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MATHEMATICS IN THE POST-INDEPENDENCE
INDIA∗

DIPENDRA PRASAD

Abstract. This is the text of the Presidential address given at the
Annual meeting of the Indian Mathematical Society on December 04,
2021. It takes a stock of how we, as a nation, are doing in mathematics
as India celebrates its 75th anniversary of Independence soon. This also
involves thinking of the profession of Mathematics, and the changing
scenario in it, which I touch upon in this article.

At the time of Independence, India had very little infrastructure in terms
of scientific institutions, and our first Prime Minister, Pt. Nehru, rightly
emphasized science and technological institutions to be the modern temples
of the country. Thus the IITs, the Central universities, IIMs, AIIMS, BARC,
NPL, PRL, ISRO etc. were setup in the first decades of Independence.
Some other institutes which had started functioning before Independence
such as the Indian Statistical Institute (ISI) and the Indian Institute of
Science, Bangalore (IISc), were recognized: ISI as an institute of national
importance in 1959, and IISc as a “deemed to be university” in 1958. TIFR
too which had just been founded before Independence, acquired its campus
after Independence which was inaugurated by Pt. Nehru in 1962.

Many of the aforementioned institutions have done very well and are
among the most important institutes the country has for science, engineer-
ing, medicine and management, and are the coveted institutions every stu-
dent of the country aspires to go to.

∗ This article is based on the text of the Presidential Address (General) given by Prof.
Dipendra Prasad at the 87th Annual Conference of the IMS - An International meet
held at MGM Unuversity, Aurangabad during December 4-7, 2021 using online mode.

© Indian Mathematical Society, 2022 .
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2 DIPENDRA PRASAD

India is a very large country and with the setting up of these institutions,
although India made a good beginning, they were by no means adequate
to cater to the many millions of students finishing the 12th standard each
year. Keeping this in mind, in the first decade of this millennium, Indian
government tried to enlarge the existing IITs, IIMs etc. to many more so
that each state had one of each of these, and also created more central
universities, and created IIT-like institutions for sciences: the Indian In-
stitutes of Science Education and Research (IISER), which are there now
in 7 cities: Kolkata, Pune, Mohali, Bhopal, Thiruvananthapuram, Tiru-
pati, Berhampur, and are, in about a decade-and-half of existence, already
well-recognized for their quality.

I myself grew up in the post-independence India, and when I was grow-
ing up in the 70’s, there were very limited opportunities to pursue careers in
science and technology in the country, and almost nothing outside these. In
my youth, most students looked for jobs in banks, or civil services. Going
to IITs was starting to become popular. Of course, the IITs have grown so
much in their importance now that they offer the most coveted admissions
in the country, and for which every year more than 2 million students ap-
pear in what’s known to all students (and their parents!) in the country as
JEE (joint entrance examination), selecting about 20 thousand students for
the IITs, thus about 1 for each 100 student appearing for the examination.

But the India of today has changed considerably from the India of my
youth. There are many more opportunities for young students to pursue
many career options, including mathematics. Of course, here I talk only
about mathematics which can be pursued at many of the institutions men-
tioned above, other universities, as well as at the Chennai Mathematical
Institute (CMI), after finishing the higher secondary grade (12th standard).
There are programs to complete undergraduate (BSc degree) in 3 years in
most places, but now more and more places are offering 4 year undergradu-
ate programs (so that students can go to USA more easily!), and then there
are also many places having 5 year integrated BSc-MSc programs.

Although the number of the top talents of the country taking up math-
ematics in these undergraduate programs compared to the available pool of
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talented students at the 12th standard, is minuscule, it is not insignificant,
let’s say a few hundreds to a few thousands each year, depending on where
we put the bar, who are quite good to excellent (so we are reduced from
a billion plus population to a few thousands!). However, these students in
the undergraduate programs in Mathematics are spread over the length and
breadth of the country, and except in some places such as ISI and CMI, the
number of good students may be only a handful. The best students from
these undergraduate programs by and large choose to go abroad for which
many excellent opportunities exist, leaving very few of the most talented
undergraduates in the country to go for a PhD program in mathematics in
the country. Of course, some of the students who go for a PhD abroad do
return to the country — and such numbers have been increasing in the re-
cent past, but most do not come back, and thus India is steadily exporting
excellent mathematics students abroad which should be visible to all.

India is a country which has had a considerable presence in mathematics,
not only because two of the greatest mathematicians of the 20th century,
Srinivasa Ramanujan and Harish-Chandra, came from India. But we have
had a host of other distinguished mathematicians in the post-independence
India, many from the Tata Institute of Fundamental research which has
towered over Indian mathematics after independence with all the 3 Fellows
of Royal Society the country produced in mathematics coming from there,
and another one who became an FRS after going abroad having been at
TIFR for many years. Here we are not counting Prof. CR Rao, a colossal
figure in Statistics, who became FRS in 1967. Till recently, most of the
invited speakers at the International Congress of Mathematicians (ICM),
at least in Pure Mathematics, have come from TIFR. (To be sure, there
have been speakers from India in Statistics, Probability, Stochastic process,
Computer Science... too, who came from outside TIFR.) Last time, in 2018,
Ritabrata Munshi of ISI Kolkata, and this time for the 2022 ICM, Neena
Gupta of ISI Kolkata and Mahesh Kakde of IISc, Bangalore are the invited
speakers who do not come from TIFR. While all the three were trained at
the Indian Statistical Institute (ISI) for their undergraduate degrees, two of
these three got their PhD abroad and also did some post-doctoral studies
before returning to India, whereas one is indigenous. Although one cannot
read too much from this sample size of three, it is indicative of many things,
including that good mathematics is happening in many places in India now.



4 DIPENDRA PRASAD

I now want to make some comments on the dynamics of mathematics
as a profession. Popular perception considers it for the most part a solo
activity needing only pen and paper to do mathematics. Nothing could be
farther from the truth, unless you are a Ramanujan. For younger students
at least till the time they finish PhD, and then also for many years as pro-
fessional mathematicians, they need to be immersed in an atmosphere of
intense intellectual activity with peers as friends and competitors. A young
faculty member joining a department in which she/he is the only one in
nearby topics, is certainly going to feel lost or lose momentum at times
whereas being surrounded by colleagues in related areas can bring her/him
back to research. One knows of many examples of distinguished mathemati-
cians who quit normal academic life: teaching, research, students, visitors,
seminars, conferences, dinners (yes, that helps a lot to do research!), and
the associated social aspects, hoping to devote themselves more fully to
research, but never coming back to it.

I know of many departments of small as well as large faculty who have
not much common interest, and no one can talk to each other on the subject
which has brought them together; it is clearly very undesirable. Rather, it
would be much better to have all the faculty in one subject, certainly an-
other extreme. For example, at one point, Harvard especialised in Algebraic
geometry and Number theory, everyone in the world who was anybody in
the subject had to pass through Harvard! In fact everyone in Algebraic
geometry and Number theory was at Harvard either as a student or as a
post-doc or as a visiting faculty or as a permanent faculty, some in all roles
such as David Mumford. And they did this with a faculty size of just 15 or
20, running both the undergraduate and the graduate programs!

The world of mathematics is becoming more and more competitive in
the last 30 years (since the Chinese started to come in mathematics in a
big way). Now even to get invited to a good international conference as a
participant, and not even as a speaker, in one’s own subject, not to speak
of larger all-purpose conferences such as the ICM, is no mean achievement
— department heads should pay attention to grant leaves to such people!
What used to be middle level journals in the 80’s and 90’s (say below first
20 but in the top 100 in MathSciNet) are already becoming quite difficult
to reach, and now a publication in such a journal calls for a celebration for
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the individual as well as for the country. Just to look at numbers, every
year, there might be about 10 thousand papers being published in these top
100 journals (according to the MathSciNet MCQ), and my rough estimate
is that only about 50 of these papers may have an author who is in India.
One measure of where we belong is how many of us (based in India) are in
the first shortlist (say of a few hundreds) for a Fields medal, and I would
not hazard a guess to disappoint you! It will be curious to compare how
India fares in mathematics (or, sciences in general for that matter) with
how it does in Olympic games, or the Olympiad programs.

Mathematics is also becoming increasingly compartmentalized. In most
cases, Algebraists or Algebraic Geometers or Arithmetic Geometers cannot
talk to each other. Not only that, even in their own subjects, they can
talk to people of only certain interests. Different areas in mathematics
have different cultures and these affect departments where they might be
together. And for the departments, judging of individuals often gets reduced
to the grants and awards/honors the individual brings, and the impact
factor of journals where the individual publishes, without any regard to the
quality or depth of what the individual does. It is clearly undesirable even
if there is no obvious way out. The problem is compounded especially as
everyone seems busy writing papers but no one is interested in refereeing
papers (why should they!), and many of those who do, do a very perfunctory
job. Thus both top journals and those considered not-as-good journals
have a spectrum of quality depending mostly on the job the referees and
the editors do – not to speak of their biases and preferences, and then if
you hire someone based on a top journal publication, how fair are you to
one whom you do not hire. There is a further complicating factor. It is
becoming common these days for most better journals to take a year or so
to accept/reject papers, and I know of many cases in which it has taken
two to three years, sometimes only to be told that, “your paper is not up to
the level expected for the journal”. Now compound this with the possibility
that you may have two or three rejections before an acceptance, and that
for many jobs in India (even post-docs!), people count how many published
papers you have (in high impact journals!).

One of my friends, a director of an IISER, used to periodically ask me,
“How many crores are needed to get a paper in the Annals of Mathematics,”
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as he was willing to make any investment to get his institute on the world
map of mathematics (and had identified a bright young faculty whom he
wanted to encourage). I had no answer (and I did not give him a false hope!),
as getting a paper in the Annals is the end result of a long journey in which
the country needs to invest in training many talented students hoping that
one of them will make it to the top. Perhaps my response should have been
a question to this director, himself a distinguished scientist, as to what
he thought is the money needed to get a Nobel prize for India in science
(which the country has not got since Independence). Back of the envelope
calculation would show that India must spend instead of present 0.6% of
GDP to at least 1% of GDP in higher education (to match other countries,
for example China spends 2.1% and USA 2.7% of their GDP, see1) for next
20 years, and then hope that perhaps someone in India gets a Nobel prize.
This comes (at the present 3 trillion dollars GDP – a figure that every Indian
knows these days!) to an extra budget of about 12 billion dollars each year
for at least next 20 years to get us a Nobel prize! Of course, we can wait for
a Ramanujan or CV Raman to be born again, but even more importantly,
hope that they do not go away to the West for better opportunities.

On the other hand, the support needed to run good activities in math-
ematics is considerably less. For example, the National Center of Mathe-
matics (NCM), a joint venture of IIT Bombay and the TIFR has a budget
only of a few crores (rupees!) and supports all kinds of undergraduate and
post-graduate training programs in the country, but still has to fight for
getting the financial resources. National Board of Higher Mathematics also
has only a minimal budget to support undergraduate and postgraduate
students in mathematics. Chennai Mathematical Institute is perpetually
fighting for its survival. Many other centers of mathematics, such as Kerala
School of Mathematics (KSOM) or Bhaskaracharya Pratishthan in Pune
seem to survive on a shoe-string budget. The Indian Mathematical Soci-
ety (IMS) has acquired a piece of land in Pune to house its headquarters,
but has no money for constructing one, or to run any activity! I hope the
country invests in mathematics — which means training of mathematics
students from young students going for the Olympiad programs to those in
the post-doctoral years, and those in faculty positions who do not stop to

1https://www.brookings.edu/wp-content/uploads/2019/11/Reviving-Higher-Education-
in-India-email.pdf
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do research for paucity of funds for travel or to attend conferences. Going
to conferences is not a luxury trip, it is essential to do sciences, where you
not only learn the latest on your subject, you make contacts, so essential
in any human endeavor. It is important to get out of our comfort zone at
least once in a while and talk to our peers, juniors as well as seniors. For
us in the third world when most of the sciences is done elsewhere, it is even
more essential so that we do relevant research at the forefronts.

Most of the Indian students belong to the University system (India had
just about a score of universities at the time of Independence, and now about
a thousand). It is imperative that the University system be improved, and
especially those doing well, are supported better. Students in the coun-
try with inclination to mathematics need to be connected better through
mathematical activities, perhaps through the existing programs of NCM,
NBHM, MTTS, etc. For this to happen, we must strengthen these agencies
considerably with more generous funds. The mathematical societies, such
as the Indian Mathematical Society and the Ramanujan Mathematical So-
ciety, should have more activities both national and regional, and should
have a larger national presence.

I hope mathematics can be a serious career option for some of the most
talented in the country, and that they try to reach greater and greater
heights in mathematics, so that India continues to be a presence in mathe-
matics, which is not easy as Lewis Carroll says in “Alice in Wonderland”:

It takes all the running you can do, to keep in the same place.
If you want to get somewhere else,
you must run at least twice as fast as that!

I want to end by making a case for the country as working and living
conditions offered by many of our Institutes are excellent — perhaps even
better than most places in the world, and salaries are good (in the Indian
context, not to be converted to US dollars!). There seems nothing to prevent
us from doing good work. But we are not doing so, except for some small
exceptions. Most of us are not trying as hard as our counterparts in the
Western or Eastern world. I would exhort students of Indian origin finishing
a PhD outside India to consider coming back to India. India needs you and
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there are plenty of jobs available in mathematics. Your presence will surely
make a difference to India!

Acknowledgement: The author thanks U.K. Anandavardhanan, Amartya
K. Dutta, S. Ghorpade, C.S. Rajan, B. Sury and J.K. Verma for looking at
an earlier version of the article offering corrections and comments.

Dipendra Prasad
Indian Institute of Technology Bombay, Mumbai
E-mail: prasad.dipendra@gmail.com
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ARITHMETIC IN L-VALUES∗

DIPENDRA PRASAD

Abstract. This article consists of three parts. In part one we begin
with the Riemann zeta function, and some of its properties, and define
the Dedekind zeta functions and L-functions. This part is meant for
a very general audience in mathematics without presuming any prior
knowledge of number theory. The second part discusses various results
and conjectures, due among others to Klingen, Siegel, Harder, Borel,
Lichtenbaum, Deligne, Beilinson, Bloch, and Kato. We are necessar-
ily very brief here though I have tried to give some of the assertions
precisely. Part 3 is a summary of some of my own works [Pr] which
tries to understand denominators in Artin L-values at s = 0 when it is
known a priori that it is a rational number, and relates them to order
of certain classgroups.

1. The Riemann zeta function

Let us recall that the Riemann zeta function is defined as the infinite
sum,

ζ(s) =
∑
n

1

ns
,

where n ≥ 1 is an integer and s > 1 is a real number.

Using the indefinite integral,∫
1

xs
dx =

x−s+1

−s+ 1
,

it is easy to see that the infinite sum defining the Riemann zeta function
converges for real s > 1, and even converges for complex s as long as
re(s) > 1.

∗ This article is based on the text of the Presidential Address (Technical) given by Prof.
Dipendra Prasad at the 87th Annual Conference of the IMS - An International meet
held at MGM Unuversity, Aurangabad during December 4-7, 2021 using online mode.

© Indian Mathematical Society, 2022 .
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One fundamental reason why the Riemann zeta function is of interest
to number theorists is the following product expansion,

ζ(s) =
∑
n

1

ns
=

∏
p

1

(1− 1
ps )

,

where the product is taken over all prime numbers p = 2, 3, 5, 7, 11, · · · . The
product expansion also is “convergent” for re(s) > 1.

The above product expansion of the Riemann zeta function is often
called the “Euler product”, as it was first noticed by Euler, who also eval-
uated the Riemann zeta function in particular cases, such as the famous
identity:

ζ(2) =
π2

6
, ζ(4) =

π4

90
,

more generally, we have
ζ(2n) ∈ π2nQ×.

Noticing,

1

(1− 1
ps )

= 1 +
1

ps
+

1

p2s
+

1

p3s
+

1

p4s
+ · · · ,

we see that the product expansion of the Riemann zeta function is a way
of expressing the following fundamental fact about integers.

Unique Factorization Property: Every integer n ≥ 1 can be writeen
uniquely as a (finite) product of powers of primes: n = pd11 · p

d2
2 · p

d3
3 · · · .

As a first consequence of the product expansion of the Riemann zeta
function, we give a proof of the infinitude of prime.

Suppose to the contrary, that there are only finitely many primes 2, 3, 5, · · · pd.
Then we find that the (finite) product over the primes:∏

p

1

(1− 1
ps )

,

must be convergent at s = 1, and must be equal to,∑
n

1

n
,

which we all know rather well is a divergent series, proving that primes must
be infinitely many.
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2. Basic Propertes of the Riemann zeta function

As we just discussed, the infinite series defining the zeta function:

ζ(s) =
∑
n

1

ns
,

is convergent for re(s) > 1, and hence defines what is called a complex
analytic function or a holomorphic function of the complex variable s in the
domain re(s) > 1.

A fundamental fact discovered by Riemann is that this function can be
extended to an analytic function in the whole of the complex plane with a
unique singularity at s = 1 (remember

∑
n

1
n is divergent!).

Furthermore, if we define

ξ(s) = π−s/2Γ(s/2)ζ(s),

where
Γ(s) =

∫ ∞
0

e−xxs−1dx,

is the famous Gamma function (with Γ(n) = (n − 1)!), then we have the
functional equation:

ξ(s) = ξ(1− s).

Thus, to summarize, the Riemann zeta function has the following basic
properties:

(1) It is defined by an infinite series of the form:

f(s) =
∑
n≥1

an
ns
,

(in our case, an = 1 for all n) which is convergent in some right half
plane (in our case, re(s) > 1), defining a complex analytic function
in this domain, which has an analytic continuation to the whole of
complex plane with possibly some poles. Such infinite series are
called Dirichlet series.

(2) The extended function to the complex plane satifies a simple enough
functional equation of the form,

f(s) = f(1− s).



12 DIPENDRA PRASAD

(3) The infinite series defining f(s) has an Euler product:

f(s) =
∑
n

an
ns

=
∏
p

1

(1− ap
ps )

,

We will call a Dirichlet series having an Euler product, an L-function,
hoping that they also have analytic continuation to the whole of complex
plane and a functional equation, though often these take considerable effort
to prove.

After the Riemann zeta function, the first Dirichlet series (and which
was indeed defined by Dirichlet) is:

L(s, χ) =
∑
n

χ(n)

ns
=

∏
p

1

(1− χ(p)
ps )

,

where
χ : (Z/d)× → C×

is a finite order character (extended to all integers n by declaring χ(n) = 0

if (d, n) 6= 1).
The function L(s, χ) has all the properties enumerated above of the

Riemann zeta function. This L-function was constructed to prove an im-
portant theorem due to Dirichlet: any arithmetic progression an + b with
(a, b) = 1 contains infinitely many primes.

3. Dedekind Zeta functions

Start with a monic polynomial

f(X) = Xn + a1X
n−1 + a2X

n−2 + · · ·+ an ∈ Z[X],

where Z[X] refers to the ring of polynomials with integral coefficients. One
standard thing to do in number theory is to consider the reduction modulo
primes of this polynomial, and write it as a product of irreducible polyno-
mials:

f̄(X) =
∏

pi(X)ni ∈ Z/p[X],

where f̄ denotes reduction of f modulo a prime p. (This is very similar to
writing integers as a product of prime numbers.)

It is easy to see that for most primes p, f̄ , the reduction modulo p of
f has no multiple factors, i.e., ni = 1. Thus for most primes p, we have a
factorization: f̄(X) =

∏
pi(X) as a product of distinct irreducible monic
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polynomials in Z/p[X]. The basic question here is: what are the possible
degrees of the polynomials pi(X) as p varies? Can any possible degree occur
as long as the sum of degrees = n? Can one describe the set of primes p
where f̄(X) is a product of linear factors, or where it remains irreducible?

All this information can be encoded in a zeta function ζf (s) defined as
follows:

ζf (s) =
∏
p

∏
i

1

(1− 1
pdis

)
,

where the product is taken over all primes p in N where f̄(X) is a product
of distinct irreducible factors of degree di.

To be able to nicely express ζf (s) as product of known L-functions,
such as Dirichlet L-function, Artin was led to a general reciprocity law
generalizing the law of quadratic reciprocity which bears his name, Artin
reciprocity, but valid only for certain kind of polynomials (whose Galois
group is abelian).

The zeta function ζf (s) that we have introduced is more commonly
associated to number fields, i.e., finite extensions F of Q inside C, and this
is what we too will do in what follows, and use the notation ζF (s) for the
corresponding zeta function, called the Dedekind zeta function.

4. Klingen-Siegel theorem, refinement by Harder

If F is a totally real number field, then by a theorem due to Klingen
and Siegel, ζF (−m) is a nonzero rational number for m an odd integer ≥ 1.
The following theorem due to Harder refines this theorem of Klingen and
Siegel, gives an estimate on the denominator of these zeta values, and also
interprets the zeta values as an Euler characteristic.

Theorem 4.1. For each integer n ≥ 1, F a totally real number field of
degree d over Q, we have,

n∏
m=1

ζF (1− 2m) = 2n(d−1)χ(Sp2n(OF )).

Further, if q is the least common multiple of the orders of finite subgroups
of Sp2n(OF ) (known to be finitely many up to conjugacy), then,

qζF (1− 2m) ∈ Z.
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5. Borel-Lichtenbaum

According to the class number formula, we have,

ζF (s) = −hR
w
sr1+r2−1 + higher order terms,

where r1, r2, h,R,w are the standard invariants associated to F : r1, the
number of real embeddings; r2, number of pairs of complex conjugate em-
beddings which are not real; h, the class number of F ; R, the regulator,
and w the number of roots of unity in F .

One can re-interpret the class number formula from the K-theoretic
point of view. For this, note that,

(1) K0(OF ) = Z⊕ Cl(F ),
(2) K1(OF ) = O×F ,

so,
h

w
=
K0(OF )tor
K1(OF )tor

,

where we denote the torsion in an abelian group A by Ator.
By the work of Borel (building on the work of Quillen), we have:

(1) K2n(OF ) are finite for n ≥ 1, and
(2) K2n−1(OF ) ∼= Zdn + finite group, for n ≥ 1, where dn is the order

of vanishing of ζF (s) at s = 1− n.

Further, Borel constructed a map:

K2n−1(OF )→ Rdn ,

with finite kernel and whose image is a lattice in Rdn , the covolume of which
is called the Borel regulator, which we will denote by RBorel

n (F ). Further,
Borel proved that if ζ∗F (1 − n) is the leading term in the Taylor expansion
of ζF (s) at s = 1−n, then ζ∗F (1−n)/RBorel

n (F ) is a rational number, which
has been made precise in the following conjecture of Lichtenbaum.

Conjecture 5.1. (Lichtenbaum) For F any number field, and n any integer
n ≥ 1, one has

ζ∗F (1− n) = ± |K2n−2(OF )|
|K2n−1(OF )tor|

RBorel
n (F ),

where ζ∗F (1 − n) is the leading term in the Taylor expansion of ζF (s) at
s = 1− n.
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In the above conjecture, if we take F totally real, n = 2, then there is no
Borel regulator to consider (since d2 = 0), and the Lichtenbaum conjecture
reduces to an earlier conjecture due to Birch-Tate which we now recall.

If F is a totally real number field, ζF (−1) is a nonzero rational number.
The Milnor K-group K2(OF ) (defined in terms of the Steinberg extension
of the subgroup of GL(OF ) generated by elementary matrices) is a finite
abelian group, and the conjecture of Birch-Tate asserts that:

|K2(OF )| = |w2(F )| · ζF (−1),

where w2(F ) is the largest integer N such that attaching primitive N -th
roots of unity to F gives an abelian extension of F with Galois group an
elementary abelian 2-group. For example, if F = Q, then w2(Q) = 24,
ζQ(−1) = −1/12, and K2(Z) = Z/2.

The Birch-Tate conjecture is a consequence of the work of Mazur-Wiles
for abelian extensions of Q, and for totally real fields by a subsequent work
of Wiles.

To relate the Birch-Tate conjecture to the Lichtenbaum conjectures for
totally real number fields, one also needs to identify the order of K3(OF ) ∼=
K3(F ) to |w2(F )| = |H0(F, µ2)| which in fact is done using the following
exact sequence:

0→ KM
3 (F ) ∼= (Z/2)d → K3(F )→ H0(F, µ2)→ 0,

where KM
3 (F ) is the Milnor K-group of F (whereas K3(F ) is the Quillen

K-group).

6. Deligne-Beilinson-Bloch-Kato

For M a motive over Q, or a cohomological automorphic representa-
tion on G(A) where G is a reductive group over Q, there is a notion of its
L-function, L(M, s), with all the properties discussed earlier for the Rie-
mann zeta function such as analytic continuation, Euler product and the
functional equation.

The general conjectures in this section have the flavor of suggesting that:

L∗(M, k) = (algebraic number)× (period)× (regulator), (1)

where L∗(M,k) is the leading term in the Taylor expansion of L(M, s) in
the neighborhood of s = k; further, the algebraic number belongs to the
field of coefficients E of M. Thus, the L-function L(M, s), which is a
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Dirichlet series, has coefficients belonging to E, and hence L(M, s) is to be
considered as a holomorphic function in s ∈ C with values in E ⊗Q C, in
particular, L(M,k), L∗(M,k) belong to E ⊗Q C, and the decomposition in
(1) belongs to E × C ⊂ E ⊗Q C. This, Deligne says in his Corvalis article
(for his critical points) is inspired by a comment of B. Gross.

For instance, the conjecture of Birch and Swinnerton-Dyer suggests in a
very precise way the conjecture expressed in equation (1) above for abelian
varieties, and this is what the classnumber formula proves.

Although the terms, period and regulator are of very different origin,
they are defined using one notion from Linear algebra: If we have two vec-
tor spaces V and W over Q of the same dimension d <∞, and which come
equipped with an isomorphism φ : V ⊗ R → W ⊗ R, then ΛdRφ gives an
isomorphism of two one dimension vector space over R with Q-structures,
defining a real number well defined up to Q×. For the periods, either for
a motive or for an algebraic variety over Q, these come equipped with the
de Rham as well as Betti cohomology both of which have a Q-structure,
and there is a comparison isomorphism between these Q-structures when
tensored with C. Similarly, regulators (defined by Beilinson in some gener-
ality) arise from comparing two Q structures on a finite dimensional vector
space, such as in the case of an abelian variety A, there is the Neron-Tate
pairing A(Q) × A(Q) → R which gives an isomorphism of A(Q) ⊗ R with
its dual, both coming with natural Z-structures, defining the regulator of
an abelian variety.

The regulator term in (1) is present if and only if the order of vanishing
of L(M, s) at k is d > 0, and is then given by the Linear algebra notion of
the previous paragraph, equivalently, by a certain d× d determinant.

The work of Deligne on L(M, k) proposes a conjecture of the form
given in (1) in the case when one can omit the regulator term in (1),
thus if L(M, k) = 0, Deligne’s conjecture says nothing, and if L(M, k)

is nonzero, it says as in (1), that L(M, k) is an algebraic multiple of the pe-
riod. Deligne’s conjecture is only for critical points k ∈ Z which according
to him are those integers for which gamma factors at infinity attached to
M, L∞(M, s) (resp., attached toM∨, L∞(M∨, s)) have no poles at s = k

(resp., 1−k). Thus non-critical points are precisely the integers k for which
L(M, k) or L(M∨, 1 − k) acquire a zero because of the gamma factors at
infinity – such zeros are also sometimes called the trivial zeros.
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In the case of the Riemann zeta function, k, the even negative inte-
gers, or odd positive integers are non-critical points, outside the purview
of Deligne’s conjecture (but to which Borel’s theorems and Lichtenbaum’s
conjectures discussed earlier apply).

In the case of an elliptic curve E over Q, with L-function LE(s), and
completed L-function

ΛE(s) = N s/2(2π)−sΓ(s)LE(s),

where N is the conductor of E, one has the functional equation,

ΛE(s) = ε(E)ΛE(2− s),

where ε(E) = ±1 is the global root number of E. As ΛE(s) is an entire
function of s, because of the presence of Γ(s) in the expression for ΛE(s),
which has poles exactly at integers {0,−1,−2,−3, · · · }, we find that LE(s)

must have zeroes at these integers {0,−1,−2,−3, · · · }, thus 1 is the only
critical point of E.

Beilinson makes a conjecture of the form (1), of course that means
making the regulator term precise, for all integers k critical or not, but still
with the same ambiguity as in (1) of being up to Q̄× which is remedied by
Bloch and Kato up to sign. We now review the conjecture of Beilinson.

Let X be a smooth projective variety over Q with X a regular (flat)
model over Z. Let Hj

M(X ,Q(j − n)), called the motivic cohomology of X,
be the subspace of Km(X ) ⊗ Q on which the Adams operators act with
weight j − n where m = j − 2n. Beilinson defines homomorphisms (as
Chern character)

Hj
M(X ,Q(j − n))→ Hj

D(X,R(j − n)),

where Hj
D(X,R(j − n)) is the Deligne cohomology, a finite dimensional

R-vector space, on which Beilinson constructs a rational structure and con-
jectured that as long as m ≥ 2, the above homomorphism tensored with R
is an isomorphism, allowing Beilinson to define a regulator, a real number,
well-defined up to Q×, which is now called the Beilinson regulator. One way
to define the Deligne cohomology Hj

D(X,R(j−n)) (according to Beilinson)
is:

Extj(Z(n), H∗(X)) := Hom(Z(n), H∗(X)[j]),
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where Ext and Hom are computed in the derived category of Hodge struc-
tures where H∗(X) lives (by a fundamental work of Deligne), and where
Z(m) denotes the Tate-Hodge structure.

It is easy to see that for any n ∈ Z, n < j/2, the order of zero of the
L-function L(Hj−1(X,Q), n) is dictated by the poles of the archimedean
component L∞(Hj−1(X,Q), n), and thus by the Hodge structure of X.
Further, the order of zero of the L-function L(Hj−1(X,Q), n) is the same
as the rank of the Q-vector space Hj

M(X ,Q(j−n)) as well as the rank of the
R-vector space Hj

D(X,R(j − n)). (The analogous assertions for m = 0, 1,
corresponding to the central point for the L-function if j is even, or the
integer nearest to the central point if j is odd, are different; the case of j
odd corresponds to Tate cycles, but the case of j even, and the central point
is subtler!)

7. Artin L-functions

Rest of the paper is an exposition on my own work in [Pr], clarifying an
issue which was missed out in this which is contained in remarks 10.2, and
11.3. At the end of this paper, we list a few papers and books relevant to
this as well as other sections, but without giving precise references.

Now on, we consider certain Artin representations ρ : Gal(Q̄/F ) →
GLn(C) for which we know a priori that L(0, ρ) is a nonzero algebraic
number (in particular, F will be totally real), and try to understand the
nature of the algebraic number L(0, ρ): to know the prime divisors of the
numerator and the denominator of L(0, ρ), to know if it is an algebraic
integer, but if not, what are its possible denominators. We think of the
possible denominators in L(0, ρ), as existence of poles for L(0, ρ), at the
corresponding prime ideals of Z̄. It is thus analogous to the conjecture of
Artin, both in its aim — and as we will see — in its formulation. Recall that
the conjecture of Artin asserts that L(s, ρ) has an analytic continuation to
an entire function on C unless ρ is the trivial representation, in which case
it has a unique pole at s = 1 which is simple.

Remark 7.1. For an Artin representation ρ : Gal(Q̄/F ) → GLn(C), one
knows that L(0, ρ) is nonzero if and only if F is a totally real number field,
and ρ cuts out a CM extension of F such that ρ(c) = −1 ∈ GLn(C), where
c is the complex conjugation on C. In this situation, by theorems of Siegel
and Klingen, L(0, ρ) is an algebraic number (belonging to the field generated
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by the trace of ρ). On the other hand, one expects that if L(0, ρ) = 0, then
the first nonzero derviative of L(s, ρ) at s = 0 is always transcendental, a
certain determinant of logarithm of algebraic numbers.

If E is a CM field with F its totally real subfield, then r1 + r2 is the
same for E as for F , and the regulators of E and F too are the same except
for a possible power of 2. Therefore for τ the complex conjugation on C,
the classnumber formulae for E,F give rise to:

(ζE/ζF )(0) =
∏

ρ(τ)=−1

L(0, ρ)dim ρ =
hE/hF
wE/wF

,

where each of the L-values L(0, ρ) in the above expression are nonzero
algebraic numbers by a theorem of Klingen and Siegel. In fact, we can even
remove the denominator wE/wF by dividing by the same formula for the
cyclotomic extension of Q obtained by attaching wE-th root of unity to Q.

In this identity, observe that the L-functions are associated to complex
representations of Gal(E/Q), whereas the classgroups of E and F are finite
Galois modules. Modulo some details, I formulated a conjecture (Conjecture
1 in [Pr]) which basically asserts that the two sides are not only the same as a
product taken over certain representations of Gal(E/Q), but the individual
factors on the two sides are the same. In particular, this demands that as
the class groups have integral order, so must the L-functions!

Thus we like to separate out as two conclusions:

(1) L(0, ρ) are integral except for certain “obvious" ρ.
(2) The classgroup as a module for Gal(E/Q) has a particular (mod p)

representation appearing in it with nonzero multiplicity if and only
if the corresponding L value is nonzero (mod p).

This is exactly what happens for E = Q(ζp) by the theorems of Her-
brand and Ribet which is one of the main motivating example for all that
we do here, and this is what we will review next, but before that we review
Dirichlet characters.

8. Dirichlet L-functions and the class number

Let χ : (Z/fZ)× → C× be a primitive Dirichlet character. It is known
that if χ is an odd character of (Z/f)×, L(0, χ) is an algebraic number
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which is given in terms of the generalized Bernoulli number B1,χ as follows:

L(0, χ) = −B1,χ = − 1

f

a=f∑
a=1

aχ(a),

If, furthermore, χ : (Z/fZ)× → C× is a quadratic primitive Dirichlet char-
acter, defining the quadratic field K = Q(

√
±f), then its class number is

given by

hK = L(0, χ) = −B1,χ = − 1

f

a=f∑
a=1

aχ(a).

It is a consequence of this result that if p ≡ 3 mod 4, then for K =

Q(
√
−p),

hK = L(0, χ) = −B1,χ =
1

2− χ(2)

(p−1)/2∑
a=1

χ(a).

In what follows, ωp : Gal(Q̄/Q)→ (Z/p)× ↪→ Z×p is the action of Galois
group on the p-th roots of unity.

9. The Herbrand-Ribet theorem

In this section we recall the Herbrand-Ribet theorem from the point of
view of this lecture.

Consider the class number formula

ζF (s) = −hR
w
sr1+r2−1 + higher order terms,

both for F = Q(ζp) as well as its maximal real subfield F+ = Q(ζp)
+. It is

known that,
R/R+ = 2

p−3
2 ,

where R is the regulator for Q(ζp) and R+ is the regulator for Q(ζp)
+. We

will similarly denote h and h+ to be the order of the two class groups, with
h− = h/h+, an integer.

Dividing the class number formula of Q(ζp) by that of Q(ζp)
+, we find,∏

χ an odd character of (Z/p)×
L(0, χ) =

1

p
· h
h+
· 2

p−3
2 , (∗)

the factor 1/p arising because there are 2p roots of unity in Q(ζp) and only
2 in Q(ζp)

+.
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It is easy to see that pB
1,ωp−2

p
≡ (p − 1) mod p since aωp−2p (a) is the

trivial character of (Z/p)× whereas for all the other characters of (Z/p)×,
L(0, χ) is not only an algebraic number but is p-adic integral (Schur orthog-
onality!); all this is clear by looking at the expression:

L(0, χ) = −B1,χ = −1

p

a=p∑
a=1

aχ(a).

Rewrite the class equation for Q(ζp) divided by the class equation for
Q(ζp)

+ as, ∏
χ an odd character of (Z/p)×

χ 6= ωp−2p = ω−1p

L(0, χ) =
h

h+
,

where we note that both sides of the equality are p-adic integral elements
as just observed.

This when interpreted — just an interpretation in the spirit of this
lecture without any suggestions for proof in either direction! — for each
χ component on the two sides of this equality amounts to the theorem of
Herbrand and Ribet which asserts that p divides L(0, χ) = −B1,χ for χ an
odd character of (Z/p)×, which is not ωp−2p , if and only if the corresponding
χ−1-eigencomponent of the classgroup of Q(ζp) is nontrivial. (Note the
χ−1, and not χ!) Furthermore, the character ωp does not appear in the
p-classgroup of Q(ζp). It can happen that L(0, χ) is divisible by higher
powers of p than 1, and one expects — this is not proven yet! — that
in such cases, the corresponding χ−1-eigencomponent of the classgroup of
Q(ζp) is Z/p(valpL(0,χ)), in particular, it still has p-rank 1. (By Mazur-Wiles,
χ−1-eigencomponent of the classgroup of Q(ζp) is of order p(valpL(0,χ)).)

The work of Ribet was to prove that if p|B1,χ, χ−1-eigencomponent of
the classgroup of Q(ζp) is nontrivial by constructing an unramified extension
of Q(ζp) by using a congruence between a holomorphic cusp form and an
Eisenstein series on GL2(AQ).
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10. Integrality

The following conjecture (Conjecture 1 of [Pr]) about L(0, ρ) extends
the integrality properties of

L(0, χ) = −B1,χ = −1

p

a=p∑
a=1

aχ(a),

encountered and used earlier.

Conjecture 10.1. (mod p analogue of the Artin conjecture) Let ρ be an
irreducible representation of Gal(Q̄/Q) cutting out a CM extension E of Q
with ρ(−1) = −1 where −1 is the complex conjugation in Gal(E/Q). Then
unless ρ is a one dimensional representation factoring through Gal(Q(ζpn)/Q)

(for some prime p) with ρ̄ the reduction of ρ modulo p being ρ̄ = ω−1p ,
L(0, ρ) ∈ Q̄ is integral outside 2, i.e., L(0, ρ) ∈ Z̄[12 ].

Remark 10.2. In several places in this work, as well as in [Pr], where
we asert: “L(0, ρ) is integral unless ρ is a one dimensional representation
factoring through Gal(Q(ζpn)/Q) (for some prime p) with ρ̄ the reduction of
ρmodulo p being ρ̄ = ω−1p , L(0, ρ) ∈ Q̄” needs care. The problem is with the
usage of “the reduction of ρ modulo p” since ρ takes values in an algebraic
number field, say E/Q, to reduce it modulo p, we must choose a prime in E
over p, and different choices give rise to different “reductions of ρ modulo p”.
In the particular case when χ is an odd character χ : (Z/p)× → C×, which
is of order (p − 1), L(0, χ) ∈ E = Q(ζp−1), and for the field, Q(ζp−1), the
prime p is split, so there are as many primes in Q(ζp−1) over p as φ(p− 1),
same as number of characters χ : (Z/p)× → C× of order (p− 1). Therefore
for any χ : (Z/p)× → C× of order (p − 1), there is a place ℘ of Q(ζp−1)

over p such that ρ̄ = ω−1p , so for any χ : (Z/p)× → C× of order (p − 1),
L(0, χ) is nonintegral at the place ℘ of Q(ζp−1). Thus the above conjecture
for odd characters χ : (Z/p)× → C× is that L(0, χ) is integral if and only
if χ is not of order (p − 1), and the statement of the conjecture should be
replaced by, “L(0, ρ) is integral unless ρ is a one dimensional representation
factoring through Gal(Q(ζpn)/Q) (for some prime p) of order (p− 1)pn−1.”
One way to eliminate this problem of “reduction modulo p” is to consider
representations not with values in GLn(C), but with values in GLn(Q̄p),
and only talk of p-integrality and not integrality, so one prime at a time.
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We next recall the following theorem of Deligne-Ribet (cf. [DR]) which
could be considered as a weaker version of Conjecture 10.1.

Theorem 10.3. Let F be a totally real number field, and let χ : Gal(Q̄/F )→
Q̄× be a character of finite order cutting out a CM extension K of F (which
is not totally real). Let w be the order of the group of roots of unity in K.
Then,

wL(0, χ) ∈ Z̄.

In fact Conjecture 10.1 can be used to make precise the above theorem
of Deligne-Ribet as follows. This involves a simple argument using the fact
that the Artin L-function is invariant under induction from Gal(Q̄/F ) to
Gal(Q̄/Q).

Conjecture 10.4. Let F be a totally real number field, and χ : A×F /F
× →

Z̄×p a finite order character, cutting out a non-real but CM extension. Then
if LF (0, χ) 6∈ Z̄p,

(1) χ mod p is ω−1p .
(2) χ is a character of A×F /F

× associated to a character of the Galois
group Gal(F (ζq)/F ) for some q which is a power of p.

Remark 10.5. In the examples that I know, which are for characters χ :

Gal(Q̄/Q)→ Q̄×p with χ = ω−1p (mod p), if L(0, χ) has a (mod p) pole, the
pole is of order 1; more precisely, if L = Qp[χ(Gal(Q̄p/Qp))] is the subfield
of Q̄p generated by the image under χ of the decomposition group at p,
then L(0, χ) is the inverse of a uniformizer of this field L. It would be nice
to know if this is the case for characters χ of Gal(Q̄/F ) for F arbitrary.
This would be in the spirit of classical Artin’s conjecture where the only
possible poles of L(1, ρ), for ρ an irreducible representation of Gal(Q̄/F ),
are simple.

11. Integrality of Abelian L-values for Q

The aim of this section is to recall certain results on integrality of L(0, χ)

for χ an odd Dirichlet character of Q which go as first examples of all the
integrality conjectures made in this lecture. Of course, these are all well-
known results.

Lemma 11.1. For integers m > 1, n > 1, with (m,n) = 1, let χ = χ1×χ2

be a primitive Dirichlet character on (Z/mnZ)× = (Z/mZ)× × (Z/nZ)×
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with χ(−1) = −1. Then,

L(0, χ) = −B1,χ = − 1

mn

mn∑
a=1

aχ(a),

is an algebraic integer, i.e., belongs to Z̄ ⊂ Q̄.

Lemma 11.2. For p a prime, let χ be a primitive Dirichlet character on
(Z/pnZ)× with χ(−1) = −1. Write (Z/pnZ)× = (Z/pZ)××(1+pZ/1+pnZ),
and the character χ as χ1 × χ2 with respect to this decomposition. Then,

L(0, χ) = −B1,χ = − 1

pn

pn∑
a=1

aχ(a),

is an algebraic integer, i.e., belongs to Z̄ ⊂ Q̄ if and only if χ1 6= ω−1p .

Remark 11.3. Just as in Remark 10.2, the above lemma from [Pr] needs
to be made more carefully to take into account the issue of choosing a prime
in Q(χ) for “reduction modulo p”. Here is the precise statement. For an
odd primitive character χ : (Z/pn)× → C×, L(0, χ) is integral if and only if
χ is not of order (p− 1)pn−1.

The following proposition follows by putting the previous two lemmas
together.

Proposition 11.4. Primitive (odd) Dirichlet characters χ : (Z/n)× → Z̄×p
for which L(0, χ) does not belong to Z̄p are exactly those for which:

(1) n = pd.
(2) χ = ω−1p mod p.

The following consequence of the proposition suggests that prudence is
to be exercised when discussing congruences of L-values for Artin represen-
tations which are congruent.

Corollary 11.5. Let p, q be odd primes with p|(q − 1). For any character
χ2 of (Z/qZ)× of order p, define the character χ = ω−1p × χ2 of (Z/pqZ)×.
Then although the characters ω−1p and χ have the same reduction modulo p,
L(0, ω−1p ) is p-adically non-integral whereas L(0, χ) is integral.

Question 11.6. Let χ : (Z/pdm)× → Z̄×p with (p,m) = 1, m > 1, be a
primitive Dirichlet character for which χ = ω−1p mod p so that by Proposi-
tion 11.4, L(0, χ) is p-integral. Is it possible to have L(0, χ) = 0 modulo p,
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the maximal ideal of Z̄p? My proofs are good to detect integrality, but not
good for questions modulo p. The question is relevant to see if the character
ωp appears in the classgroup H/H+ for E = Q(ζpdm); such a character is
known not to appear in the classgroup of H/H+ for E = Q(ζpd).

12. Congruences of L-values

Congruence of L-values is one of the dominant themes of contemporary
number theory, but as much of mathematics, its role has been felt for a
long time, in this case in terms of what is called Kummer congruence. Thus
Kummer discovered that irregular primes not in terms of p dividing L(0, χ),
but in terms of p dividing a Bernoulli number.

We just state the precise result here.

(1) L(−n, χ) = −Bn+1,χ

n+1 .
(2) B1,ωnp ≡

Bn+1

n+1 mod p if n 6≡ −1 mod (p− 1).
(3) L(0, ωnp ) ≡ Bn+1

n+1 mod p if n 6≡ −1 mod (p− 1).

In particular, p|L(0, χ) if and only if p|Bi for some i = 2, 4, ....p − 3

which is Kummer’s criterion for the irregularity of a prime.

13. Congruences and their failure for L-values

This lecture considers integrality properties of certain Artin L-functions
at 0. It may seem most natural that if two such Artin representations
ρ1, ρ2 : Gal(Q̄/F ) → GLn(Q̄p) have the same semi-simplification mod-p
and do not contain the character ω−1p , then L(0, ρ1) and L(0, ρ2) which are
in Z̄p by Conjecture 1, have the same reduction mod-p. This is not true
even in the simplest case of Dirichlet characters for Q as we just saw. It is
possible to fix this problem for abelian characters of Q, and more generally
for any totally real number field which is what this section strives to do, cf.
Proposition 13.1. The recipe given in Proposition 13.1 immediately suggests
itself in the non-abelian case, but we have not spelt it out.

The problem that we find dealing with abelian characters χ1, χ2 is that
they may be congruent for some prime, but may have different conductors in
which case it is not the L-values L(0, χ1) and L(0, χ2) which are congruent,
but a modified L-value, say Lf (0, χ) which gives the right congruence; these
L-values are product of

∏
℘(1 − χ(℘)) with L(0, χ) where ℘ are all primes

dividing either the conductor of χ1 or of χ2. We begin with some elementary
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lemmas which go into congruences of L-values at 0 of Dirichlet characters,
and then we consider totally real number fields.

The following proposition which is a consequence of the work of Deligne-
Ribet, discusses integrality as well as congruence of abelian L-functions.

Proposition 13.1. Let F be a totally real number fields with G = Gal(Q̄/F )

its Galois group. For χ : G → Z̄×p , a character of finite order of G, which
is also to be considered as a character of the groups of ideals coprime to a
nonzero ideal f in K by classfield theory (so f is divisible by the conductor of
χ, but may not be the conductor of χ). Let L(s, χ) be the ‘true’ L-function
associated to the character χ, and define Lf(s, χ) by

Lf(s, χ) =
∑

(a,f)=1

χ(a)

(Na)s
,

where Na denotes the norm of an integral ideal a in F . Then,

(1) Lf(s, χ) =
∏
℘|f(1−

χ(℘)
(N℘)s ) · L(s, χ).

(2) For any integral ideals c in F coprime to pf, integers k ≥ 1,

∆c(1− k, χ) = (1− χ(c)Nck)Lf(1− k, χ),

are in Z̄p.
(3) If χ1 and χ2 are two characters of G with values in Z̄×p with con-

ductors dividing f, such that neither of the two reductions χ̄1, χ̄2 :

G → F̄×p is ω−1p , then Lf(0, χ1) and Lf(0, χ2) are in Z̄p, and if χ1

and χ2 are congruent modulo the maximal ideal in Z̄p, so is the case
for Lf(0, χ1) and Lf(0, χ2).

14. A question on Algebraicity

I want to conclude by posing a question. Recall that in this lecture,
forM a motive over Q, or a cohomological automorphic representation on
G(A) where G is a reductive group over Q, we considered the L-function,
L(M, s), and especially its values at integers. More precisely, we discussed
the general conjecture:

L∗(M, k) = (algebraic number)× (period)× (regulator), (1)

where L∗(M,k) is the leading term in the Taylor expansion of L(M, s) in
the neighborhood of s = k.
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It is natural to understand for which motivesM over Q, L∗(M, k) can
be algebraic for some integer k. One expects periods as well as regulators to
be transcendental numbers and of independent nature, thus the most opti-
mistic guess would be that such motives are the (direct sum of) Tate twists
of Artin motives discussed in this work which arise from representations of
Gal(Q̄/Q) which cut out a totally real extension or a CM extension of Q.
In particular, I would expect that if L∗(M, k) is algebraic for some integer
k, then L(M,k) must be nonzero.

I do not know if this question has been considered or investigated in the
literature.
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EFFECT OF SLOW-FAST TIME SCALE ON
SPATIO-TEMPORAL PATTERN FORMATION∗

MALAY BANERJEE, PRANALI ROY CHOWDHURY

Abstract. Main objective of this article is to explain the effect of slow-
fast time scale on the dynamics of prey-predator interaction. Effect of
slow-fast time scale on temporal dynamics and spatio-temporal patterns
are described briefly.

1. Introduction

Mathematical modelling of interacting populations is an interesting and
challenging research area for researchers and scientists from various disci-
plines. A wide range of mathematical models is proposed and analyzed with
the help of different types of mathematical tools. Here we confine ourselves
within a small domain, namely, Ordinary Differential Equation (ODE) and
Partial Differential Equation (PDE) based mathematical models of two in-
teracting species. ODE-based two species interaction models are divided into
three types: competition, cooperation, and prey-predator, depending upon
the interaction between the individuals of two interacting species under con-
sideration [16]. Here we focus on prey-predator type interaction-based ODE
and PDE models, this type of interaction also known as resource-consumer
dynamics. To be precise, two species prey-predator type interaction models
are the building blocks of large food chains, and food webs [6, 10].

Based upon the available food source for the predator species, prey-
predator models involve either specialist predators or generalist predators.
In the case of the two component prey-predator model with generalist preda-
tors, it is assumed that the predator species under consideration has some
alternative food source apart from the prey species whose density is con-
sidered in the model explicitly. Note that other kinds of classification are
also available for example, based upon the functional response, which we will
discuss in the next section briefly with the appropriate mathematical formu-
lation. The main objective behind the formulation of ODE and PDE based
∗ This article is based on the text of 35th P. L. Bhatnagar Memorial Award lecture given
at the 87th Annual Conference of the IMS - An International meet held at MGM
Unuversity, Aurangabad during December 4-7, 2021 using online mode.
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models and their detailed analysis is to understand the dynamic nature of
the interaction and their effect on the long-time survival of the constituent
species. ODE models assume the homogeneous distribution of the individu-
als over the domain under consideration, but the heterogeneous population
distribution over the habitats leads to formulation of PDE based models.
Irrespective of the mathematical description, researchers are mainly inter-
ested to understand the nature of coexistence and possible mechanism of
destabilization leading to the extinction of one or both species. As a result,
researchers are mainly focused on the stability and bifurcation of various
steady-states and the path of convergence of the solution trajectories start-
ing from different initial population densities. In order to achieve this goal,
we mostly ignore initial transient dynamics, that is the part of the trajectory
in between the initial point and final destination (attractor). However, we
mainly observe in nature the transient dynamics only due to the multi-time-
scale variation of several factors responsible for shaping the dynamics of the
interacting species under consideration.

Organization of this report are as follows: In Section 2, we describe
the modified Rosenzweig-MacArthur model incorporated with multiplicative
weak Allee effect, discuss the equilibrium points and perform linear stability
analysis. In Section 3 we modify the model into slow-fast time-scale setting
and describe the slow-fast dynamics exhibited by the model. We have used
the blow-up technique to derive the singular Hopf bifurcation curve and max-
imal canard curve in a two parametric domain. The corresponding spatial
model is considered in Section 4. Traveling wave solution in one-dimensional
space and corresponding pattern in two-dimension space is discussed in the
subsequent subsections. The transient dynamics observed in the model is
discussed briefly in Section 5. We conclude our work in Section 6.

2. ODE Model

Three types of ODE models are available in the literature, Lotka-Volterra
type model, Kolmogorov type model, and Gause type model for prey-predator
interaction [6, 16], here we concentrate on the later one. If u ≡ u(t) and
v ≡ v(t) denote the population density of the prey and the predator species,
respectively, at time t, then their growth equations are two coupled nonlinear
ODEs

du

dt
= ur(u)− p(u, v)v,

dv

dt
= q(u, v)v −m(v)v, (2.1a)

subject to non-negative initial conditions. r(u) is per capita growth rate
of the prey, p(u, v) is the functional response (describes the grazing pat-
tern of prey by the predator), q(u, v) is numerical response (contribution of
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consumed prey biomass to the growth of the predator through the birth of
new offsprings) and m(v) is the per capita death rate of the predator. For
mathematical simplicity, we consider q(u, v) = ep(u, v) where 0 < e < 1 is
known as the conversion efficiency [10]. If p(u, v) is function of u only then
the functional response is called prey-dependent otherwise it is known as
predator-dependent functional response without any ambiguity. From above
formulation, per capita predator growth rate is q(u, v)−m(v). For specialist
predator, we must have q(0, v)−m(v) < 0 and in case of generalist predator
q(0, v) −m(v) > 0 for a range of values of v and −m(v) is interpreted as
prey independent per capita growth rate of the generalist predator (interested
readers can check the model in [18]).

First we consider the dynamics of a modified Rosenzweig-MacArthur type
prey-predator model with multiplicative weak Allee effect (see [4] for details)
in prey growth

du

dt
= γu(1− u)(u+ β)− uv/(1 + αu) = f(u, v), (2.2a)

dv

dt
= uv/(1 + αu)− δv ≡ g(u, v). (2.2b)

Comparing this model with (2.1), we find r(u) = γ(1− u)(u+ β), p(u, v) =

u/(1 + αu) and m(v) = δ. The model is written in terms of dimensionless
variables and parameters, all the parameters are positive. Weak Allee effect
is characterised by 0 < β < 1, α is a parameter involved with the Holling
type II functional response and δ is intrinsic death rate of predators. These
interpretations are in terms of dimensionaless parameters. The model ad-
mits at most three equilibrium points, (i) extinction equilibrium E0(0, 0), (ii)
prey only equilibrium E1(1, 0) and (iii) interior equilibrium point E∗(u∗, v∗).
Components of E∗ are given by

u∗ = δ/(1− αδ), v∗ = γ(1− u∗)(u∗ + β)(1 + αu∗),

which is feasible under the parametric restriction δ(α+ 1) < 1.
Stability of various equilibrium points can be studied with the help of

linear stability analysis [10]. Here we mention the stability condition of the
coexistence equilibrium point E∗ only. Evaluating the Jacobian matrix for
the model (2.2) at E∗(u∗, v∗) we find

J∗ =

(
γ(u∗(2− 3u− 2β) + β)− v∗

(1+αu∗)2
− u∗

1+αu∗
v∗

(1+αu∗)2
0

)
. (2.3)

Using u∗, v∗ > 0, we can easily verify that Det(J∗) > 0. Hence E∗ is stable
if Tr(J∗) < 0, loses stability through a super-critical Hopf bifurcation when
Tr(J∗) = 0 and is unstable for Tr(J∗) > 0. The Hopf-bifurcation threshold
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in terms of δ ≡ δH is given by

δH =
1 + α2β −

√
1 + α+ α2 − αβ + α2β + α2β2

α(−1− α+ αβ + α2β)
. (2.4)

The coexistence equilibrium point E∗ is stable for δ > δH and it is surrounded
by a stable limit cycle for δ < δH .

3. ODE Model with slow-fast time scale

Depending on the species traits, the growth and death rate of the species
may vary on different timescales. Assuming that the prey population often
grows much faster than its predator a small time-scale parameter ε, 0 < ε < 1

can be introduced in the temporal model (2.2). The parameter ε is inter-
preted as the ratio between the growth rate of the predator and the growth
rate of the prey [8, 17]. The assumption ε < 1 implies that one genera-
tion of predator can encounter several generations of prey [9, 12]. Therefore
considering the difference in the time scale, the slow-fast version of the di-
mensionless model (2.2) can be written as

du

dt
= f(u, v) = γu(1− u)(u+ β)− uv

1 + αu
, (3.1a)

dv

dt
= εg(u, v) = εv

( u

1 + αu
− δ
)
, (3.1b)

with initial conditions u(0), v(0) ≥ 0 . Since the prey population grows
faster compared to the predator, u and v are referred to as fast and slow
variables, respectively and time t is called fast time. We now describe the
dynamics of the slow-fast system (3.1) when 0 < ε � 1. To understand the
dynamics of the system for sufficiently small ε (> 0) we need to consider the
behaviour of two subsystems obtained for ε = 0. The system in its singular
limit, ε = 0 is given by

du

dt
= f(u, v) = γu(1− u)(u+ β)− uv

1 + αu
,
dv

dt
= 0. (3.2a)

The above system is known as fast subsystem or layer system corresponding
to the slow-fast system (3.1). The fast flow is given by constant predator
density determined by the initial condition v(0) = c, and by integrating the
differential equation

du

dt
= γu(1− u)(u+ β)− uc

1 + αu
, (3.3)

with initial condition u(0) > 0. The direction of the fast flow depends on
the choice of initial conditions u(0), v(0) and other parameter values. Green
horizontal lines are fast solution trajectories with appropriate direction as
shown in Fig. 1a.
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Now writing system (3.1) in terms of the slow time τ := εt, we get the
equivalent system in terms of slow time derivatives,

ε
du

dτ
= f(u, v),

dv

dτ
= g(u, v). (3.4a)

Substituting ε = 0 in the above system we find the following differential
algebraic system of equation,

0 = f(u, v),
dv

dτ
= g(u, v), (3.5a)

which is known as the slow subsystem corresponding to the slow-fast system
(3.4). The solution of the above system is constrained to the set {(u, v) ∈
R2

+ : f(u, v) = 0} known as critical manifold and in general is denoted by
C0. This set has one-one correspondence with the set of equilibrium of the
fast subsystem (3.3). The critical manifold consists of two manifolds

C0
0 = {(u, v) ∈ R2

+ : u = 0, v ≥ 0},

C1
0 =

{
(u, v) ∈ R2

+ : v = q(u) := γ(1− u)(u+ β)(1 + αu), 0 < u < 1, v > 0
}
,

such that C0 = C0
0 ∪ C1

0 where C0
0 is the positive v-axis and C1

0 is a portion
of the cubic curve in the first quadrant shown in Fig. 1a, marked with black
colour. The slow flow on the critical manifold is given by

du

dτ
=

g(u, q(u))

q̇(u)
, (3.6)

where ‘.‘ refers to the differentiation with respect to u. The solution of the
system (3.1) for sufficiently small ε > 0 cannot be approximated from its
limiting solution at ε = 0. The critical manifold C1

0 can be divided into two

Figure 1. (a) Dynamics of the slow-fast system (3.1) where
single arrow represnt slow flow and double arrow represent
fast flow for δ = 0.36 (magenta) and other parameters are
α = 0.5, β = 0.22, γ = 3, and δ = 0.3.

parts (attracting and repelling sub-manifolds) by a non-degenerate fold point
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P (uf , vf ) obtained from the following conditions [11]

∂f

∂u
(uf , vf ) = 0,

∂f

∂v
(uf , vf ) 6= 0,

∂2f

∂u2
(uf , vf ) 6= 0, and g(uf , vf ) 6= 0.

The components of the fold point, for the model under consideration, is given
by

uf =
(α− αβ − 1) + (1 + α+ α2 − αβ + α2β + α2β2)

1
2

3α
,

vf = γ(1− uf )(uf + β)(1 + αuf ).

and the attracting (C1,a
0 ) and repelling (C1,r

0 ) sub-manifold is given by

C1,a
0 =

{
(u, v) ∈ R2

+ : v = q(u), uf < u ≤ 1
}

C1,r
0 =

{
(u, v) ∈ R2

+ : v = q(u), 0 ≤ u < uf

}
.

The point of intersection of C1
0 with the vertical v-axis is TC(0, βγ), which is

the transcritical bifurcation point for the fast subsystem. C1
0 can be written

explicitly as v = q(u), and it follows from Fenichel’s theorem [5, 12], that
for ε small enough there exist locally invariant slow sub-manifolds C1

ε and
C0
ε which are diffeomorphic to the respective critical manifolds C1

0 and C0
0 ,

except at the non-hyperbolic points P and T . The system is singular at these
two non-hyperbolic points. However, when the fold point P coincides with
the interior equilibrium of the system (3.1), thus satisfying g(uf , vf ) = 0

along with the conditions of the fold point, there exists a solution passing
through the vicinity of the fold point P. With this condition, the fold point
is known as canard point, and the corresponding solution trajectory is called
canard solution. Therefore, to study the dynamics in the vicinity of the point
P, we blow up the non-hyperbolic fold point into S3 = {x ∈ R4 : ||x|| = 1}
to remove this singularity. To simplify our calculations we first consider a
topologically equivalent form of the system (3.1) by re-scaling the time with
the help of a transformation dt → (1 + αu)dt [13], where (1 + αu) > 0 as
follows

du

dt
= γu(1− u)(u+ β)(1 + αu)− uv ≡ F (u, v, δ),

dv

dt
= ε (uv − δv(1 + αu)) ≡ εG(u, v, δ).

(3.7)

Using the transformation U = u − u∗, V = v − v∗, λ = δ − δ∗, the system
reduces to the required slow-fast normal form near (0, 0) as follows

dU

dt
= −V h1(U, V ) + U2h2(U, V ) + εh3(U, V ),

dV

dt
= ε (Uh4(U, V )− λh5(U, V ) + V h6(U, V )) ,

(3.8)



EFFECT OF SLOW-FAST TIME SCALE ON PATTERN FORMATION 35

where

h1(U, V ) = u∗ + U, h3(U, V ) = 0, h5(U, V ) = (v∗ + V )(1 + αu∗) + Uv∗α,

h2(U, V ) = −γ(−1+6u2
∗α+3u∗(1+α(β−1))+β−αβ)−Uγ(1+α(4u∗+β−1)),

h4(U, V ) = (v∗ + V )(1− αδ∗), h6(U, V ) = u∗ − (1 + u∗α)δ∗.

We now apply a geometric transformation by which the non-hyperbolic fold
point is “blown up” to a 3-sphere, S3 = {(Ū , V̄ , λ̄, ε̄) ∈ R4 : Ū2+V̄ 2+λ̄2+ε̄2 =

1} known as blow-up space [11]. Let I := [0, ρ] where ρ > 0 is a small
constant and r̄ ∈ I. We define a manifold M := S3 × I and the blow-up
map, Φ :M→ R4 where

Φ(Ū , V̄ , λ̄, ε̄, r̄) = (r̄Ū , r̄2V̄ , r̄λ̄, r̄2ε̄) := (U, V, λ, ε). (3.9)

To study the dynamics of the transformed system on and around the hemi-
sphere S3

ε≥0 we will introduce the charts with direction blow-up maps [12].
The slow-fast normal form (3.8) can be extended to R4 and with the help of
above blow-up map we transform the system as explained in [3]. Along each
direction of the coordinate axis we define the charts K1, K2, K3 and K4 by
setting V̄ = 1, ε̄ = 1, Ū = 1 and λ̄ = 1 respectively. The charts K1 and
K3 describe the dynamics in the neighborhood of the equator of S3 and K2

describes the dynamics in a neighborhood of the positive hemisphere. Here,
we mainly focus on chart K2 to prove the existence of a periodic solution for
0 < ε̄� 1. On chart K2, that is, for ε̄ = 1 the above blow-up transformation
reduces to

r̄ =
√
ε, U =

√
εŪ , V = εV̄ , λ =

√
ελ̄, (3.10)

and the transformed system is given as follows, here we remove the overbars
without any loss of generality,

Ut = −b1V + b2U
2 +
√
εG1(U, V ) +O(

√
ε(λ+

√
ε)),

Vt = b3U − b4λ+
√
εG2(U, V ) +O(

√
ε(λ+

√
ε)),

(3.11)

where
b1 = u∗, b2 = −γ(−1 + 6u2

∗α+ 3u∗(1 + α(β − 1)) + β − αβ),

b3 = v∗(1− αδ∗), b4 = v∗(1 + αu∗),
(3.12)

and

G1(U, V ) = a1U − a2UV + a3U
3, G2(u, V ) = a4U

2 + a5V. (3.13)

Theorem 3.1 Let (U, V ) = (0, 0) be the canard point of the transformed
system (3.8) at λ = 0 such that (0, 0) is a folded singularity and G(0, 0, 0) =

0. Then for sufficiently small ε there exist a singular Hopf bifurcation curve
λ = λH(

√
ε) such that the equilibrium point of the system (3.8) is stable for
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λ > λH(
√
ε) with

λH(
√
ε) = −b3(a1 + a5)

2b2b4
ε+O(ε3/2). (3.14)

Proof. Let us denote the equilibrium point of the system (3.11) is (Ue, Ve),
Ue = b4λ

b3
+ O(2) and Ve = O(2) where O(2) := O(λ2, λ

√
ε, λ). Linearizing

the system about this equilibrium point we have the Jacobian matrix as

J :=

(
2Ueb2 + a1

√
ε+O(2) −b1 +O(2)

b3 +O(2) a5
√
ε+O(2)

)
(3.15)

At the Hopf bifurcation we have Trace J = 0 which implies

2b2b4λ

b3
+
√
ε(a1 + a5) +O(2) = 0. (3.16)

and applying the blow-down map λH = λ
√
ε we get the singular Hopf bifur-

cation curve λH(
√
ε) for the slow-fast normal form (3.8) as

λH(
√
ε) = −b3(a1 + a5)

2b2b4
ε+O(ε3/2). (3.17)

The singular Hopf bifurcation curve for the system (3.7) is thus given by

δH(
√
ε) =

1 + α2β −
√

1 + α+ α2 − αβ + α2β + α2β2

α(−1− α+ αβ + α2β)
−

b3(a1 + a5)

2b2b4
ε+O(ε3/2).

(3.18)

In Fig. 2 the singular Hopf bifurcation curve (red) is plotted in δ − ε para-
metric plane, it clearly explains how the singular Hopf-bifurcation threshold
changes with the variation in ε. Once the coexistence equilibrium loses sta-
bility through Hopf bifurcation, at the Canard point, we find a closed orbit
as attractor surrounding the unstable equilibrium point. From this point
small amplitude stable canard cycle originates enclosing the point P and
then forms canard cycle with head depending on the parameter values. The
following theorem provides an anlaytical expression of the maximal canard
curve in (λ− ε) plane.
Theorem 3.2 Let (U, V ) = (0, 0) be the canard point of the slow-fast normal
form (3.8) at λ = 0 such that (0, 0) is a folded singularity and G(0, 0, 0) = 0.
Then for ε > 0 sufficiently small there exists maximal canard curve λ =

λc(
√
ε), i.e. the parametric curve of maximal canard solution such that the

slow flow on the normally hyperbolic invariant submanifolds M1,a
ε connects

withM1,r
ε in the blow-up space. And λc(

√
ε) is given by

λc(
√
ε) = − 1

A5

(3A1

4A2
4

+
A2

2A4
+A3

)
ε+O(ε3/2) (3.19)

Proof. Please refer to [3] for the proof.
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Figure 2. Schematic diagram showing singular Hopf bifur-
cation curve δH (red), maximal canard curve δc (blue), and
δro (dashed black) relaxation oscillation cycle.

4. PDE Model: spatial patterns

Considering the heterogeneous distribution of both the species and as-
suming their random movement within the habitat, we can extend the tem-
poral model (3.1) to a spatio-temporal model by incorporating self-diffusion
terms as follows,

ut = γu(1− u)(u+ β)− uv

1 + αu
+∇2u, (4.1a)

vt = ε

(
uv

1 + αu
− δv

)
+ d∇2v, (4.1b)

where d (> 0) is the ratio of diffusivity coefficients of predator over prey and
∇2 is the Laplacian operator. Here u ≡ u(t,x) and v ≡ v(t,x) denote
prey and predator densities, respectively, at time t and at spatial location
x. For one dimensional (1D) space x ≡ x ∈ R and x ≡ (x, y) ∈ R2 for
two dimensional (2D) space. For simplicity we assume that x belongs to a
bounded domain. The model under consideration fails to produce any sta-
tionary pattern due to Turing instability as the Jacobian matrix of the model
(3.1) evaluated at E∗ fails to satisfy the requisite sign pattern necessary to
satisfy the Turing instability condition [1]. In other words, if we denote the
entries of the Jacobian matrix (2.3) by jrs, (r, s = 1, 2) then j11 and j22

must have opposite signs at the coexistence equilibrium point such that the
conditions j11 + j22 and dj11 + j22 are satisfied simultaneously for d > 0. For
the model under consideration, j22 = 0 and hence Turing instability condi-
tions can not be satisfied. However, the model (4.1) is capable to produce
some dynamic patterns. In the context of PDE model of prey-predator in-
teraction with self-diffusion terms, the dynamic patterns include travelling
wave, periodic travelling wave and spatio-temporal chaos [2, 14]. With the
help of mathematical tools one can prove the existence of travelling wave,
stability of travelling wave and determine the minimum wave speed [15].
However, there is a lack of mathematical machinery which can establish the
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existence of spatio-temporal chaos rather its detection solely depends upon
exhaustive numerical simulation for parameter values chosen from the Hopf
domain or Turing-Hopf domain [2].

4.1. 1D travelling wave. Here we consider the existence of traveling wave
joining the predator free steady-state E1 with the coexistence steady-state
E∗ whenever the parametric restriction δ(α + 1) < 1 holds. Existence of
such traveling wave implies the successful invasion of the predators and this
requirement leads to the consideration of the model (4.1) subject to the
conditions

u(t, x) = 1, and v(t, x) = 0, as x→ −∞, ∀ t,

u(t, x) = u∗, and v(t, x) = v∗, as x→∞, ∀ t.

Let us consider the traveling wave solution of the model (4.1) in the form
u(t, x) = φ(ξ), v(t, x) = ψ(ξ) where ξ = x−ct and c is the speed of travelling
wave. Substituting u = φ(ξ) and v = ψ(ξ) in (4.1), we find

d2φ

dξ2
+ c

dφ

dξ
+ f(φ, ψ) = 0, d

d2ψ

dξ2
+ c

dψ

dξ
+ εg(φ, ψ) = 0. (4.2)

We introduce two new variables p(ξ) = −dφ
dξ and q(ξ) = −dψ

dξ to transform
the system (4.2) to the first order coupled ODEs as follows

dφ

dξ
= −p, dp

dξ
= −cp+ f(φ, ψ),

dψ

dξ
= −q, dq

dξ
=

1

d
(−cq + εg(φ, ψ)).

(4.3)

The homogeneous steady states E1 and E∗ of (4.1) corresponds to the equi-
librium points of the system (4.3) given by Q1(1, 0, 0, 0) and Q∗(u∗, 0, v∗, 0)

respectively. Successful invasion of the predator is reflected through the exis-
tence of a heteroclinic connection joining Q1 with Q∗. The Jacobian matrix
of the system (4.3) evaluated at Q1

JQ1 =


0 −1 0 0

−γ(1 + β) −c − 1
1+α 0

0 0 0 1

0 0 ε
d( 1

1+α − δ) −
c
d

 , (4.4)

has eigenvalues λ1,2 = c
2 ±
√
c2+4g(1+β)

2 and λ3,4 = − c(1+α)
2 ±

√
Γ

d(1+α) with
Γ = (1 + α)2c2 − 4εd(1 + α)(1 − δ − αδ). First two eigenvalues are real,
but λ3,4 are real whenever c2 ≥ 4εd(1−δ−αδ)

1+α . Feasible heteroclinic connection
exist for four real eigenvalues only. The minimum wave speed of traveling
wave emerging from Q1 is given by

cmin =
[4εd(1− δ − αδ)

1 + α

]1/2
. (4.5)
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Clearly cmin depends on ε and hence the slow-fast time scale regulates the
speed of traveling wave. It is difficult to obtain the explicit expressions for
the eigenvalues of the Jacobian matrix evaluated at Q∗ and hence we provide
below numerical example. For c ≥ cmin and depending upon the nature of
eigenvalues of JQ∗ (real or complex), we find monotone traveling wave, non-
monotone as well as periodic traveling waves.

(a) (b)

(c)

Figure 3. (a) δ = 0.6, monotone traveling wave, (a) δ =
0.38, non-monotone traveling wave, (a) δ = 0.3, periodic
traveling wave. Prey (blue) and predator (red) distributions
are shown at t = 100 (dashed) and t = 200 (continuous).

For numerical illustration, we choose fixed parameter values α = 0.5,
β = 0.22, γ = 3, ε = 1, d = 1 and vary δ. Using (4.5) one can verify that
traveling wave exists for δ < 2/3. All the four eigenvalues of JQ∗ are real
for 0.52 < δ < 0.667 and we find two complex conjugate eigenvalues for
δ ≤ 0.52. Complex conjugate eigenvalues with negative real parts imply the
existence of non-monotone traveling wave joining E1 and E∗ whereas positive
real part correspond to periodic traveling wave. Monotone, non-monotone
and periodic traveling waves are shown in Fig. 3 for three different values of
δ as mentioned at the caption of the figure.
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4.2. Pattern formation in 2D. The model (4.1) produces dynamic pat-
terns which are partly analogous to the patterns which we have explained
above. In this subsection we just highlight the two-dimensional interacting
spiral pattern produced by the model for same set of parameters as above
but a specific choice of initial condition. We have used Euler scheme for the
simulation of temporal part and five point finite difference scheme for the
Laplacian with no-flux boundary condition along the boundary. As initial
condition, we assume that prey and predator population is zero everywhere
except a small circular domain at the center. Within a circular domain at
the center, the prey is at its carrying capacity and some non-zero predator
population in introduced within a smaller circular patch at the center of the
domain. Then it evolves like a periodic traveling wave at the core and large
circular plateau with prey population at the carrying capacity (=1) as initial
transient pattern (see Fig. 4a). Once the periodic travelling wave hits the
boundary, the periodic wave structure is destroyed and we find interacting
spiral pattern which is chaotic in space as well as time. In order to break
the spatial symmetry, we have used a specific type of initial condition as de-
scribed in the book [14]. This interacting spiral pattern (see Fig. 4b) persists
as a dynamic pattern, neither they goes to complete extinction nor settle
down to any stationary pattern.

(a) (b)

Figure 4. Two dimensional spatio-temporal pattern at two
different time (a) t = 1400, (b) t = 30000, for prey popula-
tion density. Parameter values are same as in Fig. 3c.

5. Transient dynamics

As observed in the previous sections, the slow-fast systems shows variety
of interesting dynamics that are believed to be more ecologically justifiable.
In particular, one of the crucial and recently observed phenomenon is the
presence of long transient in slow-fast systems. There are many factors that
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can influence the duration and nature of the transients which includes system
properties, the background bifurcation parameter, the initial state of the
system, etc. Consideration of spatio-temporal model with slow-fast time
scale can significantly alter the transient time and its duration increases with
dimension and size of the domain considered [7]. In the ODE model, we can
observe long transient along the critical manifold where the dynamics of the
system is slow and there exists long period of stasis and rapid oscillations.
However, interestingly, in the corresponding spatio-temporal system, due to
the presence of multiple timescale, the nature of the transient gets more
regularized. The number of maxima and minima obtained for the model
(4.1) for ε = 1 is significantly more than that obtained for ε = 0.1 (cf.
Fig. 5). For instance, the number of complete prey-predator cycles from
time t = 0 to t = 2000 decreases with the decrease in magnitude of ε. The
time evolution of spatial average of the prey population corresponding to the
pattern presented in Fig. 4 is depicted in Fig. 5a, and the time evolution
of prey population for ε = 0.1 is presented in Fig. 5b. As discussed in the
previous section, in case of 1D spatial component, the speed of the travelling
wave decreases for 0 < ε � 1, thus altering the transient behaviour of the
waves. For further details, interested readers can refer to [3].

(a) (b)

Figure 5. Time evolution of spatial average of prey popu-
lation density against time for two different values of ε, (a)
ε = 1, (b) ε = 0.1.

6. Discussions

Systematic study of transient dynamics have received some attention
from the researchers but the mathematical condition ensuring the onset of
transient dynamics is yet to be investigated. So far as our knowledge goes,
our recent work [3] is the only available literature which discussed in detail
the effect of slow-fast time scale on spatio-temporal pattern formation for
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interacting population model. We have shown that the presence of slow-fast
time scale can influence the transient dynamics as well as spatio-temporal
pattern and also capable to stabilize the spatio-temporal chaotic oscillation.
However, its effect on stationary pattern remains an open area of further
investigation. Our future goal is to explore canard explosion and relaxation
oscillation in the context of self-organizing spatial pattern.
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RAMANUJAN GRAPHS∗

VIJAY KODIYALAM

Abstract. We give a gentle introduction to the construction of infi-
nite families of bipartite Ramanujan graphs of all regularities following
the work of Marcus, Spielman and Srivastava.

The goal of this expository note is an introduction to the beautiful
ideas of Marcus, Spielman and Srivastava in [MrcSplSrv2015] on interlacing
polynomials and their application to the construction of infinite families of
bipartite Ramanujan graphs of all regularities. We will begin with absolute
preliminaries and build up to their main result.

For our purposes, a graph G consists of finite sets V of vertices and E of
edges. Each element of E is an unordered pair of vertices. Thus all graphs
will be finite, unoriented and simple - no multiple edges and no loops at
vertices. An example to keep in mind is the famous Petersen graph with 10
vertices and 15 edges.

One pleasant feature of the Petersen graph is that it is 3-regular, i.e.,
each of its vertices has degree 3. We will mainly be interested in d-regular
graphs for arbitrary d. A simple example of a d-regular graph, for a general

∗ This article is based on the text of the 32nd V. Ramaswami Aiyer Memorial Award
Lecture delivered by the author at the 87th Annual Conference of the IMS - An
International meet held at MGM University, Aurangabad during December 4 - 7, 2021
using online mode
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d, is the complete graph on d + 1-vertices with
(
d+1
2

)
edges - illustrated in

the next figure for d = 4.

The graphs of interest to us will further be bipartite graphs. These are
graphs where the vertex set comes with a partition into two subsets so that
there are no edges between vertices in the same subset. Equivalently, there
are no odd cycles in the graph. Here is the complete bipartite graph on
(3, 3) vertices.

The notion of a Ramanujan graph is a spectral one, i.e., it depends
on the spectrum of the graph. Recall that to any graph G is associated
its adjacency matrix A, which is a square matrix with rows and columns
indexed by vertices ofG and (v, w)-entry being 1 if {v, w} is an edge ofG and
0 otherwise. This is a certain real symmetric matrix. The spectrum of G is
defined to be the spectrum of this matrix, namely, the set of eigenvalues of
A. From linear algebra the eigenvalues of A are real and if G has n-vertices,
these can be arranged in non-increasing order as µ0 ≥ µ1 ≥ · · · ≥ µn−1.
An equivalent way of saying that the eigenvalues of A are real is that the
characteristic polynomial of A is real-rooted. It is important to note this
since real-rooted polynomials and their generalisations play an important
role in this story.

The spectrum of the Petersen graph, for instance, can be calculated to
be the set {3, 1, 1, 1, 1, 1,−2,−2,−2,−2}, or equivalently, the characteristic
polynomial of its adjacency matrix is (x−3)(x−1)5(x+2)4. The adjacency
matrix of the complete graph on 5 vertices is (J5 − I5) where J5 is the all-
entries-1 matrix. The matrix J5 clearly has minimal polynomial x2 − 5x

and hence eigenvalues 0 and 5 with 0 having multiplicity 4 (since J is of
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rank 1) and so the spectrum of K5 is {4,−1,−1,−1,−1}. Equivalently the
characteristic polynomial of its adjacency matrix is (x − 4)(x + 1)4. The
complete bipartite graph on (3, 3) vertices has adjacency matrix

A =

[
0 J3

J3 0

]
This has minimal polynomial x3− 9x and hence eigenvalues ±3 and 0 with
0 having multiplicity 4 (since A is of rank 2). Therefore the characteristic
polynomial of the adjacency matrix in this case is x4(x− 3)(x+ 3).

These examples illustrate an easily proved result in the spectral theory
of graphs - if a graph G is d-regular, then µ0 = d and has multiplicity 1 iff
it is connected and in this case, µn−1 ≥ −d with equality iff it is bipartite,
in which case, the spectrum is symmetric about the origin. The eigenvalues
d and −d (when it occurs) are called the trivial eigenvalues of G and the
difference d − µ1 is called the spectral gap of G. It can be shown that the
spectral gap is a good measure of how well-connected G is and so, from the
point of view of applications, it turns out to be important to be able to
construct graphs with large spectral gap.

For a fixed d ≥ 3, a family of connected d-regular graphs G1, G2, G3, · · ·
is said to be family of expanders if |Vn| → ∞ and d− µ1(Gn) ≥ ε for some
positive ε, i.e., the spectral gap of these graphs is bounded away from 0.
We would like ε to be as large as possible for good expanders. But there
are limits on how large ε can be for such a family to exist. A non-trivial
result of Alon and Boppana - see [Nli1991] - asserts that for a sequence of
connected d-regular graphs G1, G2, G3, · · · with |Vn| → ∞, the inequality
lim µ1(Gn) ≥ 2

√
d− 1 holds. Thus, for any number α < 2

√
d− 1, all but

finitely many µ1(Gn) ≥ α. A little thought then shows that the number of
connected d-regular graphs G with µ1(G) < α is finite.

This motivates the definition of a Ramanujan graph. A connected d-
regular graph is said to be a Ramanujan graph if every non-trivial eigenvalue
is at most 2

√
d− 1 in modulus. The Petersen graph, the complete graph

and the complete bipartite graph are all examples of Ramanujan graphs.
Observe that for a bipartite graphG, being a Ramanujan graph is equivalent
to satisfying µ1(G) ≤ 2

√
d− 1 by symmetry of the spectrum about the

origin. A family G1, G2, G3, · · · of d-regular Ramanujan graphs with |Vn| →
∞ thus gives an optimal family of expanders.
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Until the work of Marcus, Spielman and Srivastava, all known con-
structions of infinite families of Ramanujan graphs of fixed degree involved
deep number theory - hence, in fact, the name Ramanujan graphs due to
Lubotzky, Phillips and Sarnak in [LbtPhlSrn1988]. Another construction
was due to Margulis - see [Mrg1988]. Besides they could only produce Ra-
manujan graphs of regularity pn+1 with p being a prime. The appearance
of pn + 1 might lead one to guess that these constructions involve finite
fields and indeed, this guess is correct.

To proceed further, we need to understand a process of doubling graphs
called 2-lifting. Suppose that G = (V,E) is a graph. A two lift of G is a
graph Ĝ = (V̂ , Ê) with the following properties. For every vertex v ∈ V
there are two vertices v0, v1 ∈ V̂ . For every edge {v, w} ∈ E there are two
edges in Ê. These are either the pairs {v0, w0}, {v1, w1} (which we will refer
to as uncrossed edges) or the pairs {v0, w1}, {v1, w0} (which we will refer to
as crossed edges).

Here are three examples of lifts of the complete graph on 3-vertices -
the triangle graph.

w1

1 1

11−1 −1 −1

−1

−1

u u uv v v

w w wu0 u0 u0 v0 v0 v0 

w0 w0 w0u1 u1 u1v1 v1 v1

w1 w1

If only uncrossed edges are used the resulting graph is two copies of the
original graph while if only crossed edges are used the resulting graph is
called the double cover of the original graph. Using a little more terminol-
ogy, a 2-lift is a 2-fold covering space of the graph.
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Note that if Ĝ is a 2-lift of G, then the degree of any vertex v of G is
the same as those of both v0 and v1. In particular, if G is d-regular, then
so is Ĝ. Also, it can be seen that if G is bipartite, then so is Ĝ.

How many 2-lifts are there of a given graph G = (V,E)? It is clear that
for every edge of G we need to make a choice of what edges to include in Ĝ
- either the uncrossed ones or the crossed ones. Thus the number of 2-lifts
of G is 2m, where m = |E|. We will index the 2-lifts of G by signings of
G where a signing is a map s : E → {±1}. These correspond to 2-lifts in
the following way. If s(e) = 1 we take the uncrossed edges above e while if
s(e) = −1, we take the crossed edges.

Here is a very simple minded idea to construct large Ramanujan graphs
with fixed regularity - if it works! Begin with one Ramanujan graph. Sup-
pose we can show that one of its 2-lifts is also a Ramanujan graph. Then
we iterate this procedure and we are done. To actually implement this
procedure we need to understand the spectrum of a 2-lift of a graph.

This was done by Bilu and Linial in [BluLnl2006]. To a signing s of
G, associate the signed adjacency matrix As whose (v, w)-entry is s(v, w)
(instead of 1 as in the adjacency matrix) if {v, w} is an edge of G and 0

otherwise. They show (and it is not too difficult) that for the corresponding
2-lift Ĝs, the spectrum is the union of the spectra of A and of As. They also
conjectured that for a d-regular graph, some signing has As with spectrum
contained in [−2

√
d− 1, 2

√
d− 1]. If true, this would immediately imply

that the corresponding 2-lift is a Ramanujan graph provided the initial one
is. Marcus, Speilman and Srivastava prove this conjecture for bipartite
graphs using an ingenious argument related to the probabilistic method.

This brings us to the next idea in the development of this proof. A
matching in a graph G = (V,E) is a subset of E no two elements of which
share a common vertex. Letmi be the number of matchings with i elements
- set m0 = 1. The matching polynomial of G is defined by the equation:

µG(x) =
∑
i≥0

(−1)imix
n−2i,

where n is the number of vertices of G. This is a monic polynomial of degree
n, just as the characteristic polynomial of the adjacency matrix of G is.

This was defined by Heilmann and Lieb in [HlmLeb1972] who showed
that µG(x) is real-rooted and further, that if the maximal degree of a vertex
of G is d, then all roots of µG(x) are at most 2

√
d− 1 in modulus. Later,
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Godsil and Gutman in [GdsGtm1981] showed that the matching polynomial
is the average of the characteristic polynomials of all As over all signings s
of G. Thus, if fs(x) = det(xI − As) denotes the characteristic polynomial
of As, then

µG(x) =
1

2m

∑
s∈{±}m

fs(x).

The Bilu-Linial conjecture is the assertion that some fs(x) has all roots
at most 2

√
d− 1 in modulus. The Heilmann-Lieb and Godsil-Gutman re-

sults imply that their average, which is µG(x), has this property. But what
information can be obtained about the roots of individual polynomials from
a knowledge of the roots of their average? In general, not very much, unless
something special happens, and that is exactly the phenomenon of interlac-
ing which is the next topic we will consider.

We will be interested, in the rest of this note, in real rooted polynomials
with positive leading coefficients. Suppose that f is a real rooted polynomial
of degree n with roots β1, · · · , βn and g is a real rooted polynomial of degree
n− 1 with roots α1, · · · , αn−1. We say that g interlaces f if

β1 ≤ α1 ≤ β2 ≤ α2 ≤ · · · ≤ αn−1 ≤ βn.

This can be shown to be equivalent to several other conditions on f and g.
One is that in the partial fraction expansion

g(x)

f(x)
=
∑
i

ci
x− γi

,

all the ci are positive. Another, related to real-rootedness, is that f(x) +
λg(x) is real-rooted for all real λ.

The study of interlacing has a long history going back to Cauchy and
Hermite. One of the beautiful results in this area is the Cauchy interlac-
ing theorem which states that for a real symmetric matrix A, if B is the
submatrix of A obtained by deleting its first row and column, then, the
characteristic polynomial of B interlaces that of A. Given the equivalent
characterisations of interlacing of the previous paragraph, Cauchy’s inter-
lacing theorem has a very brief proof discovered by Fisk - see [Fsk2005] -
that reads as follows. Write A as[

ρ uT

u B

]
,
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for some real ρ and vector u. Linearity of the determinant implies that for
arbitrary real λ and indeterminate x,∣∣∣∣∣ x+ λ− ρ −uT

−u xI −B

∣∣∣∣∣ =
∣∣∣∣∣ x− ρ −uT

−u xI −B

∣∣∣∣∣+
∣∣∣∣∣ λ 0

−u xI −B

∣∣∣∣∣ .
Thus with C denoting the matrix[

ρ− λ uT

u B

]
,

we have that χC = χA + λχB. Since χC , χB, χA are all real-rooted, the
equivalent characterisations of interlacing show that χB(x) interlaces χA(x),
as was to be seen.

We say that real-rooted polynomials f1, · · · , fk - all of the same degree
- have a common interlacing, if there is a single g that interlaces each of
them. Again, this is equivalent to a real-rootedness condition - namely, that
every convex combination of the f1, · · · , fk is real-rooted.

Here is a very simple but extraordinarily useful observation. If f1, · · · , fk
have a common interlacing and fφ is their sum, then there is an i for which
the largest root of fi is at most the largest root of fφ. To prove this, take
a common interlacing polynomial g and say its largest root is αn−1. Now
consider any fi. It can’t be positive at αn−1 since it has only one root
that is greater than or equal to αn−1 and is eventually positive. Hence
fφ(αn−1) ≤ 0. Since fφ is also eventually positive, its largest root, say βn
is greater than or equal to αn−1. Since fφ(βn) = 0, some fi(βn) ≥ 0. But
fi(αn−1) ≤ 0 and fi has exactly one root (its largest root) greater than or
equal to αn−1 this largest root necessarily lies in [αn−1, βn].

Our polynomials fs are indexed by s ∈ {±1}n so we need an inductive
generalisation of the observation above. It is a little messy to state but easy
to prove. First we need a definition. Let S1, · · · , Sm be finite sets and for
each (s1, · · · , sm) ∈ S1 × · · · × Sm, let f(s1,··· ,sm) be a real-rooted polyno-
mial of degree n with positive leading coefficient. For a partial assignment
(s1, · · · , sk) ∈ S1 × · · · × Sk with k < m set

f(s1,··· ,sk) =
∑

(sk+1,··· ,sm)∈Sk+1×···×Sm

f(s1,··· ,sm).

Naturally, set
fφ =

∑
(s1,··· ,sm)∈S1×···×Sm

f(s1,··· ,sm).
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The polynomials f(s1,··· ,sm) are said to form an interlacing family if for
every k = 0, 1, 2, · · · ,m−1 and (s1, · · · , sk) ∈ S1×· · ·×Sk the polynomials
f(s1,··· ,sm,t) for t ∈ Sk+1 have a common interlacing.

The inductive generalisation of the above observation that we need is
that if f(s1,··· ,sm) form an interlacing family then, for some (s1, · · · , sm) ∈
S1×· · ·×Sm, the largest root of f(s1,··· ,sm) is at most the largest root of fφ.

The Bilu-Linial conjecture, at least for bipartite graphs, would follow
if the polynomials fs for s ∈ {±1}m form an interlacing family of polyno-
mials. The restriction to bipartite graphs is because only the largest root
is bounded above, but for bipartite graphs the symmetry about the ori-
gin implies the corresponding lower bound on the smallest root. And this,
indeed is the main technical result. By the real-rootedness equivalent condi-
tion for having a common interlacing, it suffices to show that every convex
combination of f(s1,··· ,sk,1) and f(s1,··· ,sk,−1) is real-rooted. This is proved
by establishing the following far-reaching generalisation of the results of
Heilmann-Lieb and Godsil-Gutman.

Suppose that p1, p2, · · · , pm ∈ [0, 1], thought of as probabilities for
choosing the signings 1 or −1 on the edges. Then, the polynomial∑

s∈{±}m

( ∏
i:si=1

pi

)( ∏
i:si=−1

(1− pi)

)
fs(x)

which is the weighted average of the fs(x) is real-rooted. This immediately
implies that λf(s1,··· ,sk,1) + (1 − λ)f(s1,··· ,sk,−1) is real-rooted by choosing
appropriate values of p1, · · · , pm. Specifially let pk+1 = λ, pk+2 = pk+3 =

· · · = pm = 1
2 , and pi =

1
2(1 + si) for i ≤ k.

Several ingredients go into the proof of this step. The first is to con-
sider a multivariate generalisation of real-rootedness called real-stability. A
polynomial f ∈ R[z1, · · · , zn] is said to be real-stable if it is either the 0
polynomial or never vanishes when the imaginary part of each zi is strictly
positive. A large supply of real stable polynomials comes from a result of
Borcea and Brändén in [BrcBrn2008] that for positive semidefinite matrices
A1, A2, · · · , Am, the polynomial det(z1A1+ · · ·+ zmAm) is real stable. Fur-
ther, real-stable polynomials are closed under specialisation of one of their
variables to a real value.

Secondly, they use the matrix determinant lemma sometimes referred
to as a rank 1 update result for the determinant, which states that for an
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invertible matrix A, and vectors u, v,

det(A+ uvT ) = det(A)(1 + vTA−1u),

which is not too hard to see. Although not needed, observe that the invert-
ibility hypothesis on A can be removed by writing the right hand side of
the above equation as det(A) + vTadj(A)u.

Lastly they use more results of Borcea and Brändén in [BrcBrn2010] on
differential operators that preserve real-stability - in particular, that for real
a, b ≥ 0 and variables x, y, the operator 1+a∂x+b∂y preserves real-stability.

The weighted average of the fs(x) is then shown to be real-stable by
exhibiting it explicitly as the image of a real-stable polynomial in 2m + 1

variables under a composition of operators preserving real-stability. Since
a univariate real-stable polynomial is real-rooted, this concludes the proof.

In a striking application of the same techniques - using interlacing fam-
ilies - they show in the following paper in the same issue of the Annals of
Mathematics - see [MrcSplSrv2015(2)] - that the Kadison-Singer question
from operator theory that had been open for several decades, has an affirma-
tive answer. One version of this question asks whether for all ε > 0, there is
a k ∈ N such that for any linear operator T on Cn with 0 diagonal, there is
a partition of {1, · · · , n} into k sets A1, · · · , Ak such that ||PjTPj || ≤ ε||T ||
for j = 1, · · · , k.
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BIRKHOFF-JAMES ORTHOGONALITY : ITS ROLE IN
THE GEOMETRY OF BANACH SPACE∗

KALLOL PAUL AND ARPITA MAL

Abstract. Birkhoff-James orthogonality generalizes the concept of
usual orthogonality in an Euclidean space, that we are familiar with
from schooldays. In this article, we discuss the notion of Birkhoff-
James orthogonality (⊥B) in a Banach space and explore its role in the
geometry of Banach space, with a special emphasis to strict convexity,
smoothness and reflexivity. We also explore the role of Birkhoff-James
orthogonality in the study of smoothness in the space of bounded linear
operators.

1. Introduction

One of the most important and useful theorem in Euclidean geometry
is the Baudhayana Sulba Sutra (popularly known as Pythagorus theorem)
that includes the notion of perpendicularity. It is well-known from our
school days that two vectors ~a and ~b in the real plane R2 are perpendicular
or orthogonal if ~a · ~b = 0. This notion of perpendicularity of vectors can
be extended to orthogonality of two elements x and y in a Hilbert space as
〈x, y〉 = 0. This orthogonality notion plays a very important role in under-
standing the geometry of Hilbert space. It is easy to see that orthogonality
of two elements x and y in a real Hilbert space is equivalent to each of the
following:

(i) ‖x+ λy‖ ≥ ‖x‖ for all scalars λ.

(ii) ‖x− y‖2 = ‖x‖2 + ‖y‖2.

∗ This article is based on the text of the 15th Ganesh Prasad Memorial Award Lecture
given by the first author at the 87th Annual Conference of the IMS - An International
meet held at MGM Unuversity, Aurangabad during December 4-7, 2021 using online
mode.
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(iii) ‖x+ y‖ = ‖x− y‖.

Each of the above equivalent conditions is described in terms of the norm
induced by the inner product. In an arbitrary Banach space X, there is no
natural notion of orthogonality of two elements like 〈x, y〉 = 0, as the norm
is not necessarily induced by an inner product. Motivated by the above
equivalent conditions, the following notions of orthogonality are introduced
in a Banach space.

Definition 1.1. [3, 11] (Birkhoff-James orthogonality) Let X be a Ba-
nach space and x, y ∈ X. Then x is said to be Birkhoff-James orthogonal to
y, written as x ⊥B y, if for any scalar λ, ‖x+ λy‖ ≥ ‖x‖.

Definition 1.2. [12] ( Isosceles orthogonality) Let X be a Banach space
and x, y ∈ X. Then x is said to be Isosceles orthogonal to y, written as
x ⊥I y, if ‖x+ y‖ = ‖x− y‖.

Definition 1.3. [12] (Pythagorean orthogonality) Let X be a Banach
space and x, y ∈ X. Then x is said to be orthogonal to y in the sense
of Pythagorean or Pythagorean orthogonal to y, written as x ⊥P y, if
‖x− y‖2 = ‖x‖2 + ‖y‖2.

As the article is presented with a geometrical motivation the underlying
space here is always considered over the real field unless mentioned oth-
erwise. Geometrical interpretation of Birkhoff-James orthogonality is as
follows: Given two elements x and y in a Banach space X with ‖x‖ = 1,

we see that x ⊥B y if and only if the line passing through x parallel to y is
outside the open unit ball.

We note that in a Hilbert space, Birkhoff-James orthogonality is equivalent
to the usual inner product orthogonality even if the space is complex but
the case is not so for Isosceles orthogonality and Pythagorean orthogonality.
Although each of the above three notions of orthogonality are equivalent in
a real Hilbert space, they are not so in a Banach space. In the following
examples we demonstrate the independence of relation between Birkhoff-
James orthogonality and Pythagorean orthogonality as well as Birkhoff-
James orthogonality and Isosceles orthogonality. The same can be done for
Isosceles orthogonality and Pythagorean orthogonality.
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x

y
x+ λy

x ⊥B y

x

y

x+ λyx 6⊥B y

Example 1.4. (i) (Birkhoff-James orthogonality does not imply
Pythagorean orthogonality)

Consider the real Banach space `21. Let x = (1, 0), y = (−1
2 ,−

1
2) ∈ `21.

Then ‖x+ λy‖ = ‖(1− 1
2λ,−

1
2λ)‖ = |1−

1
2λ|+ |

1
2λ| ≥ 1 and so x⊥By. But

‖x−y‖2 = ‖(1, 0)−(−1
2 ,−

1
2)‖

2 = 4 6= ‖(1, 0)‖2+‖(−1
2 ,−

1
2)‖

2 = ‖x‖2+‖y‖2.
Thus, x 6⊥P y.

x = (1, 0)

y = (−1
2 ,−

1
2)

−→ x+ λy

Unit sphere of `21 : x⊥By but x 6⊥P y

(ii) (Pythagorean orthogonality does not imply Birkhoff-James
orthogonality)

Consider the real Banach space `21. Let x = (2,−1), y = (−1,−3) ∈ `21.

Then ‖x− y‖2 = ‖(2,−1)− (−1,−3)‖2 = 25 = ‖(2,−1)‖2 + ‖(−1,−3)‖2 =
‖x‖2 + ‖y‖2. So x ⊥P y. But ‖x − 1

3y‖ = ‖(2,−1) −
1
3(−1,−3)‖ = ‖(2 +
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1
3 , 0)‖ = 2 + 1

3 < 3 = ‖(2,−1)‖. So x 6⊥B y.

−→ x+ λy

(3, 0)

x = (2,−1)

y = (−1,−3)

Unit sphere of `21 : x⊥P y but x 6⊥B y

(iii) (Birkhoff-James orthogonality does not imply Isosceles or-
thogonality)

Consider the real Banach space `21. Let x = (1, 0), y = (12 ,
1
2) ∈ `21. Then

‖x + λy‖ = ‖(1 + 1
2λ,

1
2λ)‖ = |1 + 1

2λ| + |
1
2λ| ≥ 1 and so x⊥By. But

‖x − y‖ = ‖(1, 0) − (12 ,
1
2)‖ = ‖(

1
2 ,

1
2)‖ = 1 6= 2 = ‖(1 + 1

2 ,
1
2)‖ = ‖(1, 0) +

(12 ,
1
2)‖ = ‖x+ y‖. Thus, x 6⊥I y.

x = (1, 0)

(32 ,
1
2)

(0,0)
−→ x+ λy

y = (12 ,
1
2)

Unit sphere of `21 : x⊥By but x 6⊥I y
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(iv) (Isosceles orthogonality does not imply Birkhoff-James or-
thogonality)

Consider the real Banach space `21. Let x = (2,−1), y = (−1,−3) ∈ `21. Then
‖x − y‖ = ‖(2,−1) − (−1,−3)‖ = ‖(3, 2)‖ = 5 = ‖(1,−4)‖ = ‖(2,−1) +
(−1,−3)‖ = ‖x+ y‖. So x ⊥I y. But ‖x− 1

3y‖ = ‖(2,−1)−
1
3(−1,−3)‖ =

‖(2 + 1
3 , 0)‖ = 2 + 1

3 < 3 = ‖(2,−1)‖. So x 6⊥B y.

−→ x+ λy

(3, 0)

x = (2,−1)

(0, 0)

y = (−1,−3)

Unit sphere of `21 : x⊥Iy but x 6⊥B y

Observe that the Hahn-Banach theorem guarantees the existence of or-
thogonal elements in the sense of Birkhoff-James in a Banach space X.
Given (0 6=)x ∈ X, consider M = span{x}. Define f : M → R by
f(ax) = a‖x‖ for all scalars a. Then f is a bounded linear functional on
M and ‖f‖ = 1. By the Hahn-Banach theorem f can be extended to a
bounded linear functional f̃ on the space X preserving the norm and so
‖f̃‖ = 1, f̃(x) = ‖x‖. Let H = ker(f̃) and y ∈ H. Then for any scalar
λ, ‖x + λy‖ ≥ |f̃(x + λy)| = |f̃(x)| = ‖x‖, so that x ⊥B y. Moreover, for
any z ∈ X, if a = − f̃(z)

f̃(x)
, then f̃(ax + z) = 0 and so x ⊥B (ax + z). Thus

we have the following theorem.

Theorem 1.5. [11, Th. 2.2, Cor. 2.2] Let X be a Banach space. Then for
every non-zero x ∈ X, there exists a closed hyperspace H of X such that
x ⊥B H.

Moreover, for any z ∈ X, there exists a ∈ R such that x ⊥B (ax+ z).
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On the other hand, given x, y ∈ X, consider the set S = {‖λx + y‖ :

λ is a scalar}. Then S is a non-empty subset of non-negative real numbers
and so the infimum of S exists. By continuity of the norm function it is easy
to see that there exists a scalar a such that ‖ax+ y‖ = infλ ‖λx+ y‖. Then
for any scalar λ, ‖λx+ y‖ ≥ ‖ax+ y‖ which implies that ‖(ax+ y)+λx‖ ≥
‖ax+ y‖ so that ax+ y ⊥B x. Thus we have the following theorem.

Theorem 1.6. [11, Th. 2.3] Let X be a Banach space. Given x, y ∈ X,
there exists a scalar a such that ax+ y ⊥B x.

Remark 1.7. Following Theorem 1.5 we raise two natural questions : (i)
Given a closed hyperspace H of X. Does there exist (0 6=)x ∈ X such that
x ⊥B H? (ii) Given (0 6=)y ∈ X. Does there exist a hyperspace H such
that H ⊥B y? The reader can think about it for the time being and we will
address the same in due course of time.

In the following theorem, we provide a wonderful characterization of Birkhoff-
James orthogonality in terms of linear functionals.

Theorem 1.8. [11, Th. 2.1] Let X be a Banach space. Then for (0 6=)x ∈ X
and a closed hyperspace H of X, x ⊥B H if and only if there exists a bounded
linear functional f such that f(x) = ‖x‖, ‖f‖ = 1 and f(h) = 0 for all
h ∈ H.

Proof. Necessary part : Each element z ∈ X can be written as z = αx+h,

where α is a scalar and h ∈ H. Define a functional f on X as follows: f(z) =
α‖x‖. If ‖z‖ = 1 then 1 = ‖αx+h‖ ≥ |α|‖x‖ and so |f(z)| = |α|‖x‖ ≤ ‖z‖.
Moreover, f(x) = ‖x‖ implies that ‖f‖ = 1. Thus f is a bounded linear
functional on X such that f(x) = ‖x‖, ‖f‖ = 1 and f(h) = 0 for all h ∈ H.
Sufficient part : Consider H = ker(f). Then H is a closed hyperspace of
X. Observe that for any scalar λ and for each h ∈ H, we have

‖x‖ = ‖f‖‖x‖ = |f(x)| = |f(x+ λh)| ≤ ‖f‖‖x+ λh‖ = ‖x+ λh‖.

This shows that x ⊥B H.

�

There are many basic properties of the inner product orthogonality like
homogeneity, additivity, symmetricity which may or may not be true for
Birkhoff-James orthogonality. In a Banach space X, we note that
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(1) Birkhoff-James orthogonality is homogeneous : If x, y ∈ X be such
that x⊥By then αx⊥Bβy for all scalars α, β.

(2) Birkhoff-James orthogonality is not left additive : If x, y, z ∈ X
be such that x⊥Bz and y⊥Bz then (x + y) may or may not be
Birkhoff-James orthogonal to z.

(3) Birkhoff-James orthogonality is not right additive : If x, y, z ∈ X
be such that x⊥By and x⊥Bz then x may or may not be Birkhoff-
James orthogonal to (y + z).

(4) Birkhoff-James orthogonality is not symmetric : For x, y ∈ X, if
x ⊥B y then it is not necessarily true that y ⊥B x. Similarly, if
y ⊥B x then it is not necessarily true that x ⊥B y.

In due course of time, we will further discuss about left additivity and right
additivity of Birkhoff-James orthogonality. For the time being, we note few
facts about symmetry of Birkhoff-James orthogonality. Observe that in the
real Banach space `2∞, for x = (1, 1) and y = (0, 1), x ⊥B y. However,
y 6⊥B x.

(0,0)

−→ x+ λy

x = (1, 1)y = (0, 1)

x⊥By

(0,0)

−→ x+ λy

x = (1, 1)y = (0, 1)

y 6⊥B x

The symmetricity of Birkhoff-James orthogonality is a very strong property
and it induces an inner product on the space if the dimension of the space
is greater or equal to 3. However, there are two-dimensional Banach spaces,
where Birkhoff-James orthogonality is symmetric but the norm is not in-
duced by an inner product. Such two-dimensional Banach spaces are known
as Radon planes. See [1, 4, 13, 18] and the references therein for construc-
tion and characterizations of Radon planes. In [10] James provided a way to
construct Radon planes. The following figure gives an example of the unit
sphere of a Radon plane X, where for (a, b) ∈ X, ‖(a, b)‖ = max{|a|, |b|} if
ab ≥ 0 and ‖(a, b)‖ = |a|+ |b| if ab < 0.
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(0,0)

Unit sphere of a Radon plane constructed from `∞(R2) and its dual

The geometry of a Banach space is much more involved and it demands
further research to have a better understanding. In due course of time we
will see that Birkhoff-James orthogonality plays a very effective role in un-
derstanding the geometry of Banach space. The notion of strict convexity,
uniform convexity, smoothness, reflexivity in a Banach space can be stud-
ied using Birkhoff-James orthogonality, which was wonderfully done in the
remarkable article by James [11]. In recent times, many researchers are
actively engaged in studying the geometry of spaces of bounded linear op-
erators defined between Hilbert as well as Banach spaces using the notion of
Birkhoff-James orthogonality (see [2, 14, 15, 16, 22, 23, 25]). We here try to
demonstrate the role of Birkhoff-James orthogonality both in the geometry
of ground space as well as in the space of operators.

2. Birkhoff-James orthogonality and strict convexity

Suppose (X, ‖.‖) is a Banach space and X∗ denotes the dual space of X.
BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈ X : ‖x‖ = 1} be the unit ball and
the unit sphere of the space X, respectively. Let S be a non-empty convex
subset of the Banach space X. An element x ∈ S is said to be an extreme
point of S if x = (1−t)y+tz for some t ∈ (0, 1) and y, z ∈ S then x = y = z.

A Banach space X is said to be strictly convex if and only if every element
of the unit sphere is an extreme point of the unit ball. It is easy to observe
that every Hilbert space is strictly convex. On the other hand, `p is strictly
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convex and `1, `∞, C[a, b] are not strictly convex. It follows from Theorem
1.6 that for x, y ∈ X there always exists a scalar a such that ax+ y ⊥B x.

The Birkhoff-James orthogonality is said to be left unique (see [11]) if and
only if for no elements x( 6= 0) and y there exists more than one scalar a
such that ax + y ⊥B x. The following theorem gives a characterization of
strictly convex Banach space in terms of left uniqueness of Birkhoff-James
orthogonality.

Theorem 2.1. [11, Th. 4.3] A Banach space X is strictly convex if and
only if Birkhoff-James orthogonality is left unique.

Proof. Let X be strictly convex. If possible, let Birkhoff-James orthogo-
nality be not left unique. Then there exist x, y ∈ X and a, b ∈ R such
that ax + y ⊥B x and bx + y ⊥B x, where a 6= b. Let a < b. Now,
‖ax + y + λx‖ ≥ ‖ax + y‖, for all scalars λ. Putting λ = b − a, we have,
‖bx + y‖ ≥ ‖ax + y‖. Again, ‖bx + y + λx‖ ≥ ‖bx + y‖, for all scalars λ.
Putting λ = a−b, we have, ‖ax+y‖ ≥ ‖bx+y‖. Thus, ‖ax+y‖ = ‖bx+y‖.
So, ‖kx+y‖ = ‖ax+y‖ for all a ≤ k ≤ b. This contradicts that X is strictly
convex. Therefore, X is strictly convex implies that Birkhoff-James orthog-
onality is left unique.
Conversely, let Birkhoff-James orthogonality be left unique. Let X be not
strictly convex. Then the unit sphere of X contains a line segment. So,
there exist u, v ∈ SX such that u 6= v and (1 − t)u + tv ∈ SX for all
0 ≤ t ≤ 1. Thus, ‖u+ λ(v − u)‖ = ‖(1− λ)u+ λv‖ = 1, for all 0 ≤ λ ≤ 1.

Using the convexity of norm, it can be shown that ‖u + λ(v − u)‖ ≥ 1

for all λ ≥ 0. Now, let λ < 0. If possible, let ‖u + λ(v − u)‖ < 1. Then
u = (1− λ

λ−1)(u+ λ(v − u)) + λ
λ−1v and 0 ≤ λ

λ−1 ≤ 1. So,

‖u‖ ≤ (1− λ

λ− 1
)‖(u+ λ(v − u))‖+ λ

λ− 1
‖v‖ < (1− λ

λ− 1
) +

λ

λ− 1
= 1,

a contradiction. Therefore, ‖u + λ(v − u)‖ ≥ 1 = ‖u‖ for all λ < 0.

Hence, u ⊥B (v − u). Similarly, it can be shown that v ⊥B (v − u), i.e.,
u+(v−u) ⊥B (v−u). This yields that Birkhoff-James orthogonality is not
left unique, a contradiction. Therefore, X is strictly convex. �

We have already noted that Birkhoff-James orthogonality is not necessarily
left additive. As for example, consider the real Banach space `2∞. Let x =

(1, 0), y = (−1, 1), z = (0, 1). Then x ⊥B z, y ⊥B z but x+ y 6⊥B z.
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z = (0, 1)

y + λz ←− x = (1, 0)

y = (−1, 1)

−→ x+ λz

x ⊥B z, y ⊥B z but x+ y 6⊥B z

Unit sphere of `2∞

Next, we give a characterization of two-dimensional strictly convex Banach
space in terms of left additivity of Birkhoff-James orthogonality.

Theorem 2.2. A two-dimensional Banach space X is strictly convex if and
only if Birkhoff-James orthogonality is left additive.

Proof. Let X be strictly convex. Then Birkhoff-James orthogonality is left
unique. Let (0 6=)x, y, z ∈ X be such that y ⊥B x and z ⊥B x. Clearly,
the sets {x, y} and {z, x} are linearly independent. Therefore, z = ax+ by

for some scalars a, b, where b 6= 0. Now, from ax+ by ⊥B x, it follows that
a
bx+y ⊥B x. Since, Birkhoff-James orthogonality is left unique and y ⊥B x,
we get a

b = 0. Thus a = 0, which gives z = by. Now, y ⊥B x implies that
(1 + b)y ⊥B x, i.e., y + z ⊥B x. Thus Birkhoff-James orthogonality is left
additive.
Conversely, let Birkhoff-James orthogonality be left additive. If possible,
let X be not strictly convex. Then the unit sphere of X contains a line
segment. So, there exist u, v ∈ SX such that u 6= v and (1− t)u+ tv ∈ SX
for all 0 ≤ t ≤ 1. Hence, ‖u + λ(v − u)‖ = ‖(1 − λ)u + λv‖ = 1, for
all 0 ≤ λ ≤ 1. Now, let λ < 0. If possible, let ‖u + λ(v − u)‖ < ‖u‖.
Then u = (1 − λ

λ−1)(u + λ(v − u)) + λ
λ−1v and 0 ≤ λ

λ−1 ≤ 1. So, ‖u‖ ≤
(1 − λ

λ−1)‖(u + λ(v − u))‖ + λ
λ−1‖v‖ < (1 − λ

λ−1)‖u‖ +
λ
λ−1‖u‖ = ‖u‖, a

contradiction. Therefore, ‖u + λ(v − u)‖ ≥ ‖u‖ for all λ < 0. So, u ⊥B
(v− u). Similarly, it can be shown that v ⊥B (v− u). Since Birkhoff-James
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orthogonality is left additive, (v− u) ⊥B (v− u). Therefore, v− u = 0, i.e.,
v = u, a contradiction. Thus X is strictly convex. �

The following theorem gives a characterization of Hilbert space when the
dimension of the space is greater than or equal to 3.

Theorem 2.3. [10, Th. 2] Let X be a Banach space such that dim(X) ≥ 3.

Then X is a Hilbert space if and only if Birkhoff-James orthogonality is left
additive.

Proof. Let us first prove the sufficient part. Since Birkhoff-James orthogo-
nality coincides with usual inner product orthogonality in a Hilbert space, it
is easy to see that Birkhoff-James orthogonality is left additive in a Hilbert
space.
Let us now prove the necessary part. Suppose Birkhoff-James orthogonality
is left additive. Let x, y ∈ X be such that {x, y} is linearly independent.
Then there exist hyperspaces Hx and Hy in X such that x ⊥B Hx and
y ⊥B Hy. Consider, H = Hx

⋂
Hy. Then x, y 6∈ H and codimH = 2. Since

Birkhoff-James orthogonality is left additive, we have, ax + by ⊥B H, for
all a, b ∈ R. It is easy to see that any z ∈ X can be written as z = p(z)+w,
where p(z) = ax + by and w ∈ H. Observe that, ‖p(z)‖ = ‖ax + by‖ ≤
‖p(z)+w‖ = ‖z‖, since p(z) ⊥B w. Now, from ‖p(x)‖ = ‖x‖ it follows that
‖p‖ = 1. So, there exists a projection of norm 1 on any two-dimensional
subspace of X. Since there is a projection of norm 1 on any given two-
dimensional subspace of X, we have, X is a Hilbert space. �

We next address the question raised in Remark 1.7. Given a closed hy-
perspace H there is no guarantee on the existence of non-zero x such that
x ⊥B H. However, it is true if the space is reflexive. In fact, this gives a
characterization of reflexive Banach spaces.

Theorem 2.4. A Banach space X is reflexive if and only if for any closed
hyperspace H ⊆ X, there exists x(6= 0) ∈ X such that x ⊥B H.

Proof. We first prove the sufficient part of the theorem. We note from [9,
Th. 2] that a Banach space X is reflexive if and only if every bounded
linear functional on X attains its norm. Let f be a non-zero bounded
linear functional on X and H = ker(f). Clearly, H is a closed hyperspace
of X. By hypothesis, there exists x(6= 0) ∈ X such that x ⊥B H. Clearly,
f(x) 6= 0, since f 6= 0. Let f(x) = r 6= 0. Now, every element z of X
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can be uniquely written as z = ax + h, where a ∈ R and h ∈ H. So,
‖z‖ = ‖ax + h‖ ≥ |a|‖x‖. Now, |f(z)| = |af(x)| = |r||a| ≤ |r| ‖z‖‖x‖ . Thus,
‖f‖ ≤ |r|

‖x‖ . Again, |f(
x
‖x‖)| =

|r|
‖x‖ . Therefore, ‖f‖ =

|r|
‖x‖ and f attains its

supremum on x
‖x‖ . Therefore, every bounded linear functional attains its

supremum on X. Hence, X is reflexive.
For the necessary part, suppose that X is reflexive. Let H be a closed
hyperspace of X. Let f be a bounded linear functional on X such that
H = ker(f). Since X is reflexive, f attains its supremum at x ∈ SX, say. Let
y ∈ H. Then for any λ ∈ R, ‖f‖‖x+λy‖ ≥ |f(x+λy)| = |f(x)| = ‖f‖‖x‖.
So, ‖x + λy‖ ≥ ‖x‖ for all scalars λ. Thus, x ⊥B y. Hence, x ⊥B H. This
completes the proof of the theorem. �

The next theorem by James answers the other question raised in Remark
1.7.

Theorem 2.5. [10, Th. 5] Let X be a Banach space such that dim(X) ≥ 3.

Then X is a Hilbert space if and only if for any element x ∈ X, there exists
a hyperspace H such that H ⊥B x.

3. Birkhoff-James orthogonality and Smoothness

One of the most important geometric notion in a Banach space is smooth-
ness.

Definition 3.1. An element x ∈ SX is said to be a smooth point if there is
a unique linear functional f ∈ X∗ such that ‖f‖ = 1 and f(x) = ‖x‖ = 1.

Equivalently, a geometric definition of a smooth point is as follows:

Definition 3.2. An element x ∈ SX is said to be a smooth point if there is
a unique hyperplane H supporting BX at x.
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x

y

Unit sphere of `21

Non-smooth

Smooth

Let us recall from Theorem 1.5 that given (0 6=)x ∈ X, there exists a
hyperspace H such that x ⊥B H. The following theorem shows that x is
smooth if and only if x ⊥B y implies that y ∈ H.

Theorem 3.3. A Banach space X is smooth if and only if for any non-zero
x ∈ X, Hx = {y ∈ X : x ⊥B y} is a subspace.

Proof. Let X be smooth and x be any non-zero element in X. Let g be the
unique norming linear functional of x, i.e., g(x) = ‖x‖ and ‖g‖ = 1. We
show that ker(g) = Hx, where Hx = {y ∈ X : x ⊥B y}. Let y ∈ ker(g).

Then for any scalar λ, ‖x+λy‖ = ‖g‖‖x+λy‖ ≥ |g(x+λy)| = |g(x)| = ‖x‖.
So x ⊥B y. Thus, y ∈ Hx. Therefore, ker(g) ⊆ Hx. Now, let y be a non-zero
element in Hx. Then x ⊥B y. Let Z = span{x, y}. Define f : Z → R by
f(ax + by) = a‖x‖. Then clearly, ‖f‖ = 1, f(x) = ‖x‖ and f(y) = 0. By
the Hahn Banach theorem, there exists h ∈ X∗ such that ‖h‖ = ‖f‖ =

1, h(x) = f(x) = ‖x‖ and h(y) = f(y) = 0. Thus h is a norming linear
functional of x. Since, g is the unique norming linear functional of x, we
get g = h. Thus y ∈ ker(h) = ker(g). Hence, Hx ⊆ ker(g). Therefore,
Hx = ker(g). Since, ker(g) is a subspace, Hx is a subspace.
Conversely, let Hx be a subspace for each non-zero x ∈ X. If possible, let
X be not smooth. Then there exists a non-zero x ∈ X such that x has
at least two norming linear functionals f, g. Since f 6= g, ker(f) 6= ker(g).

Since f, g are norming linear functionals of x, proceeding as above it can
be shown that ker(f) ⊆ Hx and ker(g) ⊆ Hx. Since x /∈ Hx, Hx is a proper
subspace of X. Again, ker(f) and ker(g) are maximal proper subspaces of
X. Therefore, ker(f) = Hx = ker(g). This gives that f = λg for some scalar



68 KALLOL PAUL AND ARPITA MAL

λ. Again, f(x) = ‖x‖ = g(x) gives that λ = 1. Thus f = g, a contradiction.
Therefore, X is smooth. �

We have already noted that Birkhoff-James orthogonality is not necessarily
right additive. As for example, consider the real Banach space `2∞. Let
x = (1, 1), y = (1, 0), z = (0, 1). Then x ⊥B y, x ⊥B z but x 6⊥B y+ z(= x).

z↑
x+ λy

y

x

−→ x+ λz

x ⊥B y, x ⊥B z but x 6⊥B y + z(= x)

Unit sphere of `2∞

We now explore the relation between right additivity of Birkhoff-James
orthogonality and smoothness in a Banach space (see [11]) .

Theorem 3.4. A Banach space X is smooth if and only if Birkhoff-James
orthogonality is right additive.

Proof. Let X be smooth. Let x, y, z ∈ X be such that x ⊥B y and x ⊥B z.

Then y, z ∈ Hx, where Hx = {w ∈ X : x ⊥B w}. Since X is smooth, Hx

is a subspace. So, y + z ∈ Hx. Hence, x ⊥B (y + z). Thus, Birkhoff-James
orthogonality is right additive.
Conversely, let Birkhoff-James orthogonality be right additive. Let x be a
non-zero element in X. Let Hx = {w ∈ X : x ⊥B w}. We show that Hx is a
subspace. Let y, z ∈ Hx. Then x ⊥B y and x ⊥B z. Since, Birkhoff-James
orthogonality is right additive, x ⊥B (y+z). Thus, y+z ∈ Hx. Again, since
Birkhoff-James orthogonality is homogeneous, αy ∈ Hx, for each scalar α.
Thus, Hx is a subspace. Therefore, X is smooth. �

Next, we explore the relation between smoothness and right uniqueness of
Birkhoff-James orthogonality. Given x, y ∈ X there always exists a scalar
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a such that x ⊥B (ax+ y). The Birkhoff-James orthogonality is said to be
right unique (see [11]) if and only if for no elements x(6= 0) and y there
exists more than one scalar a such that x ⊥B (ax+ y).

Theorem 3.5. [11] A Banach space X is smooth if and only if Birkhoff-
James orthogonality is right unique.

Proof. Let X be smooth. Then Birkhoff-James orthogonality is right addi-
tive. Let (0 6=)x, y ∈ X be such that x ⊥B (ax + y) and x ⊥B (bx + y),

where a, b ∈ R. Then x ⊥B (ax+ y − bx− y), i.e., x ⊥B (ax− bx). Hence,
a− b = 0⇒ a = b. So, Birkhoff-James orthogonality is right unique.
Conversely, let Birkhoff-James orthogonality be right unique. Let x be a
non-zero element in X. Let g, h be two norming linear functionals of x.
We show that g = h. Let y ∈ ker(g). Then for any scalar λ, ‖x + λy‖ =

‖g‖‖x+ λy‖ ≥ |g(x+ λy)| = ‖x‖. Thus, x ⊥B y. If possible, let y /∈ ker(h).

Then h(y) = r 6= 0. Let z = x − ‖x‖r y. Then h(z) = h(x) − ‖x‖r h(y) =

‖x‖ − ‖x‖r r = 0. Now, similarly it can be shown that x ⊥B z ⇒ x ⊥B
(x − ‖x‖r y) ⇒ x ⊥B (− r

‖x‖x + y), contradicting that Birkhoff-James or-
thogonality is right unique. Therefore, y ∈ ker(h). So, ker(g) ⊆ ker(h).

Again, ker(h) 6= X, since x /∈ ker(h). Hence, ker(g) = ker(h). Moreover,
g(x) = h(x) = ‖x‖. So, g = h. Thus, x has unique norming linear func-
tional. Hence, X is smooth. �

Remark 3.6. We note that Theorem 3.4 is also locally true. More precisely,
an element x ∈ X is smooth if and only if Birkhoff-James orthogonality is
right additive at x, i.e., x is smooth if and only if for y, z ∈ X, x ⊥B y, x ⊥B
z implies that x ⊥B (y + z). The same holds for Theorem 3.5.

4. Smoothness in operator space through Birkhoff-James
orthogonality

Suppose X,Y stand for Banach spaces and H stands for Hilbert space. Let
L(X,Y) (L(H)) denote the space of all bounded linear operators defined
from X to Y ( on H). The aim of this section is to discuss smoothness
of an element T ∈ L(H) or T ∈ L(X,Y) using the notion of Birkhoff-
James orthogonality. To verify smoothness of T , we check whether T ⊥B
A1, T ⊥B A2 implies T ⊥B (A1+A2) for arbitrary bounded linear operators
A1 and A2. The most important point of study now is : Given a bounded
linear operator T , what are the conditions so that T ⊥B A, where A is
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a bounded linear operator? We observe that if there exists an element
x ∈ X such that ‖Tx‖ = ‖T‖ and Tx ⊥B Ax then for any scalar λ,
‖T + λA‖ ≥ ‖Tx+ λAx‖ ≥ ‖Tx‖ = ‖T‖ so that T ⊥B A. The converse of
this is not always true, as is clear from the following example.

Example 4.1. [20, Ex.2.3] Consider the bounded linear operators T and

A on the Banach space (R2, ‖ · ‖∞), given as, T =

(
1 −4
2 3

)
and A =(

1 0

0 −2

)
. Then ‖T‖∞ = 5 and T attains its norm at the points ±(1, 1)

and ±(1,−1). It is easy to check that ‖T‖∞ ≤ ‖T + λA‖∞ for all λ ∈ R
but there exists no x = (x1, x2) ∈ R2 with ‖x‖∞ = 1 such that ‖T‖∞ =

‖Tx‖∞ ≤ ‖(T + λA)x‖∞ for all λ ∈ R.

However, if the operators are defined on a finite-dimensional Hilbert space
H, then from [2, 19] it follows that T ⊥B A if and only if there exists
x ∈ H, ‖x‖ = 1 such that ‖Tx‖ = ‖T‖ and Tx ⊥B Ax. The relevant result
can be stated in the form of following theorem:

Theorem 4.2. Let H be a finite-dimensional Hilbert space and T,A ∈ L(H).
Then T ⊥B A if and only if there exists x ∈ H, ‖x‖ = 1 such that ‖Tx‖ =
‖T‖ and Tx ⊥B Ax.

It is now appropriate time to introduce the notion of norm attainment set
studied in [26].

Definition 4.3 (Norm attainment set). Let T ∈ L(X,Y). Then the norm
attainment set of T, denoted as MT , is defined as the collection of all unit
vectors x such that T attains its norm at x, i.e.,

MT = {x ∈ X : ‖x‖ = 1, ‖Tx‖ = ‖T‖}.

It follows from the above discussion that the norm attainment set plays a
crucial role in connecting the orthogonality of elements in the ground space
Y with that in the operator space L(X,Y). In case of a Hilbert space, using
parallelogram law it is easy to observe that the norm attainment set of an
operator is either empty or the unit sphere of some subspace. However, the
structure of the norm attainment set is complicated in case of operators
acting on Banach spaces (see [17]) and it needs to be explored further. At
this point we do not want to digress too much in this direction. We are now
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in a position to discuss smoothness of a bounded linear operator defined on
a Hilbert space.

Theorem 4.4. Let H be a finite-dimensional Hilbert space and T ∈ L(H).
Then T is smooth if span MT is one-dimensional.

Proof. Suppose MT = span〈{x}〉 ∩ SH. We claim that Birkhoff-James or-
thogonality is right additive at T. Let T ⊥B A1 and T ⊥B A2. Then by
Theorem 4.2, we get Tx ⊥B A1x and Tx ⊥B A2x. Note that a Hilbert space
is smooth. Therefore, the smoothness of Tx implies that Tx ⊥B (A1+A2)x.

This along with the fact that x ∈MT implies that T ⊥B (A1 +A2). Thus,
Birkhoff-James orthogonality is right additive at T and so T is smooth. �

Observe that in the last result we have used the fact that Tx, being an
element of a Hilbert space, is smooth. Continuing in the same spirit, if
we want to study smoothness of operators defined between Banach spaces,
then we need a result analogous to Theorem 4.2. This follows from the
remarkable result obtained in [27, Th.2.1].

Theorem 4.5. [27, Th.2.1] Let T,A ∈ L(X,Y), where X is a finite-dimensional
Banach space. Assume that MT = D∪ (−D), where D is a non-empty con-
nected subset of the unit sphere SX of X. Then T ⊥B A ⇔ Tx ⊥B Ax for
some x ∈MT .

The following theorem on smoothness of an operator defined on a finite-
dimensional Banach space now follows easily.

Theorem 4.6. Let T ∈ L(X,Y), where X is a finite-dimensional Banach
space. Then T is smooth if span MT is one-dimensional, i.e., MT =

span〈{x}〉 ∩ SX and Tx is smooth.

The converse of the above result is also true.

Theorem 4.7. Let T ∈ L(X,Y), where X is finite-dimensional. If T is
smooth then span MT is one-dimensional, i.e., MT = span〈{x}〉 ∩ SX and
Tx is smooth.

Proof. Since the space X is finite-dimensional, there exists x ∈ SX such
that ‖Tx‖ = ‖T‖. We first show that span MT is one-dimensional. If
possible, suppose y ∈ MT and {x, y} is linearly independent. Then there
exists f ∈ X∗ such that f(x) = 1, f(y) = 0. Define A : X → Y such
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that A(u) = f(u)Tx. Note that Ay = 0 and (T − A)x = 0, this along
with the fact that x, y ∈ MT imply that T ⊥B A, T ⊥B (T − A). But
T 6⊥B T = (A + T − A), a contradiction to that fact that Birkhoff-James
orthogonality is right additive at T. We next show that Tx is a smooth
point in Y. If possible, let Tx be not smooth. Then there exist y, z ∈ Y
such that Tx⊥By, Tx⊥Bz but Tx 6⊥B y + z. There exists a hyperspace H
such that x⊥BH. Define two operators A1, A2 : X −→ Y as follows :

A1(ax+ h) = ay, A2(ax+ h) = az, where h ∈ H, a ∈ R.

Then clearly T⊥BA1, T⊥BA2. But T 6⊥B A1 + A2, otherwise since MT =

span〈{x}〉∩SX, we have by Theorem 4.5, Tx⊥B(y+z), which is not possible.
This contradiction shows that Tx is a smooth point. �

Thus, on a finite-dimensional Banach space X, a bounded linear operator T
is smooth if and only if span MT is one-dimensional, i.e.,MT = span〈{x}〉∩
SX and Tx is a smooth point. If the underlying space is a Hilbert space,
then T is smooth if and only if span MT is one-dimensional. However, the
situation is not so in case of infinite-dimensional space. Let us look at the
following example:

Example 4.8. Consider T : `2 → `2 defined by Te1 = −e1, and Ten =

(1−1/n)en for n ≥ 2, where {en : n ∈ N} is the usual orthonormal basis for
the Hilbert space `2. Then T attains its norm only at±e1 so that spanMT is
one-dimensional. Consider A1, A2 : `2 → `2 defined by A1(e1) = 0, A1(en) =

(1− 1/n)en, for n ≥ 2 and A2(e1) = −e1, A2(en) = 0, for n ≥ 2. Then it is
easy to check that T ⊥B A1, T ⊥B A2 but T 6⊥B (A1 + A2) = T and so T
is not smooth.

The main tool that is used to characterize smoothness of bounded linear
operators on finite-dimensional Hilbert space is Theorem 4.2. A further
look at the Example 4.8 shows that this is not true for infinite-dimensional
spaces, where T ⊥B I and span MT is one-dimensional but Te1 6⊥B Ie1.

However, in case of infinite-dimensional Hilbert spaces we do have the fol-
lowing characterization from [21].

Theorem 4.9. [21, Th. 3.1] Let H be an arbitrary Hilbert space and T ∈
L(H). Then for any A ∈ L(H), T⊥BA ⇔ Tx0⊥Ax0 for some x0 ∈ MT if
and only if MT = SH0 , where H0 is a finite-dimensional subspace of H and
‖T‖H0

⊥ < ‖T‖.
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We are now in a position to characterize the smoothness of a bounded linear
operator defined on an arbitrary Hilbert space.

Theorem 4.10. [21, Th. 4.6] Let H be a Hilbert space. Then T ∈ L(H)

is a smooth point if and only if span MT is one-dimensional, i.e., MT =

span〈{x}〉 ∩ SH and sup{‖Ty‖ : x ⊥B y, y ∈ SH} < ‖T‖.

Proof. The sufficient part of the proof follows in the same spirit as that of
Theorem 4.4. We prove the necessary part in the following three steps.
(i) T attains its norm at some point of SH.
(ii) span MT is one-dimensional, i.e., MT = span〈{x}〉 ∩ SH .
(iii) sup{‖Ty‖ : x⊥y, y ∈ SH} < ‖T‖.

Step (i) : If T does not attain its norm then there exists a sequence
{en} of orthonormal vectors such that ‖Ten‖ → ‖T‖. Then there ex-
ists an orthonormal basis B containing {en : n = 1, 2, . . .}. Let H0 =

span 〈{e2n : n ∈ N}〉. Then H = H0 ⊕ H⊥0 . Every element z in H can
be written as z = x + y where x ∈ H0, y ∈ H⊥0 . Define a linear op-
erator A1 on H as : A1(z) = Tx. We show that A1 is bounded. Now
‖A1z‖ = ‖Tx‖ ≤ ‖T‖‖x‖ ≤ ‖T‖ for every z with ‖z‖ = 1. Thus A1 is
bounded. Consider another bounded operator A2 = T −A1. Next we claim
that T⊥BA1, T⊥BA2. Now, ‖Te2n+1‖ → ‖T‖ and 〈Te2n+1, A1e2n+1〉 → 0

and so by [19, Lemma 2], we get T ⊥B A1. Similarly, we can show that
T ⊥B A2. But T 6⊥B (A1+A2). This contradicts the fact that T is smooth.
Hence, (i) holds.

Step (ii) : Suppose x, y ∈ MT where {x, y} is linearly independent.
By [27, Th. 2.2], the norm attaining set MT is the unit sphere of some
subspace of H. So without loss of generality, we assume that x⊥y. Let
H0 = 〈{x, y}〉. Then H = H0 ⊕H⊥0 . Clearly, each z ∈ H can be written as
z = αx+βy+h where h ∈ H⊥0 and α, β are scalars. Define A1, A2 : H −→ H
as : A1(αx + βy + h) = αTx, A2(αx + βy + h) = βTy + Th. Then as
before it is easy to check that both A1, A2 are bounded linear operators
and T⊥BA1, T⊥BA2. But T = A1 + A2 and so T 6⊥B (A1 + A2), which
contradicts the fact that T is smooth. Thus (ii) holds.

Step (iii) : Assume that MT = span〈{x}〉 ∩ SX and sup{‖Ty‖ : x ⊥
y, y ∈ SH} = ‖T‖. Let H0 = span 〈{x}〉. Then H = H0⊕H⊥0 . Each element
z ∈ H can be written as z = x + y, where x ∈ H0 and y ∈ H⊥0 . Define
A1, A2 : H −→ H as : A1z = Tx,A2z = Ty. It is easy to check that both



74 KALLOL PAUL AND ARPITA MAL

A1, A2 are bounded linear operators and T⊥BA1, T⊥BA2. But T = A1+A2

and so T 6⊥B (A1 +A2), which contradicts the fact that T is smooth. Thus
(iii) holds.

�

Remark 4.11. Theorem 4.10 completes the study of smoothness of bounded
linear operators defined on arbitrary Hilbert spaces through Birkhoff-James
orthogonality. However, the study is much more involved when the op-
erators are defined between arbitrary infinite-dimensional Banach spaces.
Interested readers may follow [6, 7, 8, 21, 24, 29, 30] for further study on
smoothness of operators.

5. Birkhoff-James orthogonality and strict convexity in the
space of operators

We begin this section with the observation that in a strictly convex space
Birkhoff-James orthogonality takes a nice form as follows:

Theorem 5.1. [28, Th.2.2] Suppose X is a Banach space. Then X is strictly
convex if and only for x, y ∈ SX, x ⊥B y implies ‖x + λy‖ > 1, for each
non-zero scalar λ.

Proof. Necessary Part : Assume that there exist x, y ∈ SX such that
x ⊥B y but ‖x+ αy‖ = 1 for some α 6= 0. Then ‖x‖ = ‖x+ αy‖ = 1. Now,
by convexity of the norm function, we get ‖(1 − t)x + t(x + αy)‖ = 1 for
each t ∈ [0, 1], which contradicts the fact that X is strictly convex.
Sufficient part : If possible, suppose the unit sphere SX contains a straight
line segment, i.e., there exist u, v ∈ SX with ‖tu + (1 − t)v‖ = 1 for all
t ∈ [0, 1]. Considering x = u, y = 1

‖v−u‖(v − u), it is easy to see that x, y
violates the hypothesis. Thus X is strictly convex. �

Our main aim in this section is to show that this result is carried to some
extent to the space of operators.

Theorem 5.2. [5, Th.2.1] Let X be a finite-dimensional strictly convex
Banach space. Let T,A ∈ L(X,X) and T⊥BA. Then either ‖T+λA‖ > ‖T‖
for each non-zero scalar λ or Ax = 0 for some x ∈MT .

Proof. If Ax = 0 for some x ∈MT then we are done. Assuming Ax 6= 0 for
all x ∈ MT we show that ‖T + λA‖ > ‖T‖ for each non-zero scalar λ. We
consider the following two cases :



BIRKHOFF-JAMES ORTHOGONALITY : GEOMETRY OF BANACH SPACE 75

Case 1. There exists x ∈MT such that Tx⊥BAx.
Since X is strictly convex, by Theorem 5.1, we get ‖Tx+ λAx‖ > ‖Tx‖ for
each non-zero scalar λ. Then for each non-zero scalar λ, we have ‖T+λA‖ ≥
‖Tx+ λAx‖ > ‖Tx‖ = ‖T‖.
Case 2. There exists no x ∈MT such that Tx⊥BAx.
For any x ∈ MT , either ‖Tx + λAx‖ ≥ ‖T‖ ∀ λ ≥ 0 or ‖Tx + λAx‖ ≥
‖T‖ ∀ λ ≤ 0. We show that there exist x1, x2 ∈ MT such that ‖Tx1 +

λAx1‖ ≥ ‖T‖ ∀ λ ≥ 0 and ‖Tx2 + λAx2‖ ≥ ‖T‖ ∀ λ ≤ 0. If not, without
loss of generality, we may assume that

∀x ∈MT , ‖Tx+ λAx‖ ≥ ‖T‖ ∀ λ ≤ 0. (5.1)

For each n ∈ N, the operator (T + 1
nA) attains its norm. So there exists

xn ∈ SX such that ‖T+ 1
nA‖ = ‖(T+ 1

nA)xn‖. Since X is finite-dimensional,
we can find a subsequence {xnk

} of {xn} such that xnk
→ x0 (say) in

BX. Without loss of generality, we assume that xn → x0. Then Txn →
Tx0, Axn → Ax0. As T ⊥B A we have ‖T + 1

nA‖ ≥ ‖T‖ ∀n ∈ N and
so ‖Txn + 1

nAxn‖ ≥ ‖T‖ ≥ ‖Txn‖ ∀n ∈ N. Letting n → ∞ we get
‖Tx0‖ ≥ ‖T‖ ≥ ‖Tx0‖. So x0 ∈ MT . For any λ > 1

n , we claim that
‖Txn + λAxn‖ ≥ ‖Txn‖. Otherwise

Txn +
1

n
Axn = (1− 1

nλ
)Txn +

1

nλ
(Txn + λAxn)

⇒ ‖Txn +
1

n
Axn‖ ≤ (1− 1

nλ
)‖Txn‖+

1

nλ
‖Txn + λAxn‖

⇒ ‖Txn +
1

n
Axn‖ < ‖Txn‖ , a contradiction.

Choose λ > 0. Then there exists n0 ∈ N such that λ > 1
n0

and so for all
n ≥ n0 we get, ‖Txn + λAxn‖ ≥ ‖Txn‖. Letting n → ∞ we get ‖Tx0 +
λAx0‖ ≥ ‖Tx0‖ - which holds for any λ ≥ 0. This along with (5.1) shows
that Tx0⊥BAx0, which violates hypothesis of Case 2. Hence, there exist
x1, x2 ∈MT such that ‖Tx1 + λAx1‖ ≥ ‖T‖ ∀ λ ≥ 0 and ‖Tx2 + λAx2‖ ≥
‖T‖ ∀ λ ≤ 0. As X is strictly convex, we have ‖Tx1+λAx1‖ > ‖T‖ ∀ λ > 0

and ‖Tx2+λAx2‖ > ‖T‖ ∀ λ < 0. For λ > 0, ‖T +λA‖ ≥ ‖(T +λA)x1‖ >
‖T‖ and for λ < 0, ‖T + λA‖ ≥ ‖(T + λA)x2‖ > ‖T‖. This completes the
proof. �

If in addition to the previous theorem, we assume that A is injective then
we get the following theorem:
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Theorem 5.3. [5, Th.2.2] Let X be a finite-dimensional strictly convex
Banach space and A ∈ L(X,X) be injective. Then for any T ∈ L(X,X),
T ⊥B A⇒ ‖T + λA‖ > ‖T‖ for each non-zero scalar λ.

Remark 5.4. The following example shows that the above theorem can
not be improved on to bounded linear operators:

Consider T : `2 → `2 defined by Te1 = −e1, and Ten = (1− 1/n)en for
n ≥ 2, where {en : n ∈ N} is the usual orthonormal basis for the Hilbert
space `2. Then T attains norm only at±e1. Let A = I, the identity operator
on `2. Then both T,A are bounded linear operators. It is easy to check that
T ⊥B A but there exists a non-zero scalar λ such that ‖T + λA‖ = ‖T‖.

In our next theorem, we give a sufficient condition for strict convexity of
any finite-dimensional Banach space X.

Theorem 5.5. [5, Th.2.4] Let X be a finite-dimensional Banach space.
Suppose that for any T,A ∈ L(X,X) with T⊥BA either ‖T + λA‖ > ‖T‖
for each non-zero scalar λ or Ax = 0 for some x ∈MT . Then X is strictly
convex.

Proof. If possible, suppose that X is not strictly convex. Then there exist
x, y ∈ SX such that x 6= y and ‖tx + (1 − t)y‖ = 1 for all t ∈ (0, 1). Then
x ⊥B y−x. By Theorem 1.5, there exists a hyperspace H such that x⊥BH.
Each element z ∈ X can be written as z = αx + h where α is a scalar
and h ∈ H. Define two operators T,A : X −→ X as follows : Tz = αx and
Az = α(x− y). It is easy to check that both T and A are linear operators.
We have, x ∈ MT , Tx ⊥B Ax and so T ⊥B A. From the construction of
T,A it follows that ‖T −A‖ = 1 = ‖T‖.
We next show that Aw 6= 0 for any w ∈ MT . Let w = βx + h ∈ MT . As
‖Tw‖ = 1, we have |β| = 1. So Aw = β(x− y) 6= 0 for any w ∈ MT . This
contradiction proves that X is strictly convex. �

Combining the last two results, we get the following characterization for
strictly convex Banach spaces.

Theorem 5.6. Let X be a finite-dimensional Banach space. Then X is
strictly convex if and only if for any T,A ∈ L(X,X), T⊥BA ⇒ either
‖T + λA‖ > ‖T‖ for each non-zero scalar λ or Ax = 0 for some x ∈MT .

Remark 5.7. We would like to end this article with the remark that al-
though all the theorems in this article are discussed for real Banach (Hilbert)
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spaces, most of the theorems hold for complex spaces with suitable modifi-
cation.

References

[1] Balestro, V., Martini, H., and Teixeira, R., A new construction of Radon curves and
related topics, Aequationes Math., 90 (2016), No. 5, 1013-1024.
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LIDSTONE INTERPOLATION I : ONE VARIABLE∗

MICHEL WALDSCHMIDT

Abstract. According to Lidstone interpolation theory, an entire func-

tion of exponential type < π is determined by it derivatives of even

order at 0 and 1. This theory can be generalized to several variables.

Here we survey the theory for a single variable. Complete proofs are

given. This first paper of a trilogy is devoted to Univariate Lidstone

interpolation; Bivariate and Multivariate Lidstone interpolation will be

the topic of two forthcoming papers.

1. Introduction

In 1930, in a seminal paper [3], G. J. Lidstone introduced a basis Λk(z)

(k ≥ 0) of the space C[z] of polynomials in a single variable, which has the

property that any polynomial f ∈ C[z] has a finite expansion

f(z) =
∑
k≥0

f (2k)(0)Λk(1− z) +
∑
k≥0

f (2k)(1)Λk(z),

where

f (2k) =

(
d

dz

)2k

f.

Two years later, H. Poritsky [4] J. M. Whittaker [8] extended these expan-

sions to entire functions of exponential type < π. In 1936, I. J. Schoenberg

[5] proved that the only entire functions of finite exponential type which

vanish at the two points 0 and 1 together with all their derivatives of even

order are the linear combinations with constant coefficients of the functions

sin(kπz), with k ∈ N. This result follows from an expansion formula for

such functions which was obtained by R. C. Buck in 1955 [2].

∗ This article is based on the text of the plenary talk given by the author at the 87th

Annual Conference of the IMS - An International meet held at MGM University,

Aurangabad, India during December 4 - 7, 2021 using online mode.

c© Indian Mathematical Society, 2022 .
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We recall the basic facts concerning Lidstone expansion in a single vari-

able. In this section z and ζ are in C. It will be convenient to use notations

which can be generalized to several variables. The classical Lidstone poly-

nomials [3, §6 p. 18] Λk(z) (k ≥ 0) are denoted here Λ2k,1(z), while the

polynomials Λk(1− z) are written here Λ2k,0(z). The successive derivatives

of a function f of a single variable are denoted f ′, f ′′, . . . , f (k).

The Lidstone polynomials are introduced in Theorem 1. They are the

solution of a system of differential equations (Lemma 2). The unicity of the

expansion for an entire function of exponential type < π (Theorem 2) is

easy to prove, the existence (Theorem 3) needs more work - both results are

due to H. Poritsky and J. M. Whittaker. Next we prove integral formulae

for the Lidstone polynomials (Propositions 1 and 2), and we give proofs of

the results of Buck (Proposition 3) and Schoenberg (Corollary 2).

This paper is self contained, full proofs are given. It is an introduction

to two forthcoming papers, [6] where we extend the theory to two variables

and [7] where we extend the theory to an arbitrary number of variables.

2. Definition of the univariate Lidstone polynomials

Let us recall the definitions of the order of an entire function f :

%(f) = lim sup
r→∞

log log |f |r
log r

where |f |r = sup
|z|=r
|f(z)|

and of the exponential type of f :

τ(f) = lim sup
r→∞

log |f |r
r
·

If the exponential type of f is finite, then f has order ≤ 1. If f has

order < 1, then the exponential type is 0. Using Cauchy’s estimate for

the coefficients of the Taylor series together with Stirling’s formula for n!,

one deduces [8, Lemma 1] that if f has exponential type τ(f), then for all

z0 ∈ C,

lim sup
n→∞

|f (n)(z0)|1/n = τ(f).

For ζ ∈ C \ {0}, the function eζz has order 1 and exponential type |ζ|.

We denote by 2N the set of even nonnegative integers. The starting

point of the theory of Lidstone interpolation is the following.
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Lemma 1. Let f be a polynomial satisfying

f (t)(0) = f (t)(1) = 0 for all t ∈ 2N. (1)

Then f = 0.

We give three proofs of this lemma, the arguments are slightly different

and will be used again.

First proof. By induction on the total degree of the polynomial f .

If f has degree ≤ 1, say f(z) = a0z+a1, the conditions f(0) = f(1) = 0

imply a0 = a1 = 0, hence f = 0.

If f has degree ≤ d with d ≥ 2 and satisfies the hypotheses, then f ′′

also satisfies the hypotheses and has degree < d, hence by induction f ′′ = 0

and therefore f has degree ≤ 1.

Lemma 1 follows. �

Second proof. Let f be a polynomial satisfying (1). The assumption f (t)(0) =

0 for all t ∈ 2N means that f is an odd function: f(−z) = −f(z). The as-

sumption f (t)(1) = 0 for all t ∈ 2N means that f(1− z) is an odd function:

f(1− z) = −f(1 + z). We deduce

f(z + 2) = f(1 + z + 1) = −f(1− z − 1) = −f(−z) = f(z),

hence the polynomial f is periodic, and therefore is a constant.

Since f(0) = 0, we conclude f = 0. �

Third proof. Assume (1). Write

f(z) = a1z + a3z
3 + a5z

5 + a7z
7 + + · · ·+ a2m+1z

2m+1 + · · ·

(finite sum). We have f(1) = f ′′(1) = f (iv)(1) = · · · = 0:

a1 +a3 +a5 +a7 + · · · +a2n+1 + · · · = 0

6a3 +20a5 +42a7 + · · · +2m(2m+ 1)a2m+1 + · · · = 0

120a5 +840a7 + · · · + (2m+1)!
(2m−3)!a2m+1 + · · · = 0

. . .
...

The matrix of this system is triangular with maximal rank. We conclude

a1 = a3 = a5 = · · · = 0. �

The fact that this matrix has maximal rank means that a polynomial

f is uniquely determined by the numbers

f (t)(0) and f (t)(1) for t ∈ 2N.



82 MICHEL WALDSCHMIDT

Let T ≥ 0 be even. The space C[z]≤T+1 of polynomials of degree

≤ T + 1 has dimension T + 2. All elements f ∈ C[z]≤T+1 satisfy f (k) = 0

for k ≥ T + 2. Lemma 1 shows that the linear map

C[z]≤T+1 −→ CT+2

f 7−→
(
f (t)(0), f (t)(1)

)
0≤t≤T, t∈2N

is injective. Hence it is an isomorphism.

Given numbers at and bt, (t ∈ 2N), where all but finitely many of them

are 0, there is a unique polynomial f such that

f (t)(0) = at and f (t)(1) = bt for all t ∈ 2N.

In particular, for each t ∈ 2N, there is a unique polynomial Λt,0 which

satisfies

Λ
(τ)
t,0 (0) = δt,τ and Λ

(τ)
t,0 (1) = 0 for τ ∈ 2N

(Kronecker symbol), and there is a unique polynomial Λt,1 which satisfies

Λ
(τ)
t,1 (0) = 0 and Λ

(τ)
t,1 (1) = δt,τ for τ ∈ 2N.

Therefore:

Theorem 1 (G. J. Lidstone (1930)). There exist two sequences of poly-

nomials,
(
Λt,0(z)

)
t∈2N,

(
Λt,1(z)

)
t∈2N, such that any polynomial f can be

written as a finite sum

f(z) =
∑
t∈2N

f (t)(0)Λt,0(z) +
∑
t∈2N

f (t)(1)Λt,1(z). (2)

The involution z 7→ 1− z:

0 7→ 1, 1 7→ 0, 1− z 7→ z

shows that Λt,0(z) = Λt,1(1− z).
At this point, we can make an analogy with Taylor series, where the

polynomials zm/m! satisfy

dk

dzk

(
zm

m!

)
z=0

= δmk for m ≥ 0 and k ≥ 0.

Given a sequence (am)m≥0 of complex numbers, the unique analytic solution

(if it exists) f of the interpolation problem

f (m)(0) = am for all m ≥ 0
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is given by the Taylor expansion

f(z) =
∑
m≥0

am
zm

m!
·

Lidstone expansion replaces the single point 0 and the sequence of all deriva-

tives with two points 0 and 1 and only the derivatives of even order at these

two points.

The first Lidstone polynomial is Λ0,1(z) = z:

Λ0,1(0) = 0, Λ0,1(1) = 1, Λ
(t)
0,1(0) = Λ

(t)
0,1(1) = 0 for t ∈ 2N, t ≥ 2.

The next lemma provides an inductive way for finding all of them.

3. Differential equation

Lemma 2. The sequence of Lidstone polynomials
(
Λt,1

)
t∈2N is determined

by Λ0,1(z) = z and

Λ′′t,1 = Λt−2,1 for t ≥ 2 even,

with the initial conditions Λt,1(0) = Λt,1(1) = 0 for t ∈ 2N, t ≥ 2. More

precisely, let
(
Lt
)
t∈2N be a sequence of polynomials satisfying L0(z) = z

and

L′′t = Lt−2 for t ∈ 2N, t ≥ 2,

with the initial conditions Lt(0) = Lt(1) = 0 for t ∈ 2N, t ≥ 2; then

Lt = Λt,1 for all t ∈ 2N.

Notice that the assumption L0(z) = z cannot be omitted: given any

polynomial A, there is a unique sequence
(
Lt
)
t∈2N satisfying all other as-

sumptions but with L0 = A.

Proof. That the sequence
(
Λt,1

)
t∈2N satisfies these conditions is plain. We

now prove the unicity. Let
(
Lt
)
t∈2N, be a sequence of polynomials satisfying

the conditions of Lemma 2. By assumption L0(z) = z. By induction,

assume that for some t ≥ 2 we know that Lt−2 = Λt−2,1. Then the difference

g = Lt − Λt,1 satisfies g′′ = 0, hence g has degree ≤ 1. The assumptions

Lt(0) = Lt(1) = 0 for t ∈ 2N, t ≥ 2 imply g = 0. �

For t ∈ 2N, the polynomial Λt,1 is odd, it has degree t+ 1 and leading

term 1
(t+1)!z

t+1. For instance

Λ2,1(z) =
1

6
(z3 − z) =

1

6
z(z − 1)(z + 1),



84 MICHEL WALDSCHMIDT

Λ2,0(z) = Λ2,1(1− z) = −z
3

6
+
z2

2
− z

3
= −1

6
z(z − 1)(z − 2),

Λ4,1(z) =
1

120
z5 − 1

36
z3 +

7

360
z =

1

360
z(z2 − 1)(3z2 − 7),

and

Λ4,0(z) = Λ4,1(1− z) = − 1

120
z5 +

1

24
z4 − 1

18
z3 +

1

45
z

= − 1

360
z(z − 1)(z − 2)(3z2 − 6z − 4).

(3)

4. Recurrence formula

For t ∈ 2N, the polynomial ft(z) = zt+1 satisfies

f
(τ)
t (0) = 0 for τ ∈ 2N, f

(τ)
t (1) =


(t+1)!

(t−τ+1)! for 0 ≤ τ ≤ t, τ ∈ 2N

0 for τ ≥ t+ 2, τ ∈ 2N.

From Theorem 1 one deduces, for t ∈ 2N,

zt+1 =
∑

0≤τ≤t
τ∈2N

(t+ 1)!

(t− τ + 1)!
Λτ,1(z),

which yields the recurrence formula

Λt,1(z) =
1

(t+ 1)!
zt+1 −

∑
0≤τ≤t−2
τ∈2N

1

(t− τ + 1)!
Λτ,1(z). (4)

Another consequence of Theorem 1 is

zt

t!
= Λt,0(z) +

∑
0≤τ≤t
τ∈2N

1

(t− τ)!
Λτ,1(z) (5)

for t ∈ 2N.

5. Unicity for entire functions

According to Theorem 1, a polynomial is determined by the values of

its derivatives of even order at the two points 0 and 1. H. Poritsky [4] and

J. M. Whittaker [8] proved that he same is true more generally for an entire

function of exponential type < π:

Theorem 2 (H. Poritsky, J. M. Whittaker 1932). Let f be an entire func-

tion of exponential type < π satisfying f (t)(0) = f (t)(1) = 0 for all suffi-

ciently large t ∈ 2N. Then f is a polynomial.
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Proof. We combine some arguments that we used for polynomials in the

three proofs of Lemma 1. Let f̃ = f − P , where P is the polynomial

satisfying

P (t)(0) = f (t)(0) and P (t)(1) = f (t)(1) for t ∈ 2N.

We have f̃ (t)(0) = f̃ (t)(1) = 0 for all t ∈ 2N.

The functions f̃(z) and f̃(1−z) are odd, hence f̃(z) is periodic of period

2. Therefore there exists a function g, analytic in C×, such that f̃(z) =

g(eπiz). Since f̃(z) has exponential type < π, using Cauchy’s inequalities

for the coefficients of the Laurent expansion of g at the origin, we deduce

f̃ = 0 and f = P . �

Theorem 2 is best possible in the following two directions:

• The entire function sin(πz) has exponential type π and satisfies f (t)(0) =

f (t)(1) = 0 for all t ∈ 2N.

• If we assume only f (t)(0) = f (t)(1) = 0 for all even t outside a finite

set, then the conclusion is still valid – this follows from Theorems 1 and 2.

However, if we remove an infinite subset of conditions in the assumptions

of Theorem 2, then the conclusion is no more valid:

Lemma 3. Let E be an infinite subset of the set of (t, i) ∈ 2N×{0, 1}. Then

there exists a non countable set of transcendental entire functions f of order

0, with rational Taylor coefficients at the origin, such that f (t)(i) = 0 for

all (t, i) ∈ (2N× {0, 1}) \ E.

Proof. Let (Pm)m≥0 be an infinite sequence of polynomials belonging to

the set {Λt,i | (t, i) ∈ E}. Let dm be the degree of Pm. We assume the

sequence (dm)m≥0 to be increasing. Let (cm)m≥0 be a sequence of rational

numbers such that

|Pm|r ≤ |cm|rdm

for all r ≥ 1 and m ≥ 0. For m ≥ 0, set

um =
1

cm(dm!)2
·

The series ∑
m≥0

umPm(z)

is uniformly convergent on any compact subset of C, its sum f(z) is an

entire function of order 0. From the uniform convergence of the series, we
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deduce, for all t ∈ 2N and i ∈ {0, 1},

f (t)(i) =

um if Pm = Λt,i,

0 if Pm 6= Λt,i.

The conclusion of Lemma 3 follows. �

6. Expansion of entire functions and generating series

Lidstone finite expansion for polynomials (2) has been extended in [4, 8]

to an infinite expansion for entire functions of exponential type < π as

follows:

Theorem 3 (H. Poritsky, J. M. Whittaker 1932). The expansion (2) holds

for any entire function f of exponential type < π, where, for each z ∈ C,

the series ∑
t∈2N

f (t)(0)Λt,0(z) and
∑
t∈2N

f (t)(1)Λt,1(z)

are absolutely convergent.

Notice that Theorem 2 is a consequence of Theorem 3.

We will deduce from Theorem 3 explicit formulae for the following two

generating series:

M1(ζ, z) :=
∑
t∈2N

Λt,1(z)ζ
t and M0(ζ, z) :=

∑
t∈2N

Λt,0(z)ζ
t.

Corollary 1. For |ζ| < π, we have

M1(ζ, z) =
sinh(ζz)

sinh(ζ)
(6)

and

M0(ζ, z) = cosh(ζz)− sinh(ζz) coth(ζ). (7)

Since Λt,0(z) = Λt,1(1 − z), we have M0(ζ, z) = M1(ζ, 1 − z) and the

trigonometric relation

sinh(z1 − z2) = sinh(z1) cosh(z2)− cosh(z1) sinh(z2)

shows that the two formulae (6) and (7) are equivalent.



LIDSTONE INTERPOLATION I : ONE VARIABLE 87

Proof of (6) as a consequence of Theorem 3. Let ζ ∈ C satisfy |ζ| < π.

We use Theorem 3 and formula (2) for the function fζ(z) = eζz. Since

f
(t)
ζ (0) = ζt and f

(t)
ζ (1) = eζζt, we deduce

eζz =
∑
t∈2N

Λt,0(z)ζ
t + eζ

∑
t∈2N

Λt,1(z)ζ
t. (8)

Replacing ζ with −ζ yields

e−ζz =
∑
t∈2N

Λt,0(z)ζ
t + e−ζ

∑
t∈2N

Λt,1(z)ζ
t.

Hence

eζz − e−ζz = (eζ − e−ζ)
∑
t∈2N

Λt,1(z)ζ
t.

This proves (6). �

From (6) one readily deduces the following relation [8, Equation(3.5)]

for t ∈ 2N,

Λt,1(z) =
2t+1

(t+ 1)!
Bt+1

(
1 + z

2

)
,

between the Lidstone polynomials and the Bernoulli polynomials; the latter

are defined by

t
etz − 1

et − 1
=
∞∑
n=1

Bn(z)
tn

n!
·

From Corollary 1 we deduce M1(ζ, z+1)−M1(ζ, z−1) = 2 cosh(ζz), which

means

Λt,1(z + 1)− Λt,1(z − 1) = 2
zt

t!
·

This relation also follows from the functional equation

Bn(z + 1)−Bn(z) = nzn−1

of the Bernoulli polynomials.

Our proof of Theorem 3 below will rest on (6), hence we need to give a

direct proof of it.

Direct proof of (6). We start with the formula

eζz =
sinh(ζ(1− z))

sinh(ζ)
+ eζ

sinh(ζz)

sinh(ζ)
, (9)

which holds for ζ ∈ C, ζ 6∈ πiZ and z ∈ C. For ζ ∈ C, ζ 6∈ πiZ, the entire

function

f(z) =
sinh(ζz)

sinh(ζ)
=

eζz − e−ζz

eζ − e−ζ
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satisfies

f ′′ = ζ2f, f(0) = 0, f(1) = 1,

hence f (t)(0) = 0 and f (t)(1) = ζt for all t ∈ 2N.

For z ∈ C and |ζ| < π, let

F (ζ, z) =
sinh(ζz)

sinh(ζ)

with F (0, z) = z. Fix z ∈ C. The map ζ 7→ F (ζ, z) is analytic in the disc

|ζ| < π and is even: F (−ζ, z) = F (ζ, z). Consider its Taylor expansion at

the origin:

F (ζ, z) =
∑
t∈2N

ct(z)ζ
t

with c0(z) = z. For fixed z ∈ C, this Taylor series is absolutely and

uniformly convergent on any compact subset of the disc |ζ| < π. We have

F (ζ, 0) = 0, F (ζ, 1) = 1, and

F (ζ, z) =
eζz − e−ζz

eζ − e−ζ
·

From

ct(z) =
1

t!

(
∂

∂ζ

)t
F (0, z)

it follows that ct(z) is a polynomial. From(
∂

∂z

)2

F (ζ, z) = ζ2F (ζ, z)

we deduce

c′′t = ct−2 for t ∈ 2N, t ≥ 2.

Since ct(0) = ct(1) = 0 for t ∈ 2N, t ≥ 2, we deduce from Lemma 2 that

ct(z) = Λt,1(z).

This completes the proof of (6), hence the proof of (8) for all ζ ∈ C
with |ζ| < π. �

We are going to prove Theorem 3 by means of the Laplace transform,

which is a special case of the method of kernel expansion of R.C. Buck [2];

see also [1, Chap.I §3]. Let

f(z) =
∑
k≥0

ak
k!
zk
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be an entire function of exponential type τ(f). The Laplace transform of

f , viz.

F (ζ) =
∑
k≥0

akζ
−k−1, (10)

is analytic in the domain {ζ ∈ C | |ζ| > τ(f)}. From Cauchy’s residue

Theorem we deduce, for r > 0,

1

2πi

∫
|ζ|=r

eζzζ−k−1dζ =
zk

k!
· (11)

From the absolute and uniform convergence of the series in the right hand

side of (10) on |ζ| = r, it follows that for r > τ(f) we have

f(z) =
1

2πi

∫
|ζ|=r

eζzF (ζ)dζ

and

f (t)(z) =
1

2πi

∫
|ζ|=r

ζteζzF (ζ)dζ.

Proof of Theorem 3. Let f be an entire function of exponential type τ(f)

satisfying τ(f) < π. Let r satisfy τ(f) < r < π. From the uniform

convergence of the series (8) on the compact set {ζ ∈ C | |ζ| = r}, we

deduce

f(z) =
∑
t∈2N

(
1

2πi

∫
|ζ|=r

ζtF (ζ)dζ

)
Λt,0(z)+

∑
t∈2N

(
1

2πi

∫
|ζ|=r

ζteζF (ζ)dζ

)
Λt,1(z),

and therefore (formula of Poritsky and Whittaker (2) for entire functions

of exponential type < π)

f(z) =
∑
t∈2N

f (t)(0)Λt,0(z) +
∑
t∈2N

f (t)(1)Λt,1(z),

where the two series are absolutely convergent.

This completes the proof of Theorem 3. �

7. Integral formulae for Lidstone polynomials

Using Cauchy’s residue Theorem, we deduce from (6) the following

integral formula [8, (4.1)]:
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Proposition 1. For z ∈ C, t ∈ 2N and K ≥ 0, we have

Λt,1(z) = (−1)t/2
2

πt+1

K∑
k=1

(−1)k+1

kt+1
sin
(
kπz

)
+

1

2πi

∫
|ζ|=(2K+1)π/2

ζ−t−1
sinh(ζz)

sinh(ζ)
dζ.

Proof. Let z ∈ C. Inside the disc {ζ ∈ C | |ζ| ≤ (2K + 1)π/2}, the

function ζ 7→ ζ−t−1 sinh(ζz)sinh(ζ) has a pole of order t + 1 at ζ = 0 and only

simple poles at ζ = kπi with k ∈ Z, 0 < |k| ≤ K. The residue at 0 is

Λt,1(z), while for k ∈ Z \ {0}, the residue at kπi is

(−1)ki−t(kπ)−t−1 sin
(
kπz

)
. (12)

Since t is even, the function is odd and the residues at kπi and at −kπi are

the same. �

In particular, with K = 1 we have [8, (4.3)]

Λt,1(z) = (−1)t/2
2

πt+1
sin(πz) +

1

2πi

∫
|ζ|=3π/2

ζ−t−1
sinh(ζz)

sinh(ζ)
dζ.

Since | sinh(ζ)| ≥ 1 for |ζ| = 3π/2, one deduces, for t ≥ 0 and r > 0,
∣∣∣∣Λt,1(z)− (−1)t/2

2

πt+1
sin(πz)

∣∣∣∣ ≤ ( 2

3π

)t
e3πr/2,∣∣∣∣Λt,0(z)− (−1)t/2

2

πt+1
sin(πz)

∣∣∣∣ ≤ e3π/2
(

2

3π

)t
e3πr/2.

(13)

These estimates enable Whittaker [8, Theorem 1] to solve the Lidstone

interpolation problem as follows. Let (at)t∈2N and (bt)t∈2N be two sequences

of complex numbers. If the series∑
t∈2N

(−1)t/2
at
πt

and
∑
t∈2N

(−1)t/2
bt
πt

are convergent, then ∑
t∈2N

atΛt,0(z) +
∑
t∈2N

btΛt,1(z) (14)

is uniformly convergent on any compact of C and its sum f(z) is an entire

function satisfying

f (t)(0) = at and f (t)(1) = bt for all t ∈ 2N.
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If one of the series ∑
t∈2N

(−1)t/2
at
πt
,
∑
t∈2N

(−1)t/2
bt
πt

is not convergent, then (14) cannot converge for any non integral value of

z.

Another consequence of (13) is, for t ∈ 2N and r ≥ 0,

|Λt,1|r ≤ 2π−te3πr/2 and |Λt,0|r ≤ 2e3π/2π−te3πr/2. (15)

We now prove another integral formula for the polynomials Λt,0.

Proposition 2. For t ∈ 2N and for K ≥ 0, we have

Λt,0(z) =
zt

t!
+(−1)t/2

2

πt+1

K∑
k=1

1

kt+1
sin
(
kπz

)
− 1

2πi

∫
|ζ|=(2K+1)π/2

ζ−t−1 sinh(ζz) coth(ζ)dζ.

Proof. Proposition 2 is equivalent to Proposition 1 by changing the variable

z to 1− z. We give another proof by repeating the same arguments as for

the proof of Proposition 1. Inside the disc {ζ ∈ C | |ζ| ≤ (2K + 1)π/2},
the function ζ 7→ ζ−t−1 sinh(ζz) coth(ζ) has only simple poles at kπi with

k ∈ Z, |k| ≤ K. From (7), it follows that the residue at ζ = 0 is

zt

t!
− Λt,0(z),

while for k ∈ Z \ {0}, the residue at kπi is

i−t(kπ)−t−1 sin
(
kπz

)
. (16)

Since t is even, the function we integrate is odd and the residues at kπi and

at −kπi are the same. �

8. Functions of finite exponential type

We follow [2]. Let K ≥ 1. The function ζ 7→ sinh(ζz)
sinh(ζ) is even and has

only simple poles at kπi with k ∈ Z \ {0}, with residue given by (12) with

t = −1, namely (−1)ki sin(kπz). The sum of the residues at k and −k is 0

and we have1

(−1)ki sin(kπz)

ζ − kπi
− (−1)ki sin(kπz)

ζ + kπi
= 2π(−1)k+1k sin(kπz)

ζ2 + k2π2
·

1A factor 2 is missing in [2, p.795] and [1, Chap.I §4 p.15].
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Hence the function GK(ζ, z) defined by

sinh(ζz)

sinh(ζ)
= 2π

K∑
k=1

(−1)k+1k sin(kπz)

ζ2 + k2π2
+GK(ζ, z) (17)

is analytic in the domain
{

(ζ, z) ∈ C2 | |ζ| < (K + 1)π
}

. Notice that for

|ζ| < kπ and k ≥ 1 we have

1

ζ2 + k2π2
=
∑
t∈2N

(iζ)t

(kπ)t+2
·

The function z 7→ GK(ζ, z) is odd. Since the function ζ 7→ GK(ζ, z) is

even, its Taylor expansion at the origin can be written

GK(ζ, z) =
∑
t∈2N

gt(z)ζ
t

where the functions gt(z) are odd entire functions. This Taylor series is

absolutely and uniformly convergent for ζ in any compact subset of the

disc {ζ ∈ C | |ζ| < (K + 1)π}. The Taylor coefficient gt(z) is the sum of

Λt,1(z) and a finite trigonometric sum of exponential type ≤ Kπ, namely

gt(z) = Λt,1(z) + 2(−1)t/2
K∑
k=1

(−1)k(kπ)−t−1 sin(kπz).

Using (9) we deduce, for |ζ| < (K + 1)π,

eζz =
∑
t∈2N

gt(1− z)ζt + eζ
∑
t∈2N

gt(z)ζ
t + 2π

K∑
k=1

k sin(kπz)

ζ2 + k2π2

(
1 + (−1)k+1eζ

)
.

(18)

Proposition 3 (R.C. Buck, 1955). Let K be a positive integer. Let f be

an entire function of finite exponential type τ(f) < (K + 1)π and let F (ζ)

be the Laplace transform of f . Then for z ∈ C we have

f(z) =
∑
t∈2N

f (t)(0)gt(1− z) +
∑
t∈2N

f (t)(1)gt(z) +

K∑
k=1

Ck sin(kπz),

where the series are absolutely convergent and

Ck = −ki

∫
|ζ|=r

1 + (−1)k+1eζ

ζ2 + k2π2
F (ζ)dζ (1 ≤ k ≤ K) (19)

for any r in the range τ(f) < r < (K + 1)π.
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Proof. Let r satisfy τ(f) < r < (K + 1)π. From the absolute and uniform

convergence on |ζ| = r of the series in the right hand side of (18), we deduce

f(z) =
1

2πi

∫
|ζ|=r

eζzF (ζ)dζ

=
∑
t∈2N

gt(1− z)
1

2πi

∫
|ζ|=r

ζtF (ζ)dζ +
∑
t∈2N

gt(z)
1

2πi

∫
|ζ|=r

ζteζF (ζ)dζ

+
K∑
k=1

Ck sin(kπz),

with

1

2πi

∫
|ζ|=r

ζtF (ζ)dζ = f (t)(0) and
1

2πi

∫
|ζ|=r

ζteζF (ζ)dζ = f (t)(1).

�

Example. The Laplace transform of f(z) = sin(πz) is F (ζ) = π
ζ2+π2 and

for π < r < 2π we have ∫
|ζ|=r

1 + eζ

(ζ2 + π2)2
dζ =

i

π
,

hence for this function f , we have

C1 = −i

∫
|ζ|=r

1 + eζ

ζ2 + π2
F (ζ)dζ = −iπ

∫
|ζ|=r

1 + eζ

(ζ2 + π2)2
dζ = 1,

as expected.

In [6] and [7], we will need the following variant of (17). The function

HK(ζ, z) defined by

sinh(ζz) coth(ζ) = −2π
K∑
k=1

k sin(kπz)

ζ2 + k2π2
+HK(ζ, z), (20)

is analytic in the domain
{

(ζ, z) ∈ C2 | |ζ| < (K + 1)π
}

. The map

ζ 7→ HK(ζ, z) is even and the map z 7→ HK(ζ, z) is odd. Replacing z with

1− z in (17) yields

HK(ζ, z) = cosh(ζz)−GK(ζ, 1− z).

Corollary 2 (I.J. Schoenberg, 1936). Let f be an entire function of finite

exponential type τ(f) satisfying f (t)(0) = f (t)(1) = 0 for all t ∈ 2N. Then

f(z) =
K∑
k=1

Ck sin(kπz).
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with K ≤ τ(f)/π and with the constants C1, . . . , CK given by (19).

A side result is that the exponential type τ(f) of a function f satisfying

the assumption of Corollary 2 is an integer multiple of π.
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THE SOJOURN OF A MATRIX
AND ITS QUINTESSENTIAL GEOMETRY

PARTHASARATHI MUKHOPADHYAY AND UTPAL DASGUPTA
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Abstract. The set of all 2 × 2 real matrices does not form a group
under matrix multiplication, as the singular matrices among them are
not ‘invertible’ matrix theoretically. However, if some specific subsets
from those singular matrices be chosen, they do form a group under
matrix multiplication, where the group theoretic inverse of the matrix
theoretically non-invertible matrices sometimes turn out to be their
corresponding Moore-Penrose inverses. In the first part of this paper
we investigate the whole family of 2× 2 real singular matrices and lin-
ear algebraically pin down those specific subclasses. Now, 2 × 2 real
matrices are nice geometric objects, as their realization in the guise of
linear transformation from R2 to itself can really be visualized on the
Cartesian plane R2 through pictorial presentations via the fundamen-
tal subspaces of those matrices. This natural interplay between linear
algebra and its pictorial geometric presentation available in the present
context then motivates us to see these different subclasses of matrices
geometrically on R2, an odyssey through the beautifully synchronized
and harmonious geometric presentation of their locations, finally culmi-
nating in a well-cataloged library of all these 2×2 real singular matrices
with respect to the above mentioned property.

1. Introduction : A Test Case

In introductory Group Theory, it is indeed a common part of rudimen-
tary knowledge, that the set of all non-singular real matrices of some specific
order, say 2× 2, usually denoted by GL(2,R), makes a non-Abelian group
under usual matrix multiplication, where the non-singularity is crucial for
the invertibility of a matrix, and that inverse matrix in turn plays the role of

2020 Mathematics Subject Classification: 15A09, 15B99
Key words and phrases: Moore-Penrose inverse, simultaneously orthogonally (resp.
non-orthogonally) diagonalizable matrices, eigenvalue, Jordan matrix, affine space,
family of circles, family of right circular double cylinders
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group theoretic inverse as well, while the identity matrix I2 =

[
1 0

0 1

]
plays

the role of identity element. In contrast, one somewhat counter-intuitive
example for the beginners happens to be the set

A =

{[
x x

x x

]
: x ∈ R, x 6= 0

}
.

In spite of being made of some singular (and hence non-invertible) matri-
ces, this set still forms a group under matrix multiplication, and that too an

Abelian one, with identity element

[
1
2

1
2

1
2

1
2

]
= Ī (say), as can be routinely

verified. In this example the group theoretic unique inverse of the singular

matrix A =

[
x x

x x

]
with respect to its identity element Ī turns out to be

X =

[
1
4x

1
4x

1
4x

1
4x

]
. Since the singular matrix A does not admit any matrix the-

oretic inverse, it becomes worthy of investigation whether its group theoretic
inverse X with reference to the matrix Ī has any specific linear algebraic
significance as well or not. Now, as it is well known in linear algebra that
every m × n matrix, irrespective of its singularity or non-singularity has a
corresponding uniquely determined generalized inverse, called the Moore-
Penrose inverse, it seems appropriate to check that particular inverse of the
matrix A.

1.1. The Moore-Penrose inverse of A. In the theory of various (not
necessarily unique) generalized inverses of a given m × n matrix A ( here
we have chosen to stick to real entries only, though the general theory is
formed over the complex matrices), the Moore-Penrose inverse enjoys the
distinction of being uniquely definable corresponding to every given matrix
whatsoever. It is well known [3, 4] in linear algebra that, for every given
matrix Am×n over R, there exists exactly one matrix A+ ∈ Rn×m, that
meets all the following four conditions:

AA+A = A, A+AA+ = A+,

AA+ = (AA+)T , A+A = (A+A)T .

A+ is called the Moore-Penrose inverse (henceforth referred to as the
MP inverse) of A. There are more than one ways to compute the MP
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inverse of a given matrix, the most common being through singular value
decomposition. However, we shall use the method via the rank factorization

of the given matrix, following Bapat [1]. Here A =

[
x x

x x

]
= x

[
1 1

1 1

]
=

xA1 (say), where x 6= 0. First we find a rank factorization of A1 and then
use it to compute the MP inverse of A, denoted by A+ in due course. Now,

A1 =

[
1 1

1 1

]
∼

[
1 1

0 0

]
, whence ρ(A1) = 1 shows that A1 = BC where

B =

[
1

1

]
is of full column rank and C =

[
1 1

]
is of full row rank, whence

A1 =

[
1 1

1 1

]
=

[
1

1

] [
1 1

]
= BC

is a rank factorization. Now,

B+ = (BTB)−1BT =

([
1 1

] [1

1

])−1 [
1 1

]
=

1

2

[
1 1

]
=
[
1
2

1
2

]
and

C+ = CT (CCT )−1 =

[
1

1

]([
1 1

] [1

1

])−1
=

1

2

[
1

1

]
=

[
1
2
1
2

]
so that the MP inverse of A is given by

A+ = (xA1)
+ = x−1A+ =

1

x
C+B+ =

1

x

[
1
2
1
2

] [
1
2

1
2

]
=

[
1
4x

1
4x

1
4x

1
4x

]
= X.

So we see that, the group theoretic inverses of the elements of the group
A from the standpoint of abstract algebra, turned out to be, from the stand-
point of linear algebra, the corresponding MP inverses of those elements ma-
trix theoretically. However, this amazing feature does not pervade through
all the possible groups that can be made out of various specific 2×2 singular
matrices.

1.2. A Counter Example. Choose any arbitrary n ∈ R \ {1} and fix it.
Now consider

B =

{[
x nx

x nx

]
: x ∈ R∗

}
.
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It is routine to check that B forms an Abelian group under matrix multipli-

cation, where the matrix

[
1

n+1
n
n+1

1
n+1

n
n+1

]
plays the role of identity element and

the matrix

[
1

(n+1)2x
n

(n+1)2x
1

(n+1)2x
n

(n+1)2x

]
turns out to be the group theoretic inverse

element for the matrix

[
x nx

x nx

]
. To make the calculation simple for the

sake of our counter example, let us take n = 2. Straightforward calculations

then show that, the group theoretic inverse of the matrix B1 = x

[
1 2

1 2

]
in

B1 (with n = 2) is B−11 = 1
x

[
1
9

2
9

1
9

2
9

]
.

We now compute the MP inverse of B1 = xB, say, where B =

[
1 2

1 2

]
.

Following the method in Section 1.1 it can be shown that B+
1 = (xB)+ =

x−1B+ = 1
x

[
1
10

1
10

1
5

1
5

]
.

Clearly, the matrix theoretic unique MP inverse of B1, not only is dis-
tinct from the group theoretic inverse of B1, but also it goes out of the set
B1.

This counter example motivates us to frame the fundamental question
that will guide us through the rest of our investigation here. What are the
specific subclasses of 2×2 real singular matrices that form Abelian
groups under usual matrix multiplication, where the group theo-
retic inverse of each of the matrices is the same as their respective
unique MP inverse?

1.3. Comparing A and B Linear Algebraically. In our endeavor to pin
down the specific subclasses of 2× 2 real singular matrices with the desired
property as mentioned above, let us look into the structures of the matrices
in A vis-a-vis with those in B from the angle of linear algebra, and try to
assess their structural dissimilarity, that may throw some light towards a
judicious guess about the possible subclass to begin the investigation with.

The matrices in the group A are nonzero scalar multiples of the sym-

metric matrix A1 =

[
1 1

1 1

]
, whence, their row space is the same as their
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column space, which is geometrically the line y = x in R2 looked upon as a
standard Cartesian plane. The matrix A1, when acts (as a transformation)
on any vector in R2, crushes it by first orthogonally projecting that vector
onto the row space R(A1), i.e., the line y = x, and then to produce the
outcome, transforms it to the column space C(A1) , i.e., in this case, keeps
it right on that same line y = x, but merely stretches the projection by a
factor of 2, the only nonzero eigen value of A1 (the other being 0, as A1 is
singular). Again, the matrices in A being symmetric, they are orthogonally
diagonalizable and their eigen values 0 and 2x ensure that each of them

is similar to the diagonal matrix D1 =

[
0 0

0 2x

]
. Furthermore, the com-

mutativity present in the group structure indicates that these matrices are
simultaneously diagonalizable, i.e., they must share a common orthogonal
matrix towards diagonalization under similarity. On the other hand, it is
quite evident that the set of all symmetric 2×2 real matrices cannot be our
desired subclass, as it is not even closed under matrix multiplication.

Turning the matter around, if we look at the group B of some other
specific singular matrices, that fails to attain the desired property, the first
structural contrast we see is that, these groups are not symmetric, whence
their respective row spaces are different from their corresponding column
spaces. However, having two distinct eigen values 0 and (1 +n)x, these are
still diagonalizable, but not orthogonally this time, and all the matrices of
one such group (for a pre-chosen n ∈ R \ {1}) are similar to the diagonal

matrixD2 =

[
0 0

0 (1 + n)x

]
. Further, the commutative nature of the group,

as before, indicates the simultaneous diagonalizability of the matrices among
themselves, within every such group.

In any case, one thing is quite clear. If we try to classify all the 2 × 2

singular real matrices from various linear algebraic standpoint, our targeted
subclasses must first become a group under usual matrix multiplication,
which is not automatic, and this condition along with what we have seen so
far, allows us to narrow down our focus for the search considerably, as can
be seen in the following tabular presentation.

1.4. Classifying All 2×2 Real Singular Matrices. We shall now narrow
our search towards pinning down the exact possible forms of the desired
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matrices. In the light of the following tabular classification, it will be good
enough to look for them only in the relevant subclasses of 2 × 2 singular
real matrices endowed with the property that they make an Abelian group.
In some of these groups, as we shall see, inverse element is the same as the
corresponding MP inverse and in some others, those are different.

S2(R) : All singular 2 × 2 matrices A
Regular Semigroup : AA+A = A

?

? ?

Diagonalizable matrices
Not a Groupoid

Non-diagonalizable matrices
Not a Groupoid

?

? ?
?

Orthogonally
Diagonalizable

(Symmetric matrices)
Not a Groupoid

Non-orthogonally
Diagonalizable

(Non-symmetric matrices)
Not a Groupoid

Reducible to
Jordan matrices
Not a Groupoid

?

?

?

?

?

?

All possible subclasses
of simultaneously

Diagonalizable matrices
Each one is an
Abelian Group

like our example A

All possible subclasses
of non-simultaneously

Diagonalizable matrices
Not a Groupoid

All possible subclasses
of simultaneously

Diagonalizable matrices
Each one is an
Abelian Group

like our example B

All possible subclasses
of non-simultaneously

Diagonalizable matrices
Not a Groupoid

We shall now investigate into the structural difference of the two classes
reached at the end of the above chart from the standpoint of linear algebra,
to begin with.
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2. Specifying the Exact Subclasses of Matrices

2.1. Orthogonally (Simultaneously) Diagonalizable Matrices. Let

A =

[
a b

c d

]
be a singular matrix in one such subclass. Because orthogo-

nal diagonalizability induces symmetry, we have c = b. Since A must be
singular, so ad = c2. Hence the matrix must be of the form

A =

[
a c

c c2

a

]
= a

[
1 c

a
c
a

c2

a2

]
,

provided1, a 6= 0. Thus A = a

[
1 m

m m2

]
for some m = c

a ∈ R (a 6= 0).

Let us consider the set

G(m) =

{
x

[
1 m

m m2

]
: x ∈ R∗

}
.

Proposition 2.1.1. G(m) is precisely the set of those orthogonally diag-
onalizable (i.e., symmetric) matrices that are simultaneously diagonalizable

with the matrix M =

[
1 m

m m2

]
.

Proof. In fact, suppose there is an orthogonal matrix P such that

P−1MP =

[
0 0

0 1 +m2

]
withM =

[
1 m

m m2

]
.

Then, a matrix B is orthogonally simultaneously diagonalizable with M

⇐⇒ P−1BP =

[
0 0

0 r

]
,∃ r ∈ R∗ ⇐⇒ P−1BP = r

1+m2

[
0 0

0 1 +m2

]
=

r
1+m2 (P−1MP ) ⇐⇒ P−1BP = P−1(xM)P for x = r

1+m2 ⇐⇒ B =

x

[
1 m

m m2

]
. �

Now, the multiplication among elements of G(m) is commutative (due
to the simultaneous diagonalizability), whence the set G(m) can be seen
to be closed under matrix multiplication (however, though the product of
symmetric matrices remain symmetric if and only if the product commutes,

1The case when a = 0 shall be dealt with separately.
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still mere orthogonal diagonalizability i.e., symmetry alone was not good
enough for the ‘closure’ in this case). Clearly G(m) is a semigroup, as
associativity is duly inherited from the set M2×2(R) of all 2 × 2 matrices
under matrix multiplication. Again, as every matrix must admit its unique

MP inverse, so for P = x

[
1 m

m m2

]
, we should have unique P+ satisfying

the four required conditions, as stated before.

Proposition 2.1.2. For every P ∈ G(m), we have P+ ∈ G(m).

Proof. For P = x

[
1 m

m m2

]
, we have P+ = x+

[
1 m

m m2

]+
, where x+ =

x−1 (asx 6= 0). Suppose M =

[
1 m

m m2

]
. Then by the method of rank

factorization, it can be shown that M+ = 1
(1+m2)2

[
1 m

m m2

]
, whence

P+ =
1

x(1 +m2)2

[
1 m

m m2

]
∈ G(m).

�

Theorem 2.1.3. G(m) is a commutative group with the desired property.

Proof. From the Proposition 2.1.2, we see that G(m) is a regular semigroup,
whence the commutativity available in its structure ensures that PP+ =

P+P , so that G(m) becomes completely regular. Since

x

[
1 m

m m2

]
x

[
1 m

m m2

]
= x2(1 +m2)

[
1 m

m m2

]
,

we see that the requirement for idempotence is x(1 + m2) = 1, whence

1
1+m2

[
1 m

m m2

]
is the unique idempotent in G(m), whence G(m) is a group

under matrix multiplication, with 1
1+m2

[
1 m

m m2

]
as its identity. Again,

as both P+P and PP+ are candidates for idempotent elements in this
structure, so P+P = PP+ = e (say, the identity element of G(m)), which
indicates, P+ = P−1 in this group, i.e., the group theoretic inverse of the
matrix P is the same as its Moore Penrose inverse. �
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Remark 2.1.4. It is now time to settle the case for a = 0 in the singular

matrix A =

[
a b

c d

]
belonging to the class under consideration. We see

that, such matrices must have the general form x1

[
0 0

0 d

]
i.e., equivalently

x

[
0 0

0 1

]
for some x ∈ R∗, or, as an extreme case, it can be the null matrix[

0 0

0 0

]
as well. However, keeping the extreme case aside for the time being,

it is interesting to see that though the matrices in

G0 =

{
x

[
0 0

0 1

]
: x ∈ R∗

}

may appear to be different in look compared to those in G(m), actually each
of them belongs to the same similarity class with some element of G(m), in
the sense that for every matrix in G(m) (for a fixed m), there exists some
orthogonal (hence invertible) matrix P , such that under similarity, every
matrix A of G(m) will take the diagonal form P−1AP = P TAP ∈ G0.

Note 2.1.5. Indeed, if the diagonal form mentioned above, turns out to
be diag(x, 0) rather than diag(0, x), as is necessary for the membership of
G0, the columns of corresponding P may be permuted (i.e., the ordered
orthonormal basis of R2 may be suitably reordered) to have the desired
result, with the new matrix Q (made of orthonormal eigen vectors) being
still orthogonal and playing the role of P for everyone. We now show the
following result.

Proposition 2.1.6. The set G0 as defined above, is a commutative group
with the desired property.

Proof. In view of the Remark 2.1.4, it is now sufficient to show that the
matrices of the form P−1AP , where A ∈ G(m) and P is a suitably chosen
diagonalizing matrix, form a commutative group with the desired property
about MP inverse. It is routine to check that these matrices do form a
group with P−1ĪP as the identity (where Ī is the identity of G(m)) and
P−1A−1P is the inverse of P−1AP , and this group is commutative due to
commutativity of G(m). It now remains to show that, these new form of
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matrices B = P−1AP [∈ G0] do adhere to the fact that B−1 = B+. Clearly,
B−1 = (P−1AP )−1 = P−1A−1P , whence it will be sufficient to show that,
(P−1AP )+ = P−1A−1P . Now, from the standard properties of MP inverse
[3], it is known that, in case of real matrices
(i) if |P | 6= 0 then P−1 = P+

(ii) if U, V are orthogonal, then (UAV )+ = V TA+UT .
Using these results we see that,

(P−1AP )+ = (P+AP )+ (since |P | 6= 0)
= P TA+(P+)T (since P, P−1 are orthogonal)
= P−1A−1(P−1)T (since we have A+ = A−1 in G(m))
= P−1A−1P (since P−1 = P T ).

�

Note 2.1.7. Finally, we take up the extreme case of the null matrix θ2×2 =[
0 0

0 0

]
, as mentioned in Remark 2.1.4. Now, as a singleton set {θ2×2}

satisfies all the axioms of a commutative group under matrix multiplication
trivially. Further, θ−1 = θ+(= θ) as well, justifying its membership in this
desired class.

Remark 2.1.8. So, to sum up from abstract algebraic standpoint (with
underlying linear algebraic link), we have a family G of mutually disjoint
classes G1,G2,G3 where

G1 = {G(m) : m ∈ R}, G2 = {G0}, G3 = {θ2×2}.

Here G1 is an infinite family of commutative groups like G(m), one group
for every value of m ∈ R, while G2 and G3 comprise of one commutative
group each, as described. Note that,

G =
⋃
G =

(⋃
m∈R

G(m)

)
∪G0 ∪ {θ2×2}

is not a semigroup, as the set product G(m)G(n) 6∈ G (for m 6= n with
mn 6= −1), though it is visibly a union of groups. Hence G = ∪G is a class
of matrices, where every matrixM (say), is an element of some commutative
group with the desired property.

Next, we shall investigate whether any matrix that lies outside the class
G = ∪G, as mentioned above, may still have the desired property. In search
of a conclusive answer to this question, we now turn towards a disjoint family
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of matrices, the family of non-orthogonally simultaneously diagonalizable
2× 2 singular matrices.

2.2. Non-orthogonally (Simultaneously) Diagonalizable Matrices.

Consider a diagonalizable matrix A =

[
a b

c d

]
which lies outside the set

G = ∪G. Then A is a non-orthogonally diagonalizable 2 × 2 real singular
matrix. Hence it is non-symmetric, i.e., b 6= c. From singularity of A we
get that ad = bc. Thus, the matrices A can be written as

A =

[
a b

c bc
a

]
= a

[
1 b

a
c
a

c
a
b
a

]

provided2 a 6= 0. So, A = a

[
1 n

m mn

]
for some m = c

a ∈ R and n = b
a ∈

R, (a 6= 0). Clearly, m 6= n. Since A is nonzero singular matrix and also
diagonalizable, so 1 +mn 6= 0. Let us consider the set

G(m,n) =

{
x

[
1 n

m mn

]
: x ∈ R∗

}
.

Proposition 2.2.1.The set G(m,n) consists precisely of those non-orthogonally
diagonalizable matrices that are simultaneously diagonalizable with the ma-

trix M =

[
1 n

m mn

]
.

Proof. Note that the matrix M in G(m,n) is (non-orthogonally) similar

to the diagonal matrix

[
0 0

0 1 +mn

]
. The rest of the proof is essentially

similar to that of Proposition 2.1.1, and hence is omitted. �

Now, simultaneous diagonalizability of the matrices in G(m,n) with the
matrixM , as mentioned above, ensures that the set G(m,n) is closed under
matrix multiplication. Indeed, if P be the common (non-orthogonal) invert-
ible matrix diagonalizing the matrices in G(m,n), and if C,D ∈ G(m,n),

then we must have P−1CP =

[
0 0

0 r

]
and P−1DP =

[
0 0

0 s

]
, for some

2The case for a = 0 shall be treated later.
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r, s ∈ R∗, whence

P−1(CD)P = (P−1CP )(P−1DP ) =

[
0 0

0 rs

]
. . . (i)

indicates that CD is also (non-orthogonally) simultaneously diagonalizable
with M , whence CD ∈ G(m,n). Again, from (i), due to the commutativ-
ity of multiplication of reals, we have P−1(CD)P = P−1(DC)P , whence
CD = DC. Thus, G(m,n) is a commutative semigroup ( associativity being
routinely inherited as before).

Notice that, for any x, y ∈ R∗,

x

[
1 n

m mn

]
y

[
1 n

m mn

]
= xy(1 +mn)

[
1 n

m mn

]
. . . . (ii)

Thus for any x ∈ R∗, x

[
1 n

m mn

]
is an idempotent element of the semigroup

G(m,n) iff x2(1 + mn) = x, i.e., x = 1
1+mn . Hence 1

1+mn

[
1 n

m mn

]
is the

unique idempotent element of the commutative semigroup G(m,n).
Now, from (ii), it can be observed that, for any C ∈ G(m,n), there

exists D ∈ G(m,n) such that CDC = C (and DCD = D). Indeed, if

C = x

[
1 n

m mn

]
for x ∈ R∗, then D = 1

x(1+mn)2

[
1 n

m mn

]
serves the

purpose. Thus, G(m,n) is a regular semigroup with unique idempotent,
whence it is a (commutative) group, in which the above mentioned matrices
C and D play the role of mutual inverses of each other.

The above discussion leads us to the following result.

Proposition 2.2.2.The set G(m,n) of matrices, as defined above with m 6=
n, 1 +mn 6= 0, forms a commutative group under matrix multiplication.

Note 2.2.3. It is of a definite significance for our future discourse that the
column space and row space of each of the matrices P in the above mentioned
group G(m,n) are C(P ) = {x(1,m) : x ∈ R} and R(P ) = {x(1, n) : x ∈
R} respectively.

Remark 2.2.4.Let us consider C = x

[
1 n

m mn

]
∈ G(m,n). If we calculate

its unique MP inverse, by the same technique as shown in Proposition 2.1.2,
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(detailed calculation is essentially similar and hence omitted), we see that

C+ = 1
x(1+m2)(1+n2)

[
1 m

n mn

]
while C−1 = 1

x(1+mn)2

[
1 n

m mn

]
which are clearly distinct. Moreover, we would like to point out the fact
that, while the group theoretic inverse of the matrix C is given by C−1 ∈
G(m,n), its unique MP inverse C+ ∈ G(n,m), where G(n,m) = {CT :

C ∈ G(m,n)}. This leads to the following fundamental result, in contrast
with the Theorem 2.1.3.

Theorem 2.2.5.The commutative group G(m,n) as described earlier, does
not enjoy the desired property.

Though the commutative groupG(m,n) does not enjoy the desired property
(unlike the other commutative group G(m)), it is worth mentioning some
interesting features of the MP inverses of the matrices belonging to a group
of the form G(m,n) for some m,n ∈ R.

Lemma 2.2.6.For any m,n, p, q ∈ R with m 6= n, p 6= q such that none of
mn, pq, np and mq is equal to −1, we have G(m,n)G(p, q) = G(m, q).

Proof. It is a routine argument involving set theoretic product and hence
is omitted. �

Remark 2.2.7. If we extend our notation naturally, so as to rename the
group G(m) (for a particular m) as G(m,m), then from the Lemma 2.2.6
we have, for any m,n ∈ R ,

G(m,n)G(n,m) = G(m,m) = G(m).

Note 2.2.8. The condition 1 + np 6= 0 i.e., np 6= −1 can never be dropped
from the Lemma 2.2.6, as then the row space of every matrix in G(m,n)

will be orthogonal to each matrix in the column space of G(p, q), which will
result in G(m,n)G(p, q) = {θ2×2}.

For P ∈ G(m,n) with m,n ∈ R, we have already seen that P+ ∈
G(n,m). However, it is known from linear algebra that, both the matrices
PP+ (orthogonal projection onto C(P )) and P+P (orthogonal projection
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onto R(P )) are idempotent symmetric matrices, whence they are idempo-
tent elements in the multiplicative semigroup M2×2(R). Next Lemma puts
them at their respective rightful places commensurately.

Lemma 2.2.9.For any P ∈ G(m,n), (i) PP+ = IG(m) and (ii) P+P =

IG(n), where IA stands for the identity element of the group A.

Proof. Follows from Lemma 2.2.6 directly. �

The next result establishes a rather beautiful relation among the ma-
trices P−1 ∈ G(m,n) and P+ ∈ G(n,m), that have already been proved to
be distinct for any P ∈ G(m,n).

Lemma 2.2.10.For any P ∈ G(m,n) we have, P−1 = IG(m,n) P
+ IG(m,n).

Proof. Here PP+P = P =⇒ P−1(PP+P )P−1 = P−1PP−1 =⇒
(P−1P )P+(PP−1) = P−1 =⇒ P−1 = IG(m,n) P

+ IG(m,n). �

Following Corollary is easy to see from Lemma 2.2.9 and Lemma 2.2.10.

Corollary 2.2.11. IG(m)IG(m,n) = IG(m,n) = IG(m,n)IG(n).

Remark 2.2.12. It is well known from linear algebra that for any P,Q ∈
M2×2(R), it is not in general true that (PQ)+ = Q+P+. However, if we
prefer to choose these matrices from the group G(m,n), we can reach really
close to the equality, as is shown below.

Proposition 2.2.13. Let m,n, p, q ∈ R such that none of the products
mq, np,mn, pq are equal to −1. Then for any P ∈ G(m,n) and Q ∈ G(p, q),
there exists x ∈ R∗ such that (PQ)+ = x(Q+P+).

Proof. Suppose P ∈ G(m,n) and Q ∈ G(p, q). Then,

PQ ∈ G(m,n)G(p, q) = G(m, q) [by Lemma 2.2.6]
=⇒ (PQ)+ ∈ G(q,m)

=⇒ (PQ)+ = a

[
1 m

q qm

]
(for some a ∈ R∗)

Again
P+ ∈ G(n,m), Q+ ∈ G(q, p)

=⇒ Q+P+ ∈ G(q, p)G(n,m) = G(q,m) [by Lemma 2.2.6]

=⇒ Q+P+ = b

[
1 m

q qm

]
(for some b ∈ R∗)

Hence, (PQ)+ = x(Q+P+), where x = b
a ∈ R∗ (a 6= 0). �
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Remark 2.2.14. At the beginning of this section we have considered the

case of those non-orthogonally diagonalizable matrices

[
a b

c d

]
where a 6= 0.

It is now time to investigate the corresponding case of the matrices,
with a = 0. Since A is singular, here we must have bc = 0 as well. Again A
being non-orthogonally diagonalizable, (i.e., non-symmetric), we must have
b 6= c, whence exactly one of b and c is zero.

Let us first take up the subcase, b 6= 0 and c = 0. Note that,
here diagonalizability of A indicates that d 6= 0. Hence the matrix A must

be of the form, A =

[
0 b

0 d

]
= b

[
0 1

0 d
b

]
= b

[
0 1

0 m

]
, for some m = d

b ∈

R∗(as d 6= 0, b 6= 0). Now, for each particular choice of m ∈ R∗, let us
consider the set

G0(m, 0) =

{
x

[
0 1

0 m

]
: x ∈ R∗

}
.

Now, in an essentially similar manner as in Proposition 2.2.1, it can be
shown that all matrices in G0(m, 0) are simultaneously diagonalizable with

the matrix

[
0 1

0 m

]
, whence, arguments parallel to the case of G(m,n) lead

us to the similar conclusion that G0(m,n) is a commutative semigroup.
Some further routine computations then establish that G0(m, 0) is a group

with identity

[
0 1

m

0 1

]
. It is now easy to check that the group theoretic

inverse of C = x

[
0 1

0 m

]
is clearly distinct from its MP inverse. Indeed, it

can be shown that

1
xm2

[
0 1

0 m

]
= C−1 6= C+ = 1

x(1+m2)

[
0 0

1 m

]
.

Hence, we conclude that, like the groups G(m,n), the present class G0(m, 0)

as well, does not have the desired property.
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Turning to the other possible subcase, b = 0 and c 6= 0, we now see

that, here the matrix A must be of the form, A =

[
0 0

c d

]
= c

[
0 0

1 d
c

]
=

c

[
0 0

1 m

]
, for some m = d

c ∈ R∗(as d 6= 0, c 6= 0). As before, for each

particular choice of m ∈ R∗, we consider the set

G0(0,m) =

{
x

[
0 0

1 m

]
: x ∈ R∗

}
.

Clearly, G0(0,m) = {CT : C ∈ G0(m, 0)}. Now, for a particular m ∈ R∗,
since G0(m, 0), is a class of all non-orthogonally simultaneously diagonaliz-
able matrices, so there exists a (non-orthogonal) invertible matrix, say P ,
which diagonalizes every matrix in G0(m, 0). As matrices in G0(0,m) are
nothing but transposes of the matrices in G0(m, 0), we can say that the
invertible matrix Q = (P−1)T diagonalizes every matrix in G0(0,m). Thus
G0(0,m) is also a class of non-orthogonally simultaneously diagonalizable
matrices. Arguing identically as above, we may then conclude that G0(0,m)

is also a commutative group under matrix multiplication with identity el-

ement

[
0 0
1
m 1

]
. Here also, for every D = x

[
0 0

1 m

]
, the group theoretic

inverse D−1 is distinct from the corresponding MP inverse, as a routine
computation may establish. Indeed, it can be shown that

1
xm2

[
0 0

1 m

]
= D−1 6= D+ = 1

x(1+m2)

[
0 1

0 m

]
.

Hence, we conclude that, for any m ∈ R∗, the class G0(0,m) also does not
have the desired property.

Note 2.2.15. It is interesting to observe that, for any C ∈ G0(m, 0), C+ ∈
G0(0,m) while for any D ∈ G0(0,m), D+ ∈ G0(m, 0). It is now easy to see
that, for any, m,n ∈ R∗ with mn 6= −1,

G0(m, 0)G0(0, n) = G(m,n) while G0(0,m)G0(n, 0) = G0.

Note that, whenever mn = −1, we have G0(0,m)G0(n, 0) = {θ2×2}. So,
similarly as in the case of the groups G(m,n), we may arrive at the following
identical results here.
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1. For any m ∈ R∗, if P ∈ G0(m, 0), then PP+ ∈ G0(m, 0)G0(0,m) =

G(m,m) = G(m) and P+P ∈ G0(0,m)G0(m, 0) = G0, whence PP+ =

IG(m) and P+P = IG0 .
2. For anym ∈ R∗ and for any P ∈ G0(m, 0), P−1 = IG0(m,0)P

+IG0(m,0),
which along with the result above, leads to the fact that

IG(m)IG0(m,0) = IG0(m,0) = IG0(m,0)IG0 .

2.3. Non-diagonalizable Matrices. Suppose A =

[
a b

c d

]
be a singular

non-null 2×2 non-diagonalizable matrix. Let us first consider the case a 6=
0. Since A is singular, we have ad = bc and also one of its eigenvalue must be
0. Since A is non-diagonalizable, with tr(A) = a+d, we see that a+d = 0 (as
otherwise distinct eigenvalues would have made A diagonalizable). Hence,
d = −a indicates that, ad = bc = −a2 i.e., ba = −a

c (clearly, c 6= 0 as a 6= 0).
Thus the matrix A is seen to have the form

A =

[
a b

c d

]
= a

[
1 b

a
c
a

d
a

]
= a

[
1 − 1

m

m −1

]
for some m = c

a ∈ R∗. Now, for each m ∈ R∗, let us consider the set

J(m) =

{
x

[
1 − 1

m

m −1

]
: x ∈ R∗

}
.

The matrices in J(m), being singular 2 × 2 non-diagonalizable matrices
of trace zero, it is easy to see that they are similar to the Jordan matrix[

0 1

0 0

]
. It is an interesting observation that for such matrices A, the column

space C(A) = {x(1,m) : x ∈ R∗} and the row space R(A) = {x(1,− 1
m) :

x ∈ R∗} are mutually orthogonal. Later, in section 3, this feature will
be instrumental in locating this matrices geometrically on R2. Right now,
however, looking at them algebraically, we see that this property compels
the product of any two matrices in J(m) to become null matrix θ2×2 6∈ J(m),
whence the set J(m) is not even a groupoid under matrix multiplication.
Clear enough, this class of matrices remains excluded from our search of
the commutative groups with the desired property.
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Note 2.3.1.As a passing remark, it may be noted that, the class J(m) ∪
{θ2×2} can go up to a commutative semigroup (which is not a group) under
matrix multiplication.

Remark 2.3.2.Under the case a = 0, the above mentioned matrix A

looks like

[
0 b

c d

]
to begin with, and it can be dealt with, in a spirit similar

as above. Indeed, while singularity indicates here that one eigenvalue must
be zero, non-diagonalizability implies that the other eigenvalue must also
be zero as well, whence tr(A) = d enforces d = 0. Furthermore, bc = 0 from
singularity, along with the fact that A is non-null, tells us that exactly one
of b and c must be zero in this case. So, under the subcase when b = 0,

we have A =

[
0 0

c 0

]
= c

[
0 0

1 0

]
, which is itself in Jordan form and can be

made similar to the Jordan matrix

[
0 1

0 0

]
as well. Thus we have another

set of matrices given by

J0 =

{
x

[
0 0

1 0

]
: x ∈ R∗

}

where the matrices are of different form than before, (the column space is
{x(0, 1) : x ∈ R∗}) but the set is similar in algebraic structural properties
with J(m).

Finally, if we take up the subcase when c = 0, we have A = b

[
0 1

0 0

]
,

which is similar to the Jordan matrix

[
0 1

0 0

]
. This leads to the last possible

set of matrices in our present discussion, given by

J0 =

{
x

[
0 1

0 0

]
: x ∈ R∗

}

where the matrices are of yet another form, (column space is {x(1, 0) : x ∈
R∗}) but the set is similar in algebraic structural properties with J(m) and
J0.



THE SOJOURN OF A MATRIX AND ITS QUINTESSENTIAL GEOMETRY 113

So, the whole class J of non-diagonalizable (singular) 2×2 real matrices

(i.e., matrices similar to Jordan matrix

[
0 1

0 0

]
) may be seen as an union of

three families
J =

( ⋃
m∈R∗

J(m)
)
∪ J0 ∪ J0

and clearly no subclass under consideration succeeds to form a group, (in-
deed not even a groupoid), whence these matrices remain outside the realm
of our desired property.

Remark 2.3.3. Since the MP inverse of every matrix exists uniquely,
we put down a list of features of MP inverses of these non-diagonalizable
matrices.

1. For a fixed m ∈ R∗, P ∈ J(m) =⇒ P+ ∈ J(− 1
m);

2. P ∈ J0 =⇒ P+ ∈ J0 and Q ∈ J0 =⇒ Q+ ∈ J0;
3. For any m,n ∈ R∗, with m 6= n, J(m)J(n) = G(m,− 1

n);
4. For any m ∈ R∗, J(m)J(− 1

m) = G(m) [follows from 3 above];
5. J0J0 = G(1, 0), J0J0 = G0;
6. For any P ∈ J(m), PP+ = IG(m) and P+P = IG(− 1

m
) [follows from

4 above];
7. For any P ∈ J0, PP+ = IG(1,0) and P+P = IG0 ;
8. For any P ∈ J0, PP+ = IG0 and P+P = IG(1,0).

3. A Geometric Odyssey via Algebraic Roads

Now that we have thoroughly classified all the members of the fam-
ily of 2 × 2 singular matrices, with respect to the validity of the desired
property, relating their group theoretic inverse (whenever exists), with the
corresponding MP inverse, we embark upon a rather interesting geometric
journey towards locating these various classes of matrices as well as their
member matrices on the Euclidean plane R2. The journey culminates into
some beautifully synchronized geometric patterns evolving out of their po-
sitions on R2, harmonious with the corresponding rich algebraic structures.
In a sense it justifies the old saying that, ‘Algebra is Geometry in writing
and Geometry is Algebra en-figured’.

3.1. Examining the Groups in G with the ‘Desired Property’. Ex-
ploiting the size 2 × 2 along with the singularity of the matrices under
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consideration, let us try to fix them on R2 through their fundamental sub-
spaces. It can be shown that the matrices in G1 and G2 correspond to
1-dimensional subspaces in R2, while that in G3 corresponds to the zero
dimensional subspace. Indeed, matrices in G(m) [for a specific m ∈ R] of
G1 are those, whose both the row space and column space are the same
line y = mx through origin (including the case for m = 0, which gives the
x-axis), whereas, for the matrices in G2 = {G0}, it is the y-axis, i.e., the
line x = 0 (the only line through origin in R2 that cannot be expressed in
the form y = mx), while the only matrix in G3 = {θ2×2} is linked with
{(0, 0)}. So, for every possible proper subspace of R2 there is a group with
the ‘desired property’.

3.1.1. Connecting G(m) with G0 via Similarity. When m runs over R, the
matrices in G1 belonging to different groups of type G(m) can be thought of
to be arranged in a doubly infinite array; for fixed m, think of the matrices
in the infinite group G(m) in a row, while such rows are made of different
values of m ∈ R. Now, for every matrix in the group G0, there exists ex-
actly one matrix belonging to every group G(m) (where m runs over R),
such that all these matrices are similar to the pre-chosen matrix from G0.
This happens due to the orthogonal diagonalizability prevalent in this class

of matrices. In this way, the matrices of the form

[
0 0

0 r

]
from G0, where

r 6= 0, originating out of different vectors (0, r) on y-axis, play a dominant
role in understanding the linear algebraic significance of the various group
elements, coming one each from every G(m), via similarity.

Suppose we take

[
0 0

0 r

]
= B ∈ G0 (with r 6= 0) and try to see

which matrices belong to its similarity class as proposed above. If A =

k

[
1 m

m m2

]
∈ G(m) has to be similar with B, they must have the same

eigenvalues, whence we have r = k(1 + m2), so that k = r
1+m2 tells us

that A = r

[
1

1+m2
m

1+m2

m
1+m2

m2

1+m2

]
∈ G(m) is orthogonally similar to B. Allowing

m to run over R, we get the whole family of similar matrices representing
the same singular linear operator on R2, given by T (x, y) = (0, ry) under
different choices of orthonormal bases.
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3.1.2. Dissecting the Matrices in G(m) linear algebraically. Note that, the
orthogonal projection matrix onto the line y = mx is given by[

1

m

] [
1 m

]
[
1 m

] [ 1

m

] =

[
1 m

m m2

]
1 +m2

=

[
1

1+m2
m

1+m2

m
1+m2

m2

1+m2

]

which indicates to the spectral decomposition of the symmetric matrix A =

k

[
1 m

m m2

]
where k = r

1+m2 , which is orthogonally similar to

[
0 0

0 r

]
, (r 6=

0) in the form rP1+0P2 where P1 =

[
1

1+m2
m

1+m2

m
1+m2

m2

1+m2

]
happens to be the iden-

tity element of the group G(m) as well. Note that, here the one-dimensional
eigen space belonging to the eigenvalue r turns out to be the line y = mx,
(which is the row space and the column space of A also), while the line
through the origin, perpendicular to y = mx i.e., the null space of A will
then become the eigen space belonging to the eigen value 0. This explains
the spectral decomposition rP1 + 0P2 of A (where P2 is of no consequence
to us due to the eigen value 0), which shows that the matrix A actually
projects every vector in R2 orthogonally onto the line y = mx and then
multiplies the projection by r, its nonzero eigenvalue, to give the outcome.

Again, from another perspective, we see that the matrix A, when acts on
any vector α ∈ R2, it actually breaks α uniquely as αR(A)

+αN (A)
(asR(A)⊕

N (A) = R2 ) and then Aα = AαR(A)
(as AαN (A)

= 0) is enacted. Note
that, here αR(A)

is the orthogonal projection of α onto R(A) (i.e., y = mx)
i.e., αR(A)

= P1α. Now if we begin with the matrix P1 instead of A and do
the same routine to see how it works, we have P1α = P1αR(P1)

= P1αR(A)
=

P1(P1α) = P 2
1α ∀α ∈ R2, whence P1 = P 2

1 shows its idempotence, which
justifies its ‘identity’ (i.e., do nothing) role in the group G(m).

3.1.3. Locating the Matrices from G on R2 Geometrically. We first pin down

the matrix A = r

[
1

1+m2
m

1+m2

m
1+m2

m2

1+m2

]
∈ G(m) (corresponding to y = mx), which

is similar to B =

[
0 0

0 r

]
∈ G0 (with r 6= 0), on the line y = mx geometri-

cally, by associating a unique point Mr(m) at a distance, say s, from the
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origin on the line y = mx.

Suppose x = r
1+m2 , so that mx = mr

1+m2 , whence (x,mx) is a point on
y = mx. This is the point Mr (or, Mr(m)). If the distance of Mr from
origin is s, then

s2 = x2 +m2x2 =
r2

(1 +m2)2
+

m2r2

(1 +m2)2
=

r2

1 +m2
.

So, s = |r|√
1+m2

.

Thus, for the non-null vector (0, r) on y-axis that corresponds to the
matrix B ∈ G0, the family of orthogonally similar matrices, one from each
group G(m), (as m runs over R), can be made to correspond to the points
lying on the line y = mx, respectively at a distance s = |r|√

1+m2
from the

origin, each matrix being r times the ‘identity’ of the corresponding group
G(m).

These points, corresponding to a fixed r ∈ R∗, trace out a curve Cr on
R2 whose parametric equation is given by

x =
r

1 +m2
, y =

rm

1 +m2
.

The curve Cr is indeed a circle punctured at a single point (0, 0) (as
r 6= 0). The Cartesian equation of the circle corresponding to Cr (r 6= 0) is
x2 + y2 = rx. Thus for a fixed r ∈ R∗, the curve Cr can be referred to as a
circle

x2 + y2 = rx with x 6= 0.

Geometrically, it is immediate to see that these circles have their respec-
tive centers at ( r2 , 0) on x-axis, with radius |r|2 , and are symmetric about the
positive (resp. negative) side of x-axis when r > 0 (resp. r < 0), while the
y-axis is tangential to them (not to Cr in true sense) at (0, 0). So we have
a one-parameter family of curves {Cr : r ∈ R∗}, having two distinct sub-
families governed by the conditions r > 0 or r < 0. Clearly, the differential
equation of this one-parameter family is

2xy
dy

dx
+ x2 = y2

where y is a function of x, continuous everywhere on R, except having a
removable discontinuity at the point x = 0.
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3.1.4. Visual Illustrations. The family of curves {Cr : r ∈ R∗} can be
visualized diagrammatically as follows :

x

y

x′

y′

−3

3

−3 −1.5 1.5 3

Fig. 1

This description of the family {Cr : r ∈ R∗} enables us to locate the point
on R2 that may represent a matrix in the groupG(m) for everym ∈ R. More
precisely, this description establishes a one-to-one correspondence between
the set G0 ∪

(⋃
m∈RG(m)

)
and R2. Note that, the axis of y, represents

the whole group G0 i.e., every matrix r

[
0 0

0 1

]
is uniquely represented by

the point (0, r) on y-axis. Note further that, here y-axis is the column
space (also the row space) of each of the matrices in G0. For any A =

x

[
1 m

m m2

]
∈ G(m) (for m ∈ R), the point on R2 that represents A is

found as follows : Let r = x(1+m2). Draw the circle with radius |r|2 , fixing
the centre at ( r2 , 0). Draw the line y = mx. The point Mr(m) on R2 that
represents the matrix A ∈ G(m), is the point of intersection of the circle
and the line (as shown in the following Figures 2(a)-(d)).
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O (2,0)
x

r

(0,4)

y

x′

y′

m < 0, r > 0 (when x > 0)
Here m = −1, r = 4

C4

M4(−1)

|r|
2

y
=
−
x

O (2,0)

xx′

r

(0,4)

y

y′

m > 0, r > 0 (when x > 0)
Here m = 1, r = 4

|r|
2

y
=
x

M4(1)

C4

Fig. 2(a) Fig. 2(b)

x

O(-2,0)

x′

y

r

(0,-4)

y′

m < 0, r < 0 (when x < 0)
Here m = −1, r = −4

C−4

M−4(−1)

|r|
2

y
=
−
x

xO(-2,0)x′

y

r

(0,-4)

y′

m > 0, r < 0 (when x < 0)
Here m = 1, r = −4

C−4

M−4(1)

|r|
2

y
=
x

Fig. 2(c) Fig. 2(d)
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In view of the above pictorial description of one-to-one correspondence, it
is clearly understood that the group G(m), for each m ∈ R, is represented
by the line y = mx, which in turn, is the row space (and the column space
as well) of each matrix in G(m). This also suggests the way of finding
the matrix, say A, in the set

⋃
m∈RG(m) which is represented on R2 by a

point P (h, k) say, taken under consideration. In fact, take the line through
origin and the point P (h, k) considered. Determine the angle θ made by
this line with the positive direction of x-axis. Let m = tan θ. Then draw a
perpendicular on this line at P to meet the x-axis at Q. Take the measure
of the line segment OQ. Suppose OQ = r and x = r(1 + m2). Then the

point P is the representative of the matrix A = x

[
1 m

m m2

]
∈ G(m) [Fig.

3].

θ

r Q x

O

x′

y

y′

P (h, k)

Fig. 3

3.1.5. A Group Theoretic Interlude : Harmony of Curves and Groups. It is
interesting to note that the family of curves C = {Cr : r ∈ R∗} forms a
commutative group under the operation CrCs = Crs (for any r, s ∈ R∗) with
identity element C1 in which for any Cr ∈ C, C−1r = C 1

r
. This group C is

eventually isomorphic to the multiplicative group R∗ under the isomorphism
Cr 7→ r. Every point on the identity element C1 (i.e., on the curve C1)
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represents the identity element of exactly one group of matrices of the form
G(m). If a point P on Cr represents a matrix A in the group G(m), then
the MP inverse A+ of A (i.e., A−1 in the group G(m)) is represented by
the point Q on the group inverse C−1r = C 1

r
of Cr in the group C, which is

the point of intersection of the curve C 1
r
and the line y = mx. Following

diagram [Fig. 4] depicts this beautifully synchronized harmony.

O

C1
r

C1

Cr

xx′

y

y′

Q

P

y
=
m
x

Fig. 4

Let us now define a mapping

f : G(m)→ C by f

(
x

[
1 m

m m2

])
= Cr, where r = x(1 +m2).

Now, for any x, y ∈ R∗, if r = x(1 +m2) and s = y(1 +m2), then

f

(
x

[
1 m

m m2

]
y

[
1 m

m m2

])
= f

(
xy(1 + m2)

[
1 m

m m2

])
= Cxy(1+m2)2 =

Cx(1+m2)Cy(1+m2) = CrCs = f

(
x

[
1 m

m m2

])
f

(
y

[
1 m

m m2

])
, whence f

is a group homomorphism.

For any r ∈ R∗, x = r
1+m2 ∈ R∗ and so f

(
x

[
1 m

m m2

])
= Cr. Again,
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f

(
x

[
1 m

m m2

])
= C1 =⇒ Cx(1+m2) = C1 =⇒ x = 1

1+m2 =⇒

x

[
1 m

m m2

]
is the identity element of the group G(m).

Thus the group of matrices G(m) is isomorphic to the group of curves C
for eachm ∈ R. Again the group of curves C is isomorphic to the multiplica-
tive group R∗ by isomorphism Cr 7→ r. Hence for each m ∈ R, G(m) ∼= R∗

by the isomorphism

A = x

[
1 m

m m2

]
7→ Cr 7→ r

where r = x(1 +m2), which is the nonzero eigenvalue of A. Thus from the
linear algebraic standpoint, we can say that, since for every A ∈ G(m), there
exists unique r ∈ R∗, such that A is orthogonally similar to the matrix B =

x

[
0 0

0 r

]
∈ G0 and thereby r is the nonzero eigenvalue of A, so the group

isomorphism for which G(m) ∼= R∗, maps A into its nonzero eigenvalue
r. Geometrically, if a point P on R2 (not on y-axis) on the line y = mx

represents a matrix A in the group G(m), then the group isomorphism for
G(m) ∼= R∗ maps A into the point Q, at which the perpendicular to the
line y = mx at P , intersects the x-axis. It follows immediately from the
following diagram [Fig. 5] along with the diagram in Fig. 3.

Q (r,
0)

x

O

x′

y

y′

y
=
m
x

P

Fig. 5
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Note that, for any a, b ∈ R∗, if the points Ma(m) and Mb(m) on y = mx

represent the matrices A and B inG(m), thenMab(m) represents the matrix
AB in G(m), on y = mx. This indicates that the set M = {Ma(m) : a ∈
R∗} turns out to be a commutative group under the operation defined by
Ma(m)Mb(m) = Mab(m). The identity element of the group M is M1(m)

which represents the identity element IG(m) of the group G(m). The group
theoretic inverse (Ma(m))−1 of Ma(m) in the group M is M 1

a
(m). In other

words, if Ma(m) represents a matrix A in G(m), then the inverse of Ma(m)

in the group M represents the inverse of A in the group G(m).

3.2. Examining the Groups without the ‘Desired Property’.

3.2.1. Connecting G(m,n) with G0 ∈ G via Similarity. In order to organize
the matrices in G(m,n)(m,n ∈ R with m 6= n, 1 +mn 6= 0) in a systematic
manner, we first consider the class of all matrices with column space y = mx

(for a fixed m ∈ R), which are non-orthogonally similar to the diagonal

matrix

[
0 0

0 r

]
for a fixed r ∈ R∗. This class is indeed formed by taking

exactly one matrix from each group G(m,n) when m ∈ R is fixed and n

(satisfying n 6= m and 1 + mn 6= 0) runs over R. One such matrix from

G(m,n) is A = r

[
1

1+mn
n

1+mn
m

1+mn
mn

1+mn

]
. We pin down the matrix A on the line

y = nx which is the row space of A, by associating a unique point, denoted
by Mr(m,n) (for a fixed m) at a distance say s, from the origin, on the
line y = nx.

Suppose x = r
1+mn , so that nx = nr

1+mn , whence (x, nx) is a point on
y = nx. Let us take Mr(m,n) = (x, nx) to locate the matrix A ∈ G(m,n)

on R2. Now, we note that the distance s of this point Mr(m,n) is given by

s2 = x2 + n2x2 =
r2(1 + n2)

(1 +mn)2
.

So s = |r|
√
1+n2

|1+mn| .

3.2.2. Locating the matrices in G(m,n) on R2 Geometrically. For the non-
null vector (0, r) on the y-axis that corresponds to the matrix B ∈ G0, the
family of non-orthogonally similar matrices, one from each group G(m,n)

(as n runs over R, keeping m fixed, with the restrictions already stated) can
be made to correspond to the points lying on the line y = nx, respectively
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at a distance s = |r|
√
1+n2

|1+mn| from the origin, each matrix being r times the
‘identity’ of the corresponding group G(m,n).

These points, corresponding to a fixed r ∈ R∗, trace out a line on R2,
whose parametric equation is given by

x =
r

1 +mn
, y =

rn

1 +mn
(with parameter n).

This is indeed the line x + my = r on R2, not passing through the
origin. Note that, for a fixed r ∈ R∗, geometrically this line is perpendicular
to y = mx and intersects it at the typical point Mr(m), which is, in fact,
the point representation of the matrices in G(m)(∈ G), orthogonally similar

to the matrix

[
0 0

0 r

]
. Thus, towards exactly locating the desired class of

points in the present case, we must keep the point of intersection of the lines
x + my = r and y = mx (for each fixed r ∈ R∗) out of our consideration.
Thus, if r runs over R∗, we get that, for each fixedm ∈ R, a family of parallel
lines (each being perpendicular to y = mx) given by L = {x + my = r :

r ∈ R∗}, which are broken at the points Mr(m) (r ∈ R∗), represents the

classes of matrices those are non-orthogonally similar to

[
0 0

0 r

]
, (r ∈ R∗)

[Fig. 6].
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Note that, the whole line like x + my = r here happens to be a repre-
sentation of the class of all similar singular (symmetric or non-symmetric)

matrices (with column space y = mx), diagonalizable to the matrix

[
0 0

0 r

]
.

As a passing remark, here we point out that, every line in the aforesaid fam-
ily is indeed an affine subspace in R2; in fact, every such line is the solution

set (in R2) of the matrix equation Ax = b, where A =

[
1 m

0 0

]
, x =

[
x

y

]

and b =

[
r

0

]
for some r ∈ R∗.

3.2.3. Visual Locations of Various Subclasses on R2. So we have seen that,
for a fixed m ∈ R and a fixed r ∈ R∗, as n runs over R with the usual
restrictions, a matrix P ∈ G(m,n) with nonzero eigenvalue r, is located
on R2 by a point on the line x + my = r. Geometrically, it means that,
due to the rotation of the line y = mx through an angle α with 0 <

α < π
2 ,

π
2 < α < π (anticlockwise), when it arrives at the line y = nx,

then its point of intersection with the line x + my = r becomes the point
representation (P.R.) Mr(m,n) of P on R2. [Fig. 7, 8, 9]. The line y = mx

may rotate through some particular α to arrive at the line x = 0. The point
of intersection (0, rm) in this case represents the matrix P ∈ G0(m, 0) with
nonzero eigenvalue r. [Fig.10]
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It is interesting to note that, while the family of curves C = {Cr : r ∈
R∗} (introduced in 3.1.5) is useless to represent the matrices in G(m,n)

on R2, the family of lines L = {x + my = r : r ∈ R∗} may be used for
locating the matrices in G(m) (m ∈ R). In fact, if n 6= m is dropped and
if G(m) be written as G(m,m), then the point-representation Mr(m) of a
matrix A ∈ G(m) with nonzero eigenvalue r, is nothing but the point of
intersection of y = mx and the line x + my = r taken from the family L.
This not only suggests an easier way to trap the points on R2 that represents
the symmetric matrices in G(m), but also provides us with a way out for
representing the symmetric matrices in G0 as well. Recall that, both the
row space and column space of every matrix in G0 are the y-axis (x = 0),
which has no point in common with any of the curves of the family C; so in
no way the family C may help to locate the matrices in G0. However, we
may form a family corresponding to G0, essentially analogous to the family
L, that may serve our purpose. Recall that the family of parallel lines
L, for G(m) and G(m,n) both, are the lines perpendicular to the column
space y = mx for every matrix in G(m) (and G(m,n)). Guided by this
feature of forming the family of lines, we consider for G0, the family of lines
{y = r : r ∈ R∗}, which are perpendicular to the column space (x = 0)
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of every matrix in G0. Then similar to the case of G(m), we can say that
the point-representation of a matrix A ∈ G0, (with nonzero eigenvalue r),
is merely the point of intersection of x = 0 and y = r, i.e., the point (0, r)

[Fig. 11].
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Focusing on the form of the matrices in G0(0,m), we see that, x = 0

is the column space of all the matrices here, which happens to be the same
as those in the class G0; so we may go by the method applied for the
matrices in G0, to locate the matrices in G0(0,m) on R2. Hence the point
representations of A ∈ G0(0,m) with eigenvalue r 6= 0, is the solution of the
equations y = r and y = mx (row space), which is clearly the point ( rm , r)

and then A = r
m

[
0 0

1 m

]
∈ G0(0,m) [Fig. 12].

3.2.4. Non-diagonalizable Matrices and Jordan Line. Note that, for any

m ∈ R∗, a matrix J = r

[
1 − 1

m

m −1

]
∈ J(m) (r ∈ R∗) is represented by

(r,− r
m) lying on the line x + my = 0. We call it the Jordan line for
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m ∈ R∗. Further, observe that, a matrix J1 = r

[
0 1

0 0

]
∈ J0 (r ∈ R∗) is

represented by (0, r) (which lies on the row space of every matrix in J0) on
R2. So, the row space x = 0 is termed as the Jordan line for m = 0.

Again, each matrix J2 = r

[
0 0

1 0

]
∈ J0 (r ∈ R∗) is represented on R2 by

the unique point (r, 0) lying on y = 0. We wish to call this line y = 0 as a
Jordan like line following the two other cases, but one must appreciate that
this particular line cannot be represented as x + my = 0 or, equivalently
as y = − 1

mx (m ∈ R∗) for any m ∈ R. However, note that, y = − 1
mx is

a Jordan line for every m ∈ R∗, and as m ∈ R∗ grows larger and larger,
these lines approach (in limit) to this typical line y = 0. So, the line y = 0,
representing the matrices in J0 on R2 can be idealized as Jordan line on
R2 at infinity.

3.2.5. Putting all the Results in a Nutshell. We can now say that all the
singular 2 × 2 real matrices have been classified from our context. In fact,
we have categorized all such singular matrices into some classes, each of
which, with respect to the operation of usual matrix multiplication, either
possesses a rich algebraic structure of an Abelian group, or else fails to have
even the simplest structure of a groupoid. Also we have considered the
member matrices of these classes structurally from various perspectives of
linear algebra towards analyzing and understanding their abstract algebraic
behaviors that have been discussed so far. Let us now present, in a compact
tabular form, all of these different classes of 2×2 singular real matrices with
their main aspects and features, as have so far been revealed through our
investigation, in the following table.

For the sake of typographical space management, we shall use the fol-
lowing abbreviations in the table.
LAA : Linear Algebraic Aspects,
AAA: Abstract Algebraic Aspects,
MM : matrix multiplication,
LR: Line-representation on R2,
PR: Point-representation on R2.
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All Singular 2× 2 Matrices over R
AAA Geometric Aspects

Class LAA (under MM) LR of PR of a Matrix
the Class A of the Class

Class of orthogonally ( r
1+m2 ,

rm
1+m2 ) :

simultaneously diagonalizable An r 6= 0 is eigenvalue of A
G(m); (i.e. Symmetric) matrices Abelian y = mx Point of intersection of
m ∈ R Column space : y = mx Group y = mx and x2 + y2 = rx

Row space : y = mx A−1 = A+ OR,
y = mx and x+my = r

Class of orthogonally
simultaneously diagonalizable An

G0 (i.e. Symmetric) matrices Abelian x = 0 (0, r) :
Column space : x = 0 Group r 6= 0 is eigenvalue of A

Row space : x = 0 A−1 = A+

Trivially diagonalizable A trivial
{θ2×2} (i.e. Symmetric) matrix Group —– (0, 0)

A−1 = A+

Class of non-orthogonally ( r
1+mn

, rn
1+mn

) :
G(m,n); simultaneously diagonalizable An r 6= 0 is eigenvalue of A
m,n ∈ R (i.e.non-Symmetric) matrices Abelian y = nx Point of intersection of
n 6= m, Column space : y = mx Group y = nx and x+my = r

mn 6= −1 Row space : y = nx A−1 6= A+

Class of non-orthogonally (0, r
m
) :

G0(m, 0); simultaneously diagonalizable An r 6= 0 is eigenvalue of A
m ∈ R∗ (i.e.non-Symmetric) matrices Abelian x = 0 Point of intersection of

Column space : y = mx Group x = 0 and x+my = r

Row space: x = 0 A−1 6= A+

Class of non-orthogonally
G0(0,m); simultaneously diagonalizable An ( r

m
, r) :

m ∈ R∗ (i.e.non-Symmetric) matrices Abelian y = mx r 6= 0 is eigenvalue of A
Column space : x = 0 Group

Row space: y = mx A−1 6= A+

[Continued]
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Classification of all Singular 2× 2 Matrices over R
AAA Geometric Aspects

Class LAA (under MM) LR of PR of a Matrix
the Class A of the Class

Class of non-diagonalizable (r,− r
m
) : when

J(m); (i.e. similar to Jordan) matrices A = r

(
1 − 1

m

m − 1

)
m ∈ R∗ Not even a x+my = 0 with r ∈ R∗

Column space : y = mx Groupoid Jordan line
Row space : x+my = 0 for m ∈ R∗

Class of non-diagonalizable (0, r) : when

J0 (i.e.Jordan) matrices A = r

(
0 1

0 0

)
Not even a x = 0 with r ∈ R∗

Column space : y = 0 Groupoid Jordan line
Row space : x = 0 for 0

Class of non-diagonalizable (r, 0) : when

J0 (i.e.Jordan) matrices A = r

(
0 0

1 0

)
Not even a y = 0 with r ∈ R∗

Column space: x = 0 Groupoid Jordan line
Row space : y = 0 at infinity

It is apparent from the table above that there are different classes which
are represented by the same line on R2. As for example, the classes G(n)

and G(m,n) (for m,n ∈ R with m 6= n) are represented by the same line
y = nx, though one of them is a class of symmetric matrices and the other
is of non-symmetric matrices. Moreover, matrices belonging to different
classes are sometimes being represented by the same point on R2. In fact,

the orthogonally diagonalizable (symmetric) matrix r

[
1 0

0 0

]
∈ G(0), (a

group of matrices ‘with the desired property’), and the non-diagonalizable

Jordan matrix r

[
0 0

1 0

]
∈ J0, (a set ‘without the desired property’) both

are represented by the same point (r, 0) on R2. This shows that the bijec-
tivity between various classes and their line-representation, and also that
between the member-matrices and their point-representations seem to be
missing. However, to achieve this bijection, it is necessary to take parallel
copies of R2 on which the line and the point representations of the classes
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and matrices may be spread out systematically in such a way that no line
(point) on the same copy of R2 may represent two or more distinct classes
(respectively, matrices). In the next subsection, we undertake such a geo-
metric presentation of the state of affairs.

3.3. The Visual Library of Real 2×2 Singular Matrices in R3. Let us
consider the 3-dimensional space R3 and fix a three dimensional Cartesian
reference frame. For each fixed m ∈ R we take two fixed 2-dimensional
planes y = mx (i.e. mx− y+ 0 · z = 0) and z = m which are orthogonal to
each other. The line of intersection of these planes is x

1 = y
m = z−m

0 , which
is a fixed line on the plane z = m. We shall refer to this plane z = m, which
is parallel to the xy-plane at a height (or, depth) of m from origin O as the
m-plane, for each m ∈ R [Fig. 13].
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Note that, such an m-plane (for each m ∈ R) is not a subspace of R3.
However, an m-plane is an affine space in R3. Indeed, we see that AX = b,

where A =

0 0 0

0 0 0

0 0 1

 and b =
[
0 0 m

]T
has the solution set {(x, y,m :

x, y ∈ R} which is virtually the m-plane z = m. Take the xz-plane and
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also yz-plane. Suppose they meet the m-plane z = m in the line xmOmx′m
and ymOmy′m [Fig. 14]. The point Om is naturally the point at which the
z-axis intersects the m-plane z = m. Thus, for every choice of m ∈ R, the
three dimensional Cartesian Coordinate system (x, y, z) is translated into
another system (xm, ym, zm) through xm = x, ym = y, zm = z −m, where
every point on m-plane is (xm, ym, 0). This in turn yields a two-dimensional
frame on m-plane, (for each m ∈ R ) on which the fixed line x

1 = y
m = z−m

0

gets its equation as ym = mxm, or, for all practical purpose, as y = mx (by
writing Om, xm, ym as O, x, y respectively, if no confusion occurs.) Recall
that, with the points on this affine space z = m, looked upon as a copy
of R2, we already have a one-to-one correspondence with those 2 × 2 real
singular matrices, that have their column space as the fixed line y = mx.

3.3.1. Organizing the Catalogue of the Library. The effects of the afore-
said translation (for different m ∈ R) of the pre-fixed 3-dimensional ref-
erence frame indulges our imagination of the old-fashioned manual ‘card-
cataloguing’ system of books racked in a library. Imagine that all our groups
of singular 2 × 2 real matrices (of the form G(m), G(m,n),m, n ∈ R) and
the sets of all possible Jordan 2× 2 matrices are, as if, being catalogued on
the catalogue cards of affine planes (m-plane, m ∈ R), which are stacked
in a vertically placed huge catalogue drawer of R3, all being fixed with a
catalogue rod of z-axis pierced through all the cards of affine planes, en-
dowing each plane with an ‘origin’ for a 2-dimensional reference plane at
the piercing point, (a copy of R2 indeed), corresponding to the origin of the
pre-fixed 3-dimensional reference frame in R3. [Fig. 15] The catalogue cards
of m-planes (m ∈ R) are arranged in the catalogue drawer of R3 vertically,
according to the natural ‘total order’ of the reals m ∈ R on the real line.
That is the key to handle this catalogue drawer in order to locate our groups
and Jordan matrix sets.

3.3.2. Locating Different Subclasses of Matrices on Copies of R2. For a fixed
m ∈ R, to locate the position of the group G(m), one must start from the 0-
plane (i.e., xy-plane) and then has to move upward (if m > 0) or downward
(if m < 0) along the catalogue rod of z-axis to find the ‘m-th card’ (i.e., m-
plane) of the drawer and then read this card by its fixed line y = mx

[refer to Fig. 15]. Our group G(m) is described on this card by the fixed
line y = mx(excluding the origin). For n ∈ R with n 6= m, the group G(n)

cannot have any description on the mth card; to determine it one has to
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find the ‘nth card’ (i.e., n-plane) of the drawer, on which y = nx is the fixed
line, which (excluding the ‘origin’) describes the group G(n). The group
G(m,n) is located on the mth card (i.e., m-plane with fixed line y = mx),
but it is described by the line y = nx (excluding the origin).
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On the other hand, the group G(n,m) is located on the nth card (i.e.,n-
plane, with fixed line y = nx) but it is described by the line y = mx

(excluding the origin). Again, on the ‘mth card’ (i.e., m-plane), the set

Jm of Jordan matrices of the form r

[
1 − 1

m

m −1

]
are described by the line

x + my = 0 (excluding origin) whence we call it as the Jordan line on the
m-plane, while the line x+ny = 0 on the ‘nth card’ (i.e., n-plane) describes
the set Jn of Jordan matrices whence it is the Jordan line on n-plane. [Fig.
15]

3.3.3. Locating Individual Matrices on Different Copies of R2. Note that,
reading the mth catalogue card (i.e., m-plane) for each m ∈ R does not help
us to locate an individual matrix on that plane; rather it helps us
to locate some specific classes (like, G(m), G(m,n), Jm) in which individual
matrices of identical characteristics may be contained. It thus, in a sense,
provides a ‘call number’ of an individual matrix. What we need further, is
something like an ‘accession number’ for individual matrices, in order to lo-
cate them on various m-planes. Towards this, we have to draw some curves
(and/or lines) on a particular m-plane, in such a way that, the individual
matrices may be ‘accessed’ (i.e., located) at the respective points of intersec-
tion of these curves (and/or lines) with suitably chosen lines through origin
on m-planes, a line that represents the classes of the individual matrices.
What are these families of curves and lines on a m-plane for a fixed m ∈ R
have already been derived in Sections 3.1.3 and 3.2.3.

Recall that, for any particular m ∈ R, the family of curves on the
corresponding m-plane (viewed as a copy of R2) is C = {Cr :: x2 + y2 =

rx : x, y ∈ R, (x, y) 6= (0, 0), r ∈ R∗}, where each Cr may be looked upon
as a 2-dimensional space curve on the m-plane. However, in actuality, they
should be appreciated as the cross section in R3 made by the affine space
z = m (i.e.,m-plane) with the surface x2 + y2 = rx for r ∈ R∗, whence they
are 3-dimensional space curves having equations x2 + y2 = rx, z = m with
the point (0, 0,m) missing. Now, since all the m-planes (m ∈ R) as affine
spaces in R3, are parallel to the xy-plane, (i.e, 0-plane), and since in that
plane the curves of the aforesaid family (for each r ∈ R∗) are indeed circles,
it is easy to see that the surface x2 + y2 = rx in R3 is a right circular
cylinder having the guiding curve x2+y2 = rx, z = 0 and a generating line
x−r
0 = y

0 = z
1 (perpendicular to xy-plane). Note that the z-axis lies on the



134 PARTHASARATHI MUKHOPADHYAY AND UTPAL DASGUPTA

cylinder x2 + y2 = rx for each r ∈ R∗. If, by a so called one-point fine cut,
just the z-axis is slashed out of the cylinder, then we have a one-parameter
family of surfaces Sr(r ∈ R∗) in R3, where Sr = x2+y2 = rx, (x, y) 6= (0, 0),
which when cross-sectioned by the affine spaces like z = m(m ∈ R), give
rise to our known family C on m-planes. [Fig.16] It is interesting to note
that, for every r ∈ R∗, the equation x2 + y2 = |r|x; (x, y) 6= (0, 0) gives a
surface in R3 which is everything of a double cylinder, except a one point
fine cut along its z-axis. [fig. 17]

Cr

Om

z

z′

The point Mr(m) = ( r
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Thus in sooth, the whole scenario is like the following: For two m,n ∈ R
with m 6= n,
(i) the groups G(m) and G(n) are represented on the two different planes
z = m (m-plane) and z = n (n-plane) respectively.
(ii) In m-plane, the group G(m) is represented by the line y = mx, z = m;

whereas, G(n) is represented on n-plane by the line y = nx, z = n.
(iii) A matrix A belonging to G(m) is represented on the m-plane by the
point of intersection of the line y = mx, z = m and the cylinder x2+y2 = rx

whenever r is the nonzero eigenvalue of A. To locate a matrix B ∈ G(n)

with nonzero eigenvalue r, on the n-plane, we have to specify the point
at which the line y = nx, z = n intersects the cylinder x2 + y2 = rx, as
discussed in the previous section.

x′m
xm

(r, 0)

ym

y′m

z

z′

Double Cylinder x2 + y2 = |r|x
with one point fine cut along z-axis

Om

y = mx

m-plane
Cr

C−r

M
r
(m

)

M
−r (m)

Fig.17
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Apart from the 2-dimensional cylindrical surface sitting in R3 and pro-
ducing 1-dimensional curves in 2-dimensionalm-planes when sliced by them,
we get another family of surfaces, this time 3-dimensional and sitting in R4,
given by S = {x + yz = r : r ∈ R∗}. For a fixed r ∈ R∗, the cross
section of the surfaces of this family by an m-plane gives a family of lines
L = {x+my = r : m ∈ R}. The role of this family in determining the point
representation of the matrices in G(m,n) (with n 6= m,mn 6= −1), G0(m, 0)

and some of the matrices in G(m) has already been discussed in Section
3.2.3.

It is interesting to observe that, by virtue of this ‘Card Cataloguing’
of singular 2 × 2 matrices, each line of R3 that lies on an unique m-plane
(m ∈ R) and each points on those lines respectively represent a unique
class and a unique matrix belonging to those classes. Recall that, the idea
of this typical ‘Card Cataloguing’ rests upon the act of taking the lines
y = mx(m ∈ R) as the fixed lines on the m-plane and then to represent
(by its points) all those singular 2×2 matrices which have the line y = mx

as their column space.

This idea may use up each of the points in R3 (being considered as
a point on some 2-dimensional affine space in R3) towards representing a
unique singular 2 × 2 real matrix; but interestingly, still there will remain
some classes (and their matrices) which will not get any line (respectively,
point) representation on any affine space (m-plane). These matrices are
precisely those which have the y-axis (i.e., line x = 0) as their column
space. Note that, as this is the only line that cannot be expressed in the
form y = mx, we do not get an affine space parallel to xy-plane in R3 that
may contain this line as a ‘fixed line.’ Hence no ‘catalogue card’ (m-plane) in
the ‘catalogue drawer’ of R3 records the ‘call number’ (representing lines)
and the ‘accession numbers’ (representing points) for the matrices which
have x = 0 as their column spaces. So, apart from all the copies of R2,
that have already been tagged by reals m ∈ R, we do need exactly one
more copy of R2 to represent the classes G0, G0(0,m), J0 containing those
singular matrices that have x = 0 as their column spaces. This copy of
R2 cannot be placed inside R3. However, if we take the extended real line
R ∪ {∞}, then this copy of R2 can be thought of as a plane at infinity
(‘∞-plane’), containing x = 0 as its fixed line. Then all those particular
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classes as stated above and all of their matrices can be represented on that
‘∞-plane’ by its lines and its points respectively and that may be done in
the manner similar to what has been adopted for m-planes (m ∈ R). This
brings an end to our pictorial geometric odyssey with the 2×2 singular real
matrices and we digress once again to algebraic perspectives.

4. Epilogue : An Abstract Algebraic Detour

We started our inquisition from a purely abstract algebraic set up, indeed,
that of a commutative group, where the elements were matrices and hence
were linear algebraic objects. This motivated us initially to look into the
possible interplay at their structural level towards resolving one specific
question about the group theoretic inverse. Later, thanks to the favourable
size of the matrices under consideration, we indulged our visual imagination,
to try and locate all these matrices geometrically via pictorial presentation
in R3, successfully to a great extent. All this said and done, we now go back
to algebra again, and use abstract algebraic tools to dissect those particular
classes, that have already been pinned down, one in favour of what we
wanted, while the other failing to satisfy that property. It is now time to
see what makes them ‘tick’.

4.1. Why the Groups in G(m) are the way they are?

4.1.1. An Action of G(m) and A Group of Permutations. We have seen
that for each m ∈ R, the set M(m) = {Ma(m) ∈ R2 : a ∈ R2} forms a
commutative group under the operation

Ma(m)Mb(m) = Mab(m).

Eventually, this group M(m) is seen to be isomorphic to G(m), under the
isomorphism given by Ma(m) 7→ A ∈ G(m), whenever a is the nonzero
eigenvalue of A. Thus, group theoretically, for each m ∈ R, our group
G(m) is isomorphic to a subgroup of the group SM(m) of permutations of
M(m). In fact, we see that, the group G(m) (for m ∈ R) acts on the set
M(m) from left by the action defined by

A ·Ms(m) = Mas(m),

whenever a is the nonzero eigenvalue of A ∈ G(m). Thus the mapping φ :

G(m) → SM(m), given for any A ∈ G(m) with a as its nonzero eigenvalue,
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by φ(A) = σA is a homomorphism, where σA : M(m) → M(m) is defined
by

σA(Ms(m)) = A ·Ms(m) = Mas(m).

Now for any A ∈ G(m) with nonzero eigenvalue a, φ(A) = σIG(m)
(iden-

tity permutation of M(m)) =⇒ σA = σIG(m)
=⇒ σA(Ms(m)) =

σIG(m)
(Ms(m)) =⇒ Mas(m) = Ms(m) =⇒ as = s =⇒ a = 1 =⇒

A = IG(m). Thus, φ : G(m) → SM(m) is a monomorphism, whence G(m)

is embedded in the group SM(m) of permutations of M(m).

4.1.2. Permutations as a Linear Operator. The set M(m), with one point
(0, 0) adjoined, is indeed the subspace y = mx in R2. Thus, each permuta-
tion σA (A ∈ G(m)) of M(m) can be shown to be a linear operator on the
subspace y = mx, when the image of (0, 0) under σA is defined to be (0, 0)

(for any A ∈ G(m)). Clearly this linear operator is invertible. It is interest-
ing to note that, for each A ∈ G(m), the inverse of the linear operator σA
on y = mx is σA−1 where A−1 is the group inverse of A in the group G(m).

Note that whenever we talk about a linear operator T on R2, we usually
associate a 2 × 2 matrix A (say) with T in such a way that T = LA (left
multiplication transformation by A) and [T ]ε = A, where ε is the standard
ordered basis for R2 and vice-versa. Thus, a 2 × 2 matrix over R may be
perceived as a linear transformation from R2 to R2, but cannot actually be
thought of as a linear transformation from its row space (as its ‘domain’) to
its column space (as ‘codomain’), although it does map the row space to the
column space (as subspaces of R2). Moreover, the matrix representation of
T : R2 → R2 relative to any ordered basis for R2 is a 2× 2 matrix, whereas
the matrix representation from the row space to column space of A may be
an 1× 1 matrix, in some cases. These are precisely the distinction between
A (i.e., T = LA) and σA for every A ∈ G(m), despite the fact that

σA

(
Ms(m)

)
= A ·Ms(m) for any s ∈ R∗.

Also note that, for every A ∈ G(m) (for a fixed m ∈ R), T = LA :

R2 → R2 is a non-invertible linear transformation, while the transformation
σA : R(A) → C(A), as seen above, is invertible, where both R(A) and
C(A) are same as the space y = mx. The invertibility of σA (for A ∈ G(m))

is the key factor in establishing a kind of generalized invertibility (MP-
invertibility) of the non-invertible linear operator T (= LA) on R2; and on
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the way towards that, we understand as to how does the group structure of
G(m) play there its role, thereby resolving our inquisition of why the MP
inverse of A ∈ G(m) coincides with its group inverse in G(m).

4.1.3. Why A−1 = A+ for all A ∈ G(m)? Let T ∈ L(R2) be singu-
lar and self-adjoint and A = [T ]ε, where ε is the standard orthonormal
ordered basis for R2. Clearly, A ∈ G(m) for some m ∈ R, and also
N(T )⊥ = R(T ) = M(m) ∪ {(0, 0)}. In order to find the MP inverse T+

of T , we first take the restriction T
∣∣∣
N(T )⊥

= f . It is well-known from lin-

ear algebra that this restriction f : N(T )⊥ → R(T ) is an invertible linear
transformation, admitting the inverse f−1 : R(T )→ N(T )⊥. Then the lin-
ear transformation T ′ : R2 → R2 defined by T ′(v) = f−1(v1) for all v ∈ R2,
where v1 ∈ R(T ) is the unique vector of R2 obtained from the direct sum
v = v1 + v2 ∈ R(T )⊕R(T )⊥(= R2), turns out, by definition, to be the MP
inverse T+ of T .

Here, in the present context, since T = LA, it is seen at once, that
the restriction of T on N(T )⊥ is f = σA ( the permutation of M(m) by
A ∈ G(m)) and also f−1 = σA−1 (the permutation of M(m) by A−1 ∈
G(m)). Here lies the subtle role of the group structure of G(m), that is
indeed, worth pointing out. One can now compute the unique v1 ∈ R(T ) =

M(m) ∪ {(0, 0)} for any v = (x, y) ∈ R2 as

v1 =
x+my

1 +m2
(1,m) = Mx+my(m),

whence
T ′(v) = σA−1

(
Mx+my(m)

)
= A−1v = LA−1(v).

Thus we find T+ = LA−1 , when T = LA i.e., L+
A = LA−1 . Observe the

pattern : The MP inverse of the left-multiplication transformation by the
non-invertible matrix A ∈ G(m) is nothing but the left-multiplication trans-
formation by the group theoretic inverse A−1 of A in the group G(m). This
eventually resolves our inquisition; in fact, from linear algebra, we have

[LA]+ε = [L+
A]ε = [LA−1 ]ε =⇒ A+ = A−1.

4.2. Why the Groups in G(m,n) are the way they are?

4.2.1. Reaching the Group G(m,n) through the same tool. Now, for a fixed
m ∈ R, we search the nonzero singular matrices B, not belonging to G(m),
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such that the restriction of the aforesaid linear operator over y = mx

is an element σA of the permutation group SM(m), for some A ∈ G(m).
Since σA is a permutation of M(m), we have σA(M(m)) = M(m), whence
LB(M(m)) = M(m). Hence y = mx is an LB-invariant subspace of R2 (as
LB(0, 0) = (0, 0) = σA(0, 0)), and so it is the column space of B. Thus,

B =

[
p q

pm qm

]
. Now, (p, q) 6= (0, 0) (asB 6= θ2×2) and so the one di-

mensional subspace {r(p, q) : r ∈ R} is the row space of B. Again,
q 6= pm (since, B /∈ G(m), its row space is different from its column space
y = mx). Also, since (0, 0) /∈ M(m) and σA is a permutation of M(m), so
BMs(m) = LB(Ms(m)) = σA(Ms(m)) 6= (0, 0) for any s ∈ R∗. Hence the
row space {r(p, q) : r ∈ R} is not orthogonal to its column space y = mx;
i.e., (p, q) · (1,m) 6= 0, i.e., p + qm 6= 0. Thus, the class of all the matrices
B, which satisfy the condition that the restriction of LB on the subspace
y = mx is the permutation σA of M(m), for some A ∈ G(m) is

S =

{[
p q

pm qm

]
: p, q ∈ R, (p, q) 6= (0, 0), q 6= pm, p+ qm 6= 0

}
.

Now we fix p, q ∈ R such that B =

[
p q

pm qm

]
∈ S. Since for each x ∈

R∗, (xp, xq) 6= (0, 0), xq 6= xpm, and xp + xqm 6= 0, so xB ∈ S for each
x ∈ R∗. Consider the subset S(B) = {xB : x ∈ R∗}. It can be readily
checked that S(B) is a commutative semigroup under multiplication, since
for any x, y ∈ R∗, (xB)(yB) = tB for some t = xy(p + qm) ∈ R∗. Also it
can be shown that, for any C ∈ S(B), A ∈ G(m) and s ∈ R∗, LC(Ms(m)) =

σA(Ms(m)) if and only if the matrices A and C have the same eigenvalues.
Thus the mapping φ : G(m) → S(B), defined by φ(A) = BA ∈ S(B),
whenever BA has its nonzero eigenvalues same as that of A, is well defined.
Note that, if A,A′ ∈ G(m) have nonzero eigen values a and a′ respectively,
then the nonzero eigen value of AA′ ∈ G(m) is aa′. Let BA = rB and
BA′ = r′B for some r, r′ ∈ R∗. Then r(p + qm) = a and r′(p + qm) = a′.
Again, BABA′ = (rB)(r′B) = rr′(p + qm)B which has the nonzero eigen
value rr′(p + qm)2 = aa′. Thus, φ(AA′) = BABA′ = φ(A)φ(A′), which
indicates that φ : G(m) → S(B) is a homomorphism. Again for any
A,A′ ∈ G(m), BA = BA′ =⇒ σA(Ms(m)) = σA′(Ms(m)) for all s ∈
R∗ =⇒ Mas(m) = Ma′s(m) =⇒ as = as′ =⇒ a = a′ =⇒ A = A′. So,
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φ is injective. Now, for B ∈ S(B), ∃P ∈ G(m) such that φ(P ) = B. Then
clearly xP ∈ G(m) (∀x ∈ R∗) and for any xB ∈ S(B), φ(xP ) = xB, whence
φ is surjective. Thus φ : G(m) → S(B) is a semigroup isomorphism.
However, G(m) is known to be a commutative group, whence S(B) must
also be so.

Clearly, then I = φ(IG(m)) ∈ S(B) is the identity element of the
group S(B), where IG(m) is the identity element of the group G(m), having
nonzero eigenvalue 1. Then, I has nonzero eigenvalue 1 and since I ∈ S(B),
there exists s ∈ R∗, such that I = sB. Then, s(p+mq) = 1 implying that

I = 1
p+mq

[
p q

pm qm

]
. Now, if any C = sB ∈ S(B) has eigenvalue r ∈ R∗,

then s(p+ qm) = r i.e., s = r
p+mq . So, C = r

p+mq B = rI. So we may write
S(B) = {rI : r ∈ R∗}.

Now, for any C ∈ S(B) if C = φ(A) for some A ∈ G(m) with eigen-
value r ∈ R∗, then the group theoretic inverse of C in the group S(B) is
C−1 = φ(A−1) which has nonzero eigenvalue 1

r (as A−1 ∈ G(m) has 1
r as

its eigenvalue). Thus, the group theoretic inverse of C = rI in S(B) is
C−1 = 1

r I ∈ S(B).

Observe that, for any B ∈ S, S(B) ⊆ S. Again, it is immediate to
observe that, for B,B′ ∈ S, S(B) = S(B′) if and only if B and B′ have
the same row space. So, the class of all distinct disjoint groups of the form
S(B) is {S(B) : B ∈ ζ}, where ζ is the calss of all possible matrices of
different row spaces chosen randomly from S i.e.,⋃

B∈ζ
S(B) = S.

Thus {S(B) : B ∈ ζ} is a set theoretic partition of S.

Since every B ∈ S is singular, so the row space of every matrix B ∈ ζ is
a line through the origin (other than the line y = mx). Thus, the row space
{r(p, q) : r ∈ R} of every matrix in the group S(B) is either the y-axis
(x = 0) or a line y = nx for some n ∈ R, with n 6= m and mn 6= −1. The
whole scenario thus leads to the fact that S(B) turns either into the group
G0(m, 0) or into the group G(m,n) (m 6= n), as described in Section 2.2.
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4.2.2. Why P−1 6= P+ for all P ∈ G(m,n) ? Let r be the nonzero

eigen value of the matrix P = t

[
1 n

m mn

]
∈ G(m,n), (t ∈ R∗). Then,

P = rIG(m,n), where IG(m,n) = 1
1+mn

[
1 n

m mn

]
is the identity of the group

G(m,n) and r = t(1 + mn). So, the linear operator T = LP on R2 can
explicitly be written as,

T (x, y) =
r

1 +mn

[
1 n

m mn

][
x

y

]
=
r(x+ ny)

(1 +mn)
(1,m) . . . . . . (i)

Evidently, the range space R(T ) of T is the column space C(P ) = {x(1,m) :

x ∈ R}, (i.e., the line y = mx). The row space of P , i.e., R(P ) = {x(1, n) :

x ∈ R}, (i.e., the line y = nx) is eventually the orthogonal complement
N(T )⊥ of the null space N(T ) of T . So the restriction f of T over R(P ) is
the invertible linear transformation f : N(T )⊥ → R(T ). Clearly, then, for
any x ∈ R, we get from (i) above that,

f(x(1, n)) =
rx(1 + n2)

1 +mn
(1,m) . . . . . . (ii)

Then, the inverse of f is the transformation f−1 : R(T ) → N(T )⊥, given
by

f−1(x(1,m)) =
x(1 +mn)

r(1 + n2)
(1, n) . . . . . . (iii)

The restriction T = LP over the column space (i.e. R(T )), is the per-
mutation σA (of M(m) ) for some A ∈ G(m), whence r is the nonzero

eigenvalue of A as well. Thus, A = rIG(m) where IG(m) = 1
1+m2

[
1 m

m m2

]
.

Note that, r(1,m) = r(1 + m2)( 1
1+m2 ,

m
1+m2 ) = Mr(1+m2)(m) ∈ M(m) for

any r ∈ R∗ (as described in Section 3.1.3). So, we have, from (iii) above,

(f−1σA)(1,m) = f−1[σA(M1+m2(m))] = f−1[Mr(1+m2)(m)] =

f−1(r(1,m)) =
1 +mn

1 + n2
(1, n)

(since r is the eigenvalue of A).

Let us now consider the real number

s =
(1 +mn)2

r(1 +m2)(1 + n2)
∈ R∗.
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Let B ∈ G(n) be the matrix whose nonzero eigenvalue is s. Now, since
the group G(n) is embedded in the group SM(n) of permutations of the set
M(n), so for B ∈ G(n), σB stands for a permutation of M(n). So, from (ii)
above,

(fσB)(1, n) = f [σB(M1+n2(n))] = f [Ms(1+n2)(n)] = f(s(1, n)) =

rs(1 + n2)

1 +mn
(1,m) =

1 +mn

1 +m2
(1,m)

(since s is the eigenvalue of B).
Now, the matrix Q ∈ G(n,m) which is similar to B = sIG(n), must

have s as its nonzero eigenvalue. So,

Q = sIG(n,m) =
s

1 +mn

[
1 m

n mn

]
=

1 +mn

r(1 +m2)(1 + n2)

[
1 m

n mn

]
=

1

t(1 +m2)(1 + n2)

[
1 m

n mn

]
which is indeed P+, the MP inverse of P , as we have already pointed
out in Remark 2.2.4.

Furthermore, as P ∈ G(m,n), we must have P−1 ∈ G(m,n) as well,
while P+ ∈ G(n,m). Now, from what we have seen so far, it can be
concluded that

P−1 =
1

r
IG(m,n) whence P+ = s IG(n,m)

where r, s ∈ R∗ must be the (nonzero) eigenvalues of P and P+ respectively.
Also recall that

IG(m,n) =
1

1 +mn

[
1 n

m mn

]
and I+G(m,n) =

1 +mn

(1 +m2)(1 + n2)

[
1 m

n mn

]
.

Then,

P−1 =1
r IG(m,n) = 1

r IG(m,n) I+G(m,n) IG(m,n)

= 1
r IG(m,n)

(1+mn)2

(1+m2)(1+n2)
IG(n,m) IG(m,n), as IG(n,m) = 1

1+mn

[
1 m

n mn

]

= IG(m,n)
(1+mn)2

t(1+mn)(1+m2)(1+n2)
IG(n,m) IG(m,n), as r = t(1 +mn)
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= IG(m,n)
(1+mn)

t(1+m2)(1+n2)
IG(n,m) IG(m,n)

= IG(m,n) P
+ IG(m,n),

which is the result stated in Lemma 2.2.10 earlier.

So, in short, we have achieved the following :

Let P ∈ G(m,n) and T = LP . If the respective restrictions of T over R(P )

and C(P ) are given by f and the permutation σA for some A ∈ G(B), then

(f−1σA)(1,m) = 1+mn
1+n2 (1, n) . . . (I)

(fσB)(1, n) = 1+mn
1+m2 (1,m) for some B ∈ G(n). . . . (II)

Also, the matrixQ ∈ G(n,m) which is similar toB ∈ G(n) is the MP inverse
of P , which is clearly distinct from the corresponding group theoretic inverse
P−1 ∈ G(m,n).

It is interesting to note that the above result, in effect, leads us to
another method for calculating MP inverse of the matrices under consider-
ation.

4.2.3. Another Method for Calculating MP Inverse in G(m,n) and G(m).
Observe that, for any s ∈ R∗ and n ∈ R, s(1, n) = Ms(1+n2)(n) ∈ M(n).

Thus for the permutation σB of the set M(n), we see that σB(1, n) =

σB[M1+n2(n)] = Ms(1+n2)(n) = s(1, n), where s is the nonzero eigen-
value of B ∈ G(n). This fact about σB, playing from behind the curtain,
considerably shortens up the assertion made in (II) above and we get,

(fσB)(1, n) = f(s(1, n)) =
1 +mn

1 +m2
(1,m) . . . . . . (∗)

Now since f = T
∣∣∣
R(P )

, so we can find f(s(1, n)) by writing T explicitly,

thereby getting a simple linear equation in s. Solving this, we first find
the nonzero eigenvalue s of P+, and finally P+ itself in G(n,m) for the
P ∈ G(m,n).

To cross-check this technique, let us take the matrix B =

[
1 2

1 2

]
from

Section 1.2 again. Clearly, B ∈ G(1, 2). Let T = LB. Then for any
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(x, y) ∈ R2,

T (x, y) =

[
1 2

1 2

][
x

y

]
= (x+ 2y)(1, 1).

So, f(s(1, 2)) = 5s(1, 1) =⇒ 1+1×2
1+12

(1, 1) = 5s(1, 1) [by (*) above], whence
5s = 3

2 i.e., s = 3
10 . Since B

+ ∈ G(2, 1), we have

B+ = sIG(2,1) =
3

10

[
1

1+2×1
1

1+2×1
2

1+2×1
2

1+2×1

]
=

1

10

[
1 1

2 2

]
=

[
1
10

1
10

1
5

1
5

]
which corroborates with what we have found earlier by the method of rank
factorization in Section 1.2.

Concluding comments

Since we started this journey with the matrix A =

[
1 1

1 1

]
in Section

1.1, it only seems befitting to end with a verification of the unique MP
inverse of that same matrix by the above method as well.

Clearly, A ∈ G(1) = G(1, 1) as we have already explained. Let T = LA.
Then for any (x, y) ∈ R2,

T (x, y) =

[
1 1

1 1

][
x

y

]
= (x+ y)(1, 1).

So, f(s(1, 1)) = (1 + 1)s(1, 1) = 2s(1, 1) and on the other hand f(s(1, 1)) =
1+1×1
1+12

as well; whence, 2s = 1 i.e., s = 1
2 . So, in this case A+ ∈ G(1, 1) is

given by

A+ = sIG(1,1) =
1

2

[
1

1+1×1
1

1+1×1
1

1+1×1
1

1+1×1

]
=

1

2

[
1
2

1
2

1
2

1
2

]
=

[
1
4

1
4

1
4

1
4

]
which turns out to be the expected matrix as calculated before.

On the one hand, while this observation somewhat satisfactorily com-
pletes the circle of our specific inquisition about the 2 × 2 singular real
matrices, on the other, it leaves us to ponder upon the possible generaliza-
tion of this method of finding MP inverse of a matrix, at least for the square
matrices of order n, to begin with.
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A FAMILY OF CONGRUENCES FOR (2, β)−REGULAR
BIPARTITIONS

V PUNEETH AND ANIRBAN ROY

Abstract. The congruence of certain restricted partition functions
known as regular bipartition is discussed in this paper. We particularly
investigate the (2, β)-regular bipartitions of n, denoted by B2,β(n), and
establish certain congruences for B2,β(n) when β ≥ 3. We derive infi-
nite families of congruences modulo 4 for the (2, 3)-regular bipartition.
We also obtain a generalisation of the regular bipartition for modulo p
and p2.

1. Introduction

Partition of an integer n ≥ 0 is the method of expressing n as a sum of
positive integers α1, α2, α3, ..., αk; that is, as n = α1+α2+α3+...+αk, where
the ordering of the integers is irrelevant and p(n) represents the number of
partitions of n ≥ 0. Trivially, p(0) has only one partition called the empty
partition, whereas for n = 7, we have p(7) = 15 and these partitions are:

7, 6 + 1, 5 + 2, 5 + 1 + 1, 4 + 3, 4 + 2 + 1, 4 + 1 + 1 + 1,

3 + 3 + 1, 3 + 2 + 2, 3 + 2 + 1 + 1, 3 + 1 + 1 + 1 + 1, 2 + 2 + 2 + 1,

2 + 2 + 1 + 1 + 1, 2 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1

In [12], Ramanujan obtained some properties of the partition function
for any non-negative integer n, modulo 5, 7 and 11

p(5n+ 4) ≡ 0 (mod 5) (1.1)

p(7n+ 5) ≡ 0 (mod 7) (1.2)

p(11n+ 6) ≡ 0 (mod 11) (1.3)

2010 Mathematics Subject Classification: 05A17, 11P83
Key words and phrases: partitions, generating functions, m-regular partition,
(α, β)-regular bipartition, 3-dissections
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For any positive integer a, q-series notation is given by

fa = (qa; qa)∞

and for any complex number β and |z| < 1,

(β, z)∞ =
∞∏
n=1

(1− βzn−1) (1.4)

Euler introduced the generating functions for partition function p(n) as
∞∑
n=0

p(n)qn =
1

(q; q)∞
=

1

f1
(1.5)

Partition is said to be anm-regular partition if none of its summands are
congruent to 0 (mod m). An ordered pair (η1, η2) is said to be a bipartition
of n if the sum of all the parts of η1 and η2 is n. For integers α, β ≥ 0, an
(α, β)-regular bipartition of n is a bipartition (η1, η2) of n such that η1 is α-
regular and η2 is β-regular. If Bα,β(n) denotes the number of (α, β)−regular
bipartition of n then its generating function is given by

∞∑
n=0

Bα,β(n)q
n =

fαfβ
f21

(1.6)

In [8], Furcy and Penniston obtained many results on congruences for
various values of `-regular partition functions modulo 3. Dandurand and
Penniston [6], obtained various congruences modulo ` for divisibility of `-
regular partition functions b`(n), where ` ∈ {5, 7, 11}. Cui and Gu [5],
studied p-dissection identities for Ramanujan’s theta functions for a given
prime p and derived infinite families of congruences modulo 2 for certain
l-regular partition functions where l ∈ {2, 4, 5, 8, 13, 16}.

In [10], Lin studied the 13-regular bipartitions of n, and proved infinite
family of congruences for non-negative integers α and n

B13

(
3α.n+ 2.3α−1 − 1

)
≡ 0 (mod 3). (1.7)

And in [9], Lin studied l-regular bipartitions of n and proved infinite family
of congruences for non-negative integers α and n

B7

(
3α.n+

5.3α−1 − 1

2

)
≡ 0 (mod 3). (1.8)
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For all non-negative integers α and n, Dou [7] proved the following:

B3,11

(
3α +

5.3α−1 − 1

2

)
≡ 0 (mod 11) (1.9)

In the same paper, he also mentioned two conjectures for B5,7(n) and
B3,7(n). The Conjecture for B3,7(n) was later proved by Xia and Yao in
[14] using q-series identities. Liu and Du [11] discussed the congruence
properties for broken 3-diamond partitions, introduced by Andrews et al.
in [2], based on the MacMohan’s partition analysis. Adiga and Dasappa
[1] gave a simpler proof for the conjecture stated by Wang [13], and also
studied the arithmetic properties of B3,t and B5,t for any integer t > 0.

2. Preliminaries

In this section some of the 3-dissection formulae are recalled as lemmas,
and will be used later for proving theorems.

Lemma 2.1. The following 3-dissections hold

f21
f2

=
f29
f18
− 2q

f3f
2
18

f6f9
(2.1)

f2
f21

=
f46 f

6
9

f83 f
3
18

+ 2q
f36 f

3
9

f73
+ 4q2

f26 f
2
18

f63
(2.2)

Proof. See (Lemma 2.2 in [3]) �

Lemma 2.2. The following 3-dissection holds true

f22
f1

=
f6f

2
9

f3f18
+ q

f218
f9

(2.3)

Proof. See([4] corollary (ii) p.49) �

The following congruences are derivable from the binomial theorem.
These congruences are used at appropriate places, as and when necessary,
in proving the theorems.

f2k ≡ f2k (mod 2) (2.4)

f4k ≡ f22k (mod 4) (2.5)

f8k ≡ f42k (mod 8) (2.6)

f16k ≡ f82k (mod 16) (2.7)
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3. Congruences for (2, 3)-Regular bipartitions

Theorem 3.1. For any n ≥ 1, we have

B2,3(9n+ 7) ≡ 0 (mod 16),

B2,3(27n+ 19) ≡ 0 (mod 16),

B2,3(81n+ 64) ≡ 0 (mod 16)

Proof. From equations (1.6) and (2.2), we see that
∞∑
n=0

B2,3(n)q
n =

f2f3
f21

= 2q
f36 f

3
9

f63
+
f46 f

6
9

f73 f
3
18

+ 4q2
f26 f

3
18

f53
(3.1)

Extracting the terms involving q3n, q3n+1 and q3n+2 on both sides of equa-
tion (3.1), we obtain

∞∑
n=0

B2,3(3n)q
n =

f42 f
6
3

f71 f
3
6

(3.2)

∞∑
n=0

B2,3(3n+ 1)qn = 2
f32 f

3
3

f61
(3.3)

∞∑
n=0

B2,3(3n+ 2)qn = 4
f22 f

3
6

f51
(3.4)

By (2.2) and (3.3),
∞∑
n=0

B2,3(3n+ 1)qn = 2f33

(
f2
f21

)3

≡
(
2
f126 f189
f213 f918

+ 12q
f116 f159
f203 f618

)
(mod 16) (3.5)

By extracting q3n+2 from the above congruence (3.5), we see that

B2,3(9n+ 7) ≡ 0 (mod 16). (3.6)

Extracting the terms involving q3n from equation (3.5),
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∞∑
n=0

B2,3(9n+ 1)qn ≡ 2
f42 f

2
3

f51 f6
(mod 16)

≡ 2
f23
f6

(
f22
f1

)(
f2
f21

)2

(mod 16)

≡
(
2
f86 f

14
9

f153 f718
+ 10q

f76 f
11
9

f143 f418
+ 8q3

f56 f
5
9 f

2
18

f123

)
(mod 16)

(3.7)

Since there are no terms containing q3n+2 in right side of (3.7), it can
be concluded that

B2,3(27n+ 19) ≡ 0 (mod 16) (3.8)

If we extract those terms involving q3n+1 in equation (3.7), we find that
∞∑
n=0

B2,3(27n+ 10)qn ≡ 10
f72 f

11
3

f141 f46
(mod 16)

≡ 10

(
f113
f46

)(
f21
f2

)
(mod 16)

≡
(
10
f113 f29
f46 f18

+ 12q
f123 f218
f56 f9

)
(mod 16) (3.9)

Extracting the terms involving q3n+2 on both sides of (3.9) we get,

B2,3(81n+ 64) ≡ 0 (mod 16) (3.10)

�

Theorem 3.2. For any δ ≥ 1 and n ≥ 1, we have

B2,3(27n+ 1) ≡ 2B2,3(3n) (mod 4),

B2,3

(
9δn+

9δ − 1

8

)
≡ B2,3(9n+ 1) (mod 4)

Proof. From (3.2) we have,
∞∑
n=0

B2,3(3n)q
n =

f42 f
6
3

f71 f
3
6

≡ f23 f1
f6

(mod 4) (3.11)

From congruence (3.3), extracting those terms which involve q3n on both
the sides, we obtain
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∞∑
n=0

B2,3(9n+ 1)qn ≡ 2
f22 f

2
3

f1f6
(mod 4)

≡ 2

(
f23
f6

)(
f22
f1

)
(mod 4)

≡
(
2
f3f

2
9

f18
+ 2q

f23 f
2
18

f6f9

)
(mod 4) (3.12)

From equation (3.12), extracting the terms involving q3n we see that
∞∑
n=0

B2,3(27n+ 1)qn ≡ 2
f1f

2
3

f6
(mod 4) (3.13)

By comparing congruences (3.11) and (3.13), the following result can be
achieved

B2,3(27n+ 1) ≡ 2B2,3(3n) (mod 4) (3.14)

Extracting those terms involving q3n+1 in (3.12), we find that
∞∑
n=0

B2,3(27n+ 10)qn ≡ 2
f21 f

2
6

f2f3
(mod 4)

≡ 2

(
f26
f3

)(
f21
f2

)
(mod 4)

≡ 2
f26 f

2
9

f3f18
(mod 4) (3.15)

Extracting q3n on both the sides of congruence (3.15), we have
∞∑
n=0

B2,3(81n+ 10)qn ≡ 2
f22 f

2
3

f1f6
(mod 4) (3.16)

By (3.12) and (3.16), it can be seen that

B2,3(81n+ 10) ≡ B2,3(9n+ 1) (mod 4) (3.17)

Iterating n by 9n+ 1 in B2,3(81n+ 10), we obtain

B2,3

(
9δn+ 9δ−1 + 9δ−2 + 9δ−3 + · · ·+ 1

)
≡ B2,3(9n+ 1) (mod 4)

That is, B2,3

(
9δn+

9δ − 1

8

)
≡ B2,3(9n+ 1) (mod 4)

�
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Corollary 3.3. For any δ ≥ 1 and n ≥ 1, we have

B2,3

(
9δn+

9δ − 1

8

)
≡ 0 (mod 2)

Proof. From (3.3) we have,

B2,3(9n+ 1) ≡ 0 (mod 2) (3.18)

From (3.18) and the second congruence of the above theorem, we obtain
the required congruence. �

4. Congruences for (2, β)-regular bipartitions modulo p and p2

Theorem 4.1. For β ≥ 3 and d ∈ N such that (12d+ 1)a2, for all a ∈ N,
is a quadratic non-residue modulo p. If there exists some prime p(≥ 5)|β
then

B2,β(pn+ d) ≡ 0 (mod p) for all n ≥ 0. (4.1)

In order to prove the above theorem, we first discuss the following
lemma.

Lemma 4.2. For any non negative integer b, and any prime p,

(qp; qp)b∞ ≡ (qbp; qbp)∞ (mod p) (4.2)

Proof. To prove the congruence (4.2), it is sufficient to show that

(1− qb)p ≡ (1− qbp) (mod p)

By Binomial theorem, we have,

(1− qp)b =
b∑
i=0

(
b

i

)
qpi

=

(
b

0

)
−
(
b

1

)
qp +

(
b

2

)
q2p − . . .−

(
b

b

)
qbp

= (1− qbp) (mod p)

Hence, the Lemma. �

We now present the proof of Theorem 4.1, based on the above lemma.
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Proof. From equation (1.6), we have,
∞∑
n=1

B2,β(n)q
n =

(q2, q2)∞(qβ; qβ)∞
(q; q)2∞

(4.3)

Since p|β, β = pr for some r ∈ N. By Lemma 4.2
∞∑
n=1

B2,β(n)q
n =

(q2, q2)∞(qp, qp)r∞
(q, q)2∞

(4.4)

Euler pentagonal number theorem gives

(q, q)∞ =
∞∑
m=1

(−1)mq

(
3
2
m2− 1

2
m

)
(4.5)

⇒(qp, qp)∞ =

∞∑
m=1

(−1)mq

(
3
2
m2− 1

2
m

)
p

(4.6)

Substituting equation (4.6) in (4.4) we get,
∞∑
n=1

B2,β(n)q
n =

( ∞∑
s1=1

(−1)s1q(3s21−s1)
)( ∞∑

s2=1

(−1)s2q(
3
2
s22−

1
2
s2)p

)r
 ∞∑
j=1

p(j)qj

2

(mod p)

(4.7)

Suppose there are s1, s2 and j, such that the sum of the powers of q equals
pn+ d, then

d ≡ 3s21 − s1 (mod p)

12d+ 1 ≡ 36s21 − 12s1 + 1 (mod p)

(12d+ 1)a2 ≡ (36s21 − 12s1 + 1)a2 (mod p)

(12d+ 1)a2 ≡ [(6s1 + 1)a]2 (mod p) (4.8)

The congruence (4.8) contradicts the fact that (12d + 1)a2 is a quadratic
non residue modulo p. This proves the theorem. �

The Lemma 4.2 can further be extended for the integral multiple of pr

for every r ∈ N, which helps in proving congruences for regular bipartition
modulo p2.



A FAMILY OF CONGRUENCES FOR (2, β)−REGULAR BIPARTITIONS 155

Lemma 4.3. For any prime p ≥ 3 and integer r ≥ 2,

(q; q)np
r

∞ ≡ (qp; qp)np
r−1

∞ (mod p2) (4.9)

where n ∈ N.

Proof. We first prove the following congruence

(q; q)p
2

∞ ≡ (qp; qp)p∞ (mod p2) (4.10)

and hence deduce the congruence (4.9). In order to prove the above con-
gruence, it is sufficient to prove the following:

(1− q)p2 ≡ (1− qp)p (mod p2) (4.11)

By Binomial theorem, we have,

(1− q)p2 =

p2∑
i=0

(
p2

i

)
qi

=

(
p2

0

)
−
(
p2

1

)
q +

(
p2

2

)
q2 − . . .−

(
p2

p2

)
qp

2

≡ (1− qp)p (mod p2)

Now by the successive multiplication of congruence (4.11) upto npr−2 times
for all n ∈ N and r ≥ 2, we arrive at the required congruence (4.9). �

Using the above lemma, we now prove the following theorem:

Theorem 4.4. If pr|β for p ≥ 5 and r ≥ 2 then for all n ∈ N

B2,β(pn+ d) ≡ 0 (mod p2) (4.12)

where d ∈ N such that (12d+ 1)a2 is a quadratic non-residue modulo p2.

Proof. Using (1.6), we have,
∞∑
n=1

B2,β(n)q
n =

(q2, q2)∞(qβ; qβ)∞
(q; q)2∞

(4.13)

Since pr|β, β = αpr for some α ∈ N, we get
∞∑
n=1

B2,β(n)q
n =

(q2, q2)∞(qαp
r
, qαp

r
)∞

(q, q)2∞
(4.14)
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By Lemma 4.3 we have,
∞∑
n=1

B2,β(n)q
n =

(q2, q2)∞(qp, qp)αp
r−1

∞
(q, q)2∞

(mod p2) (4.15)

Replacing q by q2 in equation (4.5) we have,

(q2, q2)∞ =
∞∑
m=1

(−1)mq3m2−m (4.16)

Substituting equation (4.6), (4.16) and (1.5) in (4.15) we have,

∞∑
n=1

B2,β(n)q
n =

( ∞∑
m1=1

(−1)m1q3m
2
1−m

) ∞∑
m2=1

(−1)m2q

(
3
2
m2

2−
1
2
m2

)
p


αpr−1

 ∞∑
j=1

p(j)qj

2

(mod p2)

(4.17)

Suppose there are m1, m2 and j, such that the sum of the powers of q
equals pn+ d, then

d ≡ 3m2
1 −m1 (mod p2)

12d+ 1 ≡ 36m2
1 − 12m1 + 1 (mod p2)

(12d+ 1)a2 ≡ (36m2
1 − 12m1 + 1)a2 (mod p2)

(12d+ 1)a2 ≡ [(6m1 − 1)a]2 (mod p2) (4.18)

Since (12d + 1)a2 is a quadratic non residue modulo p2, the congruence
(4.18) contradicts this fact. Hence, the theorem. �

Concluding comments

In this article, first it is shown that the number of (2, 3)-regular bipar-
titions of 9n + 7, 27n + 19 and 81n + 64 are divisible by 16 for all n ≥ 1.
Moreover, infinite families of congruences modulo 4 have been derived (2, 3)

regular bipartitions. Then (2, β)-regular bipartitions is investigated and cer-
tain congruences are established for B2,β(pn+d) for all β ≥ 3. Furthermore,
a generalisation of the regular bipartitions for modulo p and modulo p2 is
obtained.
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MAGIC SQUARES FROM SIMPLE SQUARES
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Abstract. This article studies the relation between the magic square
and the simple square arrangement of numbers. It is shown that the cy-
cles and reverse cycles of the simple square forms the rows and columns
of odd magic square, constructed using the Siamese method. For singly
even magic square, corresponding arrangement arising from cycles and
reverse cycles is presented. For singly even magic square, a Conways
LUX-like construction method is presented which forms an almost dual.
The duality between simple square and doubly even magic square con-
structed using reflecting certain entries is discussed. The article con-
cludes with few observational remarks on this duality in general. It is
an open question to find the dual singly even magic square.

1. Introduction

A normal magic square is an arrangement of natural numbers from
1, 2, · · · , n2 into a square, such that every row, every column, and diagonals
have the same sum. The sum is called magic sum and it is equal to nn2+1

2 .
There are several methods for constructing the magic squares which involve
following an elementary pattern, adjoining two or more elementary squares,
and so on. One such method is well known for constructing the odd ordered
magic squares which follow diagonal filling of the square, this was proposed
by Simon de la Loubere [2] also known as Siamese method [3]. Let us
first look at the the relationship between the simple square arrangement of
numbers from one to n2 and the odd magic square obtained by the Siamese
method. Also, the analysis shows why the method is not applicable for
constructing even ordered magic squares. Further, we present a construction
method for singly even magic square.
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Let In be the identity matrix of dimension n×n. Let C be the adjacency

matrix of a directed cycle, denoted by C =

[
0 1

In−1 0

]
. This matrix can

also be described by the relation i − j = 1 mod n having one for the i, j

entry satisfying the relation and zero otherwise. Let J be the left to right
column flip of identity matrix, denoted by the relation i = −j + 1 mod n.
A be the square arrangement of the integers from 1 to n2, having entry
A(i, j) = (i− 1)n+ j where 1 ≤ i, j ≤ n. The matrix CJ is denoted by the
relation i + j = 2 mod n. Let A.B denote the hadamard product of two
matrices A and B. The non zero entris of A.Cj , are called entries of jth

cycle of A. Similarly the non zero entries of A.(CiJ) are called the entries
of ith reverse cycle of A.

2. Results

Lemma 2.1. The sum of entries of square arrangement A along any cycles
and along any reverse cycles is equal to the magic sum.

Proof. Any cycle is defined by the relation i− j = l mod n for 1 ≤ l ≤ n.
So we get, ∑

i−j=l mod n

A(i, j) =
∑

i−j=l mod n

(i− 1)n+ j. (2.1)

For every i we have a corresponding j in the relation, so when i varies
among 1 to n, we have j also varying fron 1 to n. So the summation can
be split, ∑

i−j=l mod n

A(i, j) =

n∑
i=1

(i− 1)n+

n∑
j=1

j, (2.2)

=
n2(n+ 1)

2
− n2 +

n(n+ 1)

2
, (2.3)

=
n(n2 + 1)

2
. (2.4)

Similarly, we can prove for reverse cycles. �

Also, note that the sum of the central row and central column entries
of odd-dimensional square arrangement is equal to the magic sum. The
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central column sum of the matrix A is given by,
n−1∑
k=0

n+ 1

2
+ kn, (2.5)

= n
n+ 1 + (n− 1)(n)

2
, (2.6)

=
n(n2 + 1)

2
. (2.7)

Similarly the central row sum in the matrix A is given by,
n∑

k=1

n− 1

2
n+ k, (2.8)

= n
n(n− 1) + n+ 1

2
, (2.9)

=
n(n2 + 1)

2
. (2.10)

2.1. Row-Column systems. Here we axiomatize rows and columns of a
square arrangement,

(1) There are n rows in the square arrangement each having n elements,
no two rows intersect each other (i.e. have a common element).

(2) There are n non intersecting columns in the square arrangement
each having n elements and every column intersects every row ex-
actly once (i.e. only one common element).

From a set of n2 elements if we can identify such n rows and n columns, then
it is possible to put them in a square arrangement. Specifying the order of
rows and order of columns uniquely specifies the square arrangement hence
defining the diagonals.

Now we verify that the properties 1 and 2 are satisfied by n cycles and
n reverse cycles of the square arrangent A, when n is odd.
Property 1 : It is easy to see that Ck and C l do not intersect, as i− j = l

mod n uniquely determines i given j. Each Ci has n nonzero elements.
Property 2 : There are n reverse cycles. The relation i + j = l mod n

uniquely determines j given i. To see the intersection of the rows and
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column, we need i, j satisfying

i− j = l mod n, (2.11)

i+ j = m mod n. (2.12)

For solving this, we get

2i = l +m mod n, (2.13)

2j = m− l mod n (2.14)

This system has unique solution when modulo inverse of 2 is defined with
respect to n. This is possible for odd n. So every row (cycle) intersect every
column (reverse cycle) exactly once, when n is odd.
However when n is even, we have two cases,
l and m both even or both odd : in this case we have two solutions for i

and j. Which are
(
l+m
2 , l−m

2

)
and

(
l+m±n

2 , l−m±n
2

)
.

l is even m is odd or m is even l is odd : Then the system is not solvable.
Hence, for odd n, the square arrangement can be rearranged to obtain

the magic square. This can be done by looking at diagonals in the square
lattice arrangement by A. By looking at the diagonal arrangement, the
linear rows and columns of the matrix A will be reshaped into cycles and
reverse cycles whereas the cycles and reverse cycles will be reshaped into
rows and columns.

2.2. Duality. Let (R,L) and (S, T ) be two row column systems. When a
square A is reshaped into a square B by reordering the elements in Ri ( and
Lj ) of A into Si ( and Tj ) of B. If this reordering also maps Si ( and Tj

) of A into Ri( and Lj ) of B for 1 ≤ i, j ≤ n, then we say A and B have
dual row column systems.

Let vec(A) be the n2 × 1 vector obtained by appending all the rows
of A in a single column. Let P be the permutation matrix which maps
vec(A)→ vec(M).

Theorem 2.2. The two row column systems are dual of each other if and
only if P 2 = q ⊗ s for order n permutation matrices q and s.

Proof. Since P maps simple square to the magic square, in order for the
row column system to be dual, it should map magic square to the permuted
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simple square. Thus we have,

Pvec(A) = vec(M), (2.15)

Pvec(M) = vec(Ã), (2.16)

P 2vec(A) = vec(Ã) (2.17)

Here the vector vecÃ has permutation of row elemnts due to column re-
arrangements and permutation of row positions. All the row permuta-
tions must be same because otherwise result into different column elements
than the simple square. Thus if two row column systems are dual, then
P 2 = q ⊗ s. �

As an example the 3 × 3 simple square
1 2 3
4 5 6
7 8 9

is mapped to magic

square
8 1 6
3 5 7
4 9 2

via a matrix P by the relation,



0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0 0





1

2

3

4

5

6

7

8

9


=



8

1

6

3

5

7

4

9

2


.

The matrix P satisfies P 2 = J ⊗ J with J being left to right flip of
identity matrix.

So we pose the question : Is there a dual magic squares for a simple
square of any order? We can see from the previous section that, the
answer is true for odd order magic square. It is also easy to see this holds
for doubly even order magic square from the discussion in section 3. The
question remains open for singly even magic square.
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2.3. Lattice embedding. Consider the 5 by 5 arrangement,

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
21 22 23 24 25

.

The corresponding lattice arrangement is given by,

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
6 7 8 9 10 6 7 8 9 10 6 7 8 9 10
11 12 13 14 15 11 12 13 14 15 11 12 13 14 15
16 17 18 19 20 16 17 18 19 20 16 17 18 19 20
21 22 23 24 25 21 22 23 24 25 21 22 23 24 25
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
6 7 8 9 10 6 7 8 9 10 6 7 8 9 10
11 12 13 14 15 11 12 13 14 15 11 12 13 14 15
16 17 18 19 20 16 17 18 19 20 16 17 18 19 20
21 22 23 24 25 21 22 23 24 25 21 22 23 24 25
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
6 7 8 9 10 6 7 8 9 10 6 7 8 9 10
11 12 13 14 15 11 12 13 14 15 11 12 13 14 15
16 17 18 19 20 16 17 18 19 20 16 17 18 19 20
21 22 23 24 25 21 22 23 24 25 21 22 23 24 25

.

By looking at the diagonals in the green cells, the corresponding magic
square is given by

14 10 1 22 18
20 11 7 3 24
21 17 13 9 5
2 23 19 15 6
8 4 25 16 12

.

Note that cycles and reverse cycles of this magic square are rows and
columns of 5 by 5 simple square arrangement. Magic squares formed by
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green cells and semi magic square of pink cells together cover the lattice.

One can also look at the lattice formed by AT , for example,

1 4 7
2 5 8
3 6 9

.

By arranging this into a lattice we get,

1 4 7 1 4 7 1 4 7
2 5 8 2 5 8 2 5 8
3 6 9 3 6 9 3 6 9
1 4 7 1 4 7 1 4 7
2 5 8 2 5 8 2 5 8
3 6 9 3 6 9 3 6 9
1 4 7 1 4 7 1 4 7
2 5 8 2 5 8 2 5 8
3 6 9 3 6 9 3 6 9

.

The entries colored in the green are given by

8 1 6
3 5 7
4 9 2

, which is an order 3 magic square.

In the case of even n, cycles and reverse cycles fail to form rows and
columns. but we obtain the following type of arrangement by listing the
even and odd cycles seperately. Consider the arrangement from order 4
square,

4 10 5 15
13 7 2 12
3 9 8 14
6 16 11 1

.

Here every row sum is a magic sum and every colored square sum is the
magic sum, but every column sum is not the magic sum.
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Similarly from the order 6 simple square arrangement, by listing even
cycles and odd cycles separately, we get

6 21 14 35 28 7
11 26 19 4 18 33
16 31 9 30 23 2
5 20 12 27 13 34
10 25 17 32 3 24
15 36 22 1 8 29

.

2.4. A LUX-like method for construct singly even magic square.
The method of constructing an odd magic square can be used for construct-
ing a magic square when n is a singly even number (i.e. it is twice an odd
integer). Conway’s LUX method is one such method [3]. We dedicate this
section to John H Conway.
Let A be a matrix denoting the simple square. Then A can be looked as the
odd square of 2× 2 blocks denoted by A2(i) for 1 ≤ i ≤

(
n
2

)2. Let B be the
matrix obtained by rearranging the blocks A2(i) according to the position
of i in the Siamese magic square of order

(
n
2

)
. Then we can see that sum

of pair of columns, pair of rows, and pair of diagonals (corresponding to
the blocks) in B will be twice the magic sum. We call the matrix B as the
almost magic square. For example, consider the simple square of order six,

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

,

by re-arranging the 2× 2 blocks of this simple square according to 3× 3

magic square

8 1 6
3 5 7
4 9 2
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we get,

27 28 1 2 17 18
33 34 7 8 23 24
5 6 15 16 25 26
11 12 21 22 31 32
13 14 29 30 3 4
19 20 35 36 9 10

. (2.18)

Every 2 × 2 block is of the form

[
k k + 1

n+ k n+ k + 1

]
. The permuta-

tions of entries in this block can be uniquely represented by three corodi-
nates (a, b, c) where a =

∑
(column2 -column1) , b =

∑
(row2 -row1) and

c =
∑

diagonal−anti diagonal. Thus a, b and c taking possible values from
0,±2,±2n. The allowed co ordinates are,

S ={(±2,±2n, 0), (±2n,±2, 0), (±2, 0,±2n), (±2n, 0,±2)

(0,±2,±2n), (0,±2n,±2)}.

Now the problem of constructing the magic square reduces to the prob-
lem of constructing odd ordered square of size n

2 , with entries from S, such
that:

• Sum of first co-ordinate along every column is zero.
• Sum of second co-ordinate along every row is zero.
• Sum of third co-ordinate along diagonal and anti diagonal are re-
spectively zero.

One such possibility is :

• Starting with v = [2;−2; 2;−2; 2;−2; · · · ; 0]k×1, the first co ordi-

nates are L = [v, v, v, · · ·Cv]k×k. Where C =

[
0 1

Ik−1 0

]
.

• Starting with w = [0, 2n,−2n, 2n,−2n, · · · ]1×k, the second co ordi-
nates are M = [w;w;w; · · ·wC]k×k.
• Starting with x = [2n; 0; 0; 0; 0; · · · ; 2]k×1, the third co ordinates
are N = [x, 0, 0, 0, · · · ,−Jx]k×k. Where J is the left to right flip of
identity matrix.
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The entries in the blocks of the matrix A2 permuted according to Pk×k such
that P (i, j) = (L(i, j),M(i, j), N(i, j)) will give the magic square.

For n = 6 we have k = 3 and we get the matrix

P =

 (2, 0, 2n) (2, 2n, 0) (0,−2n,−2)
(−2, 0, 2n) (−2, 2n, 0) (2,−2n, 0)
(0, 2n, 2) (0,−2n, 2) (−2, 0,−2n)

 .

By permuting the square (2.19) according to P , we get

33 28 1 2 23 24
27 34 7 8 18 17
12 5 16 15 31 32
6 11 22 21 25 26
14 13 36 35 4 9
19 20 29 30 10 3

. (2.19)

3. Observations

The duality between the simple square arrangement and the magic
square also holds in the construction of the doubly even magic square which
involves reflecting elements about the center of the simple square in x pat-
terns (criss-cross patterns) [1]. Some other construction methods for doubly
even magic squares are given in [4]. In reflecting method, there are an even
number of flips. Thus the matrix P which maps vec(A)→ vec(M) satisfies
P 2 = I. This is because combining two rows (or columns) equidistant from
the center in the simple square has all the elements corresponding two rows
(or columns) of the magic square.

As an example we have order 4 magic square and simple square,

1 15 14 4
12 6 7 9
8 10 11 5
13 3 2 16

,

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

.

With rows in the original simple square being,

R1 =


1 0 0 1

0 0 0 0

0 0 0 0

0 1 1 0

 , R2 =


0 1 1 0

0 0 0 0

0 0 0 0

1 0 0 1

 ,
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R3 =


0 0 0 0

0 1 1 0

1 0 0 1

0 0 0 0

 , R4 =


0 0 0 0

1 0 0 1

0 1 1 0

0 0 0 0

 .

Corresponding columns Li are obtained by the transpose of the matrices
Ri,

L1 =


1 0 0 0

0 0 0 1

0 0 0 1

1 0 0 0

 , L2 =


0 0 0 1

1 0 0 0

1 0 0 0

0 0 0 1

 ,

L3 =


0 0 1 0

0 1 0 0

0 1 0 0

0 0 1 0

 , L4 =


0 1 0 0

0 0 1 0

0 0 1 0

0 1 0 0

 .

Sum of entries of A along every row Ri and sum along every column Lj

is equal to the magic sum 34 (eg: in the green cells). In the magic square
rows of A are reshaped as Ri columns reshaped as Lj .
In general the magic square of order 4n constructed by flipping entries about
center in simple square S can be represented by,

M = A+ JBJ

Here A is P ·S, with P representing the elementary pattern of block size 4,
1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1


repeated to form order 4n matrix. And (X · Y ) representing hadamard
product of X and Y . The matrix B is S · (U − P ), here U being matrix
with all one entries.
So entries corresponding to kth row/column of S in M will be the entries
in the kth row/column of M .
Now we consider the example of order 6 magic square and see that there
need not exist such a duality between the simple square and magic square
always.
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For the order six magic square and simple square,

35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11

,

1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

.

The sum of the entries corresponding to the inverse map of the first row
elements is 84, however, the magic sum is 111.

Conclusion

Using the duality between the simple square arrangement and magic
squares, odd ordered magic squares are obtained from the lattice arrange-
ment of the simple squares. The duality is also observed for the doubly even
magic square. A Conway’s LUX-like method is presented for constructing
singly even magic square. However the existence of duality for singly even
magic square remains an open question. It is also noted by an example that
such duality may not exist for all magic squares.

4. Summary

This article encourages the reader to look at the magic squares from
simple square perspective as in the lattice embedding of the odd magic
squares. It poses the question on the existence of dual singly even magic
square.
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Abstract. In this paper we obtain a sufficient condition for the abso-
lute convergence of the double Fourier-Haar coefficients series of a func-
tion f whose continuous partial derivatives fx and fy are of bounded
partial p−variation on the unit square.

1. Introduction

The complete orthonormal system of functions {χn}∞n=1 was constructed
by A. Haar in 1909 (see [5]). Let us recall the definition of this system.
Let χ1(x) = 1 on I = [0, 1]. Introduce the denotation Iki =

(
i−1
2k
, i

2k

)
,

i = 1, 2, · · ·, 2k, k = 0, 1, · · · We represent a positive integer n ≥ 2 in the
form n = 2k + i, i = 1, 2, · · ·, 2k, k = 0, 1, · · ·, and put χn(x) = χik(x) =

√
2k

for x ∈ Ik+1
2i−1, χn(x) = −

√
2k for x ∈ Ik+1

2i , and χn(x) = 0 for x ∈ I\Iki ,
where Iki is the closure of the interval Iki . If x ∈ (0, 1) is a point of disconti-
nuity of χn then we set χn(x) = (χn(x−0)+χn(x+0))/2. At the endpoints
of the interval I we set χn(0) = χn(0 + 0) and χn(1) = (1 − 0). The Haar
functions χn(x) are step functions.

A double Haar system χ
(ks)
mn (x, y) = χ

(k)
m (x)χ

(s)
n (y) is defined on I2. The

Fourier-Haar coefficients are defined in the form

crq(f) = c(ks)
mn (f) =

∫ 1

0

∫ 1

0
f(x, y) χ(k)

m (x) χ(s)
n (y) dx dy,

where k = 1, 2, · · ·, 2m, s = 1, 2, · · ·, 2n, r = 2m + k and q = 2n + s.

Let p ≥ 1, τ1 = {0 = x0 < x1 < · · · < xr = 1} and τ2 = {0 = y0 <
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y1 < · · · < yl = 1}. A function f defined on I2 is said to be of bounded
partial p−variation (that is, f ∈ PBV (p)

1 (I2)) if

V1(f)p = sup
0≤y≤1

sup
τ1


(

r∑
i=1

|f(xi, y)− f(xi−1, y)|p
) 1

p

 <∞.

Analogously, we say f ∈ PBV (p)
2 (I2) if

V2(f)p = sup
0≤x≤1

sup
τ2


 l∑
j=1

|f(x, yj)− f(x, yj−1)|p
 1

p

 <∞.

It is well known that if a function f(x) has a finite variation or a continuous
derivative, then its Fourier-Haar coefficients series converges absolutely (see
[1, 4, 8]). On the other hand, if a function f of two variables has continu-
ous partial derivatives fx and fy, then its Fourier coefficients series does not
necessarily absolutely converges with respect to a multiple Haar system (see
[7]). So, in order to state the question about the absolute convergence of the
double Fourier-Haar coefficients series, it is necessary to impose additional
conditions on the partial derivatives fx and fy. In 2008, L. D. Gogoladze
and V. Tsagareishvili [2] obtained a sufficient condition for the absolute con-
vergence of the double Fourier-Haar coefficients series of a function f whose
continuous partial derivatives fx and fy are of bounded partial variation.
Generalizing these result, in this paper we obtain a sufficient condition for
the absolute convergence of the double Fourier-Haar coefficients series of a
function f whose continuous partial derivatives fx and fy are of bounded
partial p−variation on the unit square.
Set

A(β, ϕ) =

{
f :

∞∑
m=1

∞∑
n=1

|cmn(f)|β <∞

}
,

where

cmn(f) =

∫ 1

0

∫ 1

0
f(x, y) ϕmn(x, y) dx dy

in which ϕmn(x, y) is an orthonormal system on I2.

2. Main results

We prove the following results.
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Theorem 2.1. If fx ∈ C(I2)∩PBV (p)
2 (I2) and fy ∈ C(I2)∩PBV (p)

1 (I2) (p ≥
1), then f ∈ A(β, χ), where 2p

2p+1 < β < p and χ is the Haar system.

Proof. Let ∆mk =
(
k−1
2m , k

2m

)
, ∆+

mk =
(

2k−1
2m+1 ,

2k−2
2m+1

)
, Ψ

(k)
m (x) =

∫ x
0 χ

(k)
m (t) dt

and

F (k)
m (y) = −

∫ 1

0
fx(x, y) Ψ(k)

m (x) dx.

Since Ψ
(k)
m (0) = Ψ

(k)
m (1) = 0 and Ψ

(k)
m (x) = 0 for x ∈ [0, 1]\∆mk, integration

by parts, we obtain∫ 1

0
f(x, y) χ(k)

m (x) dx = f(x, y) Ψ(k)
m (x)|10 −

∫ 1

0
fx(x, y) Ψ(k)

m (x) dx

= −
∫ 1

0
fx(x, y) Ψ(k)

m (x) dx = −
∫

∆mk

fx(x, y) Ψ(k)
m (x) dx = F (k)

m (y). (2.1)

Then the definition of the Haar function and equality (2.1) imply the equal-
ity

c(ks)
mn (f) =

∫ 1

0

(∫ 1

0
f(x, y) χ(k)

m (x) dx

)
χ(s)
n (y) dy =

∫ 1

0
F (k)
m (y) χ(s)

n (y) dy

= 2n/2
∫ 1/2n+1

0

[
Fm

(
y +

2s− 2

2n+1

)
− Fm

(
y +

2s− 1

2n+1

)]
dy

= −2n/2
∫ 1/2n+1

0

∫
∆mk

∆fsx(x, y) Ψ(k)
m (x) dx dy,

where

∆fsx(x, y) = fx

(
x, y +

2s− 2

2n+1

)
− fx

(
x, y +

2s− 1

2n+1

)
.

Since |Ψ(k)
m (x)| ≤ 2−m/2, we have

|c(ks)
mn (f)| ≤ 2n/2 2−m/2

∫ 1/2n+1

0

∫
∆mk

|∆fsx(x, y)| dx dy.

Applying Hölder’s inequality on right side of the above inequality, we have

|c(ks)
mn (f)| ≤ 2n/2 2−m/2

(∫ 1/2n+1

0

∫
∆mk

|∆fsx(x, y)|p dx dy

)1/p

×

(∫ 1/2n+1

0

∫
∆mk

dx dy

)1−1/p

.
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Thus,

|c(ks)
mn (f)|p ≤ 21−p 2n(1−p/2) 2m(1−3p/2)

∫ 1/2n+1

0

∫
∆mk

|∆fsx(x, y)|p dx dy

and therefore
2m∑
k=1

2n∑
s=1

|c(ks)
mn (f)|p

≤ 21−p 2n(1−p/2) 2m(1−3p/2)
2m∑
k=1

2n∑
s=1

∫ 1/2n+1

0

∫
∆mk

|∆f sx(x, y)|p dx dy

= 21−p 2n(1−p/2) 2m(1−3p/2)

∫ 1/2n+1

0

∫ 1

0

2n∑
s=1

|∆fsx(x, y)|p dx dy

≤ 2−p 2−np/2 2m(1−3p/2)(V2(fx)p)
p.

(2.2)
Using Hölder’s inequality with 0 < β < p, from (2.2) we obtain

2m∑
k=1

2n∑
s=1

|c(ks)
mn (f)|β ≤ (2m2n)1−β/p

(
2m∑
k=1

2n∑
s=1

|c(ks)
mn (f)|p

)β/p

≤ K1 2m(1− 3β
2

) 2n(1−β
2
−αβ),

where α = 1/p and K1 = 2−β(V2(fx)p)
β.

Similarly, we can prove the inequality
2m∑
k=1

2n∑
s=1

|c(ks)
mn (f)|β ≤ K2 2n(1− 3β

2
) 2m(1−β

2
−αβ),

where K2 = 2−β(V1(fy)p)
β.

Using these inequalities and taking into account the fact that

1− 3

2
β < 1− 3

2

2

2 + α
≤ 0,

we obtain
∞∑
m=1

∞∑
n=1

2m∑
k=1

2n∑
s=1

|c(ks)
mn (f)|β ≤ 2K1

∞∑
m=1

2m(1−β
2
−αβ)

∞∑
n=m

2n(1− 3β
2

)
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+K2

∞∑
m=1

2m(1− 3β
2

)
m−1∑
n=1

2n(1−β
2
−αβ)

< 2(K1 +K2)
∞∑
m=1

2m(2−(2+α)β).

This complete the proof of theorem. �

In particular case when p = 1 in Theorem 2.1, we have the following result
proved by L. D. Gogoladze and V. Tsagareishvili [2, Theorem 6, p. 15].

Corollary 2.2. If fx ∈ C(I2) ∩ PBV2(I2) or fy ∈ C(I2) ∩ PBV1(I2), then
f ∈ A(β, χ), where 2

3 < β < 1.

If f ∈ C(I2), then the partial modules of continuity are defined as follows:

ω1(δ, f) = sup
|h|<δ

‖f(x+ h, y)− f(x, y)‖C ,

ω2(δ, f) = sup
|k|<δ
‖f(x, y + k)− f(x, y)‖C ,

where x+ h, y + k ∈ I.

For α ∈ (0, 1], if ω1(δ, f) = O(δα), then we say that f ∈ Lip†α, and if
ω2(δ, f) = O(δα), then we say that f ∈ Lip]α.

For α ∈ (0, 1], we say that f ∈ Λα if fx, fy ∈ C(I2), ω2(δ, fx) = O(δα)

and ω1(δ, fy) = O(δα).

Note that if f ∈ Λα, then fx ∈ C(I2) ∩ Lip]α and fy ∈ C(I2) ∩ Lip†α.

For a complete orthonormal system (ϕmn) and α ∈ (0, 1], L. D. Gogo-
ladze and V. Tsagareishvili [2, Theorem 7, p. 16] find a function fα(x, y)

such that fα ∈ Λα, but fα /∈ A(β, ϕ), i.e.,

∞∑
m=1

∞∑
n=1

|cmn(fα)|β = +∞, (2.3)

where β = 2
2+α .

Putting α = 1/p and taking into account the embedding Lip] 1
p ⊂ PBV

(p)
2 (I2)

and Lip† 1
p ⊂ PBV

(p)
1 (I2), the sharpness of Theorem 2.1 follows from equa-

tion (2.3).
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Abstract. In this paper we define q- starlike class STq(φ) and q- close
to convex class KT q(ψ). By making use of these classes we obtained
various inclusions relations for the q- analogue of Ruscheweyh-type dif-
ference operator. Moreover integral preserving property for this oper-
ator was also obtained.

1. Introduction

Let H(U) denote the class of analytic functions in the open unit disk
U = {z : |z| < 1}. Let A be the class of all functions f ∈ H(U) which are
normalized by f(0) = 0, f ′(0) = 1 and have the following form

f(z) = z +
∞∑
n=2

anz
n (z ∈ U). (1.1)

Given two functions f ∈ H(U) and g ∈ H(U), we say that f is subordi-
nated to g in U and write f(z) ≺ g(z), if there exists a Schwarz function w,
analytic in U, with w(0) = 0, |w(z)| < |z|, z ∈ U, such that f(z) = g(w(z))

in U. In particular, if g(z) is univalent in U, we have the following equiva-
lence (see [10]):

f(z) ≺ g(z), (z ∈ U) ⇐⇒ [f(0) = g(0) and f(U) ⊂ g(U)].

We denote by P a class of analytic function in U with p(0) = 1 and
<(p(z)) > 0 is of the form p(z) = 1 + c1z + c2z

2 + c3z
3 + ..., analytic in U

2010 Mathematics Subject Classification: 30C45, 30C50
Key words and phrases: Analytic function, Univalent function, q-Starlike function
class, q-Convex class, Ruscheweyh-type q- difference operator

© Indian Mathematical Society, 2022 .
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such that
p(z) ≺ 1 + z

1− z
⇔ p(z) =

1 + ω(z)

1− ω(z)

for some functions ω ∈ Ω and for all z ∈ U. It is well known that a function
f ∈ H is called starlike f ∈ S∗, convex f ∈ C and close-to-convex f ∈ K ,
quasi-convex f ∈ C∗ if there exist a function p(z) in P such that p(z) must
be expressed respectively, by the following relations:

zf ′(z)

f(z)
= p(z), 1 +

zf ′′(z)

f ′(z)
= p(z)

and
zf ′(z)

g(z)
= p(z) ,

(zf ′(z))′

g′(z)
= p(z), where g(z) ∈ S∗

for all z ∈ U. For definitions and properties of these classes see [2] and
[10]. Ma and Minda [17] unified various subclasses of starlike and convex
functions for which either one of the quantities zf ′(z)

f(z) or 1 + zf ′′(z)
f ′(z) is sub-

ordinate to a more general superordinate function. We express S∗(φ) and
C(φ) functions as zf ′(z)

f(z) ≺ φ(z) and 1+ zf ′′(z)
f ′(z) ≺ φ(z), where function φ with

positive real part in U, φ(0) = 1, φ′(0) > 0 . Here we assume that φ ∈ P
satisfying φ(0) = 1, φ′(0) > 0 and φ(U) is symmetric with respect to the
real axis. Also φ has a series expansion of the form

φ(z) = 1 +B1z +B2z
2 +B3z

3 + ..., (B1 > 0). (1.2)

In 1909 and 1910, Jackson [12, 13, 14] initiated a study of q difference
operator (0 < q < 1) forf(z) ∈ H;

Dqf(z) =


f(z)− f(qz)

(1− q)z
, (z 6= 0),

f ′(0), (z = 0).

For a function f(z) = zn, we observe that

Dqz
n =

1− qn

1− q
zn−1.

Therefore we have

Dqf(z) = 1 +
∞∑
n=2

an[n]qz
n−1,
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where [n]q = 1−qn
1−q . Clearly, as q → 1−, [n]q → n. The q- Gamma function

is given by
Γq(n+ 1) = [n]qΓq(n)

and q-factorial is given by

[n]q! = [1]q[2]q...[n− 1]q[n]q, (n > 0) and [0]q! = 1.

Also, the q-shifted factorial is given by

([n]q)m = [n]q[n+ 1]q...[n+m− 1]q, (m ≥ 1) and ([n]q)0 = 1.

The well-known q-extension of calculus and q-analysis have been studied by
many eminent mathematicians for a long time. It has a great importance in
the applied science, dynamical systems, combinatorics, orthogonal polyno-
mials, basic hypergeometric functions and quantum physics. A detailed and
systematic development can be seen in the papers of Jackson [13], Gasper
and Rahman [9], Ismail [11], Srivastava [23], Raghvendra and Swaminathan
[20], Andrews[4], Fine[8], Kac [15]. Recently research in this field includes
the work of Agarwal and Sahoo [1], Aldweby and darus [3], Arif et al. [5],
Cetinkaya [6, 7], Mahmood and Sokol [18], Purohit and Raina [19] .

Definition 1.1. In [16], Kanas and Raducanu introduced the following
Ruscheweyh-type q-differential operator for f ∈ H by

Rλq f(z) = f(z) ∗ Fq,λ+1(z) (z ∈ U, λ > −1) (1.3)

where

Fq,λ+1(z) = z +
∞∑
n=2

Γq(λ+ n)

[n− 1]q!Γq(1 + λ)
zn = z +

∞∑
n=2

([λ+ 1]q)n−1
[n− 1]q!

zn. (1.4)

The symbol ∗ stands for Hadamard product (or convolution).
From (1.3) we obtain that

R0
qf(z) = f(z), R1

qf(z) = zDqf(z)

and

Rmq f(z) =
zDm

q (zm−1f(z))

[m]q!
(m ∈ N).

Making use of (1.3) and (1.4), the power series of Rλq f(z) for f of the form
(1.1) is given by

Rλq f(z) = z +
∞∑
n=2

([λ+ 1]q)n−1
[n− 1]q!

anz
n. (1.5)
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Note that
lim
q→1−

Fq,λ+1(z) =
z

(1− z)λ+1

and
lim
q→1−

Rλq f(z) = f(z) ∗ z

(1− z)λ+1
.

Thus, we can say that Ruscheweyh q-differential operator reduces to the
differential operator defined by Ruscheweyh [21] in the case when q → 1−.
It is easy to check that

zDq(Fq,λ+1(z)) =

(
1 +

[λ]q
qλ

)
Fq,λ+2(z)−

[λ]q
qλ

Fq,λ+1(z) (z ∈ U). (1.6)

Making use of (1.3), (1.6) and the properties of Hadamard product, we
obtain the following equality

zDq(R
λ
q f(z)) =

(
1 +

[λ]q
qλ

)
Rλ+1
q f(z)− [λ]q

qλ
Rλq f(z) (z ∈ U). (1.7)

If q → 1−, the equality (1.7) implies

z(Rλf(z))′ = (λ+ 1)Rλ+1f(z)− λRλf(z) (z ∈ U),

which is the well known formula for Ruscheweyh differential operator.

Definition 1.2. A function f ∈ H is said to be in the class STq(φ) if it
satisfies the following condition

z(Dqf(z))

f(z)
≺ φ(z), (φ ∈ P)

where Dq is the q difference operator.
Also a function f ∈ H is said to be in the class CVq(φ), if and only if

z(Dqf(z)) ∈ ST q(φ). (1.8)

When q → 1− in the limiting sense, the classes ST q(φ) and CVq(φ)

reduce to the traditional classes S∗(φ) and C(φ). Using the operator defined
above, we define the following subclasses for starlike and convex functions .

Definition 1.3. Let f ∈ H, λ > −1 . Then

f ∈ ST λq (φ) if and only if Rλq f(z) ∈ ST q(φ) (1.9)

and
f ∈ CV λ

q (φ) if and only if Rλq f(z) ∈ CVq(φ), (1.10)
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it is clear that

f ∈ CV λ
q (φ) if and only if z(Dqf(z)) ∈ ST λq (φ). (1.11)

Definition 1.4. A function f ∈ H is said to be in the class KT q(ψ) if it
satisfies the following condition

z(Dqf(z))

g(z)
≺ ψ(z), where g(z) ∈ ST q(φ) and ψ(z) ∈ P.

Also a function f ∈ H is said to be in the class C∗Vq(ψ), if and only if

z(Dqf(z)) ∈ KT q(ψ). (1.12)

Similarly when q → 1− in the limiting sense, the classes KT q(ψ) and
C∗Vq(ψ) reduce to the traditional classes of close-to-convex and quasi convex
K(ψ) and C∗(ψ) respectively. Using the operators defined above, we define
the following subclasses for the close-to-convex and quasi convex functions.

Definition 1.5. Let f ∈ H, λ > −1 . Then

f ∈ KT λq (ψ) if and only if
zDq(R

λ
q f(z))

Rλq g(z)
≺ ψ(z), (1.13)

where Rλq g(z) ∈ ST q(φ).

f ∈ C∗V λ
q (ψ) if and only if

zDq(zDqR
λ
q f(z))

DqRλq g(z)
≺ ψ(z), (1.14)

where Rλq g(z) ∈ ST q(φ). It is clear that

f ∈ C∗V λ
q (ψ) if and only if z(Dqf) ∈ KT λq (ψ). (1.15)

In order to prove our results we require the following lemma.

Lemma 1.6. [22] Let β and γ be complex numbers with β 6= 0 and let
h(z) be analytic in U with h(0) = 1 and <{βh(z) + γ} > 0. If p(z) =

1 + p1z + p2z
2 + ... is analytic in U, then

p(z) +
zDqp(z)

βp(z) + γ
≺ h(z)

implies that p(z) ≺ h(z).
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2. Inclusion Results

Theorem 2.1. Let q ∈ (0, 1) and λ > −1, φ(z) be analytic and convex
univalent function with φ(0) = 1 and <(φ(z)) > 0, then for z ∈ U

ST λ+1
q (φ) ⊂ ST λq (φ).

Proof. Let f ∈ ST λ+1
q (φ) and we set

zDq(R
λ
q f(z))

Rλq f(z)
= p(z), (2.1)

where p(z) is analytic in U with p(0) = 1. Using the identity (1.7) and
(2.1), we get

zDq(R
λ
q f(z))

Rλq f(z)
=

(
1 +

[λ]q
qλ

)
Rλ+1
q f(z)

Rλq f(z)
− (λ)q

qλ
.

Equivalently(
1 +

[λ]q
qλ

)
Rλ+1
q f(z)

Rλq f(z)
= p(z) + γq, where γq =

[λ]q
qλ

.

q-Logarithmic differential yields,

zDq(R
λ+1
q f(z))

Rλ+1
q f(z)

= p(z) +
zDq(p(z))

p(z) + γq
. (2.2)

Since f ∈ ST λ+1
q (φ), so from (2.2), we have

p(z) +
zDq(p(z))

p(z) + γq
≺ φ(z).

Now by applying Lemma 1.6, we conclude that p(z) ≺ φ(z), consequently
zDq(Rλq f(z))

Rλq f(z)
≺ φ(z) this implies f ∈ ST λq (φ). �

Theorem 2.2. Let q ∈ (0, 1), λ > −1 and φ(z) be analytic and convex
univalent function with φ(0) = 1 and <(φ(z)) > 0 then,

CV λ+1
q (φ) ⊂ CV λ

q (φ).

Proof. Let f ∈ CV λ+1
q (φ). Then by Alexander’s type relation (1.11), we

can write z(Dqf) ∈ ST λ+1
q (φ). From theorem (2.1), we know that

ST λ+1
q (φ) ⊂ ST λq (φ), so we have z(Dqf) ∈ ST λq (φ). We get required result

by again using Alexender’s type relation (1.11). �
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Corollary 2.3. Let q ∈ (0, 1) and λ > −1, then for φ(z) = 1+Az
1+Bz (−1 ≤

B < A ≤ 1), we have

ST λ+1
q

(
1 +Az

1 +Bz

)
⊂ ST λq

(
1 +Az

1 +Bz

)
.

Moreover, For A = 0 and B = −q and for A = 1 and B = −q,

ST λ+1
q

(
1

1− qz

)
⊂ ST λq

(
1

1− qz

)
and ST λ+1

q

(
1 + z

1− qz

)
⊂ ST λq

(
1 + z

1− qz

)
respectively.

Theorem 2.4. Let ψ(z) be analytic and convex function with ψ(0) = 1 and
<(ψ(z)) > 0 , then for z ∈ U and λ > −1

KT λ+1
q (ψ) ⊂ KT λq (ψ).

Proof. Let f ∈ KT λ+1
q (ψ), then there exist Rλ+1

q g(z) ∈ ST q(φ) such that

zDq(R
λ+1
q f(z))

Rλ+1
q g(z)

≺ ψ(z). (2.3)

Since ST λ+1
q (φ) ⊂ ST λq (φ), therefore we have

zDq(R
λ
q g(z))

Rλq g(z)
= h(z), (2.4)

where h(z) is analytic in H, with h(0) = 1. Now we set

zDq(R
λ
q f(z))

Rλq g(z)
= p(z), (2.5)

where p(z) is of the form p(z) = 1 + p1z+ p2z
2 + .... To obtain the required

result, we shall prove that p(z) ≺ φ(z). On the differentiation of the identity
(1.7), we get

zDq(Dq(R
λ
q f(z))) =

(
1 +

[λ]q
qλ

)
Dq(R

λ+1
q f(z))−

(
1 +

[λ]q
qλ

)
Dq(R

λ
q f(z)) (z ∈ U).

(2.6)
In view of the identity (1.7) for the function g(z) and identity (2.6), we have

zDq(Rλq f(z))
Rλq g(z)

(
z(Dq(Dq(Rλq f(z))))

Dq(Rλq f(z))

)
+
(

1 +
[λq ]
qλ

)
zDq(Rλq g(z))

Rλq g(z)
+

[λ]q
qλ

=
zDq(R

λ+1
q f(z))

Rλ+1
q g(z))

. (2.7)
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Differentiating logarithmically (2.5), we get

zDq

(
Dq(R

λ
q f(z))

)
Dq(Rλq f(z))

=
zDq(R

λ
q g(z))

Rλq g(z))
+
zDq(p(z))

p(z)
− 1. (2.8)

Equation (2.4) and (2.8) gives us

zDq

(
Dq(R

λ
q f(z))

)
Dq(Rλq f(z))

= h(z) +
zDq(p(z))

p(z)
− 1. (2.9)

Now substitute the values from (2.4), (2.5) and (2.9) in (2.8), we get

p(z) +
zDq(p(z))

h(z) +
[λ]q
qλ

=
zDq

(
Rλ+1
q f(z)

)
Rλ+1
q g(z)

. (2.10)

In view of (2.3), we have

p(z) +
zDqp(z)

h(z) +
[λ]q
qλ

≺ ψ(z). (2.11)

Now using Lemma 1.6, we conclude that p(z) ≺ ψ(z) or equivalently
zDq(Rλq f(z))

Rλq g(z)
≺ ψ(z), that is f ∈ KT λq (ψ). That completes the proof of

the Theorem 2.4. �

Theorem 2.5. Let ψ(z) be analytic and convex function with ψ(0) = 1 and
<(ψ(z)) > 0 , then for z ∈ U and λ > −1, we have

C∗V λ+1
q (ψ) ⊂ C∗V λ

q (ψ).

Proof. Let f ∈ C∗V λ+1
q (ψ). Then by Alexander’s type relation (1.15),

we can write z(Dqf) ∈ KT λ+1
q (ψ). From Theorem 2.4, we know that

KT λ+1
q (ψ) ⊂ KT λq (ψ), so we have z(Dqf) ∈ KT λq (ψ). We get required

result by again using Alexender’s type relation (1.15). �

3. Integral Preserving Property

Theorem 3.1. Let q ∈ (0, 1), λ > −1 and φ(z) be analytic and convex
univalent function with φ(0) = 1 and <(φ(z)) > 0 then, we have J1

q,λf ∈
ST λq (φ), where

J1
q,λf(z =

[1 + λ]q
zλ

∫ z

0
tλ−1f(t)dqt . (3.1)

Proof. Let f ∈ ST λq (φ) and if we set for F (z) = J1
q,λf(z), then we get

zDq(R
λ
qF (z))

RλqF (z)
= Q(z), (3.2)
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where Q(z) is analytic in U with Q(0) = 1.
From (3.1), we can write

Dq(z
λF (z))

(1 + λ)q
= zλ−1F (z). (3.3)

Knowing the fact that Rλ−1q f(z) = Rλq (J1
q,λf(z)), using product rule of q

difference operator, we get

zDq(F (z)) =

(
1 +

[λ]q
qb

)
f(z)− (λ)q

qλ
F (z). (3.4)

From (3.2), (3.4) and (1.7), we have

Q(z) =

(
1 +

[λ]q
qb

)
Rλq f(z)

RλqF (z)
− [λ− 1]q

qλ−1
. (3.5)

On q-logarithmic differentiation of (3.5) , we get

zDq(R
λ
q f(z))

Rλq f(z)
= Q(z) +

zDq(Q(z))

Q(z) +
[λ−1]q
qλ−1

. (3.6)

Since f ∈ ST λq (φ), so (3.6) implies Q(z) +
zDq(Q(z))

Q(z)+
(λ−1)q

qλ−1

≺ φ(z). Now by

applying Lemma 1.6, we concludeQ(z) ≺ φ(z). Consequently zDq(RλqF (z))

RλqF (z)
≺

φ(z), hence F = J1
q,λf ∈ ST

λ
q (φ). �
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ON CERTAIN TRIGONOMETRIC IDENTITIES AS A
CONSEQUENCE OF BAILEY’S SUMMATION

FORMULA
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Abstract. In this article, we give an elementary proof of nine non
trivial trigonometric identities from Bailey’s summation formula. We
also generalize two of those identities.

1. Introduction

For any complex numbers a and q, with |q| < 1 we define

(a)n := (a; q)n =

n−1∏
k=0

(1− aqk), if n is a positive integer,

(a)0 := (a; q)0 = 1,

and

(a)∞ := (a; q)∞ =

∞∏
n=0

(1− aqn).

Ramanujan’s general theta function is defined as

f(a, b) =

∞∑
n=−∞

an(n+1)/2bn(n−1)/2 (1.1)

= (−a; ab)∞(−b; ab)∞(ab; ab)∞, |ab| < 1.

B. C. Berndt and L. C. Zhang [6] discovered the following two interest-
ing identities for trigonometric sums by using certain identities satisfied by
Ramanujan’s general theta function f(a, b):

sin
(
2π
7

)
sin2

(
3π
7

) − sin
(
π
7

)
sin2

(
2π
7

) + sin
(
3π
7

)
sin2

(
π
7

) = 2
√
7 (1.2)

2010 Mathematics Subject Classification: 11L03, 11F27, 11M36
Key words and phrases: Ramanujan’s theta-function, Trigonometric sum, Eisenstein
series
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and
sin2

(
3π
7

)
sin
(
2π
7

) − sin2
(
2π
7

)
sin
(
π
7

) +
sin2

(
π
7

)
sin
(
3π
7

) = 0. (1.3)

Motivated by the above works, Z. G. Liu [8] deduced and proved eight
new non-trivial identities from complex variable theory for elliptic functions.
In [5], Berndt and A. Zahareseu have generalized certain identities proved
by Liu [8]. All the eight specific identities proved by Liu, involve multiples
of

π

7
. Motivated by these, in this paper we deduce certain trigonometric

identities involving the angles which are multiples of
π

14
and

π

18
by making

use of following beautiful identity due to W. N. Bailey [1]:

∞∑
n=−∞

[
aqn

(1− aqn)2
− bqn

(1− bqn)2

]
=
af61 f

(
−ab, −qab

)
f
(−b
a ,
−aq
b

)
f2
(
−a, −qa

)
f2
(
−b, −qb

) , (1.4)

where f1 = f
(
−q,−q2

)
. Bailey proved the above identity by making use of

elliptic function theory. It can also be deduced from Bailey 6ψ6 well-poised
summation formula, relations between modular equations and theta func-
tions recorded by Ramanujan.

We close this section by recalling certain definitions and elementary
results required to prove the trigonometric identities. Ramanujan defines
the following special cases of (1.1):

ϕ(q) := f(q, q) =

∞∑
n=−∞

qn
2
=
(
−q; q2

)2
∞
(
q2; q2

)
∞ ,

ψ(q) := f(q, q3) =
∞∑
n=0

q
n(n+1)

2 =
(q2; q2)∞
(q; q2)∞

,

and

f(−q) := f(−q,−q2) =
∞∑

n=−∞
(−1)nq

n(3n−1)
2 = (q; q)∞.

For convenience, we set fn := f(−qn) = (qn; qn)∞ for any positive integer
n

and
χ(q) := (−q; q2)∞.
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The Eisenstein series P (q) is defined as

P (q) = 1− 24

∞∑
k=1

kqk

1− qk
, |q| < 1.

For convenience, we set

Pn = P (qn) = 1− 24
∞∑
k=1

kqnk

1− qnk
.

We make use of the following Eisenstein series identities:

−P1 + P2 + 7P7 − 7P14 = 72

[
q2
f42 f

4
14

f21 f
2
7

+ qf1f2f7f14

]
, (1.5)

P1 − 2P2 = −16qψ4(q2)− ϕ4(q), (1.6)

−P1 + 7P7 = 24q2ψ2(q)ψ2(q7) + 6ϕ2(−q)ϕ2(−q7)

+24qϕ(−q)ϕ(−q7)ψ(q)ψ(q7), (1.7)

−P2 + 9P18 =

[
ϕ4(q3) + 3ϕ2(q)ϕ2(q9)

4

]2
ϕ2(q3)

ϕ3(q)ϕ3(q9)
(1.8)

and
−P1 + P2 + 3P3 − 3P6 = 24qψ2(q)− ψ2(q3). (1.9)

Equations (1.5) and (1.7) were proved by S. Cooper and Dongxi Ye in [7]
by using theory of modular forms and also K. R. Vasuki and Veeresh R. G.
have given an elementary proof of it in [10]. Proofs of (1.6) and (1.8) can
be found in [2], (1.9) is given in [11].
In the unorganized pages of his second notebook [9, p. 309], Ramanujan
recorded the following identities which relates a ratio of theta functions to
a ratio of trigonometric functions

If m+ n = p+ q = k, then
f(−xm,−xn)
f(−xp,−xq)

=
sin
(
mπ
k

)
sin
(pπ
k

) , when x = 1.

Berndt expressed the above identity in Chapter 25 of his edited notebook
of Ramanujan Part IV [3, p. 140], which is as follows:
Let m,n, p, r and k be positive integers such that m+ n = p+ r = k, then
as q tends to 1− we have

f(−qm,−qn)
f(−qp,−qr)

∼
sin
(
mπ
k

)
sin
(pπ
k

) .
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Since the right hand side is a constant (free of q), applying the definition
as ‘asymptotic to’, we can write

lim
q→1−

f(−qm,−qn)
f(−qp,−qr)

=
sin
(
mπ
k

)
sin
(pπ
k

) . (1.10)

The Gaussian hypergeometric series 2F1(a, b; c; z) is defined by

2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)nn!

zn, |z| < 1,

where a, b and c are any complex numbers. The elliptic integral of first kind
is defined by

K(k) =

∫ π
2

0

1√
1− k2 sin2 ϕ

dϕ, |k| < 1.

Here, k is called the modulus and k′ =
√
1− k2 is called the complementary

modulus.

Following is the relation between Gaussian hypergeometric series and
elliptic integral of first kind:

2F1

(
1

2
,
1

2
; 1; k2

)
=
π

2
K(k).

Theorem 1.1. [2] Suppose 0 < α < 1, y = π
2F1(

1
2 ,

1
2 ; 1; 1− α)

2F1(
1
2 ,

1
2 ; 1;α)

,

and q = e−y then

2F1

(
1

2
,
1

2
; 1;α

)
= ϕ2(q).

If 0 < α, β < 1, and the equality

n
2F1

(
1
2 ,

1
2 ; 1; 1− α

)
2F1

(
1
2 ,

1
2 ; 1;α

) =
2F1

(
1
2 ,

1
2 ; 1; 1− β

)
2F1

(
1
2 ,

1
2 ; 1;β

)
holds, then any relationship induced between α and β by the above equa-
tions is called a modular equation of degree n. We say that β is of degree
n over α. The multiplier connecting α and β is defined by

m =
z1
zn

=
2F1

(
1
2 ,

1
2 ; 1;α

)
2F1

(
1
2 ,

1
2 ; 1;β

) .
We now prove some elementary theorems which are necessary to prove

main identities.
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Theorem 1.2. For every natural number n and for any α ∈ (0, 1) there
exists β ∈ (0, 1) such that β is of degree n over α.

Proof. The function F as defined above is a bijection from [0, 1] onto [0, 1].
Hence if q ∈ (0, 1), then there exists β ∈ (0, 1) such that qn = F (β) (since
qn ∈ (0, 1)). In other words, β is of degree n over α. �

Theorem 1.3. If 0 < α < 1 then as q → 1−, α→ 1−. Consequently if β is
of degree n over α then as q → 1−, β → 1−.

Proof. Defined F (α) = e−y, where y is as defined in Theorem 1.1 and
0 < α < 1. F can be extended to [0, 1] by defining F (0) = 0 and F (1) =
1. It can be easily seen that F is continuous on [0, 1]. Moreover, F is
monotonically increasing [0, 1] and hence has a continuous inverse. In other
words, we can treat α as a function of q. Since as α → 1−, q → 1− and F
is monotonically increasing, as q → 1−, α should tend to 1−.

The same argument can be made for β too, since qn = F (β). �

Theorem 1.4. If β is of degree n over α and if m is the multiplier con-
necting α and β, then lim

q→1−
m = n.

Proof. By definition m =
2F1(

1
2 ,

1
2 ; 1;α)

2F1(
1
2 ,

1
2 ; 1;β)

. Since β is of degree n over α, we

have
2F1(

1
2 ,

1
2 ; 1;α)

2F1(
1
2 ,

1
2 ; 1;β)

= n
2F1(

1
2 ,

1
2 ; 1; 1− α)

2F1(
1
2 ,

1
2 ; 1; 1− β)

.

Thus m =
2F1(

1
2 ,

1
2 ; 1; 1− α)

2F1(
1
2 ,

1
2 ; 1; 1− β)

. As q → 1−, (1 − α) → 0 and (1 − β) → 0.

Hence, we have as q → 1−,m→ n. �

2. Main Results

In this section we prove the following theorem:

Theorem 2.1. We have
sin2

(
5π
14

)
sin
(
3π
7

) − sin2
(
3π
14

)
sin
(
π
7

) +
sin2

(
π
14

)
sin
(
2π
7

) = 0, (2.1)

sin2
(
π
7

)
sin2

(
5π
14

) + sin2
(
2π
7

)
sin2

(
3π
14

) + sin2
(
3π
7

)
sin2

(
π
14

) = 21, (2.2)

sin2
(
5π
14

)
sin2

(
π
7

) +
sin2

(
3π
14

)
sin2

(
2π
7

) + sin2
(
π
14

)
sin2

(
3π
7

) = 5, (2.3)
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sin2
(
2π
9

)
sin2

(
π
18

) +
sin2

(
3π
9

)
sin2

(
3π
18

) + sin2
(
2π
9

)
sin2

(
5π
12

) + sin2
(
π
9

)
sin2

(
7π
18

) = 36, (2.4)

sin2
(
π
18

)
sin2

(
2π
9

) + sin2
(
3π
18

)
sin2

(
3π
9

) + sin2
(
5π
12

)
sin2

(
2π
9

) + sin2
(
7π
18

)
sin2

(
π
9

) =
28

3
, (2.5)

sin4
(
π
7

)
sin4

(
5π
14

) + sin4
(
2π
7

)
sin4

(
3π
14

) + sin4
(
3π
7

)
sin4

(
π
14

) = 371, (2.6)

sin4
(
5π
14

)
sin4

(
π
7

) +
sin4

(
3π
14

)
sin4

(
2π
7

) + sin4
(
π
14

)
sin4

(
3π
7

) = 19, (2.7)

sin6
(
π
7

)
sin6

(
5π
14

) + sin6
(
2π
7

)
sin6

(
3π
14

) + sin6
(
3π
7

)
sin6

(
π
14

) = 7077, (2.8)

and
sin6

(
5π
14

)
sin6

(
π
7

) +
sin6

(
3π
14

)
sin6

(
2π
7

) + sin6
(
π
14

)
sin6

(
3π
7

) =
563

7
. (2.9)

Proof of (2.1). Replacing q by q14 in (1.4), we find that

∞∑
n=−∞

[
aq14n

(1− aq14n)2
− bq14n

(1− bq14n)2

]
=
af614 f

(
−ab, −q

14

ab

)
f
(
−b
a ,
−aq14
b

)
f2
(
−a, −q14a

)
f2
(
−b, −q14b

) .

(2.10)
Setting a = q and b = q3 in (2.10), we find that

∞∑
n=−∞

[
q14n+1

(1− q14n+1)2
− q14n+3

(1− q14n+3)2

]
= q

f32 f
2
7

f21

f2(−q5,−q9)
f(−q6,−q8)

. (2.11)

Setting a = q and b = q5 in (2.10), we find that
∞∑

n=−∞

[
q14n+5

(1− q14n+5)2
− q14n+1

(1− q14n+1)2

]
= −q f

3
2 f

2
7

f21

f2(−q3,−q11)
f(−q2,−q12)

. (2.12)

Setting a = q3 and b = q5 in (2.10), we find that
∞∑

n=−∞

[
q14n+3

(1− q14n+3)2
− q14n+5

(1− q14n+5)2

]
= q3

f32 f
2
7

f21

f2(−q,−q13)
f(−q4,−q10)

. (2.13)

Adding (2.11), (2.12) and (2.13), we obtain

f2(−q5,−q9)
f(−q6,−q8)

− f2(−q3,−q11)
f(−q2,−q12)

+ q2
f2(−q,−q13)
f(−q4,−q10)

= 0.

Using equation (1.10), tending q to 1−, we get the required result (2.1). �
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Proof of (2.2). Setting b = q7 in (2.10), we find that

∞∑
n=−∞

[
aq14n

(1− aq14n)2
− q14n+7

(1− q14n+7)2

]
= aψ4(q7)

f2
(
−aq7, −q

7

a

)
f2
(
−a, −q14a

) . (2.14)

By setting a = q, q3 and q5 respectively in the above equation (2.14), we
find that

∞∑
n=−∞

[
q14n+1

(1− q14n+1)2
− q14n+7

(1− q14n+7)2

]
= qψ4(q7)

f2
(
−q6,−q8

)
f2 (−q,−q13)

, (2.15)

∞∑
n=−∞

[
q14n+3

(1− q14n+3)2
− q14n+7

(1− q14n+7)2

]
= q3ψ4(q7)

f2
(
−q4,−q10

)
f2 (−q3,−q11)

(2.16)

and
∞∑

n=−∞

[
q14n+5

(1− q14n+5)2
− q14n+7

(1− q14n+7)2

]
= q5ψ4(q7)

f2
(
−q2,−q12

)
f2 (−q5,−q9)

. (2.17)

Adding (2.15), (2.16) and (2.17) and then using (1.5), we find that

q5
f2(−q2,−q12)
f2(−q5,−q9)

+ q3
f2(−q4,−q10)
f2(−q3,−q11)

+ q
f2(−q6,−q8)
f2(−q,−q13)

=
1

24ψ4(q7)
[−P1 + P2 + 7P7 − 7P14] = 3q2

f42 f
2
7

f21 f
4
14

+ q
f1f2f

5
7

f714
.

We express the last part of the above equation in terms of α, β and m,
where β has degree 7 over α and m is a multiplier connecting α and β [2,
Entry 12, p. 124], we find that

q5
f2(−q2,−q12)
f2(−q5,−q9)

+ q3
f2(−q4,−q10)
f2(−q3,−q11)

+ q
f2(−q6,−q8)
f2(−q,−q13)

= m

[
3q

(
α

β

)1/4

+ 2

(
α

β3

)1/8

[(1− α)(1− β)]1/4
]
.

As q tends to 1−, we know that α and β tend to 1 and m→ 7, we get the
required result (2.2). �

Proof of (2.3). Setting a = q2, q4 and q6 respectively in the equation
(2.14) and adding the resulting equations, we find that

q2
f2(−q5,−q9)
f2(−q2,−q12)

+ q4
f2(−q3,−q11)
f2(−q4,−q10)

+ q6
f2(−q,−q13)
f2(−q6,−q8)

=
1

24ψ4(q7)
[−P2 − 5P14 + 6P7]
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=
1

24ψ4(q7)
[−P2 + 7P14 + 6(P7 − 2P14)].

Using (1.5) and (1.6), we can write the RHS of the above equation as

=
1

24

{
24q2

ψ2(q)

ψ2(q2)
+ 6

ϕ2(−q)ϕ2(−q2)
ψ4(q2)

+ 24q
ϕ(−q)ϕ(−q2)ψ(q)

ψ3(q7)

−6
[
16q2

ψ4(q14)

ψ4(q2)
+
ϕ4(q2)

ψ4(q2)

]}
.

When expressing this in terms of α, β and m [2, Entry 10, 11, pp. 122, 123],
we get

= m

{
q3/2

(
α

β

)1/4

+ q7/2
[
(1− α)(1− β)

β

]1/2
+ q3

[(1− α)(1− β)α]1/4

(β)3/8

}
−q7/2(β)1/2 − q−7/2(β)1/2.

As q tends to 1−, we know that α and β tend to 1 and m→ 7 , we get the
required result (2.3). �

Proof of (2.4). Replacing q by q18 and b = q9 in (1.2), we find that

∞∑
n=−∞

[
aq18n

(1− aq18n)2
− q18n+9

(1− q18n+9)2

]
= aψ4(q9)

f2
(
−aq9, −q

9

a

)
f2
(
−a, −q18a

) . (2.18)

Setting a = q, q3, q5 and q7 respectively in the equation (2.18) and adding
the resulting equations, we find that

q
f2(−q8,−q10)
f2(−q,−q17)

+ q3
f2(−q6,−q12)
f2(−q3,−q15)

+ q4
f2(−q4,−q14)
f2(−q5,−q13)

+ q6
f2(−q2,−q16)
f2(−q7,−q11)

=
1

24ψ4(q9)
[−P1 + P2 + 9P2 − 9P18].

Replacing q by q3 in the equation (1.9) and then adding three times of the
resultant equation with (1.9), we find that

1

24qψ4(q9)
[−P1 + P2 + 9P9 − 9P18] =

ψ2(q)ψ2(q3)

ψ4(q9)
+ 3q2

ψ2(q3)

ψ2(q9)
.

Expressing the RHS of the above equation in terms of α, β, γ,m and m′,
where β and γ are of degree 3 and 9 respectively with respect to α and
m =

z1
z3

and m′ =
z3
z9

, we find that

1

24qψ4(q9)
[−P1 + P2 + 9P9 − 9P18] = q7/2m′

[
mm′

(αβ)1/4

(γ)1/2
+ 3

(
β

γ

)1/8
]
.
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Hence by tending q → 1−, we have α→ 1, β → 1 and m′ → 3 and mm′ → 9

to get (2.4). �

Proof of (2.5). Setting a = q2, q4, q6 and q8 respectively in the equation
(2.18) and adding the resultant equations, we find that

q8
f2(−q,−q17)
f2(−q8,−q10)

+ q6
f2(−q3,−q15)
f2(−q6,−q12)

+ q4
f2(−q5,−q13)
f2(−q4,−q14)

+ q2
f2(−q7,−q11)
f2(−q2,−q16)

=
1

24ψ4(q9)
[−P1 − 7P18 + 8P9] =

1

24ψ4(q9)
[−P2 + 9P18 + 8(P9 − 2P18)].

Using (1.6) and (1.8), we get

=
1

48

[
ϕ10(q3)

ϕ3(q)ϕ3(q9)ψ4(q9)
+

9ϕ(q)ϕ(q9)ϕ2(q3)

ψ4(q9)
+

6ϕ6(q3)

ϕ(q)ϕ(q9)ψ4(q9)

]
−16

3
q9ψ4(q18)− 1

3
ϕ4(q9).

Let α, β, γ,m and m′ be as in the proof of (2.4). Letting q → 1−, we get
the required equation (2.5). �

Proof of (2.6), (2.7), (2.8) and (2.9). Define A = 3q
f42 f

2
7

f21 f
4
14

+
f1f2f

5
7

f714
,

B = q−4
ψ2(q)

ψ2(q7)
+
q−6

4

[ϕ2(−q)ϕ2(−q7)− ϕ4(q7)]

ψ4(q7)

+q−5
ϕ(−q)ϕ(−q7)ψ(q)

ψ3(q7)
− 4q

ψ4(q14)

ψ4(q7)

and C = q6
ψ2(q)

ψ2(q7)
.

Using the formulas (x+ y + z)2 = x2 + y2 + z2 + 2xyz

(
1

x
+

1

y
+

1

z

)
and

(x+ y + z)3 = x3 + y3 + z3 + 3xyz(x+ y + z)

(
1

x
+

1

y
+

1

z

)
− 3xyz,

we find the following equations:

q8
f4(−q2,−q12)
f4(−q5,−q9)

+ q4
f4(−q4,−q10)
f4(−q3,−q11)

+
f4(−q6,−q8)
f4(−q,−q13)

= A2 − 2BC,

q−8
f4(−q5,−q9)
f4(−q2,−q12)

+ q−4
f4(−q3,−q11)
f4(−q4,−q10)

+
f4(−q,−q13)
f4(−q6,−q8)

= B2 − 2A

C
,

q12
f6(−q2,−q12)
f6(−q5,−q9)

+ q6
f6(−q4,−q10)
f6(−q3,−q11)

+
f6(−q6,−q8)
f6(−q,−q13)

= A3 + 3C − 3ABC,
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and

q−12
f6(−q5,−q9)
f6(−q2,−q12)

+ q−6
f6(−q3,−q11)
f6(−q4,−q10)

+
f6(−q,−q13)
f6(−q6,−q8)

= B3 +
3

C
− 3AB

C
.

Letting q → 1− in the above equations, we get the required equations (2.6),
(2.7), (2.8) and (2.9). �

We now find a recurrence relation for the sum of the kind

a(n) = tan−2n
( π
14

)
+ tan−2n

(
3π

14

)
+ tan−2n

(
5π

14

)
,

where n ∈ Z and in general, we prove that a(n) is a positive integer for all
n ≥ 0 and a(n) is a positive integer divided by some power of 7 for all n < 0.

We first prove the following theorem:

Theorem 2.2. If x = tan−2
(
π
14

)
, y = tan−2

(
3π
14

)
and z = tan−2

(
5π
14

)
then

xyz = 7.

Proof. Consider

f2(−q6,−q8)
f2(−q,−q13)

× f
2(−q4,−q10)
f2(−q3,−q11)

× f
2(−q2,−q12)
f2(−q5,−q9)

=
ψ2(q)

ψ2 (q7)
= mq3/2

(
α

β

)1/4

(2.19)
As q tends to 1−, we know that α and β tend to 1 and m → 7. Taking q
tends to 1− on both sides of the equation (2.19), and using equation (1.10),
we obtain the required result. �

We now move into the recurrence relation for a(n).

Theorem 2.3. Let

a(n) := tan−2n
( π
14

)
+ tan−2n

(
3π

14

)
+ tan−2n

(
5π

14

)
,

and
c(n) := 7 [a(n− 1) a(−1)− a(n− 2)] , ∀n ≥ 1.

Then

(a(1))n = a(n) +
n−1∑
k=1

c(k) [a(1)]n−k−1. (2.20)

Proof. Let x = tan−2
(
π
14

)
, y = tan−2

(
3π
14

)
and z = tan−2

(
5π
14

)
.

By the elementary formula,

(x+ y + z)2 = x2 + y2 + z2 + 2xyz

(
1

x
+

1

y
+

1

z

)
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and the fact that xyz = 7, it easily follows that (2.20) holds for n = 2.
Assume that (2.20) holds for all 3 ≤ k ≤ (n− 1).

Consider (x+ y + z)n = (x+ y + z)n−1(x+ y + z)

=

[
a(n− 1) +

n−2∑
k=1

c(k) [a(1)]n−k−2

]
(x+ y + z)

= a(n− 1) (x+ y + z) +

n−2∑
k=1

c(k) [a(1)]n−k−1 (2.21)

Since a(n− 1) (x+ y + z) =
(
xn−1 + yn−1 + zn−1

)
(x+ y + z)

= (xn + yn + zn) +
(
xn−1 + yn−1 + zn−1

)
xyz

(
1

x
+

1

y
+

1

z

)
−
(
xn−2 + yn−2 + zn−2

)
xyz

= a(n) + c(n− 1),

equation (2.21) becomes equation (2.20) and this completes the proof. �

Theorem 2.4. Let

d(n) :=
1

7
[a(1− n) a(1)− a(2− n)] , ∀n ≥ 1.

Then

(a(−1))n = a(−n) +
n−1∑
k=1

d(k) [a(−1)]n−k−1. (2.22)

Proof of this is similar to the proof of the above Theorem 2.3.

Corollary 2.5. We have

(1) For n ≥ 0, a(n) are all positive integers.
(2) For n > 0, a(−n) are positive integers divided by some power of 7.

Proof. Clearly a(−1), a(0) and a(1) are integers. Now by mathematical
induction, and the above two recurrence relations (2.20) and (2.22), the
corollary follows. �

Remark

Berndt and B. P. Yeap [4] have generalized the sum a(−n) (n > 0) for
any base other than 7. Their generalized formula, which is obtained through
contour integration technique, involves Bernoulli numbers.
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SOME PROPERTIES OF A SEMICONFORMAL
CURVATURE TENSOR ON A RIEMANNIAN

MANIFOLD

AJIT BARMAN
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Abstract. The purpose of the present paper is to study a semiconfor-
mally flat on the Riemannian manifolds with a perfect fluid spacetime
that satisfies Einstein’s field equation without cosmological constant.
Many geometric features related to weakly semiconformally symmetric
manifolds have been studied with the weakly symmetric and the weakly
Ricci symmetric manifolds.

1. Introduction

Kim [8] introduced a curvature-like tensor called the semiconformal cur-
vature tensor such that its (1, 3) components remain invariant under con-
harmonic transformation and the melodic of the harmonic semiconformal
curvature tensor has yielded several results then the year was 2017. The
semiconformal curvature tensor P of type (1, 3) on a Riemannian manifold
(Mn, g) is defined by the tensor

P(X,Y )Z = −(n− 2)b C(X,Y )Z + [a+ (n− 2)b]H(X,Y )Z, (1.1)

where a, b are constant not simultaneously zero, C and H are the conformal
curvature tensor of type (1, 3) and the conharmonic curvature tensor H of
type (1, 3) respectively are defined by the tensors

C(X,Y )Z = R(X,Y )Z − 1

n− 2
[S(Y, Z)X − S(X,Z)Y + g(Y,Z)QX

−g(X,Z)QY ] +
r

(n− 1)(n− 2)
[g(Y,Z)X − g(X,Z)Y ] (1.2)

2010 Mathematics Subject Classification: 53C15, 53C25
Key words and phrases: Semiconformal curvature tensor, Weakly symmetric manifold,
Pseudo symmetric manifold, Einstein manifold
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and

H(X,Y )Z = R(X,Y )Z − 1

n− 2
[S(Y, Z)X − S(X,Z)Y + g(Y,Z)QX

−g(X,Z)QY ],(1.3)

where r is the scalar curvature and Q denotes the symmetric endomorphism
of the tangent space at each point corresponding to the Ricci tensor S, that
is g(QX,Y ) = S(X,Y ).

From (1.1), (1.2) and (1.3), we can conclude it

P(X,Y )Z = a H(X,Y )Z − br

n− 1
[g(Y,Z)X − g(X,Z)Y ]. (1.4)

Also (1.4), we can write that

P̃(Y, Z, U, V ) = a R̃(Y, Z, U, V )− a

n− 2
[S(Z,U)g(Y, V )− S(Y, U)g(Z, V )

+S(Y, V )g(Z,U)− S(Z, V )g(Y, U)]− br

n− 1
[g(Z,U)g(Y, V )

−g(Y,U)g(Z, V )],(1.5)

where P̃(Y,Z, U, V ) = g(P(Y,Z)U, V ) and R̃(Y,Z, U, V ) = g(R(Y,Z)U, V )

are the semiconformal curvature tensor of type (0, 4) and the curvature ten-
sor of the manifold of type (0, 4) respectively.

Chaki [5] studied that a non flat Riemannian manifold (Mn, g), n ≥ 2

is considered a pseudo symmetric manifold [5] if its curvature tensor R̃ of
type (0, 4) satisfies the tensor type in 1987

(∇XR̃)(Y,Z, U, V ) = 2A(X)R̃(Y, Z, U, V ) +A(Y )R̃(X,Z,U, V )

+A(Z)R̃(Y,X,U, V ) +A(U)R̃(Y,Z,X, V )

+A(V )R̃(Y,Z, U,X),

where the 1-form A and a vector field ρ1 is given by g(X, ρ1) = A(X). The
pseudo-Ricci symmetric manifold can be identified by the following equation
[5]

(∇XS)(Y,Z) = 2A(X)S(Y,Z) +A(Y )S(X,Z) +A(Z)S(X,Y ).

In 1989, Tamassy and Binh [12] investigated that a non flat Riemannian
manifold (Mn, g), n > 3 is considered a weakly symmetric manifold [12] if
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there exist 1-forms A,B,D,E and F present that met the condition

(∇XR̃)(Y, Z, U, V ) = A(X)R̃(Y,Z, U, V ) +B(Y )R̃(X,Z,U, V )

+D(Z)R̃(Y,X,U, V ) + E(U)R̃(Y,Z,X, V )

+F (V )R̃(Y,Z, U,X). (1.6)

And the weakly-Ricci symmetric manifold [12] can be identified by the fol-
lowing condition

(∇XS)(Y, Z) = A(X)S(Y, Z) +B(Y )S(X,Z) +D(Z)S(X,Y ). (1.7)

In a recent research paper, De and Suh [7] has done research, "on weakly
semiconformally symmetric manifold". A manifold is a the weakly semi-
conformally symmetric manifolds (Mn, g) if the semiconformal curvature
tensor P̃ of type (0, 4) the synthesis is as follows [7]

(∇XP̃)(Y, Z, U, V ) = A(X)P̃(Y,Z, U, V ) +B(Y )P̃(X,Z,U, V )

+D(Z)P̃(Y,X,U, V ) + E(U)P̃(Y,Z,X, V )

+F (V )P̃(Y,Z, U,X). (1.8)

The semiconformal curvature tensor P̃ of type (0, 4) satisfies the condition
[7]

(∇XP̃)(Y,Z, U, V ) = 2A(X)P̃(Y,Z, U, V ) +A(Y )P̃(X,Z,U, V )

+A(Z)P̃(Y,X,U, V ) +A(U)P̃(Y,Z,X, V )

+A(V )P̃(Y,Z, U,X), (1.9)

then the Riemannian manifolds (Mn, g), n ≥ 4 is the pseudo semiconfor-
mally symmetric manifolds. The semiconformal curvature tensor also stud-
ied by Ali and Pundeer [1], Ali, Pundeer and Suh [2] and many others.

A reminiscence carries many Weakly symmetric structures on a Rie-
mannian manifold (Mn, g) have been studied by Barman ( [3], [4]), Ozen
and Altay [10], De and Mallik [6] and many others.

Inspired by the above research in the present research paper, we are
featured some geometric properties of the semiconformal curvature tensor
on a Riemannian manifold.
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The present paper is organized as follows : After introduction in section
2, the semiconformal curvature tensor on a Riemannian manifold vanishes
and a perfect fluid spacetime satisfies Einstein’s field equation without cos-
mological constant have been studied. Finally, we deals with some geometric
properties of weakly semiconformally symmetric manifolds with the weakly
symmetric and the weakly Ricci symmetric manifolds.

2. Semiconformally flatness and without cosmological
constant spacetime on Riemannian manifold

Definition 2.1. A Riemannian manifold (Mn, g) is said to have Einstein
manifold if its Ricci tensor S [9] satisfies the condition

S(X,Y ) = λ1g(X,Y ), (2.1)

where λ1 is the scalar function.

Theorem 2.2. If the semiconformal curvature tensor vanishes in a Rie-
mannian manifold, then the manifold is the Einstein manifold.

Proof. Putting P̃(Y, Z, U, V ) = 0 in (1.5), we implies that

a R̃(Y,Z, U, V ) =
a

n− 2
[S(Z,U)g(Y, V )− S(Y,U)g(Z, V ) + S(Y, V )g(Z,U)

−S(Z, V )g(Y,U)] +
br

n− 1
[g(Z,U)g(Y, V )− g(Y, U)g(Z, V )].(2.2)

Taking the contrations of (2.2), it follows that

S(Z,U) = −(a+ nb− 2b)r

2a
g(Z,U). (2.3)

Comparing (2.1) and (2.3), we have

λ1 = −
(a+ nb− 2b)r

2a
,

that means, the manifold of semiconformal curvature tensor is the Einstein
manifold. The proof is completed. �

Theorem 2.3. If the semiconformally flat in a Riemannian manifold and a
perfect fluid spacetime satisfies Einstein’s field equation without cosmological
constant, then the scalar curvature of the manifold is equal to −2[nκp+κ(σ+p)π(ρ)]

a(2n−nb+2b) .
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Proof. The General relativity given by Einstein’s equation [9] is the lower
form of flow

S(X,Y )− 1

2
rg(X,Y ) + λg(X,Y ) = κT (X,Y ), (2.4)

where S(X,Y ) is the Ricci tensor of type (0, 2) of the spacetime, r is the
scalar curvature, T (X,Y ) is the energy-momentum tensor of type (0, 2), λ

is the cosmological constant and κ is the gravitational constant. Einstein’s
gave the equation without the cosmological constant as follows

S(X,Y )− 1

2
rg(X,Y ) = κT (X,Y ). (2.5)

From Einstein’s equations (2.4) and (2.5), we conclude that "matter
determines the geometry of spacetimes and conversely that the motion of
matter is determined by the metric tensor of the space which is not fiat
[11]".

The energy-momentum tensor describes a Perfect fluid [9] if

T (X,Y ) = (σ + p)π(X)π(Y ) + ρg(X,Y ), (2.6)

where σ is the energy density and p is the isotropic pressure of the fluid.

Ali and Pundeer [1] proved that for Einstein’s field equation with cos-
mological constant are as follows:

1. A semiconformally-flat spacetime is an Einstein-like space [1].

2. A semiconformally-flat spacetime is an Einstein space for σ = 0 and
λ non-zero constant [1].

3. A semiconformally-flat spacetime is of constant curvature [1].

Combining (2.5) and (2.6), it implies that

S(X,Y )− (
1

2
r + κp)g(X,Y ) = κ(σ + p)π(X)π(Y ). (2.7)

Adding (2.3) and (2.7), it yields that
r = −2[nκp+κ(σ+p)π(ρ)]

a(2n−nb+2b) . So, the Theorem 2.3 is proved. �
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3. some properties of weakly semiconformally symmetric
manifolds

Theorem 3.1. If the Ricci tensor vanishes on a Riemannian manifold,
then the weakly semiconformally symmetric manifold is a weakly symmetric
manifold.

Proof. Putting (1.5) in (1.8), we obtain

a(∇XR̃)(Y, Z, U, V )− a

n− 2
[(∇XS)(Z,U)g(Y, V )− (∇XS)(Y,U)g(Z, V )

+(∇XS)(Y, V )g(Z,U)− (∇XS)(Z, V )g(Y, U)] = A(X)[aR̃(Y, Z, U, V )

− a

n− 2
[S(Z,U)g(Y, V )− S(Y,U)g(Z, V ) + S(Y, V )g(Z,U)

−S(Z, V )g(Y,U)]− br

n− 1
[g(Z,U)g(Y, V )− g(Y, U)g(Z, V )]]

+B(Y )[aR̃(X,Z,U, V )− a

n− 2
[S(Z,U)g(X,V )− S(X,U)g(Z, V )

+S(X,V )g(Z,U)− S(Z, V )g(X,U)]− br

n− 1
[g(Z,U)g(X,V )

−g(X,U)g(Z, V )]] +D(Z)[aR̃(Y,X,U, V )− a

n− 2
[S(X,U)g(Y, V )

−S(Y,U)g(X,V ) + S(Y, V )g(X,U)− S(X,V )g(Y,U)]

− br

n− 1
[g(X,U)g(Y, V )− g(Y, U)g(X,V )]] + E(U)[aR̃(Y,Z,X, V )

− a

n− 2
[S(Z,X)g(Y, V )− S(Y,X)g(Z, V ) + S(Y, V )g(Z,X)

−S(Z, V )g(Y,X)]− br

n− 1
[g(Z,X)g(Y, V )− g(Y,X)g(Z, V )]]

+F (V )[aR̃(Y,Z, U,X)− a

n− 2
[S(Z,U)g(Y,X)− S(Y,U)g(Z,X)

+S(Y,X)g(Z,U)− S(Z,X)g(Y,U)]− br

n− 1
[g(Z,U)g(Y,X)

−g(Y,U)g(Z,X)]].(3.1)

If the Ricci tensor (S) vanishes, that means, the scalar curvature also
vanishes of the manifold. Then (3.1) we can to write

(∇XR̃)(Y,Z, U, V ) = A(X)R̃(Y,Z, U, V ) +B(Y )R̃(X,Z,U, V )

+D(Z)R̃(Y,X,U, V ) + E(U)R̃(Y,Z,X, V )

+F (V )R̃(Y,Z, U,X),
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Which is the weakly symmetric manifolds on the Riemannian manifolds.
The Theorem 3.1 is proved. �

Theorem 3.2. If the weakly semiconformally symmetric manifold satisfies
the weakly symmetric and the weakly Ricci-symmetric conditions, then the
scalar curvature of the manifold is equal to − a[(n−1)Qρ3+Qρ5+2Qρ4]

b(n−2)[ρ1−nρ2−ρ3+ρ5]−a[(n+1)ρ2+ρ5]
.

Proof. Using (1.6) and (1.7), we have from (3.1)

a

n− 2
[B(Y )S(Z,U)g(X,V ) +B(Y )S(Z, V )g(X,U) +D(Z)S(Y,U)g(X,V )

+D(Z)S(Y, V )g(X,U) + E(U)S(Y, V )g(Z,X) + E(U)S(Z, V )g(X,Y )

+F (V )S(Z,U)g(X,Y ) +B(V )S(Y, U)g(X,Z)] +
br

n− 1
[A(X)g(Z,U)g(Y, V )

−A(X)g(Y, U)g(Z, V ) +B(Y )g(Z,U)g(X,V )−B(Y )g(X,U)g(Z, V )

+D(Z)g(X,U)g(Y, V )−D(Z)g(Y, U)g(X,V ) + E(U)g(Z,X)g(Y, V )

−E(U)g(X,Y )g(Z, V ) + F (V )g(Z,U)g(X,Y )

−F (V )g(Y, U)g(Z,X)] = 0.(3.2)

Contracting (3.2) over X and V, we obtain

a

n− 2
[{(n+ 1)B(Y ) + F (Y )}S(Z,U) + {(n+ 1)D(Z) + F (Z)}S(Y, U)

+2E(U)S(Y, Z)] +
br

n− 1
[{A(Y ) + (n− 1)B(Y ) + F (Y )}g(Z,U)

+{(n− 1)D(Z)−A(Z)}g(Y,U)− F (Z)g(Y,U)] = 0.(3.3)

Again contracting (3.3) over Z and U, we conclude that
a

n− 2
[r{(n+ 1)B(Y ) + F (Y )}+ (n+ 1)S(Y, ρ3) + S(Y, ρ5) + 2S(Y, ρ4)]

+
br

n− 1
[n{A(Y ) + (n− 1)B(Y ) + F (Y )}+ (1− n)D(Y )−A(Y )

−F (Y )] = 0,(3.4)

where D(Z) = g(Y, ρ3), E(U) = g(Y, ρ4) and F (V ) = g(Y, ρ5).

Further contracting Y, we decide that

r = − a[(n− 1)Qρ3 +Qρ5 + 2Qρ4]

b(n− 2)[ρ1 − nρ2 − ρ3 + ρ5]− a[(n+ 1)ρ2 + ρ5]
, (3.5)
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where S(X,Y ) = g(QX,Y ), A(X) = g(X, ρ1) and B(Y ) = g(Y, ρ2). The
proof is completed. �

Theorem 3.3. If the weakly semiconformally symmetric manifold satis-
fies the weakly symmetric and the weakly Ricci-symmetric conditions, then
the scalar curvature of the manifold vanishes provided one constantof the
semiconformal curvature tensor a = 0.

Proof. If a = 0 in (3.5), then r = 0. Proved the Theorem 3.3. �

Acknowledgement: The author is grateful to the referee for the comments
which improved the quality of the paper.
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Abstract: These notes are based on a talk I gave at a webinar organized
by Vimala College, Trissur, Kerala, in December 2020. This is an exposition
of some basic results in the theory of transcendental numbers. No originality
is claimed and no effort was taken to make this up to date. The aim
is to arouse curiosity in the reader about the rich theory of transcendental
numbers. She or he should consult textbooks and research articles to explore
and gain deeper understanding of the subject.

1. Introduction

A complex number α is called an algebraic number if it is the root of
a non-constant polynomial over the field of rational numbers Q (i.e., with
coefficients in Q). We say that α ∈ C is transcendental if it is not an
algebraic number. Equivalently, α ∈ C is transcendental if it is not a root
of any non-constant polynomial over Q.

If α, β are algebraic, then so are α + β, αβ and, if β 6= 0, then α/β is
also algebraic. These statements follow easily using basic facts from field
theory, as we shall now explain.

First, recall that if α ∈ C, and if F ⊂ C is a subfield, then F [α] is the
subring of C that consists of all complex numbers of the form

∑
0≤k≤r ajα

j

where the aj vary over F and r varies over non-negative integers.
IfX denotes an indeterminate, we have a unique homomorphism of rings

φ : Q[X]→ Q[α] that sends X to α. If α is not algebraic over F , that is, α
is not the root of any non-zero polynomial over F , then φ is an isomorphism
of rings. On the other hand, suppose that α is algebraic over F . Then φ
is not one-to-one. For, if α is a root of a polynomial f(X) ∈ Q[X], then
φ(f(X)) = f(α) = 0. Since F [X]/ kerφ ∼= F [α] is an integral domain,
ker(φ) is a prime ideal. Since F [X] is a PID, ker(φ) is a maximal ideal.
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Key words and phrases: transcendental numbers
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Therefore F [α] is a field and equals F (α), the smallest subfield of C that
contains F as well as α. (The elements of F (α) are of the form a(α)/b(α)

where a(X), b(X) ∈ F [X] with b(α) 6= 0.)
Let h(X) be a generator of ker(φ). ( The generators of ker(φ) are

unique up to scalar multiples of each other. So there is a unique monic
polynomial that generates ker(φ).) Then h(X) is irreducible and its degree
is the smallest among all polynomials over F of which α is a root. It is
readily verified that the dimF F [α] equals the degree of h(X) and is called
the degree of F [α] over F . When F = Q, degQ [α] is called the degree of
the algebraic number α.

If E is a field that contains F then we may regard E as a vector space
over F and the dimension dimF E of E over F is called the degree of E
over F , denoted degF E. It is readily seen that if F ⊂ E ⊂ K where K is
also a field, then degF K = degEK.degF E. In particular, if degF E and
degEK are finite, then so is degF K. Conversely, if degF K < ∞, then so
are degF E and degEK.

Suppose that α, β ∈ C are algebraic. Then, by the above discus-
sion, degQQ(α), degQQ(β) are finite. Also, since β is algebraic (over Q),
it is algebraic over Q(α). Hence, writing Q(α, β) = Q(α)(β), we have
degQ(α)Q(α, β) is finite. It follows that degQQ(α, β) is finite by the obser-
vation in the previous paragraph. Hence any γ ∈ Q(α, β) is algebraic in
view of the fact that Q ⊂ Q(γ) ⊂ Q(α, β). It follows that α + β, αβ, α/β

(when β 6= 0) are algebraic.
From the above discussion we see that set Q ⊂ C of all algebraic number

is a subfield of C.
Denote by T ⊂ C the set of all transcendental numbers and by T0 the

set T ∩R. Note that there are only countably many polynomials in X with
coefficients in Q. Since each polynomial of degree n has at most n roots
(ignoring multiplicity!) in C, we can write Q as countable union of finite
sets. Hence Q is countable. Since C,R are uncountable, it follows that T
and T0 are uncountable. Also, T and T0 have full Lebesgue measures and
everywhere dense residual sets. Thus these sets are large. It is surprising
that, in spite of the largeness of the sets T , T0, it is in general a difficult
problem to write down families of (infinitely many) transcendental numbers.
It is even more difficult to decide whether a given number is transcendental.
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Unlike Q, the set of transcendental numbers is not closed under addition
or multiplication: For example, if α is transcendental, so is 1− α and their
sum is 1 and α.α−1 = 1. However, T is closed under multiplication by non-
zero algebraic numbers and translation by algebraic numbers. That is, if
λ, µ ∈ Q, λ 6= 0, and if α ∈ T , then λα+µ ∈ T . Also, performing algebraic
operation such as taking square roots, cube roots, etc (repeatedly) on a
transcendental number result in transcendental numbers. More precisely, if
α ∈ C, P (X) ∈ Q[X] such that P (α) ∈ T , then α ∈ T . (If α ∈ Q, then
P (α) ∈ Q, a contradiction to our assumption that P (α) ∈ T .) If σ : C→ C
is any field automorphism, then σ(T ) = T . (Note that σ(Q) = Q and so
σ(Q) = Q. Since Q, T form a partition of C, the assertion follows.)

Well-known examples of transcendental numbers are e (the base of the
natural logarithm) and π. The transcendence of e was established by Her-
mite in 1873 and that of π by Lindemann who actually proved that if
α 6= 0 is algebraic, then eα is transcendental. Since eiπ = −1 is algebraic,
it follows that iπ is transcendental. Since i is algebraic, it follows that π
is transcendental. Lindemann’s theorem also readily implies that logm is
transcendental for all m ∈ N,m > 1.

It is a lesser known fact that 2
√
2 and the Liouville number

∑
n≥1 10

−n!

are transcendental. These are special instances of more general results on
transcendental numbers, which we discuss next.

2. Liouville numbers

J. Liouville proved, in 1844, an important result that led him to exhibit
plenty of transcendental numbers. The proof of the result involves nothing
more than mean value theorem.

If α ∈ Q, the degree of α, written degα, equals deg h(X) where h(α) = 0

and h(X) ∈ Q[X] irreducible.

Theorem 2.1. Suppose that α is a real algebraic number of degree n ≥ 2.
Then there exists a constant C = C(α) > 0 such that |α− p/q| > C/qn for
any rational number p/q where p, q ∈ Z, q ≥ 1.

Before we prove the theorem, we note that if α = a/b ∈ Q, (a, b ∈
Z, b > 0), then we may take p/q to be α and there cannot be a C > 0 as
in the theorem. However, for any other rational number p/q, we see that
|α− p/q| = |aq − bp|/bq > C/q where C := 1/2b since |aq − bp| ≥ 1. When
deg(α) > 1, then α is irrational so the possibility α = p/q is ruled out.
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Proof. Let h(X) =
∑

0≤j≤n ajX
j be an irreducible polynomial such that

h(α) = 0 and α /∈ Q. We may (and do) assume that the coefficients aj of
h(X) are all integers. Since h(X) is irreducible, a0 6= 0 and since degα =

n > 1, α is not a rational number. By clearing the denominators, we may
assume that h(X) has integer coefficients. We have h(α) =

∑
ajα

j = 0.
We may (and do) choose p/q to be in the interval J := [α− 1, α+ 1].
We know that h(p/q) 6= 0 since h(X), being irreducible, has no rational

roots. (Otherwise h(X) would have to be a constant multiple of the linear
polynomial X − p/q which is a contradiction since deg h(X) = n > 1 and
h(X) is irreducible.) So, by mean value theorem, 0 6= h(p/q) = h(p/q) −
h(α) = (p/q−α).h′(β) for a suitable β in the open interval with end points
p/q, α. Therefore we have

0 <
|h(p/q)|
|h′(β)|

= |α− p/q|. (1)

Let M = maxt∈J |h′(t)|. Then 0 < |h′(β)| ≤ M since β ∈ J as both
p/q, α ∈ J . Note that the value of M depends only on α (having fixed
h(X)).

We now obtain a lower bound for |h(p/q)|. We have

|h(p/q)| = |
∑

ajp
j/qj | = q−n|

∑
ajp

jqn−j | ≥ q−n

since the aj are integers and
∑
ajp

jqn−j is a non-zero integer. So, from (1)
we obtain that

|α− p/q| = |h(p/q)|/|h′(β) ≥ q−n/M. (2)

Let C :=M + 1. Then for any p/q ∈ Q we have |α− p/q| > C/qn. �

Definition 2.2. A real number α is called a Liouville number, if there exists
an infinite sequence of rational numbers (pn/qn)n≥1, pn, qn ∈ Z with qn ≥ 2,
such that 0 < |α− pn/qn| < 1/qnn.

Denote by L the set of all Liouville numbers. As an application of the
above theorem, we have

Theorem 2.3. Any Liouville number is transcendental.

Proof. Let α ∈ L. First we show that α is irrational. Suppose, on the
contrary, that α is rational, say α = p0/q0 in least form, where p0, q0 ∈
Z, q0 ≥ 1. Let p, q ∈ Z and α 6= p/q. Suppose that q ≥ q0 + 1. Then we
have |α− p/q| = |p0q − pq0|/q0q > 1/q2.
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Let pn/qn is an infinite sequence of rational number with pn, qn ∈ Z, q ≥
1, such that 0 < |α − pn/qn| < 1/qnn. Then α 6= pn/qn for any n. We
choose n ≥ 2 and so that qn > q0. As has already been observed we
have |α − pn/qn| > 1/q2n. Hence we have 1/q2n < |α − pn/qn| < 1/qnn, i.e.,
1/q2n < 1/qnn, which is a contradiction. So α is not a rational number.

Now if α is algebraic, then N := deg(α) ≥ 2 since α is not rational.
By Theorem 2.1, there exists a C > 0 such that |α − p/q| > C/qN for
any rational number p/q, p, q ∈ Z, q ≥ 2. Since there are at most finitely
many rational numbers with denominator 1 ≤ q ≤ 1/C, we can find an
n ≥ N+1 large so that qn > max{2, 1/C}. Now C/qNn < |α−pn/qn| < 1/qnn
implies that C/qNn < 1/qnn ≤ 1/qN+1

n which implies that qn < 1/C, a
contradiction. �

Let b > 1 be any integer. Let (ak)k≥1 be any sequence of integers where
0 ≤ ak < b for all k with infinitely many ak being non-zero. Consider the
series

∑
k≥1 ak/b

k!. A comparision with the geometric series
∑

(b − 1)/bk

shows that that the series converges to a real number, say α. We claim that
α is transcendental. We will show that α is a Liouville number. Let sn be
the partial sum

∑
1≤k≤n ak/b

k! = pn/b
n! ∈ Q for some positive integer pn.

We note that pn is not divisible by b if an is non-zero. So the fraction pn/bn!

is in least form. Then α− sn =
∑

k>n ak/b
k! < (b− 1)b−(n+1)!(

∑
r≥0 b

−r) =

(b − 1)b−(n+1)! b
b−1 = b1−(n+1)!. Note that (n + 1)! − 1 > n.n! if n ≥ 2. So

setting qn = bn! we have 0 < |α − pn/qn| < q−nn whenever an 6= 0. This
proves that α is a Liouville number. .

Observe that if b ≥ 2, there are uncountably many sequences (an) such
that an ∈ {0, 1, . . . , b− 1} with the property that infinitely many of the an
are non-zero. Therefore L is uncountable.

Although L is uncountable, it can be shown that the Lebesgue mea-
sure of L ⊂ R is zero. So most transcendental numbers are not Liouville
numbers.

3. Gelfond-Schneider theorem

A. O. Gelfond and T. Schneider independently proved around 1934 the
following result, thereby settling the Hilbert’s seventh problem.

Before we state the result, recall that if α, β ∈ C and if α 6= 0 and β is
not an integer, then αβ is defined as eβ logα ∈ C. 1 Since log is multivalued,

1The base of log is understood to be e unless indicated otherwise.
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we see that αβ is multivalued. For example, 11/3 has three values, namely,
1, (1 ± i

√
3)/2. As another example, i = eiπ/4+2kiπ, k ∈ Z. Therefore

ii = {e−π/4−2kπ | k ∈ Z}. However, when α, β > 0, then there exists a
unique positive number αβ ∈ R although αβ is multivalued as a complex
number (except when β is an integer).

Theorem 3.1. (A. O. Gelfond and T. Schneider) Let α 6= 0, 1 be algebraic
and let β be an algebraic number which is not rational. Then any value of
αβ is transcendental.

The proof of this theorem is beyond the scope of these notes. We merely
illustrate the result and make some remarks.

Example 3.2. 1. Consider the real number eπ. Since (eπ)i = eiπ = −1
and since i is algebraic, it follows that eπ is transcendental. The number
eπ is called the Gelfond constant. Also, setting α = 2

√
2 we have α

√
2 =

22 = 4. Since
√
2 is irrational and algebraic, it follows that α = 2

√
2 is

transcendental. The number 2
√
2 is called the Gelfond-Schneider constant.

2. Suppose that m,n > 1 are multiplicatively independent, i.e., there
does not exist a positive integer p, q such thatmq = np. Then λ = logm/ log n =

lognm is irrational. For, otherwise, writing lognm = p/q we see that
m = nλ = np/q, that is, mq = np contradicting our hypothesis on m,n.
Now, if λ = logm/ log n were algebraic, Gelfond-Scheider theorem would
imply that m = nλ is transcedental. Therefore λ := logm/ log n = lognm

is transcendental.
3. Consider three numbers a, b, eab where a is non-zero and b is not

rational. Then at least one of the numbers ea, b, eab is transcendental. We
will use the Gelfond-Schneider theorem repeatedly. We may assume that
a 6= 1 (since e is transcendental). Note that if ea and b are algebraic, then
(as ea 6= 0, 1, b /∈ Q) eab is transcendental. If ea and eab are algebraic, then
b has to be transcedental since b /∈ Q. Again if eab and b are algebraic, then
(eab)1/b = ea is transcendental since b /∈ Q.

As remarked in the introduction, Lindemann proved that if α is a non-
zero algebraic number, then eα is transcendental. This result was gen-
eralized by Weierstrass. Before we state the Lindemann-Weierstrass the-
orem, we recall the definition of algebraic independence. We say that
a1, . . . , an ∈ C are algebraically independent if there is no non-zero poly-
nomial P (X1, . . . , Xn) over Q such that P (a1, . . . , an) = 0. Note that if
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a1, . . . , an are algebraically independent, then necessarily they are transcen-
dental. For a non-example, a1 = π, a2 =

√
π +
√
π + 2 are transcenden-

tal, but not algebraically independent. We see that, setting P (X1, X2) =

(X2
2 −X1)

2 −X1 − 2, we have P (a1, a2) = 0.

Theorem 3.3. (Lindemann-Weierstrass Theorem) If α1, . . . , αk are alge-
braic numbers that are Q-linearly independent, then eα1 , . . . , eαk are alge-
braically independent.

Next we state ‘the qualitative form’ of a result of A. Baker. For this
work, and its applications to some Diophantine problems, he was awarded
the Fields Medal in 1970.

Theorem 3.4. (A. Baker) Let a1, . . . , an ∈ C be non-zero numbers such
that ea1 , . . . , ean are algebraic numbers. If a1, . . . , an are Q-linearly inde-
pendent, then, 1, a1, . . . , an are linearly independent over Q.

Baker’s theorem yields the Gelfond-Schneider theorem as a special case.
Let α be algebraic, α /∈ {0, 1} and let β be algebraic but not a rational
number.

Suppose that αβ = eβ logα is algebraic. Also elogα = α is algebraic.
Taking a1 = logα, a2 = β logα, the hypotheses of Baker’s theorem are
satisfied since β /∈ Q implies that a1, a2 are linearly independent over Q.
Baker’s theorem says that 1, a1, a2 are linearly independent over Q. But
evidently, β.a1 − a2 = 0, a contradiction since β ∈ Q. Therefore αβ has to
be transcendental.

Also, Baker’s theorem implies the following result that generalizes the
Gelfond-Schneider theorem:

Theorem 3.5. (Baker) Suppose α1, . . . , αn are algebraic and none of them
belongs to {0, 1}. Suppose that β1, . . . , βn are algebraic and 1, β1, . . . , βn are
Q-linearly independent. Then αβ11 . . . . .α

βn
n is transcendental.

We state a conjecture due to S. Schanuel. We say that a field E ⊂ C
has transcendence degree at least n over a subfield F ⊂ E if there exists
elements λ1, . . . , λn ∈ E that are algebraically independent over F .

Schanuel’s conjecture: If a1, . . . , an are Q-linearly independent then the
field
Q(a1, . . . , an, e

a1 , . . . ean) ⊂ C has transcendence degree at least n over Q.
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The special case when a1, . . . , an are Q-linearly independent algebraic
numbers, then the above conjecture is valid as it reduces to the state-
ment of Lindemann-Weierstrass theorem. On the other hand, taking a1 =

log 2, a2 = log 3, it is readily seen that a1, a2 are Q-linearly independent.
Schanuel’s conjecture says that log 2, log 3 are algebraically independent.
Although log 3/ log 2 = log2 3 is transcendental (by Gelfond-Schneider since
2log2 3 = 3), it appears to be unknown whether log 2. log 3 is transcendental.
As another example, taking a1 = 1, a2 = 2iπ, Schanuel’s conjecture says
that e, 2iπ—and hence e, π—are algebraically independent. This would im-
ply that e+ π is transcendental, but this is an open problem. What we do
know is that at least one of e+ π, eπ is transcendental. Indeed if both are
algebraic, then e, π would also algebraic since they are roots of the quadratic
X2 − (e+ π)X + eπ.

The following six exponentials theorem may be viewed as a general-
ization of Gelfond-Schneider theorem. It was proved by S. Lang and K.
Ramachandra independently in the 1960s.

Theorem 3.6. (Lang , Ramachandra) Suppose that z1, z2, z3 ∈ C are lin-
early independent over Q and β1, β2 ∈ C are also linearly independent over
Q. Then at least one of the six numbers ezjβk , 1 ≤ j ≤ 3, 1 ≤ k ≤ 2 is
transcendental.

Example 3.7. Let z1 = log p1, z2 = log p2, z3 = log p3;β1 = π, β2 = 1

where p1, p2, p3 are distinct primes. Note that log p1, log p2, log p3 are Q-
linearly independent since pa11 p

a2
2 p

a3
3 = 1 with a1, a2, a3 ∈ Z implies that

aj = 0, j = 1, 2, 3. The six exponentials ezjβk are pπ1 , p
π
2 , p

π
3 , p1, p2, p3. So at

least one of the three numbers pπ1 , p
π
2 , p

π
3 has to be transcendental. Thus, at

most two members of the set {pπ | p ∈ N prime} are algebraic.

There are also five exponentials theorem and four exponentials conjecture
which have very interesting consequences. We discuss them very briefly and
refer the reader to [2] for details.

Theorem 3.8. Suppose that each of the two pairs of complex numbers α1, α2

and β1, β2 is Q-linearly independent. If γ is a non-zero algebraic number,
then at least one of the following numbers is transcendental

eγα2/α1 , eα1β1 , eα1β2 , eα2β1 , eα2β2 .
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Four exponentials conjecture: Suppose that α1, α2 and β1, β2 are com-
plex numbers such that each pair is Q-linearly independent. Then at least
one of the four numbers eαiβj , 1 ≤ i, j ≤ 2, is transcendental.

Taking p, q to be distinct primes and α1 = log p, α2 = log q, β1 = 1, and
β2 = b any irrational number, the above conjecture implies that at least one
of pb, qb has to be transcendental, which seems to be unsettled.

I have included a few references which the reader can consult for detailed
proofs and for an introduction to the fascinating subject of transcendental
number theory.
Acknowledgments: I thank Anjaly Kishore, Vimala College, Trissur, Ker-
ala, for inviting organizing my talk, which formed the basis for this article.
I thank Kotyada Srinivas for his valuable comments, for pointing out to me
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A CONCEPTUAL APPROACH TOWARDS
UNDERSTANDING MATRIX COMMUTATORS

SOUMYASHANT NAYAK

Abstract. It is well known that a square matrix over a field is a
commutator if and only if it has trace zero. We give a conceptual proof
of this result for square matrices over algebraically closed fields.

1. Introduction

Let K be a field. For a natural number n, let Mn(K) denote the K-
algebra of n × n matrices with entries from K. The commutator of two
matrices P,Q ∈ Mn(K) is defined as [P,Q] := PQ − QP . A trace τ on
Mn(K) is a K-valued linear map on Mn(K) such that τ(PQ) = τ(QP ) for
all P,Q ∈ Mn(K). In other words, a trace on Mn(K) is a K-valued linear
map on Mn(K) that vanishes on the set of commutators in Mn(K). The
function which maps a matrix in Mn(K) to the sum of its diagonal entries,
is a K-valued trace on Mn(K). In fact, it is the unique K-valued trace on
Mn(K) upto scalar multiplication.

In [2], Shoda showed that an element ofMn(K) with trace zero is neces-
sarily a commutator when K has characteristic zero. The result for arbitrary
fields was shown by Albert and Muckenhoupt in [1]. The present author is
of the opinion that the proofs available in the literature lean more towards
the technical side and do not throw as much light on why we should expect
such a result to hold. In this note, we provide a conceptual proof of the fact
that trace zero matrices over an algebraically closed field are commutators.

2. Trace zero matrices and commutators

In this section, K denotes an algebraically closed field. For X,Y ∈
Mn(K), we say that X is similar to Y if there is an invertible matrix S ∈
Mn(K) such that X = SY S−1. It is easy to see that the relation, similarity,

2010 Mathematics Subject Classification: 15A18, 15A21
Key words and phrases: commutators, trace, similarity orbit
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is an equivalence relation on Mn(K). The equivalence class of an element
X ∈Mn(K) is said to be the similarity orbit of X.

Let the matrix X ∈Mn(K) be a commutator, so that there are matrices
P,Q ∈ Mn(K) such that X = [P,Q]. Note that [P,Q] = [P − αI,Q] for
every α ∈ K. Since K has infinitely many elements (by virtue of being
algebraically closed), there exists an α ∈ K such that P−αI is invertible and
hence without loss of generality, we may assume that P is invertible. Let us
rewrite X as P (QP )P−1−QP and define T := QP . Thus PTP−1 = T +X

or in other words, T and T + X are similar. Conversely, it is easy to see
by retracing our steps that if there is a matrix T ∈Mn(K) such that T and
T +X are similar, then X is a commutator. Also note that if X = [P,Q],
then SXS−1 = [SPS−1, SQS−1] for every invertible matrix S ∈ GLn(K).
We summarize the preceding discussion in the following lemma.

Lemma 2.1. For a matrix X ∈Mn(K), the following are equivalent:

(i) X is a commutator;
(ii) There is a matrix in the similarity orbit ofX which is a commutator;
(iii) There is a matrix T ∈Mn(K) such that T and T +X are similar.

In view of Lemma 2.1 and recalling that K is assumed to be algebraically
closed, we will take the liberty of viewing X in its Jordan canonical form.
In this note, our main goal is to show the following result, which combined
with Lemma 2.1, shows that trace zero matrices over an algebraically closed
field are commutators.

Theorem 2.2. Let X be a matrix in Mn(K). Then there is a matrix
T ∈ Mn(K) such that T and T + X are similar if and only if X has trace
zero.

If T and T + X are similar, they must have the same trace and hence
it easily follows that X must have trace zero. A key element of our proof
of the other direction is the following basic result from linear algebra.

Proposition 2.3. Let K be an algebraically closed field. If every eigen-
value of a matrix A ∈ Mn(K) has multiplicity 1, then A is diagonalizable.
Consequently, if two matrices A,B ∈Mn(K) have the same set of eigenval-
ues with each eigenvalue having multiplicity 1, then A and B are similar.

Note that nilpotent matrices in Mn(K) have trace zero. We discuss
Theorem 2.2 for the special case of nilpotent matrices before proceeding to
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the general case. Let X ∈Mn(K) be a nilpotent matrix in Jordan canonical
form so that it is an upper triangular matrix with zeroes on the principal
diagonal. Since the field K has infinitely many elements, we may choose
distinct elements λ1, λ2, . . . , λn fromK. LetD := diag(λ1, λ2, . . . , λn). Note
that D and D+X have the same set of eigenvalues. By Proposition 2.3, D
and D + X are similar. By Lemma 2.1, X is a commutator. We conclude
that every nilpotent matrix in Mn(K) is a commutator.

The proof of the main theorem (Theorem 2.2) involves use of the fol-
lowing combinatorial lemma. For the sake of brevity, we use the notation
[n] := {1, 2, . . . , n} in the lemma. We denote the group of permutations of
[n] by Σn.

Lemma 2.4. Let (G; +) be an abelian group with infinitely many elements
and n be a positive integer. Let (λ1, λ2, . . . , λn) be an n-tuple of elements
from G satisfying

n∑
i=1

λi = 0.

Then there is an n-tuple (µ1, µ2, . . . , µn) of elements from G and a per-
mutation σ ∈ Σn such that µi 6= µj for i 6= j, and λi = µi − µσ(i) for
1 ≤ i ≤ n.

Proof. We proceed inductively. For n = 1, the lemma is obvious. Consider
a positive integer m ≥ 2, and assume that the assertion is true for n =

1, 2, . . . ,m− 1.
Let (λ1, λ2, . . . , λm) be anm-tuple of elements fromG satisfying

∑m
i=1 λi =

0. We say that a subset S of [m] has property P if
∑

i∈S λi = 0 and∑
i∈S′ λi 6= 0 for any non-empty proper subset, S′, of S. Let R be a

non-empty subset of [m] with smallest cardinality such that
∑

i∈R λi = 0.
Clearly R has property P.

Case I: R = [m].

For 1 ≤ k ≤ m, we define µk to be the cumulative sum
∑k

i=1 λi. Let σ
be the n-cycle defined by

σ(i) =

{
i− 1 if 2 ≤ i ≤ m
m if i = 1.

From the hypothesis of the lemma, µm =
∑m

i=1 λi = 0. Furthermore, for
1 ≤ k < ` ≤ m, we have µ` − µk =

∑`
i=k+1 λk 6= 0 (that is, µk 6= µ`). For
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k = 1, we have µk−µσ(k) = µ1−µσ(1) = µ1−µm = λ1. For 2 ≤ k ≤ m, we
observe that µk − µσ(k) = µk − µk−1 =

∑k
i=1 λi −

∑k−1
i=1 λi = λk. Thus the

m-tuple (µ1, µ2, . . . , µm) satisfies the conditions described in the lemma.

Case II: R is a non-empty proper subset of [m].

By suitable permutation of the entries of (λ1, λ2, . . . , λm), we may as-
sume that R = [`] for some 1 ≤ ` ≤ m − 1. Note that (λ1, . . . , λ`) is an
`-tuple satisfying the hypothesis of the lemma. Using the induction hypoth-
esis for n = `, we obtain an `-tuple (µ1, µ2, . . . , µ`) and a permutation of
[`], σ1, such that λi = µi − µσ1(i) for 1 ≤ i ≤ ` and µi 6= µj for distinct
i, j ∈ [`].

Note that
m∑

i=`+1

λi =

m∑
i=1

λi −
∑̀
i=1

λi = 0− 0 = 0.

Thus (λ`+1, . . . , λm) is an (m − `)-tuple satisfying the hypothesis of the
lemma. Using the induction hypothesis for n = m−`, we obtain an (m−`)-
tuple (µ`+1, . . . , µm) and a permutation of [m]\[`], σ2, such that λi = µi −
µσ2(i) for `+ 1 ≤ i ≤ m and µi 6= µj for distinct i, j ∈ [m]\[`].

Let σ be the permutation of [m] which acts as σ1 on [`] and as σ2 on
[m]\[`]. Clearly λi = µi − µσ(i) for 1 ≤ i ≤ m. The set Λ := {µi − µj |i ∈
[`], j ∈ [m]\[`]} is a finite subset of G. Since G is infinite, we may choose
α ∈ G\Λ. We define an m-tuple (ν1, ν2, . . . , νm) as follows:

νi :=

{
µi − α if i ∈ [`]

µi if `+ 1 ≤ i ≤ m

We observe that λi = νi − νσ(i) for 1 ≤ i ≤ m, and for distinct i, j ∈ [m],
we have νi 6= νj . Thus the m-tuple (ν1, ν2, . . . , νm) satisfies the conditions
described in the lemma. �

Proof of Theorem 2.2. As mentioned before, it is straightforward to see that
X has trace zero if there is a matrix T such that T and T +X are similar.

For the converse, without loss of generality, we may assume that X is
in Jordan canonical form. Let (λ1, λ2, . . . , λn) denote the n-tuple of eigen-
values of X such that

X = diag(λ1, λ2, . . . , λn) +N
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where N is an upper triangular nilpotent matrix. Since tr(X) =
∑n

i=1 λi =

0, from Lemma 2.4, we have an n-tuple (µ1, µ2, . . . , µn) of elements of K
such that µi 6= µj for distinct i, j ∈ [n] and a permutation σ ∈ Σn such that
λi = µi − µσ(i). Let

Dσ := diag(µσ(1), µσ(2), . . . , µσ(n)), and D := diag(µ1, µ2, . . . , µn).

By Proposition 2.3, Dσ and D + N are similar as they have the same
set of eigenvalues and each of their eigenvalues has multiplicity 1. Since
D + N = Dσ + X, we conclude that Dσ and Dσ + X are similar. Thus
T := Dσ satisfies the assertion in the theorem. �

From Lemma 2.1 and Theorem 2.2, we conclude that a square matrix
over an algebraically closed field is a commutator if and only if it has trace
zero.
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PROBLEM SECTION

Through Volume 90 (3-4) 2021 of The Mathematics Student, we had invited

solutions from readers to the Problems 1, 2, 3 and 5 mentioned in MS 89

(3-4) 2020, solutions to the problems 1, 2, 4 and 5 mentioned in MS 90

(1-2) 2021, as well as solutions to the ten new problems till January 10,

2022.

As regards to solutions to the four Problems mentioned in MS 89(3-4)

2020, we did not receive any solution to any of the four problems. Therefore

solutions provided by Prof. B. Sury, the proposer of the problems, are being

published in this section.

As far as solutions to the four Problems mentioned in MS 90 (1-2) 2021

are concerned, we have not received received any solution to any of the

problems from the readers of the Mathematics Student. However, we feel

that several readers can provide solutions to these problems. Hence we

give one more opportunity to the readers to provide their solutions to these

problems until April 20, 2022.

As far as solutions to the ten new problems mentioned in MS 90 (3-4)

2021 are concerned, we received one correct solution to Problem 1 which

will be printed in this section. Two correct solutions have been received to

Problem 7 and we publish the solution which is more precise and elegant.

We pose Twelve new problems in this section. We invite Solutions

from the readers to the Problems 1, 2 4 and 5 of MS 90 (1-2) 2021, solutions

to the remaining eight problems of MS 90 (3-4) 2021 and solutions to the

Twelve new problems till April 20, 2022. Correct solutions received from

the readers by this date will be published in Volume 91 (3-4) 2022 of The

Mathematics Student. This volume is scheduled to be published in May

2022.

New Problems.

Ilir Demiri and Prof. Shpetim Rexhepi, Mother Teresa University,

Skopje, North Macedonia proposed the following three problems.

© Indian Mathematical Society, 2022 .
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MS 91 (1-2) 2022: Problem 1. Prove that

1∫
0

(
t1/n − t1−1/n

)n−1
dt =

n

(1 + 1/n) (1 + 1/2n) . . . (1 + 1/n(n+ 1))

,

for n ∈ N.

MS 91 (1-2) 2022 : Problem 2. For the beta function, prove with usual

meaning that
∞∑
n=0

(B(2,n)− B(3,n)) =
1

2
where n ∈ N.

MS 91 (1-2) 2022 : Problem 3. For the beta function, prove with usual

meaning that

B(k, n) =
(k − 1)B(k − 1, n)

n+ k − 1
where k, n ∈ N.

The following five problems have been proposed by Prof. B. Sury,

Indian Statistical Institute, Bangalore.

MS 91 (1-2) 2022 : Problem 4. Let f(x) = cot(x). Note that f ′(x) =

−f(x)2 − 1. More generally, for each n ≥ 0, write

n!f(x)n+1 = an + bn0f(x) + bn1f
′(x) + · · · bnnf (n)(x)

for some an’s and bnm’s. Find a recursion for the bij ’s and determine all

the an’s.

MS 91 (1-2) 2022 : Problem 5. Let an denote the number of different

ways of putting brackets on a sequence of n objects. For example,

(p1p2p3), (p1)(p2p3), (p1p2)(p3)

shows that a3 = 3. Check for instance that a4 = 11. Consider also the

number bn of paths from (0, 0) to (n, n) which never go above the line y = x

and where each step is a unit north, east or north-east (that is, cross). For

instance, if we write h, v, c respectively for an eastward horizontal step, a

northward vertical step and a southwest-northeast cross step, then

hvc, hcv, hhvv, hvhv, cc, chv
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are the six paths from (0, 0) to (2, 2) which shows b2 = 6. Prove that

bn = 2an+1 for all n.

MS 91 (1-2) 2022 : Problem 6. Let f : [0, 1]→ R be differentiable and

satisfy f(0) = f ′(0) = f ′(1) = 0. Then, show that there exists t ∈ (0, 1)

such that f(t) = tf ′(t).

MS 91 (1-2) 2022 : Problem 7. Let C(x) be the Cantor singular

function; this is the unique non-decreasing function on [0, 1] such that if

x =
∑

n≥1 an/3
n where an’s are 0 or 2, then C(x) =

∑
n≥1

an/2
2n . Find the

values of
∫ 1
0 C(x)ndx for 1 ≤ n ≤ 5.

MS 91 (1-2) 2022 : Problem 8. For a positive real number x, let

AT (x) denote the value of arctan(x) (that is, tan−1(x)) in [0, π/2]. Observe

AT (3) = 3AT (1)−AT (2), AT (8) = 2AT (1) +AT (3)−AT (5). Prove that

a positive integer n has the property that AT (n) =
∑n−1

i=1 aiAT (i) for some

integers ai if, and only if, n2 + 1 has a prime factor p ≥ 2n.

Dr. Anup Dixit, Institute of Mathematical Sciences, Chennai sug-

gested the following two problems.

MS 91 (1-2) 2022 : Problem 9. Let f : N→ N be a function on positive

integers satisfying the property

f(f(n)) + f(n+ 1) = n+ 2.

Show that f(n) = bnαc+ 1, where α = (
√

5− 1)/2.

MS 91 (1-2) 2022 : Problem 10. For a complex number s = σ+ it with

σ > 1, let ζ(s) =
∑∞

n=1 1/ns denote the Riemann zeta function. Show that

for a fixed σ > 1,

ζ(2σ)

ζ(σ)
≤ |ζ(σ + it)| ≤ ζ(σ).

Dr. Siddhi Pathak, Chennai Mathematical Institute, Chennai pro-

posed the following two problems.

MS 91 (1-2) 2022 : Problem 11. Fix an integer k ≥ 2. A positive

integer n is said to be k-free if it is not divisible by pk for any prime p.
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Evaluate the summation ∑
n≥1,

n is 4-free

1

n2
.

MS 91 (1-2) 2022 : Problem 12. Let

I :=

∫ ∞
0

(log x)4

1 + x2
dx.

Prove that I is an algebraic number times π5.

Solutions to the Old Problems.

Problems 1, 2, 3 and 5 in MS 89 (1-2) 2020 were proposed by Prof. B.

Sury. The problems and their solutions provided by him are given below.

MS 89 (1-2) 2020 Problem 1. Note that (x, y) 7→ (y,−x) is a bijection

of the plane. In contrast, show that there is no bijection f from R3 to

itself such that for any two points P 6= Q, the line joining P and Q is

perpendicular to the line joining f(P ) and f(Q).

Solution.

Suppose such a bijection f exists. Without loss of generality, we may

assume f maps 0 to 0 (else, we may consider the new bijection x 7→ f(x)−
f(0)). Viewing the points of R3 as vectors, we have for all a, b ∈ R3 that

(a− b).(f(a)− f(b) = 0.

Hence a.f(a) = 0 (taking b = 0). Thus, we have

a.f(b) + b.f(a) = 0 ∀ a, b.

From this, we can see easily that for all a, b, c ∈ R3 and any scalars u, v ∈ R
that

a.(uf(b) + vf(c)− f(ub+ vc)) = 0.

As a is arbitrary, this implies uf(b) + vf(c) = f(ub + vc); that is, f is

linear. The conditions a.f(b) = −b.f(a) for all a, b then implies that the

corresponding matrix F of f with respect to the canonical basis is a real

skew-symmetric 3 × 3 matrix; that is, F = −F t. But then det(F ) =

−det(F t) = −det(F ) gives det(F ) = 0. So, f cannot be a bijection. This

proves no such bijection can exist.
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MS 89 (1-2) 2020 Problem 2. Find all positive integral solutions of

a3 = b2 + p3 where p is a prime and 3 and p do not divide b.

Solution.

For any solution, we have

(a− p)(a2 + ap+ p2) = b2.

The factors on the left are relatively prime; else, any common prime factor

would divide both b2 and 3p2. Therefore, a− p = u2, a2 + ap+ p2 = v2 for

some integers u, v.

Now, putting a = u2 + p, we have

a2+ap+p2 = u4+2u2p+p2+(u2+p)p+p2 = u4+3u2p+3p2 = (u2+3p/2)2+3p2/4.

So, 4v2 = 4(a2 + ap+ p2) = (2u2 + 3p)2 + 3p2.

Thus, 3p2 = (2v + 2u2 + 3p)(2v − 2u2 − 3p).

The only three possibilities for the right hand side factors are (3p2, 1), (p2, 3), (3p, p).

The first possibility cannot occur as we see by viewing modulo 3. The third

case is also not possible as v = u = 0 is not possible. In the second case

2v + 2u2 + 3p = p2, 2v − 2u2 − 3p = 3.

So 4u2 = p2− 6p− 3 < (p− 3)2. On the other hand, p2− 6p− 3 > (p− 4)2

when p > 10. Thus, the only possibilities are p = 2, 3, 5, 7. But p2−6p−3 is

negative when p = 2, 3, 5. So, the unique solution is when p = 7 which gives

u = 1 and hence a = 8 and b = 13. The only solution is (a, b, p) = (8, 13, 7).

MS 89 (1-2) 2020 Problem 3. A positive integer is written in each

square of an 100 by 100 chess board. The difference between the numbers

in any two adjacent squares that share an edge is at the most 10. Prove

that at least six squares must contain the same number. Generalize?

Solution.

We prove this replacing 100 by any n2 in which case ‘six’ in the problem is

replaced by [n/2] + 1.

Consider the smallest and largest numbers m and M that are written on

this n2 × n2 chess board. They are separated by at most n2 − 1 squares

horizontally as well as vertically. This means that there is a path from one

to the other whose length is at the most 2(n2− 1). By hypothesis, any two

successive squares differ by at most n. Hence, we have M−m ≤ 2n(n2−1).

Since all the numbers written on the board are integers are in [m,M ], there

can be at the most 2n(n2 − 1) + 1 distinct numbers on the board. But
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n4 > (2n(n2 − 1) + 1)(n/2), we must have more than n/2 squares where

the same number occurs.

MS 89 (1-2) Problem 5. For any continuous function f on [−1/2, 3/2],

prove that ∫ 3/2

−1/2
f(3x2 − 2x3)dx = 2

∫ 1

0
f(3x2 − 2x3)dx;

∫ 3/2

−1/2
xf(3x2 − 2x3)dx = 2

∫ 1

0
xf(3x2 − 2x3)dx;∫ 3/2

−1/2
x2f(3x2 − 2x3)dx =

∫ 1

0
(3x− x2)f(3x2 − 2x3)dx.

Solution.

Break the interval [−1/2, 3/2] into the 3 parts [−1/2, 0], [0, 1], [1, 3/2]. Note

that the relation 3x2 − 2x3 = u has a unique solution in each interval.

Complete the solution.

MS 90 (3-4) 2021 : Problem 1 (Posed by Prof. B. Sury, Indian Statis-

tical Institute, Bangalore).

Find all 4-tuples (a1, a2, a3, a4) of positive integers such that ais are distinct

and each ai divides the sum of the other three.

Mr. Ritesh Dwivedi, Rera, Jasra, Prayagraj, Uttar Pradesh pro-

vided the solution to the problem. The solution is presented below.

Solution.

In order to find out all required 4-tuples, it is sufficient to determine all

4-tuples (a1, a2, a3, a4) s.t. each ai divides the sum of the other three

alongwith the conditions that a1 < a2 < a3 < a4 and gcd(a1, a2, a3, a4)

= 1. Now we note that for such a 4-tuple, a3 must be an integral multiple

of a1 + a2. So let a3 = n.(a1 + a2). Now applying the condition that a4

divides a1 + a2 + a3, we get that a4 = (n+ 1).(a1 + a2). Further applying

the condition that a3(=n.(a1 + a2)) divides a1 + a2 + a4, we get that n =

1 or 2. Now we proceed for these two cases separately:

Case I. In this case, we suppose that n = 1. Then we have the 4-tuple

(a1, a2, a1 +a2, 2a1 +2a2). Now since a2 divides the sum of the other three,

we have r.a2 = 4a1 + 3a2, for some positive integer r. This implies that

(r − 3).a2 = 4a1, i.e. a2 divides 4a1. Now since a1 < a2, we must have

4a1 = a2, 2a2 or 3a2. This gives the 4-tuples as (1, 4, 5, 10), (1, 2, 3, 6)
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and (3, 4, 7, 14). However, the last one does not fullfill our criterion, so we

shall discard it. Therefore in the first case when n = 1, we get the desired

4-tuples as (1, 4, 5,10) and (1, 2, 3, 6).

Case II. In this case, we suppose that n = 2. Then we have the 4-tuple

(a1, a2, 2a1 + 2a2, 3a1 + 3a2). Now since a2 divides the sum of the other

three, we have r.a2 = 6a1 + 5a2, for some positive integer r. This implies

that (r − 5).a2 = 6a1, i.e. a2 divides 6a1. Now since a1 < a2, we must

have 6a1 = a2, 2a2, 3a2, 4a2 or 5a2. This gives the 4-tuples as (1,6,14,21),

(1,3,8,12), (1,2,6,9), (2,3,10,15) and (5,6,22,33). However, the last one does

not fulfill our criterion, so we shall discard it. Therefore in the second case

when n = 2, we get the desired 4-tuples as (1,6,14,21), (1,3,8,12), (1,2,6,9)

and (2,3,10,15).

After the discussion of above two cases, we are ready to give the complete

list of all 4-tuples (a1, a2, a3, a4) of positive integers s.t. a′is are distinct

and each ai divides the sum of the other three. The required set of all

4-tuples consists of all positive integral multiple of the permutations of all

4-tuples, namely (1,2,3,6), (1,2,6,9), (1,3,8,12), (1,4,5,10), (1,6,14,21) and

(2,3,10,15), obtained in the above two cases. This completes the solution.

MS 90 (3-4)2021: Problem 7 (Proposed by Dr. Anup Dixit, IMSc.,

Chennai).

Show that ζ(3)<5/4, where ζ(k) =
∑∞

n=1
1
nk .

Mr. Hemant Dubey, Central University of South Bihar, Gaya, Bihar

and Miss Emil Inochkin, ADA University, Azerbaijan provided different

solutions to the problem. The solution given by Miss Inochkin is short and

elegant and it is produced below.

Solution (by Miss Emil Inochkin).

We can represent the sum as the sum of areas of rectangles with sides
1
n3 and 1. All these rectangles lie below the function f(n) = 1

n3 . Then the

sum of areas is less than the area below the curve from 1 to infinity plus

the area of the first rectangle, which is equal to

∫ ∞
1

1

n3
dn + 1 = 1.5 = 6/4

.
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The number we got is a bit bigger than that we are trying to find (5/4).

Then we can subtract error (the area between curve and rectangles, which

is equal to
∫ b
a

1
n3 dn−Area (rectangle)). To prove that the sum is less than

5/4, it is enough to subtract the error from second rectangle, which is equal

to 1/4.

∞∑
n=1

1

n3
< 1 +

∫ ∞
1

1

n3
dn −

(∫ 2

1

1

n3
dn− 1

8

)
= 1 +

(
− 1

∞
−
(
−1

2

))
−
(
−1

8
−
(
−1

2

)
− 1

8

)
= 1 +

1

2
− 1

4

=
5

4
.

Thus
∑∞

n=1
1
n3 = ζ (3) < 5

4 as desired.

We would also like to present below the solution provided by Dr. Anup

Dixit since the solution points to the fact that the identity observed in the

solution was the first step in Apéry’s proof of ζ(3) being irrational.

Solution (By Anup Dixit).

We start with the following observation.

1

n3
=

1

(n− 1)n(n+ 1)
− 1

(n− 1)n3(n+ 1)
.

Therefore,
∞∑
n=1

1

n3
< 1 +

∞∑
n=1

1

n(n+ 1)(n+ 2)

= 1 +

∞∑
n=1

1

2(n+ 1)

(
1

n
− 1

n+ 2

)

= 1 +
1

2

∞∑
n=1

1

n(n+ 1)
− 1

2

∞∑
n=1

1

(n+ 1)(n+ 2)

= 1 +
1

2

∞∑
n=1

(
1

n
− 1

n+ 1

)
− 1

2

∞∑
n=1

(
1

n+ 1
− 1

n+ 2

)
= 1 +

1

2
− 1

4

=
5

4
.
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