1.

Gauss also made conjectures on the behaviour of h(D) on average.

Conjecture 1.5 (Gauss). For large enough real number X:

(a)
∑

−X<D<0

h(D) ∼ π

18
·X3/2;

(b)
∑

0<D<X

h(D) log εD ∼
π2

18
·X3/2;

here εD = (t + u
√
D)/2, where t, u are the smallest positive integral solutions of

t2 −Du2 = 4.

It is worth noting that such t, u do not exist if D is negative. Part (a) of

Conjecture 1.5 is a result of Mertens [31] and part (b) is a result of Siegel [34]. It

is the analogues of these conjectures that we will focus on in this article.

2. Bhargava’s laws of composition

In this section, for the sake of convenience, we will restrict ourselves to con-

sidering integers D that are fundamental discriminants, i.e., integers D such that

either D ≡ 1 (mod 4) and is squarefree or D = 4m where m ≡ 2 or 3 (mod 4) and

m is squarefree. For such D, the group Cl(D) is isomorphic to the narrow class
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group of the quadratic number field Q(
√
D) and h(D) is the narrow class number

of Q(
√
D). This narrow class group is the same as the class group for imaginary

quadratic fields (the D < 0 case) but can be twice as big for real quadratic fields

(the D > 0 case). The precise definition of class groups and narrow class groups

will not be necessary for us. All number fields have class groups, and these class

groups measure the failure of the rings of integers of these number fields to be

principle ideal domains.

Narrow class groups of number fields have a naturally occuring abelian group

structure and Gauss’s law of composition on integral binary quadratic forms having

discriminant D corresponds to addition in the narrow class group. Thus, the law

of composition can be stated as the following theorem.

Theorem 2.1 (Gauss). Let D 6= 0 be a fundamental discriminant. Then there ex-

ists a natural bijection between the set of SL2(Z)-orbits on integral binary quadratic

forms with discriminant D and the narrow class group of Q(
√
D).

Two centuries after Gauss described his law of composition, Bhargava

discovered several new laws of compositions. In what follows, we describe some of

them. In our exposition, we closely follow Bhargava’s paper [2]. Let V (Z) denote

the space Z2⊗Z2⊗Z2 of cubes whose vertices are integers. We represent elements

of V (Z) as 8-tuples (a, b, c, d, e, f, g, h) viewed as vertices of a cube as follows:

a b

c d

e f

g h

We may slice this cube in three different ways obtaining these three pairs of

integral matrices:

M1 =

[
a b

c d

]
, N1 =

[
e f

g h

]
,

M2 =

[
a c

e g

]
, N2 =

[
b d

f h

]
,

M3 =

[
a e

b f

]
, N3 =

[
c g

d h

]
.

(2)

An element A ∈ V (Z) thus yields three pairs of integral 2 × 2-matrices (Mi, Ni),

1 ≤ i ≤ 3. By considering the discriminant quadratic form

QAi := −det(Mix−Niy) (3)



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

162 ARUL SHANKAR AND XIAOHENG WANG

for 1 ≤ i ≤ 3, we also obtain three integral binary quadratic forms. Bhargava

proves that these three integral binary quadratic forms have the same discriminant!

We define the discriminant of A, denoted ∆(A), to be to this common discriminant

of these three binary quadratic forms.

The group Γ = SL2(Z) × SL2(Z) × SL2(Z) acts on V (Z): for 1 ≤ i ≤ 3, the

i’th component
( p q

r s

)
of an element in Γ sends (Mi, Ni) to (pMi + qNi, rMi +

sNi). Furthermore, Γ preserves the discriminant of elements in V (Z). That is,

we have ∆(A) = ∆(γ · A) for A ∈ V (Z) and γ ∈ Γ. With Theorem 2.1 as our

template to describing laws of composition, we may state Bhargava’s first new law

of composition.

Theorem 2.2 (Bhargava). Let D 6= 0 be a fundamental discriminant. Then there

exists a natural bijection between the set of Γ-orbits on elements in V (Z) with

discriminant D and Cl+(Q(
√
D))2, where Cl+(Q(

√
D)) is the narrow class group

of the quadratic field Q(
√
D).

The incredible richness of this new composition law is perhaps best described

by demonstrating how it gives rise to even more composition laws. First, Bhargava

shows that for A ∈ V (Z) giving rise to the three quadratic forms (3), the sum of

QA1 , QA2 , and QA3 , with respect to Gauss composition, is 0. In particular, this law

(termed the cube law by Bhargava) is enough to recover all of Gauss composition!

Second, Bhargava shows that the law of composition on integer cubes in V (Z)

restricts to triply symmetric integer cubes, i.e., those of the form

a b

b c

b c

c d

with a, b, c, d ∈ Z. These triply symmetric cubes are preserved by the action

of SL2(Z) embedded diagonally in Γ, and the orbits having fixed fundamental

discriminant D form an abelian group under composition. Amazingly, SL2(Z)-

orbits on triply symmetric cubes are in natural bijection with SL2(Z)-orbits on

integral binary cubic forms, whose middle coefficients are multiples of 3: the binary

cubic form corresponding to the above triply symmetric integer cube is ax2 +

3bx2y + 3cxy2 + dy3. This leads to another composition law:

Theorem 2.3 (Bhargava). Let D 6= 0 be a fundamental discriminant. Then there

exists a natural bijection between the set of SL2(Z)-orbits on triplicate integral

binary cubic forms with discriminant D and Cl(Q(
√
D))[3], where Cl(Q(

√
D))[3]

is the 3-torsion subgroup of the class group of the quadratic field Q(
√
D).
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Details of these and many other composition laws are in the beautiful series

of papers [2], [3], [4], [5] by Bhargava.

3. Statistics of number fields

Arithmetic statistics concerns the study of the statistics of arithmetic objects.

Two of the foundational questions in the subject are the following.

(1) How are the discriminants of degree-n number fields distributed?

(2) How are the class groups of degree-n number fields distributed?

When n = 2, the first question is easy to answer, since an integer D occurs

as the discriminant of a quadratic field if and only if D is a fundamental discrim-

inant. Furthermore, each such integer D occurs as the discriminant of exactly

one quadratic field. Theorem 2.1 in conjunction with the work of Mertens and

Siegel resolving Conjecture 1.5 provides a partial answer to the second question.

Siegel in [34] provides a much fuller answer to the second question by computing

all moments of the sizes of the class groups of number fields. However, even that

landmark work does not provide a complete answer. This is because the sizes of

class groups do not take into account their group structure. In this regard, the

highly influential work of Cohen and Lenstra [17] formulates a detailed series of

conjectures that predict the behaviour of class groups of quadratic number fields

on average. The most well known of their conjectures is the following:

Conjecture 3.1 (Cohen–Lenstra). Let p be an odd prime. Then

(a) The average size of the p-torsion subgroup in the class group of real

quadratic fields is 1 + 1/p.

(a) The average size of the p-torsion subgroup in the class group of imaginary

quadratic fields is 2.

Their conjecture goes much further and in fact predicts the distribution of

class groups of quadratic number fields. Very little is proved of their conjecture.

The only known case is that of p = 3, which is due to Davenport and Heilbronn

in work that predates the conjecture of Cohen and Lenstra.

Theorem 3.2 (Davenport–Heilbronn). We have

(a) The average size of the 3-torsion subgroup in the class group of real

quadratic fields is 4/3.

(a) The average size of the 3-torsion subgroup in the class group of imaginary

quadratic fields is 2.

When n ≥ 3, very little is known of either of the two questions posed in the

beginning of this section. Before the work of Bhargava, the only complete result

in this regard was the following theorem of Davenport and Heilbronn [20].
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Theorem 3.3 (Davenport–Heilbronn). Let N3(ξ, η) denote the number of cubic

fields K, up to isomorphism, that satisfy ξ < Disc(K) < η. Then

N3(0, X) =
1

12ζ(3)
X + o(X);

N3(−X, 0) =
1

4ζ(3)
X + o(X),

(4)

where ζ denotes the Riemann-Zeta function.

As far as the second question is concerned, the Cohen–Lenstra heuristics have

been modified by Cohen and Martinet [18] to obtain conjectures for higher degree

number fields. Before the work of Bhargava (described in the next section), no

case of this conjecture had been proven.

4. Bhargava’s advances in Arithmetic Statistics

Davenport, using geometry-of-numbers techniques, proved the following

theorem [19] which was a key input in Theorems 3.2 and 3.3.

Theorem 4.1 (Davenport). Let N(ξ, η) denote the number of GL2(Z)-equivalence

classes of irreducible integer-coefficient binary cubic forms f satisfying ξ < Disc(f)

< η. Then

N(0, X) =
π2

72
·X +O(X15/16) ; N(−X, 0) =

π2

24
·X +O(X15/16) .

This furthers the works of Siegel and Mertens resolving Conjecture 1.5 by

counting SL2(Z)-orbits on integral binary quadratic forms. It had previously been

understood through works of [42] that the statistics of quartic fields can be studied

via the representation of G4 = GL2 × SL3 on the space W4 = (Sym2Z3 ⊗ Z2)∗ of

pairs of ternary quadratic forms. However, two major obstacles remained: first,

though the rational orbits for the action of G4(Q) on W4(Q) were understood

to correspond to quartic extensions of Q, there was no corresponding interpreta-

tion of the integral orbits of G4(Z) acting on W4(Z). Second, the combinatorial

difficulties in counting SL2(Z)-orbits on the space of integral binary quadratic

forms (a 2-dimensional space) and in counting GL2(Z)-orbits on the space of

integral binary cubic forms (a 3-dimensional space) grow infinitely when dealing

with G4(Z)-orbits on W4(Z) which is 12-dimensional!

The first difficulty was resolved by Bhargava in [4], where he proves the

following remarkable theorem.

Theorem 4.2 (Bhargava). There is a canonical bijection between the set of GL2(Z)

×SL3(Z)-orbits on the space (Sym2Z3⊗Z2)∗ of pairs of integral ternary quadratic

forms and the set of ismorphism classes of pairs (Q,R), where Q is a quartic ring

and R is a cubic resolvent ring of Q.

It is important to note that a very slightly modified representation is shown

by Bhargava to yield another important law of composition.
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Theorem 4.3 (Bhargava). There is a bijection between the set of GL2(Z) ×
SL3(Z)-orbits on the space Sym2Z3 ⊗ Z2 and the set of equivalence classes of

triples (R, I, δ), where R is a nondegenerate cubic ring over Z, I is an ideal of R

having rank 3 as a Z-module, and δ is an invertible element of R ⊗ Q such that

I2 ⊂ (δ) and N(I)2 = N(δ).

Introducing fundamental new tools, Bhargava transformed the reach of the

geometry-of-numbers methods used by Mertens, Siegel, and Davenport. These new

tools made it possible to resolve enormous combinatorial difficulties and determine

asymptotics for the number of absolutely irreducible G4(Z)-orbtis on W4(Z), where

an orbit is said to be absolutely irreducible if it corresponds to a quartic integral

domain R such that the Galois closure of the fraction field of R over Q is S4. This

led to the following results proved in [6].

Theorem 4.4 (Bhargava). Let N
(i)
4 (ξ, η) (resp. M

(i)
4 (X)) denote the number of

S4-quartic fields K (resp. quartic orders O contained in S4-quartic fields) having

4− 2i real embeddings such that |Disc(O)| < X. Then

(a) lim
X→∞

N4(X)

X
=

1

ni

ζ(2)2ζ(3)

ζ(5)
,

(a) lim
X→∞

M4(X)

X
=

1

ni

∏
p

(1 + p−2 − p−3 − p−4),

where n0 = 48, n1 = 8, and n2 = 16.

These methods in conjunction with Theorem 4.3 also lead to the following

theorem, which is the first, and thus far only, result proving an instance of the

Cohen-Lenstra-Martinet heuristics involving fields having degree greater than 2.

Theorem 4.5 (Bhargava). We have

(a) The average size of the 3-torsion subgroup in the class group of cubic fields

having positive discriminants is 5/4.

(a) The average size of the 3-torsion subgroup in the class group of cubic fields

having negative discriminants is 3/2.

Quintic fields had been known to correspond to G5(Q)-orbits on W5(Q), where

G5 = GL4 × SL5 and W5 is the space of 4-tuples of 5 × 5-altering forms. The

space W5 is 50-dimensional, which is a large increase over the 12-dimensional

space W4. The combinatorial difficulties, both in understanding what the integral

orbits parameterize and in counting the integral orbits, are correspondingly larger.

However, Bhargava resolves them both in [5] and [7], respectively, yielding the

following theorems.

Theorem 4.6 (Bhargava). There is a canonical bijection between the GL4(Z) ×
SL5(Z)-orbits on the space Z4 ⊗∧2Z5 of quadruples of 5× 5 skew-symmetric ma-

trices and the set of isomorphism classes of pairs (R,S), where R si a quintic ring

and S is a sextic resolvent of R.
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Theorem 4.7 (Bhargava). Let N
(i)
5 (ξ, η) (resp. M

(i)
5 (X)) denote the number of

quintic fields K (resp. quintic orders O contained in quintic fields) having 4 − 2i

real embeddings such that |Disc(O)| < X. Then

(a) lim
X→∞

N5(X)

X
=

1

ni

∏
p

(1 + p−2 − p−4 − p−5,

(a) lim
X→∞

M4(X)

X
=

α

ni
,

where

α =
∏
p

(p− 1

p

∑
[Rp:Zp]=5

1

|AutZp
(Rp)|

· 1

Discp(Rp)

)
,

n0 = 240, n1 = 24, and n2 = 16.

5. Elliptic curves

An elliptic curve E over Q is given by the equation

E : y2 = x3 +Ax+B, (5)

where the discriminant −(4A3 + 27B2) is nonzero. The rational points E(Q) of

an elliptic curve, along with the point at infinity, form an abelian group. The

following famous result is due to Mordell:

Theorem 5.1 (Mordell). The group E(Q) is finitely generated as an abelian group.

This implies that we have the isomorphism

E(Q) ∼= T ⊕ Zr,

where T is a finite abelian group and r is denoted the rank of E. The following

remarkable result of Mazur [30] gives all the possibilities for the group T .

Theorem 5.2 (Mazur). Let E be an elliptic curve over Q. Then the torsion

subgroup T of E(Q) can only be Z/nZ for 1 ≤ n ≤ 12 or Z/2Z × Z/mZ for

m = 2, 4, 6 or 8.

The rank r, on the other hand, is much less understood. Given an ellip-

tic curve E over Q, it is possible to associate an L-function to it. These L-

functions have many of the same features as the Riemann zeta function. They have

Euler products, functional equations, and a meromorphic continuation to the entire

complex plane. We will normalize these L-functions so that the line of symmetry

of their functional equation is Re(s) = 1. The form of these functional equations

is the following.

Λ(E, s) = ω(E)N1−sΛ(E, 2− s), (6)

where Λ is the completed L-function of E, N is the conductor of E, and ω(E)

is the root number of E. The precise definitions of Λ, N , and ω(E) will not be

important to us. However, it is important to note that ω(E) is ±1. The order of

the zero of L (equivalently the zero of Λ) at s = 0 is called the analytic rank of E.

Then the Birch–Swinnerton-Dyer conjecture is the following:
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Conjecture 5.3 (Birch–Swinnerton-Dyer). The rank of an elliptic curve E is

equal to the analytic rank of E.

The parity of the analytic rank of E is determined by the root number; the

analytic rank is even or odd depending on whether ω(E) is 1 or −1, respectively.

Thus, the Birch–Swinnerton-Dyer conjecture implies that the parity of the rank

of E is determined by r(E).

It is widely believed (though yet unproven) that r(E) is 1 half the time and −1

half the time. Together with the Birch–Swinnerton-Dyer conjecture, this would

imply that the rank is even half the time and odd half the time. In conjunction

with a general belief that elliptic curves should have as few rational points as

they can get away with, with have the following “minimalist” conjecture due to

Goldfeld and Katz–Sarnak.

Conjecture 5.4 (Goldfeld, Katz–Sarnak). The average rank of elliptic curves is

1/2. The proportion of elliptic curves having rank 0 is 50%; the proportion having

rank 1 is 50%.

There are two important points to make regarding the above conjecture. The

first is that the believed 0% of elliptic curves having rank greater than or equal

to 2 still constitutes infinitely many curves! The second is that statements about

the average rank of elliptic curves, or statements concerning proportions of elliptic

curves cannot be made precisely without first ordering elliptic curves in some

way. This can be done in several natural ways: we may order elliptic curves by

conductor or discriminant or some sort of height. Note the elliptic curve EA,B :

y2 = x3+Ax+B is isomorphic to the elliptic curve Eu4A,u6B : y2 = x3+u4Ax+u6B

under the map (x, y) 7→ (u2x, u3y) for any rational number u and we certainly do

not want to count both. Hence we may scale A,B so that they are both integers

and that there is no prime p such that p4 | A and p6 | B. Because of this apparent

“weight” of A and B (which will appear again in the definition of the height for

hyperelliptic curves in the next section), we define the “naive” height of an elliptic

curve EA,B to be

H(EA,B) = max{4A3, 27B2}. (7)

The extra factors of 4 and 27 are there to balance their contribution to the

discriminant and have no effect on the average behavior.

Conditional on the generalized Riemann hypothesis, Brumer [16] showed that

the average analytic rank of elliptic curves, when ordered by height, is finite and

bounded by 2.3. Still assuming the generalized Riemann hypothesis, this constant

was improved by 2 and 1.79 by Heath-Brown [25] and Young [43], respectively.

However, no unconditional results were proven about the finiteness of the average

analytic rank (or the average rank) of elliptic curves.

The geometry-of-numbers methods developed by Bhargava may be applied

to the following representations that are intimately connected to ranks of elliptic
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curves:
GL2(Z) → End(Sym4(Z2))

GL3(Z) → End(Sym3(Z3))

GL2(Z)×GL4(Z) → End(Z2 ⊗ Sym2(Z4))

GL5(Z)×GL5(Z) → End(Z5 ⊗ ∧2(Z5)).

In joint work with the first named author, this yielded the following theorem,

which was a result of a series of papers [11], [12], [13], [14].

Theorem 5.5. When elliptic curves over Q are ordered by height, their average

rank is < .885; a density of at least 83.75% have rank 0 or 1; a density of at least

20.62% have rank 0.

Extending these methods still further, and using the famous Gross–Zagier for-

mula [24], Kolyvagin’s theory of Euler systems [28], and recent works of Dokchitser–

Dockchitser [22] and recent Skinner, Urban, and Zhang [35], [36], [37], [38], [39],

Bhargava, Skinner, and Zhang obtain the following stunning result [15].

Theorem 5.6. When elliptic curves over Q are ordered by height, at least 66.48%

of them satisfy the Birch–Swinnerton-Dyer conjecture; at least 16.50% of elliptic

curves over Q have algebraic and analytic rank zero; at least 20.68% have algebraic

and analytic rank one.
6. Hyperelliptic curves

Finally, we consider hyperelliptic curves, i.e., (projective) curves defined by

an equation of the form

y2 = a0x
n + a1x

n−1 + · · ·+ an−1x+ an, (8)

where the polynomial on the right hand side is assumed to have no repeated factors.

The genus of the above curve where n = 2g+1 or 2g+2 is g and so when n ≥ 2 these

curves have genus at least 2. Curves having genus 0 have either no rational points

or infinitely many rational points all of which can be parameterized algebraically

using one parameter just like the parametrization of Pythagorean triples. Curves

of genus 1 can have no rational points. When they do have rational points, they

are elliptic curves and as we have seen in the previous section, they can have

finitely many rational points (when r = 0), or infinitely many rational points

(when r ≥ 1). Curves with genus 2 or higher are addressed by a tremendously

powerful theorem of Faltings (originally a conjecture of Mordell):

Theorem 6.1 (Faltings). When n ≥ 5, equation (8) has finitely many rational

solutions.

However, the above theorem does not address the question of how many points

C(Q) has. In fact, Theorem 6.1 is ineffective, and does not provide any bound

on the size of C(Q). Effectivising Theorem 6.1 is open and would be a major

breakthrough, but we can apply the philosophy of Arithmetic Statistics and ask

instead: what is the average number of rational points in families of curves having
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genus g ≥ 2. In this regard, there have been a slew of recent results, many of

which crucially use Bhargava’s methods. We describe three of these results below.

First, we consider the family of monic odd hyperelliptic curves, i.e., curves cut

out by the equation (8) with a0 = 1 and n odd. Each such curve has at least one

rational point (the point at infinity). We order these curves C by height which is

defined as follows:

H(C) = max{|a1|, |a2|1/2, . . . , |an|1/n}. (9)

In [9], Bhargava and Gross study the Selmer groups of Jacobians of these curves,

and using their results Poonen and Stoll prove the following result in [32].

Theorem 6.2 (Poonen–Stoll). For each odd n ≥ 7, a positive proportion of curves

in the family of monic degree-n hyperelliptic curves, when ordered by height, have

exactly one rational point. Furthermore, this proportion tends to 1 as n tends to

infinity.

Next we consider the family of even hyperelliptic curves, i.e., curves C cut out

by (8) with even n ≥ 6. We order curves in this family by the following height:

H(C) = max{|ai|}.

Bhargava proves the following result in [8]:

Theorem 6.3. For each even n ≥ 8, a positive proportion of curves in the family

of degree-n hyperelliptic curves, when ordered by height, have no rational points.

Furthermore, this proportion tends to 1 as n tends to infinity.

Finally, in [10], Bhargava, Gross, and Wang prove the following stunning

results.

Theorem 6.4. For any even n ≥ 2, a positive proportion of curves in the family

of degree-n hyperelliptic curves, when ordered by height, have no points over any

odd degree extension of Q.

Theorem 6.5. Fix any m > 0. Then as n → ∞, a proportion approaching 1 of

degree-n hyperelliptic curves have no points defined over any extension of Q having

odd degree ≤ m.
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BOOK-REVIEW

TITLE : HOW TO STUDY FOR A MATHEMATICS DEGREE

Author : Lara Alcock, Mathematics Education Center, Loughborough University

Oxford University Press, Great Clarendon Street, Oxford, OX2 6DP, UK; 2013

Hard/Soft cover; Soft cover: xvi + 272 pages

ISBN No. 978-0-19-966132-9 ;

Library of Congress Control Number : 2012940939.

Reviewer : Shabd Sharan Khare

Millions of students, every year, enter different universities all over the world

for mathematics degree. Most of them, including even some good ones, struggle

with the demands of transition from school-level to university-level mathematics

which is hard in terms of complexity of the subject matter, the rigour of definitions,

theorems and proofs, and the need to be able to study much more independently.

There is major shift from mechanical procedures and calculations using formulas

to rigorous definitions and proofs.

This wide ranging book aims at engaging with all these issues and many more

very successfully giving a very helpful insight into what is coming for beginning

undergraduates in mathematics and mathematics related disciplines like statistics

and economics etc. It translates mathematics education research based insights

into practical advices for students entering universities for mathematics degree or

existing students undergoing mathematics in universities at undergraduate level.

It covers every aspect of studying for mathematics degree, starting from the most

abstract intellectual challenges to everyday business of interacting with lecturers

and making good use of study time.

It is not a popular mathematics book and is less focused on mathematical

curiosities, applications and contents. It is more focused on how to engage students

with academic content of mathematics courses and on challenges of coping with

formal and abstract undergraduate mathematics. This book is about how to keep

on top of study while enjoying mathematics.

The book has two parts. Part 1 describes the nature of university

mathematics, discusses how it differs from school mathematics and offers

advices/tips about things students could do to understand it in a better way and

come out successfully in mathematics degree. It contains suggestions on how to

interact with mathematical content at university level. At school level, the focus

——————-

c© Indian Mathematical Society, 2015
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of mathematics is on applying mathematical formulas and procedures to

calculate answers of standard questions. Some students enjoy this. However, some

students dislike this aspect of mathematics and they get more satisfaction from

learning about why the various procedures work and how they can be modified in

changed situations. At the university level, the lecturers expect from the students

to be fluent in using procedures (like solving algebraic equations, differentiating

or integrating given functions and so on), they have learned at the school level.

Therefore students are supposed to brush up class 11-12 relevant procedures and

formulas prior to arriving undergraduate mathematics classes. In undergraduate

mathematics, there is focus on underlying mathematics in different procedures

and formulas. The suggestion given by the author to turn ordinary exercises into

opportunities for reflection and further thinking by asking following questions

within oneself is excellent.

1. Why did that procedure work?

2. What could be changed in the question so that the same procedure still works?

3. What could be changed in the question so that the same procedure does not

work?

4. Could one modify the procedure to work for the changed situation?

Another major difference between school-level and university-level mathemat-

ics is that in contrast to school-level mathematics, students have to decide which

procedure or trick needs to be applied in a particular problem, for example integra-

tion and differential equation etc. Learning procedures mechanically has a disad-

vantage that it is easier to forget them, to misapply them and to mix them up.The

author has rightly stressed that developing a proper understanding of mathematics

underlying a procedure is supportive to flexible and accurate reasoning.

In Part 1, the author has also explained the notion of axioms, definitions,

and theorems with nice examples. Chapter 4 deals with quantifiers like ∀,∃,⇒,→
with simple examples. Very often, most of the students do not understand these

quantifiers and their proper use. The author has explained these notions and their

use in detail with lot of examples. Chapters 5 and 6 describe common undergrad-

uate proof structures and different useful strategies and tricks for tackling them

including proofs by contradiction and proofs by induction. Chapter 7 explains

the strategies with examples that are useful in reading for understanding, for syn-

thesis and for memory. The author also tries to discuss how to build on these

strategies while preparing for examination. The book also emphasizes the impor-

tance of developing the habit of reading mathematical stuff independently at under

graduate level. Practice and use of diagrams are crucial for memory, while reading

mathematics.

Chapter 8 is about the importance of good mathematical writing and proper

presentation of mathematical ideas. Mathematical arguments need to be presented

very clearly. The author has given some useful tips on avoiding common mistakes

while using mathematical symbols like ∀,∃,⇒,→ and brackets etc.
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Part 2 of the book deals about how to get the best out of undergraduate

lectures in mathematics and how to organize the time for studies so that students

can keep up with mathematics successfully and enjoy as well. This part is not only

useful for students entering graduate programs in mathematics or mathematics

related disciplines but also for students who are already undergoing undergradu-

ate program in mathematics. Perhaps, the latter ones might like to jump on to

part 2 first. In part 2, Chapters 9 and 10 are about what to expect from lectures

and tutorial classes at the undergraduate level. It advises how to get the best out

of being an independent learner in a lecture-based environment and about how to

deal with common problems faced in mathematics lecture. These days, there is

much varieties in the mode of lecturing/ teaching by different teachers. Some use

chalks/whiteboards pens, some use power point presentation, some provide hand

outs before or after lectures and some use university virtual learning systems. One

of the key advice given by the author to make the best use of lecture in mathe-

matics is to go through the concerned portion one day before the lecture from the

books/ handouts/ notes given by teacher/ university virtual learning system and

mark the steps or portions or exercise not clear, be extra careful in the class to

understand when the teacher comes to those steps or portions and ask the teacher

politely to explain those points, in case the points were not clear even after the

teacher had explained. Many other useful tips have been given in the book that

might be of great help in understanding and enjoying lectures. The students need

to be very particular while giving feedback by filling the feedback form given by

the teacher, giving constructive comments. The tutorial classes should be taken

as the best opportunity to remove doubts and difficulties. It may be good practice

for student to discuss mathematics with classmates, specially good ones. Some of

the difficulties can be discussed with the teacher on email.

Chapter 11 is about how to organize study time in mathematics so that stu-

dents can keep up with mathematics and avoid the stress of falling behind. The

chapter has provided practical suggestions for making realistic plans that can be

stuck to without having a feeling of getting bogged down in studies. Making a

term planner may be of great help to get an overview of what is happening when,

to plan for weekend activities, and to schedule in coursework and test preparation.

Further, planning for typical week will help in allowing one to think realistically

about when to study what. In addition to this, including social activities in plan

will help to ensure students to enjoy as well. Making a list of current study jobs for

different modules may be of great help in prioritizing and deciding how to allocate

time in a particular week. Most of the students feel that they have to work on

something until they finish it. However, in reality this is likely to be ineffective.

The book has made some good suggestions on planning for shorter bursts of study

time. Most of the students have periodic failure of time management. The author

has given useful tips on how to get back on track quickly depending on the aim of

the student.
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Some students lag behind the studies due to slackening or illness or some

traumatic events in life. Due to this, they find themselves in a state of panic.

Chapter 12 is about such students and gives some tips to sort out the panic

situation and restore their confidence. The crux of the tip is to list urgent items

in each of the current modules in a sheet along with the associated deadlines, to

list four items from the sheet for each day of the week in a separate sheet giving

some reasonable time for each item and then to follow meticulously.

Chapter 13 aims to dispel some common misunderstanding about the notion

of success in mathematics at undergraduate level and to replace them with its

realistic notion. Due to vast change in the nature and approach of mathematics

and due to faster pace of teaching at undergraduate level, many students find it

difficult to cope up and develop a wrong feeling that mathematics is not their

cup of tea. According to the author, keeping up might be easier, if they focus

on central ideas in a module or on those ideas which are likely to be used in the

upcoming lectures. Being good in mathematics is not necessarily same as being

fast at it. As mentioned in this chapter, taking some time to understand new

notions properly is key to success in mathematics at undergraduate level. Also,

keeping in view the fact that it is normally not possible to understand everything

by the time of examination, students should think about how to distribute their

effort in order to do well in examination.

On the whole, this book may help students in giving a head-start in math-

ematics at undergraduate level, which may pay them in years to come. It is an

excellent book of great value to any one embarking on mathematics at university

level as well as to students already undergoing mathematics or mathematics re-

lated courses at undergraduate level. It is of great help in bridging the vast gap

between school-level and undergraduate-level mathematics. One of the key feature

of the book is that it is written more in narrative and conversational style, which

is quite in contrast with other mathematics books. Due to this, the book is more

friendly, readable and self-help. It is one of the best books a budding mathemati-

cian could read before going to university for mathematics. I wish this book had

been available 50 years ago, when I entered university for undergraduate program.

Shabd Sharan Khare

Ex Pro Vice Chancellor, NEHU, Shillong

E-mail : kharess1947@gmail.com
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BOOK-REVIEW

TITLE : POLYHEDRA PRIMER

Authors : Peter Pearce and Susan Pearce

Digital reproduction: Pearce Publications, 2015; Originally: Van Nostrand

Reinhold, 1978; Subsequently by Dale Seymour Publications.

Soft cover/Paperback: viii + 134 pages

ISBN-10: 1507686226 ; ISBN-13: 978-1507686225

Reviewer : N. K. Thakare

This book is a wonderful and useful addition to the existing literature on

polyhedra. I am struck by the lucidity and simplicity in the approach to the

study of the geometry of three dimensional space and its application to building

systems: Through seven chapters spread up over 134 pages and 250 captioned

drawings, the authors begin with as elementary concepts as points, lines, angles,

polygons etc. They demonstrate through constructions how combining of polygons

can lead to tessellation (i.e. tiling) without overlaps or gaps. And the tiling can

be done with nonuniform and nonperiodic regular polygons as well as nonregular

polygons. They discuss polyhedra that are formed by enclosing a portion of three-

dimensional space with four or more polygons. Through constructions they explain

the formations of dual polyhedra. They further illustrate how space filling occurs

by packing polyhedra together. They explain the procedure of uniform space filling

with one or more kinds of polyhedra. The nice explanation of how open packing

can be derived from the space filling systems is breathtakingly engrossing. In the

final chapter titled ‘constructions’, the authors elaborate basic constructions such

as bisecting a line, an angle etc, that lead to the construction of polyhedra models.

The book shall be well understood by high school students, undergraduates

and laymen. The book shall be not only meaningful but immensely useful to the

practitioners in professions such as architecture, planning, engineering, industrial

designs, arts, etc.

N. K. Thakare
C/o: Center for Advanced Study in Mathematics
Savitribai Phule Pune University
Pune-411 007, (MS), India
E-mail : nkthakare@gmail.com
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The Mathematics Student ISSN: 0025-5742

Vol. 84, Nos. 3 - 4, July-December, (2015), 179 - 186

PROBLEM SECTION

We are delighted to announce that there was reasonably good

participation from the floor to our very first Problem Section restarted with

The Mathematics Student, Vol. 84, Nos. 1-2, January-June (2015) in which 11

problems were proposed.

We received a total of 7 responses to the problems posted in MS-2015,

Nos. 1-2: One submitted solution each to the problems-3, 5, 9 and 11 and three

submitted solutions to Problem 4; of these solutions, only the solution to problem

3 turned out to be wrong.

Besides these, there was also a problem proposal submitted for possible inclu-

sion in the new problem set.

In this issue, we present 7 new problems, including the one just mentioned

above. Also, readers can try their hand on the remaining problems from MS-

2015, Nos.1-2 because as a matter of policy proposer’s solution to those problems

for which no correct solution is received from the floor will be provided in the

corresponding issue of the following year (thus, for example, solutions to those

problems from MS-2015, Nos.1-2 for which no solution is received will be provided

in the MS-2016, Nos. 1-2 issue).

Solutions from the floor received till April 30, 2016, if approved by the Editorial

Board, will be published in The Mathematics Student Vol. 85, Nos. 1-2, January-

June (2016).

The seven new problems are as under followed by the proposer’s solution or

the Editorial Board approved submitted solution from the floor to those problems

of MS-2015, Nos. 1-2 , for which correct solutions are received.

MS-2015, Nos. 3-4: Problem-12: Proposed by Atul Dixit.

Let ABC be a triangle with medians AD,BE, and FC. Construct semi-

circles with diameters BD,DC, and BC outwardly. Let TA be the circle

tangent to the three semicircles with diameters BD,DC, and BC, and let

A′ be the center of TA. Define B′ and C ′ cyclically. Then give a synthetic

(pure geometric) proof of the fact that the segments AA′, BB′, and CC ′ are

concurrent.

c© Indian Mathematical Society, 2015 .
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MS-2015, Nos. 3-4: Problem-13: Proposed by B. Sury.

Let S =

(
0 1

1 0

)
and T =

(
1 1

0 1

)
. Determine the semigroup generated

by these two matrices (note that we are not allowed to take negative powers

of the matrices).

MS-2015, Nos. 3-4: Problem-14: Proposed by B. Sury.

Let f ∈ Q[X] be a polynomial of degree at least 2. If f gives a bijection

on a subset S of Q, then prove that S must be finite.

MS-2015, Nos. 3-4: Problem-15: Proposed by B. Sury.

If N is a positive integer which is a multiple of a number of the form

99 · · · 9 where 9 is repeated n times, then show that N has at least n non-zero

digits. More generally, prove that if b > 1 and bn−1 divides a, then the base-b

expression of a has at least n non-zero digits.

MS-2015, Nos. 3-4: Problem-16: Proposed by Mathew Francis, ISI Banga-

lore; (may be an old problem); submitted through L. Sunil Chandran.

Let S1, S2, . . . , Sk be subsets of a universe U =
⋃
Si such that the union

of no t of them covers U . Then prove that there exist t+ 1 sets among them

that are pairwise incomparable.

MS-2015, Nos. 3-4: Problem-17: Proposed by Mahender Singh, IISER Mo-

hali; submitted through C. S. Aravinda.

Let G be a finite group of order n and let φ be the Euler’s totient function. It

is easy to see that if G is cyclic then |Aut(G)| = φ(n). Is the converse true?

MS-2015, Nos. 3-4: Problem-18: Proposed from the floor by Amrik Singh

Nimbran, Patna, Bihar, India.

Evaluating the product, prove that

√
2

1 +
√

2
·
√

2 +
√

2

1 +
√√

2
·

√
2 +

√
2 +
√

2

1 +

√√√
2

· · · = ln 4

π
.
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Solution by the Proposer: MS-2015, Nos. 1-2: Problem 4:

Show that n | 2n − 1 over Z if and only if n = 1.

Solution. Suppose there is an n > 1 for which n | 2n − 1. Then n is odd.

Let n0 be the least such n. By Euler’s theorem, 2ϕ(n0) ≡ 1 mod n0 where ϕ

is Euler’s function. Put g = gcd(n0, ϕ(n0)). Then 1 6 g < n0 and by the

Euclidean algorithm, there are integers x and y so that g = n0x+ ϕ(n0)y. Hence

2g ≡ 1 mod n0. As g | n0, we get 2g ≡ 1 mod g. By the minimality of n0, we

deduce that g = 1. But then 1 ≡ 2g ≡ 2 mod n0 so that n0 = 1, a contradiction.

Correct solution received from the floor from:

Manjil Saikia (Diploma Student, Abdus Salam International Center for The-

oretical Physics, Trieste 34151, Italy; msaikia@ictp.it ; received on 22-06-2015)

Subhash Chand Bhoria (Corporal, Air Force Station, Bareilly, Technical

Flight, UP-243002, India; scbhoria@yahoo.com ; received on 07-08-2015).

Prahlad Sharma (BSc. 2nd Year Student, Institute of Mathematics and

Applications, Andharua, Bhubaneswar, Odisha, livecrunklife@gmail.com; received

on 27-06-2015)

Solution from the floor to MS-2015, Nos. 1-2: Problem 5: Prove that∫ π/3

π/4

ex sin x+cos x

(
x4 cos3 x− x sinx+ cosx

x2 cos2 x

)
dx

=
1

12π

(
e

4+π

4
√

2 (48
√

2− 3π2) + e
3+π
√

3
6 (4π2 − 72)

)
.

(Submitted on 07-08-2015 by Subhash Chand Bhoria; Corporal, Air Force

Station, Bareilly, Technical Flight, UP-243002, India; scbhoria@yahoo.com).

Solution. Let I be the given integral and I = I1 + I2, where

I1 =

∫ π/3

π/4

ex sin x+cos xx2 cosxdx

and

I2 =

∫ π/3

π/4

ex sin x+cos x

(
−x sinx+ cosx

x2 cos2 x

)
dx.

Observe that

I1 =

∫ π/3

π/4

x
d

dx

(
ex sin x+cos x

)
dx

=
[
xex sin x+cos x

]π/3
π/4
−
∫ π/3

π/4

ex sin x+cos x dx

=
π

3
e

(
3+π
√

3
6

)
− π

4
e

(
4+π

4
√

2

)
−
∫ π/3

π/4

ex sin x+cos x dx (0.1)

and we can express I2 as

I2 =

∫ π/3

π/4

ex sin x+cos x d

dx

(
−1

x cosx

)
dx



Mem
be

r's
 co

py
 - 

no
t fo

r c
irc

ula
tio

n

182 PROBLEM SECTION

=

[
−ex sin x+cos x

x cosx

]π/3
π/4

+

∫ π/3

π/4

ex sin x+cos x dx

=
−6

π
e

(
3+π
√

3
6

)
+

4
√

2

π
e

(
4+π

4
√

2

)
+

∫ π/3

π/4

ex sin x+cos x dx. (0.2)

Adding I1 and I2 we get

I = I1 + I2

=
π

3
e

(
3+π
√

3
6

)
− π

4
e

(
4+π

4
√

2

)
+
−6

π
e

(
3+π
√

3
6

)
+

4
√

2

π
e

(
4+π

4
√

2

)

=
1

12π

(
e

4+π

4
√

2 (48
√

2− 3π2) + e
3+π
√

3
6 (4π2 − 72)

)
,

as required.

Solution from the floor to MS-2015, Nos. 1-2: Problem 9: Consider the

polynomial f = x3 − 15x2 + 75x − 120. Let f1 = f, f2 = f ◦ f and, in general,

fn = f ◦ fn−1. Determine the zeroes of the polynomial fn

(Submitted on 27-06-2015 by Prahlad Sharma; BSc. 2nd Year Student, Insti-

tute of Mathematics and Applications, Andharua, Bhubaneswar, Odisha, India.

livecrunklife@gmail.com).

Solution. Note that f(x) = (x− 5)3 + 5⇒ f(x)− 5 = (x− 5)3.

Substituting x = fn(x), we get a recurrence relation an+1 = a3n, where an = fn−5

The general term for this simple recurrence is an = a3
n−1

1 . Hence fn − 5 =

(f1 − 5)3
n−1 ⇒ fn = (x − 5)3

n

+ 5 from which it follows that the only zero of fn

is 5− 5
1
3n .

Solution from the floor to MS-2015, Nos. 1-2: Problem 11*: Let G

be a finite p-group of order pn and Aut(G) be the group of all automorphisms of

G. It is easy to see that if n = 1 then |Aut(G)| = (p − 1), and if n = 2 then

|Aut(G)| = (p2 − p) or (p2 − 1)(p2 − p).
Now suppose that n ≥ 3 and G is abelian. Then show that |G| divides

|Aut(G)|. It is an open conjecture that, in this case, |G| divides |Aut(G)| even if

G is non-abelian.

* The Editors regret the inadvertent omission of the extra condition in the

statement of problem 11 that it is seeking a solution for ‘non cyclic’ groups. This

was also rightly pointed out by ‘Prahlad Sharma’ who happens to have submitted

a correct solution that we publish below.

(Submitted on 27-06-2015 by Prahlad Sharma; BSc. 2nd Year Student,

Institute of Mathematics and Applications, Andharua, Bhubaneswar, Odisha,

India. livecrunklife@gmail.com).

Solution. We Claim : Let G be an abelian non-cyclic p-group with |G| = pn,

n ≥ 3. Then |G| = pn divides |Aut(G)|.
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Proof of the claim : Throughout the proof, many standard properties of

abelian groups are used without mentioning. Since G is abelian and |G| = pn,

it is well-known (Herstein, I. N., Topics in Algebra, 2nd ed., Wiley, India, 2014;

Theorem 2.14.1, p.109) that G can be written as the internal direct product of its

cyclic subgroups N1, N2, · · · , Nk, say

G = N1N2 · · ·Nk, (0.3)

where

Ni ∩ (N1N2 · · ·Ni−1Ni+1 · · ·Nk) = (e) (0.4)

for each i = 1, 2, · · · , k.

Let Ni=〈ai〉. Then o(ai) = pni since this must divide pn. Without loss of

generality we may assume that n1 ≤ n2 ≤ · · · ≤ nk. Clearly n1 +n2 + · · ·+nk = n,

from (0.3) and (0.4). We prove the following lemma.

Lemma: For G as described above, a homomorphism φ : G → G, is an

automorphism if and only if the images φ(ai) = bi are such that o(ai) = o(bi) and

Mi ∩ (M1M2 · · ·Mi−1Mi+1 · · ·Mk) = (e), (0.5)

where Mi=〈bi〉 for each i = 1, 2 · · · k.

Proof of the lemma: Suppose the map φ is an automorphism. Then clearly

o(ai) = o (φ(ai)) = o(bi); and also

Ni ∩ (N1N2 · · ·Ni−1Ni+1 · · ·Nk) = (e)

=⇒ φ(Ni ∩ (N1N2 · · ·Ni−1Ni+1 . . . Nk)) = (e)

=⇒ φ(Ni) ∩ (φ(N1)φ(N2) · · ·φ(Ni−1)φ(Ni+1) · · ·φ(Nk)) = (e)

because φ is an automorphism. It follows that

Mi ∩ (M1M2 · · ·Mi−1Mi+1 · · ·Mk) = (e)

for each i = 1, 2 · · · , k as φ(Ni) = Mi for each i = 1, 2 · · · , k.

In the other direction, suppose that the map φ satisfies the properties stated

in the claim. For any g = ar11 a
r2
2 · · · a

rk
k ∈ G

φ(g) = e

⇒ φ(ar11 a
r2
2 · · · a

rk
k ) = e

⇒ br11 b
r2
2 · · · b

rk
k = e

⇒ brii = e, i = 1, 2 · · · k (using (0.5))

⇒ arii = e (since o(ai) = o(bi))

⇒ g = ar11 a
r2
2 · · · a

rk
k = e.

Hence φ is an isomorphism. G being finite, this implies φ is an automorphism.

We now proceed to our main problem.

Case 1: nk = 1.
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This implies n1 = n2 = · · · = nk = 1, and hence in this case every element of

G is of order p. Using the lemma, it is then not difficult to see that a mapping

φ : G→ G is an automorphism iff
φ(a1) = b1, b1 ∈ G \ (e);

φ(a2) = b2, b2 ∈ G \M1 in which M1 = 〈b1〉 ;

φ(a3) = b3, b3 ∈ G \M1M2 in which M2 = 〈b2〉 ;
.
.
.

φ(ak) = bk, bk ∈ G \M1M2 · · ·Mk in which Mk = 〈bk−1〉 ;

(0.6)

and for any g = aq11 a
q2
2 · · · a

qk
k ∈ G

φ(aq11 a
q2
2 · · · a

qk
k ) = bq11 b

q2
2 · · · b

qk
k . (0.7)

From this it follows that

|Aut(G)| =
n−1∏
i=0

(pn − pi)

which is divisible by pn if n ≥ 3.

Case 2: nk ≥ 2.

Note that since G is non-cyclic, k ≥ 2. We show that there is a subgroup of

Aut(G) whose order is divisible by pn. Consider that mapping φ : G→ G, where

φ(a1) = ar11 a
s1p

nk−1

k = b1, φ(ak) = arkp
n1−1

1 askk = bk,

φ(ai) = arip
n1−1

1 atii a
sip

nk−1

k = bi for i = 2, · · · , k − 1, (omit this step if k=2)

(0.8)

where r1, sk, ti are non-negative integers such that (r1, p) = (sk, p) = (t2, p) =

(t3, p) · · · (tk−1, p) = 1 and all other ri and si are any non-negative integers.

Further for any g = aq11 a
q2
2 · · · a

qk
k ∈ G,

φ(aq11 a
q2
2 · · · a

qk
k ) = bq11 b

q2
2 · · · b

qk
k .

Note that bp
ni

i = e and since (t, p) = 1, for 0 < r < ni we have

bp
r

i = atp
r

i 6= e.

Hence o(bi) = o(ai) = pni for each i and it can be shown using the fact

Ni ∩ (N1N2 · · ·Ni−1Ni+1 · · ·Nk) = (e), that Mi ∩ (M1M2 · · ·Mi−1Mi+1 . . .Mk) =

(e) for each i = 1, · · · , k, where Mi = 〈bi〉. Hence φ is an automorphism in view of

the lemma. Let A be the collection of all such automorphisms obtained by varying

ri, si and ti satisfying the mentioned conditions. Let us now compute |A|.

For computation we may take 0 ≤ r1 < pn1 ; for r1 ≥ pn1 =⇒ ar11 = ar1,

where r = r1 mod pn1 because o(a1) = pn1 . For similar reason, we may take

0 ≤ ti < pni , i = 2, 3, · · · , k− 1 and 0 ≤ sk < pnk . And for si, i = 1, 2, 3, · · · , k− 1

we may take 0 ≤ si < p, because si > p implies asip
nk−1

k = arp
nk−1

k , where
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r = si mod p because o(ak) = pnk). Similarly, we take 0 ≤ ri < p for i =

2, 3, 4, · · · , k.
Summing up these and the initial conditions on ri

′s, si
′s and ti

′s we have

0 ≤ r1 < pn1 and (r1, p) = 1, 0 ≤ ri < p , i = 2, 3, · · · , k,
0 ≤ sk < pnk and (sk, p) = 1, 0 ≤ si < p, i = 1, 2, · · · , k − 1,

and 0 ≤ ti < pni and (ti, p) = 1, i = 2, 3, · · · , k.
Let Ri, Si, Ti be the collection of all such ri, si, ti respectively, then

|R1| = pn1−1(p− 1), |Ri| = p, i = 2, 3, · · · , k,
|Sk| = pnk−1(p− 1), |Si| = p, i = 1, 2, 3, · · · , k − 1,

|Ti| = pni−1(p− 1).

For k = 2, note that each of the 4-tuples (r1, r2, s1, s2), ri ∈ Ri, si ∈ Si uniquely

identifies an automorphism in A. Also each automorphism in A corresponds to

such a 4-tuple. Hence

|A| = |R1|.|R2|.|S1|.|S2| = pn1+n2(p− 1)2 = pn(p− 1)2. (0.9)

Similarly for k > 2 , each of 3k−1-tuple (r1, r2, · · · , rk, s1, s2, · · · , sk, t2, t3, · · · , tk),

ri ∈ Ri, si ∈ Si, ti ∈ Ti uniquely determines an automorphism in A and vice-versa.

Hence

|A| =

(
k∏
i=1

|Ri|

)(
k∏
i=1

|Si|

)(
k−1∏
i=2

|Ti|

)
=
(
pk−1.pn1−1(p− 1)

) (
pk−1.pnk−1(p− 1)

) (
pn2+n3+···+nk−1−k+2(p− 1)k−2

)
= pn1+n2+···+nk+k−2(p− 1)k = pn+k−2(p− 1)k.

(0.10)

which is divisible by pn since k > 2. Now all that remains is to show A is a

subgroup of Aut(G). For this we use a known result: If a nonempty finite subset

H of a group G is closed under multiplication then it is a subgroup of G (Herstein,

I. N., Lemma 2.4.2, p.38). To see if this holds for A, pick any φ, ψ ∈ A and

let (p1, p2, · · · , pk, q1, q2, · · · , qk, t2, · · · , tk) and (m1,m2, · · · ,mk, w1, w2, · · · , wk,
l2, · · · , lk) be the tuples associated with φ and ψ respectively, then

φ ◦ ψ(a1) = φ(ψ(a1)) = φ
(
am1
1 aw1p

nk−1

k

)
= (φ(a1))

m1 (φ(ak))
w1p

nk−1

=
(
ap11 a

q1p
nk−1

k

)m1
(
apkp

n1−1

1 aqkk

)w1p
nk−1

= ap1m1+pkw1p
n1+nk−2

1 a
(q1m1+qkw1)p

nk−1

k

= ap1m1

1 a
(q1m1+qkw1)p

nk−1

k

(0.11)

because nk ≥ 2 implies n1 + nk − 2 ≥ n1 and o(a1) = pn1 . Now since (m1, p) =

(p1, p) = 1⇒ (p1m1, p) = 1, we see that φ ◦ ψ(a1) has the required property.
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Similarly,

φ ◦ ψ(ak) = φ(ψ(ak)) = φ
(
amkp

n1−1

1 awkk

)
= (φ(a1))

mkp
n1−1

(φ(ak))
wk

=
(
ap11 a

q1p
nk−1

k

)mkpn1−1 (
apkp

n1−1

1 aqkk

)wk
= a

(p1mk+pkwk)p
n1−1

1 aqkwk+q1mkp
nk+n1−2

k ,

(0.12)

where
(
qknk + q1mkp

nk+n1−2, p
)

= 1 since nk + n1 − 2 ≥ 1.

Finally for i = 2, · · · , k − 1

φ ◦ ψ(ai) = φ
(
amip

n1−1

1 alii a
wip

nk−1

k

)
= a

(mir1+liri)p
n1−1

1 alitii a
(mis1p

n1−1+lisi+wisk)p
nk−1

k

= ad1p
n1−1

1 ad2i a
d3p

nk−1

k ;

(0.13)

and since (li, p) = (ti, p) = 1 ⇒ (liti, p) = (d2, p) = 1 we see that φ ◦ ψ ∈ A.

It follows that A satisfies the closure property. A being finite, this implies A ⊆
Aut(G) and we are done.

———–
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