
ISSN: 0025-5742

THE

MATHEMATICS

STUDENT
Volume 90, Nos. 1-2, January - June (2021)

(Issued: April, 2021)

Editor-in-Chief

M. M. SHIKARE

EDITORS

Bruce C. Berndt George E. Andrews M. Ram Murty

N. K. Thakare Satya Deo Gadadhar Misra

B. Sury Kaushal Verma Krishnaswami Alladi

S. K. Tomar Clare D′Cruz L. Sunil Chandran

J. R. Patadia C. S. Aravinda A. S. Vasudeva Murthy

Indranil Biswas Timothy Huber T. S. S. R. K. Rao

Atul Dixit

PUBLISHED BY

THE INDIAN MATHEMATICAL SOCIETY

www.indianmathsociety.org.in

http://www.indianmathsociety.org.in


THE MATHEMATICS STUDENT

Edited by M. M. SHIKARE

In keeping with the current periodical policy, THE MATHEMATICS STUDENT will

seek to publish material of interest not just to mathematicians with specialized interest

but to the postgraduate students and teachers of mathematics in India. With this in

view, it will ordinarily publish material of the following type:

1. research papers,

2. the texts (written in a way accessible to students) of the Presidential Addresses, the

Plenary talks and the Award Lectures delivered at the Annual Conferences.

3. general survey articles, popular articles, expository papers and Book-Reviews.

4. problems and solutions of the problems,

5. new, clever proofs of theorems that graduate / undergraduate students might see in

their course work, and

6. articles that arouse curiosity and interest for learning mathematics among readers and

motivate them for doing mathematics.

Articles of the above type are invited for publication in THE MATHEMATICS

STUDENT. Manuscripts intended for publication should be submitted online in the

LATEX and .pdf file including figures and tables to the Editor M. M. Shikare on E-mail:

msindianmathsociety@gmail.com along with a Declaration form downloadable from our

website.

Manuscripts (including bibliographies, tables, etc.) should be typed double spaced on

A4 size paper with 1 inch (2.5 cm.) margins on all sides with font size 11 pt. in LATEX.

Sections should appear in the following order: Title Page, Abstract, Text, Notes and

References. Comments or replies to previously published articles should also follow this

format. In LATEX the following preamble be used as is required by the Press:

\ documentclass[11 pt,a4paper,twoside,reqno]{amsart}

\ usepackage {amsfonts, amssymb, amscd, amsmath, enumerate, verbatim, calc}

\ renewcommand{\ baselinestretch}{1.2}

\ textwidth=12.5 cm

\ textheight=20 cm

\ topmargin=0.5 cm

\ oddsidemargin=1 cm

\ evensidemargin=1 cm

\ pagestyle{plain}

The details are available on Society’s website: www.indianmathsociety.org.in

Authors of articles / research papers printed in the the Mathematics Student as well as

in the Journal shall be entitled to receive a soft copy (PDF file) of the paper published.

There are no page charges for publication of articles in the journal.

All business correspondence should be addressed to S. K. Nimbhorkar, Treasurer, Indian

Mathematical Society, C/O Dr. Mrs. Prachi Kulkarni, Ankur Hospital, Tilaknagar,

Aurangabad 431 001 (MS), India. E-mail: treasurerindianmathsociety@gmail.com or

sknimbhorkar@gmail.com

In case of any query, one may contact the Editor through the e-mail.

Copyright of the published articles lies with the Indian Mathematical Society.

"mailto: msindianmathsociety@gmail.com"
http://www.indianmathsociety.org.in
"mailto: treasurerindianmathsociety@gmail.com"
"mailto: sknimbhorkar@gmail.com"


ISSN: 0025-5742

THE

MATHEMATICS

STUDENT
Volume 90, Nos. 1-2, January - June (2021)

(Issued: April, 2021)

Editor-in-Chief

M. M. SHIKARE

EDITORS

Bruce C. Berndt George E. Andrews M. Ram Murty

N. K. Thakare Satya Deo Gadadhar Misra

B. Sury Kaushal Verma Krishnaswami Alladi

S. K. Tomar Clare D′Cruz L. Sunil Chandran

J. R. Patadia C. S. Aravinda A. S. Vasudeva Murthy

Indranil Biswas Timothy Huber T. S. S. R. K. Rao

Atul Dixit

PUBLISHED BY

THE INDIAN MATHEMATICAL SOCIETY

www.indianmathsociety.org.in

http://www.indianmathsociety.org.in


ISSN: 0025-5742

ii

c© THE INDIAN MATHEMATICAL SOCIETY, 2021.

This volume or any part thereof should not be

reproduced in any form without the written

permission of the publisher.

This volume is not to be sold outside the

Country to which it is consigned by the

Indian Mathematical Society.

Member’s copy is strictly for personal use.

It is not intended for sale or circulation.

Published by Prof. Satya Deo for the Indian Mathematical Society, type set

by M. M. Shikare, “Krushnakali”, Survey No. 73/6/1, Gulmohar Colony,

Jagtap Patil Estate, Pimple Gurav, Pune 411061 and printed by Dinesh

Barve at Parashuram Process, Shed No. 1246/3, S. No. 129/5/2, Dalviwadi

Road, Barangani Mala, Wadgaon Dhayari, Pune-411 041 (India).

Printed in India.



The Mathematics Student ISSN: 0025-5742
Vol. 90, Nos. 1-2, January-June (2021)

CONTENTS

1. B. Sury View of mathematics by our society 1– 8
and what our role could be

2. B. Sury Linear algebraic groups over 9–31
global and local fields-some themes

3. Dinesh Khurana Some glimpses into noncommutative 33–44
ring theory

4. Sanoli Gun Large Fourier coefficients of modular forms 45–61

5. Mythily An invitation to differential equations 63–75
Ramaswamy

6. Khushbu Das Recursive subsequence of various 77– 84
Devbhadra Shah Fibonacci-type sequences

7. Rakesh Barai On decomposition of a rational prime 85–102
in a cubic field

8. A. D. Godase Hyperbolic k-Fibonacci and k-Lucas 103–116
quaternions

9. D. Barman Unique common fixed point results 117–132
K. Sarkar and of integral type contraction condition
K. Tiwary in 2-Banach spaces

10. S. B. Patil and Initial value problem for nth order 133–141
D. S. Palimkar random differential inclusion

11. Amrik Singh Extensions of Ramanujan’s three series 143–153
Nimbran for 1

π
and related series

12. Arpita Ghosh and A contractible graph with eleven vertices 155–159
Surojit Ghosh and no gluable edge

13. N. A. Malik and A new approach to good matrices 161–175
H. Mahato

14. B. G. Khedkar Complex inversion formula for 177–182
S. B. Gaikwad modified - Stieltjes transform



iv

Problems and Solutions

15. - Problem Section 183– 192

*******



The Mathematics Student ISSN: 0025-5742

Vol. 90, Nos. 1-2, January-June (2021), 1–8

VIEW OF MATHEMATICS BY OUR SOCIETY AND

WHAT OUR ROLE COULD BE*

B SURY

It is a great honor to have been elected to the office of the President of the

Indian Mathematical Society. The genesis of the Indian Mathematical Soci-

ety has the following interesting history. On April 4, 1907, V. Ramaswamy

Aiyar and 20 founding members founded the ‘Analytic club’ on the lines of

the Edinburgh Mathematical society. The idea was put forth in a letter in

December 1906; note that Einstein’s theory of relativity and Ramanujan’s

works came to the world’s notice in 1906 - a golden year indeed. The IMS is

the oldest mathematical society of our country, and has had such luminaries

as Vijayaraghavan, Vaidyanathaswamy, Hansraj Gupta and P L Bhatnagar

among its Past Presidents. I am also grateful for the opportunity to ad-

dress this august gathering. Even though the pandemic has not allowed us

to meet in person, it could be a blessing in disguise as perhaps more people

can virtually participate.

I would like to share my thought about the following three aspects of Math-

ematics:

(i) How Indian society views mathematics, and what we should or could do

to effectively create awareness among the public to the importance of this

discipline;

(ii) Ways and means of motivating students who are not particularly inter-

ested in the subject due to the way it is being taught; and

(iii) (This has to do with the mathematical community) What might the

future scenario of research in mathematics look like.

∗ This article is based on the text of the Presidential Address (General) given by Prof.
B. Sury at the 86th Annual Conference of the IMS-An International meet held at
Vellore Inst. of Tech., Vellore (T. N.) using online mode during December 17-20, 2020.

© Indian Mathematical Society, 2021 .
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2 B SURY

Before talking about these three points, let us recognize that mathematics

is a social enterprise that is expected to further human goals and aspira-

tions. A mathematical conference is not only about discussions that are

mathematical, but the purpose is also to socialize, reinvigorate friendships,

and engage in informal conversations. The point is to remind ourselves

that it is about being part of a community that is united by its love for,

and belief in, the importance of mathematics. Irrespective of whether our

interest is in teaching, or research or reaching out to society, all of us are

essential to the continued health of our discipline. In that aspect, an online

meeting falls woefully short. The belief is that a good education in math-

ematics benefits the individual as well as society, but the benefits should

include empowerment of the individual, development of analytical/logical

thinking and also gains that are practical such as the support of scientific

and business aspirations.

Aspect I : Our society’s view of mathematics

The view of the mathematical layman towards practising mathematicians

like us is based mainly on our holding positions in institutions rather than

actual appreciation - this is understandable. It is akin to what many math-

ematicians think of Ramanujan. Their appreciation is mostly based on

reading encomiums about Ramanujan by some top mathematicians, cou-

pled with personal aspects as to how he faced hardships, poverty etc. An

appreciation of his original ideas and an understanding of what Ramanujan

actually did and how fertile his mind was, is only by a small minority.

Many people think of mathematicians as people who can do fast calcula-

tions and always deal with numbers. My favorite reply to this often is that

the only numbers I may come across in my research are page numbers of

manuscripts! I am sure that most of us face the following experience. In any

general get-together, when people hear about your profession, they say, “Oh,

I was so bad at mathematics! I just managed to scrape through my exams."

We are led to think that they perceive us as higher entities of some sort.

But, what is subconsciously conveyed by the person is “see how successful

I am in my career and I did not really need your mathematics." This could

mean that the manner in which mathematics is taught in our educational

system is not very relevant. On the other hand, if we can communicate that
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a mathematical way of thinking can be helpful in developing our analytical

abilities, that would be much more effective to society.

For instance, if I were to ask, “can we estimate (at least roughly) how many

people must be sleeping at this moment ¿‘, a mathematically minded person

would know how to analyze and solve such a problem. But, this example

may not really impress a common man how this kind of thinking can be all

that useful. If we give an example of how to play probabilities to maximize

a win in a casino, that would probably impress them more! The British

mathematician John Venn wrote in 1866, in reference to probability theory,

“To many persons the mention of Probability suggests little else than the

notion of a set of rules, very ingenious and profound rules no doubt, with

which mathematicians amuse themselves by setting and solving puzzles."

Maybe, many in our society would think Venn’s comments apply to the

whole of mathematics.

So it is important to convince society what is special about learn-

ing mathematics.

Convincing the general public that understanding mathematics is signifi-

cant for all of society is difficult. In all this, the irony is that nowadays,

abstract/pure mathematics is used in our daily life hundreds of times more

intensively than 20 years back. Concepts involved in practical applications

are deeper and more abstract and difficult than before. This is one of the

paradoxes of modern times - that deep mathematics may be carefully hidden

behind a user friendly smart-phone interface.

Amongst the realm of diverse disciplines learnt by students all over the

world, why mathematics may have a special place, is beautifully explained

by a mathematical friend Alexander Borovik; I can’t do better than quote

him on this. He says:

“In many walks of life, to have a happy and satisfying professional career, one

has to be future-proof by being able to re-learn the craft, to change his/her

way of thinking. How can this skill of changing one’s way of thinking be

acquired and nurtured? At school level mostly by learning mathematics.

Regular and unavoidable changes of mathematical language reflect changes
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of mathematical thinking. This makes mathematics different from the ma-

jority of other disciplines. The crystallization of a mathematical concept

(say, of a fraction), in a child’s mind could be like a phase transition in a

crystal growing in a rich, saturated and undisturbed|solution of salt. An

“Aha!" moment is a sudden jump to another level of abstraction. Such

changes in one’s mode of thinking are like a metamorphosis of a caterpil-

lar into a butterfly. As a rule, the difficulties of learning mathematics are

difficulties of adjusting to change. Pupils who have gained experience of

overcoming these difficulties are more likely to grow up future-proof. I lived

through sufficiently many changes in technology to become convinced that

mathematically educated people are stem cells of a technologically advanced

society, they are re-educable, they have a capacity for metamorphosis."

Although it is only to a certain extent that we can communicate mathe-

matics with an outsider to mathematics, it may be harmful if we divorce

ourselves from their interests and immerse ourselves entirely into our world.

For one thing, we may not get funding!

So, one needs to create general awareness by popular writings:

An aspect regarding mathematical communication (or the lack of it) with

our society seems rather specific to our discipline. Unlike science subjects

like astronomy or molecular biology, there are very few competent popular

communications in mathematics in our country. There is a dearth of “math-

ematics journalists" - those who are trained enough to understand what is

going on in research and possess the talent to communicate effectively. I

do not mean experts in mathematics education but trained mathematicians

who can comprehend the state of the art sufficiently enough and have the

talent to write about them in a simple and interesting manner to reach the

reader who is not an active mathematician. This is a need of the hour in

my opinion - one reason why mathematicians lag behind in popularity as

compared to, say, Astronomy. Astrophysics, as practiced by researchers is

often as abstract as mathematics but the public gets a feeling for it due to

some talented science expositors.
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Aspect II : Communicating mathematics to students who are not

already very motivated:

The young student’s interest in mathematics is more likely to be kindled

more through some fun and games. With them, posing appealing puzzles

may be a better way to communicate.

Some years back, I was going by train to Hyderabad from Bangalore and

there were some 7 or 8 kids who were co-passengers along with their parents.

The youngsters were aged between 7 and 17. When a parent asked me what

I did, and I mentioned that I am a mathematician, the parents immediately

switched off excepting for a mention of a cousin who became an engineer

because she was very good at mathematics! The general perception in the

public is that if someone is good at mathematics, she must become an

engineer. I decided instead to try and pass on some mathematics under

the guise of fun and games. That experience exceeded all my expectations

and all the kids, irrespective of their ages, were thoroughly interested and

engaged throughout the train journey.

In this respect, I wish to point out a societal drawback - which I

call as “Talking down" to students:

The main difficulty lies in making relevant mathematics interesting for the

non-motivated student by a lighter-toned talk. There is a fundamental

problem here due to our ingrained culture, I feel. We stress on the students

being ‘well-mannered’ and ‘respectful’ and often this turns them into being

‘obedient and even seemingly docile’ to the extent that they never question

anything we say. This is the worst possible effect. We need to dissuade them

from needless practices of offering respect. Instead, we have to encourage a

spirit of enquiry and criticism in them. This is very difficult in our society

as older people are usually authoritative and seldom act in a friendly or

equal manner with the young students. But, this - perhaps desirable qual-

ity among teachers - is conspicuous by its absence. All this is compounded

by the social environment where any word of dissent or criticism is seen to

be a crime!

The manner in which our system functions makes it a laborious process to

talk comfortably to students. To give an example, if a college organizes
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a special invited talk, say, then it is often found that the organizers are

more interested in fanfare such as lighting lamps and arranging flowers and

singing prayers than the actual programme which often begins very late

when participants are tired and uninterested. Nothing really wrong with

that but they would be better off displaying instead, mathematical models

etc. that some students may perhaps have made.

Even if it goes against our instincts, it is important to - what I call

as - Bend rigor a bit; create simple examples even if not precise

or only as somewhat far-fetched analogies:

The difficulty is, of course, to come up with inspiring, simple examples of

what we are trying to teach. The example should deal with the issue as

well as be capable of having a ‘worldly’ or ‘common sense’ point of view

even if it is not very accurate. We may succeed only rarely. It is possible

to give some mathematical examples. For instance, I am sure some of you

may know and may have used the following example when we teach a basic

concept like the intermediate value theorem. A wobbly, unstable table in a

Restaurant can be made stable - not by placing pieces of newspaper under

the legs - but simply by rotating the table suitably and we may prove that

this works mainly due to the IMVT. A somewhat far-fetched example which

turned out surprisingly effective is the following one. While teaching the

Urysohn lemma in topology, I drew an increasing net of open sets which look

like waves in water, and told my class that in one of those waves, Urysohn

may have lost his life. We know Urysohn died in a swimming accident,

and some students told me later that somehow this made them look at the

proof and grasp it with more interest. Even though this did not provide a

mathematical perspective, it produced a human perspective and succeeded

in interesting and engaging the students to learn it themselves.

Aspect III : Finally, I say a bit about my perception on the Future

scenario of mathematical research:

It is becoming increasingly clear that the future modus operandi of mathe-

matical research - vis-a-vis the big outstanding problems - is through joint

ventures like the Polymath project. Perhaps, not all individuals involved

in the project may get the desired recognition but there is no doubt that
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dents can be made on largely unsurmountable problems.

Computers, of course, provide new tools for organizing as well as carrying

out parts of our research. But, apart from this and apart from getting in-

formation from the web, it is in the computer’s help with experimentation

that is playing an increasingly powerful role. I have experienced this in

some small ways as follows. While writing a paper on class groups of cer-

tain number fields, we obtained a general result which was not good enough

to answer specific questions. Some experimentation based on it revealed so

many patterns that we could conjecture and prove concrete results. This

was exciting to me personally. In fact, as a part of a committee that pre-

pares question papers for mathematical olympiads, I have seen this again.

Experimentation with some program like Geogebra seems to produce config-

urations which were hitherto unnoticed, and some of them led to problems

that were posed in these olympiads.

Timothy Gowers holds the view that computers will eventually take over

from human mathematicians, even if they are unable to intuitively under-

stand answers. I end with his quote:

“What I would hope is that there will be two activities: thinking very hard

about the research process from the perspective of explaining to humans

how to do it, and the bottom-up process of getting a computer to be able

to do most sophisticated things. At some point I would like those two to

meet in the middle, so the computer can do the easy stuff and then they

can get this sort of advice about how to do harder stuff which they will then

be able to act on. "

Acknowledgments. I would like to repeat what I said in the beginning

of this talk - it is indeed a great pleasure and privilege to have been been

elected to the Presidentship of this August society which had been headed

earlier by so many stalwarts. It has given me a platform to express my

thoughts on the way mathematics is viewed by our society at large and

what we can/must do to improve/correct things.
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LINEAR ALGEBRAIC GROUPS OVER GLOBAL AND

LOCAL FIELDS - SOME THEMES*

B. SURY

We discuss roughly four types of questions to which we have been able to

contribute something. These are:

• Theme One: Concerns arithmetic groups and we particularly con-

centrate on ideas surrounding the so-called ‘Congruence Subgroup

Problem’.

• Theme Two: p-adic groups and their central extensions; though

these are of independent interest, they appear naturally in the set-

up of the CSP.

• Theme Three: Some of the problems arising under the above two

areas lead to natural questions on division algebras which are also of

independent interest and the techniques from algebraic group theory

do not work. This is the third type of problem we discuss.

• Theme Four: Abstract group theoretic questions on arithmetic groups

that can be studied using techniques like class field theory.

Another useful theme concerns the study of matrix groups over special com-

mutative rings satisfying stability conditions. As this topic was discussed

earlier (see [2]) in a talk given in honor of the celebrated mathematician

Hansraj Gupta, we avoid discussing it here.

The bibliography covering all these topics is too vast to recall; hence, we

have given references only to our work mentioned in the article.

∗ This article is based on the text of the Presidential Address (Technical) given by Prof.
B. Sury at the 86th Annual Conference of the IMS-An International meet held at
Vellore Inst. of Tech., Vellore (T. N.) using online mode during December 17-20, 2020.

© Indian Mathematical Society, 2021 .
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Theme 1: Arithmetic and congruence groups in algebraic groups

The prototype of arithmetic and congruence groups is SL(n,Z) and its

subgroups which contain the kernels Γ(k) of homomorphisms SL(n,Z) →

SL(n,Z/kZ) for various k.

It was proved in the 1960’s by Bass-Lazard-Serre and, independently by

Mennicke, that every subgroup of finite index in SL(n,Z) contains Γ(k) for

some k, when n ≥ 3. Already, in the 19-th century, the analogous statement

was known to be false for n = 2. Informally, one says that the congruence

subgroup property holds for SL(n,Z) for n ≥ 3 and fails for n = 2.

To point out that the congruence subgroup property for SL(n,Z) (n ≥ 3)

could have surprising, purely group-theoretic consequences, we mention in

passing, the following interesting property deduced in collaboration with T

N Venkataramana (see [3]):

For any fixed n ≥ 3, there is a number N(n) depending only on n so that

every group of the form

Ker(SLn(Z) → SLn(Z/kZ))

can be generated by N(n) elements for every k > 1. One may also give

a description of generators for each k. The analogous assertion is false for

n = 2.

The CS property was investigated for SLn and Spn over rings of integers

of number fields by Bass, Milnor and Serre. The methods essentially use

only abelian class field theory. The analogue of the congruence subgroup

property can be formulated for algebraic groups over global fields and the

problem becomes much more difficult; we will recall this now.

Briefly recall that an algebraic group defined over a field k (considered as

a subfield of C) is a subgroup G of GL(N,C) which is also the set of

common zeroes of a finite set of polynomial functions P (gij , det(g)
−1) in

N2 + 1 variables with coefficients from k. Thus, there is a k-embedding

G → GL(N). The definition has to be slightly modified if k is a field of

positive characteristic. The group G(k) = G ∩ GL(N, k) turns out to be

defined independent of the choice of k-embedding G ≤ GL(N).
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Standard examples of algebraic groups defined over a subfield k of C are:

G = GL(n,C) , SL(n,C).

For any symmetric invertible matrix M ∈ GL(n, k), the orthogonal group

O(M) = {g ∈ GL(n,C) :t gMg = M}.

For any skew-symmetric matrix Ω ∈ GL(2n, k), the symplectic group

Sp(Ω) = {g ∈ GL(2n,C) :t gΩg = Ω}.

Let D be a division algebra with center k - its dimension as a k-vector space

must be n2 for some n. Let vi; 1 ≤ i ≤ n2 be a k-basis of D (then it is also a

C-basis (as a vector space) of the algebra D⊗kC). The right multiplication

by vi gives a linear transformation Rvi from D⊗k C to itself, and thus, one

has elements Rvi ∈ GL(n2,C) for i = 1, 2, · · · , n2. The group

G = {g ∈ GL(n2,C) : gRvi = Rvig ∀ i = 1, 2, · · · , n2}.

G(k) = the nonzero elements of D.

If k denotes an algebraic number field and Ok its ring of integers, if G ⊂ SLn

is a k-embedding of a linear algebraic group, define G(Ok) := G∩SLn(Ok).

For any non-zero ideal I of Ok, one has the normal subgroup

G(I) := Ker(G(Ok) → SLn(Ok/I))

of finite index in G(Ok); it is of finite index as Ok/I is finite.

Unlike G(k), the definitions of G(Ok) and G(I) etc. depend on the k-

embedding we started with, but it turns out that for a new k-embedding,

the new G(Ok) contains an old G(I) for some I 6= 0.

The group G(Ok) can be realized as a discrete subgroup of a product

G(R)r1 × G(C)r2 of Lie groups, where k has r1 real completions and r2

non-conjugate complex completions.

More generally, let S be any finite set of inequivalent valuations containing

all the archimedean valuations; the non-archimedean valuations in S corre-

spond to nonzero prime ideals of Ok. The ring OS of S-units of k consists

of the elements of k which admit denominators only from primes in S.

Define G(OS) = G ∩ SLn(OS); it is a discrete subgroup of the product∏
v∈S G(kv) of real, complex and p-adic Lie groups, where kv denotes the
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completion of k with respect to the valuation v.

A subgroup Γ ⊂ G(k) is called an S-congruence subgroup if, for some (and,

therefore, any) k-embedding of G, the group Γ contains G(I) as a subgroup

of finite index for some nonzero ideal I of OS .

One also defines a subgroup Γ ⊂ G(k) to be an S-arithmetic subgroup if, for

some (and, therefore, any) k-embedding, Γ and G(OS) are commensurable

(i.e., Γ ∩G(OS) has finite index in both groups).

As S-congruence subgroups are clearly S-arithmetic, the converse question

is natural, and is the simplest form of the congruence subgroup problem.

The congruence kernel

The two families (the S-arithmetic groups and the S-congruence groups) de-

fine topologies Ta, Tc on G(k). The topology Tc is called the S-congruence

topology on G(k), and the topology Ta is called the S-arithmetic topology.

As S-congruence subgroups are S-arithmetic subgroups, Ta is finer; note

that Ta and Tc are equivalent if all subgroups of finite index in G(OS) are

S-congruence subgroups. If the resulting completions of (uniform structures

on) G(k) are denoted by Ĝa and Ĝc, then there is a continuous surjective

homomorphism from Ĝa onto Ĝc.

The kernel C(S,G) of the above map, called the S-congruence kernel, mea-

sures the deviation.

A basic important property is that C(S,G) is a profinite group. In fact,

the closures Γ̂a, Γ̂c of G(OS) in Ĝa and Ĝc respectively, are profinite groups

and C(S,G) ⊂ Γ̂a. Note that when C(S,G) is trivial, all S-arithmetic

subgroups are S-congruence subgroups.

The congruence subgroup problem (CSP) is the problem of determining the

group C(S,G) for any S,G.

Margulis-Platonov conjecture

A conjecture due to Serre predicts precisely for which S,G, the group

C(S,G) is finite; the finiteness of C(S,G) has many interesting consequences

like super-rigidity. For any S, the association G 7→ C(S,G) is a functor from

the category of k-algebraic groups to the category of profinite groups. Given

G, a general philosophy (which can be made very precise) is that the larger
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S is, the ‘easier’ it is to compute C(S,G).

In fact, when S consists of all the places of k excepting the (finitely many

possible) non-archimedean places T for which G(kv) is compact (for the

topology induced from kv), the computation of C(S,G) amounts to a con-

jecture of Margulis & Platonov. In fact, in most cases T is empty which

means that the triviality of C(S,G) (for the S mentioned last) is equivalent

to the simplicity of the abstract group G(k)/center.

More generally, when S is co-finite, contains the archimedean places and

all the nonarchimedean places where G(kv) is compact, (the more general

version of) Margulis-Platonov conjecture has been proved for most cases (in

my PhD thesis, this was done for groups of type A1, Bn, Cn, Dn - see [4]).

One important case where the Margulis-Platonov conjecture has still not

been proved is that of the special unitary group of a division algebra with

center k and with an involution of the second kind.

Necessary conditions for finiteness

The CSP for a general group reduces to CSP for connected reductive groups

using essentially only the Chinese remainder theorem.

A reductive k-group G contains a central k-torus T (a connected, abelian

k-subgroup C-isomorphic to products of k∗) such that G/T is a semisimple

group.

For tori T , the congruence kernel C(S, T ) is trivial - this is a theorem due to

Chevalley and is essentially a consequence of Chebotarev’s density theorem

in global class field theory.

Hence, the problem reduces to that for semisimple groups.

For semisimple G, the group G(OS) (for any embedding) can be identified

with a lattice in the group GS :=
∏

v∈S G(kv) under the diagonal embedding

of G(k) in GS ; that is, the quotient space GS/G(OS) has a finite, GS-

invariant measure.

Finally, it is necessary (as observed by Serre) for the finiteness of C(S,G)

that G be simply-connected as an algebraic group - that is, there is no

k-algebraic group G̃ admitting a surjective k-map π : G̃ → G with finite

nontrivial kernel.
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Further, if one can compute C(S, G̃) for a simply-connected ‘cover’ G̃ of G,

then one can compute C(S,G). Thus, the CSP reduces to the problem for

semisimple, simply-connected groups.

The reason that G must be simply-connected in order that C(S,G) be finite,

is as follows.

Let there exist a k-map : G̃ → G with kernel µ and G̃ simply-connected.

Now, the S-congruence completion G̃c can be identified with the S-adelic

group G̃(AS). If π is the homomorphism from the S-arithmetic completion

G̃a to G̃c = G̃(AS), then it is easy to see that C(S,G) contains the infinite

group π−1(µ(AS))/µ(k).

If G is simply-connected and the group
∏

v∈S G(kv) is noncompact (equiv-

alently, G(OS) is not finite), one has the strong approximation property.

This means that the closure Γ̂c of G(OS) with respect to Tc can be identified

with
∏

v 6∈S G(Ov). Here Ov is the local ring of integers in the p-adic field

kv. Thus, if C(S,G) is trivial, the profinite completion of G(OS) is also

equal to
∏

v 6∈S G(Ov).

Thus, roughly speaking, when the congruence kernel is trivial the topology

given by subgroups of finite index is built out of the p-adic topologies.

For G(k) itself, strong approximation means that Gc can be identified with

the ‘S-adelic group’ G(AS), the restricted direct product of all G(kv), v 6∈ S

with respect to the open compact subgroups G(Ov).

As mentioned in the beginning, subgroups of finite index in SL(n,Z) are

congruence subgroups when n ≥ 3 while this is not so when n = 2; what

distinguishes these groups qualitatively is their rank.

If G ⊂ SLn is a k-embedding, one calls a k-torus T in G to be k-split, if

there is some g ∈ G(k) such that gTg−1 is a subgroup of the diagonals in

SLn. The maximum of the dimensions of the various k-split tori (if they

exist) is called the k-rank of G. For example, k-rank SLn = n − 1 and

k-rank Sp2n = n.

If F is a quadratic form over k, it is an orthogonal sum of an anisotropic

form over k and a certain number r of hyperbolic planes (r is called the

Witt index of F ), by Witt’s classical theorem. Then, the group SO(F ) is a

k-group whose k-rank is this same r.
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Serre’s conjecture

Let us consider a general semisimple, simply-connected k-group G. Assume

that G is absolutely almost simple (that is, G has no connected normal

algebraic subgroups).

First, it is easy to see that a necessary condition for finiteness of C(S,G)

is that for any nonarchimedean place v in S, the group G has kv-rank > 0

(equivalently, G(kv) is non-compact by a theorem of Bruhat-Tits-Rousseau).

Indeed, otherwise the whole of G(kv) is a quotient of C(S,G).

For a finite S containing all the archimedean places, Serre formulated the

characterization of the congruence subgroup property (that is, the finiteness

of C(S,G)) conjecturally as follows.

Conjecture of Serre:

C(S,G) is finite if, and only if, S-rank(G) :=
∑

v∈S kv − rank(G) ≥ 2 and

G(kv) is noncompact for each nonarchimedean v ∈ S.

When C(S,G) is finite, one says that the CSP is solved affirmatively or that

the congruence subgroup property holds for the pair (G,S).

For k = Q, S = {∞, p} for some prime p and G = SL2, the CSP was solved

affirmatively by Mennicke and this fact can be used to show (as was done

by Serre and Thompson) that the classical theory of Hecke operators ‘lives’

only on congruence subgroups of SL2(Z).

It should be noted that the finitness of C(S,G) as against its being actually

trivial, already has strong consequences like super-rigidity, as pointed by

Serre.

This is one reason for considering not just the triviality but even the finite-

ness of C(S,G) as a positive answer of the CSP.

In other words, if C(S,G) is finite, then any abstract homomorphism from

G(OS) to GLn(C) is essentially algebraic; there is a k-algebraic group homo-

morphism from G to GLn which agrees with the homomorphism we started

with, at least on a subgroup of finite index in G(OS).

In particular, Γ/[Γ,Γ] is finite for every subgroup of finite index in G(OS).

This last fact has already been used to prove in some cases that C(S,G) is

NOT finite, by producing a Γ of finite index which surjects onto Z.
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Relation with group cohomology

As the S-congruence completion Gc of G(k) can be identified with the ‘S-

adelic group’ G(AS), we have the exact sequence

1 → C(S,G) → Ĝa → G(AS) → 1

which defines C(S,G).

By looking at continuous group cohomology H i with the universal coeffi-

cients R/Z, one has the corresponding Hochschild-Serre spectral sequence

which gives the exact sequence

H1(G(AS)) → H1(Ĝa) → H1(C(S,G))G(AS) → H2(G(AS)).

As the congruence sequence above splits over G(k), the last map actually

goes into the kernel of the restriction map from H2(G(AS)) to H2(G(k)).

So, if α denotes the first map, then we have an exact sequence

1 → Cokerα → H1(C(S,G))G(AS) → Ker(H2(G(AS) → H2(G(k))).

Here G(k) is considered with the discrete topology. The last kernel is called

the S-metaplectic kernel and it is a finite group, and has been computed

now in all cases. The cokernel of α is a finite group since [G(k), G(k)] has

finite index in G(k). Therefore, the middle term H1(C(S,G))G(AS) is finite,

and the quotient C(S,G)/[C(S,G), Ĝa] is finite.

In other words, we have: C(S,G) is finite if, and only if, it is contained in

the center of Ĝa.

The centrality of C(S,G) has been proved for most cases of S-rank at least

2; the important case of groups of type An which have k-rank 0 is wide

open.

Split and quasi-split groups were treated by Matsumoto and Deodhar.

Raghunathan’s path-breaking works in 1976, 1986 solved the problem for

all k-isotropic groups.

One general method for proving centrality already appeared in Raghu-

nathan’s second paper, and works for anisotropic groups as well in the

following way (I had proved a version of this for special cases but Rap-

inchuk proved it in general).
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Let G be an absolutely simple, simply connected algebraic group over a global

field k satisfying the M-P conjecture. Assume that for every v 6∈ S, there is

a subgroup Gv of Ĝa so that the following conditions are satisfied:

(i) π(Gv) = G(kv) for all v 6∈ S, where π is the map from Ĝa to G(AS) as

in the exact sequence defining C(S,G);

(ii) Gv and Gw commute element-wise for all v 6= w outside S;

(iii) the Gv’s for v 6∈ S generate a dense subgroup of Ĝa.

Then C(S,G) is central in Ĝa.

The computation of the metaplectic kernel uses some wonderful results of

Calvin Moore on uniqueness of reciprocity laws - these show that the Artin

Reciprocity Law is the only general reciprocity law. Robert Steinberg stud-

ied central extensions of the group G(k) for a simply connected Chevalley

group G over an arbitrary field. Moore used Steinberg’s results to connect

topological central extensions of G(kv)’s with norm residue symbols of local

class field theory. Steinberg had shown that a topological central extension

of G(kv) by R/Z can be characterized by a certain 2-cocycle (called the

Steinberg cocycle) k∗v × k∗v → R/Z.

Moore showed that the corresponding Steinberg cocycle cv is the composi-

tion of the norm residue symbol (., .)v : k∗v × k∗v → µ(kv) with a character

χcv of the group µ(kv) of roots of unity.

Given an element of the metaplectic kernel M(S,G), one has a correspond-

ing topological central extension of G(AS). As it splits over G(k), we have
∏

v 6∈S

χcv((r, s)v) = 1 ∀ r, s ∈ k∗;

this connects the norm residue symbols of different places of k and can be

thought of as an example of a global reciprocity law.

Artin’s reciprocity law asserts that
∏

v 6∈S

(r, s)|µ(kv)/µ(k)|v = 1 ∀ r, s ∈ k∗.

Moore proved the remarkable result that any relation between all the norm

residue symbols which holds on k∗ × k∗ is a power of the Artin reciprocity

law, and used this to compute M(S,G).
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For k-rank 0 groups, an analogue of Moore’s uniqueness reciprocity laws

was proposed by Gopal Prasad (a detailed proof appears in [5]).

Various profinite-group-theoretic formulations equivalent to the CSP have

been studied by many authors. For instance, the finiteness of C(S,G) has

been characterized in terms of polynomial index growth for Γ̂a.

Another characterization was conjectured by Lubotzky and proved in collab-

oration with Vladimir Platonov ([6]); it shows that an S-arithmetic group

has the CS property if, and only if, it can be embedded as a closed subgroup

of
∏

p SL(n,Zp) for some n.

In that paper, we conjectured the following more general result which was

proved by Liebeck, and Pyber:

A topologically finitely generated profinite group ∆ which can be continu-

ously embedded in the S-adelic group
∏

p SL(n,Zp) for some n, has bounded

generation.

The centrality/finiteness of C(S,G) (for the cases where it is conjectured to

be finite) is still open for anisotropic groups of type An including the two

very important cases where new ideas may be required - a solution in these

cases may have a lot of relevance to the theory of automorphic forms.

The two cases alluded to are :

(i) G = SL(1, D) for a division algebra with center k, and

(ii) G = SU(1, D) where D is a division algebra with a center K which is a

quadratic extension of k and D has a K/k-involution.

Structure of C(S,G) when it is infinite

Melnikov used results on profinite groups to prove that, for SL2(Z), one

has C({∞}, SL2) ∼= F̂ω, the free profinite group of countably infinite rank.

With Mason, Premet and Zalesskii, we computed (in [7]) the structure of

C(S,G) when G,S are so that G(OS) can be identified with a lattice in

G(kv) for some non-archimedean completion kv and k is a global field of

any characteristic.
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We use group actions on trees and profinite analogues as well as a detailed

analysis of unipotent radicals in every rank 1 group over a local field of

positive characteristic, to deduce the following structure theorem.

Theorem ([7]).

(i) If G(OS) is cocompact in G(kv) (in particular, if char. k = 0), then

C(S,G) ∼= F̂ω.

(ii) If G(OS) is nonuniform (therefore, necessarily char. k = p > 0), then

C(S,G) ∼= F̂ω ⊔T , a free profinite product of a free profinite group of count-

ably infinite rank and of the torsion factor T which is a free profinite product

of groups, each of which is isomorphic to the direct product of 2ℵ0 copies of

Z/pZ.

A surprising consequence of the theorem is that C(S,G) depends only on

the characteristic of k when G(OS) is a lattice in a rank 1 group over a

non-archimedean local field.

As a by-product of the above result, we also obtain the following result

which is of independent interest:

Let U be the unipotent radical of a minimal kv-parabolic subgroup of G where

G is as in (ii) above, then either U is abelian or is automatically defined

over k.

Theme 2: Central extensions

Let G be an abstract group and A an abelian group; central extensions of

G by A arise naturally in the context of projective representations.

But, we principally look at the case G ≤ G(k) where G is a semisimple

algebraic group a p-adic field k and A is finite - this arises from the CSP,

where the central extensions which arise are topological central extensions.

Let G be an abstract group and A an abelian group. A central extension

of G by A is a pair (E, φ) where E is a group containing A in its center,

φ : E → G a surjective homomorphism whose kernel equals A:

1 → A → E
φ
→ G → 1.
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The theory of central extensions generalizes that of covering spaces for topo-

logical groups as it generalizes to disconnected groups also. The ‘Baer mul-

tiplication’ gives a group structure on the set of isomorphism classes of

parametrized central extensions of G by A.

One may use Eilenberg-Maclane’s group cohomology to study central exten-

sion. The second cohomology group H2(G,A) where G acts on A trivially,

is isomorphic to the above group of parametrized central extensions of G

by A. The associativity of the Baer multiplication reflects as the 2-cocycle

condition.

When the groups are (Hausdorf, 2nd countable, locally compact) topologi-

cal groups, then one can talk about a topological central extension.

When G is a topological group, and A is a closed, central subgroup of a

topological group E and φ : E → G a continuous surjection such that

Kerφ = A, the map E/A → G induced by φ, is a topological isomorphism.

The group of topological central extensions is isomorphic to H2
cont(G,A)

(sometimes written H2
top(G,A)) where G acts trivially and the cohomology

is defined by continuous cocycles.

Moreover, in the case when G is a totally disconnected group (like the

group of rational points of an algebraic group over a p-adic field), then

H2
cont(G,R/Z) is isomorphic to H2

cont(G,Q/Z) where Q/Z is considered as

a discrete group and, it turns out from results of Mackey-Moore-Wigner,

the latter groups can be computed as the cohomology H2
meas(G,Q/Z) based

on measurable cochains.

Using the behaviour of power maps on compact, p-adic Lie groups, one can

deduce (see ‘[8]) in certain cases that every abstract central extension of G

by A is automatically topological. This was used to deduce another proof

of a theorem of Tate on K2.

Using the Tits building

We can use the Tits building to obtain an application to abstract central

extensions of the group of rational points of p-adic algebraic groups by finite

p-groups (see [9]).
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For a connected, semisimple, simply-connected algebraic group G defined

and isotropic over a nonarchimedean local field k, and A is a finite, abelian

p-group where p is the characteristic of the residue field of k, then when G

of k-rank at least 2, we can show that the group H2(G(k), A) of abstract

central extensions injects into a finite direct sum of H2(H(k), A) for certain

semisimple k-subgroups H of smaller k-ranks.

On the way, we can derive some results interesting results of independent

interest, which are valid over a general field k; for instance, one can prove

that the analogue of the Steinberg module for G(k) has no non-zero G(k)-

invariants.

Let k be a nonarchimedean local field and A a finite, abelian p-group, where

p is the characteristic of the residue field of k. Let G be an absolutely

almost simple, simply-connected algebraic group defined over k with k-

rank(G) = r ≥ 2. Then there exist semisimple k-subgroups G1, · · · , Gr

without k-anisotropic factors and, each of k-rank equal to k-rank(G) − 1

and semisimple k-subgroups Gij of Gi ∩Gj such that the ‘restriction’ map

H2(G(k), A) →
r⊕

i=1

H2(Gi(k), A)

of abstract central extensions is injective, and injects into

Ker(
⊕

i≤r

H2(Gi(k), A) →
⊕

i<j

H2(Gij(k), A)).

In particular, if the abstract central extensions are automatically topological

for all k-subgroups of k-rank r − 1, then the same holds for G.

The technique cannot address k-anisotropic groups as the Tits building is

empty; it is an open problem to determine the central extensions of SL(1, D)

by Fp where D is a division algebra over a p-adic field - we mention partial

results later below.

Modus operandi

To compute Hn(G(k), A), the abstract group cohomology Extn(G(k), A),

we use a resolution of the G(k)-module provided by the simplicial Tits

building - an idea due to Raghunathan.

The Tits building of G over k is a simplicial complex of dimension r − 1

(where r = k-rank(G)) whose vertices are maximal parabolic k-subgroups;
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in fact, by a theorem of Solomon and Tits, it has the homotopy type of a

bouquet of spheres, each of dimension r − 1.

A set {P1, · · · , Pd} of vertices forms a simplex if and only if the intersection

∩d
i=1Pi is a parabolic k-subgroup - this parabolic is precisely the stabilizer

of the simplex.

The group G(k) acts on the set of parabolic k-subgroups by conjugation.

The set of s-dimensional simplices in the Tits building is G(k)-equivariantly

parametrized by
⋃

|Θ|=s+1G(k)/PΘ(k) where Θ’s are subsets of a fixed set

of simple k-roots, and PΘ’s are corresponding k-parabolics.

Since G (k) acts simplicially on the Tits building, we have a complex of

G(k)-modules

0 → A → C0(A) → C1(A) → · · · · · · → Cr−1(A) → 0

where Ci(A) is the group of simplicial i-cochains of the Tits building, with

coefficients in A.

Therefore, Ci(A) =
⊕

|Θ|=i+1 Ind
G(k)
PΘ(k)(A) as a G(k)-module.

Here, Ind
G(k)
PΘ(k)(A) stands for the G(k)-module induced by the trivial action

of PΘ(k) on A.

So, the simplicial cohomology groups of the Tits building of G over k with

coefficients in A, are all zero excepting the 0-th and the (r − 1)-th one.

This top cohomology, denoted by St(A), is called the Steinberg module of

G over k with corfficients in A.

Therefore, the G(k)-complex

0 → A → C0(A) · · · → Cr−1(A) → St(A) → 0

is exact.

The associated spectral sequence which computes H∗ (G (k) , A) has its Ei,j
2 -

term to be the i-th cohomology of the complex

0 → Hj
(
G (k) , C0 (A)

)
→ Hj

(
G (k) , C1 (A)

)

→ · · · → Hj(G(k), St(A)) → 0.

Using Shapiro’s lemma, this is just the complex

0 →
⊕

|Θ|=1

Hj(PΘ(k), A) · · · → Hj(P∆(k), A) → Hj(G(k), St(A)) → 0.

The proof of the restriction theorem proceeds in steps - each step reducing

the computation of the relevant cohomology groups to a computation for



LINEAR ALGEBRAIC GROUPS OVER GLOBAL AND LOCAL FIELDS 23

subgroups of a particular kind like parabolic subgroups, then their Levi

subgroups and finally to groups of smaller k-ranks.

For the proof, we will require a result of independent interest which we

prove for a general field k.

For an arbitrary field k, let St(A) be defined as the top-dimensional coho-

mology with coefficients in A of the Tits building of G over k. Assume that

if A has even order, then k is infinite. Then, we have St(A)G(k) = 0.

During the course of proof of the above lemma on Steinberg invariants, the

following result of independent interest is proved.

Let k be any infinite field and let G be a semisimple, algebraic k-group which

is k-isotropic, and let S be a maximal k-split torus and let P be a minimal

parabolic k-subgroup of G containing S. Let W denote the k-Weyl group

and U− denote the unipotent radical of the parabolic k-subgroup which is

opposite to P . Then,
⋂

w∈W U−(k)P (k)w 6= ∅.

Theme 3: Division algebras over global and local fields

As mentioned earlier, the M-P (Margulis-Platonov) conjecture is known for

all simply connected groups over global fields other than the groups of outer

type A. These arise as follows:

Let K/k be a quadratic extension of a global field and let D be a central

division algebra over K with a K/k-involution σ. One has the unitary group

U(1, D) = {d ∈ D∗ : σ(d) = d−1}

and the special unitary group

SU(1, D) := {d ∈ U(1, D) : Nred(d) = 1}.

This corresponds to the k-points of anisotropic groups of outer type An.

In the case of global fields, the M-P conjecture for SL(1, D) has been proved

due to the efforts of several mathematicians working on different aspects us-

ing diverse methods (Margulis, Raghunathan, Rapinchuk, Segev, Seitz).

The equality SL(1, D) = [D∗, D∗] plays a crucial preliminary role in resolv-

ing the M-P conjecture for SL(1, D), but even the analogue of this as to

whether SU(1, D) = [U(1, D), U(1, D)] is unsolved yet, let alone M-P for
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SU(1, D).

If one considers more general fields like K(X), there are infinitely many

examples (as shown in [10]) that the quotient SU(1, D)/[U(1, D), U(1.D)]

can be infinite. We proved:

Let n ≥ 3, and let ζ be a primitive n-th root of unity. Then, there exists a

division algebra D of index n with center Q(ζ)(x) which has an involution of

the second kind such that the corresponding group SU(1, D)/[U(1, D), U(1.D)]

is infinite.

In another work ([11]), when D is a division algebra over a global field,

we have outlined some partial results towards the equality of SU(1, D) =

[U(1, D), U(1, D)] when the degree is odd. In that paper, we have dealt also

with quaternion division algebras, and used results of Margulis, to explicitly

determine the quotient
∣∣SU(1, D)/[U(1, D), U(1, D)]

∣∣ =
∏

v∈T

nv.

Here, nv is defined as follows.

Denote by qv the order of the residue field of kv for any nonarchimedean

place v of k and, let:

nv = qv + 1 if K ⊗k kv is an unramified field extension of kv;

nv = 2 if K ⊗k kv is a ramified quadratic extension and the residue

characteristic of kv is not 2;

nv = 1 if K ⊗k kv is a ramified quadratic extension and the residue

characteristic of kv is 2;

nv = 1 if K ⊗k kv is not a field.

This shows quaternion division algebras over global fields do not always

satisfy SU(1, D) = [U(1, D), U(1, D)].

Later, Yanchevskii and his student have given another interesting proof.

Topological central extensions of SL(1, D)

We could use the Tits building to study central extensions of G(k) for

k-isotropic groups G. For anisotropic groups over a local field k, totally

different techniques are needed.
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When k is a p-adic field of characteristic zero, the k-anisotropic, absolutely

simple, simply connected groups G arise as follows.

D is a finite-dimensional central division algebra over k, the group G(k) =

SL1(D) consisting of elements of reduced norm 1 in D.

It is expected that

H2(G,R/Z) ∼= µ(k)p,

where µ(k)p is the finite cyclic group of p-th power roots of unity in k.

Gopal Prasad & M.S.Raghunathan proved that H2(G,R/Z) is a finite cyclic

group containing an isomorphic copy of µ(k)p and is trivial if µ(k)p is trivial.

As G(k) is totally disconnected, the cohomology group H2(G(k),R/Z)

(based on continuous cochains) is isomorphic to H2(G(k),Q/Z). Calvin

Moore showed that the latter group can be computed using measurable

rather than continuous cochains.

Results of Gopal Prasad & Raghunathan show that H2(G,R/Z) is a finite

p-group, and also that if k contains a primitive pr-th root of unity, then this

H2 also has an element of order pr. The converse is also expected to hold

and they showed this for r = 1.

The first non-trivial case left open is r = 2. I have been able to prove ([12])

in a special case p = 3, d = 2 and e = 6 that if H2 has an element of order

p2, then k contains a primitive p2-th root of unity.

M. Ershov has recently obtained very nice results on H2(SL1(D),R/Z).

Theme 4: Bounded generation and finite width

A remarkable refinement of finite generation came to the fore in the work of

A.S.Rapinchuk; this is known as bounded generation (by cyclic subgroups).

An abstract group G is said to be boundedly generated of degree ≤ n if there

exists a sequence of (not necessarily distinct) elements g1, · · · , gn such that

G =< g1 >< g2 > · · · < gn > .

A free, non-abelian group (and therefore, SL2(Z) also) is not boundedly

generated.
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On the other hand, a group like SLn(Z) for n ≥ 3, is boundedly generated

by elementary matrices (an elementary proof of this can be given using

Dirichlet’s theorem on primes in arithmetic progressions).

It turns out that this difference is an attribute of the congruence subgroup

property as revealed in the work of V P Platonov & A S Rapinchuk and,

independently, that of A Lubotzky.

Finitely generated matrix groups are residually finite, and hence embed in

their profinite completions.

A profinite group G is said to be boundedly generated as a profinite group

if there exists a sequence of (not necessarily distinct) elements g1, · · · , gn
such that

G = < g1 >< g2 > · · ·< gn >

where the ‘bar’ denotes closure. It follows from Lazard’s profound work on

p-adic Lie groups and the solution to the restricted Burnside problem that

a pro-p group has bounded generation (as a profinite group) if and only if

it is a p-adic compact Lie group; this can be thought of as an analogue of

Hilbert’s 5th problem for the p-adic case.

If an abstract group has bounded generation, then so do its pro-p comple-

tions for each prime p (as does the full profinite completion). Therefore,

we have a nice sufficient criterion for an abstract group to have a faithful

linear representation - viz., if it has bounded generation and is virtually

residually-p. We have used this idea ([13]) to show that the automorphism

group of a free group does not have bounded generation.

The question of existence of bounded generation for matrix groups over

number-theoretic rings has rather deep connections with other properties.

The profinite completion of an arithmetic group is boundedly generated if,

and only if, it has the congruence subgroup property - this amazing re-

sult was proved independently by V.P.Platonov & A.S.Rapinchuk and by

A.Lubotzky.

Lubotzky also conjectured that the congruence subgroup property holds

for an S-arithmetic group if, and only if, it can be embedded as a closed

subgroup of SLn(A) - a so-called adelic group. As mentioned earlier, this
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was proved in collaboration with Platonov, where we also conjectured that

finitely generated closed subgroups of adelic groups have bounded genera-

tion; since then, it has been proved by Martin Liebeck & Laszlo Pyber.

It is still an intriguing open question as to whether the property of bounded

generation for an S-arithmetic group Γ is equivalent to bounded generation

for its profinite completion (which is, as mentioned earlier, equivalent to the

congruence subgroup property holding good for Γ). The answer is perhaps

in the negative and certain arithmetic subgroups of Sp(n, 1) could provide

counter-examples. Moreover, this is a subtle question specific to arithmetic

groups and not for more general profinite groups because:

The group
∏

r≥1 PSLn(F2r) is boundedly generated group as a profinite

group but none of its discrete subgroups is boundedly generated.

O.Tavgen proved bounded generation of arithmetic groups in rank > 1

groups. However, bounded generation for co-compact arithmetic lattices is

still an open question in general excepting the case of quadratic forms; note

here there are no unipotent elements. Very recently, Corvaja, Rapinchuk,

Ren and Zannier have shown that S-arithmetic groups in anisotropic groups

cannot be boundedly generated.

We mention in passing that some matrix groups are finitely generated but

are not boundedly generated:

Consider, for example, the group of 2× 2 matrices
(
tm tnf(t)

0 1

)

where f is any polynomial with integer coefficients and m,n are any integers,

is an infinite group (it can be identified with the wreath product of Z with

itself; it has an infinitely generated abelian subgroup, but is itself generated

by just two matrices:(
t 0

0 1

)
and

(
1 1

0 1

)

One can prove by combinatorial methods that the above matrix group does

not have bounded generation.
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With Nikolay Nikolov, we characterized the wreath products A ≀ B which

have bounded generation ([14]).

SL(2, O) - work with Morgan and Rapinchuk.

Let O be the ring of S-integers in a number field k whose group of units

O× is infinite. We show that every matrix in Γ = SL2(O) is a product

of at most 9 elementary matrices. As a consequence, we obtain that Γ is

boundedly generated as an abstract group by 9[k : Q]+10 cyclic subgroups.

This work finishes a long line of work by several mathematicians over five

decades; it appears in [15].

As a consequence of our results, we can deduce:

Let O× be infinite. Then, for n ≥ 3, the abstract group SLn(O) can be

boundedly generated by 4 + n(3n−1)
2 elementary generators.

If S = V k
∞, our theorems yield a factorization of SL2(O) as a finite prod-

uct 〈γ1〉 · · · 〈γd〉 of cyclic subgroups where all generators γi are elementary

matrices, hence unipotent.

On the contrary, when S 6= V k
∞, the factorization we produce involves some

diagonal (semisimple) matrices; there exists no factorization with all γi

unipotent.

With a little bit of work, we can then deduce that SL2(O) has bounded

generation by 9[k : Q] + 10 cyclic groups.

If O = Z[1/p], where p > 7 is a prime, it turns out that the assertion that

5 cyclic subgroups suffice. But, not every matrix in SL2(O) is a product of

four elementary matrices.

The key notion used is that of Q-split prime: we say that a prime p of a

number field k is Q-split if it is non-dyadic and its local degree over the

corresponding rational prime is 1.

Some simple properties of Q-split primes are listed as:

Let p be a Q-split prime in O, and for n ≥ 1 let ρn : O → O/pn be the

corresponding quotient map. Then:

(a) the group of invertible elements (O/pn)× is cyclic for any n;
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(b) if c ∈ O is such that ρ2(c) generates (O/p2)× then ρn(c) generates

(O/pn)× for any n ≥ 2.

Among other things, we prove the following refinement of Dirichlet’s theo-

rem:

Let O be the ring of S-integers in a number field k for some finite S ⊂ V k

containing V k
∞. If nonzero a, b ∈ O are relatively prime (i.e., aO+bO = O),

then there exist infinitely many principal Q-split prime ideals p of O with a

generator π such that π ≡ a (modulo bO) and π > 0 in all real completions

of k.

We need number-theoretic results that we prove using class field theory; in

particular applying Chebotarev’s Density Theorem to a specific automor-

phism of an appropriate finite Galois extension, we prove the following key

result.

To describe the results, we use the following notations:

let µ = |µ(k)| be the number of roots of unity in k, let K be the Hilbert

S-class field of k, and let K̃ be the Galois closure of K over Q. Suppose we

are given two finite sets P and Q of rational primes. Let

µ′ = µ ·
∏

p∈P

p,

pick an integer λ ≥ 1 which is divisible by µ and for which K̃∩Qab ⊆ Q(ζλ),

and set

λ′ = λ ·
∏

q∈Q

q.

Then, we prove:

Let u ∈ O× be a unit of infinite order such that u /∈ µ(k)p(k
×)p for every

prime p ∈ P , and let q be a Q-split prime of O which is relatively prime to

λ′. Then there exist infinitely many principal Q-split primes p = πO of O

with a generator π such that:

(1) for each p ∈ P , the p-primary component of φ(p)/µ divides the p-

primary component of the order of u (mod p);

(2) π (mod q2) generates (O/q2)×;

(3) gcd (φ(p), λ′) = λ.
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As mentioned above, if S = V k
∞, then our theorems yield a factorization of

SL2(O) as a finite product 〈γ1〉 · · · 〈γd〉 of cyclic subgroups where all gener-

ators γi are elementary matrices, hence unipotent but when S 6= V k
∞, the

factorization must involve some semisimple matrices.

It is worth pointing out in the latter case why there is no factorization with

all γi unipotent. Indeed, let v ∈ S \ V k
∞ and let γ ∈ SL2(O) be unipotent.

Then there exists N = N(γ) such that for any a = (aij) ∈ 〈γ〉 we have

v(aij) ≤ N(γ) for all i, j ∈ {1, 2}.

It follows that if SL2(O) = 〈γ1〉 · · · 〈γd〉 where all γi are unipotent, then

there exists N0 such that for any a = (aij) ∈ SL2(O) we have v(aij) ≤ N0

for i, j ∈ {1, 2}, which is absurd.

SL(n, F [X]) for F finite field and n ≥ 3

Here is a result (proved by Bogdan Nica) on bounded elementary generation

of SL(n) over the polynomial ring over a finite field F :

If n ≥ 3, the group SLn(F [X]) is boundedly generated by 29 + n(3n−1)
2 ele-

mentary matrices.

Compare it with the result of van der Kallen that SLn(C[X]) is not bound-

edly generated by elementary matrices. The proof over F [X] is based on

the following analogue of Dirichlet’s theorem due to Kornblum and Artin:

If f, g ∈ F [X] are relatively prime and g 6= 0, then there are infinitely many

primes congruent to g mod f . Further, such a prime can have arbitrary

degree provided the degree is sufficiently large.
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SOME GLIMPSES INTO NONCOMMUTATIVE RING THEORY*

DINESH KHURANA

Dedicated to Late Professor Hansraj Gupta

Abstract. We will give some glimpses into noncommutative ring the-

ory by discussing some typical results. One of the aim is to demonstrate

some basic ways in which noncommutative ring theory is different from

its commutative version

1. Introduction

Since the discovery of Division rings by Hamilton in 1843, study of non-

commutative rings and modules over them, i.e., noncommutative algebra,

has become a major area of research which has attracted several lead-

ing mathematicians like Joseph Wedderburn, Emil Artin, Richard Brauer,

Nathan Jacobson, P. M. Cohn, Emmy Noether, S. A. Amitsur, I. N. Her-

stein and more recently K. R. Goodearl, Donald Passman, George Bergman,

T. Y. Lam, Agata Smoktunowicz. We refer the reader to [3], [4], [5], [6], [7],

[15], [17], [20], [21], [24], [26] for excellent expositions of noncommutative

algebra.

This expository article is intended to provide a sneak peek into non-

commutative algebra. This is done by discussing some basic themes and

some typical results of the subject. In section 2 we discuss some important

commutativity results. In section 3 behaviour of nilpotent elements and

nil one sided ideals in noncommutative rings is discussed. In section 4 we

discuss polynomials over noncommutative rings. In the last section 5 we

discuss invertibility of square matrices over noncommutative rings.

* This article is based on the text of the 31st Hansraj Gupta memorial Award

Lecture given at the 86th Annual Conference of the IMS - An International meet held at

Vellore Inst. of Tech., Vellore (T. N.) using online mode during December 17-20, 2020.

.
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Throughout all rings will contain identity unless specifically stated oth-

erwise.

2. Commutativity Results

Since Wedderburn in 1905 proved the wonderful result that a finite divi-

sion ring is a field, a major theme in noncommutative ring theory has been

the study of commutativity results which involves imposing conditions on

rings which imply some sort of commutativity in rings. Stone [31, Theorem

1] in 1936 proved that if a2 = a for every a ∈ R, then R is commutative.

This led to the following natural question.

Question 2.1. If there exists n ∈ N such that an = a for every a ∈ R,

then is R commutative?

Note that an affirmative answer to this question would generalize the

Wedderburn’s Little Theorem. Nothing happened on this question till 1945,

when three mathematicians Neal McCoy, Nathan Jacobson and Irving Ka-

plansky, independently, took a crack at it. Kaplansky [18] narrates the

further story as follows.

McCoy and I made some progress but were outdistanced by Jacobson

[16], who went the whole way....There is a little more to tell and I shall tell

it for a reason. I wrote up what I had and submitted it to the Duke Journal,

it was accepted. Then I learned about Jacobson’s work, and he sent me a

reprint of [16]. I tossed sleeplessly for a night thinking about what to do.

The next morning I decided to withdraw my paper. I have never regretted

the decision. My reason for relating this story is that perhaps some young

mathematician who faces a similar decision may read it. I hope that he or

she will similarly decide to withdraw a superseded paper.

In 1945 Nathan Jacobson [16, Theorem 11] proved much more than

what Question 2.1 had asked for.

Theorem 2.2. If for every a ∈ R there exists a positive integer n(a) > 1,

depending on a, such that an(a) = a, then R is commutative.
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Note that the condition

an(a) = a for every a ∈ R

is not necessary for R to be commutative. After that I.N. Herstein came

to picture and proved a flurry of wonderful results and set the stage for

hundreds of similar results. In 1951 Herstein [11, Theorem 18] proved the

following result.

Theorem 2.3. Let R be a ring with center Z(R) and n > 1 be a fixed

integer. Then R is commutative if and only if an − a ∈ Z(R) for every

a ∈ R.

In 1953 Herstein [12, Theorem 21] and [13, Theorem 19] proved the

following two generalizations of Theorem 2.3.

Theorem 2.4. A ring R is commutative if and only if for every a ∈ R

there exists a positive integer n(a) > 1, depending on a, such that an(a)−a ∈

Z(R).

Theorem 2.5. If for every a ∈ R there exists a polynomial pa(x) ∈ Z[x]

such that

a2pa(a)− a ∈ Z(R),

then R is commutative.

In 1957 Herstein [14, Theorem 6] proved a yet another commutativity

result as follows.

Theorem 2.6. A ring R is commutative if and only if for any a, b ∈ R

there exists a positive integer n(a, b) > 1 such that

(ab− ba)n(a,b) = ab− ba.

In attempts to prove these commutativity results Herstein discovered

a very powerful method of first proving a result in division rings, then

extending it to left primitive rings using Jacobson’s Density Theorem, then

to semiprimitive rings using the fact that every semiprimitive ring is a

subdirect product of left primitive rings, and lastly to the arbitrary rings

(see [20, Page 208]). Kaplansky [18] in 1995 writes the following about the

method discovered by Herstein to prove commutativity results.
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To this day I know no way of proving commutativity other than invok-

ing all the Herstein’s devices, including a reduction to subdirectly irreducible

case. (He once told me that this reduction was an act of desperation.) On

this matter of use of subdirect irreducibility, I am reminded of Wigner’s pa-

per on the unreasonable effectiveness of mathematics in physical sciences.

I feel that subdirect irreducibility is unreasonably effective in proving com-

mutativity theorems.

These results by Herstein motivated an enormous amount of commu-

tativity results which involved myriad of conditions forcing rings to be

commutative. This theme is no longer fashionable as, apparently, it has

almost reached a saturation point. We refer the reader to [28], where com-

mutativity results from 1950-2005 have been reviewed, and [18] for a very

interesting exposition.

3. Prime Ideals, Nilpotency and Köthe’s Conjecture

Let R = M2(S), for any ring S, and a =

(

0 1

0 0

)

∈ R. Then

0 = a2 ∈ I for every ideal I of R but a /∈ I for any ideal I 6= R. In

particular, the complement of no ideal in R is multiplicative! So the local-

ization, which is an important tool in commutative algebra, is no longer

available in noncommutative rings. Also it follows that the elementwise

definition of prime ideals is too restrictive for noncommutative rings. So

prime ideals in noncommutative rings are defined by replacing elements

with ideals. We know that the intersection of all prime ideals in a com-

mutative ring coincides with the set of all nilpotent elements of the ring.

But the intersection of all prime ideals in a noncommutative ring may not

contain any nonzero nilpotent element of the ring. For instance, take the

ring Mn(F ) for any field F and any positive integer n > 1.

Unlike commutative rings where nilpotent elements form an ideal, sum

of two nilpotent elements may not be nilpotent in noncommutative rings.

For instance
(

0 1

0 0

)

+

(

0 0

1 0

)
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is invertible in M2(R) although

(

0 1

0 0

)2

=

(

0 0

1 0

)2

=

(

0 0

0 0

)

.

A subset S of a ring R is said to be nil if every element of S is nilpotent.

Proposition 3.1. If I is a nil two sided ideal and J is a nil right ideal of

any ring R, then I + J is nil.

Proof. If x = a+ b, where a ∈ I and b ∈ J , then x+ I = b+ I is nilpotent

in R/I. So xm ∈ I for some m ∈ N and as I is nil xmn = 0 for some

n ∈ N. �

It follows from Proposition 3.1 that the sum of all nil two sided ideals

of a ring R is the largest nil two sided ideal of R which is denoted by

Nil∗(R) and is called the upper nil-radical of R. If R is commutative, then

Nil∗(R) coincides with the prime radical of R. Please see [20, page 178]

for an example of a noncommutative ring whose upper nil-radical properly

contains the prime radical.

Proposition 3.1 leads to the following natural question.

Question 3.2. Is a sum of two nil right ideals of R a nil right ideal?

The simplicity of the proof of Proposition 3.1 may deceive one into be-

lieving that Question 3.2 should be easy to answer. But quite surprisingly

the question turns out to be very hard and is open since 1930 when it was

posed by an Austrian Mathematician Gottfried Köthe and is called Köthe’s

conjecture. In last about ninety years Köthe’s conjecture has resisted all

attempts of mathematicians. But in the bargain several equivalent ques-

tions have come up.

Theorem 3.3. The following conditions are equivalent.

1. Sum of two nil left (respectively right) ideals is nil.

2. Sum of two nil one sided ideals is nil.

3. Every nil one-sided ideal is contained in a nil two-sided ideal.

4. If Nil∗(R) = 0, then R does not a contain a nonzero nil one-sided ideal.

5. Every nil one-sided ideal of R is contained in Nil∗(R).
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6. If S is a nil ring, then so is Mn(S) for every positive integer n.

7. If S is a nil ring, then so is M2(S).

8. For any nil ideal I of a ring R, I[x] ⊆ J(R[x]).

9. Nil∗(Mn(R)) = Mn(Nil
∗(R)) for every ring R.

10. For every ring R, J(R[x]) = Nil∗(R)[x].

For proof of some of these equivalent conditions, we refer to [22, Exercise

10.25, Page 160]. The following related result was proved by Amitsur [1,

Theorem 1].

Theorem 3.4. For every ring R, J(R[x]) = I[x] for some nil ideal I of R.

Amitsur [2] had conjectured that S[x] is nil for every nil ring S. Note

that a positive answer to the Amitsur’s conjecture would lead to a positive

answer to the Köthe’s conjecture. But in 2000 Agata Smoktunowicz [29]

came up with a wonderful construction showing that Amitsur’s conjecture

was false. For more information the reader is referred to an excellent ex-

pository article [30] by Agata Smoktunowicz.

4. Polynomials over noncommutative rings

A polynomial f(x) = a0 + a1x + . . . + anx
n over a commutative ring

R is invertible if and only if a0 is invertible and ai is nilpotent for all

i ≥ 1. If R = M2(Z), then

(

0 1

1 0

)

+

(

0 1

0 0

)

x ∈ R[x] is not invertible

although

(

0 1

1 0

)

is a unit and

(

0 1

0 0

)

is nilpotent. On the other

hand

(

0 1

1 0

)

+

(

1 0

0 0

)

x ∈ R[x] is invertible although

(

1 0

0 0

)

is

not nilpotent. This is because, unlike in commutative rings, a sum of a

unit and a nilpotent may not be a unit in a noncommutative ring and also

a noncommutative ring modulo a prime ideal may not be a domain.

Neal H. McCoy [25, Theorem 2] in 1942 proved the following interesting

result.

Theorem 4.1. Let R be commutative and f(x) ∈ R[x]. If f(x)g(x) = 0
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for some nonzero g(x) ∈ R[x], then there exists a nonzero r ∈ R such that

f(x)r = 0.

So f(x) is a zero divisor in R[x], R commutative, if and only if its every

coefficient is a zero divisor with a common nonzero annihilator. This is

not true for polynomials over noncommutative rings. As shown in [19] if

R = M2(S),

f(x) =

(

0 1

0 0

)

+

(

1 0

0 1

)

x+

(

0 0

1 0

)

x2,

g(x) = −

(

1 0

0 0

)

+

(

0 0

1 0

)

x,

then f(x)g(x) = 0 despite the fact that one of the coefficients of f(x) is the

identity element of R.

The following 2018 result of Khurana et al. [19, Theorem 2.2] generalizes

McCoy’s Theorem 4.1.

Theorem 4.2. Let R be any ring and f(x) ∈ R[x]. Then there exists a

nonzero r ∈ R such that f(x)r = 0 if and only if there exists a nonzero

g(x) such that f(x)cg(x) = 0 for every c in the multiplicative monoid in R

generated by the coefficients of f(x).

The above result does not hold if we restrict c to the coefficients of

f(x) as the following example [19, Example 2.3] shows. For instance, let

R = M5(S), f(x) = a+ bx and g(x) = E11 − E31x+ E51x
2, where

a =

















0 0 0 1 0

0 0 1 −1 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 1

















, b =

















0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 1 0

















.

Then f(x)g(x) = f(x)ag(x) = f(x)bg(x) = 0, but it is easy to see that no

nonzero element of R kills f(x) on right.

The evaluation map f(x) → f(a) from R[x] → R is not a homomor-

phism if a 6∈ Z(R). In particular a root of the polynomial f(x) may not be

a root of f(x)g(x)! Also even over a domain, a root of f(x)g(x) may not



40 DINESH KHURANA

be a root of f(x) or g(x). So a polynomial of degree n may have more than

n roots. In H[x], k is a root of (x− i)(x+ i) = x2 + 1. Also i is not a root

of the polynomial (x− i)(x− j) = x2 − (i+ j)x+ k ∈ H[x]. On the other

hand note that j is a root of (x − i)(x − j). This is no coincidence. It is

true that a root of g(x) is always a root of f(x)g(x) for polynomials over

any ring. This fact has interesting consequences.

Let A ∈ Mn(R) and I denote the identity matrix, where R is a commu-

tative ring. Cayley-Hamilton Theorem says that A satisfies the polynomial

det(A−xI)I ∈ Mn(R)[x]. As adj(A−xI)(A−xI) = det(A−xI)I, adj(A−xI),

A−xI and det(A−xI)I are polynomials in Mn(R)[x] and A satisfies A−xI,

so A satisfies det(A − xI)I. The same proof yields that if A ∈ Mn(R), R

commutative, satisfies a polynomial f(x) ∈ Mn(R)[x], then A also satisfies

det(f(x)I. Mathematicians knew this fact a long back. In fact, in some of

the earlier texts Cayley-Hamilton Theorem was derived as a Corollary to

this more general fact (see for instance [23, Theorem 14.2 and Corollary

14.21]). In view of this the following is a valid proof of the Cayley-Hamilton

Theorem.

As A satisfies A− xI, A satisfies det(A− xI)I.

Recently Grover et al. [8, Theorem 2.1] have proved the following result.

Theorem 4.3. Let f, g, h ∈ R[x1, x2, ..., xn] and h = fg, then the element

h(a1, a2, ..., an) is contained in the ideal of R generated by g(a1, a2, ..., an)

for every pairwise commuting elements a1, a2, ..., an of R. In particular

g(a1, a2, ..., an) = 0 implies h(a1, a2, ..., an) = 0.

As a corollary we have the following generalization of the Cayley-

Hamilton Theorem that was proved by H. B. Phillips [27, Theorem I] in

1919.

Theorem 4.4. Let S be a commutative ring and f ∈ Mn(S)[x1, x2, ..., xn].

If A1, A2, ..., An in Mn(S) are pairwise commuting matrices such that

f(A1, A2, ..., An) = 0 and g = det(f)I, then g(A1, A2, ..., An) = 0.

In view of the Cayley-Hamilton Theorem every matrix A ∈ Mn(R),

R commutative, satisfies a monic polynomial of degree n in R[x]. The

following result of Grover et al. [8, Theorem 3.1] shows that this is not true
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for any non-commutative ring R.

Theorem 4.5. Let R be a ring and n > 1 be a positive integer. If every

matrix in Tn(R) satisfies a monic polynomial of degree n over R, then R

is commutative.

A ring is called left duo if its every left ideal is a two-sided ideal. The

following result of Grover et al. [8, Theorem 3.2] characterizes rings R over

which every diagonal matrix in Mn(R) satisfies a monic polynomial of de-

gree n in R[x].

Theorem 4.6. The following conditions are equivalent for a ring R.

(1) For any n > 1 every diagonal matrix in Mn(R) satisfies a monic poly-

nomial of degree n over R.

(2) R is left duo.

(3) Every diagonal matrix in M2(R) satisfies a monic polynomial of degree

two over R.

The following result [8, Theorem 3.7] gives a necessary condition for

every square matrix over R to be R-integral.

Theorem 4.7. If every diagonal matrix of Mn(R), n > 1, satisfies a monic

polynomial over R, then R is Dedekind finite.

There is an example [8, Example 3.8] showing that Dedekind-finiteness

is not a sufficient condition for every diagonal matrix in Mn(R), n > 1, to

be R-integral. The following problem apparently is quite hard.

Problem 4.8. Characterize rings R such that every square matrix over R

to be R-integral.

5. Invertible matrices over noncommutative rings

For a commutative ring R, A ∈ Mn(R) is invertible if and only if det(A)

is invertible in R. Also in this case A−1 = adj(A)/det(A). As analogous

determinants of matrices over non-commutative rings cannot be defined,

it is hard to see when a square matrix over a noncommutative ring is

invertible. Even if one knows that a matrix is invertible, still it is very hard
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to find its inverse over a noncommutative ring. In M2(H),

(

i j

j i

)

is

invertible although i2 − j2 = 0. On the other hand in M2(H),

(

i −j

j i

)

is not invertible although i2 + j2 is a unit in H. It is also interesting to

note that a matrix

(

a b

0 c

)

over a noncommutative ring can be invertible

even when none of the a and c is invertible in R.

Suppose R is commutative and A ∈ Mn(R) is invertible. Then as

det(A) = det(At), it follows that At is also invertible. This also follows from

the fact that (XY )t = Y tXt for every X,Y ∈ Mn(R) if R is commutative.

But the transpose of an invertible matrix over a noncommutative ring may

not be invertible. In 1970 R. N. Gupta [9] gave an example of a nilpotent

matrix with invertible transpose. It is classically known that for a division

ring D if transpose of every invertible matrix in Mn(D), n ≥ 2, is invertible,

then D is commutative. This makes one ask the following question.

Question 5.1. What are rings over which transpose of every invertible

matrix is invertible?

This question was answered in 2009 by Gupta et al. [10, Theorem 2.3].

For a, x, b ∈ R, [a, b] = ab− ba and [a, x, b] = axb− bxa.

Theorem 5.2. For a ring R the following are equivalent:

1. Transpose of every invertible matrix is invertible.

2. R/J(R) is commutative.

3. If

(

1 a

b c

)

∈ M2(R) is invertible, then so is

(

1 b

a c

)

.

4. a+ bc ∈ U(R) implies a+ cb ∈ U(R) for every a, b, c ∈ R.

5. u+ [a, b] ∈ U(R) for every u ∈ U(R) and a, b ∈ R.

6. 1 + [a, x, b] ∈ U(R) for every a, x, b ∈ R.

7. x+ abc ∈ U(R) implies x+ cba ∈ U(R) for every a, b, c, x ∈ R.

This leads to some commutativity results for semiprimitive rings (i.e.,

rings with zero Jacobson radical).



SOME GLIMPSES INTO NONCOMMUTATIVE RING THEORY 43

Corollary 5.3. For a semiprimitive ring R the following are equivalent:

1. R is commutative.

2. a+ bc ∈ U(R) implies a+ cb ∈ U(R) for every a, b, c ∈ R.

3. u+ [a, b] ∈ U(R) for every u ∈ U(R) and a, b ∈ R.

4. 1 + [a, x, b] ∈ U(R) for every a, x, b ∈ R.

5. x+ abc ∈ U(R) implies x+ cba ∈ U(R) for every a, b, c, x ∈ R.
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LARGE FOURIER COEFFICIENTS OF MODULAR FORMS*

SANOLI GUN

Abstract. This expository article is an extended version of an invited

talk (V Ramaswami Aiyer Memorial Award Lecture) delivered at the

86th Annual conference of the Indian Mathematical Society (IMS) in

December 2020. In this note, we give a brief overview of the theme

of size of Fourier coefficients of integral as well as half-integral weight

cusp forms. We also give an outline of a recent work with W. Kohnen

and K. Soundararajan.

1. Introduction

Perhaps it is apt to start with the following quote attributed to Eichler.

"There are five elementary arithmetical operations: addition, subtrac-

tion, multiplication, division, and modular forms."

Modular forms are ubiquitous in Mathematics. These are interwoven

with myriad themes in Mathematics: Complex Analysis, Algebraic Geome-

try, Representation theory, Combinatorics, Number Theory and so on and

so forth. We shall however not be able to cover the basics of modular forms

for the uninitiated, but there are plethora of sources, depending on one’s

interest as well as perspective, to study these wondrous objects.

In this note, we give an overview of the theme of size of Fourier coef-

ficients of integral as well as half-integral weight cusp forms. We hasten

to add that our exploration is by no means exhaustive, but rather a geo-

desic tour through some of the tracks that are linked to our interest and

taste. Finally, we give an outline of a recent work with W. Kohnen and K.

Soundararajan.

* The article is based on the text of the 31st V. Ramaswamy Aiyer Memorial Award
Lecture given at the 86th Annual Conference of the IMS - An International meet held at
Vellore Inst. of Tech., Vellore (T. N.) using online mode during December 17-20, 2020.
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Let us begin by setting up the notations relevant for us. Let H denote

the Ponicareé upper half plane defined as

H = {z ∈ C : ℑ(z) > 0}

and for any z ∈ H, we set q = e2πiz. Let Γ denote the full modular group

given by

Γ = SL2(Z) =

{[

a b

c d

]

∈ M2(Z) : ad− bc = 1

}

.

This is a group under multiplication and is generated by

T =

[

1 1

0 1

]

and S =

[

0 −1

1 0

]

.

This group acts on the upper half plane H where the action is given by

γ.z :=
az + b

cz + d

for γ =

[

a b

c d

]

∈ Γ and z ∈ H.

The quotient space H/Γ is the set of isomorphism classes of elliptic

curves over C and is one of the many reasons that modular forms have such

rich arithmetic content.

Let k ∈ Z be a positive integer and f : H → C be a holomorphic

function. Suppose that for any γ =

[

a b

c d

]

∈ Γ, the function f satisfies the

following transformation property:

f(γ.z) = (cz + d)k f(z).

Now for any function f as above,

f(T.z) = f(z + 1) = f(z).

Thus f is a periodic holomorphic function with period 1 which ensues that

f has a Fourier expansion

f(z) =
∑

n∈Z
af (n)q

n, z ∈ H.

Definition. Such an f is called a modular form of weight k for Γ if f is

holomorphic at ∞ which is the only cusp up to SL2(Z) equivalence. Equiv-

alently, af (n) = 0 for all n < 0.
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Definition. A modular form f for Γ is called a cusp form of weight k if

in addition to above, it vanishes at infinity. Equivalently, af (n) = 0 for all

n ≤ 0.

The set of modular forms of weight k forms a finite dimensional complex

vector space denoted by Mk. The set of cusp forms, denoted by Sk, forms

a codimension one subspace of Mk.

Throughout, let k > 1 (unless otherwise stated) be an integer and f be

a cusp form of weight k for Γ. For such an f to be non-zero, k must be even

and at least 12. It turns out S12 is one dimensional and is generated by

∆(z) = q
∞
∏

n=1

(1− qn)24 =
∑

n≥1

τ(n)qn.

In 1916, Ramanujan made three conjectures (see [22]) about τ(n), n ≥ 1

which helped shape the theory of modular forms. The first two of these

conjectures are

τ(mn) = τ(m)τ(n) for (m,n) = 1

and τ(pr+1) = τ(pr)τ(p)− p11τ(pr−1), (1.1)

for any prime number p and integer r ≥ 1. We will discuss about the third

conjecture in a short while.

One can define an inner product, the Petersson inner product, on the

space of cusp forms Sk. This is given by

< f, g >=

∫

H/SL2(Z)
f(z)g(z)yk

dxdy

y2
.

In fact, existence of the integral is ensured if at least one of f and g, say f

is a cusp form as f(z) = O(e−2πy) as y → ∞. Further, since the integrand

is SL2(Z) invariant, choice of H/SL2(Z) does not matter.

For integers n ≥ 1, the n-th Hecke operator Tn on the space of cusp

forms (one can define it for all modular forms, but it preserves the subspace

of cusp forms and we will restrict our attention to cusp forms) is defined as

follows: For f ∈ Sk, Tn(f) ∈ Sk is given by

Tn(f)(z) = nk−1
∑

a≥1,ad=n
0≤b<d

d−kf

(

az + b

d

)

.

The family of Hecke operators Tn, n ≥ 1 are Hermitian with respect to

the Petersson inner product. This implies that each Tn is diagonalisable
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and their eigenvalues are real. Further these Hecke operators Tn, n ≥ 1 are

commuting and hence the space Sk has a basis consisting of cusp forms

which are simultaneous eigen vectors for all these Hecke operators.

For each such cusp form

f =
∞
∑

n=1

af (n)q
n,

the first Fourier coefficient af (1) is necessarily non-zero. We say that f is

normalised if af (1) = 1. For such a normalised eigen form, the n-th Fourier

coefficient af (n) is an eigen value of Tn. This along with the functional

identities

Tmn = TmTn for (m,n) = 1

and Tpn+1 = TpTpn − pk−1Tpn−1 for primes p and integer n > 1

allowed Mordell to prove the first two conjectures (1.1) of Ramanujan for the

Fourier coefficients of such normalised Hecke eigen cusp forms (see [17, 9, 10]

for further details).

2. Growth of Fourier-coefficients of integer weight cusp

forms

Let f be a normalised Hecke eigen cusp form of weight k for Γ with

Fourier expansion at infinity given by

f(z) =
∞
∑

n=1

af (n)q
n.

We now ask the following question:

Question. What can we say about the growth as well as bounds for the

sequence {af (n)}n≥1 ?

Here we have the celebrated third conjecture of Ramanujan [22] which

was proved by Deligne [4, 5] by appealing to deep tools in algebraic geome-

try. For a positive integer n, let d(n) denote the number of positive divisors

of n. Here is the theorem of Deligne.

Theorem 2.1. (Deligne) The sequence {af (n)}n≥1 satisfies

|af (n)| ≤ d(n)n
k−1
2

for all n ≥ 1.
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Thus in particular for a prime number p, one has

|af (p)| ≤ 2p
k−1
2 .

On the other hand, the divisor function d(n) is rather enigmatic. While

lim inf
n→∞

d(n) = 2, one also knows that there exists a constant c > 0 such

that the following inequality

d(n) > exp

(

c
log n

log log n

)

holds for infinitely many n. Here exp(α) = eα. These observations naturally

beg the following questions :

Questions: Can the quantity
|af (n)|
n

k−1
2

be bounded by an absolute constant as

opposed to d(n)? Can the quantity
|af (n)|
n

k−1
2

be bounded by a function with

much slower order of growth than d(n)?

Of course, an affirmative answer to the first question decidedly re-

solves the second one. The first question was answered in the negative

by Rankin [23] in 1973 who proved the following;

Theorem 2.2. (Rankin) The sequence {af (n)}n≥1 satisfies

lim sup
n→∞

|af (n)|
n

k−1
2

= ∞.

With respect to the second question, Ram Murty [18] in 1983 proved

the following result:

Theorem 2.3. (Ram Murty) There exists an absolute constant c > 0 such

that the inequality
|af (n)|
n

k−1
2

> exp

(

c
log n

log log n

)

holds for infinitely many n.

The above result is rather satisfactory as it evinced that the bound

conjectured by Ramanujan and proved by Deligne is optimal expect for

the constant c appearing above. Furthermore it was shown by Ram Murty,

using an elegant idea of Rankin, that a similar result holds for any arbitrary

non-zero cusp form.
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3. Growth of Fourier-coefficients of half-integer weight

cusp forms

With this brief preamble about integral weight cusp forms, let us now

study analogous questions for half integral weight cusp forms. Inevitably,

we shall need to introduce some more notions and notations.

To start with, we have to abandon the comforting full modular group

SL2(Z) and introduce congruence subgroups. But we shall refrain from

generalities and introduce objects on a need-to-know basis to keep the pre-

sentation as less technical as possible.

With this, let us define the congruence subgroup Γ0(N) for a positive

integer N given by

Γ0(N) =

{[

a b

c d

]

∈ SL2(Z) : N |c
}

.

Let γ =

[

a b

c d

]

∈ Γ0(4). Then if c 6= 0, let χc be the primitive real

character associated to the algebraic number field Q(
√
c). Let ǫd be equal

to 1 or i according as d is congruent to 1 mod 4 or 3 mod 4. For z ∈ H, let

j(γ, z) = ǫ−1
d χc(d)(cz + d)1/2

where the square root is chosen such that the real part is positive. If c = 0,

then j(γ, z) = 1.

Let 4|N and χ be a Dirichlet character mod N . A holomorphic function

g on H is called a modular form of weight k+ 1
2 for Γ0(N) with character χ

if

• for any γ =

[

a b

c d

]

∈ Γ0(N), we have

g(γ.z) = χ(d)j(γ, z)2k+1g(z).

This is unambiguous since 4|N .

• the function g is holomorphic at cusps.

As before, it is a cusp form if it vanishes at all the cusps. One has a

theory of Hecke operators and Hecke eigen forms in this set up also. But

the matter is more delicate and involved than the integral weight case. We

refer the interested reader to the foundational paper of Shimura [26] for

more details and clarifications.
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Let g be non-zero half integral weight cusp form of weight k + 1
2 , k > 1

for Γ0(4) and let

g(z) =
∞
∑

n=1

cg(n)q
n

be its Fourier expansion at ∞. The growth of the sequence of Fourier coef-

ficients {cg(n)}n≥1 is hardly an open book. One has the following folklore

conjecture/expectation.

Conjecture. Let g be a non-zero half integral weight cusp form of weight

k + 1
2 , k > 1 for Γ0(4) and ǫ > 0. Then there exists a positive real number

A = A(g, ǫ) such that for any n ≥ 1,

|cg(n)| ≤ Ank/2−1/4+ǫ.

In semblance with the integral weight case, this conjecture is often re-

ferred to as the Ramanujan-Petersson Conjecture for half-integral weight

cusp forms. Historically, the generalisation of the conjecture of Ramanujan

on Delta function to arbitrary Hecke eigenforms was proposed by Petersson.

In contrast to the world of integral weight cusp forms, the above con-

jecture is widely open. One does not know a single example for which this

conjecture is true. However the remarkable works of Shimura [26], Wald-

spurger [29] and Kohnen-Zagier [15] suggest evidence towards the validity

of the above conjecture (and not just some wishful thinking on our part).

Till the late 20th century, it was not quite clear how to study the Fourier

coefficients of half integral weight modular forms and hence how to make

reasonable models. The path breaking work of Shimura in 1973 [26] pro-

vided a tremendous impetus to this theme by giving an explicit dictionary

between spaces of half integral and integral weight modular forms. The

following is a consequence of Shimura’s seminal work.

Theorem 3.1. Let g be a Hecke eigen cusp form of weight k+ 1
2 for Γ0(4)

and t be a positive square free integer. Then there exists a Hecke eigen cusp

form f of weight 2k for Γ such that their Fourier coefficients are related by

cg(tn
2) = cg(t)

∑

d|n
µ(d)

(

t

d

)

dk−1af (n/d).

Regrettably, Shimura passed away in 2019.
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We note that the right hand side of the above, other than cg(t) involves

objects whose growth is well understood. So the Ramanujan-Petersson

conjecture can be relegated to the growth of terms of the type cg(t).

The sequence of such Fourier coefficients naturally lead to L-functions.

For instance, for a cusp form of weight k for Γ with Fourier coefficients

{af (n)}n≥1, one associates an L-function given by

L(f, s) =

∞
∑

n=1

af (n)

ns

which is absolutely convergent for all complex numbers s with ℜ(s) > k+1
2 .

Another very important result in this theme is due to Waldspurger [29]

whose remarkable work relates Fourier coefficients of half integral weight

Hecke eigen cusp forms with certain special values of L-functions associated

to "twists" of integral weight modular forms. This result of Waldspurger

along with convexity bounds from analytic number theory shows that

|cg(n)| ≤ A(g)n
k
2 d(n)

where as before the quantity A(g) depends only on g. The above bound

can be proved without using convexity bound (see Iwaniec [12] for details).

Remark. In general, the above upper bound cannot be improved for forms

belonging to the subspace of theta functions. An interesting result of Serre

and Stark [25] states that all cusp forms of weight 1
2 are spanned by theta

functions.

Coming back to our set up, one of the first non-trivial results in this

direction is due to Iwaniec [12] who in 1987 proved the following.

Theorem 3.2. (Iwaniec) For any cusp form g of weight k + 1
2 , k > 1 with

Petersson norm one, one has

|cg(t)| ≤ A(k)tk/2−1/28d(t)(log 2t)2

for all square free integer t > 0. Here A(k) depends only on k.

This result was improved by Petrow and Young [20] in 2019.

Theorem 3.3. (Petrow-Young) Let g be Hecke eigen cusp form of weight

k+ 1
2 , k > 1 for Γ0(4). Then for any square free positive integer t and ǫ > 0,

one has

|cg(t)| ≤ A(g, ǫ)t
k
2
− 1

12
+ǫ.
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Here A(g, ǫ) depends only on g and ǫ.

Let Sk+ 1
2

be the complex vector space of cusp forms of weight k + 1
2

for Γ0(4) while as before S2k be the complex vector space of cusp forms

of weight 2k for Γ. Consider the following distinguished subspace of Sk+ 1
2

defined as

S+
k+ 1

2

=
{

g ∈ Sk+ 1
2
: cg(n) = 0 if (−1)kn 6≡ 0, 1 mod (4)

}

.

This is called the Kohnen’s plus space. One knows, courtesy the work of

Kohnen [14] (see also Shimura [26]), that

S+
k+ 1

2

∼= S2k.

In a joint work with Kohnen [7], we prove the following theorem which

can be regarded as the half-integral weight analogue of Rankin’s Theorem

alluded to earlier.

Theorem 3.4. (Gun-Kohnen) Let g ∈ S+
k+ 1

2

, k ≥ 1 be arbitrary non-zero

cusp form. Then the sequence {cg(n)}n≥1 satisfies

lim sup
n→∞

|cg(n)|
n

k
2
− 1

4

= ∞.

Furthermore, appealing to Sato-Tate conjecture [1] about equidistribu-

tion of normalised Hecke eigen values of Tp (p prime) in [−2, 2], we could

show the following.

Theorem 3.5. (Gun-Kohnen) Let g ∈ S+
k+ 1

2

, k ≥ 1 be arbitrary non-zero

cusp form. Then the sequence {cg(n)}n≥1 satisfies

|cg(n)| > n
k
2
− 1

4 exp(c(log n)δ)

for infinitely many n. Here c > 0 and 0 < δ < 1
2 are absolute constants.

We note that if g ∈ S+
k+ 1

2

is a Hecke eigen form, then the above theorems

would follow from the works of Hoffstein and Lockhart [11]. On the other

hand, if g ∈ S+
k+ 1

2

is a Hecke eigenform where 4|k and n is square free, then

the lower bound in Theorem 3.5 follows from a work of Soundararajan and

Young [28].

4. Brief description of some recent work

We now briefly describe some recent joint work with Kohnen and

Soundararajan. We shall need some more notations!
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For any g ∈ S+
k+ 1

2

which is a Hecke eigen form, there is a Hecke eigen-

form in S2k under the Shimura-Kohnen dictionary. We shall denote this

by f . Our purpose is to study the growth of cg(|D|), where D is a funda-

mental discriminant with |D| = (−1)kD > 0. For such a D, let χD =
(

D
·
)

denote the primitive quadratic character modulo |D| corresponding to the

fundamental discriminant D.

The L-series attached to the D-th quadratic twist of f is defined as

L(f, χD, s) =

∞
∑

n=1

af (n)χD(n)

ns
.

This Dirichlet series converges absolutely for ℜ(s) > k+ 1
2 and extends ana-

lytically to the whole complex plane. Furthermore, it satisfies the following

functional equation

Λ(f, χD, s) =

( |D|
2π

)s

Γ(s)L(f, χD, s) = (−1)k χD(−1)Λ(f, χD, 2k − s).

Consequently when (−1)kD < 0, L(f, χD, k) = 0. However, when

(−1)kD > 0, a remarkable link was discovered by Waldspurger [29] between

cg(|D|) and L(f, χD, k). An explicit version of such a link was deduced by

Kohnen and Zagier [15] which is given by

|cg(|D|)|2 = (k − 1)!

πk

||g||2
||f ||2 |D|k− 1

2L(f, χD, k)

where ||g|| and ||f || are the Petersson norms of g and f respectively. Recall

these Petersson norms are defined as

||g||2 =
1

6

∫

H/Γ0(4)
|g(z)|2yk− 1

2dxdy,

and ||f ||2 =

∫

H/SL2(Z)
|f(z)|2y2k−2dxdy

This remarkable formula links the growth of cg(|D|) to that of L(f, χD, k),

albeit when g is a Hecke eigen form. Note that this in particular shows that

L(f, χD, k) ≥ 0 for all D with (−1)kD > 0 as |cg(|D|)| ∈ R.

However, when g ∈ S+
k+ 1

2

is an arbitrary non-zero cusp form, then it is

not clear that cg(|D|) 6= 0 for infinitely many D with (−1)kD > 0. Here

one has the following 1997 result of Luo and Ramakrishnan [16].
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Theorem 4.1. (Luo-Ramakrishnan) When g ∈ S+
k+ 1

2

is a non-zero linear

combination of two Hecke eigenforms, then

cg(|D|) 6= 0

for infinitely many D with (−1)kD > 0.

For an arbitrary g, this was deduced by Saha [24].

Theorem 4.2. (Saha) When g ∈ S+
k+ 1

2

is non-zero, then

cg(|D|) 6= 0

for infinitely many D with (−1)kD > 0.

In our recent work with Kohnen and Soundararajan [8], we give a soft

proof of the above result without appealing to Waldspurger’s theorem.

Here is a brief summary of our proof. Let f1, . . ., fr be a basis of nor-

malized Hecke eigenforms in S2k and gν for 1 ≤ ν ≤ r be Hecke eigenforms

in S+
k+ 1

2

corresponding to fν under the Kohnen-Shimura map. Denote the

Fourier expansions of gν for 1 ≤ ν ≤ r by

gν(z) =
∞
∑

n=1

cν(n)q
n.

For a non-zero cusp form g ∈ S+
k+ 1

2

, let us write

g =

r
∑

ν=1

λνgν

for some constants λν ∈ C, not all zero. For for s ∈ C with ℜ(s) = σ > k
2+

5
4 ,

we consider the absolutely convergent series

Dg(s) =
∑

n≥1

α(n)

ns

where α(n) = cg(|D|)µ(m)χd(m)mk−1 and n is written uniquely as

n = |D|m2 with D a fundamental discriminant as above. We show that

in the region σ > k
2 + 5

4 , the L-function Dg can be written as

Dg(s) =
∑

D

(−1)kD>0

cg(|D|)
|D|sL(2s− k + 1, χD)

=
r
∑

ν=1

λν
L(gν , s)

L(fν , s)
.
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Here L(s, χ) =
∑

n≥1
χ(n)
ns ,ℜ(s) > 1 is the Dirichlet L-function. The above

relations show that Dg(s) has meromorphic continuation to C and is holo-

morphic for ℜ(s) = σ > k
2 + 1

4 .

We then show that Dg is identically zero (i.e. c(|D|) = 0 for all fun-

damental discriminants D) if there are only finitely many fundamental dis-

criminant D with c(|D|) 6= 0. This is deduced by using the fact that Dg(s)

inherits a functional equation from Dirichlet L-function which is inconsis-

tent with the functional equation arising from the modular L-functions.

Using functional equation again, we show that

r
∑

ν=1

λνcν(|D|)aν(p) = 0

for all odd primes p and for all fundamental discriminants D with 4|D and

(−1)kD > 0. Here aν(p) denotes the p-th Fourier-coefficient of fν .

Finally using Rankin-Selberg theory together with the fact that for each

gν , there exists a fundamental discriminant D with 4|D such that cν(|D|) 6=
0 (see [14]), we conclude that g = 0, a contradiction. This completes the

proof of the theorem.

Furthermore, we show in [8] that many of these cg(|D|) take large values.

More precisely, we prove:

Theorem 4.3. (Gun - Kohnen - Soundararajan) Let g ∈ S+
k+ 1

2

be non-

zero and ǫ > 0. Then for sufficiently large X, there are at least X1−ǫ

fundamental discriminants D with X < (−1)kD < 2X such that

|cg(|D|)| ≥ |D| k2− 1
4 exp

(

1

82

√

log |D|
√

log log |D|

)

.

Remarks.

• Apart from the constant 1
82 , the lower bounds furnished in

Theorem 4.3 are the best known, even when g is a Hecke eigen-

form.

• Recently Theorem 4.3 has been extended to arbitrary level by Jääsaari,

Lester and Saha [13].

In another direction, it follows from the conjecture of Farmer, Gonek and

Hughes [6] that
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Conjecture. For all fundamental discriminants D with (−1)kD > 0

|cg(|D|)| ≪g |D| k2− 1
4 exp(c

√

log |D| log log |D|)

for some absolute constant c > 0.

Best known result in this direction is by Radziwiłł and Soundararajan [21].

Theorem 4.4. (Radziwiłł - Soundararajan) Let g ∈ S+
k+ 1

2

be non-zero cusp

form and ǫ > 0 be a real number. Then for all but o(X) fundamental

discriminants D with X ≤ (−1)kD ≤ 2X, one has

|cg(|D|)| ≪g,ǫ |D| k2− 1
4 (logD)−

1
4
+ǫ,

We deduce Theorem 4.3 as a consequence of the following theorem.

Theorem 4.5. (Gun - Kohnen - Soundararajan) Let A > 0 be a constant,

and let X be large. For any ǫ > 0, there are ≫ X1−ǫ fundamental discrim-

inants D with X < (−1)kD ≤ 2X such that

L(f1, χD, k) > A

r
∑

ν=2

L(fν , χD, k) + exp
( 1

40

√
logX√

log logX

)

.

Remarks:

• We use resonance method [27] developed by Soundararajan to prove

Theorem 4.5. For Hecke eigenforms f of integer weight 2k for Γ, it

follows from the method developed in [27] that there are infinitely

many fundamental discriminants D such that

L(f, χD, k) ≫ exp(c
√

log |D|/ log log |D|)

for a positive constant c. A weaker result can be found in [11].

• Work of Bondarenko and Seip [2] gives an improvement of the res-

onance method [27] while producing larger values of Riemann zeta

function on the line 1
2 and a similar improvement for Dirichlet L-

function has been obtained in [3]. However, this method exploits

positivity of coefficients, and of orthogonality relations in crucial

ways, and does not seem to extend to quadratic twists of modular

L-functions attached to Hecke eigenforms.

We end with a sketch of the proof of Theorem 4.5. For this, let us

introduce a "resonator" relevant for us. Let D be fundamental discriminant
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with X < (−1)kD ≤ 2X. We consider the following special value of a

Dirichlet polynomial at k − 1
2 :

R(D) =
∑

n≤N

r(n)
a1(n)

nk− 1
2

χD(n),

where N = X
1
24 and r(n) is a multiplicative function defined as follows.

Set r(n) = 0 unless n is square-free, and for primes p define, with L =
1
8

√
logN log logN

r(p) =







L√
p log p if L2 ≤ p ≤ L4

0 otherwise.

The proof of Theorem 4.5 rests on the following intermediate results.

Proposition 4.6. With notations as above, we have

∑

X<(−1)kD≤2X
D≡1 mod 4

|R(D)|2 ≤ 2X

π2
R+O(X), (4.1)

where

R =
∏

L2≤p≤L4

(

1 + r(p)2
a1(p)

2

p2k−1

)

.

Further
∑

X<(−1)kD≤2X
D≡1 mod 4

|R(D)|6 ≪ X exp
(

O
( logX

log logX

))

. (4.2)

Proposition 4.7. With notations as above, we have

∑

X<(−1)kD≤2X
D≡1 mod 4

L(f1, χD, k)|R(D)|2 ≫ XR exp
(

(
1

2
+ o(1))

L

logL

)

,

while for all 2 ≤ ν ≤ r

∑

X<(−1)kD≤2X
D≡1 mod 4

L(fν , χD, k)|R(D)|2 ≪ XR exp
(

o
( L

logL

))

. (4.3)

We now complete the proof of Theorem 4.5. Let S be the set of fun-

damental discriminants D with X < (−1)kD ≤ 2X and D ≡ 1 mod 4 for

which

L(f1, χD, k) > A
r
∑

ν=2

L(fν , χD, k) + exp
( 1

40

√
logX√

log logX

)

.
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Note that
∑

X<(−1)kD≤2X
D≡1 mod 4

L(f1, χD, k)|R(D)|2

≤
∑

X<(−1)kD≤2X
D≡1 mod 4

(

A
r
∑

ν=2

L(fν , χD, k) + exp
( 1

40

√
logX√

log logX

))

|R(D)|2

+
∑

D∈S
L(f1, χD, k)|R(D)|2. (4.4)

Using (4.1), (4.3) and (4.4), we conclude that

∑

D∈S
L(f1, χD, k)|R(D)|2 ≫ XR exp

( 1

40

√
logX√

log logX

)

.

Using the Perelli-Pomykała bound [19]

L(f1, χD, k)
2 ≪ X1+ǫ for any ǫ > 0

Cauchy-Schwarz inequality, Hölder inequality and inequality (4.2), we get
∑

D∈S
L(f1, χD, k)|R(D)|2

≤
(

∑

X<(−1)kD≤2X
D≡1 mod 4

L(f1, χD, k)
2
)

1
2
(

∑

D∈S
|R(D)|4

)
1
2

≪ (X1+ǫ)
1
2

(

|S|
)

1
6
(

∑

X<(−1)kD≤2X
D≡1 mod 4

|R(D)|6
)

1
3 ≪ X

5
6
+ǫ|S| 16 .

This completes the proof of Theorem 4.5.
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AN INVITATION TO DIFFERENTIAL EQUATIONS*

MYTHILY RAMASWAMY

1. Introduction

Many physical phenomena like the melting of ice, radioactive decay,

spring motion, heat conduction and many others have been modeled using

differential equations to describe the process. Main motivations for such

modeling are to understand the phenomenon, to make predictions and also

to regulate the process by using suitable controls.

The use of some basic principles to relate the rate of change of the ob-

ject of study with various other quantities involved in the process, leads to

a mathematical model involving differential equations. Prime example is

Newton’s equations of motion from 17th century. These are ordinary differ-

ential equations (ODE). Then followed partial differential equations(PDE)

models. Hamilton’s system from Mechanics, vibrating string model and its

solution by D’Alembert around 1752, gravitational potential field model by

Laplace around 1780, analytic theory of heat conduction by Fourier in 1815,

fluid flow models including Navier - Stokes System are some of the notable

ones, while modern applications involve biological and financial models.

Once the model is formulated, it can be studied thoroughly using various

mathematical tools to analyze the equation theoretically and to solve it

numerically if possible. We recall here that Newton introduced derivatives

and integrals, to formulate and solve his differential equations to understand

the motion of bodies and many other physical phenomena.

1.1. Main Directions of research. The early research in differential equa-

tions was focussed on finding the model and then solving it explicitly. The

initial models were linear and most of them were amenable to various so-

lution techniques. This is what we study in a first course in differential

* This article is based on the text of the 33rd P. L. Bhatnagar Memorial Award Lecture
delivered at the 85th Annual Conference of the IMS - An International meet held at
IIT, Kharagpur (W. B.) during November 22-25, 2019.

© Indian Mathematical Society, 2021 .
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equations. Later on, the theory of general partial differential equations

started shaping up - classification of the types of PDE and existence and

uniqueness of solutions for linear PDE. Hadamard in 1920, proposed that a

PDE is well posed if it admits a unique solution and the solution is "con-

tinuous" with respect to the data, in the sense that small changes in the

data result in correspondingly small changes in the solution. This defini-

tion is the one followed even now. One has to set up a suitable functional

framework for existence and uniqueness theory and continuous dependence

of the solution on the data. This is a major area of research.

Another direction of research is the search for qualitative properties of

the solution : Apriori estimates, regularity, boundedness, decay to zero,

stability, to name a few. These are studied using the PDE, without even

solving them explicitly.

Motivated by practical applications in the 1950s, control theory of differ-

ential equations started in the Soviet Union and in the United States. It is

currently an active field of research for both ordinary and partial differential

equations. A few of the questions studied are:

(i) Can the solution trajectory be controlled optimally to optimize cer-

tain costs (optimal control) ?

(ii) Can the system be controlled to reach a target (Controllability)?

(iii) Is the solution stable or not and if not, how to add a control to

stabilize it (stabilization) ?

A brief introduction to these topics is given here, starting from finite

dimensional optimization, followed by optimal control of ODE and then for

PDE, with some simple examples. The reader is invited to browse through

the introductory texts like [2], [5], [4], [6], [7].

2. Optimal Control

2.1. Optimization. Let us start from one variable calculus : For a function

f from R
N to R, is there a maximum or minimum ? How to find the maxima,

minima ?

A theorem of Weirstrass says that if x0 is a local extremum of a function

f which is differentiable at that point, then its total derivative vanishes,

∇f(x0) = (
∂f

∂x1
, · · · ,

∂f

∂xN
) = 0.
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Let us now move to optimization with constraints. Suppose that f and

g are real valued functions of N variables, and consider a typical problem

of minimizing f under the constraint g(x) = 0. We recall that if all the

functions are continuous and the set of admissible points is bounded then

the minimization problem is solvable. How do we find the minimum ? For

that, one useful tool is Lagrange’s rule. Form the Lagrange augmented

function, for λ in R:

L(x, λ) = f(x) + λg(x)

Now minimize in all the variables (x, λ) without any constraints! If the

admissible point (x̂, λ̂) is a local extremum, then

∂L(x̂, λ̂)

∂xj
= 0, j = 1, · · · , N ;

∂L(x̂, λ̂)

∂λ
= 0.

Then it follows that at the point (x̂, λ̂), we have ∇f(x̂) + λ̂∇g(x̂) = 0.

In fact, the solution set of the constraint equation g(x) = 0 near the

minimum point x̂, forms a curved surface with the normal direction along

∇g(x̂). Minimizing f along this surface will only force the tangential com-

ponent of the derivative of f to vanish. Thus ∇f(x) is in the direction of

the normal ∇g(x) at x = x̂. That is to say :

∇f(x̂) = λ∇g(x̂).

The number λ is known as the Lagrange multiplier. This idea of pass-

ing from constrained minimization to unconstrained minimization via the

augmented function, is due to Lagrange. However, a rigorous proof came

much later. Although the number of unknown variables have increased, the

number of equations also have increased equally.

This is only a necessary condition. However, it helps considerably in

reducing our search for minima. See [2] for a neat introduction and a lot of

real life examples as applications. See also [6], chapter 1.

2.2. Optimal Control for ODE. In many situations, one is confronted

with the minimization of a real valued function J from an infinite dimen-

sional function space X. Some famous examples are Dido’s isoperimetric

problem and Brachistochrone problem, one learns in Calculus of variations.

This J is called a functional on X, a linear vector space. J takes a real

value for each x(t), an element in the function space X. This x(t) is itself

now a function of a real variable t.
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We now need new tools to handle the infinite dimensional situation.

These function spaces have a linear vector space structure and a notion of

distance, "norm" and hence a notion of "derivative" for the functional J ,

can be defined. Then the necessary optimality conditions can be written

down. Refer [6], section 1.3, for more information.

Historically, Euler solved such a problem, using a method of approxima-

tion for the curve x(t) in 1740. Lagrange came up with an analytic method

in 1755. Euler was impressed with Lagrange’s method and coined the term

"Calculus of Variations" for that method. In these initial examples, the end

points of the curves were fixed. The first order optimality conditions are

now known as Euler-Lagrange equations.

In some situations, there may be additional constraints and the con-

straint may also involve the derivative ẋ(t) of the function, x(t). Then we

may have a differential equation as a constraint evolving in time. In general,

there may be less number of constraints than the dimension of ẋ(t). Adding

more free variables, if needed, we may end up with ẋ(t) = f(t, x(t), u), with

u denoting control variables. Can we extend the idea of Lagrange multi-

plier rule to work in this dynamic optimization problems also? These are

the optimal control problems, we will see next.

Let us start with a simple example. A gardener wishes to grow a number

of plants to a height 2, by the time t = 1. The natural rate of growth is

accelerated by artificial lighting u(t), which is now the control variable.

To write down the mathematical model, assume that x(t) is the height

of the plant at time t. Then

dx

dt
= 1 + u,

x(0) = 0 and x(1) = 2. The control u is due to artificial lighting. The

gardener has to optimize his cost while achieving the target growth for his

plant. Let us form the cost functional :

J(u) =

∫ 1

0

1

2
u2dt.

How to find a control variable u that produces a solution x(t), subject to the

constraints and the boundary conditions, while at the same time allowing

for a minimum cost?
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We can solve the linear differential equation explicitly :

x(t) =

∫ t

0
(1 + u(τ)) dτ

From the boundary condition at t = 1 :
∫ 1

0
u(τ) dτ = 1.

To find the optimal cost, rewrite J suitably :

J(u) =

∫ 1

0

1

2
u2dt =

∫ 1

0

(

1

2
(u− 1)2 + u−

1

2

)

dt

=

∫ 1

0

1

2
(u− 1)2 +

∫ 1

0
u−

1

2
=

∫ 1

0

1

2
(u− 1)2 + 1−

1

2

=

∫ 1

0

1

2
(u− 1)2 +

1

2
,

using the boundary condition at 1. Thus the minimum value is J(u) = 1
2

and is attained when u = 1. This indeed is the optimal control. The optimal

trajectory x is then given by the solution of the linear ODE

dx

dt
= 2, x(0) = 0, x(1) = 2.

This is the so-called "Fixed final time-Fixed final point " type Optimal

Control problem.

In practical applications, most equations are nonlinear and cannot be

solved explicitly! Let us see one such example, the so-called moon landing

problem. How to bring the spacecraft to land softly on the lunar surface

using minimum amount of fuel?

Let h(t) be the height of the spacecraft from the surface, v(t) be the

velocity of the spacecraft and m(t) be its mass including the fuel. Suppose

that g is the acceleration due to gravity and α(t) is the thrust to be applied.

From Newton’s second law,

m(t)
d2

dt2
(h(t)) = −gm(t) + α(t).
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This can be modeled by an ODE system for (v, h,m),

v̇(t) = −g +
α(t)

m(t)

ḣ(t) = v(t)

ṁ(t) = −kα(t),

for some constant k. Here the problem is to minimize the fuel or to maximize

the remaining amount when the spacecraft lands. From our equations,

m0 −m(τ) =

∫ τ

0
kα(t) dt

Form the cost functional

J(α(.)) = m(T ),

where T is the first time when v(T ) = 0, or when it lands on the surface

softly. Then the problem is to maximize J(α(.)) . Other constraints are

h(t) ≥ 0, m(t) ≥ 0, 0 ≤ α(t) ≤ 1

This is an example of "Free final time - Fixed final point" type Optimal

Control problem. See [5] for more such examples.

Let us consider a model problem in an abstract set up. We define the

cost function

J (x(·), u(·)) = g(x(T )) +

∫ T

0
ℓ (x(t), u(t)) dt,

with g as the terminal cost and ℓ as the running cost. Here the function

x(t) evolves in time, according to the differential equation in R
N ,

ẋ(t) = f(x(t), u(t))

for t ∈ [0, T ] with initial condition x(0) = x0. Here T is the time when

x(T ) = x1, for a given target x1. We have to minimize the cost functional

under the constraint of the ODE, using the control function u(t), possi-

bly satisfying some additional constraint u(t) ∈ U in [0, T ]. In most cases,

explicit solutions may not be available. But an extension of the idea of La-

grange multiplier rule to this situation, can give us optimality conditions.

It may then be possible to solve numerically the ODE and these optimality

conditions together to arrive at the optimal trajectory and an optimal con-

trol. Pontryagin Maximum Principle helps us to write down the optimality
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conditions. The following theorem is "Free final time - Fixed final point"

type Optimal Control problem. See [4], section 4.3.

Theorem 2.1. Let u∗(·) be optimal for the problem and let x∗(·) be the

corresponding trajectory. Then there exists p∗(·) from [0, T ] to R
N such

that with control Hamiltonian H(x, p, u) = 〈f(x, u), p〉+ ℓ(x, u),

ẋ∗(t) = ∇pH(x∗(t), p∗(t), u∗(t))

ṗ∗(t) = −∇xH(x∗(t), p∗(t), u∗(t))

and for t ∈ [0, T ] ,

max
u∈U

H(x∗(t), p∗(t), u) = H(x∗(t), p∗(t), u∗(t))

T being the first time x∗(t) hits the target x1. Further

Ḣ(x∗(t), p∗(t), u∗(t)) = 0, t ∈ [0, T ]; p∗(T ) = ∇g(x∗(T )).

Here x(t) is called the state variable and p(t), the co-state variable,

which in fact is the Lagrange multiplier.

2.3. Optimal Control for PDE. Unlike the earlier situation, suppose

that the function space X consists of functions x, depending on more than

one variable. Then the constraint may involve partial derivatives of x. Thus

in this case, both the constraint and the optimality condition may involve

PDE, stationary or evolutionary. Many physical processes, like heat conduc-

tion, vibration of plates, electro magnetic waves, fluid flows, are described

via PDE. For these processes, optimal control problems are quite relevant.

But for each PDE, the well-posedness theory has to be done according to

the type of the PDE. Only then, the optimal control problem can be tackled.

Let us start with an example of an optimal control problem in stationary

heating. The model is an elliptic equation, posed in a domain Ω in R
3 with

boundary Γ. The temperature y, reaches a steady state and a heating device

is on the boundary of the domain, described by this PDE.

−∆y(x) + y(x) = f(x) for x ∈ Ω,
∂y

∂n
(x) = u(x) for x ∈ Γ.

Our aim is to minimize the distance between the steady state solution y

and the desired distribution yd and the consumed energy:

J(y, u) =
1

2

∫

Ω
|y − yd|

2dx+
β

2

∫

Γ
|u|2ds(x).
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Here β is some parameter chosen suitably.

In this case also, optimality conditions can be deduced. For simplicity,

we avoid mentioning the function spaces and present here a diluted version

of a theorem. Refer [7], Chapter 2 for more details. Here again, the co-state

vector or adjoint vector p can be viewed as the Lagrange variable.

Theorem 2.2. If (y∗, u∗) is the solution to the optimal control problem,

then

u∗ = −
p∗

β

where the adjoint vector p satisfies

−∆p+ p = y − yd in Ω,
∂p

∂n
= 0 on Γ.

Conversely, if a pair (y∗, p∗) obeys the original elliptic equation and the

above adjoint equation, then the pair (y∗, −p∗

β
) is the optimal solution to the

optimal control problem.

Next example is regarding the cooling of molten steel in an industrial

steel casting machine. The cooling is carried out by controlled water sprays

on the boundary. This complicated process can be modeled by a nonlinear

equation

ρ(T ) c(T )
∂T

∂t
(x, t) = div(k(T ) ∇T (x, t)) in Ω× (0, tf ),

k(T )
∂T

∂n
(x, t) = R(T, u(x, t)) on Γ× (0, tf )

T (x, 0) = T0(x) in Ω.

Here T is the temperature of steel in Ω, ρ its density, c is specific heat

capacity, k the conductivity of steel at temperature T and u(x, t) is the

control for water jets. The cost functional is

J(y, u) =
1

2

∫

Ω
|T (x, tf )− Td(x)|

2dx+
β

2

∫ tf

0

∫

Γ
|u(x, t)|2 ds(x) dt,

subject to some control constraints. Here also one can anticipate for a

simplified linear problem, the optimality conditions using adjoint variable.

It is not given here as it is not straightforward to state. The reader can

refer [7], Chapter 3 and 5.
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3. Controllability

Before calculating an optimal control, it is essential that we determine

if the system is controllable or not.

3.1. Controllability of ODE. A system of differential equations in R
N

ẏ(t) = Ay(t) +Bu(t), t > 0, y(0) = y0 ∈ R
N

with A, N ×N matrix and B, N ×m matrix, is controllable in time T > 0

if there exists an admissible control u which steers the system from any y0

to a target y1, that is for any y0, y1, the solution y satisfies y(T ) = y1.

Let us see some examples.

Example 1 : Consider ẏ = Ay + Bu ∈ R
2, y(0) = y0 ∈ R

2. Take the

matrices to be

A =

(

1 0

0 1

)

, B =

(

1

0

)

.

Then the equations are

ẏ1 = y1 + u, ẏ2 = y2.

Here the solution of the second equation y2 = (y0)2 et, is not affected by

the control u. Thus we expect the system not to be controllable.

Example 2 : Let us take the matrices to be

A =

(

0 1

−1 0

)

, B =

(

0

1

)

.

The equations are

ẏ1 = y2, ẏ2 = u− y1,

or equivalently, ÿ1 + y1 = u. Using this, one can check that choosing u

suitably, we can reach any vector in R
2 for any initial condition. Thus we

expect the system to be controllable.

It is interesting to have a test to check when a system is controllable.

There are ways to decide if a given system is controllable or not.

Kalman rank condition characterizes controllable finite dimensional

linear systems. It also shows that if the system is controllable for some T ,

then it is controllable for any time.

Theorem 3.1. The linear system is controllable in time T > 0 if and only

if

rank [B,AB, · · · , AN−1B] = N
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For Example 1, the controllability matrix [B,AB] is
(

1 1

0 0

)

It is clear that rank [B,AB] = 1 and Kalman rank condition does not hold.

For Example 2, the controllability matrix is
(

0 1

1 0

)

We see that Kalman rank condition holds here.

To find other equivalent conditions for controllability, we use the formula

for the solution to the system

z′ = Az +Bu, z(0) = z0,

where A ∈ R
N×N , B ∈ R

N×m :

zz0,u(t) = z(t) = etAz0 +

∫ t

0
e(t−s)ABu(s) ds.

This motivates the study of The operator LT : L2(0, T ;U) 7−→ Z, from

the space of square integrable functions with values in U ( Rm here) into Z

( R
N here),

LTu =

∫ T

0
e(T−s)ABu(s) ds.

Note that the system (A,B) is controllable at time T < ∞ if and only if

Image (LT ) = Z. Further, LT is surjective if and only if the adjoint operator

L∗

T ∈ L(Z,L2(0, T ;U)),

(L∗

Tφ) (·) = B∗e(T−·)A∗

φ,

is injective. This will be true if there is a lower bound for the norm of L∗

Tφ

in terms of the norm of φ.

This leads us to the study of the adjoint system :

−φ′(t) = A∗φ(t), t > 0, φ(T ) = φT

and its observability : There exists c > 0 such that
∫ T

0
|B∗φ|2 ≥ c|φT |

2.

The following theorem gives a few controllability criteria. For more details,

see [8], Theorem 1.6.
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Theorem 3.2. The system is controllable at time T < ∞ if and only if

• the adjoint system is observable in time T > 0.

• the matrix controllability Gramian

LTL
∗

T = W T
A,B =

∫ T

0
etABB∗etA

∗

dt

is invertible.

• Kalman rank condition holds :

rank [B,AB, · · · , AN−1B] = N

Once we know that a system is controllable, it is also important to

compute the control. Using optimal control theory, a control with minimum

norm can be found.

3.2. Controllability of PDE. Viewing a PDE as an ODE evolving in an

infinite dimensional function space Z, a Hilbert space for example, some of

the results of the earlier section can be extended to PDE, with additional

technical details. Unlike the case of ODE, there are different concepts of

controllability of PDE - approximate controllability, exact controllability

and null controllability. The controllability will depend on the type of the

PDE. Further, the PDE may be controllable for large time only, as in the

case of the transport equation, which is a PDE of hyperbolic type. The

reader may get a feel for these questions from [3], Chapters 1 and 2.

4. Stabilization

From ODE theory, we recall that the solution of a system of differential

equations in R
N

y′(t) = Ay(t), t > 0, y(0) = y0 ∈ R
N ,

with a given N ×N matrix A, is y(t) = etA(y0). From this expression, one

can see that the solution starting near the origin, will tend to 0 exponentially

as t tends to infinity, if Real (σ(A)) < 0, (the spectrum of A is denoted by

σ(A)) i.e if the eigenvalues of A have negative real part. Otherwise, the

solution may become unbounded.

It is interesting to ask if one can prevent such blow up of solutions,

when some of the eigenvalues have positive real part. Can we add a control

term to bring the trajectories to 0? If yes, how to compute this control
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and implement it numerically to stabilize the system? This is the process

of stabilization, well understood for the ODEs, currently being extended to

various types of PDEs.

For a system of controlled differential equations in R
N

y′(t) = Ay(t) +Bu(t), t > 0, y(0) = y0 ∈ R
N ,

with A, N × N matrix and B, N × m matrix, the question is to find a

control u ∈ R
m, steering the solution to 0 in R

N . Further, we would to like

to find it in feedback form or the control u(t) depending on the state y(t),

more precisely, u(t) = Ky(t) for a linear operator K : RN 7−→ R
m. This is

likely to be more robust under perturbations.

If such a feedback control can be found, then the system

y′(t) = (A+BK)y(t), t > 0

will be stable if Real σ(A + BK) < 0. A matrix test for stabilizability is

given by the following theorem. See [1] Chapter 1, Corollary 2.2.

Theorem 4.1. The pair (A,B) is stabilizable if and only if

rank [(λI −A), B] = n, ∀ λ ∈ C, Real(λ) ≥ 0.

If the matrix pair (A,B) is controllable, then it can be shown to be

stabilizable also. Refer [1], Chapter 1, Corollary 2.1.

In the PDE situation, the above criteria for stabilizability extends to

certain PDE of parabolic type.
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RECURSIVE SUBSEQUENCE OF VARIOUS

FIBONACCI-TYPE SEQUENCES

KHUSHBU J. DAS AND DEVBHADRA V. SHAH

Abstract. In this article, we describe special types of recursive sub-
sequence of various well-known sequences like the sequences of Lu-
cas numbers, generalized Fibonacci numbers, Pell numbers, Pell-Lucas
numbers and Half-companion Pell numbers and we obtain their recur-
rence relation in each case.

1. INTRODUCTION

The Fibonacci sequence {Fn} is defined by the recurrence relation Fn =
Fn−1 + Fn−2, for all n ≥ 2 with initial conditions F0 = 0 and F1 = 1. Also
the sequence of Lucas numbers {Ln} is defined by the recurrence relation
Ln = Ln−1 + Ln−2, for all n ≥ 2 with initial conditions L0 = 2 and L1 =
1. It was observed by Koshy [10] that the Binet formula for Fibonacci
sequence and Lucas sequence are respectively given by Fn = αn−βn

α−β
=

1√
5

{(

1+
√
5

2

)n

−
(

1−
√
5

2

)n}

and Ln = αn + βn =
{(

1+
√
5

2

)n

+
(

1−
√
5

2

)n}

,

where α =
(

1+
√
5

2

)

is famously referred as ‘golden ratio’. Many papers

concerning a variety of generalizations of Fibonacci sequence have appeared
in recent years. For further details, one can refer Arvadia, Shah [1, 2], Das,
Patel, Shah [4], Diwan, Shah [5, 6], Harne, Singh, Pal [7], Patel, Shah [12].

In this section, we introduce various linear recursive sequences similar
to that of Fibonacci/Lucas sequence and subsequently obtain their spe-
cial types of subsequence in each case along with their recurrence relation.

Badshah, Teeth and Dar [3] considered an interesting combination of
Fibonacci and Lucas sequences in the form Mn = Mn−1 + Mn−2;n ≥ 2
with M0 = 2m,M1 = 1+m; where m is fixed positive integer. Here the ini-
tial conditions are the sum of the initial conditions of traditional Fibonacci
sequence and ‘m′ times the initial conditions of traditional Lucas sequence.
Patel, Shah [13] further generalized it and considered the same sequence
{Mn} with the initial conditions as the sum of ‘l′ times the initial condi-
tions of traditional Fibonacci sequence and ‘m′ times the initial conditions

2010 Mathematics Subject Classification: 11B39, 11B83, 11B37
Key words and phrases: Fibonacci sequence, Lucas sequence, Pell sequence,
Generalized Fibonacci sequence
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of traditional Lucas sequence. Thus {Mn} is defined by the recurrence re-
lation Mn = Mn−1 + Mn−2, for all n ≥ 2 with M0 = 2m,M1 = l + m;
where m, l are integers. They obtain several of the fundamental identities
related with {Mn}. They also derive Binet-type formula of Mn given by

Mn = l
(

αn−βn

α−β

)

+m (αn + βn), where α, β are the roots of x2−x− 1 = 0.

Next we consider the sequence {gn} defined by the recurrence relation
gn = gn−1 + gn−2;n ≥ 2 with g0 = a, g1 = b ; where a, b are integers. The
corresponding Binet-type formula for gn was derived by Horadam [8, 9] as
gn = cαn−dβn

α−β
, where c = αa+ (a− b) and d = βa+ (a− b).

We also consider Pell sequence {Pn} defined by the relation Pn =
2Pn−1 + Pn−2;n ≥ 2 with P0 = 0, P1 = 1 . The analogous Binet-type
formula for Pell number was given by Koshy [11] as Pn = γn−δn

γ−δ
, where

γ = 1 +
√
2 and δ = 1−

√
2.

We next consider Pell-Lucas sequence {Qn} defined by the relation Qn =
2Qn−1 + Qn−2;n ≥ 2 with Q0 = 2, Q1 = 2. The equivalent Binet-type
formula for Pell-Lucas numbers was also given by Koshy [11] as Qn = γn +
δn, where γ and δ are as defined above.

Finally we consider the Half-companion Pell’s sequence {Qn} defined
by the relation

Hn =

{

1 n = 0
Hn−1 + 2Pn−1, n ≥ 1

and Pn =

{

0 n = 0
Hn−1 + Pn−1, n ≥ 1

The corresponding Binet-type formula for Half-companion Pell number was

obtained by Koshy [11] as Hn = γn+δn

2 ; where γ and δ are as defined above.
Özvatan, Pashaev [14] considered the concept of subsequence for the

Fibonacci numbers. Here we follow his technique and obtain such subse-
quence for all the sequences defined above.

2. LUCAS SUBSEQUENCE

To develop the understanding of Lucas subsequence, we first consider
the subsequence {L3n} of {Ln}. For brevity, we write Gn = L3n, and derive
the corresponding recursion relation for Gn with suitable initial conditions
for this sequence. Suppose that the recursion relation for Gn is of the type

Gn+1 = AGn +BGn−1 (2.1)

where the coefficients A and B are to be determined. We write (2.1) as
L3n+3 = AL3n + BL3n−3. We next express L3n+3 in terms of L3n and
L3n−3. Using the definition of Lucas numbers, it is easy to show that
L3n+3 = 4L3n + L3n−3. This gives the recurrence relation for the subse-
quence {Gn = L3n} of {Ln} as Gn+1 = 4Gn +Gn−1.

We use this idea to find the recurrence relation for the equi-Lucas sub-
sequence {Lkn+τ} of Ln, where τ = 0, 1, 2, ..., k − 1 and k = 1, 2, ... are xed
integers. Here the suffix of each of these numbers are congruent to τ(modk).
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Here we write G
(k,τ)
n = Lkn+τ and obtain the corresponding recursion for-

mula for
{

G
(k,τ)
n

}

.

Theorem 2.1. The sequence
{

G
(k,τ)
n = Lkn+τ

}

satisfies the recurrence re-

lation

G
(k,τ)
n+1 = LkG

(k,τ)
n + (−1)(k−1)G

(k,τ)
n−1 ;

where Lk is kth Lucas number.

Proof. First we rewrite the recursion formula to be proved as

Lkn+τ+k = LkLkn+τ + (−1)k−1Lkn+τ−k.

We prove this result using Binet’s formula for Lucas numbers and the fact
that αβ = −1. Now
LkLkn+τ + (−1)k−1Lkn+τ−k

= (αk + βk)(αkn+τ + βkn+τ ) + (−1)k−1(αkn+τ−k + βkn+τ−k

= αkn+τ+k + βkn+τ+k + αkβkn+τ + βkαkn+τ + (−1)k−1αkn+τα−k

+(−1)k−1βkn+τβ−k

= αkn+τ+k + βkn+τ+k + αkβkn+τ + βkαkn+τ − αkn+τβk − βkn+ταk

= αkn+τ+k + βkn+τ+k

= Lkn+τ+k, as required �

If we consider τ = 0, 1, 2 successively, we get
G

(3;0)
n = L3n = L0(mod3) = 2, 4, 18, ...

G
(3;1)
n = L3n+1 = L1(mod3) = 1, 7, 29, ...

G
(3;2)
n = L3n+2 = L2(mod3) = 3, 11, 47, ...

These three sequences starts with different initial values while covering
the whole Lucas sequence. Thus, we describe the sequences Lkn, Lkn+1, ...,

Lkn+(k+1) using the above recursion with the different initial conditions and
covering the whole Lucas sequence.

In the following table we show the recursive relations of the subsequence
{

G
(k,τ)
n = Lkn+τ

}

for the various values of τ :

SEQUENCES DIFFERENCE VALID RECURSION RELATION

G(1;0)
n

= {Ln} 0 G
(1;0)
n+1 = G(1;0)

n
+ G

(1;0)
n−1 , k = 1, τ = 0

G(2;τ)
n

= {L2n, L2n+1} 1 G
(2;τ)
n+1 = 3G(2;τ)

n
− G

(2;τ)
n−1 , k = 2, τ = 0, 1

G(3;τ)
n

= {L3n, L3n+1, L3n+2} 2 G
(3;τ)
n+1 = 4G(3;τ)

n
+ G

(3;τ)
n−1 , k = 3, τ = 0, 1, 2

.

.

.

.

.

.

.

.

.

G(k;τ)
n

=
{

Lkn, · · · , Lkn+(k−1)

}

k − 1 G
(k;τ)
n+1 = LkG

(k;τ)
n

+ (−1)k−1G
(k;τ)
n−1 ,

τ = 0, ·, k − 1

Table 1

We next derive subsequence of the sequence {Mn}.
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3. SEQUENCE FOR {Mn}
In this section, we consider the subsequence of the sequence {Mn}. We

define G
k;τ
n = Mkn+τ .

Theorem 3.1. The sequence
{

G
(k;τ)
n = Mkn+τ

}

satisfies the recurrence re-

lation

G
(k;τ)
n+1 = LkG

(k;τ)
n + (−1)k−1G

(k;τ)
n−1

where Lk is the kth Lucas number.

Proof. We rewrite this recursion formula as

Mkn+τ+k = LkMkn+τ + (−1)k−1Mkn+τ−k.

We prove this result using Binet-type formula for Mk. Now
LkMkn+τ + (−1)k−1Mkn+τ−k

=
(

αk + βk
)

{

l
(

αkn+τ−βkn+τ

α−β

)

+m
(

αkn+τ + βkn+τ
)

}

+ (−1)k−1
{

l
(

αkn+τ−k−βkn+τ−k

α−β

)

+m
(

αkn+τ−k + βkn+τ−k
)

}

=
{

l
(

αkn+τ+k−βkn+τ+k

α−β

)

+m(αkn+τ+k + βkn+τ+k)
}

− lαkβkn+τ

α−β
+ lβkαkn+τ

α−β
+

mαkβkn+τ+mβkαkn+τ+(−1)k−1l
(

αkn+τα−k−βkn+τβ−k

α−β

)

+(−1)k−1m(αkn+τα−k+

βkn+τβ−k).
Using the fact that αβ = −1, we get

Lk + Mkn+τ + (−1)k−1Mkn+τ−k = l
(

αkn+τ+k−βkn+τ+k

α−β

)

+ m(αkn+τ+k +

βkn+τ+k) = Mkn+τ+k.

Thus G
k;τ
n+1 = LkG

(k;τ)
n + (−1)k−1G

(k;τ)
n−1 , as required.

�

The following table shows recursive relations of the subsequence
{

G
(k;τ)
n = Mkn+τ

}

for the various values of τ :

SEQUENCES DIFFERENCE VALID RECURSION RELATION

G(1;0)
n

= {Mn} 0 G
(1;0)
n+1 = G(1;0)

n
+ G

(1;0)
n−1 , k = 1, τ = 0

G(2;τ)
n

= {M2n,M2n+1} 1 G
(2;τ)
n+1 = 3G(2;τ)

n
− G

(2;τ)
n−1 , k = 2, τ = 0, 1

G(3;τ)
n

= {M3n,M3n+1,M3n+2} 2 G
(3;τ)
n+1 = 4G(3;τ)

n
+ G

(3;τ)
n−1 , k = 3, τ = 0, 1, 2

.

.

.

.

.

.

.

.

.

G(k;τ)
n

=
{

Mkn, · · · ,Mkn+(k−1)

}

k − 1 G
(k;τ)
n+1 = LkG

(k;τ)
n

+ (−1)k−1G
(k;τ)
n−1 ,

τ = 0, ·, k − 1

Table 2

4. SUBSEQUENCE FOR {gn}
In this section, we consider the subsequence of the sequence {gn}. We

define G
k;τ
n = gkn+τ .
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Theorem 4.1. The sequence
{

G
(k;τ)
n = gkn+τ

}

satisfies the recurrence re-

lation

G
(k;τ)
n+1 = LkG

(k;τ)
n + (−1)k−1G

(k;τ)
n−1

where Lk is the kth Lucas number.

Proof. We rewrite this recursion formula as

gkn+τ+k = Lkgkn+τ + (−1)k−1gkn+τ−k.

We prove this result using Binet-type formula for gk. Now
Lkgkn+τ + (−1)k−1gkn+τ−k

= (αk + βk)
(

cαkn+τ−dβkn+τ

α−β

)

+ (−1)k−1
(

cαkn+τ−k−dβkn+τ−k

α−β

)

=
(

cαkn+τ+k−dβkn+τ+k

α−β

)

−dαkβkn+τ

α−β
+ cβkαkn+τ

α−β
+(−1)k−1

(

cαkn+τα−k−dβkn+τβ−k

α−β

)

Using the fact that αβ = −1, we get

Lk + gkn+τ + (−1)k−1gkn+τ−k =
(

cαkn+τ+k−dβkn+τ+k

α−β

)

= gkn+τ+k.

Thus G
k;τ
n+1 = LkG

(k;τ)
n + (−1)k−1G

(k;τ)
n−1 , as required.

�

The following table shows recursive relations of the subsequence
{

G
(k;τ)
n = gkn+τ

}

for the various values of τ :

SEQUENCES DIFFERENCE VALID RECURSION RELATION

G(1;0)
n

= {gn} 0 G
(1;0)
n+1 = G(1;0)

n
+ G

(1;0)
n−1 , k = 1, τ = 0

G(2;τ)
n

= {g2n, g2n+1} 1 G
(2;τ)
n+1 = 3G(2;τ)

n
− G

(2;τ)
n−1 , k = 2, τ = 0, 1

G(3;τ)
n

= {g3n, g3n+1, g3n+2} 2 G
(3;τ)
n+1 = 4G(3;τ)

n
+ G

(3;τ)
n−1 , k = 3, τ = 0, 1, 2

.

.

.

.

.

.

.

.

.

G(k;τ)
n

=
{

gkn, · · · , gkn+(k−1)

}

k − 1 G
(k;τ)
n+1 = LkG

(k;τ)
n

+ (−1)k−1G
(k;τ)
n−1 ,

τ = 0, ·, k − 1

Table 3

5. SUBSEQUENCE FOR PELL SEQUENCE

In this section, we consider the subsequence of the Pell sequence {Pn}.
We define G

k;τ
n = Pkn+τ .

Theorem 5.1. The sequence
{

G
(k;τ)
n = Pkn+τ

}

satisfies the recurrence re-

lation

G
(k;τ)
n+1 = 2HkG

(k;τ)
n + (−1)k−1G

(k;τ)
n−1

where Hk is the kth Half-Companion Pell number.

Proof. First we rewrite this recursion formula as

Pkn+τ+k = 2HkPkn+τ + (−1)k−1Pkn+τ−k.
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We prove this result using Binet-type formula for Pk and Hk. Now
2HkPkn+τ + (−1)k−1Pkn+τ−k

= 2
(

γk+δk

2

)(

γkn+τ−δkn+τ

γ−δ

)

+ (−1)k−1
(

γkn+τ−k−δkn+τ−k

γ−δ

)

= γkn+τ+k−δkn+τ+k

γ−δ
+ δkγkn+τ

γ−δ
− γkδkn+τ

γ−δ
+ (−1)k−1

(

γkn+τ−k−δkn+τ−k

γ−δ

)

Using the fact that γδ = −1, we get
2HkPkn+τ + (−1)k−1Pkn+τ−k = γkn+τ+k−δkn+τ+k

γ−δ
= Pkn+τ+k., as required.

�

In the following table we present recursive relations of the subsequence
{

G
(k;τ)
n = Pkn+τ

}

for the various values of τ :

SEQUENCES DIFFERENCE VALID RECURSION RELATION

G(1;0)
n

= {Pn} 0 G
(1;0)
n+1 = 2G(1;0)

n
+ G

(1;0)
n−1 , k = 1, τ = 0

G(2;τ)
n

= {P2n, P2n+1} 1 G
(2;τ)
n+1 = 6G(2;τ)

n
− G

(2;τ)
n−1 , k = 2, τ = 0, 1

G(3;τ)
n

= {P3n, P3n+1, P3n+2} 2 G
(3;τ)
n+1 = 14G(3;τ)

n
+ G

(3;τ)
n−1 , k = 3, τ = 0, 1, 2

.

.

.

.

.

.

.

.

.

G(k;τ)
n

=
{

Pkn, · · · , Pkn+(k−1)

}

k − 1 G
(k;τ)
n+1 = 2HkG

(k;τ)
n

+ (−1)k−1G
(k;τ)
n−1 ,

τ = 0, ·, k − 1

Table 4

6. SUBSEQUENCE FOR PELL-LUCAS SEQUENCE

Next we consider the subsequence of the Pell-Lucas sequence {Qn}. We
define G

k;τ
n = Qkn+τ .

Theorem 6.1. The sequence
{

G
(k;τ)
n = Qkn+τ

}

satisfies the recurrence re-

lation

G
(k;τ)
n+1 = 2HkG

(k;τ)
n + (−1)k−1G

(k;τ)
n−1

where Hk is the kth Half-Companion Pell number.

Proof. First we rewrite this recursion formula as

Qkn+τ+k = 2HkQkn+τ + (−1)k−1Qkn+τ−k.

We prove this result using Binet-type formula for Qk and Hk. Now
2HkQkn+τ + (−1)k−1Qkn+τ−k

= 2
(

γk+δk

2

)

(

γkn+τ + δkn+τ
)

+ (−1)k−1
(

γkn+τ−k + δkn+τ−k
)

= γkn+τ+k + δkn+τ+k + δkγkn+τ + γkδkn+τ +(−1)k−1
(

γkn+τ−k + δkn+τ−k
)

Using the fact that γδ = −1, we get
2HkQkn+τ + (−1)k−1Qkn+τ−k = γkn+τ+k + δkn+τ+k = Qkn+τ+k., as re-
quired.

�

In the following table we present recursive relations of the subsequence
{

G
(k;τ)
n = Qkn+τ

}

for the various values of τ :
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SEQUENCES DIFFERENCE VALID RECURSION RELATION

G(1;0)
n

= {Qn} 0 G
(1;0)
n+1 = 2G(1;0)

n
+ G

(1;0)
n−1 , k = 1, τ = 0

G(2;τ)
n

= {Q2n, Q2n+1} 1 G
(2;τ)
n+1 = 6G(2;τ)

n
− G

(2;τ)
n−1 , k = 2, τ = 0, 1

G(3;τ)
n

= {Q3n, Q3n+1, Q3n+2} 2 G
(3;τ)
n+1 = 14G(3;τ)

n
+ G

(3;τ)
n−1 , k = 3, τ = 0, 1, 2

.

.

.

.

.

.

.

.

.

G(k;τ)
n

=
{

Qkn, · · · , Qkn+(k−1)

}

k − 1 G
(k;τ)
n+1 = 2HkG

(k;τ)
n

+ (−1)k−1G
(k;τ)
n−1 ,

τ = 0, ·, k − 1

Table 5

7. SUBSEQUENCE FOR HALF-COMPANION PELL SEQUENCE

Finally, we consider the subsequence of the Half-Companion Pell se-
quence {Hn}. We define G

k;τ
n = Hkn+τ .

Theorem 7.1. The sequence
{

G
(k;τ)
n = Hkn+τ

}

satisfies the recurrence re-

lation

G
(k;τ)
n+1 = 2HkG

(k;τ)
n + (−1)k−1G

(k;τ)
n−1 .

Proof. First we rewrite this recursion formula as

Hkn+τ+k = 2HkHkn+τ + (−1)k−1Hkn+τ−k.

We prove this result using Binet-type formula for Hk. Now
2HkHkn+τ + (−1)k−1Hkn+τ−k

= 2
(

γk+δk

2

)(

γkn+τ+δkn+τ

2

)

+ (−1)k−1
(

γkn+τ−k+δkn+τ−k

2

)

= γkn+τ+k+δkn+τ+k

2 + δkγkn+τ

2 + γkδkn+τ

2 + (−1)k−1
(

γkn+τ−k+δkn+τ−k

2

)

Using the fact that γδ = −1, we get
2HkHkn+τ + (−1)k−1Hkn+τ−k = γkn+τ+k+δkn+τ+k

2 = Hkn+τ+k, as required.
�

In the following table we present recursive relations of the subsequence
{

G
(k;τ)
n = Hkn+τ

}

for the various values of τ :

SEQUENCES DIFFERENCE VALID RECURSION RELATION

G(1;0)
n

= {Hn} 0 G
(1;0)
n+1 = 2G(1;0)

n
+ G

(1;0)
n−1 , k = 1, τ = 0

G(2;τ)
n

= {H2n, H2n+1} 1 G
(2;τ)
n+1 = 6G(2;τ)

n
− G

(2;τ)
n−1 , k = 2, τ = 0, 1

G(3;τ)
n

= {H3n, H3n+1, H3n+2} 2 G
(3;τ)
n+1 = 14G(3;τ)

n
+ G

(3;τ)
n−1 , k = 3, τ = 0, 1, 2

.

.

.

.

.

.

.

.

.

G(k;τ)
n

=
{

Hkn, · · · , Hkn+(k−1)

}

k − 1 G
(k;τ)
n+1 = 2HkG

(k;τ)
n

+ (−1)k−1G
(k;τ)
n−1 ,

τ = 0, ·, k − 1

Table 6
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ON DECOMPOSITION OF A RATIONAL PRIME IN A

CUBIC FIELD

RAKESH BARAI
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Abstract. This article gives an expanded proof of the theorem of

Llorente and Nart, [10], on the decomposition of a rational prime in a

cubic field. We use this theorem to determine the decomposition of a

prime p in a cyclic cubic field as well as in a pure cubic field.

1. Introduction

How a rational prime p decomposes in a number field is one of the

fundamental problems in the field of algebraic number theory. It has many

applications. One such is the determination of the class number of a number

field. In general, it is a difficult task to determine how a prime decomposes in

a number field of fixed degree. For a few number fields, such decomposition

is known. For example, it is known for quadratic, cyclotomic, cubic and

some special number fields of fixed degree. Almost every book on algebraic

number theory describes, how a prime splits in a quadratic field and in

a cyclotomic field. But for a cubic field, it is partly given in [7] and [9].

Theorem 2.13 of [9], states the theorem from [10] which gives simple criteria

to find how a prime decomposes in a cubic field in terms of the coefficients

of a generating polynomial of the cubic field.

In 2006, S. Alaca, B. K. Spearman and K. S. Willams [2] also gave

a proof of such decomposition in a cubic field. They used the theory of

p-integral bases, whereas Llorente and Nart’s proof used the results from

classical number theory and p-adic numbers. However, it should be pointed

out that Alaca, Spearman and Williams [2] gave the explicit form of the

prime ideals occurring in the decomposition of the prime p not just the

2010 Mathematics Subject Classification: 1102, 11R16, 11S15
Key words and phrases: Cubic fields, Ramification, Decomposition of rational prime,
Cyclic, Pure Cubic field

© Indian Mathematical Society, 2021 .
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type of the decomposition. One still finds the proof of Llorente and Nart

interesting as it involves results from various number theoretic topics

In this expository article, we elaborate the proof of Llorente and Nart of

decomposition of a rational prime in a cubic field. This article has four sec-

tions. The first section is an introduction where we develop the background

material for a general number field. In the second section, we develop the

theory exclusive to cubic fields and state the important results going to be

used in the third section. To keep the article brief, we will state all those

results whose proofs are easily available in the literature otherwise we will

give the proof. The third section is the main part of the article where we

will see Llorente and Nart’s proof on the decomposition of a rational prime

in a cubic field. In the fourth section, as an application, we determine when

and how a prime splits in a cyclic and in a pure cubic field.

Let K be an algebraic number field of degree n and let OK be its the

ring of integers. It is a well-known result that OK is a Dedekind domain,

so every ideal in OK is written uniquely as the product of prime ideals of

K. For a prime p let,

pOK = pe11 pe22 · · · perr , (1.1)

where the pi’s are the distinct prime ideal of OK and the ei’s are the posi-

tive integers. The number ei is called the ramification index of the ideal pi

in pOK and is denoted by e(pi/p). Being a Dedekind domain every prime

ideal in OK is a maximal ideal. Further OK has the finite norm prop-

erty, that is for an ideal I of OK , the order of OK/I is finite. Hence, for

any prime ideal pi in Equation 1.1, OK/pi is a finite field and the index

[OK/pi : Z/ 〈p〉] is finite. We call this index the residual degree of pi and

denote it by f(pi/p). Thus we have two numbers related to the factoriza-

tion of ideal pOK . Dedekind’s theorem on the factorization of ideals relates

these numbers in the following way:

Theorem 1.1 ([11], Theorem 21). Let K be an algebraic number field of de-

gree n and OK its ring of integers. Let p be a prime. If pOK = pe11 pe22 · · · perr
and fi is the residual degree of pi for all i then

r
∑

i=1

eifi = n.

Moreover, if K/Q is a normal extension, then e1 = e2 = · · · = er = e,

f1 = f2 = · · · = fr = f and ref = n.
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Depending on the values of ei and r, the splitting of pOK is described

as follows:

(1) When r = n (i.e., ei and fi equal 1 for all i), we say pOK splits

completely in K.

(2) When ei = 1 for all i, we say pOK is unramified in K, otherwise it

is said to be ramified in K.

(3) When r=1, e1=n, we say pOK is totally (completely) ramified in K.

(4) When r = 1, e1 = 1, we say pOK is inert (or remains prime) in K.

(5) When ei > 1 but such ei do not divide p, we say pOK is tamely

ramified in K.

(6) When ei > 1 and at least one such ei divides p, we say pOK is wildly

ramified in K.

Again due to Dedekind it is well-known that the ramified primes in K are

finite and they are precisely those rational primes that divide the discrim-

inant D of K. Hence once the discriminant is known, it is not difficult

to find the ramified primes in K. But finding the discriminant itself is a

nontrivial task.

Next, we quote the theorems regarding the decomposition of primes in

quadratic and cyclotomic fields.

Theorem 1.2 (Prime Decomposition in a quadratic field, [11], Theorem

25). Let p be a prime and K = Q(
√
m), where m is a square free integer.

Then,

pOK =< p,
√
m >2 if p | m.

If p = 2 and m is odd, then

2OK =



















〈2, 1 +√
m〉2 if m ≡ 3 (mod 4),

〈

2,
1 +

√
m

2

〉〈

2,
1−√

m

2

〉

if m ≡ 1 (mod 8),

remains prime if m ≡ 5 (mod 8).

If p is odd and p ∤ m, then

pOK =















〈p, n+
√
m〉 〈p, n−√

m〉 if

(

m

p

)

= 1, where n2 ≡ m (mod p),

remains prime if

(

m

p

)

= −1.
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Theorem 1.3 (Prime Decomposition in a cyclotomic field, [12], Theorem

4.40). Let K = Q(ζm), where ζm is a primitive mth root of unity, m 6= 1,

m 6≡ 2 (mod 4) and let p be a prime.

If p ∤ m and f is the order of p mod m, i.e., the least positive integer

with pf ≡ 1 (mod m), then pOK is the product of φ(m)/f distinct prime

ideal of K having degree f , where φ(m) is the number of positive integers

less then m and relative prime to m.

If p | m, let m = pam1, with p ∤ m1, and f1 is the order of p mod m1,

then

pOK = (p1p2 · · · pr)e,
with e = φ(pa), r = φ(m1)/f1 and distinct prime ideals pi’s of degree f1.

2. Important Results and Definitions

Let K = Q(θ2) be a cubic field. Let f2(x) = x3 + a1x
2 + a2x + a3

be the minimal polynomial of θ2. The substitution x = y − a1/3 reduces

the polynomial f2(x) to f1(y) = y3 − a4y + a5, where a4 = a21/3 − a2

and a5 = (1/27)(2a31 − 9a1a2 + 27a3) (for details refer to [3], section 2).

The coefficients a4, a5 need not be integers. But multiplying by a suitable

integer (27 in this case) they can be made integers. Hence we can assume

that f1(x) = x3−a4x+a5, with a4, a5 ∈ Z. Let θ1 be its root. Further, if p

is a prime such that p2 | a4 and p3 | a5 then we can reduce the polynomial

f1(x) to f(x) = (x/p)3−(a4/p)(x/p)+(a5/p
3) with the root θ = θ1/p. Note

that the roots of f2(x) and f1(x) differ by a constant, whereas the roots of

f1(x) are constant multiples of that of f(x), hence these roots generate the

same cubic field.

Hence without loss of generality, we can assume that if K = Q(θ) is a

cubic field then θ is a root of a polynomial of the form f(x) = x3 − ax+ b,

where a, b ∈ Z. Further, there is no prime p such that p2 | a and p3 | b. The

discriminant of f(x) is1 △ = 4a3 − 27b2. In K, the ring Z[θ] is a finitely

generated submodule of rank 3. Hence, the index [OK : Z[θ]] is finite.

Denote this index by i(θ). It is a well-known result that △ = i(θ)2D, where

D is the discriminant of the field K (for proof see [12], Proposition 2.13 and

corollary thereafter).

The discriminant of a number field tells us that, which primes p ∈ Z

ramify in K. One may ask:

1For details refer [3], section 2
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(1) Which prime ideals of K, ramify in K?

(2) What is the largest possible value of an integer m such that pm | D?

The answer to these questions lies in the notion of the different ideal of K

which we will deal within the next subsection. But before this, let us fix

some notation.

For a prime p and an integer k denote by vp(k), the largest integer m

such that pm | k. For sake of convenience, we denote vp(△) by sp and

△p = △/psp .

2.1. Different Ideal. Define O ∨
K = {x ∈ K : Tr(xOK) ⊆ Z}, where Tr x

denote the usual trace of the number x. That is O ∨
K consists of all x ∈ K

such that Tr(xα) ∈ Z for all α ∈ OK . Then O ∨
K is a fractional ideal of K.

The inverse of O ∨
K is defined as, (O ∨

K)−1 = {x ∈ K : xO ∨
K ⊂ OK} is called

the different ideal2 and is denoted by D. If OK = Z[θ], D = 〈f ′(θ)〉, where

f(x) is the minimal polynomial of θ. For the quadratic field K = Q(
√
m),

where m is a squarefree integer,

D =







〈√m〉 if d ≡ 1 (mod 4),

〈2√m〉 if d 6≡ 1 (mod 4).

The norm of D is the absolute value of the discriminant D. (For a proof see

[6], Theorem 4.6). The following theorem due to Dedekind gives the answers

to the questions asked in the last paragraph, before this subsection.

Theorem 2.1 ([6], Theorem 4.8). The prime ideal factors of D are the

primes in K that ramify over Q. More precisely, for any prime ideal p in

OK lying over a prime number p, with the ramification index e = e (p/p),

the exact power of p in D is e− 1 if p ∤ e, and pe | D if p | e.

As a consequence of Theorem 2.1 we have the following corollary.

Corollary 2.2 ([6], Corollary 4.10). Let pOK = pe11 pe22 · · · perr and fi =

f(pi/p) for all i. If no ei is a multiple of p then the multiplicity of p in the

discriminant of K is

(e1 − 1)f1 + (e2 − 1)f2 + · · ·+ (er − 1)fr = n−
r

∑

i=1

fi.

If some ei is a multiple of p then the multiplicity of p in the discriminant of

K is larger than this number.

2For details refer to [6].
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It was proved that, if vp(D) denotes the multiplicity of p in D then

e− 1 ≤ vp(D) ≤ e− 1 + evp(e), (2.1)

where p | p and e = e (p/p).

Using these results we derive the following lemma.

Lemma 2.3. Let K be a cubic field and let p be a prime number. Then,

(1) For p 6= 2, p = p1p
2
2 in K if and only if vp(D) = 1.

(2) For p 6= 3, p = p31 in K if and only if vp(D) = 2.

(3) If 2 = p1p
2
2 in K then v2(D) = 2 or 3.

(4) If 3 = p31 in K then v3(D) = 3, 4, or 5.

Proof. We begin by proving (1). Let us assume that the prime p 6= 2 and

p = p1p
2
2. Then e1 = 1, e2 = 2, f1 = 1 and f2 = 1. As p does not divide

any ei, by Theorem 2.1, the exact multiplicity of p in D is 3− (1 + 1) = 1.

Therefore vp(D) = 1. Conversely let vp(D) = 1. Hence the prime p is

ramified in K. So p = p1p
2
2 or p = p31. But if p = p31 then, vp(D) is at least

2. Hence p = p1p
2
2.

The proof of (2) is similar to that of (1).

We now prove (3). Let 2 = p1p
2
2. Then e1 = 1, e2 = 2, f1 = 1 and

f2 = 1. Let vp2(D) = l. By Equation 2.1, we have,

e2 − 1 ≤ l ≤ e2 − 1 + e2v2(e2).

That is 1 ≤ l ≤ 3. But 2 | e2, hence l is at least 2. Further, pl2 | D. Hence

N(p2)
l | N(D). But N(p2) = pf2 = p. Hence pl | D and the result follows.

The proof of (4) follows similarly. �

We need one of the applications of Hensel’s lemma for finding the square

root of a number in a p-adic number field Qp.

2.2. Square Root of a p-adic number. A p-adic integer is a formal series
∑

i≥0

aip
i with integral coefficients ai satisfying 0 ≤ ai ≤ p− 1 for all i. The

set of all p-adic integers forms an integral domain and is denoted by Zp. The

field of fractions of Zp is called the field of p-adic numbers and is denoted

by Qp.

Let a =
∑

i≥0

aip
i be a p-adic integer. If a 6= 0 then, there is a first index

v ≥ 0 such that av 6= 0. This index is the p-adic order of a and we denote

it by vp(a). An element a of Zp is invertible if its order vp(a) = 0. We
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denote by Z∗
p, the set of all invertible elements of Zp. It can be proved that

Zp has a unique maximal ideal which is pZp and Z∗
p = Zp − pZp. Hence

every p-adic integer a can be written uniquely as a = pva′ where v = vp(a)

is the order of a and a′ ∈ Z∗
p. The same is true for every p-adic number,

with the only difference being that the order v can be a negative integer.

Hence Qp = pZZ∗
p. For more details see [13]. Surprisingly there are very

few quadratic extensions of Qp that can be determined by Hensel’s lemma.

Theorem 2.4 (Hensel’s Lemma, [13], Page 48). Assume f(x) ∈ Zp[x] and

a ∈ Zp satisfies f(a) ≡ 0 (mod pn). If k = vp(f
′(a)) < n/2, then there

exists a unique root α of f(x) in Zp such that α ≡ a (mod pn−k) and

vp(f
′(α)) = k.

We will use this theorem to characterize the squares in Qp.

Corollary 2.5. An integer a ∈ Z is a square in Zp if and only if a = p2rc,

where r ∈ Z, c ∈ Z∗
p and











(

c

p

)

= 1 if p 6= 2,

c ≡ 1 (mod 8) if p = 2.

Proof. Let us assume that a = β2 in Zp. Let a = psc where c ∈ Z∗
p. Then

s = vp(a) = vp(β
2) = 2vp(β). Therefore s is even say 2r. As a = p2rc is a

square in Zp, hence c is a square in Qp. Let c = γ2. But 0 = vp(c) = 2vp(γ).

Hence vp(γ) = 0, so γ ∈ Z∗
p.

First assume p 6= 2. Let (an) be the Cauchy sequence of integers con-

verging to γ (here we used the fact that Zp is the completion of Z and Z is

dense in Zp). Then (a2n) converges to c. Hence there exists n0 ∈ N such that

|a2n − c|p < 1/p for all n ≥ n0. Hence a2n0
≡ c (mod p) implies

(

c

p

)

= 1.

For p = 2, first observe that Z∗
2 = 1 + 2Z2 = {±1}(1 + 4Z2). The first

equality is from the fact that the only non zero constant term in Z2 is 1.

For the second equality note that elements of 1+2Z2 are either of the form

1+4a1+8a2+ · · · or 3+4a1+8a2+ · · · . Hence (Z∗
2)

2 = 1+8Z2. Therefore

if c ∈ Z∗
2 is a square, then c ∈ 1 + 8Z2, equivalently c ≡ 1 (mod 8).

Conversely let a = p2rc, where c satisfies the hypothesis of the corollary.

It is enough to prove c is a square. This is trivially an application of

Hensel’s lemma. When p 6= 2 then,

(

c

p

)

= 1, hence there exists an integer

b such that b2 ≡ c (mod p). Take f(x) = x2 − c, then f(b) = 0 (mod p),

vp(f
′(b)) = 0 < 1/2. Hence Hensel’s lemma ensure that c is a square in Zp.
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For p = 2, c ≡ 1 (mod 8). Define f(x) = x2 − c. Then f(1) = 0

(mod 23) and vp(f
′(1)) = 1 < 3/2. Again by Hensel’s lemma, c is a square.

�

2.2.1. Quadratic Extension of Qp. First Assume that p 6= 2. Then Qp =

pZZ∗
p. Therefore Qp/Q

2
p = pZ/p2Z×Z∗

p/(Z
∗
p)

2 = Z/2Z×Z/2Z. Thus Qp/Q
2
p

is a group of type (2, 2). Note that p is not a square in Z∗
p as the power of

p is odd. Choose u ∈ Z/(p− 1)Z such that

(

u

p

)

= −1. Then {1, p, u, pu}

generates Qp/Q
2
p. Hence any quadratic extension of Qp is isomorphic to

Qp(
√
p), Qp(

√
u) or Qp(

√
pu).

Let p = 2. We saw that Z∗
2 = {±1}(1 + 4Z2). and (Z∗

2)
2 = 1 + 8Z2.

Then

Q2/Q
2
2 = 2Z/22Z × {±1}(1 + 4Z2)/(1 + 8Z2) = Z/2Z× Z/2Z× Z/2Z.

Thus Q2/Q
2
2 is of the type (2, 2, 2). Hence in particular we get Q2/Q

2
2 =

{±1,±2,±(1 + 4),±10}. Therefore any quadratic extension of Q2 is iso-

morphic to Qp(
√
−1), Qp(

√
±2), Qp(

√
±5) or Qp(

√
±10).

Remark 2.6. Among all the quadratic extensions of Q2 only Q2(
√
5) is

the unramified extension of Q2 (see [12], Corollary 10 of Theorem 5.15).

The following are some results which we need subsequently.

Lemma 2.7. Let K = Q(θ) be a cubic field. Let f(x) = x3 − ax+ b be the

minimal polynomial of θ and △ its discriminant. Then for a prime p,

(i) If p = p or p = pqr then △ ∈ Q2
p.

(ii) If p = pq or p = pq2 then, △ 6∈ Q2
p.

Lemma 2.8 ([7], $18). Let K = Q(θ) be a number field of degree n and

f(x) the minimal polynomial of θ. Let p ∈ Z be a prime and let

f(x) = φ1(x)
e1φ2(x)

e2 · · ·φr(x)
er (mod p)

be the factorization of f(x) into irreducible factors (mod p). If p does not

divide i(θ), the index of θ, then

p = pe11 pe22 · · · perr
where pi = (p, φi(θ)) and f(pi/p) = deg φi(x).

We will frequently use a result from the theory of the Newton polygon

which we will see in the following subsection.
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2.3. Newton Polygon. Let F be a field and let f(x) = anx
n+ · · ·+a1x+

a0 ∈ F [x] be such that a0an 6= 0. To find the Newton polygon of f(x) with

respect to the prime p we do the following:

(1) For each ai of f(x), plot the points (i, vp(ai)) on the xy-plane, ig-

noring all those points for which ai = 0.

(2) Start with the point (0, vp(a0)). Rotate a ray passing through this

point in the anticlockwise direction, till it reaches a point (k, vp(ak))

(Note that this point may not be (1, vp(a1))). Break the ray here and

from (k, vp(ak)) rotate another ray in the anticlockwise direction till

it reaches to another point. We continue in this way till we reach

to the last point (n, vp(an)).

(3) Thus we get convex hull3 of the points (k, vp(ak)), 0 ≤ k ≤ n that

is the Newton polygon of f(x) with respect to p.

The following are two examples of the Newton polygon.

0 1 2 3

1

2

3

Slope = −1/2

Graph 1

v p
(i
)

f(x) = x3+10x+25 and p=5

Slope = −1/3

0 1 2 3

1

2

3

Graph 2

v p
(i
)

f(x) = x2−25x+5 and p=5

Let K = Q(θ) be a number field and f(x) the minimal polynomial of θ. The

following lemma gives a connection between the prime ideals of K occurring

in the factorization of the prime p and the slopes of the sides of the Newton

polygon of f(x) with respect to p.

Lemma 2.9 ( Bauer, [4]). Let K = Q(θ) be a number field of degree n.

Let f(x) be the minimal polynomial of θ. Let p ∈ Z be a prime. Then for

every prime ideal p of K lying over p, the quotient vp(θ)/e(p/p) is equal to

the slope of one of the sides of the Newton polygon of f(x) with respect to

3For a given set of points, the convex hull is the smallest convex polygon that has all the
points of it.
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p. Conversely if λ ∈ Q is the slope of one of the sides of that polygon, then

there exists a prime p of K lying over p such that vp(θ)/e(p/p) = λ.

3. Decomposition of a prime in a cubic field

We use all the tools developed in the previous sections to determine the

splitting of a rational prime in a cubic field. Let us revisit all the notation

that we are going to use.

Let K = Q(θ) be a cubic field such that the minimal polynomial of θ

is f(x) = x3 − ax+ b. The discriminants of f(x) and K are denoted by △
and D respectively with △ = 4a3 − 27b2. If i(θ) = [OK : Z[θ]] is the index

of θ then △ = i(θ)2D. For m ∈ Z, vp(m) is the largest power of p such that

pvp(m) | m. Let vp(△) = sp and △p = △/psp .

Further, we have chosen the coefficients a and b of f(x) in such a way

that for any prime p, we have vp(a) < 2 or vp(b) < 3.

For the sake of convenience, we have divided the theorem of Llorente

and Nart on the splitting of primes into three parts, (i) p > 3, (ii) p = 2

and (iii) p = 3. In order to reduce the space in all tables, (mod m) is

abbreviated as (m) only.

Theorem 3.1 (Llorente, Nart, [10], Theorem 1). The prime p > 3 decom-

poses in K as follows

Case Sub case Factorization

p | a, p | b 1 = vp(a) < vp(b) p = pq2

1 ≤ vp(b) ≤ vp(a) p = p3

p | a, p ∤ b
p ≡ −1(3) p = pq

p ≡ 1(3)

(

b

p

)

3

= 1 p = pqr
(

b

p

)

3

6= 1 p = p

p ∤ a, p | b

(

a

p

)

= 1 p = pqr
(

a

p

)

= −1 p = pq

p ∤ ab

sp is odd p = pq2

sp is even

(

∆p

p

)

= 1
f(x) has some root (p) p = pqr

f(x) has no roots (p) p = p
(

∆p

p

)

= −1 p = pq

Table 1: Decomposition of Prime p > 3
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Proof. Case (i) : p | a, p | b
By hypothesis vp(a) < 2 or vp(b) < 3. Therefore 3vp(a) 6= 2vp(b). Hence

we have the following two subcases. 3vp(a) < 2vp(b) and 3vp(a) > 2vp(b).

In the first subcase we have 1 = vp(a) < vp(b) whereas in the second, we

have 1 ≤ vp(b) ≤ vp(a). In the first subcase the coefficients of the Newton

polygon for f(x) with respect to p are (0, vp(b)), (1, 1), (2,∞) and (3, 0)

with vp(b) > 1 whereas in the second subcase the corresponding coefficients

are (0, vp(b)), (1, vp(a)), (2,∞) and (3, 0) with vp(b) = 1 or 2. In the first

subcase the Newton polygon consists of two sides with the slope of one side

equal to −1/2 (see Graph 1), hence by Lemma 2.9, p = pq2. While in the

second subcase the Newton polygon consists of only one side with the slope

either −1/3 or −2/3 (see Graph 2). Thus in this case we obtain p = p3.

Case (ii) : p | a, p ∤ b.

Since p > 3, we have sp = 0. Hence by Lemma 2.8 the decomposition

of p depends on how f(x) = x3 + b splits in Z/pZ. First observe that

(Z/pZ)∗ is a cyclic group of order p− 1. Hence the polynomial x3− 1 splits

completely in (Z/pZ)∗ if and only if (Z/pZ)∗ contains a cyclic subgroup of

order 3, that is if and only if 3 | (p− 1), equivalently p ≡ 1 (mod 3). Hence

for p ≡ 1 (mod 3), the polynomial x3 + b splits completely in Z/pZ if and

only if the polynomial has one root in Z/pZ. That is if and only if the

cubic reciprocity symbol

(

b

p

)

3

= 1. Hence p = pqr or p = p3 according as
(

b

p

)

3

= 1 or

(

b

p

)

3

6= 1 respectively.

When p ≡ −1 (mod 3), then (Z/pZ)∗ ∼= (Z/pZ)∗3 (since the map x →
x3 has the trivial kernel). Hence in this case x3 + b has only one root in

Z/pZ. So p = pq.

Case (iii) : p ∤ a, p | b
As p 6= 2, sp = 0. Hence according to Lemma 2.8 the splitting of p is

governed by the splitting of f(x) = x3 − ax in Z/pZ. Now x3 − ax splits

completely in Z/pZ if and only if a is a quadratic residue modulo p, that is
(

a

p

)

= 1 and into a linear and a quadratic factor if and only if

(

a

p

)

= −1.

Hence the result follows.

Case (iv) : p ∤ ab.

By Lemma 2.3, p = pq2 if and only if vp(D) = 1, that is if sp is odd.

So assume sp is even. Since p ∤ ab, hence f(x) = (x + c)3 (mod p) is not
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possible for any c ∈ Z. Therefore we know that p 6= p3. Combining Lemma

2.3 and Lemma 2.7 we get, if △ 6∈ Q2
p then p 6= pq and p 6= pqr. So the

only case left out is p = pq, which occurs when sp is even and △ /∈ Q2
p

or

(△p

p

)

= −1. When sp is even and

(△p

p

)

= 1, the only cases left to

consider us are p = p and p = pqr which can be distinguished according as

f(x) is irreducible or splits completely in Z/pZ.

With this the case p > 3 is concluded. �

Theorem 3.2 (Llorente, Nart, [10], Theorem 1). The rational prime p = 2

decomposes in K as follows

Case Sub case Factorization

a, b even
1 = v2(a) < v2(b) 2 = pq2

1 ≤ v2(b) ≤ v2(a) 2 = p3

a even, b odd — 2 = pq

a odd, b even

s2 odd 2 = pq2

s2 even
△2 ≡ 3 (4) 2 = pq2

△2 ≡ 5 (8) 2 = pq

△2 ≡ 1 (8) 2 = pqr

a, b odd — 2 = p

Table 2: Decomposition of Prime p = 2

Proof. Case (i) : a and b are both even.

The proof is similar to case 1 of p > 3.

Case (ii) : a even, b odd.

In this case 2 ∤ △. Therefore by Lemma 2.8, 2 splits in K according

as to how f(x) ≡ x3 + 1 (mod 2) splits in Z/2Z. Since f(x) has only one

root in Z/2Z (namely x = 1), therefore f(x) is the product of a linear and

a quadratic factor over Z/2Z, this implies 2 = pq.

Case (iii) : a is odd and b is even.

In this case f(x) reduces to x3 − x. Thus f(x) is not irreducible (hence

2 6= p). Similarly f(x) = (x + 1)3 (mod 2) is also not possible (hence

2 6= p3). Therefore 2 = pq or pq2 or pqr. If s2 is odd then 2 | D. Therefore

2 = pq2. Assume now s2 is even. By Lemma 2.7, 2 = pqr if and only if

△2 ∈ Q2
p that is △2 ≡ 1 (mod 8) (see Corollary 2.5).

We assume now △2 6≡ 1 (mod 8). As △2 is odd, we have the two pos-

sibilities △2 ≡ 5 (mod 8) or △2 ≡ 3 (mod 4). As far as the decomposition

of 2 is concerned we have the two possibilities, 2 = pq and 2 = pq2. If
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2 = pq then 2 is unramified in the quadratic extension Q2(
√
△2). This

means △2 ≡ 5 (mod 8), as the only unramified extension of Q2 is Q2(
√
5)

(see the Remark 2.6). The last case left out occurs when △2 ≡ 3 (mod 4).

Case (iv) a, b are both odd

In this case s2 = 0 and f(x) = x3 − x + 1 (mod 2) is irreducible in

Z/2Z. Hence 2 = p. This gives the complete factorization of 2. �

Theorem 3.3 ([Llorente, Nart , [10], Part III). The prime p = 3 decom-

poses in K as follows

Case Sub case Factors
3 | a, 1 = v3(a) < v3(b) 3 = pq2

3 | b 1 ≤ v3(b) ≤ v3(a) 3 = p3

3 ∤ a
a≡−1 (3) 3 = pq

a≡1 (3)
3 ∤ b 3 = p

3 | b 3 = pqr

a 6≡3 (9)
b2 6≡a+ 1 (9) 3 = p3

3 | a, b2≡a+ 1 (9) 3 = pq2

3 ∤ b

a≡3 (9)
b2≡a+ 1 (27)

s3 is odd 3 = pq2

s3 even
△3≡−1(3) 3 = pq

△3 ≡ 1(3)
s3 = 6 3 = p

s3 > 6 3 = pqr

b2 6≡ a+ 1(27) 3 = p3

Table 3: Decomposition of Prime p = 3

Proof. Case (i) : 3 | a, 3 | b.
The proof is similar to the case (i) of p > 3.

Case (ii) : 3 ∤ a.

Observe that in this case 3 ∤ △. So 3 is an unramified prime. Hence the

splitting of 3 in K depends on how f(x) = x3 − ax+ b factorizes in Z/3Z.

Here a = ±1, b = 0,±1. Note that when a ≡ −1 (mod 3), then for any

value of b, f(x) has exactly one root. Hence in this case f(x) is a product

of a linear and a quadratic factor (mod 3). Therefore 3 = pq.

Now assume that a ≡ 1 (mod 3). When b = 0, that is when 3 | b, then

f(x) = x(x − 1)(x + 1), hence 3 = pqr. On other hand, when 3 does not

divide b, then f(x) has no root (mod 3). Hence we deduce that 3 = p.

Case (iii) : 3 | a, 3 ∤ b.

In this case f(x) = x3±1 = (x±1)3 (mod 3). We change the polynomial

by substituting θ1 = θ + b, to get a new polynomial f1(x) = x3 − 3bx2 +
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(3b2 − a)x − b(b2 − a − 1). As 3 | a, therefore a ≡ ±3 (mod 9). First we

assume a 6≡ 3 (mod 9). Then 3b2 ≡ 3 6≡ a (mod 9). Hence 9 ∤ (3b2 − a).

Note that 3 | (b2 − a − 1), so there are two cases b2 6≡ a + 1 (mod 9) and

b2 ≡ a + 1 (mod 9) to consider. How 3 splits in K is determined by the

Newton polygon of f1(x) with respect to 3. The coefficients of the Newton

polygon of f1(x) with respect to 3 are (0, 1), (1, 1), (2, 1), (3, 0), when

b2 6≡ a + 1 (mod 9) and (0, r), r > 1, (1, 1), (2, 1), (3, 0) when b2 ≡ a + 1

(mod 9). Therefore in the first case the Newton polygon consists of the line

with slope −1/3. Hence 3 = p3. In the other case it consist of two lines

with the slope of one line −1/2, so 3 = pq2.

Now assume that a ≡ 3 (mod 9). Then 9 | (3b2 − a). Here again we

consider two cases b2 6≡ a + 1 (mod 27) and b2 ≡ a + 1 (mod 27). When

b2 6≡ a + 1 (mod 27), then the coefficients of the Newton polygon of f1(x)

are (0, r), r = 1 or 2, (1, s), s ≥ 2, (2, 1) and (3, 0). The Newton polygon in

this case consists of one line with the slope −1/3, hence 3 = p3.

When b2 ≡ a+1 (mod 27), then the coefficients of x2, x and the constant

term of f1(x) are divisible by 3, 32 and 33 respectively. So we replace the

polynomial by substituting θ2 = θ1/3 to obtain the new polynomial

f2(x) = x3 − bx2 +
3b2 − a

9
x− b3 − ab− b

27
.

As 3 ∤ b, hence f2(x) 6≡ (x + c)3 (mod 3) for any c ∈ Z. Thus 3 6= p3. By

Lemma 2.3, 3 = pq2 if v3(D) = 1, that is if s3 is odd.

Now assume s3 is even. Here once again we invoke Lemma 2.7 in order

to distinguish between the various cases regarding the decomposition of 3.

First assume that △3 6∈ Q2
3 ( or

(△3

3

)

= −1), which is equivalent to

△3 ≡ −1 (mod 3). Hence by Lemma 2.7 we have 3 6= p and 3 6= pqr. Thus

3 = pq or 3 = pq2. But 3 = pq2, when s3 is odd. Hence we left with the case

3 = pq and this happens when △3 ≡ −1 (mod 3). Now assume △3 ≡ 1

(mod 3). The remaining possibilities for the decomposition of 3 are 3 = p

or 3 = pqr which depend on whether f2(x) is irreducible or splits into linear

factors (mod 3). Also note that by assumption it is not possible for f2(x)

to have one linear and one quadratic factor. Denote by D2 the discriminant

of f2(x). Then D2 = △/36.

Now, s3 = 6⇐⇒ 3 ∤ D2 ⇐⇒ f2(x) is irreducible (mod 3) ⇐⇒ 3 = p.

The last case is possible if s3 > 6. With this the determination of the

decomposition of 3 in K is complete. �
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4. Application

As an application, we will use the theorem of Llorente and Nart to

determine the splitting of a prime in a cyclic cubic field and in a pure cubic

field.

4.1. Cyclic Cubic Field. A number field with a cyclic Galois group is

called a cyclic number field. Let K = Q(θ) be a cubic field and let f(x) be

the minimal polynomial of θ. Then the Galois group of f(x) is either Z/3Z

or S3, depending on whether the discriminant △ of f(x) is a square or not

and conversely (see [3], Theorem 2.1). Thus the cubic field K is cyclic if and

only if the discriminant △ of f(x) is a square. We will see how and when a

prime splits in such a cubic field. Throughout this subsection, K = Q(θ) is

a cyclic cubic field and f(x) is the minimal polynomial of θ. We start with

the following two remarks.

Remark 4.1. Since a Galois extension is a normal extension, the cyclic

cubic field K is a normal extension. Therefore by Theorem 1.1, the value

of r, the number of prime ideals in the decomposition of a prime p, is 1 or

3. When r = 1, p = p with f(p/p) = 3 or p = p3 with f(p/p) = 1. When

r = 3, then p = p1p2p3 with each f(pi/p) = 1. These are the only three

ways in which the prime p can split in K.

Remark 4.2. Since the discriminant △ of f(x) is a square, therefore for

any prime p, the value of sp is always even and △p is a square. Therefore

for any prime p, the quadratic residue symbol

(△p

p

)

= 1.

The generating polynomial f(x) of K comes in a particular form which

can be seen from the following theorem.

Theorem 4.3 ([5], Lemma 6.4.5). For any cyclic cubic field K, there exists

a unique pair of integers e and u such that e is a product of distinct primes

congruent of 1 modulo 3 and u ≡ 2 (mod 3), such that K = Q(θ1) where

θ1 is a root of the polynomial g(x) = x3 − (e/3)x − eu/27. Equivalently

K = Q(θ), where θ is a root of f(x) = 27g(x/3) = x3 − 3ex− eu.

Remark 4.4. If f(x) = x3−ax+ b is a generating polynomial of the cyclic

cubic field K, then from the above theorem, a = 3e and b = −eu, where e

and u are as in the above theorem. Therefore in the case of a cyclic cubic
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field, the only prime divisors of a are 3 and primes congruent to 1 (mod 3).

Moreover because e ≡ 1 (mod 3), we always have a ≡ 3 (mod 9).

Remark 4.5. Let p 6= 2 be a prime such that 1 = vp(a) < vp(b). Let

a = pα, p ∤ α. Let vp(b) = r > 1. Then b = prβ such that p ∤ β. The

discriminant of f(x),

△ = 4a3 − 27b2 = p3(4α3 − 27p2r−3β2).

As △ is a square, therefore p must divide 4α3 − 27p2r−3β2. Since r > 1,

therefore 2r − 3 is positive integer, hence p must divide 4α3. This means

p | α, a contradiction.

Hence the case 1 = vp(a) ≤ vp(b) does not arise for a cyclic cubic field.

Using these remarks and Theorem 4.3, we describe the decomposition

of a prime p in a cyclic cubic field K in the following theorem.

Theorem 4.6. The prime p in a cyclic cubic field decomposes as follows

Prime Case Factorization

p > 3

p | a, p | b p = p3

p | a and p ∤ b

(

b

p

)

3

= 1 p = pqr
(

b

p

)

3

6= 1 p = p

p ∤ a and p | b p = pqr

p ∤ ab
f(x) has some roots (mod p) p = pqr

f(x) has no root (mod p) p = p

p = 2
a odd, b even 2 = pqr

a, b odd 2 = p

p = 3

3 | a, 3 | b 3 = p3

3 | a, 3 ∤ b
b2 6≡ a+ 1 (mod 27) 3 = p3

b2 ≡ a+ 1 (mod 27)
s3 = 6 3 = p

s3 > 6 3 = pqr

Table 5: Decomposition of a prime in cyclic cubic field

Remark 4.7. The generating polynomial of a cyclic cubic field is called a

cyclic cubic polynomial. Coefficients of such polynomials can be represented

by a family involving two parameters, say α and β.
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In fact, for any rational values of α and β, the polynomial x3 − 3(α2 +

αβ + β2)x − (α − β)(α2 + αβ + β2) has a discriminant which is a perfect

square of rational numbers. Hence if this polynomial is irreducible, then it

will generate a cyclic cubic field.

Conversely, if x3 − ax+ b is an irreducible polynomial with square dis-

criminant, then the values of the parameter α and β can be found by solving

the equations α−β=3a/b and α+β=−
√
△/3a (refer [7], Chapter 2, Section

24). Hence one can compute the values of e and u used in Theorem 4.3.

4.2. Pure Cubic Field. Another simple class of cubic fields are those of

the form K = Q( 3
√
b), fields generated by a cubic polynomial x3 − b, where

b is a cubefree integer. The discriminant △ of such a polynomial is −27b2.

The splitting of any prime p in K is determined by only two conditions,

p | b and p ∤ b. The following theorem describes the decomposition of any

prime p.

Theorem 4.8. The prime p decomposes in a pure cubic field as follows;

Prime Case Factorization

p > 3

p | b p = p3

p ∤ b
p ≡ −1 (mod 3) p = pq

p ≡ 1 (mod 3)

(

b

p

)

3

= 1 p = pqr
(

b

p

)

3

6= 1 p = p

p = 2
2 | b 2 = p3

2 ∤ b 2 = pq

p = 3
3 | b 3 = p3

3 ∤ b
b ≡ ±1 (mod 9) 3 = pq2

b 6≡ ±1 (mod 9) 3 = p3

Table 6: Decomposition of a prime in a pure cubic field
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Abstract. The hyperbolic quaternions form a 4-dimensional non-
associative and non-commutative algebra over the set of real numbers.
In this paper, we introduce the hyperbolic k -Fibonacci and k -Lucas
quaternions. We present generating functions and Binet formula for
the k -Fibonacci and k -Lucas hyperbolic quaternions, and establish bi-
nomial and congruence sums of hyperbolic k -Fibonacci and k -Lucas
quaternions.

1. Introduction

The well-known integer sequence, Fibonacci sequence is defined by the
numbers which satisfy the second-order recurrence relation Fn = Fn−1 +
Fn−2 with the initial conditions F0 = 0 and F1 = 1. Fibonacci numbers
have many interesting properties and applications in various research areas
such as Architecture, Engineering, Nature and Art. The Lucas sequence is
a companion sequence of Fibonacci sequence defined by the Lucas numbers
which are defined by the recurrence relation Ln = Ln−1 + Ln−2 with the
initial conditions L0 = 2 and L1 = 1. Binet’s formula for the Fibonacci and
Lucas numbers are

Fn =
r1

n − r2
n

r1 − r2
and

Ln = r1
n + r2

n

respectively, where r1 =
1 +

√
5

2
and r2 =

1−
√
5

2
are the roots of the char-

acteristic equation x2−x−1 = 0. The positive root r1 is known as the golden
ratio. The Fibonacci and Lucas sequences are generalized by changing the
initial conditions or changing the recurrence relation. One of the generaliza-
tions of the Fibonacci sequence is k-Fibonacci sequence first introduced by
Falcon and Plaza [5]. The k-Fibonacci sequence is defined by the numbers
which satisfy the second order recurrence relation Fk,n = kFk,n−1 + Fk,n−2

2010 Mathematics Subject Classification: 11B39, 11B37
Key words and phrases: Fibonacci Sequence, k -Fibonacci Sequence, k -Lucas Sequence
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with the initial conditions Fk,0 = 0 and Fk,1 = 1. Falcon [6] defined the k-
Lucas sequence that is companion sequence of k- Fibonacci sequence defined
with the k- Lucas numbers which are defined with the recurrence relation
Lk,n = kLk,n−1 + Lk,n−2 with the initial conditions Lk,0 = 2 and Lk,1 = k.
Binet’s formulas for the k- Fibonacci and k-Lucas numbers are

Fk,n =
r1

n − r2
n

r1 − r2

and
Lk,n = r1

n + r2
n

respectively, where r1 =
k +

√
k2 + 4

2
and r2 =

k −
√
k2 + 4

2
are the roots

of the characteristic equation x2 − kx − 1 = 0. The characteristic roots r1
and r2 satisfy the properties

r1 − r2 =
√

k2 + 4 =
√
δ, r1 + r2 = k, r1r2 = −1.

The reader can refer to [4, 7, 8, 9, 10, 11, 12] for properties and applications
of k-Fibonacci and k-Lucas numbers.
The quaternions are generalized numbers. The quaternions first introduced
by Irish mathematician William Rowan Hamilton in 1843. Hamilton [27] in-
troduced the set of quaternions form a 4-dimensional real vector space with
a multiplicative operation. The quaternions are used in applied sciences
such as physics, computer science and Clifford algebras in mathematics. In
particular, they are important in mechanics [14], chemistry [15], kinematics
[16], quantum mechanics [17], differential geometry, pure algebra. A quater-
nion a, with real components a0, a1, a2, a3 and basis 1, i, j, k, is an element
of the form

a = a0 + a1i+ a2j + a3k =
(
a0, a1, a2, a3

)
,

where
i2 = j2 = k2 = ijk = −1,

ij = k = −ji, jk = i = −kj, ki = j == ik.

Horadam[18] defined nth Fibonacci and nth Lucas quaternions as

F̄n = Fn + Fn+1i+ Fn+2j + Fn+3k =
(
Fn, Fn+1, Fn+2, Fn+3

)

and

L̄n = Ln + Ln+1i+ Ln+2j + Ln+3k =
(
Ln, Ln+1, Ln+2, Ln+3

)

respectively.
Ramirez [19] has defined and studied the k-Fibonacci and k-Lucas quater-
nions as

¯Fk,n = Fk,n + Fk,n+1i+ Fk,n+2j + Fk,n+3k =
(
Fk,n, Fk,n+1, Fk,n+2, Fk,n+3

)

and

¯Lk,n = Lk,n + Lk,n+1i+ Lk,n+2j + Lk,n+3k =
(
Lk,n, Lk,n+1, Lk,n+2, Lk,n+3

)
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respectively. Where Fk,n is the nth k-Fibonacci sequence and Lk,n is

the nth k-Lucas sequence.

Different quaternions of sequences have been studied by different researchers.
For example, Iyer [20, 21] obtained various relations containing the Fi-
bonacci and Lucas quaternions. Halici [22] studied some combinatorial
properties of Fibonacci quaternions. Akyigit et al. [23, 24] established
and investigated the Fibonacci generalized quaternions and split Fibonacci
quaternions. Catarino [25] obtained different properties of the h(x)-Fibonacci
quaternion polynomials. Polatli and Kesim [26] have introduced quaternions
with generalized Fibonacci and Lucas number components.
A hyperbolic quaternion h is an expression of the form

h = h1i1 + h2i2 + h3i3 + h4i4 =
(
h1, h2, h3, h4

)
,

with real components h1, h2, h3, h4 and i1, i2, i3, i4 are hyperbolic quater-
nion units which satisfy the non-commutative multiplication rules

i2
2 = i3

2 = i4
2 = i2i3i4 = +1, i1 = 1

i2i3 = i4 = −i3i2, i3i4 = i2 = −i4i3, i4i2 = i3 = −i2i4. (1.1)

The scalar and the vector part of a hyperbolic quaternion h are denoted

by Sh = h1 and
−→
V h = h2i2 + h3i3 + h4i4, respectively. Thus, a hyperbolic

quaternion h is given by h = Sh +
−→
V h. For any two hyperbolic quaternion

h(1) = h
(1)
1 i1+h

(1)
2 i2+h

(1)
3 i3+h

(1)
4 i4 and h(2) = h

(2)
1 i1+h

(2)
2 i2+h

(2)
3 i3+h

(2)
4 i4.

A. Cariow and G. Cariow [28] state low multiplicative complexity algo-
rithm for multiplying two hyperbolic octonions. The conjugate of hyperbolic

quaternion h is denoted by ĥ and it is

ĥ = h1i1 − h2i2 − h3i3 − h4i4 =
(
h1,−h2,−h3,−h4

)
.

The norm of h is defined as

Nh = h · ĥ = h1
2 − h2

2 − h3
2 − h4

2.

In the present paper, our main aim is to define hyperbolic k -Fibonacci
quaternion H̄F

k,n and hyperbolic k -Lucas quaternion H̄L
k,n and derive the

relations connecting the hyperbolic k -Fibonacci and k -Lucas quaternions.
We have adapted the methods of Carlitz [2] and Zhizheng Zhang [3] to
the hyperbolic k -Fibonacci and k -Lucas quaternions and derived some
fundamental and congruence identities for these quaternions.

2. Some Fundamental Properties of Hyperbolic k-Fibonacci

and k-Lucas Quaternions

In this section, we establish certain elementary properties of the hyper-
bolic k -Fibonacci and k -Lucas quaternions.
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Definition 2.1. For n ≥ 0, the hyperbolic k -Fibonacci and k -Lucas quater-

nions H̄F
k,n and H̄L

k,n are defined by

H̄F
k,n = Fk,ni1 + Fk,n+1i2 + Fk,n+2i3 + Fk,n+3i4 (2.1)

=
(
Fk,n, Fk,n+1, Fk,n+2, Fk,n+3

)

and

H̄L
k,n = Lk,ni1 + Lk,n+1i2 + Lk,n+2i3 + Lk,n+3i4 (2.2)

=
(
Lk,n, Lk,n+1, Lk,n+2, Lk,n+3

)

respectively, where Fk,n is nth k-Fibonacci sequence and Lk,n is nth k-Lucas
sequence. Here i1, i2, i3, i4 are hyperbolic quaternion units which satisfy
the multiplication rule as in table (1.1).

Theorem 2.2. For all n ≥ 0,

H̄F
k,n+2 = kH̄F

k,n+1 + H̄F
k,n, (2.3)

H̄L
k,n+2 = kH̄L

k,n+1 + H̄L
k,n, (2.4)

H̄L
k,n = H̄F

k,n+1 + H̄L
k,n−1. (2.5)

Proof. i. From equations (2.1) and (2.2),

kH̄F
k,n+1 + H̄F

k,n = k
[
Fk,n+1i1 + Fk,n+2i2 + Fk,n+3i3 + Fk,n+4i4

]

+
[
Fk,ni1 + Fk,n+1i2 + Fk,n+2i3 + Fk,n+3i4

]

=
[
kFk,n+1 + Fk,n

]
i1 +

[
kFk,n+2 + Fk,n+1

]
i2

+
[
kFk,n+3 + Fk,n+2

]
i3 +

[
kFk,n+4 + Fk,n+3

]
i4

= Fk,n+2i1 + Fk,n+3i2 + Fk,n+4i3 + Fk,n+5i4

= H̄F
k,n+2.

The proofs of (ii) and (iii) are similar to (i), using equations (2.1) and
(2.2). �

Theorem 2.3. (Binet Formulas). For all n ≥ 0,

H̄F
k,n =

r̄1r1
n − r̄2r2

n

r1 − r2
(2.6)

and

H̄L
k,n = r̄1r1

n + r̄2r2
n (2.7)

where, r̄1 = i1 + r1i2 + r1
2i3 + r1

3i4 =
(
1, r1, r1

2, r1
3
)
, r̄2 = i1 + r2i2 +

r2
2i3 + r2

3i4 =
(
1, r2, r2

2, r2
3
)

and i1, i2, i3, i4 are hyperbolic quaternion
units which satisfy the multiplication rule as in table (1.1).
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Proof. Using the definition of H̄F
k,n and the Binet formulas of k-Fibonacci

and k-Lucas sequences, we have

H̄F
k,n = Fk,ni1 + Fk,n+1i2 + Fk,n+2i3 + Fk,n+3i4

=
[r1n − r2

n

r1 − r2

]
i1 +

[r1n+1 − r2
n+1

r1 − r2

]
i2 +

[r1n+2 − r2
n+2

r1 − r2

]
i3

+
[r1n+3 − r2

n+3

r1 − r2

]
i4

=
r1

n

r1 − r2

(
i1 + r1i2 + r1

2i3 + r1
3i4

)

− r2
n

r1 − r2

(
i1 + r2i2 + r2

2i3 + r2
3i4

)

=
r̄1r1

n − r̄2r2
n

r1 − r2

and

H̄L
k,n = Lk,ni1 + Lk,n+1i2 + Lk,n+2i3 + Lk,n+3i4

=
[
r1

n + r2
n
]
i1 +

[
r1

n+1 + r2
n+1

]
i2 +

[
r1

n+2 + r2
n+2

]
i3+[

r1
n+3r2

n+3
]
i4

= r1
n
(
i1 + r1i2 + r1

2i3 + r1
3i4

)
+ r2

n
(
i1 + r2i2 + r2

2i3 + r2
3i4

)

= r̄1r1
n + r̄2r2

n.

�

Lemma 2.4. For r̄1 and r̄2,

(i) r̄1 − r̄2 =
√
δH̄F

k,0,

(ii) r̄1 + r̄2 = H̄L
k,0,

(iii) r̄1r̄2 =
(
0, 2r2, 2r2

2, r1
3 + r2

3 + r1 − r2
)
,

(iv) r̄2r̄1 =
(
0, 2r1, 2r1

2, r1
3 + r2

3 − r1 + r2
)
,

(v) r̄1
2 =

(
− 1 + r1

2 + r1
4 + r1

6
)
+ 2r̄1,

(vi) r̄2
2 =

(
− 1 + r2

2 + r2
4 + r2

6
)
+ 2r̄2,

(vii) r̄1r̄2 + r̄2r̄1 = 2
(
H̄L

k,0 − 2
)
,

(viiii) r̄1r̄2 − r̄2r̄1 = 2
√
δ
(
0,−1,−k, 1

)
,

(ix) r̄1
2 − r̄2

2 =
√
δ
(
Fk,2 + Fk,4 + Fk,6 + 2H̄F

k,0

)
,

(x) r̄1
2 + r̄2

2 =
(
− Lk,0 + Lk,2 + Lk,4 + Lk,62H̄L

k,0

)
.

Theorem 2.5. For all s, t ∈ Z+,s ≥ t and n ∈ N , the generating functions

for the hyperbolic k -Fibonacci and k -Lucas quaternions H̄F
k,tn and H̄L

k,tn
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are

(i)

∞∑

n=0

H̄F
k,tnx

n =
H̄F

k,0 +
(
H̄L

k,0Fk,t − H̄F
k,t

)
x

1− xLk,t + x2(−1)t
,

(ii)

∞∑

n=0

H̄L
k,tnx

n =
H̄L

k,0 −
(
H̄L

k,0Lk,t − H̄L
k,t

)
x

1− xLk,t + x2(−1)t
,

(iii)
∞∑

n=0

H̄F
k,tn+sx

n =
H̄F

k,s + (−1)txH̄F
s,s−t

1− xLk,t + x2(−1)t
,

(iv)

∞∑

n=0

H̄L
k,tn+sx

n =
H̄L

k,s + (−1)txH̄L
s−t

1− xLk,t + x2(−1)t
.

Proof. (1). Using theorem (2.3), we obtain
∞∑

n=0

H̄F
k,tnx

n =
∞∑

n=0

r̄1r1
tn − r̄2r2

tn

r1 − r2
xn

=
r̄1

r1 − r2

∞∑

n=0

(
r1

t
)n
xn − r̄2

r1 − r2

∞∑

n=0

(
r2

t
)n
xn

=

( r̄1 − r̄2

r1 − r2

)
+
[(
r̄1 + r̄2

)(r1t − r2
t

r1 − r2

)
−
( r̄1r1t − r̄2r2

t

r1 − r2

)]
x

1−
(
r1t + r2t

)
x+ x2(r1r2)t

=
H̄F

k,0 +
(
H̄L

k,0Fk,t − H̄F
k,t

)
x

1− xLk,t + x2(−1)t

The proofs of (ii), (iii) and (iv) are similar to (i), using theorem (2.3). �

Theorem 2.6. For all t ∈ Z+ and n ∈ N , the exponential generating

functions for the hyperbolic k -Fibonacci and k -Lucas quaternions H̄F
k,tn

and H̄L
k,tn are

∞∑

n=0

H̄F
k,tn

n!
xn =

r̄1e
r1

tx − r̄2e
r2

tx

r1 − r2
(2.8)

and
∞∑

n=0

H̄L
k,tn

n!
xn = r̄1e

r1
tx + r̄2e

r2
tx. (2.9)

Theorem 2.7. For all n ∈ N ,

(i)
n∑

i=0

(
n

i

)
kiH̄F

k,i = H̄F
k,2n,

(ii)

n∑

i=0

(
n

i

)
kiH̄L

k,i = H̄L
k,2n.
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Lemma 2.8. For all t > 0 and m > n, we have

(i)
r̄1r̄2r2

t − r̄2r̄1r1
t

r1 − r2
=

(
0,−2Fk,t+1,−2Fk,t+2,

− Fk,t+3 + Fk,t−3 + Fk,t+1 + Fk,t−1

)
,

(ii)
r1

m−nr̄1r̄2 − r2
m−nr̄2r̄1

r1 − r2
=

(
0,−2Fk,m−n−1, 2Fk,m−n−2,

Fk,m−n+3 − Fk,m−n−3 + Fk,m−n+1 + Fk,m−n−1

)
.

Theorem 2.9. (Catalan’s Identity). For any integer t and s,

(i) H̄F
k,n−tH̄F

k,n+t − H̄F
2
k,n = (−1)n−t

Fk,t

(
0,−2Fk,t+1,−2Fk,t+2,

− 2Fk,t+3 + Fk,t−3 + Fk,t+1 + Fk,t−1

)
,

(ii) H̄L
k,n−tH̄L

k,n+t − H̄L
2
k,n = δ(−1)n−t+1

Fk,t

(
0,−2Fk,t+1,−2Fk,t+2,

− 2Fk,t+3 + Fk,t−3 + Fk,t+1 + Fk,t−1

)
.

Theorem 2.10. (Cassini’s Identity). For all n ≥ 1,

H̄F
k,n−1H̄F

k,n+1 − H̄F
2
k,n = (−1)n

(
0,−2Fk,2, 2Fk,3, Fk,4

)
(2.10)

and

H̄L
k,n−1H̄L

k,n+1 − H̄L
2
k,n = δ(−1)n−1(0,−2Fk,2, 2Fk,3, Fk,4

)
. (2.11)

Theorem 2.11. (Vajda’s Identity). For any two natural numbers i, j,

we have

H̄F
k,n+iH̄F

k,n+j − H̄F
k,nH̄F

k,n+i+j = (−1)n+1Fk,i (2.12)
(
0, 2Fk,j+1,−2Fk,j+2,−Fk,j+3 + Fk,j−3 + Fk,j+1 + Fk,j−1

)
. (2.13)

Theorem 2.12. (d’Ocagne’s Identity). Let n be any non-negative inte-

ger and t a natural number. If t ≥ n+ 1, then we have

(i) H̄F
k,tH̄F

k,n+1 − H̄F
k,t+1H̄F

k,n = (−1)n
(
0,−2Fk,t−n−1, 2Fk,t−n−2,

Fk,t−n+3 + Fk,t−n−3 + Fk,t−n+1 + Fk,t−n−1

)
,

(ii) H̄L
k,tH̄L

k,n+1 − H̄L
k,t+1H̄L

k,n = (−1)n+1δ
(
0,−2Fk,t−n−1, 2Fk,t−n−2,

Fk,t−n+3 + Fk,t−n−3 + Fk,t−n+1 + Fk,t−n−1

)
.

Theorem 2.13. For any integer t,

(i) H̄F
2
k,t + H̄L

2
k,t =

2(k2 + 5)

k
H̄L

k,2t + δ(k2 + 5)Lk,2t+3 + 2(−1)t
(k2 + 3)

δ(
H̄L

k,0 − 2
)
,

(ii) H̄F
2
k,t − H̄L

2
k,t =

2(k2 + 3)

δ
H̄L

k,2t + (k2 + 3)(k2 + 2)Lk,2t+3

+ 2(−1)t+1 (k
2 + 5)

δ

(
H̄L

k,0 − 2
)
.
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Theorem 2.14. For any integer r, s ≥ t,

H̄F
k,r+sH̄L

k,r+t − H̄F
k,r+tH̄L

k,r+s = 2(−1)r+t
(
H̄L

k,0 − 2
)
Fk,s−t.

Theorem 2.15. For any integer s, and t,

H̄F
k,s+t + (−1)tH̄F

k,s−t = H̄F
k,sLk,t (2.14)

and

H̄L
k,s+t + (−1)tH̄L

k,s−t = H̄L
k,sLk,t. (2.15)

Theorem 2.16. For any integer s ≤ t,

H̄F
k,sH̄F

k,t − H̄F
k,tH̄F

k,s = 2(−1)sFk,t−s

(
0,−1,−k, 1

)
(2.16)

and

H̄L
k,sH̄L

k,t − H̄L
k,tH̄L

k,s = 2(−1)s+1Fk,t−sδ
(
0,−1,−k, 1

)
. (2.17)

Theorem 2.17. For any integer s ≤ t,

H̄F
k,tH̄L

k,s − H̄F
k,sH̄L

k,t = 2(−1)sFk,t−s

(
H̄L

k,0 − 2
)

(2.18)

and

H̄F
k,tH̄L

k,s − H̄L
k,tH̄F

k,s = 2(−1)sr̄2
[
H̄F

k,t−s − r2
t−s

(
0, 1, k, k2 + 1

)]
.

(2.19)

The proofs of theorem 2.6–2.17 are similar to theorem 2.5, using theorem
2.3 and lemma 2.4.

3. Some Binomial and Congruence Properties of Hyperbolic k-

Fibonacci and k- Lucas Quaternions

In this section, we explore some binomial and congruence properties of
the hyperbolic k -Fibonacci and k -Lucas quaternions.

Lemma 3.1. Let u = r1 or r2. Then

(a) un = uFk,n + Fk,n−1,

(b) u2n = unLk,n − (−1)n,

(c) utn = un
Fk,tn

Fk,n

− (−1)n −
Fk,(t−1)n

Fk,n

,

(d) usnFk,rn − urnFk,sn = (−1)snFk,(r−s)n.

Proof. We prove only (a) and (c) since the proofs of (b) and (d) are similar.
(a) Since r1 and r2 are roots of r2 − kr− 1 = 0, then we have r21 = kr1 + 1
and r22 = kr2 + 1. Therefore, we have

u2n = Fk,nu
n+1 + unFk,n−1

= Fk,n(uFk,n+1 + Fk,n) + unFk,n−1

= uFk,nFk,n+1 + Fk,n−1u
n + F 2

k,n
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= (un − Fk,n−1)Fk,n+1 + Fk,n−1u
n + F 2

k,n

= un(Fk,n+1 + Fk,n−1) + F 2
k,n − Fk,nFk,n−1.

Using Fk,n−1Fk,n+1 − F 2
k,n = (−1)n and Fk,n+1 + Fk,n−1 = Lk,n, we obtain

u2n = Lk,nu
n − (−1)n.

This completes the proof of (a).
(c) If u = r1, then

Fk,tnr
n
1 − (−1)nFk,(t−1)n = (

rtn1 − rtn2
r1 − r2

)rn1 − (r1r2)
n(

r
(t−1)n
1 − r

(t−1)n
2

r1 − r2
)

= (
rn1 − rn2
r1 − r2

)rtn1

= Fk,nr
tn
1 .

This completes the proof of (c). �

Theorem 3.2. For all n, r, s, t ≥ 1, we have

(i) H̄F
k,n+t = Fk,nH̄F

k,t+1 + Fk,n−1H̄F
k,t,

(ii) H̄F
k,2n+t = Lk,nH̄F

k,n+t − (−1)nH̄F
k,t,

(iii) H̄F
k,sn+t =

Fk,sn

Fk,n

H̄F
k,n+t − (−1)n

Fk,(s−1)n

Fk,n

H̄F
k,t,

(iv) H̄F
k,sn+tFk,rn − H̄F

k,rn+tFk,sn = (−1)snH̄F
k,tFk,(r−s)n.

Theorem 3.3. For all n, r, s, t ≥ 1 and Gk,n = H̄F
k,n or H̄L

k,n,

(i) Gk,rn+t =

n∑

i=0

(
n

i

)
F i
k,rF

n−i
k,r−1Gk,i+t,

(ii) Gk,2rn+t =

n∑

i=0

(
n

i

)
(−1)(n−i)(r+1)Li

k,rGk,ri+t,

(iii) Gk,trn+l =
1

Fn
k,r

n∑

i=0

(
n

i

)
(−1)(n−i)(r+1)Fn−i

k,(t−1)rF
i
k,trGk,ri+l,

(iv)

n∑

i=0

(
n

i

)
(−1)iGk,r(n−i)+i+tF

i
k,r = Gk,tF

n
k,r−1,

(v)
n∑

i=0

(
n

i

)
(−1)(n−i)Gk,ri+tF

(n−i)
k,r−1 = Gk,n+tF

n
k,r,

(vi)
n∑

i=0

(
n

i

)
(−1)(n−i)F

(n−i)
k,sm F

(i)
k,rmGk,m[rn+i(s−r)]+t = (−1)smnGk,tF

n
k,(r−s)m.
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Lemma 3.4. If Lk,n is nth k-Lucas sequence and u = r1 or r2, then

1 + ku+ u2(2
n+1+1) = Lk,2n+1u2(2

n+1).

Theorem 3.5. For all t ≥ 1 and Gk,n = H̄F
k,n or H̄L

k,n,

(i) Gk,t+2n+1+2 =
Gk,t + kGk,t+1 + Gk,t+2n+2+2

Lk,2n+1

,

(ii) Gk,n+t =
∑

i+j+s=n

(
n

i, j

)
k−n(−1)j+sLk,2r+1

iGk,2r+1(i+2j)+2(i+j)+t,

(iii) Gk,(2r+2+2)n+t =
∑

i+j+s=n

(
n

i, j

)
kj(−1)j+sLk,2r+1

iGk,(2r+1+2)i+j+t,

(iv) Gk,(2r+1+2)n+t =
∑

i+j+s=n

(
n

i, j

)
kjLk,2r+1

−nGk,(2r+1+2)i+j+t.

Lemma 3.6. If u = r1 or r2, then for ln =
n∑

i=1
Lk,2i and for every n, t ≥ 1,

1 + u2
n

=





ln−1

ln−2
u2

n−1

;

ln−1

ln−t−1
u2

n−t − ln−1

t∑
i=2

1

ln−i

, If t = 2, 3, 4, . . . , n− 2 ;

ln−1u
2 − ln−1

n−1∑
i=2

1

ln−i

.

Theorem 3.7. For ln =
n∑

i=1
Lk,2i , for every n, t ≥ 1 and Gk,n = Fk,n or

Lk,n, we have

(i) Gk,t+2n =





ln−1

ln−2
Gk,t+2n−1 − Gk,t;

ln−1

ln−t−1
Gk,t+2n−s − ln−1

s∑
i=2

(1 +
1

ln−i

)Gk,t,

If s = 2, 3, 4, . . . , n− 2 ;

ln−1Gk,t+2 − ln−1

n−1∑
i=2

(
1

ln−i

+ 1)Gk,t.

(ii) Gk,2rn+t =





∑
i+j=n

(
n

i

)
(
lr−1

lr−2
)i(−1)jGk,2r−1i+t;

∑
i+j=n

(
n

i

)
(
lr−1

lr−s−1
)i(−1)j(

∑s
h=2(1 +

lr−1

lr−h

)jGk,2n−si+t,

If s = 2, 3, 4, . . . , n− 2 ;
∑

i+j=n

(
n

i

)
(lr−1)

i(−1)j(
∑s

h=2(1 +
lr−1

lr−h

)jGk,2i+t.



HYPERBOLIC k- FIBONACCI AND k-LUCAS QUATERNIONS 113

Lemma 3.8. For all t ≥ 1,

(i) r2t1 =
Fk,2t

k
r1
√
δ − Lk,2t−1

k
, r2t2 = −Fk,2t

k
r2
√
δ − Lk,2t−1

k
.

(ii) r2t+1
1 =

Lk,2t+1

k
r1 −

Fk,2t

k

√
δ, r2t+1

2 =
Lk,2t+1

k
r2 +

Fk,2t

k

√
δ.

Theorem 3.9. For s, t ≥ 1,

(i) H̄F
k,s+2t =

Fk,2t

k
H̄L

k,s+1 −
Lk,2t−1

k
H̄F

k,s,

(ii) H̄L
k,s+2t =

Fk,2t

k
δH̄F

k,s+1 −
Lk,2t−1

k
H̄L

k,s,

(iii) H̄F
k,s+2t −

Fk,2t

k
H̄F

k,s+2 +
Fk,2t−2

k
H̄F

k,s = 0,

(iv) H̄L
k,s+2t −

Fk,2t

k
H̄L

k,s+2 +
Fk,2t−2

k
H̄L

k,s = 0.

Theorem 3.10. For all s, t ≥ 1,

(i) H̄F
k,s+2t+1 =

Lk,2t+1

k
H̄F

k,s+1 −
Fk,2t

k
H̄L

k,s,

(ii) H̄L
k,s+2t+1 =

Lk,2t+1

k
H̄L

k,s+1 − δ
Fk,2t

k
H̄F

k,s,

(iii) H̄F
k,s+2t+1 −

Lk,2t+1

k(k2 + 3)
H̄F

k,s+3 +
Fk,2t−2

k(k2 + 3)
H̄L

k,s = 0,

(iv) H̄L
k,s+2t+1 −

Lk,2t+1

k(k2 + 3)
H̄L

k,s+3 +
Fk,2t−2

k(k2 + 3)
δH̄F

k,s = 0.

Theorem 3.11. For n, s, t ≥ 1,

(i)
n∑

i=0

(
n

i

)
k(i−n)(Lk,2t−1)

(n−i)H̄F
k,2ti+s

=

{
k−n(Fk,2t)

nδ
n

2 H̄F
k,n+s, if n is even;

k−n(Fk,2t)
nδ

n−1

2 H̄L
k,n+s, if n is odd,

(ii)

n∑

i=0

(
n

i

)
k(i−n)(Lk,2t−1)

(n−i)H̄L
k,2ti+s

=

{
k−n(Fk,2t)

nδ
n

2 H̄L
k,n+s, if n is even;

k−n(Fk,2t)
nδ

n+1

2 H̄F
k,n+s, if n is odd.

(iii)

n∑

i=0

(
n

i

)
(−1)(n−i)k−i(Lk,2t+1)

iH̄F
k,2t(n−i)+n

=

{
δ

n

2 H̄F
k,0, if n is even;

δ
n−1

2 H̄L
k,0, if n is odd,
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(iv)
n∑

i=0

(
n

i

)
(−1)(n−i)k−i(Lk,2t+1)

iH̄L
k,2t(n−i)+n

=

{
δ

n

2 H̄L
k,0, if n is even;

δ
n+1

2 H̄F
k,0, if n is odd.

The following theorem deals with congruence properties of the hyperbolic
k -Fibonacci and k -Lucas quaternions.

Theorem 3.12. For n, t ≥ 1 and Gk,n = H̄F
k,n or H̄L

k,n, we have

(i) Gk,n+t −
n∑

j=0

(
n

j

)
k−n(−1)nGk,(2r+2+2)j+t ≡ 0 (modLk,2r+1),

(ii) Gk,(2r+2+2)n+t −
n∑

j=0

(
n

j

)
kj(−1)nGk,j+t ≡ 0 (modLk,2r+1).

Proof. From theorem (3.5; (ii)), for all n, t ≥ 1 and Gk,n = H̄F
k,n or H̄L

k,n,
we have

Gk,n+t =
∑

i+j+s=n;i 6=0

(
n

i, j

)
k−n(−1)j+sLk,2r+1

iGk,2r+1(i+2j)+2(i+j)+t

+
∑

i+j+s=n;i=0

(
n

i, j

)
k−n(−1)j+sLk,2r+1

iGk,2r+1(i+2j)+2(i+j)+t,

=
∑

i+j+s=n;i 6=0

(
n

i, j

)
k−n(−1)j+sLk,2r+1

iGk,2r+1(i+2j)+2(i+j)+t

+

n∑

j=0

(
n

j

)
k−n(−1)nGk,(2r+2+2)j+t.

Gk,n+t −
n∑

j=0

(
n

j

)
k−n(−1)nGk,(2r+2+2)j+t

=
∑

i+j+s=n;i 6=0

(
n

i, j

)
k−n(−1)j+sLk,2r+1

iGk,2r+1(i+2j)+2(i+j)+t,

∴ Lk,2 divides (Gk,n+t −
n∑

j=0

(
n

j

)
k−n(−1)nGk,(2r+2+2)j+t),

∴ Gk,n+t −
n∑

j=0

(
n

j

)
k−n(−1)nGk,(2r+2+2)j+t ≡ 0 (modLk,2).

This completes the proof of (i).
The proof of (ii) is similar to (i), using theorem (3.5; (iii)). �
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4. Conclusion

In this paper, we defined the hyperbolic k -Fibonacci and k -Lucas quater-
nions and presented some well-known identities such as generating func-
tions, Binet formula, Catalan’s identity, Cassini’s identity, Vajda’s identity
and d’Ocagne’s identity for these quaternions. In the future, we can extend
this approach to k -Fibonacci and k -Lucas hyperbolic sedenions.
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Abstract. In this paper we have proved some fixed point theorems
for integral type contraction condition on 2-Banach space.

1. Introduction

In a series of papers, Gähler ([4]-[6]) initiated the concept of 2-norm and
2-Banach spaces. Gähler studied the topological property of 2-metric as well
as 2-normed spaces. Interested research workers can see the properties in
the papers ([4]-[6]). It was Branciari [2] who established fixed point theorem
for contractive mapping of integral type on metric spaces. Thereafter, many
authors have used this result in 2-metric spaces. Liu et. al. [10], Okeke et.
al. [14], Moradi [11], Sarwar [17], Badehian [1], Liu et. al.[9] have worked
on integral type contractive condition in metric space. Also many authors
have investigated fixed point theorems using various contractive conditions
on 2-Banach space. Gangopadhyay et. al.[7], Okeke et. al.[12], Das et.
al.[3], Saluja [16], Okeke and Olaleru [13] have proved fixed point theorems
on 2-Banach spaces. Gupta et. al. [8], Prajapati et. al. [15] have worked
on 2-Banach space for contractive condition of integral type mappings. In
this paper we have proved some unique common fixed point theorems for
integral type contractive condition on 2-Banach space. We also have used
F -contraction to obtain the results and have given some corollaries of these
results.

2. Definitions

We have collected the following definitions from Gähler [4].

Definition 2.1. (2-norm) LetX be a linear space and ‖., .‖ be a real valued
function defined on X, where

i) ‖a, b‖ = 0 if and only if a and b are linearly dependent;
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ii) ‖a, b‖ = ‖b, a‖;
iii)‖a, xb‖ = |x|‖a, b‖;
iv)‖a, b+ c‖ ≤ ‖a, b‖+ ‖a, c‖

for all a, b, c ∈ X and x ∈ R. Then ‖., .‖ is called a 2-norm and the pair
(X, ‖., .‖) is called a 2-normed space.

Definition 2.2. (Convergent) A sequence {xn} in a 2-normed space X is
said to be convergent if there is a point x ∈ X such that limn→∞ ‖xn −
x, a‖ = 0 for all a ∈ X.

Definition 2.3. (Cauchy Sequence) A sequence {xn} in a 2-normed space
X is called a Cauchy sequence if limn,m→∞ ‖xn − xm, a‖ = 0 for all a ∈ X.

Definition 2.4. (2-Banach Space) A linear 2-normed space is said to be
complete if every Cauchy sequence in X is convergent in X. Then we say
X is a 2-Banach Space.

Wardowski[18] has defined F -contraction in metric space which we can
defined it in 2-normed space as follows:

Definition 2.5. (F -contraction) Let F be the collection of all functions
F = {F : R+ → R} satisfying the following conditions:

i) F is strictly increasing;
ii) for all sequence {αn} ∈ R, limn→∞ αn = 0 if and only if limn→∞ F (αn) =

−∞;
iii) there exists 0 < k < 1 such that limα→0+ α

nF (α) = 0.
Then a function T : X → X is said to be F -contraction if there exists

a function F ∈ F such that for all x, y, a ∈ X,

τ ∈ R+ ⇒ τ + F (‖Tx− Ty, a‖) ≤ F (‖x− y, a‖).

3. Preliminaries

Throughout the paper we denote the followings:
i) We write X as a 2-Banach space.
ii) Φ = {φ where φ : R+ → R+ is Lebesgue integrable, summable on

each compact subset of R+ satisfying the conditions:
a)

∫ ǫ
0 φ(t)dt > 0 for each ǫ and

b)
∫ a+b
0 φ(t)dt ≤

∫ a
0 φ(t)dt+

∫ b
0 φ(t)dt}.

iii) ψ : R+ → R+ be strictly increasing such that

ψ(0) = 0. (3.1)

iv) η : R+
3 → R+ defined by

η(s, t, u) = α
min{s, t, u}

1 + max{s, t, u}
+ β

s+ t

1 + u
(3.2)

∀s, t, u ∈ R+ and α, β are arbitrary constants.
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v) F : F ∈ F.
We have used the following lemmas to prove the main results.

Lemma 3.1. [9] Let φ ∈ Φ and {sn} be a of non-negative sequence with
limn→∞ sn = s. Then

limn→∞

∫ sn
0 φ(t)dt =

∫ s
0 φ(t)dt.

Lemma 3.2. [9] Let φ ∈ Φ and {sn} be a of non-negative sequence. Then
limn→∞

∫ sn
0 φ(t)dt = 0 if and only if limn→∞ sn = 0.

4. Main Results

In this section we have proved some results as follows:

Theorem 4.1. Let {Ti}
∞
i=1 be the sequence of self-maps on X satisfying the

relation ∫ ‖Tix−Tjy,a‖
0 φ(t)dt ≤

∫M(x,y,a)
0 φ(t)dt,

where
M(x, y, a) = α‖x−y, a‖+βmax{‖x−Tix, a‖, ‖y−Tjy, a‖}+γmax{‖x−

y, a‖, ‖x − Tjy, a‖}, α + β + γ < 1. Then {Ti}
∞
i=1 have a unique common

fixed point.

Proof. For x0 ∈ X, we get a sequence {xn} in X for a fixed i ∈ N by setting
xn+1 = Tixn for all n ∈ N ∪ {0}.

Since xn = Tixn ⇒ xn+1 = xn, then xn is a common fixed point of
{Ti}

∞
i=1 and the proof is over. So we assume that xn+1 6= xn.

Now,∫ ‖xn+1−xn,a‖}
0 φ(t)dt =

∫ ‖Tixn−Tjxn−1,a‖
0 φ(t)dt

≤
∫M(xn,xn−1,a)
0 φ(t)dt

=
∫ α‖xn−xn−1,a‖+β‖xn−xn+1,a‖+γ‖xn−xn−1,a‖
0 φ(t)dt [by simplifying ]

=
∫ (α+β+γ)‖xn−xn−1,a‖
0 φ(t)dt

≤
∫ (α+β+γ)2‖xn−1−xn−2,a‖
0 φ(t)dt
...

≤
∫ (α+β+γ)n‖x1−x0,a‖
0 φ(t)dt.

Therefore,

limn→∞

∫ ‖xn+1−xn,a‖
0 φ(t)dt ≤ limn→∞

∫ (α+β+γ)n‖x1−x0,a‖
0 φ(t)dt = 0 [

by Lemma 3.1 ].
By Lemma 3.2 we get, limn→∞ ‖xn+1 − xn, a‖ = 0.
Again let, p, n,m ∈ N;n = p+m.
Then,

limn,m→∞

∫ ‖xn+1−xm+1,a‖
0 φ(t)dt = limn,m→∞

∫ ‖Tixn−Tjxm,a‖
0 φ(t)dt

≤ limn,m→∞

∫M(xn,xm,a)
0 φ(t)dt

= limn,m→∞

∫ α‖xn−xm,a‖+γ‖xn−xm+1,a‖
0 φ(t)dt [ by simplifying M(xn, xm, a)

and since limn,m→∞ ‖xn − xm, a‖ ≤ limn,m→∞ ‖xn − xm+1, a‖
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+ limn,m→∞ ‖xm+1 − xm, a‖ = limn,m→∞ ‖xn − xm+1, a‖]

≤ limn,m→∞

∫ (α+γ)‖xn−xm+1,a‖
0 φ(t)dt

≤ limn,m→∞

∫ (α+γ)2‖xn−1−xm+1,a‖
0 φ(t)dt

...
≤ limn,m→∞

∫ (α+γ)p+1‖xn−p−xm+1,a‖
0 φ(t)dt

= limn,m→∞

∫ (α+γ)p+1‖xm−xm+1,a‖
0 φ(t)dt

= 0.
which implies, limn,m→∞ ‖xn+1 − xm+1, a‖ = 0 [ By Lemma 3.2 ].
Therefore {xn} is a Cauchy sequence in X. Thus there exists an x ∈ X

such that limn→∞ ‖xn − x, a‖ = 0.
Since

limn→∞ ‖Tix− x, a‖ ≤ limn→∞ ‖Tix− xn, a‖+ limn→∞ ‖xn − x, a‖,
we get

limn→∞

∫ ‖Tix−x,a‖
0 φ(t)dt ≤ limn→∞

∫ ‖Tix−xn,a‖
0 φ(t)dt

= limn→∞

∫ ‖Tix−Tjxn−1,a‖
0 φ(t)dt

≤ limn→∞

∫M(x,xn−1,a)
0 φ(t)dt

= limn→∞

∫ α.0+β‖x−Tix,a‖+γ.0
0 φ(t)dt [ by simplifying M(x, xn−1, a) ]

implies, limn→∞ ‖Tix− x, a‖ ≤ limn→∞ β‖x− Tix, a‖
implies, ‖x− Tix, a‖ = 0 implies, Tix = x.

To show the uniqueness of x, let y be another common fixed point.
Now∫ ‖x−y,a‖

0 φ(t)dt =
∫ ‖Tix−Tjy,a‖
0 φ(t)dt

≤
∫ α‖x−y,a‖+βmax{‖x−Tix,a‖,‖y−Tjy,a‖}+γmax{‖x−y,a‖,‖x−Tjy,a‖}
0 φ(t)dt

=
∫ α‖x−y,a‖+βmax{‖x−x,a‖,‖y−y,a‖}+γmax{‖x−y,a‖,‖x−y,a‖}
0 φ(t)dt

=
∫ (α+γ)‖x−y,a‖
0 φ(t)dt

implies, ‖x− y, a‖ ≤ (α+ γ)‖x− y, a‖
implies, ‖x− y, a‖ = 0 implies, x = y.
Thus {Ti}

∞
i=1 have a unique common fixed point. �

Corollary 4.2. Let T1 and T2 be two self-maps on X satisfying the relation∫ ‖T1x−T2y,a‖
0 φ(t)dt ≤

∫M(x,y,a)
0 φ(t)dt,

where
M(x, y, a) = α‖x−y, a‖+βmax{‖x−T1x, a‖, ‖y−T2y, a‖}+γmax{‖x−

y, a‖, ‖x−T2y, a‖}, α+ β+ γ < 1. Then T1 and T2 have a unique common
fixed point.

Proof. Putting Ti = T1 and Tj = T2 in the above Theorem 4.1 we get the
result. �

Corollary 4.3. Let T be a self-map on X satisfying the relation∫ ‖Tx−Ty,a‖
0 φ(t)dt ≤

∫M(x,y,a)
0 φ(t)dt,
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where
M(x, y, a) = α‖x−y, a‖+βmax{‖x−Tx, a‖, ‖y−Ty, a‖}+γmax{‖x−

y, a‖, ‖x − Ty, a‖}, α + β + γ < 1. Then T have a unique common fixed
point.

Proof. Putting Ti = Tj = T in the above Theorem 4.1 we get the required
result. �

Theorem 4.4. Let {Ti}
∞
i=1 be the sequence of self-maps on X satisfying the

relation ∫ ‖Tix−Tjy,a‖
0 φ(t)dt ≤

∫m(x,y,a)
0 φ(t)dt,

where
m(x, y, a) = α

‖x−Tix,a‖+‖x−Tjy,a‖
1+‖y−Tix,a‖

+ βmax{‖x− y, a‖, ‖y− Tjy, a‖, ‖x−

Tix, a‖} + γmin{‖x − Tjy, a‖, ‖y − Tix, a‖}, α + β + γ < 1. Then {Ti}
∞
i=1

have a unique common fixed point.

Proof. Since each of Ti is a self-map, we construct a sequence {xn} such
that xn+1 = Tixn for all n ∈ N ∪ {0} for a fixed i ∈ N where x0 ∈ X is an
initial approximation.

If xn+1 = Tixn i.e., Tixn = xn, then xn is common fixed point of {Ti}
∞
i=1

and the proof is completed. So we assume that xn+1 6= xn for all n ∈ N∪{0}.
Now,∫ ‖xn+1−xn,a‖
0 φ(t)dt =

∫ ‖Tixn−Tjxn−1,a‖
0 φ(t)dt

=

∫ m(xn,xn−1,a)

0
φ(t)dt, (4.1)

where
m(xn, xn−1, a)

= α
‖xn−Tixn,a‖+‖xn−Tjxn−1,a‖

1+‖xn−1−Tixn,a‖
+βmax{‖xn−xn−1, a‖, ‖xn−1−Tjxn−1, a‖, ‖xn−

Tixn, a‖}+ γmin{‖xn − Tjxn−1, a‖, ‖xn−1 − Tixn, a‖}

= α
‖xn−xn+1,a‖+‖xn−xn,a‖

1+‖xn−1−xn+1,a‖
+ βmax{‖xn − xn−1, a‖, ‖xn−1 − xn, a‖, ‖xn −

xn+1, a‖}+ γmin{‖xn − xn, a‖, ‖xn−1 − xn+1, a‖}
≤ α‖xn − xn+1, a‖+ βmax{‖xn − xn−1, a‖, ‖xn − xn+1, a‖}+ γ.0
If ‖xn − xn−1, a‖ ≤ ‖xn+1 − xn, a‖, then m(xn, xn−1, a) ≤ (α+ β)‖xn+1 −
xn, a‖.
Therefore from (4.1),we get∫ ‖xn+1−xn,a‖

0 φ(t)dt ≤
∫ (α+β)‖xn+1−xn,a‖
0 φ(t)dt

implies, ‖xn+1 − xn, a‖ ≤ (α+ β)‖xn+1 − xn, a‖
implies, 1 ≤ (α+ β),
which is a contradiction.
Therefore ‖xn+1 − xn, a‖ ≤ ‖xn − xn−1, a‖. Thus {‖xn+1 − xn, a‖} is a
monotone decreasing sequence of real numbers and bounded below. There-
fore it is convergent. Suppose limn→∞ ‖xn+1 − xn, a‖ = r.
Then
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∫ r
0 φ(t)dt = limn→∞

∫ ‖xn+1−xn,a‖
0 φ(t)dt ≤

∫ (α+β)‖xn−xn−1,a‖
0 φ(t)dt =∫ (α+β)r

0 φ(t)dt
implies, r ≤ (α+ β)r i.e., r = 0.
Thus limn→∞ ‖xn+1 − xn, a‖ = 0.
Now we show that {xn} is a Cauchy sequence.

Let n,m ∈ N. Then
∫ ‖xn+1−xm+1,a‖

0
φ(t)dt =

∫ ‖Tixn−Tjxm,a‖

0
φ(t)dt ≤

∫ m(xn,xm,a)

0
φ(t)dt

(4.2)
where

m(xn, xm, a) = α
‖xn−Tixn,a‖+‖xn−Tjxm,a‖

1+‖xm−Tixn,a‖
+ βmax{‖xn − xm, a‖, ‖xm −

Tjxm, a‖, ‖xn − Tixn, a‖}+ γmin{‖xn − Tjxm, a‖, ‖xm − Tixn, a‖}
≤ α{‖xn−xn+1, a‖+‖xn−xm+1, a‖}+βmax{‖xn−xm, a‖, ‖xm−xm+1, a‖, ‖xn−
xn+1, a‖}+ γmin{‖xn − xm+1, a‖, ‖xm − xn+1, a‖}
≤ α{‖xn − xn+1, a‖ + ‖xn − xm, a‖ + ‖xm − xm+1, a‖} + βmax{‖xn −
xm, a‖, ‖xm − xm+1, a‖, ‖xn − xn+1, a‖} + γmin{‖xn − xm, a‖ + ‖xm −
xm+1, a‖, ‖xm − xn, a‖+ ‖xn − xn+1, a‖}.
Taking limit as n,m→ ∞, we get

limn,m→∞m(xn, xm, a)
≤ α limn,m→∞ ‖xn−xm, a‖+β limn,m→∞ ‖xn−xm, a‖+γ limn,m→∞ ‖xn−
xm, a‖
= (α+ β + γ) limn,m→∞ ‖xn − xm, a‖.
So from (4.2), we get,

limn,m→∞

∫ ‖xn+1−xm+1,a‖
0 φ(t)dt ≤ limn,m→∞

∫ (α+β+γ)‖xn−xm,a‖
0 φ(t)dt

implies, limn,m→∞ ‖xn+1 − xm+1, a‖ ≤ (α+ β + γ) limn,m→∞ ‖xn − xm, a‖
implies, limn,m→∞ ‖xn − xm, a‖ = 0.
Thus {xn} is a Cauchy sequence in X. Since X is complete, there exists an
x ∈ X such that limn→∞ ‖xn − x, a‖ = 0.
Again∫ ‖Tix−x,a‖

0 φ(t)dt = limn→∞

∫ ‖Tix−xn,a‖
0 φ(t)dt

= lim
n→∞

∫ ‖Tix−Tjxn−1,a‖

0
φ(t)dt ≤ lim

n→∞

∫ m(x,xn−1,a)

0
φ(t)dt, (4.3)

where,

m(x, xn−1, a) = α
‖x−Tix,a‖+‖x−Tjxn−1,a‖

1+‖xn−1−Tix,a‖
+βmax{‖x−xn−1, a‖, ‖xn−1−

Tjxn−1, a‖, ‖x− Tix, a‖}+ γmin{‖x− Tjxn−1, a‖, ‖xn−1 − Tix, a‖}
≤ α‖x− Tix, a‖+ ‖x− xn, a‖+ βmax{‖x− xn−1, a‖, ‖xn−1 − xn, a‖, ‖x−
Tix, a‖}+ γmin{‖x− xn, a‖, ‖xn−1 − Tix, a‖}.
Therefore,

limn→∞m(x, xn−1, a) ≤ α‖x − Tix, a‖ + β‖x − Tix, a‖ + γ.0 = (α +
β)‖Tix− x, a‖.
Therefore from equation (4.3) we get
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∫ ‖Tix−x,a‖
0 φ(t)dt ≤

∫ (α+β)‖Tix−x,a‖
0 φ(t)dt

implies, ‖Tix− x, a‖ ≤ (α+ β)‖Tix− x, a‖
implies, ‖Tix− x, a‖ = 0 implies, Tix = x.

Thus x is a common fixed point of {Ti}
∞
i=1.

To prove the uniqueness , let y be another common fixed point.
Then ∫ ‖x−y,a‖

0
φ(t)dt =

∫ ‖Tix−Tjy,a‖

0
φ(t)dt ≤

∫ m(x,y,a)

0
φ(t)dt, (4.4)

where
m(x, y, a) = α

‖x−Tix,a‖+‖x−Tjy,a‖
1+‖y−Tix,a‖

+ βmax{‖x− y, a‖, ‖y− Tjy, a‖, ‖x−

Tix, a‖}+ γmin{‖x− Tjy, a‖, ‖y − Tix, a‖}
≤ α{‖x − x, a‖ + ‖x − y, a‖} + βmax{‖x − y, a‖, ‖y − y, a‖, ‖x − x, a‖} +
γmin{‖x− y, a‖, ‖y − x, a‖}
= (α+ β + γ)‖x− y, a‖.
Then from (4.4) we get∫ ‖x−y,a‖

0 φ(t)dt ≤
∫ ‖x−y,a‖
0 φ(t)dt

implies, ‖x− y, a‖ ≤ (α+ β + γ)‖x− y, a‖ = 0
implies, x = y.

Hence the theorem. �

Corollary 4.5. Let T1 and T2 be two self-maps on X satisfying the relation∫ ‖T1x−T2y,a‖
0 φ(t)dt ≤

∫m(x,y,a)
0 φ(t)dt,

where
m(x, y, a) = α

‖x−T1x,a‖+‖x−T2y,a‖
1+‖y−T1x,a‖

+βmax{‖x− y, a‖, ‖y−T2y, a‖, ‖x−

T1x, a‖} + γmin{‖x − T2y, a‖, ‖y − T1x, a‖}, α + β + γ < 1. Then T1 and
T2 have a unique common fixed point.

Proof. Replacing Ti by T1 and Tj by T2 in Theorem 4.4 we get the result.
�

Corollary 4.6. Let T be a self-map on X satisfying the relation∫ ‖Tx−Ty,a‖
0 φ(t)dt ≤

∫m(x,y,a)
0 φ(t)dt,

where
m(x, y, a) = α

‖x−Tx,a‖+‖x−Ty,a‖
1+‖y−Tx,a‖ + βmax{‖x − y, a‖, ‖y − Ty, a‖, ‖x −

Tx, a‖} + γmin{‖x − Ty, a‖, ‖y − Tx, a‖}, α + β + γ < 1. Then T have a
unique common fixed point.

Proof. Replacing Ti and Tj by T in Theorem 4.4 we get the result. �

Theorem 4.7. Let {Ti}
∞
i=1 be a sequence of self-maps on X satisfying the

relation,∫ ψ(‖Tix−Tjy,a‖)
0 φ(t)dt ≤

∫ η(‖x−y,a‖,‖x−Tjy,a‖,‖y−Tix,a‖)
0 φ(t)dt,

where α+2β+γ < 1 , ψ(t) satisfy (3.1) and η(t) satisfy (3.2). Then {Ti}
∞
i=1

have a unique common fixed point.
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Proof. Let us construct a sequence {xn} in X for a fixed i ∈ N such that
xn+1 = Tixn with an initial approximation x0 ∈ X. If xn = Tixn i.e.,
xn+1 = xn, then xn is a common fixed point of {Ti}

∞
i=1 and the proof is

over. So we assume that xn+1 6= xn.
Since∫ ψ(‖xn+1−xn,a‖)

0 φ(t)dt =
∫ ψ(‖Tixn−Tjxn−1,a‖)
0 φ(t)dt

≤

∫ η(‖xn−xn−1,a‖,‖xn−Tjxn−1,a‖,‖xn−1−Tixn,a‖)

0
φ(t)dt (4.5)

Now,
η(‖xn − xn−1, a‖, ‖xn − Tjxn−1, a‖, ‖xn−1 − Tixn, a‖)

= α(
min{‖xn−xn−1,a‖,‖xn−Tjxn−1,a‖,‖xn−1−Tixn,a‖}

1+max{‖xn−xn−1,a‖,‖xn−Tjxn−1,a‖,‖xn−1−Tixn,a‖}
)+β

‖xn−xn−1,a‖+‖xn−Tjxn−1,a‖
1+‖xn−1−Tixn,a‖

= α( min{‖xn−xn−1,a‖,‖xn−xn,a‖,‖xn−1−xn+1,a‖}
1+max{‖xn−xn−1,a‖,‖xn−xn,a‖,‖xn−1−xn+1,a‖}

) + β
‖xn−xn−1,a‖+‖xn−xn,a‖

1+‖xn−1−xn+1,a‖

≤ α( 0
1+‖xn−1−xn+1,a‖

) + β
‖xn−xn−1,a‖

1+‖xn−1−xn+1,a‖
= β‖xn − xn−1, a‖

≤ ‖xn − xn−1, a‖. (4.6)

From equation (4.5) we get,∫ ψ(‖xn+1−xn,a‖)
0 φ(t)dt ≤

∫ ψ(‖xn−xn−1,a‖)
0 φ(t)dt

implies, ψ(‖xn+1 − xn, a‖) ≤ ψ(‖xn − xn−1, a‖)
implies, ‖xn+1 − xn, a‖ ≤ ‖xn − xn−1, a‖.
Thus {‖xn+1 − xn, a‖} is a monotone decreasing bounded below sequence
of real numbers. Therefore it is convergent.

Suppose, limn→∞ ‖xn+1−xn, a‖ = r implies, limn→∞ ψ(‖xn+1−xn, a‖) =
ψ(r).
Now,∫ ψ(r)

0 φ(t)dt = limn→∞

∫ ψ(‖xn+1−xn,a‖)
0 φ(t)dt

≤ limn→∞

∫ ψ(‖xn+1−xn,a‖)
0 φ(t)dt [ by (4.6)]

≤
∫ ψ(r)
0 φ(t)dt

implies, ψ(r) = 0 implies, r = 0 i.e., limn→∞ ‖xn+1 − xn, a‖ = 0.
Let, n > m ∈ N.

Then∫ ψ(‖xn+1−xm+1,a‖)
0 φ(t)dt =

∫ ψ(‖Tixn−Tjxm,a‖)
0 φ(t)dt

≤

∫ η(‖xn−xm,a‖,‖xn−Tjxm,a‖,‖xm−Tixn,a‖)

0
φ(t)dt. (4.7)

Now,
η(‖xn − xm, a‖, ‖xn − Tjxm, a‖, ‖xm − Tixn, a‖)

= α
min{‖xn−xm,a‖,‖xn−Tjxm,a‖,‖xm−Tixn,a‖}

1+max{‖xn−xm,a‖,‖xn−Tjxm,a‖,‖xm−Tixn,a‖}
+ β

‖xn−xm,a‖+‖xn−Tjxm,a‖
1+‖xm−Tixn,a‖

= α
min{‖xn−xm,a‖,‖xn−xm+1,a‖,‖xm−xn+1,a‖}

1+max{‖xn−xm,a‖,‖xn−xm+1,a‖,‖xm−xn+1,a‖}
+ β

‖xn−xm,a‖+‖xn−xm+1,a‖
1+‖xm−xn+1,a‖

≤ α
min{‖xn−xm,a‖,‖xn−xm,a‖+‖xm−xm+1,a‖,‖xm−xn,a‖+‖xn−xn+1,a‖}

1+max{‖xn−xm,a‖,‖xn−xm,a‖+‖xm−xm+1,a‖,‖xm−xn,a‖+‖xn−xn+1,a‖}
+β(‖xn−

xm, a‖+ ‖xn − xm+1, a‖)
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≤ α‖xn − xm, a‖+ β(‖xn − xm, a‖+ ‖xn − xm, a‖+ ‖xm − xm+1, a‖)
= α‖xn − xm, a‖+ 2β‖xn − xm, a‖+ β‖xm − xm+1, a‖
= (α+ 2β)‖xn − xm, a‖+ β‖xm − xm+1, a‖.
Therefore from (4.7) we get

limn,m→∞

∫ ψ(‖xn+1−xm+1,a‖)
0 φ(t)dt

≤ limn,m→∞

∫ ψ((α+2β)‖xn−xm,a‖+β‖xm−xm+1,a‖)
0 φ(t)dt

implies, limn,m→∞ ψ(‖xn+1−xm+1, a‖) ≤ limn,m→∞[ψ((α+2β)‖xn−xm, a‖+
β‖xm − xm+1, a‖)]
implies, limn,m→∞ ‖xn+1 − xm+1, a‖ ≤ limn,m→∞[(α + 2β)‖xn − xm, a‖ +
β‖xm − xm+1, a‖]
implies, limn,m→∞ ‖xn − xm, a‖ ≤ (α+ 2β) limn,m→∞ ‖xn − xm, a‖
implies, limn,m→∞ ‖xn − xm, a‖ = 0.

Therefore {xn} is a Cauchy sequence. Thus there exists an x ∈ X such
that limn→∞ ‖xn − x, a‖ = 0.
Again,

limn→∞

∫ ψ(‖Tix−x,a‖)
0 φ(t)dt ≤ limn→∞

∫ ψ(‖Tix−xn,a‖+‖xn−x,a‖)
0 φ(t)dt

= limn→∞

∫ ψ(‖Tix−Tjxn−1,a‖)
0 φ(t)dt

≤ lim
n→∞

∫ ψ(η(‖x−xn−1,a‖,‖x−Tjxn−1,a‖,‖xn−1−Tix‖))

0
φ(t)dt. (4.8)

Now,
limn→∞ η(‖x− xn−1, a‖, ‖x− Tjxn−1, a‖, ‖xn−1 − Tix‖)

= limn→∞ α
min{‖x−xn−1,a‖,‖x−Tjxn−1,a‖,‖xn−1−Tix‖}

1+max{‖x−xn−1,a‖,‖x−Tjxn−1,a‖,‖xn−1−Tix‖}

+ limn→∞ β
‖x−xn−1,a‖+‖x−Tjxn−1,a‖

1+‖xn−1−Tix,a‖

= limn→∞ α 0
1+‖xn−1−Tix,a‖

+ β.0

= 0.
Therefore from(4.8) we get,

limn→∞

∫ ψ(‖Tix−x,a‖)
0 φ(t)dt ≤ limn→∞

∫ ψ(0)
0 φ(t)dt

implies, ψ(‖Tix− x, a‖) ≤ ψ(0) = 0
implies, ‖Tix− x, a‖ = 0 i.e., Tix = x.
Thus x is a common fixed point of {Ti}

∞
i=1.

Again let y be another common fixed point. Then∫ ψ(‖x−y,a‖)
0 φ(t)dt =

∫ ψ(‖Tix−Tjy,a‖)
0 φ(t)dt

≤
∫ η(‖x−y,a‖,‖x−Tjy,a‖,‖y−Tix,a‖)
0 φ(t)dt

=

∫ η(‖x−y,a‖,‖x−y,a‖,‖y−x,a‖)

0
φ(t)dt,

(4.9)
where,

η(‖x− y, a‖, ‖x− y, a‖, ‖y − x, a‖)

= α( min{‖x−y,a‖,‖x−y,a‖,‖y−x,a‖}
1+max{‖x−y,a‖,‖x−y,a‖,‖y−x,a‖}) + β

‖x−y,a‖+‖x−y,a‖
1+‖y−Tix,a‖
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≤ α‖x− y, a‖+ 2β‖x− y, a‖ = (α+ 2β)‖x− y, a‖.
Therefore from equation (4.9) we get,∫ ψ(‖x−y,a‖)

0 φ(t)dt ≤
∫ ψ((α+2β)‖x−y,a‖)
0 φ(t)dt

implies, ψ(‖x− y, a‖) ≤ ψ((α+ 2β)‖x− y, a‖)
implies, ‖x− y, a‖ ≤ (α+ 2β)‖x− y, a‖
implies, ‖x− y, a‖ = 0 implies, x = y.
Thus x is a unique common fixed point of {Ti}

∞
i=1. �

Corollary 4.8. Let T1 and T2 be two self-maps on X satisfying the relation,∫ ψ(‖T1x−T2y,a‖)
0 φ(t)dt ≤

∫ η(‖x−y,a‖,‖x−T2y,a‖,‖y−T1x,a‖)
0 φ(t)dt,

where,
α+ 2β + γ < 1 , ψ(t) satisfy (3.1) and η(t) satisfy (3.2). Then T1 and

T2 have a unique common fixed point.

Proof. By putting T1 in place of Ti and T2 in place of Tj in the above
Theorem 4.7, we get the result. �

Corollary 4.9. Let T be a self-map on X satisfying the relation,∫ ψ(‖Tx−Ty,a‖)
0 φ(t)dt ≤

∫ η(‖x−y,a‖,‖x−Ty,a‖,‖y−Tx,a‖)
0 φ(t)dt,

where,
α+ 2β + γ < 1 , ψ(t) satisfy (3.1) and η(t) satisfy (3.2). Then T have

a unique common fixed point.

Proof. By putting T in place of Ti in the above Theorem 4.7, we get the
result. �

Theorem 4.10. Let{Ti}
∞
i=1 be the sequence of self-maps on X satisfy the

relation ∫ ψ(‖Tix−Tjy,a‖)
0 φ(t)dt ≤

∫ ψ(η(x,y,a))
0 φ(t)dt,

where,
η(x, y, a) = α‖x− y, a‖+ βmax{‖x− y, a‖, ‖x− Tjy, a‖, ‖y − Tix, a‖}

+γ
min{‖x−Tjy,a‖,‖y−Tix,a‖}

1+max{‖x−Tjy,a‖,‖y−Tix,a‖}
+δ(‖x−y, a‖+‖y−Tjy, a‖), α+β+γ+2δ < 1.

Then {Ti}
∞
i=1 have a unique common fixed point.

Proof. Construct the sequence {xn} as Theorem 4.7 where xn+1 = Tixn.
Since xn = Tixn i.e., xn+1 = xn, then xn is a common fixed point of {Ti}

∞
i=1

and the proof is completed. So we assume that xn 6= xn+1.
Now∫ ψ(‖xn+1−xn,a‖)

0 φ(t)dt =
∫ ψ(‖Tixn−Tjxn−1,a‖)
0 φ(t)dt

≤

∫ φ(η(xn,xn−1,a))

0
φ(t)dt, (4.10)

where
η(xn, xn−1, a)

= α‖xn−xn−1, a‖+βmax{‖xn−xn−1, a‖, ‖xn−Tixn, a‖, ‖xn−1−Tjxn−1, a‖}



INTEGRAL TYPE CONTRACTION CONDITION IN 2-BANACH SPACE 127

+γ
min{‖xn−Tjxn−1,a‖,‖xn−1−Tixn,a‖}

1+max{‖xn−Tjxn−1,a‖,‖xn−1−Tixn,a‖}
+δ(‖xn−Tjxn−1, a‖+‖xn−1−Tjxn−1, a‖)

= α‖xn− xn−1, a‖+ βmax{‖xn− xn−1, a‖, ‖xn− xn+1, a‖, ‖xn−1 − xn, a‖}

+ γ
min{‖xn−xn,a‖,‖xn−1−xn+1,a‖}

1+max{‖xn−xn,a‖,‖xn−1−xn+1,a‖}
+ δ(‖xn − xn, a‖+ ‖xn−1 − xn, a‖)

= α‖xn − xn−1, a‖+ βmax{‖xn − xn−1, a‖, ‖xn − xn+1, a‖}

+γ
0

1 + ‖xn−1 − xn+1, a‖
+ δ‖xn − xn−1, a‖ (4.11)

If ‖xn − xn−1, a‖ ≤ ‖xn − xn+1, a‖, then from (4.11)
η(xn, xn−1, a) ≤ (α+ β + δ)‖xn − xn+1, a‖.

So from (4.10) we get∫ ψ(‖xn+1−xn,a‖)
0 φ(t)dt ≤

∫ ψ((α+β+δ)‖xn+1−xn,a‖)
0 φ(t)dt

implies, ψ(‖xn+1 − xn, a‖) ≤ ψ((α+ β + δ)‖xn+1 − xn, a‖)
implies, ‖xn+1 − xn, a‖ ≤ (α+ β + δ)‖xn+1 − xn, a‖
implies, 1 ≤ α+ β + δ, which is a contradiction.
Therefore,

‖xn−xn+1, a‖ ≤ ‖xn−xn−1, a‖ ≤ ‖xn−1−xn−2, a‖ ≤ . . . ≤ ‖x1−x0, a‖.
Thus ‖xn − xn+1, a‖ is a monotone decreasing bounded below sequence of
real numbers. So it is convergent. Suppose limn→∞ ‖xn+1−xn, a‖ = r 6= 0.
Then from equation (4.10),∫ ψ(r)

0 φ(t)dt = limn→∞

∫ ψ(‖xn+1−xn,a‖)
0 φ(t)dt

≤
∫ ψ((α+β+δ)‖xn−xn−1,a‖)
0 φ(t)dt ≤

∫ ψ((α+β+δ)r)
0 φ(t)dt

implies, ψ(r) ≤ ψ((α+ β + δ)r)

implies, r ≤ (α+ β + δ)r
implies, 1 ≤ (α+ β + δ), which is again a contradiction.
Therefore limn→∞ ‖xn+1 − xn, a‖ = 0.
Let, n > m ∈ N.
Then∫ ψ(‖xn+1−xm+1,a‖)

0 φ(t)dt =
∫ ψ(‖Tixn−Tjxm,a‖)
0 φ(t)dt

≤

∫ ψ(η(xn,xm,a))

0
φ(t)dt, (4.12)

where,
η(xn, xm, a)

= α‖xn − xm, a‖+ βmax{‖xn − xm, a‖, ‖xn − Tixn, a‖, ‖xm − Tjxm, a‖}

+ γ
min{‖xn−Tjxm,a‖,‖xm−Tixn,a‖}

1+max{‖xn−Tjxm,a‖,‖xm−Tixn,a‖}
+ δ(‖xn − Tjxm, a‖+ ‖xm − Tixn, a‖)

= α‖xn − xm, a‖+ βmax{‖xn − xm, a‖, ‖xn − xn+1, a‖, ‖xm − xm+1, a‖}

+ γ
min{‖xn−xm+1,a‖,‖xm−xn+1,a‖}

1+max{‖xn−xm+1,a‖,‖xm−xn+1,a‖}
+ δ(‖xn − xm+1, a‖+ ‖xm − xn+1, a‖)

≤ α‖xn − xm, a‖+ βmax{‖xn − xm, a‖, ‖xn − xn+1, a‖, ‖xm − xm+1, a‖}

+ γ
min{‖xn−xm,a‖+‖xm−xm+1,a‖,‖xm−xn,a‖+‖xn−xn+1,a‖}

1+max{‖xn−xm,a‖+‖xm−xm+1,a‖,‖xm−xn,a‖+‖xn−xn+1,a‖}
+ δ(‖xn− xm, a‖+

‖xm − xm+1, a‖+ ‖xm − xn, a‖+ ‖xn − xn+1, a‖).
Taking limn,m→∞ in the above inequality we get
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limn,m→∞ η(xn, xm, a)
≤ α limn,m→∞ ‖xn−xm, a‖+β limn,m→∞ ‖xn−xm, a‖+γ limn,m→∞ ‖xn−
xm, a‖+ 2δ limn,m→∞ ‖xn − xm, a‖
≤ (α+ β + γ + 2δ) limn,m→∞ ‖xn − xm, a‖.
Therefore from (4.12)we get,

limn,m→∞

∫ ψ(‖xn+1−xm+1,a‖)
0 φ(t)dt ≤ limn,m→∞

∫ ψ((α+β+γ+2δ)‖xn−xm,a‖)
0 φ(t)dt

implies, limn,m→∞ ψ(‖xn+1−xm+1, a‖) ≤ limn,m→∞ ψ((α+β+γ+2δ)‖xn−
xm, a‖)
implies, limn,m→∞ ‖xn+1 − xm+1, a‖ ≤ limn,m→∞(α + β + γ + 2δ)‖xn+1 −
xm+1, a‖
implies, limn,m→∞ ‖xn − xm, a‖ = 0.
Thus {xn} is a Cauchy sequence. There exists an x ∈ X such that limn→∞ ‖xn−
x, a‖ = 0.
Again since, ‖Tix− x, a‖ ≤ ‖Tix− xn, a‖+ ‖xn − x, a‖,
we have

limn→∞

∫ ψ(‖Tix−x,a‖)
0 φ(t)dt ≤ limn→∞

∫ ψ(‖Tix−xn,a‖)
0 φ(t)dt

= lim
n→∞

∫ ψ(‖Tix−Tjxn−1,a‖)

0
φ(t)dt ≤ lim

n→∞

∫ ψ(η(x,xn−1,a))

0
φ(t)dt, (4.13)

where,
η(x, xn−1, a)

= α‖x− xn−1, a‖+ βmax{‖x− xn−1, a‖, ‖x− Tix, a‖, ‖xn−1 − Tjxn−1, a‖}

+ γ
min{‖x−Tjxn−1,a‖,‖xn−1−Tix,a‖}

1+max{‖x−Tjxn−1,a‖,‖xn−1−Tix,a‖}
+ δ(‖x− Tjxn−1, a‖+ ‖xn−1 − Tix, a‖)

implies, limn→∞ η(x, xn−1, a)
= α.0 + β‖x− Tix, a‖+ γ.0 + δ limn→∞ ‖xn−1 − Tix, a‖
≤ (β + δ) limn→∞ ‖xn−1 − Tix, a‖.
So from (4.13) we get,

limn→∞

∫ ψ(‖Tix−x,a‖)
0 φ(t)dt ≤ limn→∞

∫ ψ((β+δ)‖xn−1−Tix,a‖)
0 φ(t)dt

implies, limn→∞ ψ(‖Tix− x, a‖) ≤ limn→∞ ψ((β + δ)‖xn−1 − Tix, a‖)
implies, limn→∞ ‖Tix−x, a‖ ≤ limn→∞(β+δ)‖xn−1−Tix, a‖ = (β+δ)‖x−
Tix, a‖
implies, ‖xn−1 − Tix, a‖ = 0[ otherwise, it will lead to a contradiction ]
implies, Tix = x.
Thus x is a common fixed point of {Ti}

∞
i=1. Now let, y be another common

fixed point.
Then∫ ψ(‖x−y,a‖)

0
φ(t)dt =

∫ ψ(‖Tix−Tjy,a‖)

0
φ(t)dt ≤

∫ ψ(η(x,y,a))

0
φ(t)dt, (4.14)

where,
η(x, y, a)

= α‖x− y, a‖+ βmax{‖x− y, a‖, ‖x− Tix, a‖, ‖y − Tjy, a‖}

+ γ
min{‖x−Tjy,a‖,‖y−Tix,a‖}

1+max{‖x−Tjy,a‖,‖y−Tix,a‖}
+ δ(‖x− Tjy, a‖+ ‖y − Tix, a‖)
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= α‖x− y, a‖+ βmax{‖x− y, a‖, ‖x− x, a‖, ‖y − y, a‖}

+ γ
min{‖x−y,a‖,‖y−x,a‖}

1+max{‖x−y,a‖,‖y−x,a‖} + δ(‖x− y, a‖+ ‖y − x, a‖)

≤ α‖x− y, a‖+ β‖x− y, a‖+ γ‖x− y, a‖+ 2δ‖x− y, a‖
= (α+ β + γ + 2δ)‖x− y, a‖.
Therefore from (4.14)∫ ψ(‖x−y,a‖)

0 φ(t)dt ≤
∫ ψ((α+β+γ+2δ)‖x−y,a‖)
0 φ(t)dt

implies, ψ(‖x− y, a‖) ≤ ψ((α+ β + γ + 2δ)‖x− y, a‖)
implies, ‖x− y, a‖ ≤ (α+ β + γ + 2δ)‖x− y, a‖
implies, ‖x− y, a‖ = 0 implies, x = y.
Therefore {Ti}

∞
i=1 have a unique common fixed point in X. �

Corollary 4.11. Let T1 and T2 be two self-maps on X satisfy the relation∫ ψ(‖T1x−T2y,a‖)
0 φ(t)dt ≤

∫ ψ(η(x,y,a))
0 φ(t)dt,

where,
η(x, y, a) = α‖x− y, a‖+ βmax{‖x− y, a‖, ‖x− T2y, a‖, ‖y − T1x, a‖}

+γ min{‖x−T2y,a‖,‖y−T1x,a‖}
1+max{‖x−T2y,a‖,‖y−T1x,a‖}

+δ(‖x−y, a‖+‖y−T2y, a‖), α+β+γ+2δ < 1.

Then T1 and T2 have a unique common fixed point.

Proof. Putting Ti = T1 and Tj = T2 in Theorem 4.10 we get the required
result. �

Corollary 4.12. Let T be a self-map on X satisfy the relation∫ ψ(‖Tx−Ty,a‖)
0 φ(t)dt ≤

∫ ψ(η(x,y,a))
0 φ(t)dt,

where,
η(x, y, a) = α‖x− y, a‖+ βmax{‖x− y, a‖, ‖x− Ty, a‖, ‖y − Tx, a‖}

+γ min{‖x−Ty,a‖,‖y−Tx,a‖}
1+max{‖x−Ty,a‖,‖y−Tx,a‖} +δ(‖x−y, a‖+‖y−Ty, a‖), α+β+γ+2δ < 1.

Then T have a unique common fixed point.

Proof. Putting Ti = Tj = T in Theorem 4.10 we get the desired result. �

Theorem 4.13. Let {Ti}
∞
i=1 be the sequence of self-maps on X such that

each of them is F -contraction satisfying the condition,∫ τ+F (‖Tix−Tjy,a‖)
0 φ(t)dt ≤

∫ F (‖x−y,a‖)
0 φ(t)dt,

where F ∈ F and τ > 0. Then {Ti}
∞
i=1 have a unique common fixed point.

Proof. Let {xn} be a sequence constructed as Theorem 4.7 where xn+1 =
Tixn for all n ∈ N ∪ {0}.

If xn = Tixn i.e., xn+1 = xn, then xn is a common fixed point of {Ti}
∞
i=1

and the proof is over. So we assume that xn+1 6= xn.
Now,∫ F (‖xn+1−xn,a‖)
0 φ(t)dt ≤

∫ τ+F (‖Tixn−Tjxn−1,a‖)
0 φ(t)dt ≤

∫ F (‖xn−xn−1,a‖)
0 φ(t)dt

implies, F (‖xn+1 − xn, a‖) ≤ F (‖xn − xn−1, a‖)
implies, ‖xn+1 − xn, a‖ ≤ ‖xn − xn−1, a‖.
Therefore,
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‖xn+1−xn, a‖ ≤ ‖xn−xn−1, a‖ ≤ ‖xn−1−xn−2, a‖ ≤ . . . ≤ ‖x1−x0, a‖.
Thus {‖xn+1 − xn, a‖} is a monotone decreasing sequence of real numbers
and bounded below and so is convergent.
Suppose limn→∞ ‖xn+1 − xn, a‖ = r 6= 0.
Then∫ F (r)

0 φ(t)dt = limn→∞

∫ F (‖xn+1−xn,a‖)
0 φ(t)dt

≤ limn→∞

∫ τ+F (‖Tixn−Tjxn−1,a‖)
0 φ(t)dt ≤ limn→∞

∫ F (‖xn−xn−1,a‖)
0 φ(t)dt

=
∫ F (r)
0 φ(t)dt,

where is a contradiction.
Therefore,

limn→∞ ‖xn+1 − xn, a‖ = 0.
Now let n > m ∈ N, then

limn,m→∞

∫ F (‖xn+1−xm+1,a‖)
0 φ(t)dt = limn,m→∞

∫ τ+F (‖Tixn−Tjxm,a‖)−τ
0 φ(t)dt

≤ limn,m→∞

∫ F (‖xn−xm,a‖)−τ
0 φ(t)dt

≤ limn,m→∞

∫ F (‖xn−1−xm−1,a‖)−2τ
0 φ(t)dt

≤ limn,m→∞

∫ F (‖xn−2−xm−2,a‖)−3τ
0 φ(t)dt

...
≤ limn,m→∞

∫ F (‖xn−m−1−x0,a‖)−(m+1)τ
0 φ(t)dt

implies, limn,m→∞ F (‖xn+1−xm+1, a‖) ≤ limn,m→∞ F (‖xn−m−1−x0, a‖)−
(m+ 1)τ
implies, limn,m→∞ F (‖xn+1 − xm+1, a‖) = −∞
implies, limn,m→∞ ‖xn+1 − xm+1, a‖ = 0 i.e., limn,m→∞ ‖xn − xm, a‖ = 0.
Thus {xn} is a Cauchy sequence. Since X is complete, there exists an x ∈ X

such that limn→∞ ‖xn − x, a‖ = 0.
Again,

limn→∞

∫ F (‖Tix−x,a‖)
0 φ(t)dt ≤ limn→∞

∫ F (‖Tix−xn,a‖+‖xn−x,a‖)
0 φ(t)dt

= limn→∞

∫ τ+F (‖Tix−xn,a‖)
0 φ(t)dt = limn→∞

∫ F (‖Tix−Tjxn−1,a‖)
0 φ(t)dt

≤ limn→∞

∫ F (‖x−xn−1,a‖)
0 φ(t)dt

implies, limn→∞ F (‖Tix− x, a‖) ≤ limn→∞ F (‖x− xn−1, a‖)
implies, limn→∞ ‖Tix− x, a‖ ≤ limn→∞ ‖x− xn−1, a‖ = 0
i.e., ‖Tix− x, a‖ = 0 implies, Tix = x.
Therefore, x is a common fixed point of {Ti}

∞
i=1.

Now we show that x is unique. Let y 6= x be a common fixed point.
Since,∫ F (‖x−y,a‖)

0 φ(t)dt ≤
∫ τ+F (‖Tix−Tjy,a‖)
0 φ(t)dt ≤

∫ F (‖x−y,a‖)
0 φ(t)dt,

which is again a contradiction.
Thus the sequence of self-maps {Ti}

∞
i=1 have a common fixed point inX. �

Corollary 4.14. Let T1 and T2 be two self-maps on X such that each of
them is F -contraction satisfying the condition∫ τ+F (‖T1x−T2y,a‖)

0 φ(t)dt ≤
∫ F (‖x−y,a‖)
0 φ(t)dt,
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where F ∈ F and τ > 0. Then T1 and T2 have a unique common fixed point.

Proof. Putting Ti = T1 and Tj = T2 in Theorem 4.13 the result follows.
�

Corollary 4.15. Let T be a self-map on X such that T is F -contraction
satisfying the condition,∫ τ+F (‖Tx−Ty,a‖)

0 φ(t)dt ≤
∫ F (‖x−y,a‖)
0 φ(t)dt,

where F ∈ F and τ > 0. Then T have a unique common fixed point.

Proof. Putting Ti = Tj = T in Theorem 4.13 the result follows. �
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TH
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Abstract. In this paper, we investigate initial value problem of the
n

th- order random differential inclusions and prove the existence re-
sult through multi-valued version of Schaefer’s fixed point theorem of
Martelli using caratheodory condition.

1. Statement of the Problem

Let R denote the real line and let J = [0, a] be a closed and bounded
interval in R.

Consider the initial value problem of nth order random differential in-
clusions

x(n)(t, ω) ∈ F (t, x(t, ω), ω) a.e. t ∈ J, ω ∈ Ω (1.1)

x(i)(0, ω) = xi ∈ R,ω ∈ Ω

where F : J × R × Ω → 2R, i ∈ {0, 1, · · · , n − 1} and 2R is the class of all
nonempty subsets of R.

By a random solution of problem (1.1) we mean a function

x ∈ ACn−1(J,R,Ω) whose nth Derivative x(n) exists and is a member of
L1(J,R,Ω) in F (t, x, ω), there exists av ∈ L1(J,R,Ω) such that v(t, ω) ∈

F (t, x(t, ω), ω) a.e t ∈ J, and x(i)(0, ω) = xi ∈ R, i = 0, 1, . . . , n − 1, where
ACn−1(J,R,Ω) is the space of all continuous real-valued functions whose
(n− 1) derivatives exist and are absolutely continuous on J.

The method of upper and lower solutions has been applied to the prob-
lem of nonlinear differential inclusions. In this direction, we quote some
of the results of Heikkila and Laksmikantham [6], Halidias and Papagero-
giou [5], Benchohra [1]. In this paper we apply the multi-valued version of

2010 Mathematics Subject Classification: 47H10, 34A60
Key words and phrases: Random differential inclusions, initial value problem,
caratheodory condition.

© Indian Mathematical Society, 2021 .
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Schaefer’s fixed point theorem of Martelli [8] and prove the existence of so-
lutions between the given lower and upper solutions, using the caratheodory
condition.

2. Auxiliary Results

We quote the following fixed point theorem of Martelli useful to prove
the main existence result.

Theorem 2.1. Let T : X → KC(X) be a completely continuous multi-
valued map. If the set ε = {u ∈ X : λu ∈ Tu for some λ > 1} is bounded,
then T has a fixed point.

We need the following definitions.

Definition 2.2. A multi-valued map F : J → KC(R) is said to be measur-
able if for every y ∈ R, the function t → d(y, F (t)) = inf{‖y − x‖ :∈ F (t)}
is measurable.

Definition 2.3. A multi-valued map F : J×R×Ω → 2R is said to be L1−
random caratheodory if

(i) (t, ω) → F (t, x(t, ω), ω) is measurable for each x ∈ R,ω ∈ Ω.
(ii) x → F (t, x(t, ω), ω) is upper semi-continuous for almost all t ∈

J and ω ∈ Ω.
(iii) for each real number k > 0, there exists a function hk ∈ L1(J,R,Ω)

such that
‖F (t, x(t, ω), ω)‖ = sup{|v| : v ∈ F (t, x(t, ω), ω)} ≤ hk(t, ω), a. e.
t ∈ J, ω ∈ Ω for all x ∈ R with |x| ≤ k.

Denote

S1
F (x, ω) =

{

v ∈ L1(J,R,Ω) : v(t, ω) ∈ F (t, x(t, ω), ω) a.e. t ∈ J, ω ∈ Ω
}

We have quote the following lemmas due to Lasota and Opial [7].

Lemma 2.4. If dim(X) < ∞ and F : J ×X → KC(X) then S1
F 6= ∅ for

each x ∈ X.

Lemma 2.5. Let X be a Banach space, F an L1 - Caratheodory multivalued
map with S1

F 6= ∅ and K : L1(J,X) → C(J,X) be a linear continuous
mapping. Then the operator KoS1

F : C(J,X) → KC(C(J,X)) is a closed
graph operator in C(J,X)× C(J,X).

We define the partial ordering ≤ in Wn,1(J,R,Ω) (the sobolev class

of functions x : J → R for which x(n−1) are absolutely continuous and
x(n) ∈ L1(J,R,Ω)

)

as follower. Let x, y ∈ Wn,1(J,R,Ω). Then we define

x ≤ y ⇔ x(t, ω) ≤ y(t, ω), ∀t ∈ J, ω ∈ Ω. if a, b ∈ Wn,1(J,R,Ω) and a ≤ b.
then we define an order interval [a, b] in Wn,1(J,R,Ω) by

[a, b] =
{

x ∈ Wn,1(J,R,Ω) : a ≤ x ≤ b
}

.
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Definition 2.6. A function α ∈ Wn,1 → (J,R,Ω) is called a lower solution
of problem (1.1) if there exists

v1 ∈ L1(J,R,Ω) with v1(t, w) ∈ F (t, α(t, ω), ω) a.e. t ∈ J, ω ∈ Ω.

We have that α(n)(t, ω) ≤ v1(t, ω) a.e. t ∈ J, ω ∈ Ω and α(i)(0, ω) ≤
xi, i = 0, 1, · · · , n− 1.
Similarly a function β ∈ Wn,1(J,R,Ω) is called an upper solution of problem
(1.1) if there exists v2 ∈ L1(J,R,Ω) with v2(t, w) ∈ F (t, β(t, ω), ω) a. e.

t ∈ J, ω ∈ Ω. We have that β(n)(t, ω) ≥ v2(t, ω) a.e. t ∈ J, ω ∈ Ω and

β(i)(0, ω) ≥ xi, i = 0, 1, · · · , n− 1.

3. Existence Results

We consider the following assumptions to prove main result.

(A1) The multi-valued F (t, x(t, ω), ω) has compact and convex values for
each (t, x, ω) ∈ J ×R.

(A2) F (t, x(t, ω), ω) is L1- random caratheodory.
(A3) The problem (1.1) has a lower random solution α and an upper

random solution β with α ≤ β.

Theorem 3.1. Assume that (A1)− (A3) hold. Then the problem (1.1) has
at least one random solution x such that

α(t, ω) ≤ x(t, ω) ≤ β(t, ω), for all t ∈ J, ω ∈ Ω.

Proof. First, we transform problem (1.1) into a fixed point inclusion in a
suitable Banach space. Consider the problem

x(n)(t, ω) ∈ F (t, τx(t, ω), ω) a.e.t ∈ J, ω ∈ Ω (3.1)

x(i)(0, ω) = xi ∈ R

For all i ∈ {0, 1, . . . . . . , n−1}, where τ : C(J,R) → C(J,R) is the truncation
operator defined by

(τx)(t, ω) =







α(t, ω), if x(t, ω) < α(t, ω)
x(t, ω), if α(t, ω) ≤ x(t, ω) ≤ β(t, ω)
β(t, ω), if β(t, ω) < x(t, ω)

(3.2)

The problem of existence of a solution to problem (1.1) reduces to finding
the solution of the integral inclusion

x(t, ω) ∈
n−1
∑

i=0

xit
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
F (s, τx(s, ω), ω)ds, t ∈ J, ω ∈ Ω (3.3)
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We study the integral inclusion (3.3) in the space C(J,R) of all continuous
real-valued functions on J with a supremum norm ‖ · ‖c. Define a multi-

valued map T : C(J,R) → 2C(J,R) by

Tx =

{

u ∈ C(J,R) : u(t, ω) =
n−1
∑

i=0

xit
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
v(s, ω)ds, v ∈ S1

F (τx)

}

(3.4)
where
S1
F (τx) = {v ∈ S1

F (τx) : v(t, ω) ≥ α(t, ω) a. e. t ∈ A1 and v(t, ω) ≤
β(t, ω), a. e. t ∈ A2, ω ∈ Ω}

and

A1 = {t ∈ J : x(t, ω) < α(t, ω) ≤ β(t, ω)},
A2 = {t ∈ J : α(t, ω) ≤ β(t, ω) < x(t, ω)},
A3 = {t ∈ J : α(t, ω) ≤ x(t, ω) ≤ β(t, ω)}

By Lemma 2.4, S1
F (τx) 6= ∅ for each x ∈ C(J,R) which further yields that

S1
F (τx) 6= ∅ for each x ∈ C(J,R). Indeed, if v ∈ S1

F (x) then the function
w ∈ L1(J,R) defined by

w = αχA1 + βχA2 + uχA3

is in S1
F (τx) by virtue of decomposability of w.

We shall show that the multi valued T satisfies all the conditions of
theorem 3.1.
Step I. First ,we prove that T(x) is a convex subset of C(J,R) for each

x ∈ C(J,R) Let u1, u2 ∈ T (x). Then there exists v1 and v2 in S1
F (τx) such

that

u3(t, ω) =

n−1
∑

i=0

xit
→i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
vj(s, ω)ds, j = 1, 2

since F (t, x(t, ω), ω) has convex values, one has for 0 ≤ k ≤ 1

|kv1 + (1− k)v2| (t, ω) ∈ S1
F (τx)(t, ω), ∀t ∈ J, ω ∈ Ω

As a result we have

[ku1 + (1− k)u2] (t, ω) =

n−1
∑

i=0

xit
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
|kv1(s, ω) + (1− k)v2(t, ω)| ds

Therefore [ku1 + (1− k)u2] ∈ Tx and consequently T has convex values in
C(J,R).
Step II. T maps bounded sets into bounded sets in C(J,R). To see this,
let B be a bounded set in C(J,R). Then there exists a real number r > 0
such that ‖x‖ ≤ r, ∀x ∈ B.
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Now for each u ∈ Tx, there exists a v ∈ S1
F (τx) such that

u(t, ω) =

n−1
∑

i=0

xit
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
v(s, ω)ds

Then for each t ∈ J, ω ∈ Ω.

| u(t, ω) | ≤
n−1
∑

i=0

|xi| a
i

i!
+

∫ t

0

an−1

(n− 1)!
| v(s, ω) | ds

≤
n−1
∑

i=0

|xi| a
i

i!
+

∫ t

0

an−1

(n− 1)!
hr(s, ω)ds

≤

n−1
∑

i=0

|xi| a
i

i!
+

an−1

(n− 1)!
‖hr‖L

→

This further implies that

‖u‖C ≤

n−1
∑

i=0

|xi| a
i

i!
+

an−1

(n− 1)!
‖hr‖L

1

For all u ∈ Tx ⊂ ∪T (B). Hence ∪T (B) is bounded.
Step III. Next, we show that T maps bounded sets into equi-continuous
sets. Let B be a bounded set as in step II, and u ∈ Tx for some x ∈ B.

Then there exists u ∈ S1
F (τx) such that

u(t, ω) =
n−1
∑

i=0

xit
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
v(s, ω)ds

Then for any t1, t2 ∈ J we have

|u (t1, ω)− u (t2, ω)|

≤
∣

∣

∣

∑n−1
i=0

xit
i

1

i! −
∑n−1

i=0
xii

i

2

i!

∣

∣

∣
+
∫ t1
0

(t1−s)n−1

(n−1)! v(s, ω)ds−
∫ t2
0

(t2−s)n−1

(n−1)! v(s, ω)ds |

≤ |q (t1, ω)− q (t2, ω)|+
∣

∣

∣

∫ t

0
(t1−s)n−1

(n−1)! v(s, ω)ds−
∫ t1
0

(t2−s)n−1

(n−1)! v(s, ω)ds
∣

∣

∣

+
∣

∣

∣

∫ t1
0

(t2−s)n−1

(n−1)! v(s, ω)ds−
∫ t2
0

(t2−s)n−1

(n−1)! v(s, ω)ds
∣

∣

∣

≤ |q (t1, ω)− q (t2, ω)|+
∫ t1
0

∣

∣

∣

(t1−s)n−1

(n−1)! − (t2−s)n−1

(n−1)!

∣

∣

∣
|v(s, ω)|ds

+
∣

∣

∣

∫ t2
t1

∣

∣

∣

(t2−s)n−1

(n−1)! ||v(s, ω)|ds|

≤ |q (t1, ω)− q (t2, ω)|+ |p (t1, ω)− p (t2, ω)|

+ 1
(n−1)!

∫ t1
0

∣

∣

∣
(t1 − s)n−1 − (t2 − s)n−1

∣

∣

∣
‖F (s, u(s, ω), ω)‖ds

≤ |q (t1, ω)− q (t2, ω)|+ |p (t1, ω)− p (t2, ω)|

+ 1
(n−1)!

∫ a

0

∣

∣

∣
(t1 − s)n−1 − (t2 − s)n−1

∣

∣

∣
hr(s, ω)ds
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where

q(t, ω) =

n−1
∑

i=0

xit
i

i!
and p(t, ω) =

∫ t

0

(a− s)n−1

(n− 1)!
hr(s, ω)ds.

Now the functions p and q are continuous on the compact interval J, hence
they are uniformly continuous on J . Hence we have

| u(t1, ω)− u(t2, ω) |→ 0as t1 → t2.

As a result ∪T (B) is an equicontinuous set in C(J,R). Now an application
of Arzela-ascoli theorem gets that the multi T is totally bounded on C(J,R).
Step IV. Next, we prove that T has a closed graph. Let {xn} ⊂ C(J,R)
be a sequence such that xn → x∗ and let {yn} be a sequence defined by
yn ∈ Txn for each n ∈ N such that yn → y∗. We just show that y∗ ∈ Tx∗.

Since yn ∈ Txn, there exists avn ∈ S1
F (τxn) such that

yn(t, ω) =
n−1
∑

i=0

xit
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
vn(s, ω)ds

Consider the linear and continuous operator κ : L1(J,R) → C(J,R) defined
by

κv(t, ω) =

∫ t

0

(t− s)n−1

(n− 1)!
v(s, ω)ds

Now
∣

∣

∣
yn(t, ω)−

∑n−1
t=0

|xi|t
i

i! − y∗(t, ω)−
∑n−1

t=0
|xi|t

i

i!

∣

∣

∣

≤ |yn(t, ω)− y∗(t, ω)|
≤ ‖yn → y∗‖ c → 0 as n → ∞

From Lemma 2.5 it follows that
(

κ ◦ S1
F ) is a closed graph operator and

from the definition of κ one has

yn(t, ω)−
n−1
∑

i=0

xit
i

i!
∈
(

κ ◦ S1
F (τxn)

)

.

As xn → x∗ and yn → y∗ there is a v∗ ∈ S1
F (τxn) such that

y∗ =

n−1
∑

i=0

xit
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
v∗(s, ω)ds.

Hence the multi T is an upper semi-continuous operator on C(J,R).
Step V . Finally we show that the set

ε = {x ∈ C(J,R) : λx ∈ Tx for some λ > 1}



INITIAL VALUE PROBLEM FOR RANDOM DIFFERENTIAL INCLUSIONS 139

is bounded. Let u ∈ ε be any element. Then there exists a av ∈ S1
F (τx)

such that

u(t, ω) = λ−1
n−1
∑

i=0

xit
i

i!
+ λ−1

∫ t

0

(t− s)n−1

(n− 1)!
v(s, ω)ds

Then

|u(t, ω)| ≤
n−1
∑

i=0

|xi| a
i

i!
+

∫ t

0

(t− s)n−1

(n− 1)!
|v(s, ω)|ds

Since τx ∈ |α, β|, ∀x ∈ C(J,R), we have

‖τx‖c ≤ ‖α‖c + ‖β‖c := l

By (A2) there is a function hl ∈ L1(J,R) such that

‖F (t, τx, ω)‖ = sup{|u| : u ∈ F (t, τx, ω)} ≤ hl(t, ω) a.e. t ∈ J, ω ∈ Ω}

for all x ∈ C(J,R). therefore

‖u‖C ≤
n−1
∑

i=0

|xi| a
i

i!
+

an−1

(n− 1)!

∫ a

0
hlds =

n−1
∑

i=0

|xi| a
i

i!
+

an−1

(n− 1)!
‖hl‖L

→1

And so, the set ε is bounded in C(J,R). Thus T satisfies all the conditions
of theorem 2.1 and so an application of this theorem yields that the multi
T has a random fixed point. Consequently (3.2) has a random solution u
on J.
Next we show that u is also a solution of (1.1) on J. First we show that
u ∈ [α, β] Suppose not. The either α 6≤ u or u 6≤ β on some subinterval J1

of J. if u 6≥ α

Then there exist t0, t1 ∈ J, t0 < t1 such that u (t0, ω) = α (t0, ω) and
α(t, ω) > u(t, ω) for all t ∈ (t0, t1) ⊂ J. From the definition of the operator
τ it follows that

u(n)(t, ω) ∈ F (t, α(t, ω), ω) a.e. t ∈ J, ω ∈ Ω

Then there exists a v(t, ω) ∈ F (t, α(t, ω), ω) such that v(t, ω) ≥ v1(t, ω), ∀t ∈
J, ω ∈ Ω. with

u(n)(t, ω) = v(t, ω) a.e. t ∈ J, ω ∈ Ω

Integrating from t0 to t, n times yields

u(t, ω)−
n−1
∑

i=0

ui(0, ω) (t− t0)
i

i!
=

∫ t

t0

(t− s)n−1

(n− 1)!
v(s, ω)ds
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since α is a lower solution of (1.1) we have

u(t, ω) =
n−1
∑

i=0

ui(0, ω) (t− t0)
i

i!
+

∫ t

t0

(t− s)n−1

(n− 1)!
v(s, ω)ds

≥
n−1
∑

i=0

αi(0, ω) (t− t0)
i

i!
+

∫ t

t0

(t− s)n−1

(n− 1)!
α(s, ω)ds

=α(t, ω)

For all t ∈ (t0, t1) . This is a contradiction. Similarly if u 6≤ β on some
subinterval of J, then also we get a contradiction. Hence α ≤ u ≤ β

on J. As a result (3.2) has a random solution u in [α, β]. Finally since
τx = x, ∀x ∈ [α, β], u is a required random solution of (1.1) on J

�
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EXTENSIONS OF RAMANUJAN’S THREE SERIES

FOR 1/π AND RELATED SERIES
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Abstract. The paper deals with extensions of Ramanujan’s three se-

ries for 1/π and present some families of similar series for 1/π and 1/π2.

Seven theorems of Wei and Dong are combined into unified formulae.

Two new families of series are derived using a 7F6 summation formula

of Gasper and Rahman hypergeometric series approach.

1. Prehistory of Ramanujan’s series

Human beings are endowed with an innate capacity to be fascinated

by figures (shape) and numbers (magnitude), the twin topics of mathe-

matics. Pythagoras remarked that of all solids the sphere was the most

beautiful; of all plane figures, the circle. The investigation of the relation

between the circumference (C) of a circle and its diameter (D) began in

antiquity. Numerical estimates of the ratio C
D , now denoted by π, found

in the records of ancient civilizations point to the early realization of the

fact that the ratio was constant irrespective of the size of the circle (proved

in Euclid’s Elements, Bk.XII, Prop.2). The computation of π is probably

the only common mathematical activity between the ancient and modern

mathematicians. Archimedes initiated a systematic approach to compute π

by calculating the perimeters of two regular polygons — one circumscrib-

ing and the other inscribed in the circle. He thereby inferred the estimate:

310
71 < π < 31

7 . Archimedean algorithm was employed by mathematicians

for centuries using regular polygons with more and more vertices (and sides)

for better approximation. But the polygonal method had its limit and any

further precision could only be achieved through some novel method. As

luck would have it, the discovery of the device of infinite series was made.
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Key words and phrases: Ramanujan-type series, Pi, Generalized hypergeometric
series
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The Madhava-Gregory series for the arctan function came to be developed

which made it possible to approximate π more efficiently and with greater

precision. Leibniz discovered his celebrated series for π/4 in 16731. Though

simple and beautiful, it is practically useless due to its slow speed. Euler

developed a technique for accelerating the convergence of slow alternating

series and applied his scheme to the Leibniz series thereby obtaining a faster

series with positive terms only.

Ramanujan’s remarkably rapid series for 1/π published in 1914 earned

him a permanent place in the history of π. Indian mathematicians in ancient

and medieval times neither explained the ‘derivation’ nor gave ‘demonstra-

tion’ of their formulae. Ramanujan too recorded his series without explicit

derivation or any clue to proof. J. M. Borwein and P. B. Borwein were able

to prove all 17 formulae of Ramanujan in a 1987 paper (see survey article

[1]). Guillera [11] proved some Ramanujan-type formulae for 1/π using the

WZ-method created by H. Wilf and D. Zeilberger.

1.1. Morphology of Ramanujan’s series. Ramanujan had no notation

for hypergeometric series and stated his formulas by writing out the first few

terms in each series.[3, p.8] A compact notation often obscures the aesthetic

beauty; Ramanujan’s style made the elegance of his formulas noticeable. We

may group his seventeen series for 1/π [17] by Pochhammer symbols:

R2 =
∞
∑

n=0

(

1
2

)

n

(

1
2

)

n

(

1
2

)

n

n!3
(An+ a)αn. (28)− (30) (1.1a)

R3 =

∞
∑

n=0

(

1
3

)

n

(

1
2

)

n

(

2
3

)

n

n!3
(Bn+ b)βn. (31)− (32) (1.1b)

R6 =
∞
∑

n=0

(

1
6

)

n

(

1
2

)

n

(

5
6

)

n

n!3
(Cn+ c) γn. (33)− (34) (1.1c)

R4 =
∞
∑

n=0

(−1)n
(

1
4

)

n

(

1
2

)

n

(

3
4

)

n

n!3
(Dn+ d) δn. (35)− (39) (1.1d)

R5 =
∞
∑

n=0

(

1
4

)

n

(

1
2

)

n

(

3
4

)

n

n!3
(En+ f) ǫn. (40)− (44) (1.1e)

1By the end of the year 1673 he [Leibniz] had in all probability discovered the equivalence
1−

1

3
+

1

5
−

1

7
+· · · =

π

4
. A. Rupert Hall, Philosophers at War: The quarrel between Newton

and Leibniz, Cambridge University Press, 1980, p.53
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1.1.1. Predecessors of Ramanujan. It may be pointed out that Ramanujan’s

series are not unprecedented (see [14]). In §15 of [17], Ramanujan noted

that the series which he employed to derive his series for 1/π is very closely

connected with the perimeter of an ellipse. Ramanujan cites the following

formula (eq. 45) wherein κ is the eccentricity of ellipse:

P = 2πa

{

1− 1

22
κ2 − 12 · 3

22 · 42κ
4 − 12 · 32 · 5

22 · 42 · 62κ
6 − . . .

}

due to C. Maclaurin (A Treatise on Fluxions, vol. 2, 1742).[4, p.146, (3.1)]

We can visualize that at κ = 1 (limiting case), ellipse degenerates into a

pair of overlapping straight lines with combined length P = 4a yielding:

2

π
= 1− 1

22
− 123

2242
− 12325

224262
− 1232527

22426282
− · · · .

E. Catalan[5, p.140, eq. L] had discovered in 1858 the following series

which was again derived by Forsyth [6] in 1883:

4

π
= 1 +

(

1

2

)2

+

(

1

2 · 4

)2

+

(

1 · 3
2 · 4 · 6

)2

+ · · ·

Bauer [2, §4, p.110] obtained in 1859 the following alternating series:

2

π
= 1− 5

(

1

2

)3

+ 9

(

1 · 3
2 · 4

)3

− 13

(

1 · 3 · 5
2 · 4 · 6

)3

+− · · ·

It is noted on p.92, Chapter XII of the Manuscript Book 1, on p.118, Chap-

ter X of the Manuscript Book 2 of Ramanujan (see [3, pp.23-4, Ex.14]) and

was communicated (among others as his own formula) to Hardy in a letter

of January 16, 1913. Hardy found the series “intriguing"[12, p.143(2), 144]

though it already appeared in a 1875 book by I. Todhunter (An Elementary

Treatise on Laplace’s functions, Lamé’s functions and Bessel’s functions, p.

114, §145) who noted (p.116) that it came from Crelle’s Journal, Vol. 56.

Whipple too erroneously called it ‘Ramanujan’s series’[20, p.140].

Glaisher [10] obtained 18 series for 1/π in 1905 from the expansions of

Complete Elliptic integrals. Levrie [13] used Bauer’s method to obtain two

general formulas. The author obtained many Forsyth-Glaisher type series

by using only an elementary method [15].

Section 2 contains an extension of Ramanujan’s series (28) by Wei and

Gong. Section 3 employs their method but uses another identity due to

Gosper for deriving a family of alternating series. Sections 4 deals with an

extension of Ramanujan’s series (40) by Wei and Gong using an identity of
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Gasper. Section 5 uses an identity of Gasper and Rahman to obtain some

new sums. Section 6 gives an extension of Ramanujan’s series (35).

2. Extension of Ramanujan’s series involving (6n+ 1)4−n

Recall the generalized hypergeometric function defined by:

pFq

[

a1, a2, . . . , ap

b1, b2, , . . . , bq

∣

∣

∣

∣

∣

z

]

=
∞
∑

n=0

∏p
i=1(ai)n

∏q
j=1(bj)n

· z
n

n!

where ai, bj ∈ C, bj 6= 0,−1,−2, . . . and (α)n are rising shifted factorials

defined by (α)0 = 1, (α)n = α(α + 1) . . . (α + n − 1) =
Γ(α+ n)

Γ(α)
, n ∈ N.

We will use these relations: (a)n+m = (a)m (a + m)n = (a)n(a + n)m and
(a+1)n
(a)n

= a+n
a . When p = q + 1, the series pFq converges for |z| < 1. It

converges absolutely at |z| = 1 provided ℜ
(

∑q
j=1 bj −

∑p
i=1 ai

)

> 0.

pFq is a useful tool in the evaluation of series. Whenever it reduces to

a quotient of the products of the Gamma function, it yields some inter-

esting result. Mathematicians derived numerous formulae involving π by

employing some known hypergeometric series summation results.

Gessel and Stanton[9, eq. (1.7)] derived the following identity:

7F6

[

2a, 2b, 1− 2b, 1 + (2a/3), a+ d+ n+ (1/2), a− d,−n

a− b+ 1, a+ b+ (1/2), 2a/3,−2d− 2n, 2d+ 1, 1 + 2a+ 2n

∣

∣

∣

∣

∣

1

]

=
(2a+ 1)2n (d+ b+ 1

2)n (d− b+ 1)n

(2d+ 1)2n (a+ b+ 1
2)n (a− b+ 1)n

.

Let us change 2a to a, 2b to b and a − d to c. Now we have: (a)2n =

22n
(a

2

)

n

(

a+ 1

2

)

n

. [4, p.110, eq.(7.10)] Thus the above-noted identity

becomes eq.(3) in Wei and Gong [19]:

7F6

[

a, b, 1− b, 1 + (a/3), a− c+ n+ (1/2), c,−n

1 + a−b
2 , a+b+1

2 , a/3,−a+ 2c− 2n, 1 + a− 2c, 1 + a+ 2n

∣

∣

∣

∣

∣

1

]

=
(1+a

2 )n (1 +
a
2 )n (

1+a+b
2 − c)n (1 +

a−b
2 − c)n

(1+a
2 − c)n (1 +

a
2 − c)n (

1+a+b
2 )n (1 +

a−b
2 )n

.
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Since
(a− c+ n+ (1/2))k

(1 + a+ 2n)k
→ 1/2 and

(−n)k
(−a+ 2c− 2n)k

→ 1/2 as n → ∞,

on letting n → ∞ the previous formula transforms into:

5F4

[

a, 1 + (a/3), b, 1− b, c

a/3, 1 + (a− b)/2, (1 + a+ b)/2, 1 + a− 2c

∣

∣

∣

∣

∣

1

4

]

=
(1+a

2 )n (1 +
a
2 )n (

1+a+b
2 − c)n (1 +

a−b
2 − c)n

(1+a
2 − c)n (1 +

a
2 − c)n (

1+a+b
2 )n (1 +

a−b
2 )n

. (2.1)

Choosing a = 1
2 + 2p, b = 1

2 + 2q, c = 1
2 + r with p, q, r ∈ Z such that

min {p+ q, p− q} ≥ 0, (2.1) yields:

∞
∑

k=0

(12 + 2p)k (
1
2 + 2q)k (

1
2 − 2q)k (

1
2 + r)k

k! (1 + p+ q)k (1 + p− q)k (
1
2 + 2p− 2r)k

· 6k + 4p+ 1

(4p+ 1) 4k

=
(p+ q)! (p− q)!(14)p−r (

3
4)p−r

(12)p+q−r (
1
2)p−q−r (

3
4)p(

1
4)p+1

· 1
π
.

The equation (Theorem 1 of Wei and Gong) gives a formula for 1
π with

three free parameters. Obviously p, q cannot be both negative. With p =

q = r = 0, it reduces to Ramanujan’s series (28):

∞
∑

n=0

(

(12)n
)3

(6n+ 1)

n!3 22n
=

∞
∑

n=0

(6n+ 1)
(

2n
n

)3

28n
=

4

π
.

Again, choosing a = 3
2 +2p, b = 3

2 +2q, c = 1
2 +r in (2.1), Wei and Gong

similarly deduced their Theorem 2 involving 6k + 4p+ 3.

We may unify their two theorems by taking p = q and r = 2p, thereby

getting (for m = 0, 1, 2, . . . ) cubic power of one parameter only:

Theorem 2.1.

∞
∑

n=0

(

(2m+1
2 )n

)3
(6n+ 2m+ 1)

n!2 (n+m)! 22n
=

23m+2

(2m− 1)!!π
,

where (2m− 1)!! = 1 · 3 · · · (2m− 1).

The choice q = q and r = 0, yields a formula containing one fixed and

two other distinct half parameters with sum 1:

Theorem 2.2.
∞
∑

n=0

(12)n (
2m+1

2 )n (
−2m+1

2 )n (6n+ 2m+ 1)

n!2 (n+m)! 22n
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=
2m+2

(2m− 1)!!π
, m = 0, 1, 2, . . .

= (−1)−m (−2m− 1)!!

2−m−2 π
, m = −1,−2,−3, . . . (sum starts from n=-m.)

We have these special cases for m = 1, 2 and for m = −1,−2:

∞
∑

n=0

(12)n (
3
2)n (

−1
2 )n (6n+ 3)

n!2 (n+ 1)! 22n
=

8

π
;

∞
∑

n=0

(12)n (
5
2)n (

−3
2 )n (6n+ 5)

n!2 (n+ 2)! 22n
=

16

3π
.

∞
∑

n=1

(12)n (
−1
2 )n (

3
2)n (6n− 1)

n!2 (n− 1)! 22n
= − 2

π
;

∞
∑

n=2

(12)n (
−3
2 )n (

5
2)n (6n− 3)

n!2 (n− 2)! 22n
=

3

π
.

3. An alternating series involving (6n+ 1)8−n

Gessel and Stanton [9, eq.(1.2)] mention that in a letter to R. Askey, R.

Gosper communicated a list of hypergeometric series evaluations including:

5F4

[

2a, 2b, 1− 2b, 1 + (2a/3),−n

a− b+ 1, a+ b+ 1
2 , 2a/3, 1 + 2a+ 2n

∣

∣

∣

∣

∣

1

4

]

=
(a+ 1

2)n (a+ 1)n

(a+ b+ 1
2)n (a− b+ 1)n

.

As was done earlier, we change 2a to a, 2b to b and let n → ∞ getting:

4F3

[

a, b, 1− b, 1 + (a/3)

1 + (a− b)/2, (a+ b+ 1)/2, a/3

∣

∣

∣

∣

∣

−1

8

]

=
(1+a

2 )n (1 +
a
2 )n

(1+a+b
2 )n (1 +

a−b
2 )n

. (3.1)

Again with the same choice for a, b, namely, a = 1
2 + 2p, b = 1

2 + 2q we

straightway obtain a sum involving 6k + 4p+ 1

∞
∑

k=0

(−1)k
(12 + 2p)k (

1
2 + 2q)k (

1
2 − 2q)k

k! (1 + p+ q)k (1 + p− q)k
· 6k + 4p+ 1

(4p+ 1) 8k

=
(p+ 3

4)k(p+
5
4)k

(1 + p+ q)k (1 + p− q)k
.

Recall the relation: Γ(3/4) · Γ(5/4) = π
2
√
2

for simplifying RHS.

The second choice, viz. a = 3
2 + 2p, b = 3

2 + 2q, yields a sum involving

6k + 4p + 3. These are theorems 3 and 4 of Wei and Gong derived by

them from 7F6. The two results so derived can be combined together in the

following formula for m = 0, 1, 2, . . .
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Theorem 3.1.

∞
∑

n=0

(−1)n
(−2m+1

2 )n
(

(2m+1
2 )n

)2
(6n+ 2m+ 1)

n!2 (n+m)! 23n
=

23m+1m!
√
2

(2m)!π
.

It gives with m = 2:

∞
∑

n=0

(−1)n
(

(52)n
)2

(−3
2 )n (6n+ 5)

n!2 (n+ 2)! 8n
=

32
√
2

3π
.

The fixed choice b = 1/2 in the first pair of values yields:

∞
∑

n=0

(−1)n
(

(12)n
)2

(4m+1
2 )n(6n+ 4m+ 1)

n! (n+m)!2 23n
=

26m+1(2m)!
√
2

(4m)!π
.

For m = 1, we get:

∞
∑

n=0

(−1)n
(

(12)n
)2

(52)n (6n+ 5)

n! (n+ 1)!2 8n
=

32
√
2

3π

Compare it with the previous series with identical sum.

4. Extension of Ramanujan’s series involving (8n+ 1)9−n

This is the series (no.40) of Ramanujan:

∞
∑

n=0

(14)n (
1
2)n (

3
4)n (8n+ 1)

n!3 32n
=

2
√
3

π
.

Gasper[7, eq(5.23)] obtained this identity:

7F6

[ 3a, 1+(3a/4), 3b, (1−3b)/2, 1−(3b/2), c, 2a+b−c
3a/4, 1+a−b, (1+3a+3b)/2, 3(a+b)/2, 1+3a−3c, 1+3c−3a−3b

; 1
]

=
Γ(3a+ 3b) Γ(1 + 3a− 3c) Γ(a+ 2b− c) Γ(1 + a− b)

Γ(3a+ 1)Γ(3a+ 3b− 3c) Γ(a+ 2b) Γ(1 + a− b− c)

×
{

1 +
sin 3πb sinπc

sin 3π(a+ b− c) sinπ(a+ 2b)

}

.

Replacing c by −n and simplifying RHS, Wei and Gong expressed it as

7F6

[ 3a, 1+(3a/4), 3b, (1−3b)/2, 1−(3b/2), −n, 2a+b+n
3a/4, 1+a−b, (1+3a+3b)/2, 3(a+b)/2, 1+3a+3n, 1−3a−3b−3n

; 1
]

=
(a+ 2b)n (a+ 1

3)n (a+ 2
3)n (a+ 1)n

(1 + a− b)n (a+ b)n (a+ b+ 1
3)n (a+ b+ 2

3)n
,

using Γ(a+ n) = (a)nΓ(a) and Γ(3x) = 1
2π3

2x−1/2,Γ(x) Γ(x+ 1
3) Γ(x+ 2

3).
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Letting n → ∞ in this expression, they obtained:

5F4

[

3a, 1 + (3a/4), 3b, (1− 3b)/2, 1− (3b/2)

3a/4, 1 + a− b, (1 + 3a+ 3b)/2, 3(a+ b)/2

∣

∣

∣

∣

∣

1

9

]

=
Γ(a+ b) Γ(1 + a− b) Γ(a+ b+ 1

3) Γ(a+ b+ 2
3)

Γ(a+ 2b) Γ(a+ 1
3) Γ(a+ 2

3) Γ(a+ 1)
.

Using this and following the same technique as above, Wei and Gong [19]

obtained three more formulae (their theorems 5, 6 and 7) with (8k+6p+1)

via a = 1
6 + p, b = 1

6 + q followed with (8k+6p+3) via a = 1
2 + p, b = 1

2 + q

and (8k + 6p + 5) via a = 5
6 + p, b = 5

6 + q. Their three formulae can be

unified into a general formula for m = 0, 1, 2, . . . :

Theorem 4.1.
∞
∑

n=0

(−2m+1
4 )n (

2m+1
2 )n (

−2m+3
4 )n(8n+ 2m+ 1)

n!2 (n+m)! 32n
=

23m+1
√
3

3m (2m− 1)!!π
.

5. Two families of series involving (4n+ 1)9−n

We now take up an identity due to Gasper and Rahman [8, eq.(1.6)]:

7F6

[

a, a+ (1/2), (a/2) + 1, b, 1− b, c, −c+ (2a+ 1)/3

1/2, a/2, 1 + (2a− b)/3, (2 + 2a+ b)/3, 3c, 1 + 2a− 3c

∣

∣

∣

∣

∣

1

]

=
2√
3
· Γ(

3+2a−b
3 ) Γ(2+2a+b

3 )

Γ(2+2a
3 ) Γ(3+2a

3 )
· Γ(c+ 1

3) Γ(c+
2
3)

Γ(c+ 1+b
3 ) Γ(c+ 2−b

3 )

× Γ(3+2a
3 − c) Γ(2+2a

3 − c)

Γ(3+2a−b
3 − c) Γ(2+2a+b

3 − c)
· sin π(b+ 1)

3

Replacing c by n and letting n → ∞ in this expression, we have:

LHS = 5F4

[

a, a+ (1/2), (a/2) + 1, b, 1− b

1/2, a/2, 1 + (2a− b)/3, (2 + 2a+ b)/3

∣

∣

∣

∣

∣

1

9

]

which on choosing a = 1
2 + p, b = 1

2 + q becomes:

∞
∑

k=0

(1+2p
2 )k (1 + p)k (

1+2q
2 )k (

1−2q
2 )k

k! (12)k (
4p−2q+7

6 )k (
4p+2q+7

6 )k
· 4k + 2p+ 1

(2p+ 1) 9k

After taking the limit n → ∞, we are left with:

RHS =
2√
3
· Γ(

7+4p−2q
6 ) Γ(7+4p+2q

6 )

Γ(3+2p
3 ) Γ(4+2p

3 )
· sin π(3 + 2q)

6
.



EXTENSIONS OF RAMANUJAN’S THREE SERIES FOR 1/π 151

We thus evaluate RHS for p = q = 0:

RHS =
2√
3
· Γ(

7
6)

2

Γ(43)
=

3
√
2
(

Γ(13)
)3

4
√
3π

.

It results in the following sum:

∞
∑

n=0

(

(12)n
)2

(4n+ 1)
(

(16)n
)2

(6n+ 1)2 32n
=

√
3 3
√
2
(

Γ(13)
)3

12π
. (5.1)

The choice p = 1, q = 1 yields:

∞
∑

n=0

(−1
2)n (

3
2)n (n+ 1) (4n+ 3)

(12)n (
13
6 )n 3

2n
=

7
√
3 3
√
4
(

Γ(13)
)3

64π
. (5.2)

We get another family of series with sum of different type. For example,

p = 1, q = 0 leads to the sum:

∞
∑

n=0

(12)n, (
3
2)n (n+ 1) (4n+ 3)
(

(116 )n
)2

32n
=

25 3
√
2π2

6
(

Γ(13)
)3 . (5.3)

And with p = 0, q = 1, we obtain:

∞
∑

n=0

(−1
2)n (4n+ 1)

(56)n 3
2n

=
3
√
2π2

(

Γ(13)
)3 . (5.4)

6. Extension of Ramanujan’s series with (20n+ 3)(−4)−n

We found this extension of Ramanujan’s (35) series:

Theorem 6.1.
∞
∑

n=0

(−1)n
(−2m+1

4 )n (
1
2)n (

−2m+3
4 )n (20n+ 2m+ 3)

n!2 (n+m)! 22n

=
2m+3

(2m− 1)!!π
, m = 0, 1, 2, . . .

= (−1)−m (−2m− 1)!!

2−m−3 π
, m = −1,−2,−3, . . . (sum starts from n=-m.)

Remark 6.2. The theorem has been derived empirically and tested for a

large number of cases (m) and found valid. We have no formal proof of the

theorem yet.

Ramanujan’s series is a special case m = 0:

∞
∑

n=0

(−1)n
(14)n (

1
2)n (

3
4)n (20n+ 3)

n!2 (n+ 0)! 22n
=

8

π
.
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Two other special cases are:

∞
∑

n=0

(−1)n
(−1

4 )n (
1
2)n (

1
4)n (20n+ 5)

n!2 (n+ 1)! 22n
=

16

π
.

∞
∑

n=2

(−1)n
(54)n (

1
2)n (

7
4)n (20n− 1)

n!2 (n− 2)! 22n
=

6

π
.
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Abstract. Responding to a challenge posed by Frías-Armenta (2020),

who gave an example of a contractible graph with thirteen vertices that

does not have any gluable edge, we give a similar example with eleven

vertices. These examples illustrate that Axiom 3.4 of Ivashchenko

(1994) is violated, and so are several follow-up theorems.

1. introduction

As an aid to study molecular spaces and digital topology, Ivashchenko

(1985) [2] defined a family of contractible graphs. These contractible graphs

can be constructed starting from the trivial graph K(1) (that is, a graph

with only one vertex and no edge) via contractible transformations, which

allow: (1) deletion/gluing of a vertex when the subgraph induced by its

neighbors is a contractible graph, and (2) deletion/gluing of an edge when

the subgraph induced by the intersection of neighbors of its two end-points

is a contractible graph. Such a vertex or an edge is called contractible,

as are the subgraphs induced by the neighbors of the vertex and the joint

neighbors of the end-points of the edge.

Ivashchenko proved that these transformations do not change the Euler

characteristics of a graph (see [3]), or the graph homology (see [4]). He also

derived several properties of contractible graphs in [5]. Most of the new

results in [5] depend on Axiom 3.4, which was easily verified for contractible

graphs with up to four vertices.

Axiom 3.4 of [5]: “For a contractible graph G, and a vertex v ∈ G which

has some non-adjacent vertices, there exists a non-adjacent vertex u ∈ G

2010 Mathematics Subject Classification: 11A41, 16N20
Key words and phrases: Contractible transformations, contractible graphs,
contractible vertex, contractible edge, gluable vertex, gluable edge.
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such that the subgraph induced by the intersection of their neighbors is a

contractible graph, making edge [uv] gluable."

When Axiom 3.4 holds, graph G can be extended to another contractible

graph by gluing [uv], the edge with end vertices u and v. If this axiom were

always true, then by repeated application of this axiom, any contractible

graph would expand to a complete graph by gluing the missing edges in

some suitable sequence; conversely, any contractible graph would be ob-

tainable from a complete graph by deleting edges in the reverse sequence.

However, recognizing correctly that the claim could not be proved in gen-

eral, Ivashchenko stated it as an axiom. Thereafter, assuming Axiom 3.4,

he went on to prove several useful theorems.

Recently, in [1], Frías-Armenta constructed a contractible graph with

thirteen vertices that does not satisfy Axiom 3.4 of [5]. He challenged the

reader to construct a similar example with fewer vertices. We construct

such an example with eleven vertices. Consequently, results 3.5 through

3.10 in [5], which depend on Axiom 3.4, do not hold for our example.

2. Some preliminaries on contractible transformations

What we wrote in words in Section 1, let us restate in mathematical

terms. For a graph G = (V (G), E(G)) and a subset S of V (G), let us define

the joint neighbors of S as

NG(S) =
⋂

v∈S

{u ∈ V (G) : [uv] ∈ E(G)}.

The induced graph of NG(S), denoted by LG(S), has vertex set S and edge

set consisting of all adjacent pairs of vertices in S. For a singleton S = {v},

we denote NG({v}) and LG({v}) by NG(v) and LG(v) respectively.

As mentioned before, Ivashchenko [2] introduced a family of graphs

whose members are called contractible graphs, if each member is obtainable

from the trivial graph K(1) through a sequence of contractible transforma-

tions.

Definition 2.1. A family F of graphs G1, G2, · · · , Gn, · · · is called con-

tractible if

(1) The trivial graph is in F .

(2) Any graph of F can be obtained from the trivial graph by finite

sequence of contractible transformations {T1, T2, T3, T4} defined as follow:
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T1 (Deleting a vertex v): A vertex v of a graph G can be deleted, if

LG(v) ∈ F .

T2 (Gluing a new vertex v): If a subgraph G1 of a graph G is con-

tractible; that is, if G1 ∈ F , then the new vertex v, not in G, can be glued

to G in such a way that LG+v(v) = G1, where the vertex-extended graph

G+ v = (V (G) ∪ {v}, E(G) ∪ {[uv] : u ∈ G1}).

T3 (Deleting an edge [v1v2]): An edge [v1v2] of G can be deleted if

LG({v1, v2}) ∈ F .

T4 (Gluing a new edge [v1v2]): Let two vertices v1 and v2 of a graph G

be non-adjacent. The edge [v1v2] of G can be glued if LG({v1, v2}) ∈ F ,

where the edge-extended graph G+ [uv] = (V (G), E(G) ∪ [uv]).

Any graph G ∈ F is called a contractible graph. A vertex v is deletable

(gluable) if contractible transformation T1 (T2) can be applied to it. Sim-

ilarly, an edge [uv] is deletable (gluable) if contractible transformation

T3 (T4) can be applied to it.

A complete graph is a contractible graph as it can be constructed by

starting from K(1) and successively gluing new vertices along with edges

joining each new vertex to all existing vertices (that is, by using a finite

number of transformations of type T2). A triangulated graph (also known

as a chordal graph) is a contractible graph as it can be constructed by

starting from K(1),K(2) and successively adding vertices along with edges

joining each new vertex with one or two existing vertices to form each trian-

gular face (that is, by using a finite number of transformations of type T2).

A cycle with four or more edges is non-contractible. Since each contractible

transformation results in a connected graph, any contractible graph is con-

nected.

3. A contractible graph with no gluable edge

Figure 1 shows a contractible graph on eleven vertices that violates

Axiom 3.4 (in [5]) of Ivashchenko.

Let us show that G is a contractible graph: (1) The black part of the

graph G is a triangulated graph, and hence contractible using transforma-

tions of type T2. (2) To the black part, we glue contractible edges sequen-

tially (these are transformations of type T4): purple [8, 10]; green [2, 9],
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Figure 1. This graph G on 11 vertices violates Axiom 3.4 of [5].

[2, 11]; red [9, 10], [8, 11]; brown [6, 9], [5, 11]; and blue [8, 4], [3, 10]. Thus,

G is a contractible graph.

Now we shall show that G violates Axiom 3.4 in [5]. First, note that

Vertex 2 is the only deletable vertex of G: This is because the neighborhood

LG(2), being a path on vertices {9, 3, 1, 4, 11}, is contractible; but for any

other vertex u, the neighborhood LG(u) is either disconnected or cyclic

with five/six edges, hence not contractible. Moreover, even after Vertex 2 is

deleted, no other vertex can be deleted. Second, note that Vertex 1, which

has several non-adjacent vertices, does not admit any gluable edge through

it, whether or not we delete Vertex 2: This is because for any vertex v non-

adjacent to Vertex 1, the neighborhood LG({1, v}) is disconnected. Hence,

G violates Axiom 3.4 in [5].

It is immediate that Theorem 3.5, Corollary 3.6, Theorem 3.7 and The-

orem 3.8 in [5] do not hold for graph G. Theorem 3.9 in [5] does not hold

because the induced graph generated by NG(2) ∪ {2} does not admit a

non-adjacent deletable vertex. Theorem 3.10 in [5] does not hold because

subgraph G1 induced by vertices {1, 5, 6, 7} does not extend to G only by

gluing contractible vertices.

We invite the reader to construct an example with fewer vertices that

violate Axiom 3.4 of [5] or prove that ours is such an example with the
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fewest vertices.
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Abstract. In this paper we consider a particular type of partition of

Zn, called skew H-partitions and H-partitions [7] and obtain a neces-

sary and sufficient condition for existence of a set of one circulant and

three symmetric back-circulant matrices of order n to obtain a good

matrices of order 4n in terms of such partitions when n(≥ 3) odd.

1. Introduction:

A (1,−1) matrix H of order n is called a Hadamard matrix, if HH
′

=

nI, where H
′

is the transpose of H. If H is a Hadamard matrix of order n

then n = 2 or n ≡ 0(mod 4). The converse of this seems to be true and is

known as the Hadamard conjecture.

Many exciting results have stemmed from the following basic idea put

forward by Williamson. Consider the array

H =











W X Y Z

−X W −Z Y

−Y Z W −X

−Z −Y X W











If W,X, Y and Z are replaced by square matrices A,B,C and D of order

n respectively, then H becomes a square matrix of order 4n. Williamson

proved that a sufficient condition for H to be a Hadamard matrix is that

A,B,C and D are (1,−1) matrices of order n with

AA′ +BB′ + CC ′ +DD′ = 4nI (1.1)
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and for every pair X,Y ∈ {A,B,C,D} are circulant and symmetric such

matrices satisfy

XY ′ = Y X ′ (1.2)

If A,B,C,D are (1,−1) matrices of order n with the properties

(i) XY ′ = Y X ′ for X,Y ∈ {A,B,C,D}

(ii) (A− I)′ = −(A− I), B′ = B, C ′ = C and D′ = D

(iii) AA′ +BB′ + CC ′ +DD′ = 4nI

will be called good matrices[1],[10].

Also it can be observed that the array H becomes a skew-Hadamard ma-

trix i.e. H∗ is a skew symmetric matrix, where H∗ is obtained from H by

replacing principal diagonal entries of H by zero.

The basic difficulty lies in finding the matrices A,B,C and D which satisfy

the above three properties of good matrices. In this article we give a neces-

sary and sufficient condition for the existence of such matrices A,B,C and

D. Our result also gives a method for finding a set of such matrices.

2. Definitions:

Definition 2.1. For any odd integer n ≥ 3, let Zn be the cyclic group of

integers modulo n under addition. Let Ai be a proper subset of Zn such that

0 ∈ Ai and Ai = −Ai. Then {Ai, Bi = Zn −Ai} is clearly a partition of Zn

such that Bi = −Bi. We call such a partition of Zn to be an H-partition

of Zn

Addition in H-partition: For an H-partition {Ai, Bi} of Zn,

let Ai + Bi = {a + b(mod n) | a ∈ Ai, b ∈ Bi}. Let Ci denotes the set of

distinct elements of Ai +Bi. For any c ∈ Ci the frequency of occurrence of

c in Ai +Bi is denoted by ni
c. Clearly 0 /∈ Ci for any H-partition {A,Bi} of

Zn.

Example 2.2. For n = 7, Z7 be the cyclic group of order 7.

Let

(1) A1 = {0, 1, 2, 5, 6}, B1 = {3, 4}.

(2) A2 = {0, 2, 5}, B2 = {1, 3, 4, 6}.

are H-partitions of Z7.

Addition of H partitions are given by
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(1) A1+B1 = {{0, 1, 2, 5, 6}+{3, 4} mod 7} = {3, 4, 5, 1, 2, 4, 5, 6, 2, 3}

⇒ A1 +B1 = {1, 2, 2, 3, 3, 4, 4, 5, 5, 6}, C1 = {1, 2, 3, 4, 5, 6}

and n1
c are 1, 2, 2, 2, 2, 1 for c = 1, 2, 3, 4, 5, 6 respectively.

(2) A2+B2 = {{0, 2, 5}+{1, 3, 4, 6} mod 7} = {1, 3, 4, 6, 3, 5, 6, 1, 6, 1, 2, 4}

⇒ A2 +B2 = {1, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 6}, C2 = {1, 2, 3, 4, 5, 6}

and n2
c are 3, 1, 2, 2, 1, 3 for c = 1, 2, 3, 4, 5, 6 respectively.

Definition 2.3. For any odd integer n ≥ 3, let Zn be the cyclic group

of integers modulo n under addition. Let Ai be a proper subset of Zn with
n+1
2 elements in Ai, such that 0 ∈ Ai and a( 6= 0) ∈ Ai implies −a ∈ Bi

i.e. Bi = −1(Ai − {0}). Clearly {Ai, Bi} is a partition of Zn called skew

H-partition of Zn.

Subtraction in skew H-partition:

For a skew H-partition {Ai, Bi} of Zn, let Ai−Bi = {a−b( mod n)|a ∈

Ai, b ∈ Bi}. Let Ci denotes the set of distinct elements of Ai−Bi. For any

c ∈ Ci the frequency of occurrence of c in Ai−Bi is denoted by ni
c. Clearly

0 /∈ Ci for any skew H- partition {Ai, Bi} of Zn.

Example 2.4. For n = 7, Z7 be the cyclic group of order 7.

Let

(1) A1 = {0, 1, 2, 3}, B1 = {4, 5, 6};

(2) A2 = {0, 1, 3, 5}, B2 = {2, 4, 6}

are skew H-partitions of Z7.

Subtractions of skew H-partitions are given by

(1) A1−B1 = {{0, 1, 2, 3}−{4, 5, 6} mod 7} = {3, 2, 1, 4, 3, 2, 5, 4, 3, 6, 5, 4, 5}

⇒ A1 −B1 = {1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6}, C1 = {1, 2, 3, 4, 5, 6}

and n1
c are 1, 2, 3, 3, 2, 1 for c = 1, 2, 3, 4, 5, 6 respectively.

(2) A2−B2 = {{0, 1, 3, 5}−{2, 4, 6} mod 7} = {5, 3, 1, 6, 4, 2, 1, 6, 4, 3, 1, 6}

⇒ A2 −B2 = {1, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 6},C1 = {1, 2, 3, 4, 5, 6}

and n2
c are 3, 1, 2, 2, 1, 3 for c = 1, 2, 3, 4, 5, 6 respectively.

Definition 2.5. The shift matrix T of order n is a (0, 1)-square matrix

defined as T = [uij ], where

uij =







1, if j − i ≡ 1 (mod n)

0, otherwise.

We observe that Tn = I (identity matrix).
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Definition 2.6. For any matrix A, the match matrix A(m) of A is

defined as A(m) = [nij ], where nij = number of places in which the ith row

and jth row of A have the same non-zero entry at corresponding places.

Definition 2.7. For any matrix A with nonzero entries, the mis-match

matrix A(mm) of A is defined as A(mm) = [ńij ], where ńij = number of

places in which the ith row and jth row of A have different entries at corre-

sponding places.

Definition 2.8. Let a0, a1, . . . , an−1 be a sequence of n elements. Then a

matrix U = [cij ] is called a circulant matrix with entries a0, a1, . . . , an−1

if cij = a(j−i)(mod n), for 1 ≤ i, j ≤ n.

Clearly U is a circulant matrix if and only if U =
n−1
∑

i=0

aiT
i.

Definition 2.9. Let a0, a1, . . . , an−1 be a sequence of n elements. Then a

matrix L = [cij ] is called a back-circulant matrix with entries a0, a1, ..., an−1

if cij = a(i+j−2)(mod n), for 1 ≤ i, j ≤ n.

Clearly L is a back-circulant matrix [10] if and only if

L =
n−1
∑

i=0

an−(i+1)T
iR

where T is shift matrix and

R =

















0 0 0 ... 1

0 0 0 ... 0

. .. . ... .

0 1 0 ... 0

1 0 0 ... 0

















.

Note: It can be noted that:-

(1) R2 = RR
′

= I (identity matrix).

(2) For any a, 0 ≤ a ≤ n− 1

RTn−a = T aR. (2.1)

3. Necessary and Sufficient Condition

Theorem 3.1. There exists a set of four good matrices A,B,C,D, where A

is skew type circulant and B,C,D are symmetric back-circulant matrices of

order n if and only if there exists four partitions {Ai, Bi}, i = 1, 2, 3, 4 where

{A1, B1} is skew H-partition and {Ai, Bi} i = 2, 3, 4 are H-partitions of Zn,
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not necessarily distinct such that S =

4
⋃

i=1

Ci = Zn − {0} and

4
∑

i=1

ni
c = n for

each c ∈ Zn − {0}, where n1
c denotes the occurrence number of c in A1−B1,

and ni
c denotes the occurrence number of c in Ai +Bi for i = 2, 3, 4.

Proof: Let T be the shift matrix of order n For any set of four parti-

tions {Ai, Bi} i = 1, 2, 3, 4 of Zn, let

P1 =
∑

a1∈A1

T a1 , N1 =
∑

b1∈B1

T b1

Now

N
′

1 = (
∑

b1∈B1

T b1)
′

=
∑

b1∈B1

(T b1)
′

=
∑

b1∈B1

Tn−b1 =
∑

b1∈B1

T−b1

⇒ N
′

1 =
∑

b1∈B1

T−b1

Then P1 and N1 are circulant (0, 1) matrices and

P1N
′

1 =
∑

a1∈A1

T a1
∑

b1∈B1

T−b1

P1N
′

1 =
∑

a1−b1∈A1−B1

T a1−b1

=
∑

c∈C1

n1
cT

c (3.1)

Also Pi =
∑

ai∈Ai

Tn−(ai+1)R and Ni =
∑

bi∈Bi

Tn−(bi+1)R, for i = 2, 3, 4.

Then Pi and Ni are symmetric back-circulant (0, 1) matrices and

PiN
′

i =
∑

ai∈Ai

Tn−(ai+1)R(
∑

bi∈Bi

Tn−(bi+1)R)
′

=
∑

ai∈Ai

Tn−(ai+1)RR(
∑

bi∈Bi

T bi+1) [from(2.1)]

=
∑

c∈Ci

ni
cT

c. (3.2)

From (3.1) and (3.2) we get,

PiN
′

i =
∑

c∈Ci

ni
cT

ci i = 1, 2, 3, 4
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⇒

4
∑

i=1

PiN
′

i = n
∑

c∈Zn−{0}

T c = n(J − I). (3.3)

Now let Xi = Pi−Ni for i = 1, 2, 3, 4 then X1 is skew-type circulant matrix

and X2, X3, X4 are symmetric back circulant matrices with entries 1 and

−1. From definition 2.6 it is clear that for a (0, 1) matrix A the match

matrix A(m) = AA
′

. Since Pi’s and Ni’s are (0, 1) matrices, Pm
i = PiP

′

i

and Nm
i = NiN

′

i and Xm
i = Pm

i +Nm
i for i = 1, 2, 3, 4. Since {Ai, Bi} is a

partition of Zn, so

Xm
i = PiP

′

i +NiN
′

i ; i = 1, 2, 3, 4. (3.4)

From definition 2.7 it is clear that, for a (1,−1) matrix A of order n, the

mis-match matrix A(mm) = [ńij ] = [n− nij ], where nij is the (i, j)th entry

of A(m).

Therefore A(mm)= nJ − A(m), where J is the square matrix with entry 1.

Since Xi is a (1,−1) matrix,

X
(mm)
i = nJ −X

(m)
i

X
(mm)
i = nJ − (PiP

′

i +NiN
′

i ) ; i = 1, 2, 3, 4. (3.5)

Also, since X1 is a skew-type (1,−1) matrix and X2, X3, X4 are symmetric

(1,−1) matrix so XiX
′

i = [xkl], where xkl = inner product of the kth row

and lth row of Xi =(number of places in which the kth row and lth row of

Xi have the same entries)− (number of places in which the kth row and lth

row of Xi have different entries).

Thus

XiX
′

i = X
(m)
i −X

(mm)
i

⇒ XiX
′

i = 2(PiP
′

i +NiN
′

i )− nJ ; i = 1, 2, 3, 4

⇒
4

∑

i=1

XiX
′

i = 2(
4

∑

i=1

PiP
′

i +
4

∑

i=1

NiN
′

i )− 4nJ (3.6)

Again
4

∑

i=1

XiX
′

i =

4
∑

i=1

(Pi −Ni)(Pi −Ni)
′

=

4
∑

i=1

PiP
′

i +

4
∑

i=1

NiN
′

i − 2

4
∑

i=1

PiN
′

i [form(2.1)]
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⇒

4
∑

i=1

PiP
′

i +

4
∑

i=1

NiN
′

i =

4
∑

i=1

XiX
′

i + 2

4
∑

i=1

PiN
′

i (3.7)

From equations (3.6) and (3.7)

4
∑

i=1

XiX
′

i = 2(

4
∑

i=1

XiX
′

i + 2

4
∑

i=1

PiN
′

i )− 4nJ

⇒
4

∑

i=1

XiX
′

i = 4nJ − 4
4

∑

i=1

PiN
′

i (3.8)

So equations (3.3) and (3.8) imply

4
∑

i=1

XiX
′

i = 4nJ − 4n(J − I) = 4nI.

Thus Xi, i = 1, 2, 3, 4 form a set of four good matrices for a Hadamard

matrix of order 4n.

Conversely, Let Xi, i = 1, 2, 3, 4 form a set of four good matrices

for a Hadamard matrix of order n, where X1 is skew-type circulant and

X2, X3, X4 are symmetric back circulant matrices of order n. Then

4
∑

i=1

XiX
′

i = 4nI. (3.9)

Since Xi is a (1, −1) back circulant matrix it can be written as

Xi =
n−1
∑

k=0

an−(k+1)T
kR ; an−(k+1) = ±1 ; i = 2, 3, 4 (3.10)

and X1 is (1,−1) circulant matrix so it can be written as

X1 =

n−1
∑

k=0

akT
k ; ak = ±1. (3.11)

Let A1 = {k | k ∈ Zn, ak = +1} and B1 = {k | k ∈ Zn, ak = −1}

and

Ai = {k | k ∈ Zn, an−(k+1) = +1} and Bi = {k | k ∈ Zn, an−(k+1) =

−1}; i = 2, 3, 4 then clearly {Ai, Bi} , i = 1, 2, 3, 4 are four partitions of Zn

and exactly one of Ai and Bi contains 0. Since equation (3.9) remains valid
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if Xi is replaced by −Xi, replacing Xi by −Xi, if necessary, we can assume

that Ai contains 0, for i = 1, 2, 3, 4. As ±X1 is a skew type circulant and

±Xi; i = 2, 3, 4 are symmetric back-circulant matrix k ∈ A1, (n− k) ∈ B1;

k ∈ Ai, (n−k) ∈ Ai for i = 2, 3, 4. Therefore {Ai, Bi}; i = 1, 2, 3, 4 are four

partitions of Zn.

Let

P1 =
∑

k∈A1

T k and N1 =
∑

k∈B1

T k

Also

Pi =
∑

k∈Ai

Tn−(k+1)R and Ni =
∑

k∈Bi

Tn−(k+1)R where i = 2, 3, 4.

Then Xi = Pi − Ni, i = 1, 2, 3, 4 where P1, N1 are circulant matrices

and Pi, Ni i = 2, 3, 4 are symmetric back-circulant matrices with entries

(0, 1). Thus P
(m)
i = PiP

′

i and N
(m)
i = NiN

′

i and X
(m)
i = P

(m)
i +N

(m)
i for

i = 1, 2, 3, 4. So

X
(m)
i = PiP

′

i +NiN
′

i ; i = 1, 2, 3, 4. (3.12)

Since Xi is a (1,−1) matrix from definition 2.7

X
(mm)
i = nJ −X

(m)
i . (3.13)

Using equations (3.9), (3.12) and (3.13) we get

4
∑

i=1

PiN
′

i = n(J − I). (3.14)

Now, if possible let us assume that for some element k ∈ Zn − {0},
4

∑

i=1

ni
k = nk 6= n.

As PiN
′

i =
∑

c∈Ci

ni
cT

c ; i = 1, 2, 3 and 4, where Ci is the set determined

by A1 −B1 and Ai +Bi i = 2, 3, 4.
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4
∑

i=1

PiN
′

i =

4
∑

i=1

(
∑

c∈Ci

ni
cT

c)

=
∑

c∈S

(

4
∑

i=1

ni
c)T

c, where S =
4
⋃

i=1

Ci

=
∑

c∈S−{k}

(

4
∑

i=1

ni
c)T

c +

4
∑

i=1

ni
kT

k

=
∑

c∈S−{k}

(
4

∑

i=1

ni
c)T

c + nkT
k

6= n(J − I), as nk 6= n.

which contradicts
4

∑

i=1

PiN
′

i = n(J − I).

So S =

4
⋃

i=1

Ci = Zn − {0} and
4

∑

i=1

ni
c = n for each c ∈ Zn − {0}.

Hence the theorem. �

4. Examples

Example 4.1. For n=5 ; let A1 = {0, 1, 2}, B1 = {3, 4}; A2 = {0, 2, 3},

B2 = {1, 4}; A3 = {0}, B3 = {1, 2, 3, 4}; A4 = {0}, B4 = {1, 2, 3, 4}. Then

A1−B1 = {1, 2, 2, 3, 3, 4}; A2+B2 = {1, 1, 2, 3, 4, 4}; A3+B3 = {1, 2, 3, 4};

A4 +B4 = {1, 2, 3, 4}. These four partitions clearly satisfy the condition of

the theorem and yield a set of four good matrices whose first rows are given

by

+1 +1 +1 -1 -1

+1 -1 +1 +1 -1

+1 -1 -1 -1 -1

+1 -1 -1 -1 -1

Example 4.2. For n = 7; let A1 = {0, 1, 2, 3}, B1 = {4, 5, 6}; A2 =

{0, 2, 5}, B2 = {1, 3, 4, 6}; A3 = {0, 3, 4}, B3 = {1, 2, 5, 6}; A4 = {0},

B4 = {1, 2, 3, 4, 5, 6}. Then A1 − B1 = {1, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6}; A2 +

B2 = {1, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 6}; A3 + B3 = {1, 1, 2, 2, 2, 3, 4, 5, 5, 5, 6, 6};
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A4+B4 = {1, 2, 3, 4, 5, 6}. These four partitions clearly satisfy the condition

of the theorem and yield a set of four good matrices whose first rows are

given by

+1 +1 +1 +1 -1 -1 -1

+1 -1 +1 -1 -1 +1 -1

+1 -1 -1 +1 +1 -1 -1

+1 -1 -1 -1 -1 -1 -1

5. Possible size of partitions for good matrices

Theorem 5.1. Let {Ai, Bi}; i = 1, 2, 3, 4 where {A1, B1} is a skew H-

partition and {Ai, Bi}; i = 2, 3, 4 be a set of H-partition of Zn, which gives

rise to a set of good matrices. Then

4
∑

i=2

ki(n− ki) =
(n− 1)(3n− 1)

4
where

ki = |Ai|; i = 1, 2, 3, 4.

Proof: Let {Ai, Bi}; i = 1, 2, 3, 4 are stated type partitions of Zn, which

gives rise to a good matrix of order 4n. Then
4

∑

i=1

ni
c = n for all c ∈ Zn − {0}.

Let ki = |Ai|; i = 1, 2, 3, 4. Obviously, by definition 2.3, k1 = |A1| =
n+1
2 .

Without loss of generality we can assume that 0 ∈ Ai; i = 2, 3, 4. As

Ai = −Ai, for i = 2, 3, 4 ki is an odd positive integer and consequently

|Bi| = n − ki is an even integer for all i = 2, 3, 4. Since Ai + Bi forms a

ki × (n − ki) sub-matrix of the matrix corresponding to the composition

table of Zn, for i = 2, 3, 4 we have

∑

c∈Zn

ni
c = ki(n− ki) ; i = 1, 2, 3, 4.

⇒

4
∑

i=2

(
∑

c∈Zn

ni
c) =

4
∑

i=2

ki(n− ki) (5.1)

Again

4
∑

i=2

(
∑

c∈Zn

ni
c) =

4
∑

i=2

(
∑

c∈Zn−{0}

ni
c) as ni

0 = 0 ; i = 2, 3, 4

=
∑

c∈Zn−{0}

(
4

∑

i=2

ni
c)
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⇒
∑

c∈Zn

(

4
∑

i=2

ni
c) =

∑

c∈Zn−{0}

(

4
∑

i=1

ni
c − n1

c)

=
∑

c∈Zn−{0}

(
4

∑

i=1

ni
c)−

∑

c∈Zn−{0}

n1
c

= n(n− 1)−
∑

c∈Zn−{0}

n1
c

= n(n− 1)− k1(n− k1)

= n(n− 1)−
n+ 1

2
(n−

n+ 1

2
) as k1 =

n+ 1

2

⇒
4

∑

i=2

(
∑

c∈Zn

ni
c) =

(n− 1)(3n− 1)

4
. (5.2)

From (5.1) and (5.2) we have

4
∑

i=2

ki(n− ki) =
(n− 1)(3n− 1)

4
. �

So the possible size of Ai, i = 1, 2, 3, 4 are k1, k2, k3 and k4 respectively,

where k1 = n+1
2 and {k2, k3, k4} is a set of odd integers which satisfy the

equation

x(n− x) + y(n− y) + z(n− z) =
(n− 1)(3n− 1)

4
.

Theorem 5.2. The equation

x(n− x) + y(n− y) + z(n− z) =
(n− 1)(3n− 1)

4

has an integer solution if and only if there exists an integer solution of the

equation

X2 +X3 +X4 = n− 1

in {m(m− 1)}∞m=1.

Proof: Let {k2, k3, k4} be an integer solution of the equation

x(n− x) + y(n− y) + z(n− z) =
(n− 1)(3n− 1)

4
. (5.3)

Thus
4

∑

i=2

ki(n− ki) =
(n− 1)(3n− 1)

4
.
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Let Xi = (n−1
2 )(n+1

2 )− ki(n− ki), i = 2, 3, 4.

Since ki+(n−ki) = n ; i = 2, 3, 4, so (n−1
2 )(n+1

2 ) ≥ ki(n−ki) ; i = 2, 3, 4

⇒ Xi = (n−1
2 )(n+1

2 )− ki(n− ki) ≥ 0 ; i = 2, 3, 4

Then

4
∑

i=2

Xi =

4
∑

i=2

{(
n− 1

2
)(
n+ 1

2
)− ki(n− ki)}

=
3(n− 1)(n+ 1)

4
−

4
∑

i=2

ki(n− ki)

=
3(n− 1)(n+ 1)

4
−

(n− 1)(3n− 1)

4
[from(5.3)]

= n− 1

Now we have to show that Xi ∈ {m(m− 1)}∞m=1 for all i = 2, 3, 4.

For all i = 2, 3, 4 we have

Xi = (
n− 1

2
)(
n+ 1

2
)− ki(n− ki)

= (
n− 1

2
)(
n+ 1

2
)− ki(

n+ 1

2
) + ki(

n+ 1

2
)− ki(n− ki)

= (
n+ 1

2
)(
n− 1

2
− ki)− ki(

n− 1

2
− ki)

= (
n+ 1

2
− ki)(

n− 1

2
− ki)

= mi(mi − 1) [say mi =
n+ 1

2
− ki].

If n+1
2 > ki ⇒ mi > 0 ⇒ mi(mi − 1) ≥ 0 ⇒ Xi ≥ 0.

If n+1
2 ≤ ki ⇒ mi ≤ 0 ⇒ mi(mi − 1) ≥ 0 ⇒ Xi ≥ 0.

Thus for all i = 2, 3, 4 ; Xi ∈ {m(m− 1)}∞m=1.

Conversely, let mi(mi − 1) ; i = 2, 3, 4 be an integer solution of

X2 +X3 +X4 = n− 1. (5.4)
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Then
4

∑

i=2

mi(mi − 1) = n − 1. We claim that for all i = 2, 3, 4; mi ≤
n−1
2 .

If not suppose for some i = 2, 3, 4; mi >
n−1
2 ⇒ mi(mi − 1) > (n−1

2 )(n+1
2 )

for n ≥ 3. For n = 1, X2 = X3 = X4 = 0 is a solution of (5.4) and the

corresponding solution of (5.3) is x = y = z = 1.

Now consider ki =
n+1
2 −mi ; i = 2, 3, 4.

Then

4
∑

i=2

ki(n− ki) =

4
∑

i=2

(
n+ 1

2
−mi){n− (

n+ 1

2
−mi)}

=
4

∑

i=2

(
n+ 1

2
−mi)(

n− 1

2
+mi)

=

4
∑

i=2

{(
n+ 1

2
)(
n− 1

2
) +mi(

n+ 1

2
−

n− 1

2
)−m2

i }

= 3(
n+ 1

2
)(
n− 1

2
)−

4
∑

i=2

mi(mi − 1)

= 3(
n+ 1

2
)(
n− 1

2
)− (n− 1)

= (
(n− 1)(3n− 1)

4
).

So ki(n− ki) ; i = 2, 3, 4 is a solution set of equation (5.3).

Example: For n = 13 ; the solutions of the equation

X2 +X3 +X4 = n− 1

in {m(m+ 1)}∞m=0 are given by

(i) (0, 0, 12), (ii) (0, 6, 6).

Using theorem (5.2) the corresponding solutions of

x(n− x) + y(n− y) + z(n− z) =
(n− 1)(3n− 1)

4
.

are (a) (7, 7, 3) (b) (7, 9, 9) [taking all odd solutions] respectively. So

possible size of part Ai of the H-partitions {Ai, Bi}; i = 2, 3, 4 are given by
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one of the solutions (a) and (b) only. Using these concepts the exhaustive

search becomes quite easy as other sizes of partitions are disposed off.

Let us consider the solution (a) (7, 7, 3), by hit and trial method we

obtain

A1 = {0, 1, 3, 7, 8, 9, 11},

A2 = {0, 4, 5, 6, 7, 8, 9},

A3 = {0, 1, 3, 6, 7, 10, 12}

and A4 = {0, 5, 8},

such that the frequencies ni
j ; j = 1, 2, 3, 4, 5, . . . , 12; i = 1, 2, 3, 4 are

as follows:

n1
j = {4, 3, 4, 4, 3, 3, 3, 3, 4, 4, 3, 4};

n2
j = {2, 3, 4, 3, 4, 5, 5, 4, 3, 4, 3, 2};

n3
j = {4, 4, 3, 3, 5, 2, 2, 5, 3, 3, 4, 4};

n4
j = {3, 3, 2, 3, 1, 3, 3, 1, 3, 2, 3, 3};

Since
4

∑

i=1

ni
j = 13 for j = 1, 2, 3, 4, ..., 12, the condition of the theorem

(3.1) are satisfied by this set of four partitions and we have a set of four

good matrices giving rise to a Hadamard matrix of order 4× 13.

Conclusion: It is very tedious job to search a set of good matrices to

obtain a skew-type Williamson Hadamard matrix. The paper also includes

possible size of partitions for Williamson skew type symmetric matrices,

which helps to disposed off some cases of exhaustive search of such matri-

ces. These matrices are very useful because of its applications.
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Abstract. This paper deals with Modified- Stieltjes transform. The

present paper mainly provides complex inversion formula for the Modified-

Stieltjes transform. The aim of the paper is to extend inverse Modified-

Stieltjes transform and also prove complex inversion theorem.

1. INTRODUCTION

The basic aim of the transform method is to convert a given problem

into one that is simpler to solve. Intrgral transform methods provide effec-

tive ways to solve a variety of problems arising in engineering and physical

sciences.In this paper we have proved complex inversion theorem for mod-

ified Stieltjes transform.The classical Stieltjes transform has been given by

Sumner [6]. Its convergence in S’ instead of point wise convergence, is for

the Γ(r + 1)Tr+1(f), r > −1 where f belongs to a subspace of Tr+1- trans-

formable tempered distributions.

2. Definitions

Definition 2.1. SPACE L′(r): We extend the definition of the space

I ′(r) given in [5] and using the same idea we provided the definition of

space L′(r).

L′(r), r ∈ ℜ\(−N) denotes the space of all distributions f ∈ S′
+(ℜ) such

that there exists k ∈ N0 and locally integrable function F , supp F ⊂ [0,∞),

so that f is of the form

f = t−rDkF (2.1)

2010 Mathematics Subject Classification:: 46F12
Key words and phrases: Stieltjes transform, Modified-Stieltjes transform,
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and there exists C = C(F ) and ǫ = ǫ(F ) > 0 such that

|F (x)| ≤ C(1 + x)r+k−ǫ, x ≥ 0 (2.2)

Definition 2.2. Stieltjes Transform: The Stieltjes Transform Sr(f)(s), r ∈

R\(−N) is complex valued function, defined by

Sr(f(t))(s) =

∫ ∞

0

f(t)

(s+ t)r+1
dt, s ∈ C\(−∞, 0], 0 < t < ∞, r ∈ R\(−N)

(2.3)

Definition 2.3. Modified Stielejes Transformation: The Modified

Stielejes Transformation Tr+1(f), r ∈ R\(−N) is a complex valued func-

tion defined by

Γ(r + 1)Tr+1(f)(s) = (r + 1)k
∫∞

0
F (t)

(s+t)(r+1+k)dt, r ∈ R\(−N),

s ∈ C\0 < t < ∞.

Where (r + 1)k = (r + 1)(r + 2)−−− (r + k − 1) = Γ(r+k+1)
Γ(r+1)

3. MAIN RESULTS

First we provide some preliminary results. Let η > 0, t ∈ ℜ, we denote

Cηt, the contour in 6 c which starts at the point, −t − iη, proceeds along

the straight line Imz = −η to the point −iη, then along the semicircle

|z| = η,Rez ≥ 0 to the point iη and finally along the line Imz = η to the

point −t + iη. We noted that these contours were observed in [4] only for

t > 0. Let K(u, t) = K1(t− u), t, u ∈ ℜ, t 6= u where

K1(x) = x−1
(

(−η − ix)−r−1 − (η + ix)−r−1
)

, x ∈ ℜ\{0}, η > 0.

For convenience we took that determination of (s + t)−r−k−1, which occur

in this section for which arg(s+ t)−r−k−1(argz−r−s−1, s ∈ N0) has its prin-

cipal value.

We need the following identities:

∫

Cηt

(z + t)r

(z + t)r+2
dz =

ηr+1

r + 1
k(u, t), u > 0, t ∈ ℜ, t 6= u, η > 0, ([6], p.180)

(3.1)
∂iK(u, t)

∂ti
= (−1)i

∂iK(u, t)

∂ui
, t, u ∈ ℜ, u 6= t, η > 0

By Leibnitz formula we have

∣

∣

∣

∂iK(u, t)

∂ti

∣

∣

∣
≤ C1

i
∑

p=0

|t− u−i−1+p|
(

η2 + (t− u)2
)−(r+1+p)/2
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where C1 = 2max
{

(

i
p

)

(i− p)!(r + p)p; 0 ≤ p ≤ i
}

.

Thus with C0 = (i+ 1)C1, it holds

|
∂iK(u, t)

∂ti
| ≤ C0|t− u|−i−1

(

η2 + (t− u2)
)−(r+1)/2

(3.2)

We shall suppose that r > −1. We denote by L̃′(r), (r > −1) a subset of

L′(r + 1) such that f ∈ L′(r) if f = trDkF, k ∈ N0, F is continuous and if

instead of (1.2.1) it holds

|F (x)| ≤ C(1 + x)r+1−ǫ, x ≥ 0 forsomeC > 0 and some ǫ > 0 (3.3)

Lemma 3.1. Let F be a continuous function on ℜ with suppF ⊂ [0,∞)and

let (3.2) hold. Then for every k ∈ N0 and t0 ∈ ℜ

.

∫ ∞

−∞

F (u)(
∂iK(u, t)

∂ti
)|t=t0du =

dk

dtk

[

∫ ∞

−∞

F (u)K(u, t)du

]∣

∣

∣

∣

∣

t=t0

(3.4)

Lemma 3.2. Let F satisfies the conditions of lemma (3.1)and let

φi(t) =

∫ ∞

−∞

|F (u)
∂iK(u, t)

∂ti
|du, t ∈ ℜ, i ∈ N0 (3.5)

(i) There exists constants k(i, η) and polynomial Pi(t)such that

φi(t) ≤ k(i, η)Pi(t), t ∈ ℜ, i ∈ N

(ii) There exists constant k0 (which does not depend on η) and a polynomial

P0(t)such that ηr+1φ0(t) ≤ k0p0(t), t ∈ ℜ.

Proof. (i) Let t > 1, we have

φi(t) ≤

[

∫ t−1

0

∫ t+1

t−1

∫ ∞

t+1

]

(

|
F (u)∂iK(u, t)

∂ti
|
)

du = J1 + J2 + J3

By (3.2) and (3.3) we have

J1 ≤ CC0

∫ t−1

0

(1 + u)r+1−ǫ

|t− u|i+1(η2 + (t− u)2)(r+1)/2
du ≤ CC0t(1 + t)r+1−ǫ

because for t > 0 and u ∈ (0, t− 1), (t− u)i+1(η2 + (t− u)2)(r+1)/2 > 1

J3 ≤ CC0

∫ ∞

t+1

(1 + u)r+1−ǫdu

|t− u|i+1(η2 + (t− u)2)(r+1)/2
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= CC0

∫ ∞

0

(2 + t+ v)r+1−ǫ

(v + 1)i+1(η2 + (t− u)2)(r+1)/2
dv

Since r − ǫ > −1, from (2 + t + v)r+1−ǫ ≤ 2r+1−ǫ
(

(2 + t)r+1−ǫ + vr+1−ǫ
)

,

(∵ Putting u = t+ v + 1 ∴ |t− u| = |v + 1|) v > 0, we obtain

J3 ≤ 2r+1−ǫC0C

[

(2 + t)r+1−ǫ
∫∞

0
dv

(v+1)i+1(η2+(v+1)2)(r+1/2)

+
∫∞

0
vr+1−ǫdv

(v+1)i+1(η2+(v+1)2)(r+1/2)

]

For J2 we have

J2 ≤ sup
t−1≤u≤t+1

{|F (u)|}

∫ t+1

t−1
|
∂iK(u, t)

∂ti
|du ≤ C(t+2)r+1−ǫ

∫ 1

−1
|
∂iK(0, s)

∂ti
|ds

Since the function H(0, s), s ∈ [−1, 1],

where H(u, t) =







K(u, t), u 6= t

2(r+1)i

ηr+2 , u = t, (u, t) ∈ R2

is smooth one . We obtain that for some constant Mi which depends on η

J2 ≤ Mi(t+ 2)r+1−ǫ.

Estimations for J1, J2 and J3 imply that the assertion holds if t > 1.

Let 0 ≤ t ≤ 1 then we have φi(t) ≤
[

∫ 2
0 +

∫∞

2

](

|F (u)∂iK(u,t)
∂ti

|
)

du, and by

the similar arguments as above we can prove that the assertion holds.

If t > 1 there is no need to divide the integral in (3.5) and assertion (i)follows

by arguments given by above.

(ii) Let t > 1. From the first part of the lemma we conclude that only in

the calculation of the integral J2 the constant k(i, η) depends on η. But, on

setting s = ηtgφ in
∫ 1
−1 |

∂iK(0,s)
∂ti

|ds, the same way as in the proof of Lemma

4.b from [4], we prove the assertion.For t ≤ 1, we have to use arguments

given above.

Hence the proof of lemma. �

Lemma 3.3. Let F be a continuous function on ℜ with suppF ⊂ [0,∞)

and let |F (x)| ≤ C(1 + x)r+1−ǫ, x ≥ 0 hold. Then

lim
η→0+

ηr+1

2πi

∫∞

−∞
F (u)K(u, t)du = F (t), t ∈ ℜ.

Proof. For t ≥ 0 the proof follows from ([6],Lemma 4.C) since for enough

large ℜ, lim
η→0+

∫∞

IR F (u)K(u, t)du = 0
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Since r > −1 and
∫∞

0 |F (u)K(u, t)|dt ≤
∫∞

0 |F (u)|(|t|+ u)−r−1du < ∞, t < 0.

We obtain lim
η→0+

ηr+1

2πi

∫∞

−∞
F (u)K(u, t)du = 0, t < 0

This completes proof. �

If f ∈ L′(r), then for t ∈ ℜ we have

(r + 1)
∫

Cηt
(z + t)r(Γ(r + 2)Tr+2F )(z)dz

= (r + 1)k+1

∫

Cηt
(z + t)r(Γ(r + k + 2)Tr+k+2F )(z)dz

= (r + 1)k+1

∫

Cηt
(z + t)r

(

∫∞

−∞

F (u)
(z+u)r+k+2du

)

dz

= (r + 1)k+1

∫∞

−∞
F (u)

(

∫

Cηt

(z+t)r

(z+u)r+k+2dz

)

du.

The last equality holds on the basis of the uniform convergence of
∫ ∞

−∞

F (u)

(z + u)r+k+2
du, forz ∈ Cηt

. Thus we have by (3.1)

(r+1)
∫

Cηt
(z+ t)r(Γ(r+2)Tr+2f)(z)dz = (−1)kηr+1

∫∞

−∞
F (u)(∂

kK(u,t)
∂tk

)du,

t ∈ ℜ.

Theorem 3.4. Complex Inversion: Let f ∈ L′(r). Then for every φ ∈ S.

lim
η→0+

(

r+1
2πi

〈

∫

Cηt
(z + t)r(Γ(r + 2)Tr+2f)(z)dz, φ(t)

〉)

= 〈f(t), φ(t)〉.

Proof. We have

r+1
2πi

〈

∫

Cηt
(z + t)r(Γ(r + 2)Tr+2f)(z)dz, φ(t)

〉

= 1
2πi(r+1)k+1

〈

∫

Cηt
(z+ t)r(Γ(r+ k+2)Tr+k+2F )(z)dz, φ(t)

〉

(∵ by(3.5))

=
(r+1)(k+1)

2πi

〈

∫

Cηt
(z + t)r

[

∫∞

−∞

F (u)
(z+u)r+k+2dz

]

du, φ(t)

〉

=
(r+1)(k+1)

2πi

〈

∫∞

−∞
F (u)

[

∫

Cηt

(z+t)r

(z+u)r+k+2dz
]

du, φ(t)

〉

= (−1)k

2πi (r + 1)

〈

∫∞

−∞
F (u)

[

∂k

∂uk

∫

Cηt

(z+t)r

(z+u)r+2dz
]

du, φ(t)

〉

= (−1)k

2πi ηr+1

〈

∫∞

−∞
F (u)(∂

kK(u,t)
∂tk

)du, φ(t)

〉

(∵ by(3.1))
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= ηr+1

2πi

∫∞

−∞

[

∫∞

−∞
F (u)(∂

kK(u,t)
∂tk

)du
]

φ(t)dt.

= ηr+1

2πi

∫∞

−∞
dk

dtk

[

∫∞

−∞
F (u)K(u, t)du

]

φ(t)dt (byLemma3.1)

= ηr+1

2πi (−1)k
∫∞

−∞

[

∫∞

−∞
F (u)K(u, t)du

]

φ(k)(t)dt. (by partial integration)

Thus by lemma (3.2)and lemma (3.1)(ii)and the Lebesgue’s theorem, we

obtain

lim
η→0+

r+1
2πi

〈

∫

Cηt
(z + t)r(Γ(r + 2)Tr+2f)(z)dz, φ(t)

〉

= (−1)k〈F (t), φ(k)(t)〉 = 〈f, φ〉.

∴ The proof is complete. �

4. CONCLUSION

A definitions for Modified-Stieltjes and its complex inverse are intro-

duced in this research work. Complex inversion theorem has been proved.
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PROBLEM SECTION

In Vol. 89 (3-4) 2020 of The Mathematics Student, we had invited solutions

from the floor to Problem 3 of MS 88 (3-4) 2019, solutions to Problems 5

and 7 posed in MS 89 (1-2) 2020 as well as solutions to the nine new

problems till March 15, 2021.

We did not receive any solution to Problem 3 of MS 88 (1-2) 2019 so

we print at the end of this section the solution provided by the proposer of

the problem.

As regards to solutions to Problems 5 and 7, mentioned in MS 89(1-2)

2020, we received one solution to Problem 5 but it was not correct. We

did not receive any solution to problem 7. So the solutions provided by

the proposers of these Problems are being printed later at the end of this

section.

As far as solutions to the nine new Problems of MS 89(3-4) 2020 are

concerned, we received one correct solution to Problem 4 and one correct

solution to Problem 7. These solutions are being printed here.

We pose eight new problems in this volume. We invite Solutions to

these problems and solutions to the remaining problems of MS 89 (3-4)

2020 from the researchers till August 20, 2021. Correct solutions received

from the floor by August 20, 2021 will be published in Volume 90 (3-4) 2021

of The Mathematics Student. This volume is scheduled to be published in

September 2021.

The following five problems have been posed by Prof. B. Sury, Indian

Statistical Institute, Bangalore.

MS 90 (1-2) 2021: Problem 1. We know that the diagonals of a rhom-

bus intersect at a point that divides the rhombus into four congruent trian-

gles. Prove that this characterizes a rhombus. That is, ifABCD is a quadri-

lateral such that for some point P on the plane of the quadrilateral (not nec-

essarily inside the quadrilateral), the four triangles PAB,PBC,PCD,PDA

are all congruent, then ABCD must be a rhombus.

© Indian Mathematical Society, 2021 .
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MS 90 (1-2) 2021: Problem 2. Let f : [0, 1] → R be differentiable, and

let f(0) = 0, f(1) = 1. Prove that there exist t1, · · · , t2021 ∈ [0, 1] such that

2021 =
∑2021

i=1
1

f ′(ti)
.

MS 90 (1-2) 2021: Problem 3. Let A be an n×n matrix with rational

entries. If the rank of A is 1, show that det(In +A)− trace(A) = 1.

MS 90 (1-2) 2021: Problem 4. Let A ⊂ R2 be a finite set such that no

three points in A are collinear. Assuming that the circle passing through

any three points of A contains a fourth point of A, prove that all the points

of A are concyclic.

MS 90 (1-2) 2021: Problem 5. Let p be a prime number which has at

least ten digits. If 4p+ 1 is also a prime, show that the decimal expansion

of 1
4p+1 contains all the digits 0, 1, · · · , 9.
The following problem has been proposed by Dr. Siddhi Pathak,

Department of Mathematics, Pennsylvania State University, State College,

PA 16802, USA.

MS 90 (1-2) 2021: Problem 6. LetQ+ denote the set of positive rational

numbers, and P : Q+ → N be defined as P (m/n) = mn for gcd(m,n) = 1.

Show that
∑

q∈Q+

1

P (q)2
=

5

2
.

Dr. Anup Dixit, Institute of Mathematical Sciences, Chennai has posed

the following two problems.

MS 90 (1-2) 2021: Problem 7. Show that the series

∞
∑

n=1

−1⌊
√
n⌋

n5/9

is convergent. Here ⌊x⌋ denotes the greatest integer ≤ x.

MS 90 (1-2) 2021: Problem 8. Show that
∫ 1

0

{

1

x

}2

x2 dx = 1− 1

3
(ζ(2) + ζ(3)),

where {x} is the fractional part of x and ζ(k) :=
∑∞

n=1
1
nk denotes the

Riemann zeta-function for k > 1.
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Solutions to the Old Problems

MS 88 (3-4) 2019: Problem 3 (posed by Prof. B. Sury, ISI, Bangalore)

Let un denote the number of essentially different ways to tile the 2n × 2n

chess board with dominos (1× 2 pieces). For instance u1 = 2.

Prove

un = 22n
2
∏n

r=1

∏n

s=1

(

cos2
rπ

2n+ 1
+ cos2

sπ

2n+ 1

)

.

Solution (by Prof. B. Sury).

This result is due independently to Kasteleyn and Temperley-Fisher. Let

us first describe how one attaches a bipartite graph to each tiling and solves

the problem through graph theory. More generally, we prove the following

amazing formula for the number of domino tilings of an m× n grid where

m is even (our proof is based on the discussion in the book ‘Combinato-

rial Problems and Exercises, by Laszlo Lovasz, AMS Chelsea Publishing,

Indian edition 2012):

m/2
∏

r=1

n
∏

s=1

2

√

cos2
(

rπ

m+ 1

)

+ cos2
(

sπ

n+ 1

)

.

To describe the associated graph, look at a 2×3 grid tiled by dominos where

the six vertices represent the tiles and the edges represent the dominos.

A 1-matching (or just matching) of a graph is a set of edges so that no two

of them share a common vertex. It is called a perfect matching when each

vertex is incident to exactly one edge of the matching. We wish to find the

number of perfect matchings of the graph corresponding to the grid as this

is the number of domino tilings. The proof uses Pfaffians which are defined

as follows.
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For a 2n× 2n real, skew-symmetric, invertible matrix A = {aij : 1 ≤ i, j ≤
2n}, consider the set of permutations σ of {1, · · · , 2n} such that

σ(1) < σ(3) < · · · < σ(2n− 1);

σ(1) < σ(2), σ(3) < σ(4), · · · , σ(2n− 1) < σ(2n).

Define the Pfaffian of A as

Pf(A) =
∑

σ∈S2n

sgn(σ)aσ(1),σ(2)aσ(3),σ(4) · · · aσ(2n−1),σ(2n)

It is known that Pf(A) =
√

det(A).

The idea of the proof of the formula for the number of domino tilings of an

m× n grid with m even is to use graphs as mentioned. If we assign an or-

dered pair (i, j) with i ≤ m, j ≤ n to each vertex (=tile), then (i, j) can be

connected by an edge to (i′, j′) by a domino if, and only if |i− i′| = 1, j = j′

or i = i′ and |j − j′| = 1. To find a generating function for the number of

domino tilings, it is convenient to call g(h, v) to be the number of domino

tilings with h horizontal dominos and v vertical dominos.

The generating function is the polynomial

Zm,n(x, y) =
∑

2(h+v)=mn

g(h, v)xhyv.

Hence the number we seek is Zm,n(1, 1). In order to keep track of the

configuration of each domino tiling, it is convenient to represent the tile

(i, j) by the number p = (i−1)n+ j. For instance, for m = n = 4, we have:
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In order to specify a valid configuration of domino tiling, we order the tiles

based on their p-numbers:

p1 < p3 < · · · < pmn−1;

p1 < p2, p3 < p4, · · · , pmn−1 < pmn.

This ordering allows us to write a configuration uniquely; for instance,

C = (p1, p2)(p3, p4) · · · · · · (pmn−1, pmn)

is a valid configuration but

(p3, p4)(p1, p2) · · · · · · (., .)

is not. The conditions for a valid configuration resemble those for defining

Pfaffians. Indeed, the idea is to define a skew-symmetric matrix D whose

Pfaffian equals the generating function Zm,n(x, y). In fact, we will con-

struct D in such a way that each non-zero term in Pf(D) corresponds to a

configuration of domino tiling, and vice versa. We shall define a weighted

adjacency matrix D of size mn×mn. This requires a delicate study of the

configurations to deduce:

For any σ ∈ Smn that satisfies the conditions of a valid configuration C;

viz.

p1 < p3 < · · · < pmn−1;

p1 < p2, p3 < p4, · · · , pmn−1 < pmn,

it can be proved that each polygon in C contributes a factor −1 to sgn(σ).

One may then define D(i,j),(i+1,j) = x; i ≤ m− 1, j ≤ n; and D(i,j),(i,j+1) =

(−1)iy; i ≤ m, j ≤ n− 1.

Define Dp,p′ = 0 in all other cases. Another description of D is then

D = x(In ⊗Qm) + y(Qn ⊗ Fm)

where:

Q =























0 1 0 0 · · · 0

−1 0 1 0 · · · 0

0 −1 0 1 · · · 0
...

...
...

...
...

...

0 0 0 −1 0 1

0 0 0 0 −1 0























, F =























−1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 0 −1 0 · · · 0
...

...
...

...
...

...

0 0 0 0 −1 0

0 0 0 0 0 1























.
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Using this, we may find the eigenvalues and eigenvectors and write a matrix

of 2× 2 blocks which is similar to D. This gives finally

det(D) =

m/2
∏

k=1

n
∏

l=1

det

(

2ix cos kπ
m+1 −2iy cos lπ

n+1

2iy cos lπ
n+1 −2ix cos kπ

m+1

)

whose square root evaluates to the Pfaffian giving the asserted formula.

�

MS 89 (1-2) 2020 : Problem 5 (Posed by Dr. Anup Dixit, IMSc,

Chennai). Find all natural numbers n > 1 such that n | 2n + 1.

Solution (by Dr. Anup Dixit). We start by observing that n is odd. Let

p be the smallest prime divisor of n. Then, 2n ≡ −1 mod p and hence,

22n ≡ 1 mod p. On the other hand, Fermat’s little theorem states that

2p−1 ≡ 1 mod p. Therefore,

2gcd(2n,(p−1)) ≡ 1 mod p.

Since p is the smallest prime factor of n, we deduce that gcd(2n, p−1) = 2.

Hence, 22 ≡ 1 mod p, which implies p = 3.

Suppose n has 2 or more prime factors. Let q > 3 be the second smallest

prime factor of n. A similar argument as above leads to

2gcd(2n,(q−1)) ≡ 1 mod q.

As q is the smallest prime divisor of n after 3, we conclude that gcd(2n, q−1)

is either 2 or 6. If the gcd is 2, then we get 22 ≡ 1 mod q, which implies

q = 3. This contradicts the assumption that q > 3. Hence, we deduce that

gcd(2n, q − 1) = 6. So, q | 26 − 1 = 63 and thus q = 7.

If n is divisible by both 3 and 7, then 2n ≡ 1 mod 7 as 23 ≡ 1 mod 7.

However, 7 | 2n+1 which leads to a contradiction. Therefore, 3 is the only

prime factor of n.

Now, we claim that every n of the form n = 3k satisfies the condition

2n ≡ −1 mod n. By Euler’s theorem, we have 2φ(m) ≡ 1 mod m for any

odd natural number m, where φ denotes the Euler-totient function. As

φ(3k) = 2 · 3k−1, we get that

23
k

= 23
k−1

22·3
k−1 ≡ 23

k−1
mod 3k.
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Therefore, it suffices to show that 23
k−1 ≡ −1 mod 3k. Since 3k−1 =

φ(3k)/2, and the only solutions for x2 ≡ 1 mod 3k are 1 and −1, we have

23
k−1

is either 1 or −1 mod 3k. If 23
k−1 ≡ 1 mod 3k, then it is also 1 mod 3.

This is a contradiction because 2 raised to an odd number is −1 mod 3.

Hence, all such n are precisely given by 3k where k ≥ 1.

�

The following problem was taken from Graph Theory Prolems / solutions

(smograph.pdf). The solution presented there is printed below.

MS 89 (1-2) 2020 : Problem 7. At the end of a birthday party, the

hostess wants to give away candies. She has 6 types of cookies. Each child

is given a gift packet which contains two types of cookies. Each type of

cookie is used is combination with at least three others. Prove there are

three children, who between them, have all the six types of cookies.

Solution. Form a graph with each type of candies corresponding to a

vertex. Two vertices are joined by an edge if the corresponding types of

candies are used together in a gift pack. In this graph every vertex is of

degree ≥ 3. To solve the problem, we need to show that the graph contains

three edges which are pairwise nonadjacent (such a set of edges are said

to be independent). Let a be a vertex and b, c, d be 3 of its neighbours.

Let the remaining two vertices be e, f (these may also be neighbours of a).

Finally, let A = {a, b, c, d} and B = {b, c, d}. Note that |N(e)∩A| ≥ 2 and

|N(f) ∩ A| ≥ 2. If |(N(e) ∪ N(f)) ∩ B| ≥ 2, then there exists 2 vertices

in B, say b and c, such that be and cf are edges. Then be, cf and ad

are 3 independent edges. If |(N(e) ∪N(f)) ∩B| = 1, say b is the common

neighbour of e and f , then e and f are both adjacent to a. Since the degree

of d is ≥ 3, and d is not adjacent to e, f, d must be adjacent to c and b.

Thus ae, bf and cd are 3 independent edges.

�

MS 89 (3-4) 2020 : Problem 4 ( Posed by Prof. B. Sury, ISI, Ba-

nagalore). In a meeting, n participants sit around a table and are served

drinking water in the following manner. First, any one of the participants

is selected and served. Then, moving clockwise, one participant is skipped

and the next is served. The next two are skipped, and the next one is

served; the next 3 are skipped and the next person is served and so on.

After a while, everyone has been served water at least once. Prove that if
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n > 1, it cannot be odd.

A correct solution is given by Rakesh Dwivedi (M. Sc. student), Depart-

ment of Mathematics, University of Allahabad, Allahabad (U. P.). Prof.

Sury proves a stronger result here and also point out on the way what

Dwivedi’s solution was.

Solution. The hypothesis is equivalent to asserting that the set of triangu-

lar numbers {tk = k(k+1)
2 |k > 0} contains all the residues modulo n among

them. Call such numbers n as ideal. We will prove the stronger result that

ideal numbers are just the powers of 2. But, first we describe Dwivedi’s

proof of the original problem.

Dwivedi notices that if tk ≡ a mod n, then 8tk+1 = (2k+1)2 ≡ 8a+1 mod

n. This means that the residues of 8a+1 as a varies (these are distinct if n

is odd) are all squares modulo n. In particular, if n is odd, for each prime p

dividing n, all the residues are quadratic residues mod p which contradicts

the fact that only half of them are squares.

Let us return to our proof. The residues of tk modulo n repeat after tn;

indeed,

tn+k − tk =
n(2k + n+ 1)

2
which is a multiple of n.

From this, it follows immediately that an odd n > 1 cannot be ideal. This

is because tn−1 = (n−1)n
2 and tn = n(n+1)

2 are both multiples of n for odd

n > 1. Hence, some residues modulo n are not values. Thus, n cannot be

an odd integer > 1.

To see that the set of all ideal numbers consists precisely of powers of 2,

note first that if n is ideal and d divides n, then d is ideal.

Thus, an ideal number n > 1 must be a power of 2. Every number n of the

form 2r is ideal because the numbers

t1, t3, t5, · · · , t2n−1

give different residues modulo n. Indeed,

t2k−1 − t2l−1 = (2k − 1)k − (2l − 1)l = (2k + 2l − 1)(k − l)

can be a multiple of n = 2r only if k − l is a multiple (as the other factor

is odd).

�
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MS 89 (3-4) 2020: Problem 7 (Posed by Dr. Anup Dixit, IMSc., Chen-

nai).

For a real number x, Let [x] denotes the largest integer ≤ x. Evaluate

∞
∑

n=1

(−1)[
√
4n+1]

n(n+ 1)

.

Mr. Rohit Yadav (M. Sc. student), Department of Mathematics, Uni-

versity of Allahabad, Allahabad (U. P.) provided the correct solution to

this problem. The solution is given below.

Solution.

Step 1: Since [
√
4n+ 1] are same for such n ∈ N , which is satisfying -

k2 ≤ 4n+ 1 < (k + 1)2, k ∈ N

⇒ k2 − 1 ≤ 4n < k2 + 2k............(1)

So, [2k+1
4 ] + 1 number of distinct n ∈ Nwhich satisfy (1).

Step 2: Now we grouping of terms of given series as kth group contains

[2k+1
4 ] + 1 terms.

By step 1, [
√
4n+ 1] are same for each term of kth group and for kth

group [
√
4n+ 1] = k+1 Also, (2m)th and (2m + 1)th groups containing

equal number of terms ∀m ∈ N .

Hence by above discussion,
∞
∑

n=1

(−1)[
√
4n+1]

n(n+ 1)
=

(−1)2

1.2
+ (−1)3(

1

2.3
+

1

3.4
) + (−1)4(

1

4.5
+

1

5.6
)

+(−1)5(
1

6.7
+

1

7.8
+

1

8.9
) + (−1)6(

1

9.10
+

1

10.11
+

1

11.12
) + .........

= (1− 1

2
)− (

1

2
− 1

4
) + (

1

4
− 1

6
)− (

1

6
− 1

9
) + (

1

9
− 1

12
) + ......

= 1− 2(
1

2
− 1

4
+

1

6
− 1

9
+

1

12
− 1

16
+ ....)

= 1− 2[(
1

2
− 1

4
) + (

1

6
− 1

9
) + (

1

12
− 1

16
) + ....]

= 1− 2[
2

2.4
+

3

6.9
+

4

12.16
+ ....]

= 1− 2
∞
∑

m=1

1

m(m+ 1)2
= 1− 2

∞
∑

m=1

(
1

m(m+ 1)
− 1

(m+ 1)2
)
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= 1− 2(1−
∞
∑

m=1

1

(m+ 1)2
)

= 1− 2(1− π2

6
+ 1)

=
π2

3
− 3

.

We conclude that
∑∞

n=1
(−1)[

√
4n+1]

n(n+1) = π2

3 − 3.

�





FORM IV
(See Rule 8)

1. Place of Publication: PUNE

2. Periodicity of
publication: QUARTERLY

3. Printer’s Name: DINESH BARVE
Nationality: INDIAN
Address: PARASURAM PROCESS

38/8, ERANDWANE
PUNE-411 004, INDIA

4. Publisher’s Name: SATYA DEO
Nationality: INDIAN
Address: GENERAL SECRETARY

THE INDIAN MATHEMATICAL SOCIETY
HARISH CHANDRA RESEARCH INSTITUTE
CHHATNAG ROAD, JHUNSI
ALLAHABAD-211 019, UP, INDIA

5. Editor’s Name: M. M. SHIKARE
Nationality: INDIAN
Address: CENTER FOR ADVANCED STUDY IN

MATHEMATICS, S. P. PUNE UNIVERSITY
PUNE-411 007, MAHARASHTRA, INDIA

6. Names and addresses THE INDIAN MATHEMATICAL SOCIETY
of individuals who own
the newspaper and
partners or sharehold-
ers holding more than
1% of the total capital:

I, Satya Deo, the General Secretary of the IMS, hereby declare that the particulars
given above are true to the best of my knowledge and belief.

SATYA DEO
Dated: April 22, 2021 Signature of the Publisher

Published by Prof. Satya Deo for the Indian Mathematical Society, type set by
M. M. Shikare, ”Krushnakali”, Servey No. 73/6/1, Gulmohar Colony, Jagtap Patil
Estate, Pimple Gurav, Pune 411061 and printed by Dinesh Barve at Parashuram
Process, Shed No. 1246/3, S. No. 129/5/2, Dalviwadi Road, Barangani Mala,
Wadgaon Dhayari, Pune 411 041 (India). Printed in India



The Mathematics Student ISSN: 0025-5742
Vol. 90, Nos. 1-2, January-June (2021)

EDITORIAL BOARD
M. M. Shikare (Editor-in-Chief)

Center for Advanced Study in Mathematics
S. P. Pune University, Pune-411 007, Maharashtra, India

E-mail : msindianmathsociety@gmail.com

Bruce C. Berndt George E. Andrews

Dept. of Mathematics, University Dept. of Mathematics, The Pennsylvania
of Illinois 1409 West Green St. State University, University Park
Urbana, IL 61801, USA PA 16802, USA
E −mail : berndt@illinois.edu E −mail : gea1@psu.edu

M. Ram Murty N. K. Thakare

Queens Research Chair and Head C/o :
Dept. of Mathematics and Statistics Center for Advanced Study
Jeffery Hall, Queens University in Mathematics, Savitribai Phule
Kingston, Ontario, K7L3N6, Canada Pune University, Pune− 411007, India
E −mail : murty@mast.queensu.ca E −mail : nkthakare@gmail.com

Satya Deo Gadadhar Misra

Harish− Chandra Research Institute Dept. of Mathematics
Chhatnag Road, Jhusi Indian Institute of Science
Allahabad− 211019, India Bangalore− 560012, India
E −mail : sdeo94@gmail.com E −mail : gm@iisc.ac.in

B. Sury A. S. Vasudeva Murthy

Theoretical Stat. and Math. Unit T IFR Centre for Applicable Mathematics
Indian Statistical Institute P. B. No. 6503, GKV K Post Sharadanagara
Bangalore− 560059, India Chikkabommasandra,Bangalore− 560065, India
E −mail : surybang@gmail.com E −mail : vasu@math.tifrbng.res.in

S. K. Tomar Krishnaswami Alladi

Dept. of Mathematics, Panjab University Dept. of Mathematics, University of
Sector − 4, Chandigarh− 160014, India F lorida, Gainesville, FL32611, USA
E −mail : sktomar@pu.ac.in E −mail : alladik@ufl.edu

Clare D′Cruz L. Sunil Chandran

Dept. of Mathematics, CMI Dept. of Computer Science&Automation
IT Park Padur P.O., Siruseri Indian Institute of Science
Kelambakkam− 603103, T.N., India Bangalore− 560012, India
E −mail : clare@cmi.ac.in E −mail : sunil.cl@gmail.com

J. R. Patadia T. S. S. R. K. Rao

5, Arjun Park, Near Patel Colony, Theoretical Stat. and Math. Unit
Behind Dinesh Mill, Shivanand Marg, Indian Statistical Institute
V adodara− 390007, Gujarat, India Bangalore− 560059, India
E −mail : jamanadaspat@gmail.com E −mail : tss@isibang.ac.in

Kaushal Verma C. S. Aravinda

Dept. of Mathematics TIFR Centre for Applicable Mathematics
Indian Institute of Science P. B. No. 6503, GKV K Post Sharadanagara
Bangalore− 560012, India Chikkabommasandra,Bangalore− 560065, India
E −mail : kverma@iisc.ac.in E −mail : aravinda@math.tifrbng.res.in

Indranil Biswas Timothy Huber

School of Mathematics, Tata Institute School of Mathematics and statistical Sciences
of Fundamental Research, Homi Bhabha University of Texas Rio Grande V alley, 1201
Rd., Mumbai− 400005, India West Univ. Avenue,Edinburg, TX78539 USA
E −mail : indranil29@gmail.com E −mail : timothy.huber@utrgv.edu

Atul Dixit

AB 5/340, Dept. of Mathematics
IIT Gandhinagar, Palaj, Gandhinagar−
382355, Gujarat, India
E −mail : adixit@iitg.ac.in

mailto:msindianmathsociety@gmail.com


THE INDIAN MATHEMATICAL SOCIETY

Founded in 1907
Registered Office: Center for Advanced Study in Mathematics

Savitribai Phule Pune University, Pune - 411 007

COUNCIL FOR THE SESSION 2021-2022

PRESIDENT: Dipendra Prasad, Department of Mathematics, Indian Institute
of Technology Bombay, Mumbai 400076, India

IMMEDIATE PAST PRESIDENT: B. Sury, Theoretical Stat. and Math. Unit,
Indian Statistical Institute, Bangalore-560 059, Karnataka, India

GENERAL SECRETARY: Satya Deo, Harish-Chandra Research Institute, Chhatnag
Road, Jhunsi, Allahabad-211 019, UP, India

ACADEMIC SECRETARY: Peeyush Chandra, Professor (Retired), Department of
Mathematics & Statistics, I. I. T. Kanpur-208 016, Kanpur (UP), India

ADMINISTRATIVE SECRETARY: B. N. Waphare, Center for Advanced Study in
Mathematics, S. P. Pune University, Pune-411 007, Maharashtra, India

TREASURER: S. K. Nimbhorkar, (Formerly of Dr. B. A. M. University, Aurangabad),
C/O Dr. Mrs. Prachi Kulkarni, Ankur Hospital, Tilaknagar, Aurangabad-
431 001, Maharashtra, India

EDITOR: J. of the Indian Math. Society: Sudhir Ghorpade, Department of
Mathematics, I. I. T. Bombay-400 056, Powai, Mumbai (MS), India

EDITOR: The Mathematics Student: M. M. Shikare, Center for Advanced Study
in Mathematics, S. P. Pune University, Pune-411 007, Maharashtra, India

LIBRARIAN: M. Pitchaimani, Director, Ramanujan Inst. for Advanced Study
in Mathematics, University of Madras, Chennai-600 005, Tamil Nadu, India

OTHER MEMBERS OF THE COUNCIL:

S. Sreenadh: Dept. of Mathematics, Sri Venkateswara Univ., Tirupati-517 502, A.P., India

Nita Shah: Dept. of Mathematics, Gujarat University, Ahmedabad-380 009, Gujarat, India

S. Ahmad Ali: 292, Chandralok, Aliganj, Lucknow-226 024 (UP), India

A. K. Das: Dept. of Mathematics, SMVDU, Katra, Jammu and Kashmir, India

G. P. Youvaraj: Ramanujan Institute, Uni. of Madras, Chennai-600 005, T. N., India

N. D. Baruah: Dept. of Mathematical Sciences, Tezpur University, Assam, India

P. Veeramani, Department of Mathematics, IIT Madras, Chennai

Pankaj Jain, Department of Mathematics, South Asian University, Delhi

Jitendra Kumar, Department of Mathematics, IIT Kharagpur, Kharagpur

Back volumes of our periodicals, except for a few numbers out of stock, are available.

Edited by M. M. Shikare and published by Satya Deo, the General
Secretary of the IMS, for the Indian Mathematical Society.

Typeset by M. M. Shikare, “Krushnakali”, Survey No. 73/6/1, Gulmohar Colony,
Jagtap Patil Estate, Pimple Gurav, Pune 411061 and printed by Dinesh Barve at
Parashuram Process, Shed No. 1246/3, S. No.129/5/2, Dalviwadi Road, Barangani
Mala, Wadgaon Dhayari, Pune - 411 041, Maharashtra, India. Printed in India

Copyright c©The Indian Mathematical Society, 2020.


