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ROAD TO MATHEMATICAL SCIENCES
IN INDIA - A RELOOK*

D. V. PAI

Abstract. By mathematical sciences, we would understand here a broad

spectrum of knowledge that encompasses pure mathematics, applied math-

ematics, statistics, mathematics of OR, computational mathematics, math-

ematical physics, mathematical biology, mathematical economics, etc. One

aims in this talk to take a relook at the road to mathematical sciences tra-

versed in India since antiquity, with a view to try to gain an understanding

about the current status of this domain in modern times.

1. Early Mathematics in India-Some Historical Observations

The road to mathematical sciences in India began from antiquity. India has

every reason to feel proud of its rich heritage in mathematics and astronomy. The

roots of mathematics in India are visible in the vedic literature which is nearly

3500-4000 years old. The sulba sutras - the vedic texts for consruction of ritual

altars contain a lot of geometric results and constructions which include, among

others, a statement of the Pythagoras theorem, approximation of the number

‘pi’, approximation of square root of number two upto five decimal places, etc.

Undoubtedly, two of the most striking contributions of ancient Indian mathematics

are the decimal place value system, which seems to have been discovered as early as

in the Harappan period, and the number zero, ‘Sunya’, which could be considered

as a profound gift of India to the mankind in the domains of mathematics and

philosophy. To put this in the words attributed to Laplace:

“The ingenious method of expressing every possible number using a set of

ten symbols (each having a place value and an absolute value) emerged in India.

Its simplicity lies in the way it facilitated calculation and placed arithmetic fore-

most amongst useful inventions. The importance of this invention is more readily

appreciated when one considers that it was beyond two of the greatest men of

antiquity-Archimedes and Apollonius”; and the next quote from Bourbaki [7], p.

46:

* The text of the Presidential Address (general) delivered at the 82nd Annual Conference of the

Indian Mathematical Society held at the University of Kalyani, Kalyani-741 235, Nadia, West

Bengal, India during December 27 - 30, 2016.

c© Indian Mathematical Society, 2017 .
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2 D. V. PAI

“.......It must be noted moreover that the conception of zero as a number (and

not as a simple symbol of separation) and its introduction into calculations also

count amongst the original contributions of the Hindus.”

Indeed, it is often said that the early seeds, sown in India, led through the

efforts of the Arabs, to the revival of mathematics in Europe, the Middle East and

even China. Chronologically, next comes mathematics of Jains, the so-called Jaina

mathematics, whose characteristic was fascination for large numbers and attempts

to understand various types of infinities and infinitecimals. Buddhists also under-

stood infinite and indeterminate numbers. The apex of mathematical achievements

of ancient India occured during the so-called classical period of Indian mathe-

matics, which saw the legendary contributions of the mathematician-astronomers:

Aryabhatta (476-550), Varahamira (505-587), Brahmagupta (598-670), Bhaskara

(600-680) and Bhaskaracharya (1114-1185). The schools established by some of

them are well acknowledged universally. Much later, during the 16th century came

the flourishing school of Kerala, whose prominant mathematicians were Madhava,

Parameshvara, Nilkantha, Jyestadevan and Achyutan. It has been recognized since

the early forties that this school has anticipated by more than 200 years (albeit,

with less of rigour than their western counterparts), a number of mathematical

results in analysis involving infinite series (such as the Gregory-Newton series for

the inverse tangent, etc.) and calculus, which were later invented by Newton and

Leibniz in the 18th century. Madhava (1340-1425) appears to be the frst one to

take the decisive step forward from finite procedures of ancient indian mathematics

to treat their limit passage to sin and cos functions.
2. Mathematical Sciences in India During the 20th Century

Among the Indian mathematicians of the early part of the 20th century, the

name which undoubtedly comes most prominantly to the mind is that of Srinivasa

Ramanujan (1887-1920). He indeed belonged to the celebrated world class of

mathematicians comprising of names such as Descartes, Euler, Gauss, Riemann,

Hilbert, Poincare. Ramanujan was the first Indian mathematician, a self-taught

genious, to have gained recognition from the west in his life time. It can perhaps

be undisputably said that his innovative genius is yet to be surpassed in India,

even nearly 100 years after he physically left the scene.

In order to analyse the status of mathematical sciences in India of the 20th

century using the yardstick of the Ph.D. thesis produced, it seems interesting to

review the statistics of Ph.D. thesis from India during this period as cited in Kapur

[1]. As observed there, in the first two decades of the 20th century, The Indian

share of world research in mathematical sciences was negligible, nearly of the order

of 0.1 per cent. It reached 3-4 per cent towards the last decade of the 20th cen-

tury, and in some fields like probability and mathematical statistics, it was found

as high as 12-15 per cent. Keeping in view the population of our country as well
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ROAD TO MATHEMATICAL SCIENCES IN INDIA-A RELOOK 3

as its rich heritage in mathematics, it may not be too ambitious to expect that

our contribution to world research in quantitative terms could reach a reasonable

level, 10-15 per cent, if not 20 per cent, in the next decade of the 21st century.

There are good reasons for this expectation, as we shall soon see. However, while

the contribution in quantitative terms may seem going in the right direction, its

impact on world mathematics hardly seems to indicate that it measures upto the

expected attainment of quality. It is worth emphasizing that one of the visible

reasons for this lack of quality in the research output is the fact that most univer-

sities do not insist on course-work for their Ph.D. programmes. This has a visible

adverse effect on the quality expectations from a Ph.D. mathematician. The sit-

uation in this regard needs to be rectified for any intended qualitative thrust in

research. It must be emphasized here, however, that the programmes such as Ad-

vanced Training in Mathematics (ATM) Programme sponsored by National Board

of Higher Mathematics (NBHM), National Programme on Differential Equations

(NPDE) sponsored by SERB, etc., are playing their due share in the intended

goals of training manpower in these fields, as well as for creating the necessary

quality awareness in research.

2.1. Contributions of Professional Societies. It is interesting to record below

some of the historic facts which were already mentioned earlier by others. See,

e.g., Kapur [1].

• Higher education in the modern sense really started in India in the historic

year 1857 with the establishment of three universities in Calcutta, Bombay

and Madras. Mathematics was taught in all these universities.

• Professional societies have often helped in fostering research culture in the

universities. It may be worth recalling that the first set of Ph.D. theses

in India in the 20th century came from Calcutta University. As obsered

in Kapur [1], this was not a mere coincidence. The founding of the Cal-

cutta Mathematical Society in 1908 and its the then dynamic President,

Sir Asutosh Mukherjee were two important factors contributing to this de-

velopement. The next set of Ph.D. theses came from Madras University.

It is a known fact that the founding of the Indian Mathematical Society

in 1907 has had a positive effect in this developement. However, due to

a lack of availability of research mathematicians, the initiation of Ph.D.

programme there had to wait upto 1927, when Prof. Vaidyanathswamy

joined the mathematics department.

• It may be worth recalling that although Bombay University started con-

temporarily with Calcutta and Madras Universities, its first Ph.D. in

mathematics came as late as in 1942. A reason for this, which is often

stated, is that talented mathematics students from the western region
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4 D. V. PAI

mostly preferred to go to Cambridge and got more fascinated by Cam-

bridge Mathematical Tripos. Some of them became senior ‘wrangler’s and

became good text book writers; however, they did not lay sufficient em-

phasis on developing research inclinations. Lack of a professional society

based in Mumbai was yet another reason for not being able to foster initial

research culture in the region.

• Foundations of initial research culture in mathematics in north India can

be really attributed to Prof. Ganesh Prasad. He seems to have been in-

spired by his stint during 1914-17 as Professor of Applied Mathematics at

Calcutta University. While working as Professor at Benaras Hindu Univer-

sity during 1917-23, he founded the Benaras Mathematical Society, whose

name was later changed to Bharat Ganit Parishad. This society does seem

to have contributed quite well to the development of Mathematics in North

India.

• As far as statistics is concerned, it is well known that its development and

growth in India can be traced back to the founding of the Indian Statistical

Institute (ISI) at Kolkata in 1931 by Prof. P. C. Mahalanobis and the

starting of the journal Sankhya by him in 1933. The ISI at Kolkata also

contributed to the development of Operations Research (OR) in India. The

joint efforts of ISI, Calcutta, and Professors D. S. Kothari and R. S. Verma

from Delhi University led to the founding of the Operations Research

Society of India, which seems to have contributed quite well to the theory

and practice of OR in India.

• The most prominant names of mathematicians which come to the mind

for contributing to the growth of applied mathematics in India during the

early part of the 20th century, include Professors N. R. Sen, S. N. Bose and

B. B. Sen at Kolkata, Prof. A. C. Banerjee at Allahabad, Professors B. R.

Seth and P. L. Bhatnagar at Delhi. The founding of the Indian Society

of Theoretical and Applied Mathematics by Prof. B. R. Seth in 1956 at

IIT Kharagpur is known to have contributed substantially to the growth

of research in applied mathematics in India during the 20th century.

3. Mathematical Sciences in Modern India
After independence, many new universities came up. Their number has grown

to more than 700 today (Central Universities 46, State Universities 343, Deemed

Universities /Deemed to be Universities 128, Private Universities 225: Total 742;

These do not include 82 central Institutions like IITs, IISc, IISERs, etc.). With

Pandit Jawaharlal Nehru’s vision for creating a scientific and technological base

for the country, to the existing universities, were added in the beginning, National

laboratories and five Indian Institutes of Technology (IIT) at Kharagpur, Mum-

bai, Kanpur, Chennai and Delhi. Subsequently, two more IITs came up one at
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ROAD TO MATHEMATICAL SCIENCES IN INDIA-A RELOOK 5

Guwahati and the other at Roorkee. During 2008-09 eight new IITs sprang up

at Hyderabad, Gandhinagar, Indore, Ropar, Jodhpur, Patna, Mandi and Bhub-

haneshwar. Also, IT BHU and ISM Dhanbad were given the status of IITs. More

recently, six new IITs are on the anvil; in various stages of being set up. These are

at Tirupathi, Palakkad, Jammu, Chhattisgarh, Goa, and Dharwar which makes

it a family of 17 IITs which will soon reach the number 23. It is the right time

for the country to think of sowing the right seeds of mathematical sciences in

the ambiance of new IITs so that the subject eventually flowers in the expected

directions.
4. Role of Special Institutes and Centres of Excellence

A number of special institutes in India where mathematics has a central role

to play are listed below along with some of the various mathematical interests

that are nurtured and emphasised there. Undoubtedly, each of these institutes

has striven hard to play its role in building up the necessary infrastructure of

research in the stated areas, as well as, has striven hard to reach the necessary

international stature in these fields.

• Tata Institute of Fundamental Research (TIFR), Mumbai: School

of Mathematics

Algebra, Number Theory, Topology, Harmonic Analysis, Ergodic The-

ory, Combinatorics.

School of Technology and Computer Science:

Stochastic Processes.

• Indian Institute of Sciences (IIsc), Bangalore, Division of Math-

ematical and Physical sciences: Mathematics Department

Algebra, Algebraic Geometry, Topology & Geometry, Functional Anal-

ysis & Operator Theory, Harmonic Analysis, Nonlinear waves, Hyperbolic

Equations, Nonlinear dynamics, Probability & Stochastic processes, Time

series analysis, Several Complex Variables.

• Tata Institute of Fundamental Research-Centre for Applicable

Mathematics (TIFR-CAM), Bangalore

PDEs, Numerical Analysis, Homogenization, Nonlinear Functional Anal-

ysis, Optimal Controls, Variational Analysis, Stochastic Analysis.

• Chennai Mathematical Institute (CMI), Chennai

Algebra, Analysis, Differential Equations, Geometry and Topology.

• Institute of Mathematical Sciences (IMSC), Chennai

Algebra, Algebraic Geometry, Number Theory, PDEs, Representation

Theory and Topology, Ergodic Theory, Non-commutative Geometry.

• Harish Chandra Research Institute (HRI), Allahabad Algebra, Lie

Algebra, Geometry-Discontinuous Groups, Riemann surfaces, Algebraic

Topology, Number Theory-Algebraic, Analytic, and Combinatorial.
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6 D. V. PAI

Traditionally, Statistics, Probability, and Stochastic Processes have been the

main themes pursued at the Indian Statistical Institutes (ISIs) listed below.

• Indian Statistical Institute Kolkata (ISI Kolkata)

Statistics, Mathematics, Computer Science, Quantitative Economics,

OR and Information Science, Probability and Stochastic Processes, Sta-

tistics on Non-Euclidean Manifolds, Robust & Nonparametric Techniques,

Geometry of Banach Spaces, Commutative Algebra, Noncommutative Ge-

ometry.

• Indian Statistical Institute Bangalore (ISI Bangalore)

Statistics, Probability, Ergodic Theory & Dynamic Systems, Operator

Algebras and Quantitative Probability, Algebra and Number Theory, Alge-

braic Geometry and Topology, Functional Analysis and Operator Theory,

Harmonic Analysis.

• Indian Statistical Institute Delhi (ISI Delhi)

Statistical Computing, Probability Theory, Stochastic Processes, Com-

binatorial Matrix Theory, Linear Algebra, Markov Processes, Heavy Tai-

lored Distributions, Time Series, Reliability, Nonlinear Regression, Num-

ber Theory.

In addition, there are two more centres of ISI added recently, one at Chennai:

ISI, Chennai Centre, and the other at Tezpur: ISI, North-East Centre.

4.1. IISERS: a New Initiative. The Government of India, based on the rec-

ommendation of Scientific Advisory Council to the Prime Minister (SAC-PM),

through the Ministry of Human Resource Development (MHRD), took a bold

initiative of establishing five Indian Institutes of Science Education and Research

(IISER) since 2006, patterned broadly on the lines of I.I.Sc., Bangalore. These

institutes are currently located in Kolkata, Pune, Mohali, Bhopal and Tiruvanan-

thapuram. To these one may add one more IISER which has started functioning

from Tirupathi since August 2015 while two more IISERs are planned to start

functioning one from Berhampur (Odisha) and another from Nagaland. These

steps appear quite timely, since it was increasingly realized during the first decade

of the 21st century that due to the prevailing IT boom as well as the visible rat

race of coaching classes specialized in training students for admission to the pres-

tigious B.Tech. programmes of IITs, science education in the country, in general,

was taking a back seat. IISERs were conceived as a unique initiative in the direc-

tion of uplifting science education in India in which teaching and education are to

be totally integrated with the state-of-art research, nurturing both curiosity and

creativity in an intellectually vibrant atmosphere of research. It is hoped that

IISERs are likely to become Science Institutes of the highest caliber and reach the

prestigious position in the global setting that IISc, IIMs and IITs presently enjoy.
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ROAD TO MATHEMATICAL SCIENCES IN INDIA-A RELOOK 7

For the sake of completeness, we list below some of the areas of interest in math-

ematical sciences pursued at each of the IISERs and also the current academic

programmes (as available on their web-sites).
• Indian Institute of Science Education and Research Pune (IISER

Pune)

Algebra, Number Theory, Mathematical Biology, Cryptography, Alge-

braic Geometry, Combinatorics, Knot Theory, Lagland’s Program, Linear

Algebraic Groups, Representation Theory, Several Complex Variables.

Academic Programmes: Integrated Master’s level (MS) programme in-

volving Biological, Chemical, Mathematical & Physical Sciences, Doctoral

Programme (Ph.D.).

• Indian Institute of Science Education and Research Mohali (ISER

MOHALI)

Algebraic Geometry, Valuation Theory, Algebra, Algebraic Geometry,

Functional Analysis, Groups and Geometry, Differential Algebra.

Academic Programmes: Integrated Master’s level (MS) Programme,

Doctoral Programme (Ph.D.), Integrated Doctoral Programme (Int. Ph.D.).

• Indian Institute of Science Education and Research Bhopal (ISER

Bhopal)

Complexity and Computational Number Theory, Representation The-

ory, Algebra, Analysis, Algebraic Geometry, Differential Geometry, Low

Dimensional Geometric Topology, Operator Algebras.

Academic Programmes: BS-MS Dual Degree Programme, Doctoral

Programme (Ph.D.).

• National Institute of Science Education and Research

Bhubaneswar (NISER Bhubaneswar)

Harmonic Analysis, Theory of Operator Spaces, Theoretical Computer

Science, Representation of Geometries, Number Theory, Algebraic Graph

Theory.

• Indian Institute of Science Education and Research Thiruvanan-

thapuram (IISER Thiruvananthapuram)

Numerical Functional Analysis, Mathematical Finance, Combinatorial

Number Theory, PDEs, Control Theory, Hyperbolic System of Conserva-

tion Laws, Functional Analysis, Probability Theory, Commutative Alge-

bra, Differential Geometry.

Academic Programmes: Five year integrated Master’s MS programme

and Doctoral (Ph.D.) programme.

• Indian Institute of Science Education and Research Kolkata

(IISER Kolkata)
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8 D. V. PAI

Commutative Algebra, Algebraic Geometry, Geometric Group Theory,

Spectral Graph Theory, Mathematical Biology, Reliability and Statistics.

Academic Programmes: Integrated BS-MS Dual Degree Programme,

MS Programme, Integrated Doctoral (Ph.D.)Programme, Post-Doctoral

Programme.
As mentioned in Sathyamurthy [3], the IISERS are presently targeting to admit

nearly 200 students at the BS-MS level and a similar number at the doctoral level

in each of these institutes, thus expecting to add to an annual steady output of

1000-1500 Master’s degree-holders and 1000-1500 Ph.D.’s from the IISER system.

This is expected to contribute to a steady increase in the pool of scientists in the

country. Each IISER is expected to reach eventually a faculty strength of 200

(presently, it ranges between 60-100) and 200 postdoctoral fellows. Based on a

recently conducted peer review of the departments, as reported in Satyamurthy

[3], despite the fact that the IISERs are only 8-10 years old, the total number of

publications contributed, 3346 during the period 2007-15, puts them almost on

par with the established IITs in terms of the per capita output of the faculty. It is

also interesting to observe that a number of publications from IISERs have been

contributed in peer-reviewed journals with BS-MS students as lead authors.

4.2. UGC Centres of Excellence. In the initial phase, the University Grants

Commission (UGC)supported research in mathematics through the advanced cen-

tres set by it at Punjab University, Chandigarh, Bombay University, Mumbai,

Ramanujan Institute of Mathematics at Chennai, and the Department of Applied

Mathematics at Calcutta University, Kolkata, the last one being the only centre of

applied mathematics. Later in the 1980’s arising from its Special Assistance Pro-

gramme (SAP Programme) to the promising University Departments, UGC also

created centres of excellence in mathematics at Pune, Bangalore, Coimbatore and

also some other places. As good models, one may cite the UGC Advanced Centre

in Fluid Mechanics in the Central College, Bangalore built around the mentor Prof.

N. Rudraiah and the Centre for Nonlinear Dynamics in the Bharathidasan Uni-

versity, Tiruchirapalli built around the mentor Prof. M. Lakshamanan. Despite

many odds, these centres seem to have functioned quite well under the dynamic

leadership and vision of their mentors.

5. DST support to a few exceptional initiatives in Mathematical
SCIENCES

The Programme Advisory Committee for Mathematical Sciences (PACMS),

SERC created a document entitled Vision for R&D in Mathematical Sciences. In

this document, ten broad thrust areas in Mathematical Sciences were identified

for support. Among other things, this led to:

(1) Support for establishment of the National Centre for Advanced Re-

search in Discrete Mathematics (CARDMATH);
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ROAD TO MATHEMATICAL SCIENCES IN INDIA-A RELOOK 9

(2) Support for establishment of the Centre for Mathematical Sciences

(CMS) at Pala, Kerala;

(3) Support for establishment of the Centre for Interdisciplinary Math-

ematics (CIMS) at BHU, Varanasi;

(4) Support for establishment of the Centre for Mathematical Biology at

IISc, Bangalore;

(5) Support to IISc Mathematics Initiative (IMI);

(6) Support to National Mathematics Initiative (NMI);

(7) Support for establishment of the Centre for Research in Mathemat-

ical Sciences (CMS) at Banasthali University, Rajasthan;

(8) Support to the National Programme on Differential Equations

(NPDE);

(9) Support to the National Network on Computational and Mathe-

matical Biology .

6. Status of Applied Mathematics in India

In the 60’s and the early part of 70’s, most faculty members at IISc and at

all the IIT’s worked in traditional domains of applied mathematics. As noted

in [5], presently, at IIsc as well as at most of IIT’s, interesting work in tradi-

tional areas of applied mathematics for the most part, gets done in engineering

departments. The areas of interest in applied mathematics(the so-called modern

applied mathematics) which today are found increasingly of interest are: coding

theory, cryptography, inverse problems, image recovery, communication networks

and neuroscience, financial mathematics, computational and mathematical biol-

ogy, dynamical systems, etc. Mention must also be made about the dedicated

groups of mathematicians working on PDE’s and the numerics of PDE’s at the

TIFR (CAM) Centre, IIT Bombay, IIT Kanpur, IIT Kharagpur, IIT Gandhinagar,

IIT MAdras, IIT Guwahati, among others.

From an elevated perspective, as observed in a recent peer review of applied

mathematics in India,“it appears that India has a strong pitch and legacy of pure

mathematics, and that in the last two decades or so, the number of research centres

and quality teaching institutions devoted to pure mathematics have grown”. How-

ever, there is a general feeling that “applied mathematics is lagging”. On the other

hand, even in the areas of pure mathematics, the available number of well-trained

mathematics students and researchers is still a matter of concern, particularly for

those involved in the task of hiring of quality faculty and research staff for their

institutions. It must be emphasized, nonetheless, that applied mathematics plays

a key role for high class innovations and solutions of complex technical problems

faced in industry, and this requires ingenious skills coming from a good training

in mathematics both pure and applied.
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10 D. V. PAI

Finally, keeping in view that many new national institutions (new IITs and

IISERs) have entered the scene in the last few years, it would appear desirable for

the organic growth of mathematical sciences in the country to recommend that

these institutes may possibly be entrusted the task of systematically nurturing and

synergizing applied and applicable mathematics.
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Abstract. In the first part of this exposition, one will review certain early

contributions of the author in the area of Optimization and Approximation,

which are of some nostalgic value to him. In the second part, one will be

mostly concerned with stability and well-posedness considerations of prob-

lems in approximation theory. Specifically, the required hyperspace topolo-

gies on certain subfamilies of nonempty closed sets will be reviewed here in

the context of continuity and well-posedness of the prox multifunction and

the restricted center multifunction.

1. Resume of Some Highlights of Major Contributions

I feel greatly honored that the Indian Mathematical Society, which is the oldest

and the biggest of the mathematical societies in the country, has elected me to

this august office of its President for the year 2016-17. It also entrusted me with

the task of presiding over its 82nd Annual Conference which took place at the

University of Kalyani, Kalyani, West Bengal in December, 2016. At the outset, I

must express my humble and deep sense of indebtedness to the Council and the

General Body of the Society for giving me this valuable opportunity.

Before giving a brief resume of some of the highlights of our work, since most

of it involves global approximation, it may be appropriate to give below some of

the pertinent quotes:

“Because the shape of the whole universe is most perfect, and, in fact designed

by the wisest creator, nothing in all of the world will occur in which no maximum

or minimum rule is shining forth”.

Leonard Euler

“The profound significance of well-posed problems for advancement of math-

ematical science is undeniable”.

David Hilbert

* The text of the Presidential Address (technical) delivered at the 82nd Annual Conference of

the Indian Mathematical Society held at the University of Kalyani, Kalyani-741 235, Nadia,

West Bengal, India during December 27 - 30, 2016.

Mathematics Subject Classifications: 41A28, 41A52, 41A65.

Key words and Phrases: smooth norm, multioptimum, prox multifunction, restricted center

multifunction, hypertopologies.

c© Indian Mathematical Society, 2016 .
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12 D. V. PAI

Our initial contributions arose from a study of the notion of prox points of

a pair of convex sets in a normed linear space in Pai [29]. Existence, uniqueness,

characterization and computability of prox points were studied there. A new

characterization of smooth normed spaces was obtained in Pai [30] using this

notion. Subsequently, in Pai [31], this result was considerably generalized by

providing an answer to the following question in Convex Analysis: When is a

multioptimum of a convex functional F defined on a catesian product of Hausdorff

locally convex spaces for a cartesian product of convex subsets of these spaces

an optimum for the same? This result was further generalized in Pai [32] to a

cartesian product of certain regular subsets of these spaces. Connection of this

result with Nash equilibrium point in Game Theory was considered in Pai and

Veeramani [34]. Later, an interesting generic theorem was contributed in Beer and

Pai [9] for points of single-valuedness of the prox multifunction for pairs of convex

sets, along with certain applications to some results for best approximation and

fixed points of convex-valued multifunctions. Hyperspace topologies related to the

stability of the prox map were also investigated in Pai and Deshpande [39]. These

investigations also seem to have drawn the attention of some other workers in this

domain. For example, mention must be made here of the interesting contributions

by De Blasi, Myjak and Papini [17, 18]. Also, the papers of Li and Ni [24], and Li

and Xu [25] may be mentioned in this connection. All these articles refer to our

early contributions, particularly to those in Beer and Pai [9]. Reference to some

of these early works may also be found in many articles referred to in the recent

survey articles of Veeramani and Rajesh [55], Singh and Singh [52].

Our more recent contributions are to the topic Stability and Well-posedness

in Optimization and Approximation. This work began with our joint efforts with

G. Beer in the early part of 90’s, and it resulted in our joint papers [8, 9, 10].

Various notions of convergence of convex sets and their relation to the stability of

the restricted Chebyshev centers were analysed in Beer and Pai [8], and this led

to a subtle generic theorem for points of single-valuedness of the restricted center

multifunction. Topologies related to stability of restricted center multifunction

have also been discussed in Pai and Deshpande [39]. This work seems to have

been taken note of, by some other contemporary co-workers in set-valued analysis.

In this connection, among others, the articles of Attouch and Beer [1, 2], Beer

and Borwein [7], Attouch, Moudafi and Riahi [3], and the monograph of Beer [15]

must be mentioned. This investigation was continued further in the Ph.D. thesis

of Shunmugaraj [49], and it resulted in our joint papers [50, 51]. A notable contri-

bution in Shunmugaraj and Pai [50] was a new notion of convergence of sets which

was initially called Shunmugaraj-Pai convergence in the paper by Sonntag and

Zalinescu [54]. This notion of convergence was subsequently called the bounded
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SOME HIGHLIGHTS OF OUR RESEARCH CONTRIBUTIONS 13

proximal convergence by other co-workers in this domain ([13, 14]), and they stud-

ied the corresponding hyperspace topology called the bounded proximal topology.

The paper Shunmugaraj and Pai [50] has been referred to in many articles and

monographs. A partial list of these would include [53, 13, 14], and also the two

monographs [15, 48].

In Shunmugaraj and Pai [51], an interesting generic uniqueness theorem for

solution sets for convex optimization problems was established. This work was

further continued in the Ph.D. thesis of Deshpande [19] which also resulted in our

joint publications [39, 40, 41]. In Pai and Deshpande [41], we contributed a unified

approach to hypertopologies on collections of certain subsets of a Hausdorff uni-

form space, and more importantly, identified a suitable topology on the family of

proper convex and lower semicontinuous functions defined on a Hausdorff locally

convex space for which the Young Fenchel transform of convex analysis is bicon-

tinuous. This result improved a previously known result due to Mosco, Joly and

Beer. In effect, this paper implemented the desiratarium expressed at the end of

the second para of Notes and References of the monograph [15].

More recently, our main contributions have been to the study of strong unique-

ness of simultaneous approximation, a topic of continuing interst in the literature

in Approximation Theory. This began with our joint work with P.J. Laurent [23].

In this article, we have contributed an important formula for the subdifferential of

restricted Chebyshev radius of a bounded set (such a formula is of continuing in-

terest in Convex Analysis after the seminal work of M. Valadier in this direction).

This led us to establishing strong uniqueness of restricted Chebyshev centers for

certain Haar-like subspaces. The papers [23, 42] have been referred to in many

articles of C. Li and his co-workers, cf., e.g. [26, 27]. This work was subsequently

continued in our investigations reported in [35, 36, 38, 43, 21, 44], and also in the

Ph.D. thesis of K.Indira [22]. An interesting study of various properties of cer-

tain triplets leading to the existence and stability of restricted centers of sets was

also contributed in [42]. Updated overviews of this topic related to well-posedness

of the underlying problems have been contributed in [37, 43, 46]. In Indira and

Pai [21], we have presented some important results for lower semicontinuity of the

restricted center multifunction and Hausdorff strong uniqueness of best simultane-

ous approximation. These results are further extended to spaces of vector-valued

functions in [45]. In this direction, mention must also be made of our book [28]

contributed jointly with H. N. Mhaskar.

2. On Stability of the Prox Multifunction

2.1. A characterization of smooth normed linear spaces.

Definition 2.1. A normed linear space X is called smooth if each point of

the unit sphere S(X) = {x ∈ X : ‖x‖ = 1} has a unique support hyperplane
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14 D. V. PAI

to the closed unit ball U(X) = {x ∈ X : ‖x‖ ≤ 1}, or equivalently, if for each

x ∈ X,x 6= 0, there corresponds a unique Hahn-Banach functional x∗ ∈ X∗ such

that ‖x∗‖ = 1 and x∗(x) = ‖x‖.
Our initial contributions arose from a study of the notion of prox points of a

pair of convex sets in a normed linear space.

Definition 2.2. Given a pair U, V of convex sets in a normed linear space X, the

points u, v in U, V respectively are called prox points of the pair of sets U, V if

‖u− v‖ = D(U, V ) = inf
u∈U,v∈V

‖u− v‖.

Existence, uniqueness, characterization and computability of prox points of a

pair of convex sets were studied in Pai [29]. If the points u ∈ U, v ∈ V are prox

points then they are clearly the points that are mutually nearest to each other from

the respective set. However, it is seen from examples in Pai [30] that, in general,

the converse of this statement is false even for convex Chebyshev sets. Motivated

by these examples, the following geometric property (P) was introduced in [30] for

normed linear spaces.

Property (P)

• (P) For each pair U, V of convex subsets of X and points u ∈ U, v ∈ V, u
being a nearest point of v in U and v being a nearest point of u in V ,

imply that u, v are prox points of U, V.

• In Cheney and Goldstein [16], it was shown that (P) holds for a Hilbert

space when U, V are closed and convex.

• In Pai [29] it was observed that (P) holds for X if its dual X∗ is strictly

convex.

The following result of Pai [30] gives a geometric characterization of smooth

normed spaces.

Theorem 2.3. For a normed linear space X, the following statements are equiv-

alent.

(1) X is smooth.

(2) X satisfies property (P).

(3) The norm ‖.‖ in X is Gâteaux-differentiable at each nonzero point of X.

2.2. Multioptimum of a convex functional. Subsequently, in Pai [31], the

above theorem was further generalized by providing an answer to the following

question in Convex Analysis:

• When is a multioptimum of a convex functional F defined on a carte-

sian product of Hausdorff locally convex spaces for a cartesian product of

certain convex subsets of these spaces an optimum for the same?

• This result was also further generalized to a cartesian product of certain

regular subsets of these spaces in [32].
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SOME HIGHLIGHTS OF OUR RESEARCH CONTRIBUTIONS 15

• In Pai and Veeramani [34] connection of this result to Nash equilibrium

point in Game Theory was explored.

More precisely, the two questions raised in [31] were as follows:

• Question 1. Let f be a convex functional defined on a Hausdorff locally

convex linear topological space X. Let U, V be a pair of convex sets in X.

A pair (u, v) ∈ U × V is called a multioptimum for f if

f(u− v) = inf
v∈V

f(u− v) = inf
u∈U

f(u− v),

and it is simply called an optimum for f if u − v is an optmum for f on

U − V,:
f(u− v) = infu∈U,v∈V f(u− v).

The question that we asked was: Under what conditions is a multioptimum (u, v)

an optimum for f?

Remark 2.4. Put differently, we were asking: When is a pair (u, v) ∈ U × V of

elements that are mutually f -nearest to each other from the respective set, f -prox?

More generally, in [31], we were concerned with:

• Question 2: Let Xi, i = 1, 2, . . . , n, be Hausdorff locally convex linear

topological spaces, and let Ki ⊂ Xi, i = 1, 2, . . . , n, be convex sets. Let F

be a convex functional defined on
∏n
i=1Xi. Let xi ∈ Ki, i = 1, 2, . . . , n be

given points. Denote by ψi, i = 1, 2, . . . , n, the convex functionals defined

on Xi by

ψi(xi) = F (x1, x2, . . . , xi−1, xi, xi+1, . . . , xn).

One calls (x1, . . . , xn) ∈
∏n
i=1Ki a multioptimum for F if

F (x1, . . . , xn) = inf
xi∈Ki

ψi(xi), i = 1, 2, . . . , n,

The question that we asked was: Under what conditions is a multioptimum

(x1, . . . , xn) an optimum for F?

Remark 2.5. A game theoretic interpretation of the above Question 2 is as follows:

Let the convex sets Ki, i = 1, . . . , n and the convex functional F be as before.

Consider the co-operative game (K,−F ), where K =
∏n
i=1Ki, denotes the set of

strategy profiles corresponding to the strategy sets Ki for the players i. Given a

strategy profile x = (x1, . . . , xn) ∈ K, let us denote as before

ψi(xi) = F (xi, x−i), i = 1, . . . , n

the convex functionals defined on Xi. Here xi denotes the strategy profile of player

i and x−i denotes the given strategy profile of all players except for player i. A

strategy profile x ∈ K is called a Nash equilibrium (NE) for the game (K,−F )

provided

F (x) ≤ F (xi, x−i) ∀xi ∈ Ki, i = 1, . . . , n.
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16 D. V. PAI

Clearly, Nash equilibrium for the payoff functions ψi’s is precisely what has been

called multioptimum before.

Theorem 2.6. Let F be a proper convex function on
∏n
i=1Xi, and that it is finite

and continuous at (x1, . . . , xn). Then in order that (x1, . . . , xn) being a multiopti-

mum for F imply that it is an optimum for F , it is sufficient that the following

equality hold for the subdifferentials:

∂F (x1, . . . , xn) =
n∏
i=1

∂ψi(xi).

Remark 2.7. • Let F satisfy the same hypothesis as in the last theorem. In

general, it is easily seen that the following inclusion holds for the subdif-

ferentials:

∂F (x1, . . . , xn) ⊂
n∏
i=1

∂ψi(xi).

• Under the same hypothesis as in the last theorem, F is Gâteaux differ-

entiable at (x1, . . . , xn) if and only if the functions ψi are Gâteaux dif-

ferentiable at the points xi, i = 1, . . . , n. In this case the equality for the

subdifferentials as in the preceding theorem holds.

• Aside from the differentiable case of the preceding remark, another simple

case, wherein this equality holds for the subdifferentials, is the following:

F (x1, . . . , xn) = f1(x1) + . . . ,+fn(xn),

where fi ∈ conv(Xi), i = 1, . . . , n.

Theorem 2.8. Let f be a proper convex function on X, and let it be finite and

continuous at u− v. Then in order that u ∈ U, v ∈ V being mutually f -nearest to

each other from the respective set imply that they are f -prox, it is sufficient that

f be Gâteaux-differentiable at u− v.

Theorem 2.9. Let f be a continuous guage function on X. Then in order that for

arbitrarily given convex sets U, V in X and points u ∈ U, v ∈ V such that f(u−v) 6=
0, u, v being mutually f -nearest to each other from the respective set imply that they

are f -prox, it is necessary and sufficient that f be Gâteaux-differentiable at each

point x ∈ X, where f(x) 6= 0.

2.3. Hyperspace topologies related to the prox map.

Definition 2.10. Let X be a metric space and CL(X)(resp. CLB(X)) denote

the nonempty closed (resp. the nonempty closed and bounded) subsets of X.

• Given A,B in CL(X) and x ∈ X, let d(x,B) denote the distance between

x and the set B, and let

D(A,B) := infa∈A,b∈Bd(a, b) = infa∈Ad(a,B)

denote the gap between the sets A,B.
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SOME HIGHLIGHTS OF OUR RESEARCH CONTRIBUTIONS 17

• Any point a ∈ A such that d(a,B) = D(A,B) is called a prox point of B

in A and a pair (a, b) ∈ A×B such that d(a, b) = D(A,B) is called a prox

pair of the pair (A,B) of sets.

• We denote by Proximal(B,A) (resp.Prox(B,A)) the (possibly void) set

of prox points of B in A (resp. prox pairs of the pair (B,A) of sets).

• Let us also recall that the Hausdorff metric topology τH on CL(X) is the

one induced by an infinite valued metric on CL(X) (which when restricted

to CLB(X) is a finite valued metric), defined by

H(A,B) = max{supa∈Ad(a,B), supb∈Bd(b, A)}, A,B ∈ CL(X).

It is well known (cf.,e.g. [15]), that

H(A,B) = supx∈X |d(x,A)− d(x,B)|, A,B ∈ CL(X).

A natural problem that arises in the context of continuity of the prox map is:

• To identify suitable families of setsA,B in CL(X) and appropriate topolo-

gies on them so as to ensure continuity of the gap functional

(A,B)→ D(A,B) on A× B.
• A particular case was treated in [9] in the framework of a dual normed

space.

2.4. A unified approach to hyperspace topologies. From the point of view

of adressing the stability questions in optimization as one of the goals, a num-

ber of hyperspace topologies, the so-called hypertopologies were introduced by a

number of authors, cf., e.g.,[12, 5, 11, 53, 13]. A simple unified approach to these

hypertopologies has emerged in [13, 53], which is as follows: Given the families of

sets A,B in CL(X), as before for each B ∈ B, define

pB(A,A′) = |D(A,B)−D(A′, B)|.
• Let us denote by τ(B) the topology on A corresponding to the uniformity

generated by the family {pB : B ∈ B} of pseudometrics on A.

• Clearly, τ(B) is precisely the weak topology on A generated by the family

of functionals A→ D(B,A) obtained by varying B over B.

• Clearly for the topology τ(B), a net {Aλ} converges to A in A, written

τ(B)− limλAλ = A, if and only if

limλD(B,Aλ) = D(B,A),∀B ∈ B.

.• This approach allows one to compare the various known hypertopologies

on A in a natural manner.

2.5. Hit-and-miss representations of hypertopologies. In the sequel, the

metric space X will sometimes be a normed linear space with X∗ as its normed

dual. In addition to CL(X), CLB(X) mentioned in the introduction, we shall

consider the following classes of sets:

• S(X), the singletons of X;
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18 D. V. PAI

• K(X) will denote the nonempty compact subsets of X; In the linear case,

• WCL(X) (resp.W ∗CL(X∗)), will denote the nonempty weakly closed

(resp. weak∗ closed) subsets of X (resp. X∗);

• WK(X) (resp. W ∗K(X∗) will denote the nonempty weakly compact

(resp. weak∗ compact) subsets of X (resp.X∗);

• CLC(X) will denote the nonempty closed and convex subsets of X; and

CLBC(X) will denote the nonempty closed bounded and convex subsets

of X.

For a subset E of X and A ⊂ CL(X), let us recall the following customary

notation:

• E− := {A ∈ A : A ∩ E 6= ∅},
• E+ := {A ∈ A : A ⊂ E},
• E++ := {A ∈ A : D(A,Ec) > 0}.

Remark 2.11. In case A is in E− (resp. E+, resp. E++ ), A is said to hit E (resp.

miss Ec, resp. really miss Ec).

Remark 2.12. • Following [13], one says that B is stable under enlargements

if for each B ∈ B and ε > 0, one has Vε[B] ∈ B. Here Vε[B] = {x ∈ X :

d(x,B) ≤ ε} denotes the ε-enlargement of B.

• Clearly, the families CL(X), CLB(X), CLC(X),W ∗K(X∗) (resp.

WK(X) in case X is reflexive) are stable under enlargements.

The following theorem can be found in [13] and in a slightly different form in [53].

Theorem 2.13. Suppose B ⊃ S(X) and that it is stable under enlargements.

Then the topology τ(B) has a subbase consisting of all sets of the form V − where

V is open and all sets of the form (Bc)++ where B ∈ B.

2.6. Various hypertopologies.

(i) Wijsman and proximal topologies

• Wijsman topology : Every family B such that S(X) ⊂ B ⊂ K(X)

generates this topology. This topology τW has been widely studied

on A = CL(X). See, e.g., [12, 13, 15].

• Proximal topology : Here B = CL(X). This topology τP on A =

CL(X), which is known to be compatible with Fisher convergence [4]

of sequences in A, was introduced in [12]. For any A ⊂ CL(X), this

topology is weaker than the Hausdorff metric topology τH and the

two coincide precisely when X is totally bounded [12].

(ii) Bounded proximal and slice topologies

• Bounded proximal topology : Here B = CLB(X). This topology τBP

on A = CL(X) is compatible with the bounded proximal convergence

of sequences in CL(X) introduced in [50, 49]. Clearly, this topology
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SOME HIGHLIGHTS OF OUR RESEARCH CONTRIBUTIONS 19

is finer than τW and weaker than τP . This topology has been studied

in detail in [13, 14].

• Slice topology : Here B = CLBC(X). This topology τSl on A =

CLC(X) was introduced in [11, 15, 52] as an alternative to the Mosco

topology τM for nonreflexive spaces. When X is reflexive, τSl = τM

on CLC(X). Clearly τSl is weaker than τM .

(iii) Mosco and dual Mosco topologies

• Mosco topology (resp. the dual Mosco topology): Here B = WK(X)

(resp.B = W ∗K(X∗)). This topology τM (resp.τM∗) is finer than

τW , and in case X is reflexive (resp.the dual space X∗) and A ⊂
WCL(X)(resp. A ⊂ W ∗CL(X∗)), this topology coincides with the

restriction of the topology τM (resp.τM∗) defined in [5] (resp.[9])on

A. It is generated by all sets of the form V −, where V is open and

sets of the form (Bc)+ where B ∈ WK(X)(resp. B ∈ W ∗K(X∗)).

For X reflexive and A = CLC(X), this topology is compatible with

the classical Mosco convergence of sequences of sets (cf.[5]).

2.7. Continuity of the gap functional. As before, let X be a metric space and

A,B be given families in CL(X).

Theorem 2.14. [39, 40] Let X be a metric space and A,B be families in CL(X).

Assume B contains singletons S(X). Then the gap functional

D : (B, τP )× (A, τ(B)) −→ R
is continuous. Moreover, if A = CL(X), then the proximal topology τP is the

weakest topology τ on B such that

D : (B, τ)× (A, τ(B)) −→ R
is continuous.

Corollary 2.15. In each of the following cases, the gap functional D : (B, τP )×
(A, τ)→ R is continuous.

• B = A = CL(X) and τ = τP ;

• B = CLB(X),A = CL(X) and τ = τBP ;

• B = CLBC(X),A = CLC(X) and τ = τSl;

• B = W ∗K(X∗),A = W ∗CL(X∗) and τ = τM∗ .

2.8. Upper semicontinuity of the proximal and prox maps. As before, let

X be a metric space and A,B be families of sets in CL(X). We explore topologies

on them so as to yield upper semicontinuity of the proximal map over B, and upper

semicontinuity the prox map over B ×A.

Definition 2.16. [39] Let B ⊂ CL(X) and A be a nonempty subset of X. A

is said to be proximally compact with respect to B, if for each B ∈ B, each net

< aλ > in A satisfying limλd(aλ, B) = D(A,B) has a convergent subnet to a point

of A. In case X is a normed space, B ⊂ CL(X) the w-proximal compactness of A
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with respect to B is defined similarly using w- convergence of the corresponding

subnet.

The proximal map.

Theorem 2.17. Let X be a metric space. Suppose B ⊂ CL(X) and A ∈ CL(X)

be such that each B ∈ B is proximinal with respect to A. If A is proximally

compact with respect to B, then for each B ∈ B, P roximal(B;A) is nonempty and

the proximal map B → Proximal(B;A) is usco on B equipped with τP .

In the following, we use the fact given below:

• In case X is a normed space and B ∈ CL(X) is convex or w-compact,

then the function x→ d(x,B) is w-l.s.c.

Theorem 2.18. Let X be a normed space. Suppose B ⊂ CL(X) and A ∈ CL(X)

are such that each B ∈ B is proximinal with respct to A, or that B ⊂WK(X). If A

is w-proximally compact with respect to B, then for each B ∈ B, Proximal(B;A)

is nonempty, and the proximal map B → Proximal(B;A) is w-usco on B equipped

with τP .

The prox map.

Theorem 2.19. [39] Let X be a metric space and let B ⊂ CL(X) be such that each

B ∈ B is boundedly compact. Let A ⊂ CL(X) be such that each A ∈ A is proxi-

mally compact with respect to B. Then for each A ∈ A and B ∈ B, P rox(B,A) 6= ∅
and the prox map: (B,A)→ Prox(B,A) on 〈B, τP 〉 × 〈A, τP 〉 is usco.

Theorem 2.20. [39] Let X be a metric space. Let B ⊂ K(X) and A be a family

of nonempty approximatively compact subsets of X. Then for each A ∈ A and B ∈
B, P rox(B,A) 6= ∅ and the prox map:(B,A)→ Prox(B,A) on 〈B, τP 〉×〈A, τBP 〉
is usco.

The next theorem improves [10], Proposition 3.6(2).

Theorem 2.21. Let X be a normed space. Let B ⊂ WK(X) and A ⊂ CL(X).

If each A ∈ A is w-proximally compact with respect to B, then for each A ∈ A
and B ∈ B, P rox(B,A) 6= ∅ and the prox map:(B,A)→ Prox(B,A) is w-usco on

〈B, τP 〉 × 〈A, τBP 〉.
Remark 2.22. (i) In the preceding theorem, if one replaces B ⊂ WK(X)

by B ⊂ CL(X) such that each B ∈ B is boundedly compact, then the

conclusion of this theorem holds with τBP replaced by τP on A.
(ii) In case X is reflexive (resp. a dual normed space X∗),B = WK(X)

(resp.W ∗K(X∗)) and A = WCL(X)(resp., W ∗CL(X∗)) the preceding

theorem holds with τBP replaced by the weaker topology τM (resp.τM∗)

on A. This improves [9], Theorem 3.3.
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2.9. Best approximation of convex-valued multifunctions. Let us begin by

recalling the following well known fixed point theorem for multifunctions.

Theorem 2.23. (Himmelberg) Let C be a nonempty convex subset of a Hausdorff

locally convex space X. Let F : C → C be an upper semicontinuous multifunction

with closed convex values. If F (C) is relatively compact, then F has a fixed point.

Theorem 2.24. [39] Let C be a nonempty convex subset of a normed space X.

Let F : C →< CLC(X), τP > be continuous, where C is equipped with the norm

topology. Assume Fx is proximinal with respect to C for each x ∈ C. If B := {Fx :

x ∈ C} is τP -relatively compact and C is proximally compact with respect to B,

then there exists x ∈ ∂C (here ∂C denotes the boundary of C ) such that

d(x, Fx) = D(C,Fx).

Proof. For proving the above theorem, one considers the multifunction

G : C → CLC(C)

defined by G(x) = Proximal(Fx;C) and shows that G has a fixed point x ∈ C
applying Himmelberg’s fixed point theorem. �

Theorem 2.25. [39] Let C be a nonempty convex subset of a normed space X.

Let

F : C → 〈CLC(X), τP 〉
be continuous, where C is equipped with the topology w. Assume Fx is proximinal

with respect to C for each x ∈ C. If B := {Fx : x ∈ C} is τP -relatively compact

and C is w-proximally compact with respect to B, then there exists x ∈ ∂C such

that

d(x, Fx) = D(C,Fx).

2.10. Generic uniqueness of prox maps. Baire category result

Theorem 2.26. [9] Let X be a separable reflexive space. Suppose WKC(X) is

equipped with the Hausdoff metric topology τH and CLC(X) is equipped with τM .

Then

Ω := {(B,A) ∈WKC(X)× CLC(X) : D(B,A) > 0}
as a subspace of WKC(X)× CLC(X) is open and completely metrizable.

Theorem 2.27. [9] Let X be a separable reflexive space. Suppose WKC(X) is

equipped with τH and CLC(X) is equipped with τM . Then there exists a dense and

Gδ subset Ωo of

Ω := {(B,A) ∈WKC(X)× CLC(X) : D(B,A) > 0}

such that for each (B,A) ∈ Ωo, P rox(B,A) is a singleton.
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3. On Stability of the Restricted Center Multifunction

3.1. Restricted Chebyshev centers of sets and simultaneous best approx-

imation. Let X be a metric space, which will mostly be a normed linear space.

We distinguish the following classes of normed spaces:

(Rf) := the reflexive Banach spaces,

(R) := the rotund (strictly convex) normed spaces,

(A) := the normed spaces for which the norm satisfies the Kadec property :

w convergence of a sequence in S(X) entails its norm convergence,

(UR) := the uniformly convex Banach spaces. We denote the class of spaces

(Rf) ∩ (A) by (CD) and the class of spaces (CD) ∩ (R) = (Rf) ∩ (R) ∩ (A) by

(D). Let the families B ⊂ CLB(X) and A ⊂ CL(X) be given. For A ∈ A, B ∈ B
and x ∈ X, let r(B, x) := sup{d(x, y) : y ∈ B} denote the radius of the smallest

closed ball centered at x covering B and let

rad(B;A) : = inf{r(B, x) : x ∈ A},

Cent(B;A) : = {x ∈ A : r(B, x) = rad(B;A)}.
The number rad(B;A) is called the restricted (Chebyshev) radius of B in A.

It is the intrinsic error in the problem of simultaneous approximation (global

approximation) of the bounded data set B from the set A. Any element of the

set Cent(B;A) (possibly void) is called a restricted (Chebyshev) center or best

simultaneous approximant of B in A. The problem of probing the continuity of

the restricted center multifunction B × A : (B,A)→→Cent(B;A) ∈ CL(A) leads

us to the problem of identifying suitable families A,B of sets in question and

appropriate topologies on them, so as to ensure continuity of the restricted radius

functional (B,A)→ rad(B;A) on B ×A.
3.2. Bivariate continuity of the restricted radius functional. As before,

let X be a metric space, B ⊂ CLB(X),A ⊂ CL(X). For B,B′ ∈ B and x ∈ X,
let rx(B,B′) := |r(B, x) − r(B′, x)|. Likewise, for A,A′ ∈ A and B ∈ CLB(X),

let RB(A,A′) := |rad(B;A) − rad(B,A′)|. The topology corresponding to the

uniformity on B (resp. A) generated by the family of pseudometrics {rx : x ∈ X}
(resp.{RB : B ∈ B}) will be denoted by τr (resp. τD(B)). For X a normed space,

B = CLB(X) and A = CLC(X), the topology τD(B) on A was called the distal

topology in [8]. For arbitrary families B ⊂ CLB(X) and A ⊂ CL(X) such that

B contains all finite subsets of X, the topology τD(B) is generated by all sets of

the form V −, where V is open and (Bc)+, where B is an intersection of a finite

family of closed balls with a common radius in each of the following cases;

(i) X is a metric space such that each closed ball in X that is a proper subset

of X is compact;

(ii) X is a dual normed space.

Clearly, τD(B) is the weakest topology on A such that A→ rad(B;A) is
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continuous on A for each fixed B ∈ B.
Lemma 3.1. Let X be a metric space and B ⊂ CLB(X). Then the topology τr

on B is weaker than the topology τP .

Theorem 3.2. [39] The restricted radius functional rad : 〈B, τH〉 × 〈A, τ〉 → R
is continuous in each of the following cases:

(i) X is a metric space, B = CLB(X),A = CL(X) and τ = τBP ;

(ii) X is a normed space, B = CLBC(X),A = CLC(X) and τ = τSl;

(iii) X∗ is a dual normed space, B = W ∗K(X∗),A = W ∗CL(X∗) and τ =

τM∗ .

Let B ⊂ CLB(X) and τ̃ denote the supremum of the two topologies τr and τ−V ,

on B.. By the previous lemma, we observe that τ̃ is weaker than τP on B.

Theorem 3.3. [39] In each of the following cases, τ̃ is the weakest topology τ1 on B
containing τ−V such that the restricted radius functional rad : 〈B, τ1〉×〈A, τ〉 → R
is continuous.

(i) X is a metric space, B = CLB(X),A = BK(X) and τ = τBP ;

(ii) X∗ is a dual normed space, B = W ∗K(X∗),A = W ∗CL(X∗) and τ =

τM∗ .

Remark 3.4. Clearly, rad : 〈B, τP 〉 × 〈A, τ〉 → R is continuous in each of the two

cases of the last theorem.

3.3. Upper semicontinuity of the restricted center multifunction.

Theorem 3.5. [39] Let X be a metric space, B = CLB(X) and A be a family

of nonempty boundedly compact subsets of X. Then for each B ∈ B and A ∈
A, Cent(B;A) is nonempty and the restricted center multifunction

Cent : 〈B, τ̃〉 × 〈A, τBP 〉→→K(X)

is usco.

Theorem 3.6. [39] Let X be a normed linear space, B = CLB(X) and A be a

family of nonempty boundedly w-compact subsets of X. Then for each B ∈ B and

A ∈ A, Cent(B;A) is nonempty and the restricted center multifunction

Cent : 〈B, τ̃〉 × 〈A, τBP 〉→→WK(X)

is w-usco.

Let us note that in case X ∈ (Rf) and A = WCL(X), the preceding theorem

holds by replacing τBP by the weaker topology τM on A.

Theorem 3.7. [39] Let X∗ be a dual normed space, B = CLB(X∗) and A =

W ∗CL(X∗). Then the restricted center multifunction

Cent : 〈B, τ̃〉 × 〈A, τM∗〉→→W ∗CL(X∗)

is w∗-usco.
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3.4. Simultaneous best approximation of convex-valued multifunctions.

We give below an extension of our earlier result ([33],Lemma 3.6) and also a fixed

point result for multifunctions.

Theorem 3.8. [33, 39] Let C be a nonempty boundedly compact (resp. boundedly

w-compact) convex subset of a normed linear space X. Let F : C→→〈CLB(X), τ̃〉
be a continuous multifunction, where C is equipped with the norm topology (resp.

the topology w). If B := {Fx : x ∈ C} is τ̃ -relatively compact, then there exists

x ∈ ∂C such that
r(Fx, x) = rad(Fx;C).

Recall that for a subset C of X, the inward cone of C at x is this set

IC(x) := {z ∈ X : z = x+ α(u− x), for some u ∈ C,α ≥ 0}.

Theorem 3.9. [33, 39] Let C and F be as in the last theorem. If for each x ∈ ∂C
such that r(Fx, x) > 0, we have

rad(Fx; clIC(x)) < r(Fx, x),

then F has a fixed point x, such that Fx = {x}.

4. Well-posedness of problems in approximation theory

4.1. A review of some well-posedness notions for minimization problems.

Given a nonempty subset V of a metric space X and a function I : E → (−∞,∞]

which is a proper extended real-valued function, let us review some well-posedness

notions of the following abstract minimization problem:

min I(v), v ∈ V,

which we denote by (V, I). Let vV (I) := inf{I(v) : v ∈ V } denote the optimal

value function. We assume I to be lower bounded on V, i.e., vV (I) > −∞, and

let arg minV (I) denote the (possibly void) set {v ∈ V : I(v) = vV (I)} of optimal

solutions of problem (V, I). For ε ≥ 0, let us also denote by ε- arg minV (I) the

nonempty set {v ∈ V : I(v) ≤ vV (I) + ε} of ε-approximate minimizers of I. Recall

(cf., e.g., [20], p.1) that problem (V, I) is said to be (i)Tikhonov well-posed if I has

a unique global minimizer on V towards which every minimizing sequence (i.e., a

sequence {vn} ⊂ V, such that I(vn) → vV (I)) converges. Put differently, there

exists a point v0 ∈ V such that arg minV (I) = {v0}, and whenever a sequence

{vn} ⊂ V is such that I(vn)→ I(v0), one has vn → v0.

It is said to be (ii) generalized well-posed (abbreviated g.w.p) if arg minV (I) is

nonempty and every minimizing sequence for (V, I) has a subsequence convergent

to an element of arg minV (I).

In case V ∈WCL(X), where X is a normed linear space, the problem (V, I) is

said to be w-T.w.p. (resp. w-g.w.p.), if it is Tikhonov well-posed (resp. generalized

well-posed) for w-convergence of sequences and simply T.w.p. (resp. g.w.p.) if
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it is Tikhonov well-posed (resp. generalized well-posed) for strong convergence of

sequences.

Proposition 4.1. [37] Let V ⊂ X, a metric space (resp. V ∈ WCL(X), X a

normed space ). Then problem (V, I) is T.w.p. (resp. w-T.w.p.) if and only if

arg minV (I) is a singleton and (V, f) is g.w.p. (resp. w-g.w.p).

4.2. Well-posedness of best approximants and prox points. Let X be a

normed linear space over K (either R or C), V ∈ CL(X) and x ∈ X. The problem

of finding a best approximant v0 to x in V : ‖x−v0‖ = d(x, V ) = infv∈V ‖x−v‖, is

the problem (V, Ix), where Ix(v) = ‖x− v‖. Recall(cf., e.g., [28]) that the set V is

called (i) Chebyshev if each x ∈ X has a unique best approximant in V ; It is called

(ii) almost Chebyshev if each x in a dense and Gδ subset X0 of X admits a unique

best approximant in V ; It is called (iii) approximatively compact (resp. approx-

imatively w-compact) if each minimizing sequence has a subsequence convergent

(resp. w-convergent) to an element of V. Here the multifunction x→→PV (x) of X

to V, where PV (x) = arg minV (Ix) is called the metric projection of X onto V.

Remark 4.2. (i) the best approximation problems (V, Ix), x ∈ X are all

T.w.p. (resp. w-T.w.p) if and only if the set V is Chebyshev and

approximatively compact (resp. approximatively w-compact).

(ii) A Banach space X is in the class (D) = (Rf) ∩ (R) ∩ (A) if and only

if each member of CLC(X) is Chebyshev and approximatively compact.

Hence, it follows from the first remark that:

(iii) A Banach space X is in the class (D) if and only if for each V ∈ CLC(X),

each problem (V, Ix), x ∈ X is T.w.p.

Theorem 4.3. [46] For a Banach space X the following statements are equivalent.

(i) X ∈ (CD) = (Rf) ∩ (A).

(ii) For each V ∈ CL(X), the family of problems (V, Ix), x ∈ X\V is generi-

cally g.w.p.

Let us now turn to well-posedness of the prox points.

It is easily seen that Prox (B,A) 6= ∅ whenever X is in (Rf) and (B,A) is in

WKC(X)×CLC(X). In what follows, we consider the multifunction

Prox : WKC(X)×CLC(X)→→X×X.

As observed in [9], if WKC(X) is equipped with the topology τH and CLC(X)

is equipped with τM , then the product space WKC(X)×CLC(X) is completely

metrizable whenever X is reflexive and separable. The same thing can be said

about its subspace KC(X)×CLC(X), since τH restricted to KC(X) is complete.

It is therefore meaningful to ask generic well-posedness questions about the mul-

tifunction Prox defined on KC(X)×CLC(X).
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Let B ∈ KC(X) and A ∈ CLC(X). Let I : B×A → R be defined by:

I(b, a) = ‖b− a‖, (b, a) ∈ B×A. We need the next lemma.

Lemma 4.4. Let X ∈ (Rf) ∩ (A)). If (B,A) ∈ KC(X)×CLC(X), then problem

(B×A, I) is g.w.p.

Theorem 4.5. [46] Let X ∈ (Rf)∩ (A) be separable. Suppose KC(X) is equipped

with τH and CLC(X) is equipped with τM . Then there exists a dense Gδ subset

Ω0 of

Ω := {(B,A) ∈ KC(X)×CLC(X) : D(B,A) > 0}

such that for each (B,A) ∈ Ω0, problem (B×A, I) is T.w.p.

4.3. Well-posedness of restricted Chebyshev centers. In this subsection, we

adopt the same terminology and notation as in section 3.

Let us denote by remoteV (X) the family of all sets in CLB(X) which are ‘remotal’,

w.r.t. V, i.e., possessing farthest points for points of V. For the next lemma and the

following proposition, we refer the reader to [28](See Thorems 5 and 9 in Section

5.4, Chapter viii).

Lemma 4.6. If X ∈ (Rf)∩(A) and V ∈ CLC(X), then for each F ∈ remoteV (X),

problem (V, IF ) is g.w.p.

Proposition 4.7. (i) If X ∈ (D), V ∈ CLC(X) and F ∈ remoteV (X), then

problem (V, IF ) is T.w.p.

(ii) If X ∈ (UR), V ∈ CLC(X) and F ∈ CLB(X), then problem (V, IF ) is

T.w.p.

By ([5], Theorem 4.3), when X is reflexive and separable, CLC(X) equipped

with the Mosco topology τM is a Polish space (second countable and completely

metrizable). Since 〈CLC(X), τM 〉 is a Baire space, it is of interest to consider the

following generic theorem for Tikhonov well-posedness of restricted centers.

Theorem 4.8. [37, 46] Let X in (Rf)∩ (A)) be separable. Let K(X) be equipped

with the topology τH , let CLC(X) be equipped with the topology τM , and let the

set
Ω = {(F, V ) ∈ K(X)× CLC(X)) : CentX(F ) ∩ V = ∅}

be equipped with the relative topology. Then there exists a dense Gδ subset Ω0 of

Ω such that for each (F, V ) in Ω0, the problem (V, IF ) is T.w.p.
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Abstract. In this paper, we show that power contractions of generalized

Meir-Keeler type conditions do not force the mapping to be continuous at

the fixed point. Thus we provide one more answer to the open question

posed in [18] ”whether there exists a contractive definition which is strong

enough to generate a fixed point but which does not force the map to be

continuous at the fixed point”.

1. Introduction
A fixed point theorem is one which ensures the existence of a fixed point

of a mapping under suitable assumptions both on the space and the mapping.

Apart from ensuring the existence of a fixed point, it often becomes necessary to

prove the uniqueness of the fixed point. Besides, from a computational point of

view, a constructive algorithm for finding the fixed point is desirable. Often such

algorithms involve iterates of the given mapping.

The questions about the existence, uniqueness and approximation of a fixed

point provide three significant distinct features of a general fixed point theorem.

Most of the fixed point theorems for contractive mappings answer all the three

questions of existence, uniqueness and constructive algorithm convincingly [20].

In all that follows T is a self-mapping on metric space (X, d). In [5] Jachymski

listed some Meir-Keeler type conditions and established relations between them.

Further he gave some new Meir-Keeler type conditions ensuring a convergence of

the successive approximations. For i = 1, 2, 3, 4, 5;

[Ai] for a given ε > 0 there exists a δ(ε) > 0 such that, for any x, y ∈ X,

ε ≤ mi(x, y) < ε+ δ implies d(Tx, Ty) < ε;

[Bi] for a given ε > 0 there exists a δ(ε) > 0 such that, for any x, y ∈ X,

ε < mi(x, y) < ε+ δ implies d(Tx, Ty) ≤ ε;
[Ci] for any x, y ∈ X with mi(x, y) > 0, d(Tx, Ty) < mi(x, y), where

2010 Mathematics Subject Classification: Primary: 47H09, 54E50; Secondary: 47H10,

54E40

Keywords and Phrases: Fixed point, (ε− δ) contractions, power contraction.
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m1(x, y) = d(x, y), m2(x, y) = max{d(x, Tx), d(y, Ty)},

m3(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)},

m4(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), [d(x, Ty) + d(y, Tx)]/2},

m5(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Condition A1 is studied by Meir-Keeler [11] and B1 has been considered by

Matkowski [10]. By considering the common features of various contractive defini-

tions several authors introduced some new contractive definitions which, by using

standard types of assumptions and arguments, yielded new fixed point theorems

(for various contractive definitions of Meir-Keeler type one may see [5, 9, 12, 14]).

It is well-known that A1 =⇒ A3 =⇒ A4 =⇒ A5 and Ai =⇒ (Bi ∧ Ci), for

i = 1, 2, 3, 4, 5 but not conversely [5].

In this paper, we prove fixed point theorems under a more general condition

which subsumes several conditions studied by Jachymski [5]. Further, we do not

assume any kind of continuity condition on the mapping. It may be observed that

an (ε−δ) contractive condition does not ensure the existence of a fixed point. The

following example [15] illustrates this fact.

Example 1.1. Let X = [0, 2] and d be the usual metric on X. Define T : X → X

by T (x) = (1 + x)/2 if x ∈ [0, 1], T (x) = 0 if x ∈ (1, 2].

Then T satisfies condition (i) of Theorem 2.1 (below) with δ(ε) = 1 for ε ≥ 1

and δ(ε) = 1− ε for ε < 1 but T is a fixed point free mapping.

Therefore, to ensure the existence of fixed points under condition (i) of The-

orem 2.1 (below), some additional condition is necessarily required either on δ or

on the mapping. These additional conditions may assume various forms:

(A) δ is assumed lower semicontinuous [6];

(B) δ is assumed nondecreasing [16];

(C) Assuming relatively strong conditions on the continuity of mapping [19];

(D) Assuming corresponding certain φ-contractive condition but without ad-

ditional hypothesis on φ and ε [13].

In 1988, Rhoades [17] compared 250 contractive definitions and showed that

majority of the contractive definitions does not require the mapping to be contin-

uous in the entire domain. However, in all the cases the mapping is continuous

at the fixed point. He further demonstrated that the contractive definitions force

the mapping to be continuous at the fixed point though continuity was neither

assumed nor implied by the contractive definitions. The question whether there

exists a contractive definition which is strong enough to generate a fixed point but

which does not force the map to be continuous at the fixed point was reiterated

by Rhoades in [18] as an existing open problem.
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In 1999, Pant [13] proved the following fixed point theorem and obtained the

first result that exhibits discontinuity at the fixed point:

Theorem 1.2. Let T be a self-mapping of a complete metric space (X, d) such

that for any x, y ∈ X;

(i) d(Tx, Ty) ≤ φ(m2(x, y)), where φ : R+ → R+ is such that φ(t) < t for

each t > 0;

(ii) for a given ε > 0 there exists a δ(ε) > 0 such that

ε < m2(x, y) < ε+ δ implies d(Tx, Ty) ≤ ε.
Then T has a unique fixed point, say z. Moreover, T is continuous at z iff

limx→zm2(x, y) = 0.

Recently, the author and R. P. Pant [1] proved the following theorem wherein

they also gave a contractive definition which does not force the map to be contin-

uous at the fixed point.

Theorem 1.3. Let (X, d) be a complete metric space. Let T be a self-mapping on

X such that T 2 is continuous and satisfy the folowing conditions.

(i). d(Tx, Ty) ≤ φ(m4(x, y)), where φ : R+ → R+ is such that φ(t) < t for

each t > 0;

(ii). for a given ε > 0 there exists a δ(ε) > 0 such that ε < m4(x, y) < ε + δ

implies d(Tx, Ty) ≤ ε.
Then T has a unique fixed point, say z, and Tnx → z for each x ∈ X.

Moreover, T is discontinuous at z iff limx→zm4(x, z) 6= 0.

In this paper, we consider a class of contractive definitions ensuring a conver-

gence of successive approximations but not forcing the mapping to be continuous

at the fixed point. It is important to note that contractive definitions considered

by us are independent of the contractive definitions employed in above Theorems

1.1 and 1.2. Thus we provide one more answer to the open question posed in[18].

2. Main results

In what follows we use the following notations.

M(x, y) = max{d(x, y), [d(x, Tx) + d(y, Ty)]/2, [d(x, Ty) + d(y, Tx)]/2};

N(x, y) = max{d(x, y), a[d(x, Tx) + d(y, Ty)]/2, b[d(x, Ty) + d(y, Tx)]/2},
where 0 ≤ a, b < 1.

Theorem 2.1. Let (X, d) be a complete metric space. Let T be a self-mapping on

X such that for any x, y ∈ X;

(i) for a given ε > 0 there exists a δ = δ(ε) > 0 such that ε < M(x, y) < ε+ δ

implies d(Tx, Ty) ≤ ε;
(ii) d(Tx, Ty) < N(x, y), whenever N(x, y) > 0.
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Then T has a unique fixed point, say z, and Tnx→ z for each x ∈ X. Moreover,

T is continuous at z iff limx→zN(x, z) = 0.

Proof. Existence of a fixed point: Let x0 ∈ X. If Tx0 = x0 then we are done,

hence assume Tx0 6= x0. Define a sequence {xn} in X given by xn+1 = Txn and

put cn = d(xn, xn+1) for all n ∈ N
⋃
{0}. Let us first prove that for all n ∈ N we

have

cn < cn−1. (2.1)

To see this observe that

cn = d(xn, xn+1) = d(Txn−1, Txn)

< N(xn−1, xn) = max{d(xn−1, xn), a[d(xn−1, Txn−1) + d(xn, Txn)]/2,

b[d(xn−1, Txn) + d(xn, Txn−1)]/2}

≤ max{cn−1, a[cn−1 + cn]/2, b[(cn−1 + cn) + 0]/2}

from which (2.1) easily follows. Being strictly decreasing sequence of positive

numbers, obviously cn tends to a limit c ≥ 0. We prove c = 0. If possible, suppose

c > 0. Then there exists a positive integer k ∈ N such that n ≥ k implies

c < cn < c+ δ, δ = δ(c). (2.2)

Also, it follows from (i) and cn < cn−1 that cn ≤ c for all n ≥ k, which contradicts

above inequality. Thus we have c = 0.

We shall now show that {xn} is a Cauchy sequence. Fix an ε > 0. Since

cn → 0, there exists k ∈ N such that cn < δ/2, for n ≥ k. Without loss of

generality, we may assume that δ = δ(ε) < ε. Following Jachymski [5] we shall use

induction to show that, for any n ∈ N,

d(xk, xk+n) < ε+ δ/2. (2.3)

Obviously, (2.3) holds for n = 1. Assuming (2.3) is true for some n we shall prove

it for n+ 1. By the triangle inequlaity, we have

d(xk, xk+n+1) ≤ d(xk, xk+1) + d(xk+1, xk+n+1). (2.4)

Observe that it suffices to show that

d(xk+1, xk+n+1) ≤ ε, (2.5)

or, in view of (i), to show that M(xk, xk+n) ≤ ε+ δ, where

M(xk, xk+n) = max{d(xk, xk+n), [d(xk, Txk) + d(xk+n, Txk+n)]/2,

[d(xk, Txk+n) + d(xk+n, Txk)]/2}. (2.6)

By the induction hypothesis, we get

d(xk, xk+n) < ε+ δ/2, (1/2)[d(xk, xk+1) + d(xk+n, xk+n+1)] < δ/2 (2.7)

and

(1/2)[d(xk, xk+n+1) + d(xk+1, xk+n)] ≤ (1/2)[d(xk, xk+n) + d(xk+n, xk+n+1)

+ d(xk, xk+1) + d(xk, xk+n)] < ε+ δ.
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Thus M(xk, xk+n) < ε+ δ. This completes the induction, proves (2.3) and shows

that {xn} is a Cauchy sequence. Since X is complete, there exists a point z ∈ X
such that xn → z as n → ∞. Also Txn → z. We claim that Tz = z. In fact, in

view of (ii) we get

d(Tz, Txn)

< max{d(z, xn), a[d(z, Tz) + d(xn, Txn)]/2, b[d(z, Txn) + d(xn, T z)]/2},
and letting n → ∞ this yields, d(Tz, z) ≤ max{ad(Tz, z), bd(Tz, z)}. Hence

Tz = z, and thus z is a fixed point of T .

Uniqueness of the fixed point: Uniqueness of the fixed point follows easily.

Continuity criteria: Let T be continuous at the fixed point z and xn → z. Then

Txn → Tz = z. Hence

lim
n
N(xn, z)

= lim
n
max{d(xn, z), a[d(xn, Txn) + d(z, Tz)]/2, b[d(xn, T z) + d(z, Txn)]/2} = 0.

On the other hand, if limxn→z N(xn, z) = 0, then d(xn, Txn)→ 0 as xn → z.

This implies that Txn → z = Tz, i.e., T is continuous at z. This completes the

proof of the theorem. �

Remark 2.2. The last part of Theorems 2.1 can alternatively be stated as: T is

discontinuous at z iff limx→zN(x, z) 6= 0.

The following example illustrates the above theorem:

Example 2.3. Let X = [0, 2] and d be the usual metric on X. Define T : X → X

by T (x) = 1 if x ∈ [0, 1], T (x) = 0 if x ∈ (1, 2]. Then T satisfies the conditions

of Theorem 2.1 and has a unique fixed point x = 1 at which T is discontinuous.

The mapping T satisfies condition (i) with δ(ε) = 1 for ε ≥ 1 and δ(ε) = 1− ε for

ε < 1. It can also be easily seen that limx→1N(x, 1) 6= 0 and T is discontinuous

at the fixed point x = 1.

The following theorem shows that power contraction allows the possibility of

discontinuity at the fixed point. We use the following notations.

M ′(x, y) = max{d(x, y), [d(x, Tmx) + d(y, Tmy)]/2, [d(x, Tmy) + d(y, Tmx)]/2},

N ′(x, y) = max{d(x, y), a[d(x, Tmx) + d(y, Tmy)]/2, b[d(x, Tmy) + d(y, Tmx)]/2},
where 0 ≤ a, b < 1; m ∈ N.

Theorem 2.4. Let (X, d) be a complete metric space. Let T be a self-mapping on

X such that for any x, y ∈ X;

(i) for a given ε > 0 there exists a δ(ε) > 0 such that ε < M ′(x, y) < ε + δ

implies d(Tmx, Tmy) ≤ ε;
(ii) d(Tmx, Tmy) < N ′(x, y), whenever N ′(x, y) > 0.

Then T has a unique fixed point, say z, and Tnx→ z for each x ∈ X.
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Proof. By Theorem 2.1, Tm has a unique fixed point, say z,∈ X; so that Tm(z) =

z. Then T (z) = T (Tm(z)) = Tm(T (z)) and hence T (z) is a fixed point of Tm.

Since Tm has unique fixed point we have Tz = z.

If y is another fixed point of T then Ty = y and hence Tm(y) = y. But then by

the uniqueness of the fixed point of Tm, we have z = y. It follows that z is the

fixed point of T . �

Remark 2.5. The above theorems unify and improve the results due to Jachymski

[5], Kuczma et al. [8], Maiti and Pal [9], Matkowski [10] and Pant [13].

Acknowledgment. The author is thankful to the referee for his valuable sugges-

tions to improve the presentation of the paper.
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Abstract. In the study of class groups of real quadratic fields, one encoun-

ters norm form equations of the type x2 − dy2 = k. Apart from the usual

approach from algebraic number theory, we discuss also how one uses methods

from continued fractions. We demonstrate the methods through a particular

example. The continued fraction method does not seem to be well-known

apart from the basic theory used for the equations x2 − dy2 = ±1. This

article could be useful to graduate students or researchers in number theory.

Introduction

In a first course on algebraic number theory, a typical homework problem may ask

the student to determine the class group of a quadratic field. One is expected to

determine the Minkowski constant and analyse the behaviour of the small primes

not exceeding it. For instance, for Q(
√

223), the primes up to 13 need to be

considered. In this particular example, it is quite easily seen that 3 splits into

the two prime ideals P := (3, 1 +
√

223) and P ′ := (3, 1 −
√

223), and that the

ideal classes of prime ideals lying above the other primes are either trivial or,

are equivalent to one of the primes P, P ′ dividing 3. Further, it is easy to show

that P 3 is principal. The complete determination of the class group then boils

down to checking whether there are elements of norm ±3 in the ring of integers.

Typically, when a solution is not easily visible, some congruence conditions rule

out the existence of solutions. In the above example too, it is easy to see that

a2 − 223b2 = 3
has no integral solutions by looking at the equation modulo 4. However, it does

not seem equally easy to prove that

a2 − 223b2 = −3

has no integral solutions. In this note, we look at this example and discuss two

proofs. Both proofs have the potential to be applied more generally.

We discuss the first proof just for this example but, while giving the second proof,

we take the opportunity to analyze the power of continued fractions. The em-

ployment of the continued fraction expansion of
√
d (d positive non-square) to

2010 Mathematics Subject Classification: 11 D 57, 11 R 11

Keywords and Phrases: Norm equations; Continued fraction; Real quadratic fields.

c© Indian Mathematical Society, 2017 .
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40 KANNAPPAN SAMPATH AND B. SURY

determine the solutions of x2 − dy2 = ±1 is well-known. We point out that this

amounts to looking for the units (equivalently, elements of norm ±1, the norm

being taken in quadratic field Q(
√
d)) in the ring Z[

√
d]. But more generally, if

we let ξ be an irrational real number satisfying a quadratic equation with coef-

ficients in Q so that Q(ξ) is a real quadratic field (the so-called real quadratic

irrationalities), then, the continued fraction of ξ can often be used to study the

existence (or the lack thereof) of elements of Z[ξ] of “small” norm (as an element of

Q(ξ)) - see Theorem 2.10. It appears to us that these results are due to Lagrange

and have been laid out carefully in Serret’s seminal work on “higher” algebra [7,

Chapitre II, Section I, §35, p.80]. In fact, at the time of writing this article, the

only other text where we could find a discussion of this nature is the book [1]

by Chrystal; here, one finds a thorough discussion of the less general Diophan-

tine equation x2 − dy2 = m for m 6= ±1. Chrystal alludes to the general case in

Exercises XXXII, (52.); however, the formulation as it stands is incomplete and

seems a little misleading. The underlying principle is that the elements of “small”

norm, if there are any, must come from convergents of the continued fraction of

ξ. The key point that is only implicit even in the references mentioned above,

is the estimation of the number of convergents that we must compute before we

can refute the existence of an element of a given “small” norm. Our exposition

aims to make this very transparent (v. Lemma 2.13) while remaining short and

self-contained.

The very general phenomenon outlined above does not seem so well-known;

at any rate, this has not been expounded in most standard texts on algebraic

number theory. After this article was written, we looked through recent texts and

discovered a new book by Trifković ([8]) on algebraic number theory which also

coincidentally discusses the very example above and we recommend this text to

the reader interested in a more detailed study of the subject.

1. Class group of Q(
√

223)

Let us start with a more detailed discussion of the computation of the class group

of the real quadratic field k := Q(
√

223).

As 223 ≡ 3 (mod 4), we have Ok = Z[
√

223] and its discriminant equals 4 × 223.

The Minkowski constant of k is
√

223. One looks at the splitting of the primes

2, 3, 5, 7, 11, 13 in Ok. The prime 2 (as well as the prime 223) ramifies as it divides

the discriminant; in fact,

2Z[
√

223] = (2, 1 +
√

223)2

since the minimal polynomial f = X2−223 becomesX2−1 = (X+1)2 mod 2. Also,

f remains irreducible (equivalently, has no root) modulo 5, 7 or 13; so, these primes

remain inert. Further, modulo 3, we have X2 − 223 = X2 − 1 = (X + 1)(X − 1)

which shows
3Z[
√

223] = (3, 1 +
√

223)(3,−1 +
√

223).
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Modulo 11, X2 − 223 = X2 − 3 = (X + 5)(X − 5) so that

11Z[
√

223] = (11, 5 +
√

223)(11,−5 +
√

223).

Now, if (2, 1 +
√

223) is principal, it would be generated by an element of norm

±2 because its square is 2Z[
√

223] which has norm 4. It is easy locate an element

of norm 2; viz., 15 +
√

223. It is then straightforward to check that

(2, 1 +
√

223) = (15 +
√

223).

Further, we can easily locate an element of norm 3× 11 = 33, viz., 16 +
√

223. It

is once again a straightforward task to check that

(3, 1 +
√

223)(11, 5 +
√

223) = (16 +
√

223).

Indeed, 16 +
√

223 = (1 +
√

223)(2(5 +
√

223)− 11)− (3)(11)(13).

Now, let us find the order of P = (3, 1 +
√

223).

As P has norm 3, we look for an element of norm ±9 to ascertain whether P 2 is

principal. Inspection of small values does not produce a solution. The next step

is to look for an element of norm ±33 which would possibly generate P 3. Sure

enough, the easily located element 14 +
√

223 of norm −27 satisfies

P 3 = (14 +
√

223).

What is left is to ascertain whether P itself is principal; if it is not, the class group

is the cyclic group of order 3 generated by the class of P . We shall prove that P

is not principal. If P is principal, say P = (a+ b
√

223), then

a2 − 223b2 = ±3.

Clearly, there is no solution with the positive sign on the right since the left hand

side is 0, 1 or 2 modulo 4. However, the proof of the fact that the equation has no

solution with the negative sign on the right hand side, is not straightforward. We

give two proofs. The first one is due to Peter Stevenhagen (personal correspon-

dence); our main aim is to discuss the second proof at length. In both proofs, we

do not need to separate the cases 3 and −3.

The fundamental unit of Q(
√

223) is η = 224 + 15
√

223. This can be found simply

by hand but while discussing the second proof, we give the details.

1.1. First proof. Let, if possible, (3, 1 +
√

223) = (x) for some x ∈ Z[
√

223]. As

P 3 = (x3) = (14− sqrt223), we have

14−
√

223 = ux3

for some unit u. Now, the fundamental unit

η = 224 + 15
√

223 ≡ −1 mod 5 Z[
√

223].

In particular, η becomes a cube in the finite field F := Z[
√

223]/5 Z[
√

223] which

has 52 elements. In particular, every unit (being a power of η) is a cube in this

field. Hence, the image of 14−
√

223 is a cube. An element in the cyclic group F ∗

of order 52 − 1 = 24 is a cube if, and only if, its 8-th power is 1. Let us compute

the image of (14−
√

223)8 in the field F :
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(14−
√

223)8 = (−1−
√

223)8 = (1 + 223 + 2
√

223)4 = (−1 + 2
√

223)4

= (1 + 892− 4
√

223)2 = (−2− 4
√

223)2 = 4(1 + 2
√

223)2

= 4(1 + 892 + 4
√

223) ≡ 4(−2−
√

223) = 2 +
√

223.

But,
√

223 + 2 is not 1 in the cyclic group (Z[
√

223]/5 Z[
√

223])∗. Otherwise,

223 = 1 mod 5Z[
√

223] which is absurd as 222 is co-prime to 5. This completes

the proof that P cannot be principal S

We deduce:

The ideal class group of Q(
√

223) is cyclic, of order 3, generated by the class of

(3, 1 +
√

223). Further, the equation a2 − 223b2 = −3 has no integer solutions.

1.2. A non-square. Before embarking on the discussion on continued fractions

required for the second proof, we make an interesting remark.

Rewriting the above equation as a2 + 3 = 223b2, one may argue within the field

Q(
√
−3) generated by the cube roots of unity. Its ring of integers is Z[ω], a

unique factorization domain where ω = −1+
√
−3

2 . If a is odd and b is even then

a2 + 3 = 223b2 becomes equivalent to an equation

A2 −A+ 1 = 223B2.

That is, (A+ ω)(A+ ω2) = 223B2.

Writing the element 223 is a product of two irreducible elements:

223 = (17 + 11ω)(17 + 11ω2),

one has A+ ω = (17 + 11ω)(u+ vω) or A+ ω = (17 + 11ω2)(u+ vω). Comparing

the imaginary parts, one may deduce that there exists a number of the form

223s2 + 79s+ 7 which is a perfect square. Therefore, we deduce:

Observation. For an integer s, the number 223s2 + 79s + 7 cannot be a perfect

square.

In fact, write 223s2 + 79s+ 7 = t2. Then,

(446s+ 79)2 + 3 = 223(2t)2.

This contradicts the fact that a2 − 223b2 = −3 has no solution.

It will be interesting to give a direct proof of the above observation.

2. Continued fractions and Small norms

2.1. Continued fractions. We recall the basic terminology of simple continued

fractions relevant to our application to real quadratic fields. For a more elaborate

discussion, we recommend the classical works [7, 2, 1, 3] and the recent text [8].

A simple continued fraction (S.C.F.) is an expression of the form

lim
n→∞

(
a0 +

1

a1+

1

a2+
· · · 1

an

)
where a0 ∈ Z and {an}n>0 is a sequence of positive integers. In other words, an

S.C.F. is the limit of the sequence whose nth term is
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`n := a0 +
1

a1 +
1

a2 +
1

a3 +
... +

1

an

. (1)

One also writes the limit above as a0 + 1
a1+

1
a2+

1
a3+
· · · or as [a0; a1, a2, · · · ]

symbolically. Truncating this process at finite stages, the successive quotients

p0
q0

:=
a0
1
,
p1
q1

:= a0 +
1

a1
=
a0a1 + 1

a1
, · · ·

are called the convergents to the continued fraction. It can be proven by a straight-

forward induction that(
a0 1

1 0

)(
a1 1

1 0

)
· · ·

(
an 1

1 0

)
=

(
pn pn−1

qn qn−1

)
.

Immediately, a consideration of determinants gives:

pnqn−1 − pn−1qn = (−1)n−1

pnqn−2 − pn−2qn = (−1)nan
The most important fact about continued fractions that we need is the following

observation due to Legendre [3]:

Theorem 2.1. If α is a real number which is irrational, and satisfies∣∣∣α− r

s

∣∣∣ < 1

2s2

where s > 0, then r/s is a convergent to the continued fraction of α.

In algorithm 2.4 below, we study the algorithm for the S.C.F. for quadratic ir-

rational to work out the small norms in the ring of integers of a real quadratic

field. As a precursor to the general discussion, let us recall the classical facts about

S.C.F. for
√
N for positive square-free integers N .

2.2. The S.C.F. of
√
N . Let N be a square-free positive integer. The S.C.F.√

N = b0 + 1
b1+

1
b2+
· · · is determined as

b0 = a1 = [
√
N ], r1 = N − a21

b1 =

[√
N + a1
r1

]
, etc.

More generally, we have

bn =

[√
N + an
rn

]
where an = bn−1rn−1 − an−1 and rn−1rn = N − a2n. One shows easily that

an+1, rn+1 > 0. Further, if we know that some rk (say rn+1) equals 1, then
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(−1)n−1 = p2n −Nq2n.
This is indeed the case (see [2]) and the key facts are summarized as:

Lemma 2.2.

(i) The bn’s recur.

(ii) The S.C.F. of
√
N looks like [b0; b1, b2, · · · , bn−1, 2b0].

(iii) The penultimate convergent pn−1/qn−1 before the recurring period gives a

solution of x2 −Ny2 = (−1)n.

Hence, the penultimate convergent of the S.C.F. of
√
N gives a solution of x2 −

Ny2 = ±1 where the sign is positive or negative according as to whether the period

is even or odd.

2.3. The S.C.F. of real quadratic irrationalities. Let us discuss how the

above facts carry over from
√
N to any element of a real quadratic field, which we

christen a real quadratic irrationality.

Definition 2.3. A number ξ ∈ C \Q is said to be a real quadratic irrationality if

it satisfies an equation of the form ξ2 +pξ+q = 0 for uniquely determined rational

numbers p and q satisfying p2 − 4q2 > 0.

Let ξ′ denote the Galois conjugate of ξ (equal to −p − ξ under the above

notation). We have the following algorithm to produce the S.C.F. of a general real

quadratic irrationality.

Algorithm 2.4. Let ξ = P0+
√
D

Q0
be a real quadratic irrationality where D,P0, Q0

are positive integers. We assume, without loss of generality, that Q0 divides P 2
0−D

(otherwise, we may multiply P0, Q0 by Q0 and D by Q2
0).

Then, define the sequences {an}n>0, {ξn}n>0, {Pn}n>1 and {Qn}n>1 of num-

bers by the following rule:

a0 = [ξ0] and ξ1 =
1

ξ0 − a0
=
P1 +

√
D

Q1

a1 = [ξ1] and ξ2 =
1

ξ1 − a1
=
P2 +

√
D

Q2

In general,

am−1 = [ξm−1] and ξm =
1

ξm−1 − am−1
=
Pm +

√
D

Qm
.

Then, ξ = [a0; a1, a2, · · · ] is the S.C.F. of ξ.

The following observations on this algorithm are the most useful ones:

Lemma 2.5. Let {pn/qn} be the sequence of convergents of a quadratic irrational

ξ. With notations as above, all Pi, Qi are integers and, the following equations

hold:
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ξ = (a0; a1, . . . , an−1, ξn) , n > 1; (2)

Pn+1 = anQn − Pn, n > 0 (3)

P 2
n+1 +QnQn+1 = D, n > 0 (4)

Qn+1 = Qn−1 +Qn(Pn − Pn+1) (5)

(−1)nQn/Q0 = (pn−1 − ξqn−1)(pn−1 − ξ′qn−1) (6)

It is the last equation that is the protagonist of this story: it tells us that

pn−1 − qn−1ξ solves the norm-form equation N(z) = (−1)nQn/Q0 where N(·)
stands for the norm on the quadratic field Q(ξ). We shall soon discover that with

appropriate bound on H, a primitive solution (if it exists at all) to the norm form

equation N(z) = H with z ∈ Z[ξ] must arise from convergents (see Theorem 2.10).

Proof. We prove the equalities asserted in the lemma, from which it follows induc-

tively that the Pi’s and the Qi’s are integers. The first equality holds by definition.

The next two equalities are consequences of the identity:

Pn+1 +
√
D

Qn+1
=

1
Pn+

√
D

Qn
− an

.

Indeed, multiply out and equate rational and irrational parts.

To prove the penultimate equality, note that

QnQn+1 = D − P 2
n+1 = D − (anQn − Pn)2 = P 2

n +Qn−1Qn − (anQn − Pn)2

which gives Qn+1 = Qn−1 + an(Pn − Pn+1).

Finally, we prove that the last equality follows from certain properties of conver-

gents as follows. We know that the complete quotients ξn give us

P0 +
√
D

Q0
=
pn−1ξn + pn−2
qn−1ξn + qn−2

.

Using the expression ξn = Pn+
√
D

Qn
, we have

P0 +
√
D

Q0
=
pn−1Pn + pn−2Qn + pn−1

√
D

qn−1Pn + qn−2Qn + qn−1
√
D
.

A comparison of rational and irrational parts gives us:

qn−1Pn + qn−2Qn = Q0pn−1 − P0qn−1;

pn−1Pn + pn−2Qn = P0pn−1 +

(
D − P 2

0

Q0

)
qn−1.

Using pn−1qn−2 − pn−2qn−1 = (−1)n, we obtain

(−1)nPn = P0(pn−1qn−2 + pn−2qn−1) +

(
D − P 2

0

Q0

)
qn−1qn−2 −Q0pn−1pn−2;

(−1)nQn = −2pn−1qn−1P0 +

(
P 2
0 −D
Q0

)
q2n−1 +Q0p

2
n−1.

As ξ + ξ′ = 2P0

Q0
, ξξ′ =

P 2
0−D
Q2

0
, we obtain N(pn−1 − ξqn−1) = (−1)nQn/Q0. �
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The key periodicity feature of this algorithm is given in the following theorem (see

Chrystal, Chapter XXXIII, §4):

Theorem 2.6 (Euler-Lagrange). The sequence (an)n>0 in the continued fraction

of the quadratic irrationality ξ is eventually periodic; that is, there are positive

integers t and h such that an+h = an for all n > t and h is the least positive

integer such that an+h = an for all sufficiently large n and t is the least positive

integer such that at+h = at.

It is evident that the integers h and t with properties in Theorem 2.6 are

uniquely determined. The word a0 . . . at−1 is called the preperiod and, the number

t is called the length of the preperiod of the sequence (an)n. The number h is called

the length of the period of (an)n and is denoted by `(ξ). A convenient shorthand

for this situation is the following notation:

(an)n := (a0, . . . , at−1, at, . . . , at+h−1).

For our purposes, it is necessary to be able to compute the length of the

preperiod of quadratic irrationals. The proof we present is the one of the key

parts of the proof of the periodicity theorem above and consequently the theorem

itself is known but is seldom formulated this way:

Theorem 2.7. The following are equal for a quadratic irrational ξ:

(1) The length of the preperiod of ξ.

(2) The least index t such that ξt > 1 and −1 < ξ′t < 0.

(3) The least index t such that 0 < Pt <
√
D and 0 < Qt < Pt +

√
D.

Proof. It is clear that the numbers defined in (2) and (3) are equal. Let k be

the preperiod of ξ. Then, it follows from the uniqueness theorem that ξk =

(ak, . . . , ak+h−1). Therefore, we have

ξk = (ak, . . . , ak+h−1, ξk). (7)

Notice that ξk > ak = ak+h > 1. Moreover, (7) gives us a quadratic equation

satisfied by ξk (and hence ξ′k):

F (ξk) = qk+h−1ξ
2
k + (qk+h−2 − pk+h−1)ξk − pk+h−2 = 0.

Note now that F (0) = −pk+h−2 < 0 and F (−1) = qk+h−1 + pk+h−1 − qk+h−2 −
pk+h−2 > 0 since the numerator and denominator of a convergent form a (strictly)

increasing sequence. Therefore F has a root in (−1, 0) which proves that −1 <

−ξ′k < 0. Thus, we have that k > t.

If k > t, we shall conclude that ak−1 = ak+h−1 which will contradict the definition

of preperiod. We use the following lemma which easily follows by induction.

Lemma 2.8. If ξt satisfies the conditions ξt > 1 and −1 < ξ′t < 0, then, so does

ξn for all n > t.
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The theorem follows from above as an = [−1/ξ′n+1] for all n > t and, in particular,

we have that ak−1 = ak+h−1 taking n = k − 1. �

Now we have the following corollary.

Corollary 2.9. Let D > 0 be a square-free integer. The length of the preperiod

of
√
D and that of −1+

√
D

2 are both 1.

Proof. Let a0 = [ξ] where ξ is one of the quadratic irrationalities in the statement.

Then

P1 =

a0, if ξ =
√
D

2a0 + 1, if ξ = −1+
√
D

2

and Q1 =

D − a20, if ξ =
√
D

D−(2a0+1)2

2 , if ξ = −1+
√
D

2

It is now easily verified that the least index for which inequalities in (3) of the

above theorem hold in each case is t = 1. �

2.4. Small norms. The existence of elements of norm H (where H is an integer)

in Z[ξ] is equivalent to the existence of an integral solution to the equation

(X + ξY )(X + ξ′Y ) = H. (8)

Note first that if x, y ∈ Z are integers satisfying (x + ξy)(x + ξ′y) = H, we may

replace H by H/(x, y)2, and obtain a new solution X = x/(x, y), Y = y/(x, y) to

(8), which are relatively prime. An integral solution to (8) with (x, y) = 1 is said

to be primitive.

The key result which is relevant to our original problem is the following obser-

vation that primitive solutions come from convergents of ξ when ξ generates the

ring of integers in a real quadratic field K:

Theorem 2.10. Let ξ be a real, quadratic irrational written in the form

ξ =
P +

√
D

Q
.

Suppose that ξ > 0 > ξ′ (equivalently Q > 0 and −
√
D < P <

√
D). If x, y are

relatively prime integers such that (x+ ξy)(x+ ξ′y) = H with |H| < ξ−ξ′
2 =

√
D
Q ,

then x/y is a convergent to −ξ′.
Moreover, we need to look at only the first lcm (2, `(ξ)) + 1 convergents.

Proof. Suppose first that H > 0. Thus x+ ξ′y > 0 and so x+ ξy > (ξ − ξ′)y. So,

we have

0 < x+ ξ′y <
H

(ξ − ξ′)y
<

1

2y

from which it follows that x/y is a convergent to −ξ′.
Now, if H < 0, we then have that x+ yξ′ < 0 so that we have

0 < y +
x

ξ′
=

H

ξ′(x+ yξ)
=

−H
−ξ′(x+ yξ)

<
ξ − ξ′

2(−ξ′)(x+ yξ)
<

1

2x

where the last inequality amounts to checking that

x(ξ − ξ′) < (−ξ′)(x+ yξ)



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

48 KANNAPPAN SAMPATH AND B. SURY

which holds since ξ > 0 and x + yξ′ < 0. This shows that y/x is a convergent

of −ξ′−1. But we note that if x has the S.C.F. [a0; a1, a2, . . . ], then, x−1 has the

S.C.F. [0; a0, a1, . . . ] if a0 > 0 and [a1; a2 . . . ] if a0 = 0. Therefore, every non-zero

convergent of x is also a convergent of x−1. Thus, we have that x/y is a convergent

of −ξ′. We defer the proof of the last assertion to Lemma 2.13. �

The above theorem immediately yields the following corollary.

Corollary 2.11. Let D be a square-free positive integer, let K denote the qua-

dratic field Q(
√
D), let dK be its discriminant:

dK =

4D, if D ≡ 2, 3 mod 4

D, if D ≡ 1 mod 4
(9)

Let ωD denote the quadratic irrationality

ωD =


√
D, D ≡ 2, 3 mod 4

−1+
√
D

2 , D ≡ 1 mod 4
(10)

so that OK = Z[ωD]. Suppose that |H| <
√
dK
2 . The primitive elements of norm

H in K come from convergents of ωD.

Here, it is important that we view OK as Z-module with respect to the basis

{1,−ω′D} as is customary.

Remark 2.12. Note that the bound on H is reminiscent of Gauss’s bound; that

is, in any ideal class in a quadratic field K, there is an integral ideal whose norm

is atmost
√
dK
2 .

To make this principle practical, one needs a bound on the number of convergents

one has to compute. This is given in the following lemma.

Lemma 2.13. The fundamental primitive solutions of (8), if they exist, are to be

found among the first `′ + 1 convergents where `′ = lcm(2, `(ξ)).

Proof. The key ingredient in the proof is Theorem 2.15 which discusses the induced

periodicity in the sequence ((−1)nQn)n. Let us first reduce this question to the

periodicity of (Qn). This is a consequence of the following simple lemma:

Lemma 2.14. Let (un)n>0 be an eventually periodic sequence with preperiod of

length t and period h; further suppose that un 6= 0 for all n > t. Then, the

sequence (vn := (−1)nun)n>0 is eventually periodic with preperiod of length t and

period of length h′ where h′ is a divisor of lcm(2, h).

Furthermore, if h is odd, then, h′ = 2h.

Now, we may summarize the above discussion in the theorem.

Theorem 2.15. Let ξ be a quadratic irrational. Let (an)n>0 be its continued

fraction expansion. Then

(i) The sequence (an) is eventually periodic.

(ii) The sequence (ξn) is eventually periodic.
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(iii) The sequence (Qn) is eventually periodic.

(iv) The preperiod and period of the above sequences are all equal.

Proof. (i) is precisely Theorem 2.6. (ii) (and hence (iii) and (iv)) follows by noting

that for any integer n > 0, we have ξn = (ak)k>n by Lemma 2.5. �
These observations now complete the proof of our theorem. �

3. Examples

We illustrate the results of the last section by showing that Z[
√

223] has no

elements of norm −3.

Example 3.1. It is straightforward to verify that
√

223 = [14; 1, 13, 1, 28]. Here

is the full computation: we begin by noting that 14 <
√

223 < 15 so
√

223 = 14 +
√

223− 14 = 14 +
1

√
223+14
27

= 14 +
1

1+

1
√
223+13

2

= 14 +
1

1+

1

13+

1
√
223+13
27

= 14 +
1

1+

1

13+

1

1+

1√
223 + 14

= 14 +
1

1+

1

13+

1

1+

1

28+

1
√
223+14
27

= [14; 1, 13, 1, 28].

The convergents are easily computed to be
p0
q0

=
14

1

p1
q1

=
15

1

p2
q2

=
209

14

p3
q3

=
224

15

and we have (cf. Lemma 2.5 (6))

142 − 223 = −27; 152 − 223 = 2;

2092 − 223 · 142 = −27; 2242 − 223 · 152 = 1.

This shows that there are no elements of norm −3 in Z[
√

223]. More precisely, we

see that the set of norms H in Z[
√

223] with |H| 6 14 is {1, 2, 4, 8}.
To illustrate the differences that occur in the case D ≡ 1 mod 4, let us study

the small norms in Q(
√

229).

Example 3.2. Let K = Q(
√

229). From Corollary 2.11 and Lemma 2.13, we must

work out the first few convergents of S.C.F. of ω := ω229 = −1+
√
229

2 to find the

list of all norms H with |H| < 8 in OK . Recall that {1, ξ} where ξ = −ω′ is a

Z-basis for OK .

We compute the S.C. F. of ω:

ω = 7+

√
229− 15

2
= 7+

1
√
229+15

2

= 7+
1

15 +
√
229−15

2

etc., = 7+
1

15+

1

15+

1

15+
· · ·
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By Lemma 2.13, we must work out the first 3 convergents. These are easily

computed to be
p0
q0

=
7

1
,
p1
q1

=
106

15
,
p2
q2

=
1597

226
.

From here, we have the following (cf. Lemma 2.5 (6)):

N(p0 + ξq0) = −1, N(p1 + ξq1) = 1, N(p2 + ξq2) = −1.

Thus, we see that the only norms H with |H| < 8 are {±1,±4}. In particular,

there are no elements of norm ±2,±3,±5,±6,±7.

While ±2 and ±7 are non-squares mod 229, one checks that ±3 and ±5 are

squares mod 229; in particular, there are no obvious local obstructions for the

norm form to represent these primes.
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the article.
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Acad. Royale Sc. et belles-lettres, Berlin, 24, 1770 (= Œuvres II, 581–652).

[5] Matthews, K., The Diophantine equation ax2 + bx + cy2 = N , D = b2 − 4ac > 0,
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Abstract. A Cantor-like set can be obtained by processing a specific induc-

tive construction on the interval [0, 1]. In that process, say ‘A Cantor-like

process’, we remove infinitely many number of open intervals from [0, 1] and

these removed intervals are called tremas. We answer the question: what

kind of sets will be obtained by carrying-out a Cantor-like process on the

closures of each of these tremas again and again?.

1. Introduction

This article was motivated by the problem [2]: ”Find a set A such that

m∗(A) > 0 and 0 < m∗(A ∩ I) < m(I) for all non-empty intervals I ⊆ [0, 1]”.

Here m∗ is the Lebesgue outer measure.

As we know the construction of a Cantor-like set is inductive. Let us construct

a Cantor-like set as follows. Let α ∈ (0, 1/3) and fix it. This fixed α will be used

throughout this paper. From [0, 1], remove the middle open interval of length

α. This leaves two residual intervals, say I1,1 and I1,2, each of length (1 − α)/2.

Suppose the nth step has been completed, leaving 2n number of closed intervals,

say In,1, In,2, . . . , In,2n , each of length (1 − 3α + 2nαn+1)/(2n(1 − 2α)). We

carry-out the (n+ 1)st step by removing the middle open interval of length αn+1

from In,k, for k = 1, . . . , 2n. Because (1− 3α+ 2nαn+1)/(2n(1− 2α)) > αn+1, we

can do such a construction. Let Kn =
⋃2n

k=1 In,k and let K =
⋂∞

n=1Kn. The set

K is a Cantor-like set [2].

It is easy to compute that

m(K) = (1− 3α)/(1− 2α). (1.1)

Let

K0
[a,b] = {a+ (b− a)x : x ∈ K}.

This is a Cantor-like set constructed in [a, b]. Notice that

m(K0
[a,b]) = `(1− 3α)/(1− 2α), (1.2)

* The word ‘Tremas’ in Greek means ‘holes’ in English.

2010 Mathematics Subject Classification: Primary 28A05, 28A12; Secondary 03E15.
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c© Indian Mathematical Society, 2017 .

51



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

52 DIYATH NELAKA PANNIPITIYA

where ` = b− a. Recalling that two sets are said to be almost everywhere disjoint

if the Lebesgue outer measure of the intersection of the two sets is zero, it may

be observed that [a, b] \K0
[a,b] consists of 2k number of almost everywhere disjoint

tremas each of length

` αk+1, for k ∈ N ∪ {0}. (1.3)

Therefore [a, b] \K0
[a,b] is a countable union of tremas, say

[a, b] \K0
[a,b] =

⋃
j∈N

I0,j , (1.4)

where I0,j is a trema in [a, b] \K0
[a,b].

We now construct a sequence of sets {Ki
[a,b]}i=0 recursively as follows.

Suppose Kn
[a,b] has been constructed. Denote by Tn the collection of tremas in

[a, b]\Kn
[a,b]. Then T0 is countable in view of (1.4). Let

Kn+1
[a,b] =

⋃
I∈Tn

K0
I
. (1.5)

Notice that for any I ∈ Tn, denoting its closure by I, we have

[a, b]\K0
I

= [([a, b]\I) ∪ I]\K0
I

= (([a, b]\I)\K0
I
) ∪ (I\K0

I
) = ([a, b]\I) ∪ (I\K0

I
)

This implies that [a, b]\K0
I

is a countable union of almost everywhere disjoint

intervals as (1.3) and (1.4) implies I\K0
I

is a countable union of almost everywhere

disjoint tremas in I\K0
I
. Since T0 is countable and

[a, b]\Kn+1
[a,b] = [a, b]\

⋃
I∈Tn

K0
I
⊆

⋃
I∈Tn

[a, b]\K0
I
,

we can inductively show that Tn is countable for n ∈ N. So let

Tn = {In,j : In,j is a trema in [a, b] \Kn
[a,b] and j ∈ N}, for n ∈ N ∪ {0}.

Then

Kn+1
[a,b] =

⋃
j∈N

K0
In,j

(1.6)

Observe that (for an intuition refer Figure 1)



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

CANTOR-LIKE SETS CONSTRUCTED IN TREMAS 53

Kn+1
[a,b] =

⋃
j∈N

K0
In,j

=
⋃
j∈N

K1
In−1,j

= · · · =
⋃
j∈N

Kn
I0,j

(1.7)

In order to find m(Kn
[a,b]) we need following lemma which can be easily proved.

Lemma 1.1. Let A = {Ai}i∈N be a collection of almost everywhere disjoint sets.

Then
m(

⋃∞
i=1Ai) =

∑∞
i=1m(Ai).

Observe that if we assume that

m(Kn
[a,b]) = `αn(1− 3α)/(1− 2α)n+1, (1.8)

then in view of (1.7), Lemma 1.1 and (1.3), we obtain

m(Kn+1
[a,b] ) = m(

⋃
j∈N

Kn
I0,j

) =
∑
j=0

m(Kn
Ī0,j

) =
∑
j=0

2j
(`αj+1)αn(1− 3α)

(1− 2α)n+1

=
(`αn+1)(1− 3α)

(1− 2α)n+1

∑
j=0

(2α)j .

Since 0 < α < 1/3, the series on the right side converges with sum 1/(1− 2α) and

hence
m(Kn+1

[a,b] ) = `αn+1(1− 3α)/(1− 2α)n+2. (1.9)

In view of (1.2), it therefore follows by the principle of induction that

m(Kn
[a,b]) = `αn(1− 3α)/(1− 2α)n+1, for all n = 0, 1, 2, · · · . (1.10)

Notice that for n,m ∈ N ∪ {0}, n < m,

Kn
[a,b] ∩K

m
[a,b] = {end points of the tremas in [a, b] \Kn

[a,b]} (1.11)

Since the set on the right hand side of (1.11) is countable, it follows that⋃
n∈N∪{0}K

n
[a,b] is a collection of almost everywhere disjoint sets.

Now let us take up the problem. For convenience, put Cn = Kn
[0,1] for

n ∈ N ∪ {0} and A =
⋃∞

n=0 C2n. Clearly A is non-empty and is a collection of

almost everywhere disjoint sets such that

m(A) = m(
∞⋃

n=0

C2n) =
∑
n=0

m(C2n) =
∑
n=0

1.α2n(1− 3α)

(1− 2α)2n+1
=

1− 2α

1− α
> 0

Let I ⊆ [0, 1] be a non-empty interval. Then observe that no-matter how small I

is we still can find an N ∈ N such that there is a trema in [0, 1]\C2N+1 , say J ,

which is a proper sub-interval of I. Then, by Lemma 1.1 and (1,10), we have

m(A ∩ J) = m(
⋃
n=0

C2n ∩ J) = m(∅ ∪
⋃

n=N+1

C2n ∩ J)

= m(
⋃
n=0

K2n
J̄ )

=
∑
n=0

m(K2n
J̄ )

=
∑
n=0

m(J)α2n(1− 3α)

(1− 2α)2n+1
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=
m(J)(1− 3α)

1− 2α

∑
n=0

(
α

1− 2α
)2n

=
m(J)(1− 2α)

1− α

Because 0 <
m(J)(1− 2α)

1− α
< m(J), it is easy to see that neither m(A ∩ I) = 0

nor m(A ∩ I) = m(I) can be happen.
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Abstract. We give a survey of Fibonacci numbers and its relation and ap-

plications in several fields. An account of extensions of Fibonacci numbers

together with their applications is also given.

1. Introduction

The original problem that Fibonacci investigated in the year 1202 is the following:

By a pair of rabbits we always mean a male and a female rabbit. Suppose a newly

born pair of rabbits are put in a field. Rabbits are able to mate at the age of one

month so that at the end of the second month a female can produce another pair

of rabbits. Assume that our rabbits never die and the female always produces new

pair, every month from the second month onwards.

Fibonacci Puzzle: How many pairs of rabbits will there be in one year?

Solution:

• At the end of the first month, they mate but there is still only one pair.

• At the end of the second month, the female produces a new pair. So now

there are two pairs of rabbits.

• At the end of the third month, the original female produces a second pair,

making three in total.

• At the end of the fourth month, the original female has produced yet

another pair, the female born after two months produces her first pair

also, making five pairs in total.

• The number of pairs of rabbits at the end of a month is equal to the

number of pairs of rabbits in the beginning of the next month.

• Thus the number of pairs of rabbits in the beginning of the first, second,

third month and so on are given by 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . .

respectively. This is the well-known Fibonacci sequence and there are 233

pairs of rabbits in one year. This answers Fibonacci Puzzle.

2010 Mathematics Subject Classification: 11B39

Keywords and Phrases: Fibonacci sequence, Pascal Triangle, Binary recursive sequences.
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The above Rabbits problem is not a realistic one. There are such similar

problems which are more realistic. For example, see E. Dudeney [5].

Fibonacci sequence is named after Fibonacci. He was also known as Leonardo

da Pisa. Fibonacci was born in Pisa, Italy around 1175 AD. In his youth, he

studied mathematics in North Africa when he was travelling with his father who

was a diplomat. Once he returned to Italy, he wrote several works including his

most famous work Liber Abaci (Book of Calculations) in 1202 and it contains

his above explained Rabbits Puzzle with its solution. His work highlighted the

benefits of Hindu-Arabic system over Roman numerals. Thus he was responsible

for introducing Hindu-Arabic system to Europe. He died between 1240 and 1250.

In the 1800’s, the city of Pisa erected his statue in his memory.

In modern usage, we begin Fibonacci sequence with 0. Thus Fibonacci se-

quence denoted by Fn with n ≥ 0, is as follows:

F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8,

F7 = 13, F8 = 21, F9 = 34, F10 = 55, F11 = 89, F12 = 144, F13 = 233, . . .

The first two members F0 = 0, F1 = 1 are called the initial terms of the Fibonacci

sequence. Each subsequent member in the sequence is the sum of previous two.

Thus Fibonacci sequence Fn with n ≥ 0 is given by

F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.

Fibonacci sequence appears at several places in mathematics, so much so that

there is an entire journal dedicated to the their study, Fibonacci Quarterly. For

positive integers a and b, the greatest common divisor of a and b is the greatest

positive integer dividing both a and b. The Fibonacci numbers are used in the

computational run-time analysis of Euclid’s algorithm to determine the greatest

common divisor of two integers. For positive integers a and b with a > b, if the

number of steps required in Euclid’s algorithm is k, then we know that a ≥ Fk+2

and this implies an explicit good upper bound for k in terms of a. Fibonacci

numbers are used by Yuri Matiyasevich in 1970 in his original proof of Hilbert’s

Tenth problem. Hilbert’s Tenth problem is on the famous list of Hilbert’s problems

of 1900. Its statement is as follows: For any polynomial equation with arbitrary

number of variables and with integer coefficients, devise a process according to

which it can be determined in a finite number of operations whether the equation

has a solution in integers. The answer to Hilbert’s Tenth problem is negative. In

fact, it is an undecidable problem. Mathematical Probability theory has its origin

in Pascal Triangle and it is related to Fibonacci numbers. More precisely, the

sum of the terms of a diagonal of Pascal Triangle is a Fibonacci number. Now we

introduce Pascal Triangle. Pascal Triangle is the infinite array of numbers where

the n-th row with n ≥ 0 has n+ 1 entries, namely, the coefficients in the binomial

expansion of
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(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k,

where the binomial coefficient
(
n
k

)
is given by(

n

k

)
=

n!

k!(n− k)!
for 0 ≤ k ≤ n.

We observe that
(
n
0

)
=
(
n
n

)
= 1. Thus the entries in the fifth row of Pascal Triangle

are

1 5 10 10 5 1

and in the 0-th row is 1. Each row begins with one and ends with one. Further,

the entries in the (n+ 1)-th row are determined with the n-th row by the relation

due to Pascal (
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
(1)

In fact, Pascal was not the first to study this triangle. It dates backs to Khayyam

Triangle from 11th century in Iran, Young Hai Triangle from 13th century in China

and Tartaglia Triangle from 16th century in Italy. But Pascal made important

contributions like relation (1) in the study of this triangle. Further, Pascal made

an important breakthrough by using it to solve problems in Probability theory.

In fact, he, together with Fermat and Christian Huygens, laid the mathematical

foundation of Probability theory.

Besides mathematics, Fibonacci numbers find applications in several fields.

Many plants show Fibonacci numbers, and sometimes consecutive Fibonacci num-

bers in the arrangement of leaves around the stem or branching in trees. Butter-

cups have F5 = 5 petals and daisies can be found with F9 = 34, F10 = 55 or even

F11 = 89 petals. This is due to golden ratio

(1 +
√

5)/2 ≈ 1.61803

which maximises the space for each leaf or average amount of light falling on each

leaf. Golden ratio is used in art and architecture. Recall that in geometry, the

Golden ratio is defined by sectioning a straight line segment in such a way that the

ratio of the total length to the longer segment equals the ratio of the longer to the

shorter segment. A Golden rectangle is a rectangle of sides whose quotient is equal

to Fn+1

Fn
for some n > 0 and it is considered to be one of the most visually satisfying

geometric forms. Leonardo da Vinci called it the “divine proportion” and it has

featured in many of his paintings including Mona Lisa. Applications of Fibonacci

numbers also include computer algorithms such as Fibonacci search techniques

depending on Divide and Conquer algorithm breaking down a problem into two or

more parts of the same type or related type and so on until these become simple

enough to be solved directly. Further, Fibonacci numbers are used in running time

analysis of Fibonacci heap data structure. Fibonacci Cube is an undirected graph
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with a Fibonacci number of nodes and it has been used as a network topology for

parallel computing. A theorem of Zeckendorf states that every positive integer can

be written uniquely as the sum of one or more Fibonacci numbers such that no

two in the sum are consecutive Fibonacci numbers. This theorem has been used

in Fibonacci coding which encodes positive integers into binary code words such

that each code ends with “11” and contains no other instance of “11” before the

end.

In fact, Fibonacci only rediscovered Fibonacci sequence. It appears in Ancient

Indian Mathematics in connection with Sanskrit prosody. This is a study central

to the composition of Vedas. Development of Fibonacci sequence is attributed

to Pingala (200 BC), Virhanka (700 AD), Gopala (1135 AD) and Hemachandra

(1150 AD).

Now we give some properties of Fibonacci sequence. Each element of this

sequence other than the first one is positive and the first one is zero. Further,

every element is the sum of the previous two. Therefore, the elements keep on

becoming larger. Another way of putting up this fact is that Fn tends to infinity

as n tends to infinity and we write it as

Fn →∞ as n→∞, or, lim
n→∞

Fn =∞.

The above statement continues to be valid for the greatest prime factor of elements

of this sequence and the proof is non-trivial, not obvious like that of the previous

statement. We have used above the notion of the greatest prime factors of an

integer. Therefore it is relevant to recall the Fundamental theorem of Arithmetic.

An integer greater than 1 is prime if it has no divisor other than one and itself.

Thus 5 is prime but 6 = 2 · 3 is not prime. Further we observe that

10 = 2 · 5, 147 = 3 · 72, 240 = 24 · 3 · 5.

In fact, apart from sign, every integer other than 1 and −1 can be written as a

product of prime powers. Further the factorization is unique apart from the order

of factors. For an integer a with |a| > 1, the greatest prime factor of a is the

largest prime occuring in the (unique) factorization of a. Finally we observe in

this paragraph that Golden ratio is equal to limn→∞(Fn+1/Fn).

In the sequence Fn with n ≥ 0, let us look at squares, cubes and higher powers.

We observe that

F0, F1, F2, F12

are squares and

F0, F1, F2, F6

are cubes. How about finding a power in the Fibonacci sequence other than

F0, F1, F2, F6, F12. The answer to this question is that there is none. This is a

deep theorem of Bugeaud, Mignotte, Siksek [4] of 2006. Further, Florian Luca and
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Shorey [8] proved that a product of two or more consecutive Fibonacci numbers

Fn with n > 0 is never a power unless F1 · F2 = 1. This is an analogue of an

elegant and celebrated theorem of Erdös and Selfridge [6] that a product of two

or more consecutive positive integers is not a power.

Let us consider more general sequence than Fibonacci sequence, namely, u0 =

0, u1 = 1 and un = 2un−1 − 3un−2 for n ≥ 2. This sequence is

u0 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 . . .

0 1 2 1 -4 -11 -10 13 56 73 -22 . . .

Here, unlike Fibonacci sequence, there are both positive and negative terms.

Therefore, this sequence can not tend to infinity with n. Here we ask: Does

|un| → ∞ as n→∞? (2)

It is not obvious as in Fibonacci sequence since

|u5| = 11, |u6| = 10, |u9| = 73, |u10| = 22

and so on. For achieving (2), we need to be careful. We consider the sequence

u0 = 0, u1 = 1 and un = un−1 − un−2 for n ≥ 2. Then the sequence is

0, 1, 1, 0,−1,−1, 0, 1, 1, . . . and (2) is certainly not valid. Therefore, we need to

exclude some possibilities. We have been considering sequences of the type u0 =

0, u1 = 1 and un = run−1 + sun−2 for n ≥ 2 where r and s are integers. Consider

the polynomial
x2 − rx− s

called the polynomial associated to the sequence. We assume that s 6= 0 and

r2 + 4s 6= 0 so that the roots α and β of the above polynomial are non-zero and

distinct. Then

un = (αn − βn)/(α− β) for n ≥ 0. (3)

The proof of (3) is by induction on n and using α+β = r, αβ = −s. We check (3)

for n = 0 and n = 1. Let n ≥ 2 and we assume (3) for all 0 ≤ m < n. Then

un = run−1 + sun−2

= (α+ β)

(
αn−1 − βn−1

α− β

)
− αβ

(
αn−2 − βn−2

α− β

)
= (αn − βn)/(α− β)

Thus (3) is valid for n. Hence (3) holds for all n ≥ 0 by induction on n. We

must exclude α = −β since otherwise un = 0 for even n. Further, we observe that

(αβ )1 = 1 if α = β and (αβ )2 = 1 if α = −β. We assume that for every positive

integer r
(α/β)r 6= 1

so that the above possibilities are excluded. If this happens, we call the sequence

un with n ≥ 0 non-degenerate which we assume from now onwards. If the sequence

is non-degenerate, it is possible to prove (2). The proof is not immediate like the
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Fibonacci sequence and further the greatest prime factor of un tends to infinity

with n. The sequence that we have considered are called Lucas sequences and

Fibonacci sequence is a particular example of a Lucas sequence. Lucas sequences

are used in primality tests. They are also used in primality proofs. LUC is a

public-key cryptosystem based on Lucas sequences. The encryption of the message

in LUC is computed as term of certain Lucas sequence. In Lucas sequence, we take

u0 = 0, u1 = 1. We can consider more general sequences by taking the initial terms

arbitrary integers u0, u1 and each subsequent term is a linear combination of the

previous two, as in Lucas sequence. We can define as above when these sequences

are non-degenerate. These sequences are called binary recursive sequences (of

order two). Petho [9] and Shorey and Stewart [10], independently, proved that

there are only finitely many powers in a non-degenerate binary recursive sequence.

We have linear recursive sequences with constant coefficients of any order

greater than or equal to two. Fibonacci numbers and more generally, recur-

sive sequences can be extended to all integers. For example, the relation Fn =

Fn+2 − Fn+1 defines Fibonacci numbers for all integers n. Thus F−1 = 1, F−2 =

−1, F−3 = 2, F−4 = −3 and so on. Further, we check by induction on n that

F−n = (−1)n+1Fn for all n. Recursive sequences are used in Population Dynam-

ics in Biology, optimization problems in Economics, in algorithms in Computer

Science, Cryptography and Digital signal processing.

Now, we show that the solutions of quadratic equations in integers are given

by binary recursive sequences. We consider the equation

x2 − 2y2 = 1 (4)

in integers x > 0 and y > 0. As was known to Ancient Indian mathematicians

that the solutions of this equation are given by

x+
√

2y = (3 + 2
√

2)n,

where n is a positive integer. The above relation implies

x−
√

2y = (3− 2
√

2)n.

Subtracting the second relation from the first one, we get

2
√

2y = (3 + 2
√

2)n − (3− 2
√

2)n

That is,

y =
4
√

2

2
√

2

(
(3 + 2

√
2)n − (3− 2

√
2)n

(3 + 2
√

2)− (3− 2
√

2)

)
.

Writing α = 3 + 2
√

2, β = 3− 2
√

2, we have

y = yn = 2(αn − βn)/(α− β).

As explained earlier for Lucas sequences, the sequence yn with n ≥ 0 satisfies

y0 = 0, y1 = 2 and yn = 6yn−1 + yn−2 for n ≥ 2 with associated polynomial

Y 2 − 6Y + 1.
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Thus if (x, y) is an integer solution of (4), then y = yn is given by the above binary

recursive sequence. Similarly, x is also given by a binary recursive sequence.

Now we apply the above observation to consider the following old and inter-

esting problem solved by Baker [1] in 1968. We consider the integers

1 3 8 120

This quadruple satisfies the property that if 1 is added to the product of any two

above distinct integers, then it is a square. For example

1 + 3 · 8 = 52, 1 + 1 · 120 = 112, 1 + 3 · 120 = 192, 1 + 8 · 120 = 312,

1 + 1 · 3 = 22, 1 + 1 · 8 = 32, 1 + 1 · 120 = 112.
Now we ask the question whether we can find a positive integer x other than

120 such that 1, 3, 8, x satisfies the above property. Translating the problem into

Diophantine equations, we have

3x2 + 1 = y2, 8x2 + 1 = z2.

As explained in the preceding paragraph, we see that x is given by two binary

recursive sequences. Baker showed that the intersection of these sequences consists

of precisely one element, namely 120. This answers the question in the negative.

The sum of the first n > 1 integers is equal to n(n+1)
2 . By Størmer’s method

[12] on Pellian equations, we know that its greatest prime factor tends to infinity

with n. Further, we show that it is not a cube or a higher power. Let

n(n+ 1)/2 = yq, q > 2.

We assume that n is odd and the proof is similar when n is even. Since n and

(n+ 1)/2 have no common factor, we get

n = yq1, (n+ 1)/2 = yq2
which implies that

2yq2 − y
q
1 = 1.

This is not possible by a theorem of Bennett [3]. Hence the sum of the first

n > 1 positive integers is not a cube or higher power and further its greatest prime

factor tends to infinity with n. Now we consider an analogue of the above result

for Fibonacci numbers. We know that

F1 + F2 + · · ·+ Fn = Fn+2 − 1.

The greatest prime factor of the right hand side tends to infinity with n by a

result of Baker [2] on linear forms in logarithms. Further it follows from Shorey

and Stewart [11] (in fact the result of Kiss [7] suffices) that it is not a power

whenever n is sufficiently large. Since

F1 + F3 + · · ·+ F2n−1 = F2n, F2 + F4 + · · ·+ F2n = F2n+1 − 1,

F1 − F2 + F3 − F4 + · · ·+ (−1)n+1Fn = (−1)n+1Fn−1 + 1,

F 2
1 + F 2

2 + · · ·+ F 2
n = FnFn+1,

we conclude as above that each of the above sum is not a power and its greatest

prime factor tends to infinity with n whenever n is sufficiently large. In fact, the
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first and the last sum are never a power by the theorem of Bugeaud, Mignotte and

Siksek [4] already stated since Fn and Fn+1 have no factor in common.

Acknowledgements: We are thankful to Professor C. S. Aravinda for encour-

aging us to write this article. One of the authors (TNS) was getting INSA Senior

Scientist award when this work was done.
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Abstract. Motivated essentially by the success of the applications of the

Mittag-Leffler functions in Science and Engineering, we propose here a unifi-

cation of certain generalizations of Mittag-Leffler function including Saxena-

Nishimoto’s function, Bessel-Maitland function, Dotsenko function, Elliptic

Function, etc. We obtain the order and type, asymptotic estimate, a differen-

tial equation, and Eigen function Property for the proposed unification. As

a specialization, a generalized Konhauser polynomial is considered for which

the series inequality relations and inverse series relations are obtained.

1. Introduction

In 1903, the Swedish mathematician Gosta Mittag-Leffler introduced the func-

tion

Eα(z) =

∞∑
n=0

zn

Γ(αn+ 1)
, (1)

where z, α ∈ C, <(α) > 0, in connection with his method of summation of some

divergent series ([12, 13]).

This function was generalized in the form

Eα, β(z) =

∞∑
n=0

zn

Γ(αn+ β)
(2)

by Wiman [24] in 1905 and studied by Humbert and Agarwal [7].

A further extension of this was introduced by Prabhakar [15] in the form :

Eγα, β(z) =
∞∑
n=0

(γ)n
Γ(αn+ β)

zn

n!
, (3)

whereas Shukla and Prajapati [22] studied the generalization :

Eγ qα, β(z) =
∞∑
n=0

(γ)qn
Γ(αn+ β)

zn

n!
. (4)

These two versions are subject to the conditions that <(α, β, γ) > 0, (γ)n is

Pochhammer symbol with (γ)0 = 1, (γ)n = (γ)(γ + 1)(γ + 2)...(γ + n− 1) =

Γ(γ + n)/Γ(γ) and, for (4), the generalized Pochhammer symbol (γ)qn = Γ(γ +

q n)/Γ(γ), where q ∈ (0, 1)∪N. Since the time of Wiman (1905), many researchers

2010 Mathematics Subject Classification : 33B15; 33E12; 33E99

Key words and phrases : Generalized Mittag-Leffler function, differential equation, eigen

function, generalized Konhauser polynomial, series inequality relations.
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64 B. V. NATHWANI AND B. I. DAVE

have proposed and studied various generalizations of the Mittag-Leffler function

[12] (see [4], [5], [8], [14], [15], [16], [17], [19], [20], [22], [24]).

We introduce here the function which is denoted and defined by

Eγ,δα,β,λ,µ(z; s, r) =
∞∑
n=0

[(γ)δn]s

Γ(αn+ β) [(λ)µn]r
zn

n!
, (5)

wherein the parameters α, β, γ, λ ∈ C with <(α, β, γ, λ) > 0, δ, µ > 0, r ∈
N ∪ {−1, 0} and s ∈ N ∪ {0}. We shall refer to this function as gml.

The proposed gml can be viewed as a special case of the Wright function [23,

Eq.(21), p.50]

pΨq

 (α1, A1), . . . , (αp, Ap);

z

(β1, B1), . . . , (βq, Bq);

 =
∞∑
n=0

p∏
i=1

Γ(αi +Ain)

q∏
j=1

Γ(βj +Bjn)

zn

n!
, (6)

when the parameters αi = γ,Ai = δ, β1 = β,B1 = α, βj = λ,Bj = µ for all

i = 1, 2, . . . , s and j = 2, 3, . . . , r.

The function in (5), besides containing the above cited generalizations, also in-

cludes the following functions.

(i) Bessel-Maitland function [6, Eq.(1.7.8), p.19]:

Jµν (z) =

∞∑
n=0

(−1)n

Γ(ν + nµ+ 1)

zn

n!
,

(ii) Dotsenko function [6, Eq.(1.8.9), p.24]:

2R1(a, b; c, ω; ν; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ nων )

Γ(c+ nων )

zn

n!
,

(iii) a particular form (m = 2) of extension of Mittag-Leffler function due to Saxena

and Nishimoto [21] given by

Eγ,K [(αj , βj)1,2; z] =
∞∑
n=0

(γ)Kn
Γ(α1n+ β1)Γ(α2n+ β2)

zn

n!
,

where z, γ, αj , βj ∈ C,<(α1 + α2) > <(K)− 1,<(K) > 0, and

(iv) the Elliptic function [11, Eq.(1), p.211] :

K(k) =
π

2
2F1

(
1
2 ,

1
2 ; k2

1;

)
.

The reducibility of the gml to the above mentioned functions is tabulated below.

Table - 1

Function r s α β γ δ λ µ

Mittag-Leffler 0 1 α 1 1 1 - -

Wiman 0 1 α β 1 1 - -
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Function r s α β γ δ λ µ

Prabhakar 0 1 α β γ 1 - -

Shukla and 0 1 α β γ q - -

Prajapati

Bessel-Maitland 0 0 µ ν + 1 - - - -

Dotsenko -1 1 ω/ν c a 1 b ω/ν

Saxena- 1 1 α1 β1 γ K β2 α2

Nishimoto

Elliptic -1 1 1 1 1
2 1 1

2 1

Table - 1 (complete)

It is noteworthy that the role of parameter ′s′ is special; as is seen in the last

section.

2. Main Results

In this section, we prove the following results.

2.1. Convergence.

Theorem 2.1. Let <(α, β, γ, λ) > 0,<(α + rµ − sδ + 1) > 0, δ, µ > 0, r ∈ N ∪
{−1, 0} and s ∈ N ∪ {0}. Then Eγ,δα,β,λ,µ(z; s, r) is an entire function of order

% = 1/(<(α+ rµ− sδ + 1)) and type σ = (1/%)(δsδ/ {<(α)}<(α)
µrµ)%.

Proof. Let us take

un =
[(γ)δn]s

Γ(αn+ β) [(λ)µn]r n!
. =

[Γ(γ + δn)]s [Γ(λ)]r

[Γ(γ)]s Γ(αn+ β) [Γ(λ+ µn)]r Γ(n+ 1)

in (5) so that

Eγ,δα,β,λ,µ(z; s, r) =
∞∑
n=0

un z
n.

Then in view of the Stirling’s asymptotic formula of the Γ-function [3] given by

Γ(z) ∼
√

2π e−z zz−
1
2 , (7)

for large |z|, we get

un ∼
(√

2πe−(γ+δn)(γ + δn)γ+δn−1/2
)s(√

2πe−γγγ−1/2
)s (√

2πe−(αn+β)(αn+ β)αn+β−1/2
)

×
(√

2πe−λλλ−1/2
)r(√

2πe−(λ+µn)(λ+ µn)λ+µn−1/2
)r (√

2πe−(n+1)(n+ 1)n+1/2
)
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=
e−δns (δn)s(γ+δn−1/2)

(
1 + γ

δn

)s(γ+δn−1/2)

γs(γ−1/2)
√

2πe−(αn+β)(αn)αn+β−1/2
(

1 + β
αn

)αn+β−1/2

×
λr(λ−1/2)

(
1 + λ

µn

)−r(λ+µn−1/2)

e−µnr(µn)r(λ+µn−1/2)
√

2πe−nnn+1/2
(
1 + 1

n

)n+1/2
.

Hence if R is radius of convergence of the series of Eγ,δα,β,λ,µ(z; s, r), then with the

use of Cauchy-Hadamard formula:

1

R
= lim
n→∞

sup n
√
|un| = lim

n→∞
sup

∣∣∣∣eα+rµ−sδ+1δsδ

ααµrµ

∣∣∣∣ ∣∣nsδ−α−rµ−1
∣∣

= lim
n→∞

sup
e<(α+rµ−sδ+1)δsδ

{<(α)}<(α)
µrµ

n<(sδ−α−rµ−1) = 0,

when <(α+ rµ− sδ+ 1) > 0. Therefore, the function (5) turns out to be an entire

function. In order to determine its order, we use the result [1, Eq.(1.1)] which

states that if f(z) =
∞∑
n=0

anz
n is an entire function then the order %(f) of f is

given by [1, Eq.(1.2)]

%(f) = lim
r→∞

sup
logM(r; f)

logr
= lim
n→∞

sup
n log n

log(1/|un|)
.

By choosing f(z) = Eγ,δα,β,λ,µ(z; s, r), this particularizes to

% = %(Eγ,δα,β,λ,µ(z; s, r)) = lim
n→∞

sup
n log n

log(1/|un|)
.

Here,

log

(
1

|un|

)
= log

∣∣∣∣ [Γ(γ)]s Γ(αn+ β) [Γ(λ+ µn)]r Γ(n+ 1)

[Γ(γ + δn)]s [Γ(λ)]r

∣∣∣∣
∼ log

∣∣∣∣∣
(√

2πe−(αn+β)(αn+ β)αn+β−1/2
) (√

2πe−γγγ−1/2
)s(√

2πe−(γ+δn)(γ + δn)γ+δn−1/2
)s

×
(√

2πe−(λ+µn)(λ+ µn)λ+µn−1/2
)r (√

2πe−(n+1)(n+ 1)n+1/2
)(√

2πe−λλλ−1/2
)r

∣∣∣∣∣
= log

∣∣∣2π γs(γ−1/2) esδn−αn−β−rµn−n (αn+ β)(αn+β−1/2)

×(λ+ µn)r(λ+µn−1/2) (n+ 1)n+1/2
∣∣∣

− log
∣∣∣(γ + δn)s(γ+δn−1/2)λr(λ−1/2)

∣∣∣
= log

(
2π |γ|s<(γ−1/2) e<(sδn−αn−β−rµn−n) |αn+ β|<(αn+β−1/2)

×|λ+ µn|r<(λ+µn−1/2) (n+ 1)n+1/2
)

− log
(
|γ + δn|s<(γ+δn−1/2)|λ|r<(λ−1/2)

)



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

GENERALIZED MITTAG-LEFFLER FUNCTION AND ITS PROPERTIES 67

= log(2π) + s<(γ − 1/2) log |γ|+ <(sδn− αn− β − rµn− n)

+<(αn+ β − 1/2) log |αn+ β|+ r<(λ+ µn− 1/2) log |λ+ µn|

+(n+ 1/2) log(n+ 1)− s<(γ + δn− 1/2) log |γ + δ|

−r<(λ− 1/2) log |λ|. (8)

Hence, 1/% = lim
n→∞

sup {log(1/|un|)/(n log n)} = <(α+ rµ− sδ + 1).

Thus the order of gml is

% = 1/<(α+ rµ− sδ + 1). (9)

The type σ of the gml [10] is given by

σ(Eγ,δα,β,λ,µ(z; s, r)) = (1/e %) lim
n→∞

sup
{
n |un|%/n

}
, (10)

where

|un| =

∣∣∣∣ [Γ(γ + δn)]s [Γ(λ)]r

[Γ(γ)]s Γ(αn+ β) [Γ(λ+ µn)]r Γ(n+ 1)

∣∣∣∣
∼

∣∣∣∣∣
(√

2πe−(γ+δn)(γ + δn)γ+δn−1/2
)s (√

2πe−γγγ−1/2
)−s(√

2πe−(αn+β)(αn+ β)αn+β−1/2
)

×
(√

2πe−λλλ−1/2
)r(√

2πe−(λ+µn)(λ+ µn)λ+µn−1/2
)r (√

2πe−(n+1)(n+ 1)n+1−1/2
) ∣∣∣∣∣

=

∣∣∣∣∣ 1

2π

eαn+β+rµn−sδn+n−1 (δn)s(γ+δn−1/2)

(αn)αn+β−1/2
(

1 + β
αn

)αn+β−1/2

γs(γ−1/2)

×
λr(λ−1/2)

(
1 + γ

δn

)s(γ+δn−1/2)

(µn)r(λ+µn−1/2)
(

1 + λ
µn

)r(λ+µn−1/2)

(n+ 1)n+1/2

∣∣∣∣∣.
On substituting this on the right hand side of (10) and then using (9), we get

lim
n→∞

sup
{
n |un|%/n

}
=

(
δsδ/ {<(α)}<(α)

µrµ
)%
e<(α+rµ−sδ+1)%

× lim
n→∞

n<(sδ−α−rµ−1)%+1.

This gives

σ(Eγ,δα,β,λ,µ(z; s, r)) = (1/%)
(

(δsδ/({<(α)}<(α)
µrµ
)%
. (11)

For every positive ε, the asymptotic estimate [10]∣∣∣Eγ,δα,β,λ,µ(z; s, r)
∣∣∣ < exp ((σ + ε) |z|%) , |z| ≥ r0 > 0 (12)

holds with %, σ as in (9), (11) for |z| ≥ r0(ε), and for sufficiently large r0(ε). �

2.2. Differential Equation. Let us take

δsδ

αα µrµ
= p,

d

dz
= D, zD = θ,

a−1∏
j=0

[(
θ +

b+ j

a

)]m
= ∆

(a,b;m)
j ,
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a−1∏
j=0

[(
θ +

b+ j

a
− 1

)]m
= Υ

(a,b;m)
j ,

a−1∏
j=0

[(
−θ +

b+ j

a
− 1

)]m
= Θ

(a,b;m)
j , (13)

and
p−1 D Θ(δ,γ;−s)

m Υ
(µ,λ;r)
k Υ

(α,β;1)
j = ΩΘ;Υ. (14)

Here the operators Θ
(δ,γ;−s)
m , Υ

(µ,λ;r)
k , Υ

(α,β;1)
j in (14) are not commutative with

the operator D.

With these notations, we now derive the differential equation satisfied by (5).

Theorem 2.2. Let α, µ, δ ∈ N then y = Eγ,δα,β,λ,µ(z; s, r) satisfies the equation[
Υ

(µ,λ;r)
k Υ

(α,β;1)
j θ − z δsδ

αα µrµ
∆(δ,γ;s)
m

]
y = 0. (15)

Proof. We have

y =
∞∑
n=0

[(γ)δn]s zn

Γ(αn+ β) [(λ)µn]r n!
=

1

Γ(β)

∞∑
n=0

[(γ)δn]s zn

(β)αn [(λ)µn]r n!

=
1

Γ(β)

∞∑
n=0

δsδn[(γδ )n]s [(γ+1
δ )n]s...[(γ+δ−1

δ )n]szn

ααn(βα )n (β+1
α )n...(

β+α−1
α )n

× 1

µrµn[(λµ )n]r [(λ+1
µ )n]r...[(λ+µ−1

µ )n]r n!

=
1

Γ(β)

∞∑
n=0

δsδn

ααn µrµn

{
δ−1∏
m=0

[(γ+m
δ )n]s

}
{
α−1∏
j=0

(β+j
α )n

} {
µ−1∏
k=0

[(λ+k
µ )n]r

}
n!

zn. (16)

Now take

1

Γ(β)

δ−1∏
m=0

[(
γ +m

δ

)
n

]s
= An,

α−1∏
j=0

(
β + j

α

)
n

= Bn,

µ−1∏
k=0

[(
λ+ k

µ

)
n

]r
= Cn,

then the gml (5) takes the form y =
∞∑
n=0

An pn

Bn Cn n!z
n. Now,

θ y =
∞∑
n=0

An p
n

Bn Cn n!
θ zn =

∞∑
n=1

An p
n

Bn Cn (n− 1)!
zn.

Further,

Υ
(α,β;1)
j θ y =

∞∑
n=1

An p
n

Bn Cn (n− 1)!

α−1∏
j=0

(
θ +

β + j

α
− 1

)
zn

=
∞∑
n=1

An p
n

Bn Cn (n− 1)!

α−1∏
j=0

(
n+

β + j

α
− 1

)
zn

=
∞∑
n=1

An p
n

Bn−1 Cn (n− 1)!
zn.

Finally,
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Υ
(µ,λ;r)
k Υ

(α,β;1)
j θ y =

∞∑
n=1

An p
n

Bn−1 Cn (n− 1)!

µ−1∏
k=0

[(
θ +

λ+ k

µ
− 1

)]r
zn

=
∞∑
n=1

An p
n

Bn−1 Cn (n− 1)!

µ−1∏
k=0

[(
n+

λ+ k

µ
− 1

)]r
zn

=
∞∑
n=1

An p
n

Bn−1 Cn−1 (n− 1)!
zn.

Thus,

Υ
(µ,λ;r)
k Υ

(α,β;1)
j θ y =

∞∑
n=0

An+1 p
n+1

Bn Cn n!
zn+1. (17)

On the other hand,

∆(δ,γ;s)
m y =

∞∑
n=0

An p
n

Bn Cn n!

δ−1∏
m=0

[(
θ +

γ +m

δ

)]s
zn

=
∞∑
n=0

An p
n

Bn Cn n!

δ−1∏
m=0

[(
n+

γ +m

δ

)]s ]
zn =

∞∑
n=0

An+1 p
n

Bn Cn n!
zn,

that is,

p z ∆(δ,γ;s)
m y =

∞∑
n=0

An+1 p
n+1

Bn Cn n!
zn+1. (18)

On comparing (17) and (18), we get (15). �

2.3. Eigen function property.

Theorem 2.3. Let α, µ, δ ∈ N then Eγ,δα,β,λ,µ(z; s, r) is an eigen function with

respect to the operator ΩΘ;Υ. That is,

ΩΘ;Υ

(
Eγ,δα,β,λ,µ(ζz; s, r)

)
= ζ Eγ,δα,β,λ,µ(ζz; s, r). (19)

Proof. We first note that

w = Eγ,δα,β,λ,µ(ζz; s, r) =

∞∑
n=0

An (ζp)n

Bn Cn n!
zn.

Now in view of (13),

Υ
(α,β;1)
j w =

∞∑
n=0

An (ζp)n

Bn Cn n!

α−1∏
j=0

(
θ +

β + j

α
− 1

)
zn

=
∞∑
n=0

An (ζp)n

Bn Cn n!

α−1∏
j=0

(
n+

β + j

α
− 1

)
zn =

∞∑
n=0

An (ζp)n

Bn−1 Cn n!
zn.

Next

Υ
(µ,λ;r)
k Υ

(α,β;1)
j w =

∞∑
n=0

An (ζp)n

Bn−1 Cn n!

µ−1∏
k=0

[(
θ +

λ+ k

µ
− 1

)]r
zn

=
∞∑
n=0

An (ζp)n

Bn−1 Cn n!

µ−1∏
k=0

[(
n+

λ+ k

µ
− 1

)]r
zn
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=
∞∑
n=0

An (ζp)n

Bn−1 Cn−1 n!
zn.

Further, from (13),

Θ(δ,γ;−s)
m Υ

(µ,λ;r)
k Υ

(α,β;1)
j w =

∞∑
n=0

An (ζp)n

Bn−1 Cn−1 n!
Θ(δ,γ;−s)
m zn

=
∞∑
n=0

An (ζp)n

Bn−1 Cn−1 n!

δ−1∏
j=0

[(
−θ +

γ + j

δ
− 1

)]−s
zn

=
∞∑
n=0

An (ζp)n

Bn−1 Cn−1 n!

δ−1∏
j=0

[(
n+

γ + j

δ
− 1

)]−s
zn

=
∞∑
n=0

An−1 (ζp)n

Bn−1 Cn−1 n!
zn.

Finally, using (14) we get

Ω
(δ,γ,s;α,β,µ,λ,r)
Θ;Υ w = p−1 D Θ(δ,γ;−s)

m Υ
(µ,λ;r)
k Υ

(α,β;1)
j w

=
∞∑
n=0

An−1 ζ
n pn−1

Bn−1 Cn−1 n!
D zn

=

∞∑
n=1

An−1 ζ
n pn−1

Bn−1 Cn−1 (n− 1)!
zn−1

=
∞∑
n=0

An ζ
n+1 pn

Bn Cn n!
zn

= ζ

∞∑
n=0

An ζ
n pn

Bn Cn n!
zn = ζ Eγ,δα,β,λ,µ(ζz; s, r).

�
The properties corresponding to the special cases listed in Table-1 may be deduced

by suitably specializing the parameters involved in the above derived properties

of gml.
2.4. Generalized Konhauser polynomial. The well known Konhauser poly-

nomial [9]

Zµn(x; k) =
Γ(kn+ µ+ 1)

Γ(n+ 1)

n∑
j=0

(−1)j
(
n

j

)
xkj

Γ(kj + µ+ 1)
, (20)

with <(µ) > −1, admits a generalization by means of the gml as follows.

Taking α, β, λ > 0, δ(= m), µ, r, s ∈ N, γ = a negative integer: −n, n∗ = [n/m]

the greatest integer part, replacing β by β + 1, and z by a real variable xk and

denoting the polynomial thus obtained by B
(α,β,λ,µ)
n∗ (xk; s, r), we get

E−n,mα,β+1,λ,µ(xk; s, r) =
n∗∑
j=0

[(−n)mj ]
s
xkn

Γ(αj + β + 1) [(λ)µn]
r
j!

=
(n!)s

Γ(αn+ β + 1)
B

(α,β,λ,µ)
n∗ (xk; s, r), (21)
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where

B
(α,β,λ,µ)
n∗ (xk; s, r) =

Γ(αn+ β + 1)

(n!)s

[n/m]∑
j=0

[(−n)mj ]
s
xkj

Γ(αj + β + 1) [(λ)µj ]
r
j!
. (22)

The presence of parameter ′s′ yields the unusual inverse series relations involving

the inequalities. In fact, for s = 1 the usual inverse series relations occur whereas

for other values of s the inverse inequality relations occur. This is shown in the

following theorems.

Theorem 2.4. Let f(x, n; s) and g(x, n; s) be real valued functions, α, β, λ > 0,

and µ, k ∈ N, r ∈ N ∪ {0}, then

f(x, n; s) < B
(α,β,λ,µ)
n∗ (xk; s, r) (23)

implies

xkn >
Γ(αn+ β + 1) [(λ)µn]

r
n!

(mn!)s

mn∑
j=0

[(−mn)j ]
s

Γ(αj + β + 1) j!
f(x, j; s); (24)

and

xkn <
Γ(αn+ β + 1) [(λ)µn]

r
n!

(mn!)s

mn∑
j=0

[(−mn)j ]
s

Γ(αj + β + 1) j!
g(x, j; s), (25)

implies

g(x, n; s) > B
(α,β,λ,µ)
n∗ (xk; s, r). (26)

Proof. In order to prove (23) implies (24), assume that the inequality (23) holds.

Denote the right hand side of (24) by φn then

φn =
Γ(αn+ β + 1) [(λ)µn]

r
n!

(mn!)s

mn∑
j=0

[(−mn)j ]
s

Γ(αj + β + 1) j!
f(x, j; s).

Now substituting for f(x, j; s) from (23), we get

φn <
Γ(αn+ β + 1) [(λ)µn]

r
n!

(mn!)s (n!)s

mn∑
j=0

[(−mn)j ]
s

Γ(αj + β + 1) j!

×
[j/m]∑
i=0

[(−j)mi]s xki

Γ(αi+ β + 1) [(λ)µi]
r
i!

=
Γ(αn+ β + 1) [(λ)µn]

r
n!

(mn!)s (n!)s

mn∑
j=0

(−1)sj(mn!)s

[(mn− j)!]s Γ(αj + β + 1)

×
[j/m]∑
i=0

(−1)smi(j!)sxki

[(j −mi)!]s Γ(αi+ β + 1) [(λ)µi]
r
i!

=
mn∑
j=0

[j/m]∑
i=0

(−1)smi+sj (j!)s Γ(αn+ β + 1) [(λ)µn]
r
n! xki

[(j −mi)!]s [(mn− j)!]s Γ(αi+ β + 1) [(λ)µi]
r
i!
.
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In view of the double series relation

mn∑
j=0

[j/m]∑
i=0

A(j, i) =
n∑
i=0

mn−mi∑
j=0

A(j +mi, i), (27)

we further have

φn <
n∑
i=0

mn−mi∑
j=0

(−1)sj (j!)s Γ(αn+ β + 1) [(λ)µn]
r
n! xki

[(j)!]
s

[(mn−mi− j)!]s Γ(αi+ β + 1) [(λ)µi]
r
i!

= xkn +
n−1∑
i=0

Γ(αi+ β + 1) [(λ)µi]
r
n! xki

[(mn−mi)!]s Γ(αi+ β + 1) [(λ)µi]
r
i!

×
mn−mi∑
j=0

(−1)sj
(
mn−mi

j

)s

≤ xkn +
n−1∑
i=0

Γ(αi+ β + 1) [(λ)µi]
r
n! xki

[(mn−mi)!]s Γ(αi+ β + 1) [(λ)µi]
r
i!

×

mn−mi∑
j=0

(−1)j
(
mn−mi

j

)s

.

Since the inner series on the right hand side vanishes, it follows that φn < xkn,

furnishing the inequality (24). �

The proof of (25) implies (26) is similar and therefore omitted here for the

sake of brevity.

Towards the converse of these inequality relations, we have the following theorem.

Theorem 2.5. Let f(x, n; s) and g(x, n; s) be real valued functions, α, β, λ > 0,

and µ, k ∈ N, r ∈ N ∪ {0}, then

xkn >
Γ(αn+ β + 1) [(λ)µn]

r
n!

(mn!)s

mn∑
j=0

[(−mn)j ]
s

Γ(αj + β + 1) j!
f(x, j; s); (28)

implies

f(x, n; s) < B
(α,β,λ,µ)
n∗ (xk; s, r) (29)

and

g(x, n; s) > B
(α,β,λ,µ)
n∗ (xk; s, r), (30)

implies

xkn <
Γ(αn+ β + 1) [(λ)µn]

r
n!

(mn!)s

mn∑
j=0

[(−mn)j ]
s

Γ(αj + β + 1) j!
g(x, j; s). (31)

The proof runs parallel to that of Theorem 2.4, hence is omitted.

Now, for s = 1, we obtain the inverse series relations for the polynomial (22) which

is stated as
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Theorem 2.6. For α, β, λ > 0,m, µ, k ∈ N, r ∈ N ∪ {0},

B
(α,β,λ,µ)
j∗ (xk; 1, r) =

Γ(αj + β + 1)

j!

[j/m]∑
i=0

(−j)mi xki

Γ(αi+ β + 1) [(λ)µi]
r
i!

(32)

if and only if

xkn

n!
=

Γ(αn+ β + 1) [(λ)µn]
r

(mn)!

mn∑
j=0

(−mn)j
Γ(αj + β + 1)

B
(α,β,λ,µ)
j∗ (xk; 1, r), (33)

and for n 6= ml, l ∈ N,

n∑
j=0

(−n)j
Γ(αj + β + 1)

B
(α,β,λ,µ)
j∗ (xk; 1, r) = 0. (34)

Proof. (32) implies (33): Let us denote the right hand side of (33) by Ωn. Then,

substitution for B
(α,β,λ,µ)
j∗ (xk; 1, r) in view of (32) gives

Ωn =
Γ(αn+ β + 1) [(λ)µn]

r

(mn)!

mn∑
j=0

(−mn)j
j!

[j/m]∑
i=0

(−j)mi xki

Γ(αi+ β + 1) [(λ)µi]
r
i!
.

In view of the double series relation (27), this further takes the form

Ωn =

mn∑
j=0

[j/m]∑
i=0

(−1)j+mi Γ(αn+ β + 1) [(λ)µn]
r
xki

(mn− j)! (j −mi)! Γ(αi+ β + 1) [(λ)µi]
r
i!

=

n∑
i=0

mn−mi∑
j=0

(−1)j Γ(αn+ β + 1) [(λ)µn]
r

(mn−mi− j)! j! Γ(αi+ β + 1) [(λ)µi]
r
i!
xki

=
xkn

n!
+
n−1∑
i=0

Γ(αn+ β + 1) [(λ)µn]
r
xki

Γ(αi+ β + 1) [(λ)µi]
r

(mn−mi)! i!

×
mn−mi∑
j=0

(−1)j
(
mn−mi

j

)
.

Here the inner sum in the second term on the right hand side vanishes and conse-

quently we arrive at Ωn = xkn

n! .

To show further that (32) also implies (34), observe that substituting right side ex-

pression of (32) for B
(α,β,λ,µ)
j∗ (xk; 1, r) in the left hand member of (34) and making

use of the formula
n∑
j=0

[j/m]∑
i=0

A(i, j) =

[n/m]∑
i=0

n−mi∑
j=0

A(i, j +mi), (n 6= ml)

we find that
n∑
j=0

(−n)j
Γ(αj + β + 1)

B
(α,β,λ,µ)
j∗ (xk; 1, r)

=
n∑
j=0

(−1)j n!

(n− j)!

[j/m]∑
i=0

(−1)mi xki

Γ(αi+ β + 1) ((λ)µi)r (j −mi)! i!
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=

[n/m]∑
i=0

n! xki

Γ(αi+ β + 1) ((λ)µi)r (n−mi)! i!

n−mi∑
j=0

(−1)j
(
n−mi
j

)
= 0

if n 6= ml, l ∈ N, thus completing the first part. The proof of converse part runs

as follows [2]. In order to show that the series (33) and the condition (34) together

imply the series (32), we first note the simplest inverse series relations [18, Eq.(1),

p.43]:

ωn =
n∑
j=0

(−n)j
j!

ρj ⇔ ρn =
n∑
j=0

(−n)j
j!

ωj .

Here putting

ρj =
j!

Γ(αj + β + 1)
B

(α,β,λ,µ)
j∗ (xk; 1, r),

and considering one sided relation that is, the series on the left hand side implies

the series on the right side, we get

ωn =
n∑
j=0

(−n)j
Γ(αj + β + 1)

B
(α,β,λ,µ)
j∗ (xk; 1, r) (35)

implies

B
(α,β,λ,µ)
n∗ (xk; 1, r) =

Γ(αn+ β + 1)

n!

n∑
j=0

(−n)j
j!

ωj . (36)

Since the condition (34) holds, ωn = 0 for n 6= ml, l ∈ N, whereas

ωmn =
mn∑
j=0

(−mn)j
Γ(αj + β + 1)

B
(α,β,λ,µ)
j∗ (xk; 1, r).

But since the series (33) also holds true,

ωmn =
(mn)! xkn

n! Γ(αn+ β + 1) ((λ)µn)r
.

Consequently, the inverse pair (35) and (36) assume the form:

xkn

n!
=

Γ(αn+ β + 1)((λ)µn)r

(mn)!

mn∑
j=0

(−mn)j
Γ(αj + β + 1)

B
(α,β,λ,µ)
j∗ (xk; 1, r)

implies

B
(α,β,λ,µ)
n∗ (xk; 1, r) =

Γ(αn+ β + 1)

n!

[n/m]∑
j=0

(−n)mj
(mj)!

ωmj

=
Γ(αn+ β + 1)

n!

[n/m]∑
j=0

(−n)mj x
kj

Γ(αj + β + 1) ((λ)µj)r j!
,

subject to the condition (34). �
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Abstract. The following result, a consequence of Dumas criterion for irre-

ducibility of polynomials over integers, is generally proved using the notion

of Newton diagram:

“Let f(x) be a polynomial with integer coefficients and k be a

positive integer relatively prime to the degree of f(x). Suppose

that there exists a prime number p such that the leading coefficient

of f(x) is not divisible by p, all the remaining coefficients are

divisible by pk, and the constant term of f(x) is not divisible by

pk+1. Then f(x) is irreducible over Z”.

For k = 1, this is precisely the well-known Eisenstein criterion. The aim

of this article is to give an alternate proof, accessible to the undergraduate

students, of this result for k ∈ {2, 3, 4} using basic divisibility properties of

integers.

1. Introduction

Let Z[x] be the ring of polynomials with coefficients from the ring Z of inte-

gers. A nonconstant polynomial f(x) ∈ Z[x] is said to be reducible over Z if it can

be written as a product of two nonconstant polynomials in Z[x], otherwise, f(x)

is called irreducible over Z. There is no universal criterion which can be applied to

determine the reducibility/irreducibility of all the polynomials in Z[x]. However,

many criteria exist in the literature each of which give this information for some

particular class of polynomials. One such criterion, the so called “Eisenstein crite-

rion”, is due to Gotthold Eisenstein (1823–1852), a German mathematician. This

is perhaps the most well-known criterion which gives a sufficient condition for a

polynomial in Z[x] to be irreducible.

Eisenstein criterion. Let f(x) be a polynomial in Z[x] of positive

degree. Suppose that there exists a prime number p such that the
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leading coefficient of f(x) is not divisible by p, all the remaining

coefficients are divisible by p, and the constant term is not divisible

by p2. Then f(x) is irreducible over Z.

[As mentioned in [4, p.49], one can reverse the roles of the constant term and

the leading coefficient of f(x) to get another version of the Eisenstein criterion.

More precisely, if the constant term of f(x) is not divisible by p, all the remaining

coefficients are divisible by p, and the leading coefficient of f(x) is not divisible by

p2, then f(x) is irreducible over Z.]

A polynomial satisfying the conditions of Eisenstein criterion for some prime

is called an Eisenstein polynomial. In practice, it may happen that the original

polynomial f(x) is not Eisenstein for any prime, but the criterion is applicable

(with respect to some prime) to the polynomial obtained after transforming f(x)

by some substitution for x. The fact that the polynomial after substitution is

irreducible then allows to conclude that the original polynomial itself is irreducible.

To test for the irreducibility of a polynomial, Eisenstein criterion is a special

case of the general technique of “reducing the coefficients modulo a prime”. To

illustrate this technique, let us consider the polynomial

f(x) = xp−1 + xp−2 + · · ·+ x+ 1 ∈ Z[x],

where p is a given prime number. Recall that the map from Z[x] to Zp[x] defined

by g(x) 7→ g(x) is a surjective ring homomorphism, where g(x) is the polynomial

in Zp[x] obtained from g(x) by reducing each of the coefficients of g(x) modulo p.

If h(x) = xp − 1 ∈ Z[x], then h(x) = (x− 1)f(x). Since h(x) = (x− 1)p in Zp[x],

we get

f(x) =
h(x)

x− 1
= (x− 1)p−1.

Suppose that f(x) = a(x)b(x), where a(x), b(x) are polynomials in Z[x] of positive

degree. Then a(x) = (x − 1)r and b(x) = (x − 1)s for some integers r, s, where

1 ≤ r, s < p− 1 and r + s = p− 1. Putting x = 1, we see that

p = f(1) = a(1)b(1). (1)

We have a(1) ≡ a(1) mod p, and b(1) ≡ b(1) mod p. Since a(1) = (1 − 1)r = 0

and b(1) = (1 − 1)s = 0, it follows that p divides both a(1) and b(1). Thus p2

divides the right hand side of (1). As a consequence, p2 divides p, leading to a

contradiction. Hence f(x) is irreducible. In the usual proof of the irreducibility

of f(x), we substitute x by x + 1 and obtain that the polynomial f(x + 1) has

constant term p and f(x + 1) ≡ xp−1 mod p, so that Eisenstein criterion can be

applied to f(x+ 1) with respect to the prime p.

We learn Eisenstein criterion generally at the undergraduate level as a part

of our mathematics training. At that time, realizing its power and simplicity,

students try to generalize the statement of the criterion and ask the following

natural question:
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Suppose that there exists a prime number p and an integer k ≥ 2

such that the leading coefficient of f(x) is not divisible by p, all the

remaining coefficients are divisible by pk, and the constant term

is not divisible by pk+1. Is f(x) necessarily irreducible over Z?

The answer is certainly No!. For example, one can have the following factoriza-

tions:
x2 − p2 = (x− p)(x+ p), x3 − p3 = (x− p)(x2 + px+ p2), etc.

However, the answer could be affirmative if one adds an extra condition connecting

k and the degree of f(x), see Theorem 1.2 below.

1.1. Dumas Criterion. The second best known irreducibility criterion based on

divisibility of the coefficients by a prime is probably the so called “Dumas Crite-

rion”, due to Gustave Dumas (1872–1955), a Swiss mathematician. To state this

criterion, it is necessary to recall the notion of ‘Newton diagram’ of a polynomial

over integers with respect to a given prime number.

Let p be a fixed prime number and let f(x) ∈ Z[x] be a polynomial of degree

n ≥ 1. We refer to [3, Section 2.2.1] or [2, Page 96] for the construction of the

Newton diagram of f(x) with respect to p. Let

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,

where the constant term a0 is nonzero (otherwise, f(x) would be reducible for

n ≥ 2). Every nonzero coefficient ai of f(x) can be written in the form

ai = āip
αi ,

where āi is an integer not divisible by p, that is, αi is the maximum power of p

such that pαi | ai. Set
X = {(i, αi) : ai 6= 0}.

Call the elements of X as vertices and plot them in the plane. Since f(x) is

of positive degree, there are at least two vertices: the initial vertex (0, α0) and

the terminal vertex (n, αn). Note that there is no vertex corresponding to a zero

coefficient of f(x). The construction of the Newton diagram of f(x) with respect

to p is as follows.

Start with the initial vertex v0 = (0, α0). Then find the vertex v1 = (i1, αi1),

where i1 6= 0 is the largest integer for which there is no vertex of X below the line

through v0 and v1. It may happen that the line segment v0v1 joining v0 and v1

contain vertices from X which are different from v0 and v1. Then find the vertex

v2 = (i2, αi2), where i2 (6= i1) is the largest integer for which there is no vertex

below the line through v1 and v2. Proceed in this way to draw the line segments

v0v1, v1v2 etc. one by one. The very last line segment is of the form vk−1vk,

where vk = (n, αn) is the terminal vertex. Then the Newton diagram of f(x) with

respect to p consists of the line segments vj−1vj , 1 ≤ j ≤ k. It has at least one

line segment. We say that a line segment vi−1vi is simple if vi−1 and vi are the

only points on it with integer coordinates.



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

80 AKASH JENA AND BINOD KUMAR SAHOO

We now state the irreducibility criterion by Dumas, a proof of which can be

found in [3, Section 2.2]. The original proof by Dumas appeared in 1906 in the

paper [1].

Dumas criterion. Let f(x) ∈ Z[x] be a polynomial of positive

degree. Suppose that there exists a prime p for which the Newton

diagram of f(x) consists of exactly one simple line segment. Then

f(x) is irreducible over Z.

Observe that if p satisfies the three conditions of Eisenstein criterion, then the

Newton diagram of f(x) with respect to p consists of one simple line segment with

end vertices (0, 1) and (n, 0) and so f(x) is irreducible. Thus Dumas criterion can

be considered as a generalization of Eisenstein criterion.

Example 1.1. The Newton diagram of f(x) = x4 + 12 with respect to p = 2

consists of one line segment through the initial vertex (0, 2) and the terminal vertex

(4, 0). It contains the point (2, 1) with integer coordinates and so Dumas criterion

can not be applied with respect to 2. However, f(x) is Eisenstein for p = 3 and

hence irreducible over Z.

Now let f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ Z[x]. Suppose that there

exists a positive integer k and a prime number p such that

p - an, pk | aj (0 ≤ j ≤ n− 1) and pk+1 - a0.

Then the Newton diagram of f(x) with respect to p consists of exactly one line

segment uv, where u = (0, k) and v = (n, 0). The equation of the line through u

and v is

kX + nY = nk.

If k and n are relatively prime, then it can be seen that there is no integer coor-

dinate points on the line segment uv different from u and v. So uv is a simple

line segment and hence f(x) is irreducible by Dumas criterion. Thus, we have the

following result which is related to the question mentioned before.

Theorem 1.2. Let f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ Z[x] be of degree

n, and k be a positive integer relatively prime to n. Suppose that there exists a

prime p such that p - an, pk | aj for 0 ≤ j ≤ n − 1 and pk+1 - a0. Then f(x) is

irreducible over Z.

For k = 1, Theorem 1.2 is simply the Eisenstein criterion. The aim of this article is

to give an elementary proof, which is accessible to the undergraduate students, of

Theorem 1.2 for k ∈ {2, 3, 4} using basic divisibility properties of integers. One can

use similar argument for other small values of k, but more steps will be involved.

For k ≥ 2, it can be observed from the Newton diagram of f(x) with respect to

p that the condition pk | aj for 0 ≤ j ≤ n − 1 is much stronger. It can further

be relaxed for higher value of j. For example, for k = 2, this condition can be
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replaced by that p | aj for j ≤ n − 1 and p2 | ai for 0 ≤ i ≤ bn/2c (see Theorem

2.2).

2. For k = 2

We start with the following lemma which essentially proves the Eisenstein

criterion, but stated in a different way as per our requirement. This result is

useful in all the cases of k ∈ {2, 3, 4}.
Lemma 2.1. Let f(x) = anx

n + an−1x
n−1 + · · · + a1x + a0 ∈ Z[x]. Suppose

that there exists a prime p such that p - an and p | ai for 0 ≤ i ≤ n − 1. If

f(x) = g(x)h(x) for two nonconstant polynomials g(x), h(x) in Z[x], then p divides

all the coefficients, except the leading ones, of g(x) and h(x). In particular, if

p2 - a0, then f(x) is irreducible over Z.

Proof. Let g(x) = bkx
k + · · · + b1x + b0 and h(x) = clx

l + · · · + c1x + c0, where

k, l ≥ 1. We first show that b0 and c0 are divisible by p. Since an = bkcl and

p - an, we have p - bk and p - cl. Since a0 = b0c0 and p | a0, we have p | b0 or p | c0.

We may assume that p | b0. Let r, 1 ≤ r ≤ k, be the smallest integer such that

p - br. Considering the coefficient ar in f(x), we have

ar = brc0 + br−1c1 + · · ·+ b0cr.

Since p | ar and p | bi for 0 ≤ i ≤ r − 1, it follows that p | brc0. Then p | c0 as

p - br.
Now consider r as above and let s, 1 ≤ s ≤ l, be the smallest integer such that

p - cs. Considering the coefficient ar+s in f(x), we have

ar+s = br+sc0 + · · ·+ br+1cs−1 + brcs + br−1cs+1 + · · ·+ b0cr+s.

Note that p - brcs and all the remaining terms in the above expression of ar+s are

divisible by p. So p - ar+s. Since p | ai for 0 ≤ i ≤ n−1, we get ar+s = an = ak+l.

So r = k and s = l. �

We now prove the following result which is an improved version of Theorem

1.2 for k = 2.

Theorem 2.2. Let f(x) = anx
n+an−1x

n−1 + · · ·+a1x+a0 ∈ Z[x]. Suppose that

there exists a prime p such that p - an, p | ai for i ≤ n − 1, p2 | aj for j ≤ bn/2c
and p3 - a0. Then the following hold:

(1) If n is odd, then f(x) is irreducible over Z.

(2) If n is even, then either f(x) is irreducible over Z, or f(x) is a product

of exactly two irreducible polynomials in Z[x] of equal degree which are

Eisenstein with respect to p.

Proof. Suppose that f(x) = g(x)h(x) for some nonconstant polynomials g(x), h(x)

in Z[x], where

g(x) = brx
r + br−1x

r−1 + · · ·+ b1x+ b0,

h(x) = csx
s + cs−1x

s−1 + · · ·+ c1x+ c0.
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Since p - an, we have p - br and p - cs. By Lemma 2.1, bi and cj are divisible by

p for 0 ≤ i ≤ r − 1 and 0 ≤ j ≤ s − 1. Since p3 - a0, we have p2 - b0 and p2 - c0.

Thus g(x) and h(x) both are Eisenstein with respect to p and hence irreducible

over Z. In order to complete the proof, it is enough to show that r = s.

First suppose that r > s. We shall get a contradiction by showing that p | cs.
Considering the coefficient as in f(x), we have

as = bsc0 + bs−1c1 + · · ·+ b1cs−1 + b0cs.

Since r > s, each term in the above expression of as, different from b0cs, is divisible

by p2. Also, bn/2c = b(r + s)/2c ≥ s implies that p2 | as. Then it follows that

p2 | b0cs. Since p2 - b0, we get p | cs, a contradiction. If s > r, then similar

argument holds to get a contradiction that p | br. �

We give examples below to show that both the possibilities in Theorem 2.2

may occur for even degree polynomials in Z[x].

Example 2.3. (1) For any prime p, the polynomial f(x) = x2+p2 ∈ Z[x] satisfies

the conditions of Theorem 2.2 with respect to p. So it is irreducible over Z.

(2) The polynomial f(x) = x4 +5x3 +25x2 +50x+150 satisfies the conditions

of Theorem 2.2 with p = 5. But it is reducible over Z, as we have the factorization:

f(x) = (x2 + 10)(x2 + 5x+ 15).

3. For k = 3

The following elementary result is useful for us. We include a proof of it for

the sake of completeness.

Lemma 3.1. Let p be a prime and u, v be integers which are not divisible by p.

If p | xy and p | (ux+ vy) for some integers x and y, then p | x and p | y.

Proof. Since p is a prime and p | xy, we have p | x or p | y. Assume that p | x.

Then p | (ux+ vy) implies that p | vy. Then p | y as p - v. �

Theorem 3.2. Let f(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 ∈ Z[x], where n

is not divisible by 3. Suppose that there exists a prime p such that the leading

coefficient an is not divisible by p, the remaining coefficients are divisible by p3

and the constant term a0 is not divisible by p4. Then f(x) is irreducible over Z.

Proof. Suppose that f(x) is reducible over Z. Let f(x) = g(x)h(x) for some

nonconstant polynomials g(x), h(x) in Z[x], where

g(x) = brx
r + br−1x

r−1 + · · ·+ b1x+ b0,

h(x) = csx
s + cs−1x

s−1 + · · ·+ c1x+ c0.

Since p - an, p - br and p - cs. By Lemma 2.1, p | bi for 0 ≤ i ≤ r− 1 and p | cj for

0 ≤ j ≤ s − 1. Since p3 | a0 and p4 - a0, either b0 = up2 and c0 = vp, or b0 = up

and c0 = vp2 for some integers u, v which are not divisible by p. Without loss, we

may assume that b0 = up2 and c0 = vp.

Claim 3.2.1. r > s.
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On the contrary, suppose that s ≥ r. Considering the coefficient ar in f(x),

we have
brvp+ br−1c1 + · · ·+ b1cr−1 + crup

2 = ar ≡ 0 mod p2.

Since bi and ci are divisible by p for 1 ≤ i ≤ r − 1, it follows that p2 | brvp. Then

p - v implies that p | br, a contradiction.

Claim 3.2.2. p2 | bl for 0 ≤ l ≤ s− 1.

We shall prove by induction on l. This is clear for l = 0, since b0 = up2. So

assume that 1 ≤ l ≤ s− 1 and that p2 | bi for 0 ≤ i ≤ l − 1. The coefficient al in

f(x) is divisible by p3 and so
blvp+ bl−1c1 + · · ·+ b1cl−1 + clup

2 ≡ 0 mod p3.

Using the induction hypothesis and the fact that p | ci for 1 ≤ i ≤ l, it follows

that p3 | blvp. Then p - v implies that p2 | bl.
Claim 3.2.3. r ≥ 2s.

Suppose that r ≤ 2s− 1. Since the coefficient ar in f(x) is divisible by p2, we

have
brvp+ br−1c1 + · · ·+ br−s+1cs−1 + br−scs ≡ 0 mod p2.

Note that r − s ≤ s − 1 as r ≤ 2s − 1 by our assumption, and so p2 | br−s by

Claim 3.2.2. Since p | ci for 1 ≤ i ≤ s− 1 and p | bj for j ≤ r − 1, it follows that

p2 | brvp. Then p - v implies that p | br, a contradiction.

Claim 3.2.4. r ≥ 2s+ 1.

By Claim 3.2.3, we have r ≥ 2s. Since n = r + s, the hypothesis that 3 - n
implies r 6= 2s. So r ≥ 2s+ 1.

Now the coefficient as = bsvp+ bs−1c1 + · · ·+ b1cs−1 + csup
2 of xs in f(x) is

divisible by p3. Using Claim 3.2.2, it follows that

b̄sv + csu ≡ 0 mod p, (2)

where bs = b̄sp. Considering the coefficient a2s of x2s in f(x) which is divisible by

p2, we have

b2svp+ b2s−1c1 + · · ·+ bs+1cs−1 + bscs ≡ 0 mod p2.

Note that p | bj for j ≤ 2s as r ≥ 2s+ 1. It follows that bscs is divisible by p2 and

this gives
b̄scs ≡ 0 mod p. (3)

Then the congruence relations (2), (3) and Lemma 3.1 together imply that p | cs,
a final contradiction to our assumption that f(x) is reducible. This completes the

proof. �

4. For k = 4

Theorem 4.1. Let f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∈ Z[x], where n and

4 are relatively prime. Suppose that there exists a prime p such that the leading
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coefficient an is not divisible by p, the remaining coefficients are divisible by p4

and the constant term a0 is not divisible by p5. Then f(x) is irreducible over Z.

Proof. Suppose that f(x) is reducible over Z. Let f(x) = g(x)h(x) for some

nonconstant polynomials g(x), h(x) in Z[x], where

g(x) = brx
r + br−1x

r−1 + · · ·+ b1x+ b0,

h(x) = csx
s + cs−1x

s−1 + · · ·+ c1x+ c0.

Then p - br and p - cs, since p - an. By Lemma 2.1, p | bi for 0 ≤ i ≤ r − 1 and

p | cj for 0 ≤ j ≤ s− 1. Since p4 | a0 and p5 - a0, we have the following cases for

some integers u, v which are not divisible by p:

(1) either b0 = up3 and c0 = vp, or b0 = up and c0 = vp3.

(2) b0 = up2 and c0 = vp2.

Case-(1). Without loss, we may assume that b0 = up3 and c0 = vp. Applying

the argument as in the proof of Claim 3.2.1, we get r > s. Then applying similar

arguments as in the proof of Claims 3.2.2 and 3.2.3, we have the following facts:

p3 | bl for 0 ≤ l ≤ s− 1 and r ≥ 2s.

The coefficient as = bsvp+ bs−1c1 + · · ·+ b1cs−1 + csup
3 in f(x) is divisible by p4.

It follows that p2 | bs and that

b̄sv + csu ≡ 0 mod p, (4)

where bs = b̄sp
2. Since p - u and p - cs, (4) implies that p - b̄s.

Claim 4.1.1. p2 | bs+t for 0 ≤ t ≤ s− 1.

We prove this by induction on t. For t = 0, we have obtained above that

p2 | bs. So assume that 1 ≤ t ≤ s−1 and that p2 | bs+i for 0 ≤ i ≤ t−1. We have

as+t = bs+tvp+ bs+t−1c1 + · · ·+ bt+1cs−1 + btcs.

Note that bt is divisible by p3 as t ≤ s − 1. Using the induction hypotheses, it

follows that all the terms, different from the first one, in the above expression of

as+t are divisible by p3. Since p3 | as+t, we get p3 | bs+tvp and so p2 | bs+t as

p - v.

Claim 4.1.2. r ≥ 3s+ 1.

First suppose that r ≤ 3s − 1. Considering the coefficient ar of xr in f(x)

which is divisible by p2, we have

brvp+ br−1c1 + · · ·+ br−s+1cs−1 + br−scs ≡ 0 mod p2.

Note that r − s ≤ 2s − 1 as r ≤ 3s − 1 by our assumption, and so p2 | br−s by

Claim 4.1.1. Since p | ci for 1 ≤ i ≤ s− 1 and p | bj for j ≤ r − 1, it follows that

p2 | brvp. Then p - v implies p | br, a contradiction. Thus r ≥ 3s. Since n = r+ s,

and 4 and n are relatively prime, we get r ≥ 3s+ 1.

The coefficient a2s = b2svp+ b2s−1c1 + · · ·+ bs+1cs−1 + bscs of x2s in f(x) is

divisible by p3. Using Claim 4.1.1, it follows that

b̄2sv + b̄scs ≡ 0 mod p, (5)
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where b2s = b̄2sp and b̄s is as before. Considering the coefficient a3s in f(x) which

is divisible by p2, we have

b3svp+ b3s−1c1 + · · ·+ b2s+1cs−1 + b2scs ≡ 0 mod p2.

Note that p | bj for j ≤ 3s as r ≥ 3s + 1. It follows that b2scs is divisible by p2

and this gives
b̄2scs ≡ 0 mod p. (6)

Since p - v and p - b̄s, Lemma 3.1 applying to the congruence relations (5) and (6)

gives p | cs, a contradiction. This completes the proof of Case-(1).

Case-(2). Here b0 = up2 and c0 = vp2. Without loss, we may assume that

r ≥ s. Since 4 and n are relatively prime, we must have r > s.

Claim 4.1.3. bl and cl are divisible by p2 for 0 ≤ l ≤ b(s− 1)/2c.
We shall prove by induction on l. This is clear for l = 0, since b0 = up2 and

c0 = vp2. So assume that 1 ≤ l ≤ b(s− 1)/2c and that bi, ci are divisible by p2 for

0 ≤ i ≤ l − 1. The coefficient al in f(x) is divisible by p4 and so

blvp
2 + bl−1c1 + · · ·+ b1cl−1 + clup

2 ≡ 0 mod p4.

Using the induction hypothesis, we get

b̄lv + c̄lu ≡ 0 mod p, (7)

where bl = b̄lp and cl = c̄lp. For the coefficient a2l in f(x), we have

a2l = b2lvp
2 + b2l−1c1 + · · ·+ bl+1cl−1 + blcl + bl−1cl+1 + · · ·+ b1c2l−1 + c2lup

2.

Since a2l ≡ 0 mod p3, again using the induction hypothesis, it follows that

b̄lc̄l ≡ 0 mod p. (8)

Then (7), (8) and Lemma 3.1 together imply that p | b̄l and p | c̄l and so the claim

follows.

If s is odd, say s = 2k + 1 for some k, then b(s− 1)/2c = k. Considering the

coefficient as = a2k+1 in f(x), we have

b2k+1vp
2 + b2kc1 + · · ·+ bk+1ck + bkck+1 + · · ·+ b1c2k + c2k+1up

2 ≡ 0 mod p3.

This gives p | c2k+1, that is, p | cs, a contradiction.

If s is even, say s = 2k for some k, then b(s−1)/2c = k−1. For the coefficient

as = a2k in f(x), we have

a2k = b2kvp
2 + b2k−1c1 + · · ·+ bk+1ck−1 + bkck + bk−1ck+1 + · · ·+ b1c2k−1 + c2kup

2.

Since r ≥ s+ 1 = 2k + 1 and as = a2k ≡ 0 mod p3, it follows that

b̄k c̄k + c2ku ≡ 0 mod p, (9)

where bk = b̄kp and ck = c̄kp. Now, for the coefficient a3k in f(x), we have

a3k = b3kvp
2 + b3k−1c1 + · · ·+ b2k+1ck−1 + b2kck + · · ·+ bk+1c2k−1 + bkc2k.

Each term, different from the last one, in the above expression is divisible by p2.

Since a3k ≡ 0 mod p2, we get p2 | bkc2k and so

b̄kc2k ≡ 0 mod p. (10)

Then, as p - u, the congruence relations (9) and (10) give p | c2k, that is, p | cs, a

contradiction. This completes the proof. �
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Abstract. We give an account of important features of Generalised Laguerre

Polynomials and their applications in several directions. Further we give a

survey of algebraic properties including irreducibility of these polynomials.

1. Introduction

For a complex number z and integer ν > 0, let(
z

ν

)
=
z(z − 1) · · · (z − ν + 1)

ν!

and we put
(
z
0

)
= 1. If z > 0 is an integer, we observe that

(
z
ν

)
= 0 whenever ν > z.

If f(x) is a polynomial of degree m, we denote by C(f(x), r) with 0 ≤ r ≤ m the

coefficient of xr in f(x). Thus C(f(x),m) is the leading coefficient of f(x) and

C(f(x), 0) is the constant term of f(x). For real number α and integer n ≥ 1, the

Generalised Laguerre Polynomial GLP is defined by

L(α)
n (x) =

n∑
j=0

(
n+ α

n− j

)
(−x)j

j!
. (1.1)

It is a polynomial with real coefficients of degree n such that

C(L(α)
n (x), n) =

(−1)n

n!
, C(L(α)

n (x), 0) =

(
n+ α

α

)
.

It is also called associated Laguerre Polynomial or Sonine Polynomial after the

name of its discoverer Nikolay Yakovlevich Sonin. The GLP with α = 0 is called

Laguerre Polynomial after its inventor Edmond Laguerre (1834-1886) and we de-

note L
(0)
n (x) by Ln(x). These polynomials were discovered around 1880. They

satisfy second order linear differential equation

xy
′′

+ (α+ 1− x)y
′
+ ny = 0 (1.2)

with y = L
(α)
n (x). The left hand side of (1.2) is a polynomial of degree n and we

denote it by g(x). Then

2010 Mathematics Subject Classification: 11C08 (11A41 11B25 11N05).

Keywords and Phrases: Lagurre polynomials, Orthogonal polynomials, Irreducibility, Galois

Group, Arithmetic Progression, Primes.
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C(g(x), n) = −C(y
′
, n− 1) + nC(y, n) = −n (−1)n

n!
+ n

(−1)n

n!
= 0.

In fact

C(g(x), r) = 0 for 0 ≤ r ≤ n
and hence (1.2) follows. Further they satisfy the difference equation

L(α)
n (x)− L(α−1)

n (x) = L
(α)
n−1(x)

and recurrence relation

L
(α)
n+1(x) =

(2n+ 1 + α− x)L
(α)
n (x)− (n+ α)L

(α)
n−1(x)

n+ 1

for n ≥ 1 where

L
(α)
0 (x) = 1, L

(α)
1 (x) = −x+ 1 + α.

Further 1
(1−t)α+1 e

− tx
1−t is a generating function for L

(α)
n (x) with n ≥ 1. This means

∞∑
n=0

L(α)
n (x)tn =

1

(1− t)α+1
e−

tx
1−t . (1.3)

The right hand side of (1.3) is equal to

1

(1− t)α+1

∞∑
j=0

(−1)j

j!

(tx)j

(1− t)j
=
∞∑
j=0

(−1)j

j!

(tx)j

(1− t)j+α+1

=
∞∑
j=0

(−1)j

j!
(tx)j

∞∑
m=0

(j + α+ 1) · · · (j + α+m)

m!
tm

by |t| < 1 which we may suppose. Thus the right hand side of (1.3) is equal to
∞∑
j=0

∞∑
m=0

(−x)j

j!

(j + α+ 1) · · · (j + α+m)

m!
tj+m

=
∞∑
n=0

tn
n∑
j=0

(n+ α) · · · (j + 1 + α)

(n− j)!
(−x)j

j!
=
∞∑
n=0

L(α)
n (x)tn.

2. Rodrigues formula

We show that GLP satisfies

L(α)
n (x) =

x−αex

n!

dn

dxn
xn+αe−x. (2.1)

By Leibniz theorem, the right hand side of (2.1) is equal to

x−αex

n!

n∑
j=0

(
n

j

)
(n+ α)(n+ α− 1) · · · (n+ α− j + 1)xn+α−j(−1)n−je−x (2.2)

=
1

n!

n∑
j=0

(
n

j

)
(n+ α)(n+ α− 1) · · · (j + 1 + α)(−x)j (2.3)

by writing j for n − j in (2.2). Now we conclude (2.1) since each term in the

preceeding sum (2.3) satisfies
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1

n!

(
n

j

)
(n+ α)(n+ α− 1) · · · (j + 1 + α)

=
(n+ α)(n+ α− 1) · · · (j + 1 + α)

j!(n− j)!
=

1

j!

(
n+ α

n− j

)
.

Since ex dn

dxnx
n+αe−x =

(
d
dx − 1

)n
xn+α, we derive from (2.1) that

L(α)
n (x) =

x−α

n!

(
d

dx
− 1

)n
xn+α. (2.4)

By combining (2.1) and (2.4), we have

L(α)
n (x) =

x−αex

n!

dn

dxn
xn+αe−x =

x−α

n!

(
d

dx
− 1

)n
xn+α (2.5)

known as Rodrigues formula for L
(α)
n (x).

By putting α = 0 in (2.5), we write Rodrigues formula for Laguerre Polynomial

Ln(x) =
ex

n!

dn

dxn
xne−x =

1

n!

(
d

dx
− 1

)n
xn.

Thus

d

dx
Ln(x) =

1

n!

d

dx

(
d

dx
− 1

)n
xn

=
1

n!

(
d

dx
− 1

)n
d

dx
xn

=
1

(n− 1)!

(
d

dx
− 1

)(
d

dx
− 1

)n−1
xn−1 =

(
d

dx
− 1

)
Ln−1(x).

By repeated application of the above formula, we get

Ln−1(x) = −
∑
i≥1

(
d

dx

)i
Ln(x).

Therefore Ln(x) = n!Ln(x) with n ≥ 1 is a sequence of Scheffer Polynomials.

This is also true similarly for L(α)
n (x) = n!L

(α)
n (x). Scheffer Polynomials serve as a

mathematical tool to unify and structure certain kinds of problems like recursions

and expansions in Statistical Sciences.

3. Orthogonality

Let w(x) be a non-negative integrable function on an interval [a, b], which may

be infinte, such that ∫ b

a

w(x)dx > 0.

We call w(x) a weight function. Let pn(x) with n ≥ 1 be a sequence of polynomials

with real coefficients such that the degree of pn is equal to n. Then they are called

orthogonal polynomials on [a, b] with respect to weight function w(x) if∫ b

a

w(x)pm(x)pn(x)dx =

> 0 if m = n

0 otherwise.
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The Generalised Laguerre Polynomials L
(α)
n (x) with real α ≥ 0 are orthogonal on

[0,∞) with respect to weight function xαe−x. More precisely∫ ∞
0

xαe−xL(α)
m (x)L(α)

n (x)dx =
Γ(n+ α+ 1)

n!
δm,n (3.1)

where Γ(u) =

∫ ∞
0

e−ttu−1dt > 0 for u > 0 and δm,n = 1 if m = n and 0 otherwise.

If α = 0, we re-write (3.1) as∫ ∞
0

e−xLm(x)Ln(x)dx = δm,n (3.2)

since Γ(n+ 1) = n!.

Now we give a proof of (3.2). We may assume m ≤ n. For non- negative

m ≤ n, we consider the integral

∫ ∞
0

e−xxmLn(x)dx. Integrating by parts, we

derive from (2.1) with α = 0 that∫ ∞
0

e−xxmLn(x)dx =
(−1)mm!

n!

∫ ∞
0

dn−m

dxn−m
(xne−x)dx.

But the right hand side is equal to 0 whenever m < n. Since the degree of Lm(x)

is m, we have ∫ ∞
0

e−xLm(x)Ln(x)dx = 0 if m < n.

Then ∫ ∞
0

e−xLm(x)Ln(x)dx =
(−1)n

n!

∫ ∞
0

e−xxnLn(x)dx

since C(Ln(x), n) = (−1)n
n! . Now we derive from (2.1) as above that the integral on

the right hand side is equal to

(−1)nn!

n!

∫ ∞
0

xne−xdx = (−1)nn!.

Hence ∫ ∞
0

e−xLm(x)Ln(x)dx =
(−1)n

n!
(−1)nn! = (−1)2n = 1.

This completes the proof of (3.2).

4. Applications

Hermite Polynomials are given by

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

= (2x− d

dx
)n.1.

These polynomials are defined by Laplace in 1810. They were studied by Cheby-

shev in 1859 and Hermite in 1864 but they are named after Hermite. They arise

in Probability(Edgeworth series), Combinatorics (Appell sequence obeying umbral

calculus), Numerical analysis (Gaussian quadrature), Physics (Quantum harmonic
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oscillator) and Systems theory (Gaussian noise). In fact Hermite polynomials,

apart from a constant factor, are particular cases of GLP as follows:

H2n(x) = (−1)n22nn!L
(− 1

2 )
n (x2) and H2n+1(x) = (−1)n22n+1n!xL

( 1
2 )
n (x2).

GLP are used in the radial part of the solution of Schrodinger equation for a

one-electron atom in the static Wigner functions of oscillator systems in quantum

mechanics in phase space and in the quantum mechanics of the Morse potential

and 3D isotropic harmonic oscillator. GLP are used for approximating the values

of the integrals of the form

∫ ∞
0

e−xf(x)dx where f(x) is continuous or more gen-

erally smooth function. More precisely, it is shown by Gauss-Laguerre quadrature

method that ∫ ∞
0

e−xf(x)dx ≈
n∑
i=1

wif(xi),

where xi is the ith root of Laguerre Polynomial Ln(x) and wi is given by

wi =
xi

(n+ 1)2(Ln+1(xi))2
for 1 ≤ i ≤ n.

Gauss-Laguerre quadrature method is an extension of Gauss quadrature method.

Let B be a m× n rectangular board consisting of m rows and n columns and

it looks like a chess board. If m = n = 8, then B is the ordinary chess board. Let

B be a subset of B. Assume that we can place a rook in each square of B. Two

rooks are called non-attacking if they are neither in the same row nor in the same

column. We assume that every pair of rooks is non- attacking. If a rook is placed

at the intersection of mth row and nth column, we say that rook is at (m,n). The

rook polynomial is defined as

RB(x) =
∞∑
k=0

rk(B)xk,

where rk(B) is the number of ways k rooks can be arranged in the squares of B.

We observe that rk(B) = 0 for k > min(m,n) since if a rook is placed at (m1, n1),

then there is no other rook in the m1th row as well as in n1th row. Thus

RB(x) =

min(m,n)∑
k=0

rk(B)xk.

Rook polynomials were introduced by Kaplansky and Riordan and developed by

Riordan [24]. Rook polynomials are used in pure and applied combinatorics, group

theory, number theory and statistical physics. If B = B, we write Rm,n(x) for

RB(x) and Rn(x) for Rm,n(x) if m = n. Thus

Rn(x) =
n∑
k=0

rk(n)xk.

Let n = 3, k = 2 and we calculate r2(3). If a rook is at (1, 1), then there is no

other rook in the first row and also in the first column. Thus there are four
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possibilities for the second rook, namely (2, 2), (2, 3), (3, 2), (3, 3). Similarly there

are 4 possibilities when the rook is at any other place. Therefore there are 9×4 = 36

possibilities. We observe that possibility (2, 2) is also counted when the rook is

at (1, 3). In fact every possibility is taken twice in the above counting. Hence

r2(3) = 36
2 = 18. We calculate

R1(x) = x+ 1, R2(x) = 2x2 + 4x+ 1, R3(x) = 6x3 + 18x2 + 9x+ 1 and

R4(x) = 24x4 + 96x3 + 72x2 + 16x+ 1.

By (1.1), we calculate L4(x) = (1/24)
(
x4 − 16x3 + 72x2 − 96x+ 24

)
. Then

we observe that 4!x4L4(−x−1) = R4(x). More generally, we have

Rn(x) = n!xnLn(−x−1) (4.1)

and

Rm,n(x) = n!xnL(m−n)(−x−1) for m ≥ n. (4.2)

Thus, Rook polynomials upto a constant factor, can be obtained from GLP by ele-

mentary changes of variables. The zeros of GLP are positive and simple. Therefore

we see from (4.2) that the zeros of Rm,n(x) with m ≥ n are negative and simple.

For an account of GLP, we refer to [29], [31], [32] and [33]. The Tricomi-Carlitz

polynomials are given by

ln(x) = (−1)nLn(x− n)

and they are related to random walks on positive integers.

5. Algebraic properties of GLP

Schur [26],[27] was the first to study algebraic properties of these polynomials.

He gave a formula for the discrimnant of these polynomials. He studied whether

these polynomials are irreducible. Further he determined their Galois group when

they are irreducible. Let f(x) be a polynomial with rational coefficient and deg

f = n. By irreducibility of a polynomial, we shall always mean its irreducibility

over rationals. We observe that if f has a factor of degree k < n, then it has

a factor of degree n − k. Therefore given a polynomial of degree n, we always

consider factors of degree k where 1 ≤ k ≤ n
2 . For having a familiarity with GLP,

we consider some particular cases of L
(α)
n (x) by restricting α. We shall always

restrict α to rational numbers in this section. Every α ∈ Q with denominator

d ≥ 1, written in the reduced form, can be uniquely written as

α = α(u) = u+ (a/d) (5.1)

where u, a ∈ Z with a = 0 if d = 1 and 1 ≤ a < d, gcd(a, d) = 1 if d > 1. Thus

α = u if d = 1.

5.1. Well-known examples of L
(α)
n (x).

(i) Let α = −n− 1. Then
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L(α)
n (x) =

n∑
j=0

(−1)(−2) · · · (−(n− j))
(n− j)!j!

(−x)j = (−1)n
n∑
j=0

xj

j!

which is, upto sign, truncated exponential polynomial.

(ii) Let α = a where a ≥ 0 is an integer. Then

L(a)
n (x) =

n∑
j=0

(n+ a)(n− 1 + a) · · · (j + 1 + a)

(n− j)!j!
(−x)j

and

n!L(a)
n (x) =

n∑
j=0

(−1)j
(
n

j

)
(n+ a)!

(j + a)!
xj = (n+ a)!

n∑
j=0

(−1)j
(
n

j

)
xj

(j + a)!
.

We put aj = (−1)j
(
n
j

)
. We observe that a0, a1, . . . , an are integers such

that |a0| = |an|=1. Thus

L(a)
n (x) =

(n+ a)!

n!

n∑
j=0

aj
xj

(j + a)!
.

The irreducibility of L
(a)
n (x) is equivalent to the irreducibility of

n∑
j=0

aj
xj

(j + a)!
with aj = (−1)j

(
n
j

)
. In fact we shall consider irreducibility

of more general polynomials

n∑
j=0

aj
xj

(j + a)!
where a0, a1, . . . , an ∈ Z with

|a0| = |an| = 1. These are called Generalised Schur Polynomials.

(iii) Let α = −2n− 1. Then

L(−2n−1)
n (x) =

n∑
j=0

(n− 2n− 1) · · · (j + 1− 2n− 1)

(n− j)!j!
(−x)j

= (−1)n
n∑
j=0

(n+ 1) · · · (2n− j)
(n− j)!j!

xj

= (−1)n
n∑
j=0

(n+ 1) · · · (n+ j)

(n− j)!j!
xn−j =

(−1)n

n!

n∑
j=0

(n+ j)!

(n− j)!j!
xn−j .

Bessel polynomials of degree n are given by

yn(x) =

n∑
j=0

(n+ j)!

2j(n− j)!j!
xj .

We have

zn(x) := xnyn

(
2

x

)
=

n∑
j=0

(n+ j)!

(n− j)!j!
xn−j = (−1)nn!L(−2n−1)

n (x).

Thus Bessel polyomials yn(x) are irreducible if and only if L
(−2n−1)
n (x) are

irreducible. This connection between Bessel polynomials and GLP is due

to Hajir [14].
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(iv) Let α = −a be a negative integer. Then a ≥ 1. Further the constant term

of L
(α)
n (x) is equal to

(n+ α) · · · (1 + α)

n!
=

(n− a) · · · (1− a)

n!
We observe that n− a ≥ 0 if n ≥ a = |α| and 1− a ≤ 0. Therefore L

(α)
n (x)

with n ≥ |α| is reducible.

5.2. Three remarkable results on GLP.

(i) Combining the earlier work of Schur and Gow[11], Filaseta and Trifonov

[7] proved that L
(−2n−1)
n (x) is irreducible. Therefore, by example (iii),

Bessel polynomials are irreducible. Then their Galois group is Sn by a

result of Grosswald [12],[13].

(ii) Filaseta, Kidd and Trifonov [6] proved that for every n > 2, there exists

α such that L
(α)
n (x) is irreducible and the Galois group of L

(α)
n (x) is the

alternating group An. In fact, we can take

α =


1 if n ≡ 1 (mod 2)

−n− 1 if n ≡ 0 (mod 4)

n if n ≡ 2 (mod 4)

For n = 2, we can also take α = n. In this case L
(2)
2 (x) = 1

2 (x−6)(x−2) and

its Galois group is A2 = {e}. The cases n ≡ 0(mod 4) and n ≡ 1(mod 4)

were already settled by Schur [26], [27]. These results settled the inverse

Galois problem for An explicitly that for every positive integer n > 1, there

exists an explicit Laguerre polynomial of degree n whose Galois group is

the alternating group An. This remains open for an arbitrary group.

(iii) Filaseta and Lam [5] proved that for a fixed rational number α which is

not a negative integer, L
(α)
n (x) is irreducible for all but finitely many n.

As already mentioned in example (iv), the assumption that α is not a

negative integer is necessary.

5.3. Irreducibility of GLP and its extensions. Let d = 1 i.e α ∈ Z. Then

Laishram and Shorey [16] proved that for integers α with 0 ≤ α ≤ 50, L
(α)
n (x) is

irreducible for all n except for n = 2, α ∈ {2, 7, 14, 23, 34, 47} and n = 4, α ∈ {5, 23}
where it has a linear factor. In fact

L
(2)
2 (x) = (1 2)(x− 2)(x− 6), L

(7)
2 (x) = (1 2)(x− 6)(x− 12),

L
(14)
2 (x) = (1 2)(x− 12)(x− 20), L

(23)
2 (x) = (1 2)(x− 20)(x− 30),

L
(34)
2 (x) = (1 2)(x− 30)(x− 42), L

(47)
2 (x) = (1 2)(x− 42)(x− 56),

L
(5)
4 (x) = (1 24)(x− 6)(x3 − 30x2 + 252x− 504),

L
(23)
4 (x) = (1 24)(x− 30)(x3 − 78x2 + 1872x− 14040).
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The cases 0 ≤ α ≤ 1 and 2 ≤ α ≤ 10 of the above result on GLP were al-

ready settled by Schur [26] and Filaseta, Finch and Leidy [8], respectively. We

observe from (4.2) that Rook polynomial Rm,n(x) with m ≥ n is irreducible

if and only if L
(m−n)
n (x) is irreducible. Therefore, we derive that Rook poly-

nomials Rm,n(x) with 0 ≤ m − n ≤ 50 are irreducible except when (m,n) ∈
{(4, 2), (9, 2), (16, 2), (25, 2), (36, 2), (49, 2), (9, 4), (27, 4)}.

Next we consider GLP with α negative. As already stated in Example (iv)

that L
(α)
n (x) is reducible with n ≥ −α. Therefore we restrict −α > n i.e α < −n.

We write α = −1−n−r where r ≥ 0 is an integer. Nair and Shorey [23] proved that

L
(−1−n−r)
n (x) is irreducible for 0 ≤ r ≤ 22 and for 23 ≤ r ≤ 60 by Jindal, Laishram

and Sarma in [15]. The above result with r = 0, r = 2 and r = 1, 3 ≤ r ≤ 8

were already proved by Schur [26], Sell [28] and Hajir [14], respectively. Hajir

[14] conjectured that L
(−1−n−r)
n (x) is irreducible for r ≥ 0. Hajir [14] confirmed

the conjecture when n > er!+
1
2 (1 − 1

r! )
−r! and Nair and Shorey [23] with n >

r
1.63e

r(1+ r
logr ) and Jindal, Laishram and Sarma in [15] when n > rer(1+

r
logr ). We

do not know whether the right hand side of the above inequality can be replaced

by an absolute constant. As already stated, the case r = n was settled by Filaseta

and Trifonov [7]. If we want to prove only that L
(α)
n (x) does not have a factor of

large degree, it is possible to consider more general values of α. Let s and t be

fixed integers given by either

α = −tn− s− 1 with t ≥ 2 or α = tn+ s with t ≥ 1.

If L
(α)
n (x) has a factor of degree k, then Fuchs and Shorey [10] proved that k is

bounded by an effectively computable number depending only on s and t. Further

we refer to [10] for a qualitative version of the above result.

Now we turn to the case d = 2. i.e α = u+ 1
2 where u is an integer. We have

H2n(x) = (−1)n22nn!L
(− 1

2 )
n (x2) and H2n+1(x) = (−1)n22n+1n!xL

( 1
2 )
n (x2)

where H2n and H2n+1 are Hermite polynomials. Schur [26], [27] proved that

L
(− 1

2 )
n (x2) and L

( 1
2 )
n (x2) are irreducible implying the irreducibility of H2n(x) and

H2n+1(x)/x. Further Laishram, Nair and Shorey [19] proved that L
(α)
n (x2) with

1 ≤ u ≤ 45 are irreducible except when (u, n) = (10, 3) in which case L
(21/2)
3 (x2) =

− 1
48 (2x2 − 15)(4x4 − 132x2 + 1035).

Let d ∈ {3, 4}. Then Laishram and Shorey [18] proved that L
(α)
n (x) is irre-

ducible whenever α ∈ {±1
3 ,±

2
3 ,±

1
4 ,±

3
4} except for (n, α) = (4, 214 ). There is no

result for d > 4 is available in the literature.

In Example (ii), we introduced Generalised Schur polynomials and we observe

that they are extensions of GLP with integer α ≥ 0 upto a constant factor. Now,

for every α ∈ Q, we consider a polynomial whose irreducibility implies the irre-

ducibility of L
(α)
n (x). Let α ∈ Q be given by (5.1) and a0, a1, · · · , an ∈ Z with

|a0| = |an| = 1. We consider
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G(α)
n (x) =G(α)

n (x; a0, a1, . . . , an)

=
n∑
j=0

aj(n+ α)(n− 1 + α) · · · (j + 1 + α)dn−jxj (5.2)

=
n∑
j=0

ajx
j(

n∏
i=j+1

(a+ (u+ i)d))

since (i+ α)d = a+ (i+ u)d. We observe that

G(α)
n (x) = dnn!L(α)

n (
x

d
) if aj = (−1)j

(
n

j

)
(5.3)

and therefore the irreducibility of G
(α)
n (x) with aj = (−1)j

(
n
j

)
implies the irre-

ducibility of L
(α)
n (x). Further for an integer α ≥ 0, we have

G(α)
n (x) = (n+ α)!

n∑
j=0

aj
xj

(j + α)!
.

Now we consider the irreducibility ofG
(α)
n (x). Let d = 1. The first result onG

(α)
n (x)

is due to Schur [26] who proved that G
(α)
n (x) with α ∈ {−1, 0} is irreducible unless

α = 0 and either n+ 1 is a power of 2 where it may have a linear factor or n = 8

where it may have a quadratic factor.

The assumption |an| = 1 has been relaxed in the above result of Schur. Let

α = 0. Filaseta [4] proved that G
(α)
n (x) with |a0| = 1 and 0 < |an| < n is irreducible

unless (an, n) ∈ {(±5, 6), (±7, 10)} in which case G
(α)
n (x) is either irreducible or

is a product of two irreducible polynomials of same degree. The assumption 0 <

|an| < n is necessary. For this, we take an = n, an−1 = −1, an−2 = · · · = a2 =

0, a1 = −1, a0 = 1, then x − 1 is a factor of G
(α)
n (x). This example is given in

[4]. Let α = 1. Allen and Filaseta [1] extended the above result as follows. Let

n+1 = k′2u with 2 - k′, (n+1)n = k”2v3w with 2 - k”, 3 - k” and M = min(k′, k”).

Then G
(α)
n (x) with α = 1, |a0| = 1 and 0 < |an| < M is irreducible. Here the

assumption 0 < |an| < M is best possible in the sense that for |a0| = 1 and

|an| = M, there exist integers a1, a2, . . . , an−1 such that G
(α)
n (x) is irreducible.

For example as in [1] when n = 5, we have M = 3 and G
(α)
n (x) has a factor x− 2

if a5 = 3, a4 = −1, a3 = a2 = 0, a1 = 1, a0 = −1.

The result of Filaseta and Lam [5] already stated for L
(α)
n (x) is also valid

for G
(α)
n (x) when α is not a negative integer. Further Laishram and Shorey

[16] showed that for k ≥ 2, G
(α)
n (x) with |a0an| = 1 has no factor of degree k

when α is an integer satisfying 0 ≤ α ≤ 40 if k = 2 and 0 ≤ α ≤ 50 if k ≥ 3

except for an explicitly given finite set of triples (n, k, α) and we refer to [16]

for a complete list of exceptions. In fact it has no factor of degree ≥ 5 unless

(n, k, α) ∈ {(17, 5, 11), (19, 5, 9), (40, 5, 12)}. The cases 0 ≤ α ≤ 10 if k ∈ {3, 4}
and 0 ≤ α ≤ 30 if k ≥ 5 were already covered by Shorey and Tijdeman [30]. There
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are some reasons to be unhappy with the above result. They give no information

when G
(α)
n (x) has a linear factor. Further the set of exceptions is large in [17].

Therefore we consider a polynomial ψ
(α)
n (x) which is a particular case of G

(α)
n (x)

by restricting aj to aj
(
n
j

)
for 0 ≤ j ≤ n but extends L

(α)
n (x). Let

ψ(α)
n (x) =

n∑
j=0

aj

(
n

j

)
(n+ α) · · · (j + 1 + α)xj .

It is clear that the irreducibility of G
(α)
n (x) implies the irreducibility of ψ

(α)
n (x).

Further, since

ψ(α)
n (x) = n!L(α)

n (x) if aj = (−1)j ,

we observe that L
(α)
n (x) is irreducible whenever ψ

(α)
n (x) is irreducible. The fol-

lowing result of Laishram, Nair and Shorey [19] takes care of the flaws mentioned

above of the results of [17] and [30] stated above. Let

Ω ={(2, 2), (2, 7), (2, 14), (2, 23), (2, 34), (2, 47), (3, 24), (4, 4), (4, 5), (4, 14), (4, 20),

(4, 23), (6, 44), (8, 8), (8, 41), (12, 24), (16, 16), (16, 20), (16, 24), (16, 29), (24, 8),

(24, 24), (30, 24), (32, 32), (32, 48), (40, 24), (48, 24), (112, 48), (120, 24)}.

Let 0 ≤ α ≤ 50 be an integer and |a0an| = 1. Then ψ
(α)
n (x) is irreducible

except when (n, α) ∈ Ω where it may have a linear factor. Further for every

(n, α) ∈ Ω− {(3, 24)}, there exist integers a0, a1, . . . , an with |a0| = |an| = 1 such

that ψ
(α)
n (x) has a linear factor. For 0 ≤ α ≤ 10, the above result was already

proved by Filaseta, Finch and Leidy [8].

Let d = 2. i.e α = u+ 1
2 . Schur [26] proved that G

(α)
n (x2) is irreducible when

u = −1 and u = 0 unless 2n + 1 is a power of 3 where it may have a linear

or quadratic factor. Allen and Filaseta [2] extended this result for u = −1 and

|a0| = 1, 0 < |an| < 2n−1. Further the assumption 0 < |an| < 2n−1 is best possi-

ble. For example, if an = ±(2n−1), an−1 = −(1·3 · · · (2n−3))∓1, an−2 = · · · a1 =

0, a0 = 1, then G
(α)
n (x2) with u = −1 has a factor x2 − 1. Further he proved that

if |an| = 2n− 1 and G
(α)
n (x2) with u = −1 is reducible, then G

(α)
n (x2) must have a

factor of degree ≤ 4. Finch and Saradha [9] showed that for 1 ≤ u ≤ 13, the poly-

nomials G
(α)
n (x) with a0, an ∈ A have no factor of degree ≥ 2 except for (u, n) ∈

{(1, 121), (8, 59), (8, 114), (9, 4), (9, 113), (9, 163), (9, 554)} where it may have either

a linear factor or a quadratic factor. Let S = {(1, 121), (8, 59), (8, 114), (9, 4),

(9, 113), (9, 163), (9, 554), (15, 23), (15, 107), (16, 106), (20, 102), (21, 101), (26, 155),

(26, 287), (30, 92), (36, 86), (43, 1158), (44, 716)}. Laishram, Nair and Shorey [19]

proved that for 1 ≤ u ≤ 45 and P (a0an) ≤ 2, G
(α)
n (x2) has no factor of degree

≥ 3 except when (u, n) ∈ {(1, 12), (6, 7), (9, 113), (10, 3), (21, 101)} or (u, n) ∈ S

or (u, n) = (44, 79) where it may have a factor of degree 3 or 4 or 6, respectively.
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Since irreducibility of G
(α)
n (x2) implies the irreducibility of G

(α)
n (x), the above re-

sult implies that for 1 ≤ u ≤ 45 and P (a0an) ≤ 2, G
(α)
n (x) has no factor of degree

≥ 2 except when (u, n) ∈ S or (u, n) = (44, 79) where it may have a factor of

degree 2 or 3, respectively. Further the assumptions (u, n) ∈ S is necessary. They

also gave a bound for the degree l of any factor of G
(α)
n (x2) in terms of u given by

l < 1.49u+ 1.8 except for (u, n) ∈ {(1, 12), (1, 121)}. Next we give an analogue of

above result on G
(α)
n (x2) for ψ

(α)
n (x2). Let

Ω1 ={(2, 2), (2, 8), (2, 29), (6, 24), (9, 4), (9, 26), (10, 3), (10, 12), (10, 24), (10, 192),

(21, 24), (24, 24), (30, 26), (35, 25), (35, 29), (37, 12), (37, 36), (37, 144), (44, 212)}.

Let α = u+ 1
2 , where 0 ≤ u ≤ 45 is an integer. Then Laishram, Nair and Shorey

[20] proved that ψ
(α)
n (x2) with |a0an| = 1 is irreducible except when (u, n) ∈ Ω1

where it may have a quadratic factor. Further for every (u, n) ∈ Ω1 except for

(u, n) = (44, 212), there exist integers a0, a1, . . . , an with |a0| = |an| = 1 such

that ψ
(α)
n (x2) has a quadratic factor. Recently Nair and Shorey proved results

for L
(α)
n (x2) and G

(α)
n (x2) when u ≤ −2. They proved that L

(α)
n (x2) with −18 ≤

u ≤ −2 are irreducible and G
(α)
n (x2) with u = −2 and n > 2 is irreducible. The

assumption n > 2 in the above result is necessary since

G
(−3/2)
2 (x2) = (x2 − 1)2 when a0 = 1, a1 = −2, a2 = −1.

Further they extended the results of Schur for u = −1 and u = 0 stated in the

beginning of this paragraph for G
(α)
n (x2) to −6 ≤ u ≤ −3.

Let d ∈ {3, 4} and u ∈ {−1, 0}. Then Laishram and Shorey [18] proved

irreducibility results on G
(α)
n (x) and G

(α)
n (xd) which we state now. Let u = −1.

Then α ∈ {−13 ,
−2
3 } if d = 3 and α ∈ {−14 ,

−3
4 } if d = 4. Assume that α 6= −1

4

if d = 4. Then G
(α)
n (xd) is irreducible except when d = 3, α = −2

3 , n = 2 or

d = 3, α = −1
3 , n = 43 where it may have a factor of degree 3 or 5, respectively.

Consequently, G
(α)
n (xd) is irreducible unless d = 3, α = −2

3 , n = 2 where G
(α)
n (x)

may have a linear factor and G
(α)
n (x3) may have a cubic factor. Let u = 0 and

d = 3. Then α ∈ { 13 ,
2
3}. Now G

(α)
n (x) and G

(α)
n (xd) are irreducible except possibly

when

(i) 1 + 3n = 2b where G 1
3
(x) may have a linear factor and G 1

3
(x3) may have

a quadratic or cubic factor.

(ii) 2 + 3n = 2b and n 6= 42 where G 2
3
(x3) may have a quadratic factor.

(iii) 2+3n = 2b ·5c with c > 0 where G 2
3
(x) may have a linear factor or G 2

3
(x3)

may have a cubic factor.

(iv) n = 42 where G 2
3
(x) may have a quadratic factor and G 2

3
(x3) may have a

factor of degree in {2, 4, 5, 6}.

Let u = 0, d = 4. Then α ∈ { 14 ,
3
4} and G

(α)
n (xd) is irreducible except when

1 + 4n = 3b · 5c, α = 1
4 or 3 + 4n = 7y, α = 3

4 where G
(α)
n (x) may have a linear
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factor and G
(α)
n (x4) may have a factor of degree 4. This is also the case if 3+4(n−1)

is a power of 3 and α = − 1
4 . Further G

(α)
n (x4) and hence G

(α)
n (x) is irreducible

if α = − 1
4 , 3 + 4(n − 1) is not a power of 3 or α = − 3

4 . Let u = −1, d = 4 and

α = −1
4 . Assume that 3 + 4(n− 1) is not a power of 3. Then G

(α)
n (xd) and hence

G
(α)
n (x) are irreducible. The assumption |a0an| = 1 has been relaxed in the above

results. For example, we may assume that P (a0an) ≤ 3 when a+ 3(n+ u) is not

a power of 2 in the case d = 3 and u ∈ {−1, 0}. It follows from the above results

that G
(α)
n (x) with α ∈ {± 1

3 ,±
2
3 ,±

1
4 ,±

3
4} is either irreducible or linear polynomial

times an irreducible polynomial of degree n − 1. If d > 4, there is no analogous

result available in the literature.

5.4. Galois groups of GLP. We denote by Gn(α) the Galois group of L
(α)
n (x).

Schur [26], [27] proved that Gn(0) = Sn, Gn(1) = Sn whenever n ≡ 0 (mod 2) such

that n+1 is not a square and An otherwise, Gn(−n−1) = Sn when n ≡ 0 (mod 4)

and An otherwise. The Galois groups of L
(α)
n (x) with 2 ≤ α ≤ 10 have been

determined by Banerjee, Filaseta, Finch and Leidy [3] . From the results of Schur

stated above, we see that every positive integer n with n not congruent to 2(mod 4),

there exists α ∈ {1,−n − 1} such that G
(α)
n = An. As stated in Section 5.2, we

have Gn(n) = An for n ≡ 2(mod 4). Further it is proved in Banerjee, Filaseta,

Finch and Leidy [3] that there are only finitely many n satisfying Gn(α) = An

with integer α 6= n and it has been conjectured there that Gn(α) = An with α

integer implies α = n.

Next we consider Gn(−n − 1 − r) where r is a positive integer. Hajir [14]

conjectured that Gn(−n−1−r) contains An for all n and r. Hajir [14] and Sell[28]

proved that Gn(−n − 1 − r) contains An whenever 1 ≤ r ≤ 8, r 6= 2 and r = 2,

respectively, and Gn(−n − 1 − r) with 9 ≤ r ≤ 22 has been determined in Nair

and Shorey [23]. For r ≥ 9, Hajir [14] proved that Gn(−n − 1 − r) contains An

when n ≥ B(r) where

B(r) = er!+
1
2

(
1− 1

r!

)−r!
.

The value of B(r) was reduced to r
1.63e

r(1+ 1.2762
log r ) and er(1+

1.2762
log r ) in Nair and

Shorey [23] and Jindal, Laishram and Sarma [15] where the Galois groups of

L
(−n−1−r)
n with 9 ≤ r ≤ 22 and 23 ≤ r ≤ 60 have been determined, respectively,

confirming the conjecture of Hajir stated above.

It is proved in Laishram, Nair and Shorey [19] that for α = u + 1
2 with

−1 ≤ u ≤ 45, the Galois group of L
(α)
n (x) is Sn except when (u, n) = (10, 3) in

which case the Galois group is Z2. The above result with u ∈ {−1, 0} was already

proved by Saradha and Shorey [25] when n ≥ 182 and for all n by Laishram

[21]. Further Saradha and Shorey [25] proved that Gn(α) = Sn for n ≥ 876 if

α ∈ {± 1
3 ,±

2
3} and n ≥ 1325 if α ∈ {±1

4 ,±
3
4}. Finally Laishram [21] proved that
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Gn(α) = Sn if α ∈ {± 1
3 ,±

2
3 ,±

1
4 ,±

3
4} unless (α, n) ∈ {(− 2

3 , 11), ( 2
3 , 7)} where

Gn(α) = An and (α, n) = ( 1
4 , 2) where Gn(α) = S1.

The main ingredients in the proofs are Newton polygons and lower bounds for

the greatest prime factor of positive consecutive terms in arithmetic progression.

We refer to [17], [18], [19], [22], [30] for the latter and to [29] for showing that

these two ingredients lead to a proof of irreducibility of GLP.

One of the authors (TNS) was getting INSA Senior Scientist award when this

work was done.
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ABSTRACT. In this note, using the theory of modular forms, we will sketch a
general method to find explicit formulas for the number of representations of a
positive integer as ax2 + by2 + cz2 + dw2. This method had been used earlier to
obtain results, but to the best of our knowledge, there is no exposition explaining
the approach in general. That is the main goal of this article.

1. INTRODUCTION
The interest in representing numbers as a sum of squares of non-negative

integers is very old and has led to several celebrated results. A classical conjecture
of Fermat from 1640 asserts that any prime p ≡ 1(mod 4) is a sum of two squares
of integers. Fermat claimed that he had a proof but the first formal proof was
given by Euler. Fermat also conjectured that for each n ∈ N, 8n + 3 is a sum
of three squares (of odd integers). In 1796, Gauss proved that every positive
integer n is the sum of 3 triangular numbers; and this statement is essentially
equivalent to Fermat’s conjecture. A year later, Legendre proved that any positive
integer n can be written as a sum of three squares of integers iff n 6= 4i(8k + 7)
for any non-negative integers i and k (see [9]). Based on some work of Euler, in
1722, Lagrange showed that every natural number is a sum of four squares of
integers. In connection with Lagrange’s theorem, Ramanujan raised the problem
of determining all the positive integers a, b, c, d such that every natural number n
is representable in the form ax2 + by2 + cz2 + du2. Such forms are called universal
diagonal quaternary quadratic forms in the literature. He proved that there exist
only 54 such quadruples (a, b, c, d) with 1 ≤ a ≤ b ≤ c ≤ d (see [14]) (in fact,
Ramanujan actually listed 55 such forms which was later corrected to 54 since
one of the forms failed to represent 15, for more details, see [4] and p.341 of [6]).
While we can ask about which integers can be represented by a given quadratic
form, it is also interesting to ask in how many ways a certain integer m can be
represented by that quadratic form. This will be the theme in this article.

2010 Mathematics Subject Classification : 11M06, 20C15
Key words and phrases : Quaternary quadratic forms, Representations, Theta functions, Eta quotie-
nts, Modular forms.

© Indian Mathematical Society, 2017.
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104 ARPITA KAR

For a positive integer k, let rk(n) denote the number of representations of
the non-negative integer n as a sum of k squares of integers, that is, rk(n) is the
number of solutions of the Diopantine equation

x2
1 + · · · x2

k = n (xi ∈ Z, 1 ≤ i ≤ k). (1.1)
We observe that r2(1) = 4. For k = 2, Euler proved that (1.1) is solvable iff each
prime divisor p of n, for which p ≡ 3(mod 4) occurs in n to an even power. Later
the formula

r2(n) = 4{ ∑
d|n

d≡1(4)

1− ∑
d|n

d≡3(4)

1}

was established independently by Gauss using the arithmetic of Z[i] and by Ja-
cobi using elliptic functions. By similar methods, using theta functions, Jacobi
found formulas for r4(n), r6(n), r8(n) (see for eg. p.244 of [15]). Liouville found
formulas for the number of ways of representing an integer as x2 + y2 + 2z2 + 2u2,
x2 + y2 + z2 + 2u2, x2 + 2y2 + 2z2 + 2u2 (see [10] and [11]) by a different method
which is elementary and enigmatic.

Another approach to study the number of representations of a number using
a certain quadratic form is using the theory of modular forms. It has been used
extensively (see [1], [2], [3]), but in theory, to the best of our knowledge, there is
no article which gives a sketch of the method in general. In this note, the general
method to approach this problem using modular forms is being sketched and an
example to illustrate the method is given. We believe Theorem 4.4 and Corollary
4.5 giving an explicit formula for the number of solutions of n = x2 + y2 + z2 +

3w2 are new and have not been stated explicitly in literature before.
2. PRELIMINARIES AND DEFINITIONS

Let N, N0, Z, Q and C denote the sets of positive integers, non-negative
integers, integers, rational numbers and complex numbers, respectively. The sum
of divisors function σ(n) for n ∈N is given by

σ(n) = ∑
m|n

m.

This function will appear often in our formulas.
For a, b, c, d ∈N, n ∈N0, we define

N(a, b, c, d; n) = |{(x, y, z, w) ∈ Z4 : n = ax2 + by2 + cz2 + dw2}|.
We here determine explicit formulas for N(a, b, c, d; n) and then apply the formula
to the case where a = 1, b = 1, c = 1, d = 3. That is, we give an explicit formula
for N(1, 1, 1, 3; n).

Let θ(z) denote Ramanujan’s theta function defined by

θ(z) =
∞

∑
n=−∞

e2πin2z

for z ∈ H where H = {z ∈ C|Im(z) > 0}.
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The Dedekind eta function η(z) is the holomorphic function defined on the
upper half plane H by

η(z) = eπiz/12
∞

∏
n=1

(1− e2πinz).

If we take q = q(z) = e2πiz with z ∈ H and so |q| < 1, we get

η(z) = q1/24
∞

∏
n=1

(1− qn).

We will see later that η(z) and θ(z) are related.
Now it is easy to see that for q ∈ C, writing q = e2πiz, we have

∞

∑
n=0

N(a, b, c, d; n)qn = θ(az)θ(bz)θ(cz)θ(dz),

where we define N(a, b, c, d; 0) = 1.
A Dirichlet character of modulus N is a homomorphism

χ : (Z/NZ)∗ → C∗.
This implies that χ(1) = 1.

Let χ and ψ be Dirichlet characters. For n ∈N, we define σχ,ψ(n) by
σχ,ψ(n) = ∑

1≤m,m|n
ψ(m)χ(n/m)m.

For N ∈ N and a Dirichlet character χ of modulus N, the modular subgroup
Γ0(N) is defined by

Γ0(N) =

{[
a b
c d

]
∈ SL2(Z) : c ≡ 0( mod N)

}
,

where SL2(Z) is the set of all 2 × 2 matrices with integer entries which have
determinant 1.

Let k ∈ Z. Mk(Γ0(N), χ) denotes the vector space of modular forms of weight
k with character χ for Γ0(N), Ek(Γ0(N), χ) and Sk(Γ0(N), χ) denotes the Eisen-
stein subspace and the subspace of cusp forms respectively. It is known that

Mk(Γ0(N), χ) = Sk(Γ0(N), χ)⊕ Ek(Γ0(N), χ).
See [18]. One can review the basic theory of modular forms from [13]. For further
reading, see [5], [7], [8], [12], [15], [16] and [17].

3. SKETCH OF THE GENERAL METHOD

For q ∈ C and z ∈ H, writing q = e2πiz, we have
∞

∑
n=0

N(a, b, c, d; n)qn = θ(az)θ(bz)θ(cz)θ(dz), (3.1)

where N(a, b, c, d; 0) = 1. θ(z) has the following infinite product expansion

θ(z) =
η5(2z)

η2(z)η2(4z)
,

(see p.81 of [13]). So, we see that ∑∞
n=0 N(a, b, c, d; n)qn is given by a certain eta

quotient.
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We will now use the following theorem to determine if certain eta quotients
are modular forms. For a proof, see p.99 of [7]

Theorem 3.1. (Ligozat’s Criterion) Let f (z) be the eta quotient given by

f (z) = ∏
δ

ηrδ(δz)

where δ runs through a finite set of positive integers and rδ are non-zero integers and
there exists a positive integer N which satisfy the following conditions :

(L1) ∑δ|N δ · rδ ≡ 0 (mod 24).
(L2) ∑δ|N

N
δ · rδ ≡ 0 (mod 24).

(L3) For each d|N, ∑δ|N
gcd(d,δ)2·rδ

δ ≥ 0.

Then f (z) ∈ Mk(Γ0(N), χ), where the character χ is given by χ(m) = ((−1)ks
m ) with

weight k = 1
2 ∑δ|N rδ and s = ∏δ|N δrδ .

If (L3) is replaced by

(L4) For each d|N, ∑δ|N
gcd(d,δ)2·rδ

δ > 0,

then f (z) ∈ Sk(Γ0(N), χ), where the character χ is given by χ(m) = ((−1)ks
m ) with

weight k = 1
2 ∑δ|N rδ and s = ∏δ|N δrδ .

Thus Ligozat’s criterion explicitly determines the values of k, N and χ such
that θ(az)θ(bz)θ(cz)θ(dz) ∈ Mk(Γ0(N), χ) where θ(az)θ(bz)θ(cz)θ(dz) is as in
(3.1). Now the next step is to calculate the dimension of Mk(Γ0(N), χ).

Fix a positive integer N. Let ε be a Dirichlet character modulo N. To find a
set of canonical generators for the group (Z/NZ)∗, write N = ∏n

i=0 pei
i where

p0 < p1 < · · · < pn are the prime divisors of N. Each factor (Z/pei
i Z)∗ is a

cyclic group Ci = 〈gi〉, except if p0 = 2 and e0 ≥ 3, in which case (Z/pe0
0 Z)∗

is a product of the cyclic group C0 = 〈−1〉 of order 2 with the cyclic subgroup
C1 = 〈5〉. In all cases we have

(Z/NZ)∗ ∼= ∏
0≤i≤n

Ci.

For i such that pi > 2, choose the generator gi of Ci to be the element of {2, 3, · · · ,
pei

i − 1} that is smallest and generates Ci. Finally use the Chinese Remainder The-
orem to lift each gi to an element in (Z/NZ)∗, also denoted gi, that is 1 modulo
each p

ej
j for j 6= i. Now we will describe how one can compute the conductor of a

character. As a reference for these facts, see page 70 of [18].
The following is the algorithm for computing the order of a Dirichlet character.
(Order of Character). This algorithm computes the order of a Dirichlet character
ε modulo N.

• Compute the order ri of each ε(gi), for each minimal generator gi of
(Z/NZ)∗. The order of ε(gi) is a divisor of n = |(Z/pei

i Z)∗| so we can
compute its order by considering the divisors of n.
• Compute and output the least common multiple of the integers ri.
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The next algorithm factors a character ε as a product of “local” characters.
(Factorisation of Character). Given a Dirichlet character ε modulo N, with N =

∏n
i=0 pei

i , this algorithm finds Dirichlet characters εi modulo pei
i , such that for all

a ∈ (Z/NZ)∗,we have ε(a) = ∏ εi(a(mod pei
i )). If 2|N, the steps are as follows:

• Let gi be the minimal generators of (Z/NZ)∗, so ε is given by a list
[ε(g0), · · · , ε(gn)]

• For i = 2, · · · , n, let εi be the character modulo pei
i defined by the singleton

list [ε(gi)].
• Let ε1 be the character modulo 2e1 defined by the list [ε(g0), ε(g1)] of

length 2. Output the εi and terminate.

If 2 6 |N, then omit the third step and include all i in the second step.
To proceed further, we need to recall the definition of conductor of a Dirichlet

character.

Definition 1 (Conductor). The conductor of a Dirichlet character ε modulo N is the
smallest positive divisor c|N such that there is a character ε′ modulo c for which ε(a) =
ε′(a) for all a ∈ Z with (a, N) = 1. A Dirichlet character is primitive if its modulus
equals its conductor. The character ε′ associated to ε with modulus equal to the conductor
of ε is called the primitive character associated to ε.

(Conductor). The following algorithm computes the conductor of a Dirichlet
character modulo N.

1. [Factor Conductor] Find characters χi whose product is χ.
2. [Computing order] Compute order ri for each χi.
3. [Conductor of factors] For each i, either set ci to be 1 if χi is the trivial

character or set ci = p
ordpi (ri)+1
i , where ordp(n) denotes the largest power

of p that divides n.
4. [Finished] compute product of the ci.

Once we have computed the conductor of the character, we can use it to com-
pute the dimension of the space Mk(Γ0(N), χ). The following theorem gives the
formulae to compute the dimensions of Ek(Γ0(N), χ) and Sk(Γ0(N), χ). For a
reference, see pg. 98 of [18].

Theorem 3.2. We have

dimSk(Γ0(N), χ)− dimM2−k(Γ0(N), χ) =
k− 1

12
µ0(N)− 1/2 ∏

p|N
λ(p, N, νp(c))

+ γ4(k) ∑
x∈A4(N)

χ(x) + γ3(k) ∑
x∈A3(N)

χ(x), (3.2)

where

µ0(N) = ∏
p|N

(pνp(N) + pνp(N)−1),
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A4(N) = {x ∈ Z/NZ : x2 + 1 = 0},

A3(N) = {x ∈ Z/NZ : x2 + x + 1 = 0},

γ4(k) =


−1/4 if k ≡ 2 (mod 4)
1/4 if k ≡ 0 ( mod 4)
0 if k odd,

γ3(k) =


−1/3 if k ≡ 2 (mod 3)
1/3 if k ≡ 0 (mod 3)
0 if k ≡ 1 (mod 3),

and, for p|N, if we put r = νp(N) then

λ(p, N, νp(c)) =


pr/2 + pr/2−1 if 2 · νp(c) ≤ r, 2|r
2 · p(r−1)/2 if 2 · νp(c) ≤ r, 2 - r
2 · pr−νp(c) if 2 · νp(c) > r.

Also,
dim Ek(Γ0(N), χ) = dim Mk(Γ0(N), χ)− dim Sk(Γ0(N), χ),

where

dimMk(Γ0(N), χ) = −

1− k
12

µ0(N)− 1/2 ∏
p|N

λ(p, N, νp(c)


+ γ4(2− k) ∑

x∈A4(N)

χ(x) + γ3(2− k) ∑
x∈A3(N)

χ(x)). (3.3)

Note: Here c denotes the conductor of χ.
Once the dimension of Mk(Γ0(N), χ) is computed, our next goal is to com-

pute a basis for this vector space.
Let χ and ψ be primitive Dirichlet characters with conductors L and R respec-

tively. Let
Ek,χ,ψ(z) = c0 + ∑

m≥1
(∑

n|m
ψ(n)χ(m/n)nk−1)e2πimz, (3.4)

where

c0 =

{
0 if L > 1

− Bk,ψ
2k if L = 1.

When χ = ψ = 1, k ≥ 4, then Ek,χ,ψ = Ek.

Theorem 3.3. Let t > 0 be an integer and χ, ψ be as above, and let k be a positive integer
such that χ(−1)ψ(−1) = (−1)k. Except when k = 2 and χ = ψ = 1, the power series
Ek,χ,ψ(tz) defines an element of Mk(RLt, χ/ψ). If χ = ψ = 1, k = 2, t > 1, and
E2(z) = Ek,χ,ψ(z), then E2(z)− tE2(tz) is a modular form in M2(Γ0(t)).

Theorem 3.4. The Eisenstein series in Mk(Γ0(N), ε) coming from the previous theorem
with RLt|N and χ/ψ = ε form a basis for Ek(Γ0(N), ε).
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For a reference to Theorem 3.3 and Theorem 3.4, see chapter 7 of [12].
Once we have a basis for Ek(Γ0(N), χ), one can compute a basis of Sk(Γ0(N), χ)

using Ligozat’s criterion and combining the two, get a basis for Mk(Γ0(N), χ).
Thus we can write ∑∞

n=0 N(a, b, c, d; n)qn as a linear combination of the basis el-
ements. Finally comparing coefficients of qn on both sides, we can derive an
explicit formula for N(a, b, c, d; n).

It is worth mentioning here that for any positive integer n, N(a, b, c, d; n) 6= 0
for (a, b, c, d) being one of the 54 quadruples that Ramanujan listed in [14]. The
example in the next section will illustrate this fact.

4. COMPUTING THE NUMBER OF REPRESENTATIONS OF AN INTEGER AS

x2 + y2 + z2 + 3u2

In this section, we will determine a formula for N(1, 1, 1, 3; n) using the theory
outlined in the previous section. Since we are interested in N(1, 1, 1, 3; n), we need
to consider f (z) = θ3(z)θ(3z).

Theorem 4.1. f (z) = θ3(z)θ(3z) ∈ M2(Γ0(12), χ) for χ(d) = (24.3
d ).

Proof. Using the infinite product representation for θ(z), we get that

θ3(z)θ(3z) =
η15(2z)η5(6z)

η6(z)η6(4z)η2(3z)η2(12z)
.

Now, using Ligozat’s Criterion for N = 12 and f (z) = θ3(z)θ(3z), we get that
f (z) ∈ M2(Γ0(12), χ)

for χ(d) = (24·3
d ). �

Now our goal is to find a basis for M2(Γ0(12), χ) so that we can write f (z) =

θ3(z)θ(3z) in terms of the basis elements.
To apply the formula mentioned in the previous section, we first need to com-

pute the conductor of χ. Firstly, we see that χ(d) = (24.3
d ) is a character modulo

12.

d 0 1 2 3 4 5 6 7 8 9 10 11
χ(d) 0 1 0 0 0 -1 0 -1 0 0 0 1

Table 1: Table for values of χ.

To factorise χ, we do the following: first we note that
(Z/12Z)∗ ∼= (Z/22Z)∗ × (Z/3Z)∗.

Since (Z/4Z)∗ is generated by {1, 3} and (Z/3Z)∗ is generated by {1, 2}, the
minimal generators for (Z/12Z)∗ are x1 and x2 such that x1 is the lift of (1, 2) ∈
(Z/22Z)∗ × (Z/3Z)∗ and x2 is the lift of (3, 1) ∈ (Z/22Z)∗ × (Z/3Z)∗ respec-
tively to (Z/12Z)∗. Using the Chinese remainder Theorem, we get that x1 = 5
and x2 = 7.
Now we use the algorithm from the previous section and note that χ(5) = −1
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has order 2 in (Z/3Z)∗ and χ(7) = −1 has order 2 in (Z/4Z)∗. Thus, c1 =

2ord2(2)+1 = 4, c2 = 3ord3(2)+1 = 3.
Hence, we get that the conductor of χ is 12. Also,

µ0(12) = 12, λ(2, 12, ν2(12)) = 2,

λ(3, 12, ν3(12)) = 2, A4(12) = ∅, A3(12) = ∅.

Since dim M0(Γ0(12), χ) = 0, applying the dimension formulas, we get that

dim S2(Γ0(12), χ) = 0 and dim E2(Γ0(12), χ) = 4.

Thus, dim M2(Γ0(12), χ) = 4.
We will construct a basis for E2(Γ0(12), χ).

Since |(Z/12Z)∗| = 4, there are 4 Dirichlet characters of modulus 12 over R.
Also since we know that {5, 7}is the set of minimal generators for (Z/12Z)∗,
the Dirichlet characters modulo 12 are given by ε1 = χ, ε2, ε3 and ε4 which are
defined as follows :

• ε1(5) = −1, ε1(7) = −1, ε2(5) = 1, ε2(7) = 1,
• ε3(5) = −1, ε3(7) = 1, ε4(5) = 1, ε4(7) = −1.

Evaluating the conductors of these characters as before, we get that ε2, ε3, ε4 have
conductors 1, 3, 4 respectively. Thus, ε2, ε3, ε4 are primitive Dirichlet characters
modulo 1, 3, 4 respectively.

Theorem 4.2. For ε1, ε2, ε3, ε4 as defined earlier, we define the following power series :

Eε1,ε2(z) =
∞

∑
n=1

σε1,ε2(n)e
2πinz, Eε2,ε1(z) =

∞

∑
n=1

σε2,ε1(n)e
2πinz,

Eε4,ε3(z) =
∞

∑
n=1

σε4,ε3(n)e
2πinz, Eε3,ε4(z) =

∞

∑
n=1

σε3,ε4(n)e
2πinz.

Then these forms Eε1,ε2(z), Eε2,ε1(z), Eε3,ε4(z) and Eε4,ε3(z) form a basis for
E2(Γ0(12), χ) for χ(d) = (24.3

d ).

Proof. First, write q = e2πiz. Then, we consider the following 4 cases :

Case 1: For χ = ε1
ε2

. R = 1, L = 12, t = 1, k = 2,

E2,ε1,ε2(z) = c0 + ∑
m≥1

(∑
n|m

ε2(n)ε1(m/n)n)qm = q + 2q2 + 3q3 + 4q4 + · · · .

Case 2: For χ = ε2
ε1

. R = 12, L = 1, t = 1, k = 2,

E2,ε2,ε1(z) = c0 + ∑
m≥1

(∑
n|m

ε1(n)ε2(m/n)n)qm = −1 + q + q2 + q3 + q4 + · · · .

Case 3: For χ = ε4
ε3

. R = 3, L = 4, t = 1, k = 2,

E2,ε4,ε3(z) = c0 + ∑
m≥1

(∑
n|m

ε3(n)ε4(m/n)n)qm = q− 2q2 − q3 + 4q4 + · · · .
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Case 4: For χ = ε3
ε4

. R = 4, L = 3, t = 1, k = 2,

E2,ε3,ε4(z) = c0 + ∑
m≥1

(∑
n|m

ε4(n)ε3(m/n)n)qm = q− q2 − 3q3 + q4 + · · · .

Then using Theorem 3.4, these four forms form a basis for E2(Γ0(12), χ) for χ(d) =
(24.3

d ). �

Corollary 4.3. For ε1, ε2, ε3, ε4 as defined earlier and the power series Eε1,ε2(z), Eε2,ε1(z),
Eε4,ε3(z), Eε3,ε4(z) as defined in Theorem 4.2, {Eε1,ε2(z), Eε2,ε1(z), Eε4,ε3(z), Eε3,ε4(z)}
form a basis for M2(Γ0(12), χ) for χ(d) = (24.3

d ).

Proof. Since dimS2(Γ0(12), χ) = 0 and Mk(Γ0(N), χ) = Ek(Γ0(N), χ) ⊕
Sk(Γ0(N), χ), we have

dimM2(Γ0(12), χ) = dimE2(Γ0(12), χ) = 4,

from which the result follows in view of previous theorem. �

Theorem 4.4. f (z) = θ3(z)θ(3z) = 6Eε1,ε2(z)− Eε2,ε1(z)− 2Eε4,ε3(z) + 3Eε3,ε4(z).

Proof. We have

f (z) = θ3(z)θ(3z) = (
∞

∑
n=−∞

e2πin2z)3(
∞

∑
n=−∞

e2πi3n2z)

= (1 + 2 ∑
n≥1

e2πin2z)3(1 + 2 ∑
n≥1

e2πi3n2z).

Using our basis, this is equal to
aEε1,ε2(z) + bEε2,ε1(z) + cEε4,ε3(z) + dEε3,ε4(z),

for certain a, b, c and d. Then writing q = e2πiz and from the proof of Theorem 4.2,
comparing coefficients of q0, q1, q2 and q3 on both sides of the equality, we get
−b = 1 or b = −1, a + b + c + d = 6, 2a + b− 2c− d = 12, 3a + b− c− 3d = 10.

Solving these equations for a, b, c, d we obtain a = 6, b = −1, c = −2 and d = 3
which proves the theorem. �

Corollary 4.5. N(1, 1, 1, 3; n) = 6σε1,ε2(n)− σε2,ε1(n)− 2σε4,ε3(n) + 3σε3,ε4(n).

Proof. Since for q = e2πiz, we have ∑∞
n=0 N(1, 1, 1, 3; n)qn = θ(z)3θ(3z)

and using Theorem 4.4, we have
θ3(z)θ(3z) = 6Eε1,ε2(z)− Eε2,ε1(z)− 2Eε4,ε3(z) + 3Eε3,ε4(z),

the result follows. �

Now, let us illustrate in an example that the formula indeed works. Consider
the case when n = 10. Let us try to compute N(1, 1, 1, 3; 10).
σε1,ε2(10)= ε2(1)ε1(10) · 1 + ε2(2)ε1(5) · 2 + ε2(5)ε1(2) · 5 + ε2(10)ε1(1) · 10 = 8.

σε2,ε1(10)= ε1(1)ε2(10) · 1 + ε1(2)ε2(5) · 2 + ε1(5)ε2(2) · 5 + ε1(10)ε2(1) · 10=−4.
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σε4,ε3(10)= ε3(1)ε4(10) · 1+ ε3(2)ε4(5) · 2+ ε3(5)ε4(2) · 5+ ε3(10)ε4(1) · 10 = 8.

σε3,ε4(10)= ε4(1)ε3(10) · 1+ ε4(2)ε3(5) · 2+ ε4(5)ε3(2) · 5+ ε4(10)ε3(1) · 10= −4.

Then, by Corollary 4.5,

N(1, 1, 1, 3; 10) = (6 · 8)− (−4)− (2 · 8) + (3 · (−4)) = 24.
Let us explicitly write down the representations of 10 as x2 + y2 + z2 + 3u2.

Firstly, note that u = 0. This is because u cannot be greater than equal to 2. If u =

1, then 7 must be written as a sum of three squares which is not possible. Thus,
the possibilities are (x, y, z, u) = (0, 1, 3, 0), (x, y, z, u) = (0,−1, 3, 0), (x, y, z, u) =
(0, 1,−3, 0) and (x, y, z, u) = (0,−1,−3, 0). But also, since u remains fixed, the
values of x, y, z can be permuted in 3! ways. Thus, total number of representations
of 10 as x2 + y2 + z2 + 3u2 is 4 · (3!) which equals 24 which is what we got using
Corollary 4.5.

CONCLUDING REMARKS

The example illustrates that in theory, it is possible to derive explicit formulas
for the number of representations of n as ax2 + by2 + cz2 + du2 for each (a, b, c, d)
in Ramanujan’s list ([14]). One can find numerous papers in the literature that
address sporadic cases of this strategy (see for eg. [1], [2], [3]). The purpose of
this paper was to acquaint the student with the theoretical framework through
which all of these papers can be understood.
Acknowledgment. I would like to thank Professor Ram Murty for introducing
me to this problem and guiding me in my Master’s study during which I worked
on this problem and obtained the results of section 4. I also thank the referee for
detailed comments on the original version of this article.
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Abstract. Euler’s famous partition identity asserts that the number of par-

titions of an integer n into odd parts equals the number of partitions of n into

distinct parts. This paper examines what happens if one even part might be

allowed among the odd parts or one part might be repeated thrice among

distinct parts. This study yields proofs of two conjectures of George Beck.

1. Introduction

Our starting point is sequence A090867 in the On-Line Encyclopedia of Integer

Sequences [3]. The sequence in question, a(n), counts the number of partitions of

n such that the set of even parts has only one element. Thus a(5) = 4 where the

relvant partitions are 4 + 1, 3 + 2, 2 + 2 + 1 and 2 + 1 + 1 + 1.

The sequence a(n) is a natural one to investigate in the light of Euler’s theorem

[1, p. 5, Cor. 1.2]:

The number of partitions of n into odd parts equals the number of partitions of

n into distinct parts.

Thus, the partitions counted by a(n) are much like Euler’s partitions with odd

parts except now a single even number occurs as a part (possibly repeated).

Also on the page for A090867, we find the following conjecture by George Beck:

Conjecture. a(n) is also the difference between the number of parts in the odd

partitions of n and the number of parts in the distinct partitions of n (offset 0).

For example, if n = 5, there are 9 parts in the odd partitions of 5 (5, 311, 11111)

and 5 parts in the distinct partitions of 5 (5, 41, 32), with difference 4.

– George Beck, Apr 22, 2017

Let us define b(n) to be the difference between the number of parts in the odd

partitions of n and the number of parts in the distinct partitions of n.

While we are at it, let us define c(n) to be the number of partitions of n in

which exactly one part is repeated. Thus c(5) = 4 with the relevant partitions

being 3 + 1 + 1, 2 + 2 + 1, 2 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1.

Theorem 1. For all n ≥ 1, a(n) = b(n) = c(n).

2010 Mathematics Subject Classification : 11P83

Key words and phrases : Euler’s partition identity, partitions.

c© Indian Mathematical Society, 2017 .
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116 GEORGE E. ANDREWS

So far we have seen that the theorem is true for n = 5. Our proof relies on

generating functions and differentiation. There are many combinatorial proofs of

Euler’s Theorem (cf. [2]). Can one prove this new theorem combinatorially?

In section 3, we treat a further conjecture of George Beck also related to Euler’s

theorem.
2. Proof of the Theorem 1

Proof. As mentioned in the introduction, we require the generating functions for

our sequences:

A(q) =
∑
n≥0

a(n)qn, (2.1)

B(q) =
∑
n≥0

b(n)qn, (2.2)

and

C(q) =
∑
n≥0

c(n)qn. (2.3)

To prove our theorem, we shall show that each of A(q), B(q) and C(q) is equal to
∞∏

n=1

1

1− q2n−1

∞∑
m=1

q2m

1− q2m
. (2.4)

The equality of the generating functions then proves the theorem.

Throughout our proof we shall require the following elegant, elementary identity

of Euler used by him to prove his theorem [1, p.5, eq. (1.2.5)] for |q| < 1,
∞∏

n=1

1

1− q2n−1
=
∞∏

n=1

(1− q2n)

(1− qn)
=
∞∏

n=1

(1 + qn) (2.5)

Let us do the easiest part first.

C(q) =
∞∑

n=1

(q2n + q2n+2n + q2n+2n+2n + · · · )
∞∏

m=1

1

1− q2m−1

=

( ∞∑
n=1

q2n

1− q2n

) ∞∏
m=1

1

1− q2m−1
,

and we have establish that C(q) is the expression in (2.4).

The next easiest part is A(q). Clearly A(q) is the coefficient of z in
∞∏

n=1

(1 + qn + zqn+n + zqn+n+n + · · · ) =
∞∏

n=1

(
1 + qn +

zq2n

1− qn

)
,

and the coefficient of z is:

∞∑
n=1

q2n

1− qn

∞∏
m=1
m6=n

(1 + qm) =
∞∏

m=1

(1 + qm)
∞∑

n=1

q2n

1− qn
· 1

1 + qn

=
∞∏

m=1

(1 + qm)
∞∑

n=1

q2n

1− q2n
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=
∞∏

m=1

1

1− q2m−1

∞∑
n=1

q2n

1− q2n

by (2.5). Hence A(q) is also equal to the expression in (2.4).

Finally, we have the trickier problem of B(q). In the infinite product
∞∏

n=1

1

1− zq2n−1
,

the coefficient of zMqN is the number of partitions of N into M odd parts, and in

the infinite product
∞∏

n=1

(1 + zqn),

the coefficient of zMqN is the number of partitions of N into M distinct parts [1,

Ch. 2, p. 16].

So if we differentiate each of these functions with respect to z we will then be

counting each partition with M parts with weight M .

Consequently

B(q) =
∂

∂z

∣∣∣∣
z=1

( ∞∏
m=1

1

(1− zq2m−1)
−
∞∏

m=1

(1 + zqm)

)

=

∞∑
n=1

q2n−1

(1− q2n−1)2

∞∏
m=1
m6=n

1

1− q2m−1
−
∞∑

n=1

qn
∞∏

m=1
m6=n

(1 + qm)

=
∞∏

m=1

1

1− q2m−1

∞∑
n=1

q2n−1

1− q2n−1
−
∞∏

m=1

(1 + qm)
∞∑

n=1

qn

1 + qn

=
∞∏

m=1

1

1− q2m−1

( ∞∑
n=1

q2n−1

1− q2n−1
−
∞∑

n=1

qn

1 + qn

)
(by (2.5))

=
∞∏

m=1

1

1− q2m−1

( ∞∑
n=1

q2n−1

1− q2n−1
−
∞∑

n=1

qn(1− qn)

1− q2n

)

=

∞∏
m=1

1

1− q2m−1

∞∑
n=1

q2n

1− q2n

+
∞∏

m=1

1

1− q2m−1

( ∞∑
n=1

q2n−1

1− q2n−1
−
∞∑

n=1

qn

1− q2n

)
,

=
∞∏

m=1

1

1− q2m−1

∞∑
n=1

q2n

1− q2n
, (2.6)

because
∞∑

n=1

q2n−1

1− q2n−1
=
∞∑

n=1

∞∑
m=1

qm(2n−1) =
∞∑

m=1

qm

1− q2m
,

and (2.6) establishes that B(q) is also equal to the expression in (2.4). �
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3. George Beck’s Second Problem

In the On-Line Encyclopedia of Integer Sequences, we also find sequence A265251.

The sequence in question, a1(n), is the number of partitions of n such that there is

exactly one part ocurring three times while all other parts occur only once. George

Beck made the following:

Conjecture. a1(n) is also the difference between the number of parts in the

distinct partitions of n and the number of distinct parts in the odd partitions of

n (offset 0). For example, if n = 5, there are 5 parts in the distinct partitions of

5 (5, 41, 32) and 4 distinct parts in the odd partitions of 5 (namely, 5, (3, 1),

1 in 5, 311, 11111) with difference 1.

–George Beck, Apr 22, 2017

Here we define b1(n) to be the difference between the total number of parts in

the partitions of n into distinct parts and the total number of different parts in

the partitions of n into odd parts.

Theorem 2. a1(n) = b1(n).

Proof. We let

A1(q) =
∑
n≥0

a1(n)qn

,
and

B1(q) =
∑
n≥0

b1(n)qn

. As in the proof of Theorem 1, we see that A1(q) is the coefficient of z in
∞∏

n=1

(1 + qn + zq3n).

Hence

A1(q) =

∞∏
n=1

(1 + qn)

∞∑
n=1

q3n

1 + qn
. (3.1)

Next, as in our treatment of B(q), we see that B1(q) must be

B1(q) =
∂

∂z

∣∣∣∣
z=1

( ∞∏
n=1

(1 + zqn)−
∞∏

n=1

(
1 +

zq2n−1

1− q2n−1

))

=
∞∏

n=1

(1 + qn)
∞∑

m=1

qm

1 + qm
−
∞∏

n=1

1

1− q2n−1

∞∑
m=1

q2m−1

Hence by (2.5)

A1(q)−B1(q)

=
∞∏

n=1

(1 + qn)

( ∞∑
n=1

q3n

1 + qn
−
∞∑

n=1

qn

1 + qn
+

q

1− q2

)
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=
∞∏

n=1

(1 + qn)

(
−
∞∑

n=1

qn(1− q2n)

1 + qn
+

q

1− q2

)

=
∞∏

n=1

(1 + qn)

(
−
∞∑

n=1

qn(1− qn) +
q

1− q2

)

=
∞∏

n=1

(1 + qn)

(
− q

1− q
+

q2

1− q2
+

q

1− q2

)
= 0,

and Theorem 2 is proved. �

4. Conclusion

It would be very interesting to provide bijective proofs of any of the assertions

in our theorems. As we noted, there are many bijective proofs of Euler’s theorem.

It might also be interesting to examine what would happen if we were to allow

repetitions of two different parts or appearances of two even parts, but the dif-

ferentiation technique suggests that the resulting theorems would be messy and

somewhat unattractive.

References

[1] Andrews, G. E., The Theory of Partitions, Addison-Wesley, Reading, 1976 (Reprinted:

Cambridge University Press, Cambridge, 1985).

[2] Andrews, G. E., Euler’s partition identity-finite version, The Math. Student, 85, Nos. 3-4,

(2016), 99–102.

[3] The On-Line Encyclopedia of Integer Sequences, Sequence A090867, https://oeis.org.

[4] The On-Line Encyclopedia of Integer Sequences, Sequence A265251, https://oeis.org.

George E. Andrews

Department of Mathematics

The Pennsylvania State University

University Park, PA 16802, USA

E-mail gea1@psu.edu



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

120



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

The Mathematics Student ISSN: 0025-5742
Vol. 86, Nos. 1-2, January-June (2017), 121-131

THE ART OF RESEARCH

M. RAM MURTY

As we all know, there is no simple algorithm for research. There is no recipe
for making new discoveries. It is a mysterious and inscrutable process. However,
we know that this process has some guiding principles. It is the purpose of this
article1 to discuss these principles in a general way, illustrating them with exam-
ples from science and mathematics. Naturally, these examples will have some
personal bias.

So let us begin. What exactly is research? In one sentence, it can be said to be
the art of asking good questions. In our search for understanding, the SOCRATIC
method of questioning is the way.

Let us observe that the word ‘Question’ has as root word ‘Quest’. In our
quest for understanding, the method of questioning seems to be the only way.
Socrates taught Plato that all ideas must be examined critically and fundamental
questions must be asked and pursued in order to gain proper understanding.
Buddha instructed his disciple Ananda to question, to reflect deeply. As most
of you know, Buddha advocated clear thinking. Socrates was adamant about
definitions and in mathematics too, definitions are very important.

This method is not infallible. But it is the only way we have available. Some
basic questions seem to defy simple answers. But this doesn’t stop us from asking
them. Often, the inquiry is a good exercise for the mind, and maybe it is the
exercise that is the most important thing rather than complete understanding.
Nevertheless, one can enquire into the nature of understanding itself. But then,
this would take us into the realm of philosophy. This is not our goal here.

Our goal here is to explore how asking proper questions leads to some form
of knowledge and understanding. We must keep in mind that each person brings
their own past knowledge and experience to deal with the question. Each one
brings their own methodology. Let us take an example

In a room, there are five people: an engineer, a physicist, a mathematician, a
philosopher and an accountant. They are asked the simple question: what is 2+2?

∗ Research partially supported by an NSERC Discovery grant.
1 This article is based on a public lecture given at the Tata Institute of Fundamental Research in
Mumbai, India, some years ago. It is presented here in the hope that students may profit from it so
that the ideas can gain a wider circulation

© Indian Mathematical Society, 2017.
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122 M. RAM MURTY

The engineer takes out his calculator and says the answer is 3.99. The physicist
runs an experiment and finds the answer is between 3.8 and 4.2. The mathemati-
cian says he doesn’t know the answer but can show that it exists. The philosopher
asks for the meaning of the question. The accountant closes all doors and asks,
‘What would you like the answer to be?’

Let us begin with some famous questions. What is life? This is the most
basic question. It is related to ‘What is consciousness?’ and we still don’t have
a satisfactory answer. What is time? This is one of the most difficult questions
to deal with and invariably takes us simultaneously into physics and philosophy.
What is space? What is light? These questions have baffled the physicists for
centuries and much of modern physics is the outcome of this inquiry. What is
a number? This question has led to the development of mathematics. There are
other questions that seem unrelated to any of these and are seemingly simple,
like ‘What is a knot?’ Yet, on inquiry, we find it is related to the notion of number
and the notion of light, as I will briefly indicate at the end of this article.

As I said, existential questions take us into the realm of philosophy. But
there are other perhaps simpler questions one can ask and the inquiry into them
quickly leads us to some understanding. So how to ask ‘good’ questions? What
is a ‘good’ question? It is one that leads us to new discoveries. Below, we will
present eight methods of generating good questions and we call this the ‘Eight-
fold way’, to borrow a phrase from Buddhist philosophy.

The simplest method of generating good questions is the survey method.
This method consists of two steps. After selecting the topic to survey, we gather
all the facts about the topic and then organize them. Arrangement of ideas leads
to understanding. The amazing thing is that in this process, what is missing is
also revealed. The method quickly leads to fundamental questions.

A good example is given by the discovery of the periodic table. Dimitri
Mendeleev organized the existing knowledge of the elements and was surprised
to find a periodicity in the properties of the elements. Mendeleev was born in
1834 in Siberia and was the last of 17 children. Those who think that writing grad-
uate level textbooks is not research perhaps should think again! In the process of
writing a student text in chemistry, Mendeleev decided to gather all the facts then
known about the elements and organize them according to atomic weight. In this
way, he was able to predict the existence of new elements. In 1875, six years after
Mendeleev published his periodic table, the first of his predicted elements was
discovered. This was gallium, which is an essential component of the electronics
industry. For example, the liquid crystal displays in digital watches and calcu-
lators are based on gallium technology. Shortly after the discovery of gallium,



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

THE ART OF RESEARCH 123

scandium was found. Then, germanium was discovered. These names also sug-
gest the nationalities of the discoverers. The race for finding the missing elements
soon became a form of national pride! And the race was on! Every time some-
one discovered a missing element, they got the Nobel Prize in chemistry! Today
more than a century after Mendeelev suggested the periodic table, it was finally
complete. It now sits as the presiding deity in all chemistry laboratories.

A similar survey method can be found in the writings of the mathematician
David Hilbert. Born in 1862, Hilbert studied under Lindemann (who first proved
that π is transcendental) and obtained his doctorate in 1885 from the University
of Göttingen. Hilbert’s list of 69 doctoral students is quite illustrious and includes
Courant, Hecke, Takagi, Weyl and Zermelo.

Hilbert’s approach to mathematics has always been that of an organizer of
knowledge. He would set out to write a definitive textbook on a specific area
of mathematics and invariably would find new and fundamental questions the
answers to which led to rudimentary discoveries in mathematics. In 1900, at the
International Congress of Mathematicians in Paris, Hilbert organized 23 prob-
lems which he considered important in mathematics. Six of these problems deal
with the notion of number and have acted as a catalyst in the development of
number theory.

• The 7th problem led to the development of transcendental number theory.
• The 8th problem is the Riemann hypothesis that plays a major role in

analytic number theory.
• The 9th problem led to the development of reciprocity laws in algebraic

number theory.
• The 10th problem led to the development of logic and diophantine set

theory.
• The 11th problem led to the theory of quadratic forms and the 12th to

class field theory, which began as a part of algebraic number theory and
now is expanding into the realm of representation theory.

At the dawn of the 21st century, a similar program was launched. In the year
2000, the Clay Mathematical Institute designated 7 problems of mathematics as
millenium problems and is offering a prize of one million dollars U.S. for the
solution of any of the following problems:

• 1. P = NP ;
• 2. The Riemann hypothesis;
• 3. The Birch and Swinnerton-Dyer conjecture;
• 4. The Poincaré conjecture;
• 5. The Hodge conjecture;
• 6. The Navier-Stokes equations;
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• 7. The Yang-Mills theory.

As far as I know, only one of these problems has been solved and that is the
Poincaré conjecture. In 2003, Grigori Perelman in a series of papers posted on
the arxiv [4], [5], [6] settled the Poincaré conjecture but turned down the million
dollar prize! In 2006, he was awarded the Fields Medal but again turned it down
saying that “I am not interested in money or fame. I don’t want to be on display
like an animal in a zoo!” 1

Further details about the Clay problems can be found at www.claymath.org.
There the reader will find survey lectures in video format. You will undoubtedly
find many more questions that need to be answered from these surveys. Thus, we
see that the survey method is a powerful way to generate fundamental research
questions.

The next method is the method of observations. Careful observations lead
to patterns and patterns lead to the question why? In physics, the famous 1887
experiment of Michelson and Morley to determine the speed of light, first with
reference to a stationary frame of reference and next with reference to a mov-
ing frame of reference was based on careful observations. They found that the
velocity of light is constant and no evidence for the postulated ether. This was
revolutionary and led to the special theory of relativity by Albert Einstein.

Another example of the power of observation leading to discovery is the
apocryphal story of Archimedes. King Hiro commissioned a goldsmith to make
a crown and was wondering if the goldsmith had stolen some gold. So he asked
Archimedes to find out without destroying the crown. Archimedes started to
ponder this and went to take a bath and noticed that the volume of water dis-
placed was proportional to his weight. Immediately, his mind made the connec-
tion. The amount of gold given by the king should displace the same amount of
water as the king’s crown. If not, the goldsmith had taken some of the gold and
replaced it with a baser metal. He was so happy with this discovery that he went
running through the streets of Syracuse shouting “Eureka” (I have found it!) and
forgot that he was taking a bath! Incidentally, the story is that the goldsmith had
indeed cheated the king of some gold!

Often, we are unable to determine what impact our discovery will have. The
role of the scientist is simply to investigate and report.

Careful observations lead to the discovery of patterns and consequently to
conjectures. Certain conjectures gain prominence and act as powerful induce-
ments for the development of a subject. Fermat’s last theorem is a good example.

In 1637, Pierre de Fermat, who was a lawyer by profession, was reading Ba-
chet’s translation of the work of Diophantus when he came across the discussion

1BBC News, March 24, 2010.
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of Pythagorean triples. This led him to wonder if the same works for higher pow-
ers and he was led to conjecture that for any n > 2, one cannot find three positive
integers a, b, c such that

an + bn = cn.
Then, he wrote in the margin of the book that he had a wonderful proof of this
fact, but the margin was too narrow to contain it!

Let us look more closely at Fermat’s marginal note. First, the tome that Fer-
mat was reading had very wide margins and so if Fermat had a proof, it must
have been very long! One of my students told me that Fermat must have had a
proof since he was a lawyer by profession and lawyers always tell the truth!

As most of you know, Fermat’s last theorem was finally solved by a galaxy of
mathematicians, culminating in the work of Andrew Wiles[11] in 1996. This proof
certainly cannot be the one Fermat may have had in mind since it uses many ideas
with which Fermat was unfamiliar with and hadn’t been discovered yet. To trace
the development of these new ideas, we look at another great mathematician who
had the uncanny ability of making powerful and incisive conjectures.

This is Srinivasa Ramanujan, who discovered the importance of the τ -function
and isolated it for further study. Ramanujan was born in the city of Erode in
present-day Tamil Nadu. He is certainly one of the wonders to come out of the
dust of India since he more or less educated himself by reading books and doing
problems.

Ramanujan was never averse to making extensive calculations on his slate,
since he didn’t have much paper. Most of his findings, he would store in his
brain. He studied the τ -function defined as follows. τ(n) is the coefficient of qn

in the infinite product expansion

q
∞∏
r=1

(1− qr)24.

He computed (see [7] and the table on the next page) by hand the first 30 values
of the τ -function. What he observes is that τ is multiplicative and he makes his
three famous conjectures concerning its behaviour.

(1) τ(mn) = τ(m)τ(n) for (m,n) = 1.
(2) for p prime, and a > 1, we have τ(pa+1) = τ(p)τ(pa)− p11τ(pa−1).
(3) |τ(p)| 6 2p11/2, p prime.

The first two of his conjectures were proved by Mordell [2] the year after Ra-
manujan made the conjecture and third one defied attempts by many celebrated
mathematicians, until 1974, when Deligne[1] solved it as a consequence of the
Weil conjectures. For this work, Deligne was awarded the Fields medal. As we
shall see, these conjectures play a vital role in the final solution of Fermat’s last
theorem. For more details, the reader is referred to the forthcoming monograph
[3].
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n τ(n) n τ(n)

1 1 16 987136
2 -24 17 -6905934
3 252 18 2727432
4 -1472 19 10661420
5 4830 20 -7109760
6 -6048 21 -4219488
7 -16744 22 -12830688
8 84480 23 18643272
9 -113643 24 21288960

10 -115920 25 -25499225
11 534612 26 13865712
12 -370944 27 -73279080
13 -577738 28 24647168
14 401856 29 128406630
15 1217160 30 -29211840

The fourth method of generating questions (and perhaps the most difficult
one) is by the method of re-interpretation. Why I have listed it here will become
apparent by the end of the article. This method tries to examine what is known
from a new vantage point. An excellent example is given by gravitation.

As most of you know, Isaac Newton first formulated the mathematical theory
of universal gravitation. However, much of his theory relied on careful observa-
tions that Tycho Brahe and Johannes Kepler made concerning planetary orbits.

For Isaac Newton, gravity is a force and he was able to formulate the inverse
square law F = Gm1m2/r

2 familiar to all of us from high school. On the other
hand, for Albert Einstein, gravity is curvature of space.

So let us see how Einstein re-interpreted Newton’s theory of gravitation. The
surface of the universe is a 3-dimensional manifold. A sun or a planet kind of
sits on this surface and consequently distorts the space around it depending on
how massive it it. This view has serious implications to the behaviour of light.
Thus, one of the consequences is the study of light in such gravitational fields.
Light, as it travels on this surface must be therefore influenced by the distortions
of space caused by massive gravitational fields and so it was predicted that such
a phenomenon can probably be observed during a total eclipse of the sun. So in
1919, scientists were able to verify this phenomenon.

This was one spectacular victory for the theory of relativity. Its mathematical
predictions were verified by numerous experiments. Perhaps the most spectacu-
lar illustration of this bending of light was the discovery in 1979 of a twin quasar.
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It was long predicted that if a massive galaxy was in the line of sight between us
and a quasar (quasi-stellar object of the size of our solar system) we would see
a “double” and sure enough, this was verified in 1979 and this bending of light
phenomenon is now a powerful tool in astrophysics.

Another anomaly resolved by relativity that Newton’s theory could not ex-
plain is the orbit of Mercury, which was noticed to be not a perfect ellipse. It
doesn’t quite close upon itself and is called the precession of the perihelion of
Mercury. Einstein’s theory of relativity could explain this coming from the grav-
itational field curvature, since Mercury was closest to the sun, and so would feel
this effect more than the other planets. This too has now been verified.

Perhaps the most powerful prediction of relativity theory is the existence of
black holes, and it was in 1928 that Subramanyan Chandrasekhar worked out
this consequence as a graduate student. As we all know, we see objects because
light is reflected off of them. When a star dies, it can do one of three things: it can
become very cold and become what is called a white dwarf; or it could explode
and be a nova, or it can collapse into itself and become a black hole. All of these
discoveries were possible only by re-interpreting gravity as curvature.

Let us look at an example of the method of re-interpretation in mathematics.
Everyone is familiar with the unique factorization theorem. This says that every
natural number can be written as a product of prime numbers uniquely. Euler
reformulated this fact in an analytic fashion by introducing the zeta function. He
did this by considering the Dirichlet series:

∞∑
n=1

1

ns
.

Since every natural number can be written as a product of prime numbers
uniquely, this series can be written as an infinite product over prime numbers:

∏
p

(
1− 1

ps

)−1
.

Euler gave an analytic proof of the infinitude of primes by noting that both sides
converge absolutely for <(s) > 1 and when we take the limit as s→ 1+, the series
diverges and so the product must also diverge, showing the infinitude of primes.

However, it was Riemann who stressed that the zeta function must be stud-
ied as a function of a complex variable so that we can gain a better understanding
of the distribution of prime numbers. As we shall see, this reformulation of the
unique factorization theory re-emerges as a theory of Euler products in the fa-
mous Langlands program.

Yet another example of re-interpretation occurs in the work of Dedekind in
algebraic number theory. Following some early work of Kummer, it was clear
that the unique factorization theorem did not generally extend to the rings of
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integers of algebraic number fields. Dedekind realized that one needed to replace
the notion of a number by the notion of an ideal. He was led to this idea by re-
interpreting divisibility. A natural number d divides n if and only if

dZ ⊇ nZ.

“To contain is to divide” became the aphorism for Dedekind’s development of
algebraic number theory. This re-interpretation transformed number theory and
propelled it to major advances in the 19th and 20th centuries.

Another dynamic method for research is the method of analogy. When two
theories are analogous, or exhibit some similarities, we try to see if ideas in one
theory have analogous counterparts. For instance, the zeta function, and the Ra-
manujan’s zeta function exhibit similarities in that they both have Euler products
and functional equations. This analogy was first pushed by Erich Hecke in his
study of the theory of modular forms. It also signalled the beginning of a gen-
eral theory of L-functions and connected representation theory with number the-
ory in a fundamental way. Building on the work of Harish-Chandra, Langlands
showed how one can attach L-functions to representations of adele groups. This
is the foundation for the Langlands program.

Another profound example of the method of analogy from physics is the
Doppler effect. When a train approaches you, the pitch of sound is high and
as it moves away, the pitch gets lower. This behaviour with sound waves was ex-
tended to light waves by Doppler and used to explain the red shift of stars. When
the stars are approaching us, there is a red shift in their spectra and when they
are moving away from us, there is a blue shift. This discovery was fundamental
in explaining the expansion of the universe.

In a much more down-to-earth application of the Doppler effect, we see that
police radar really makes use of the Doppler effect to record the speed of cars.

The strength of analogy is best illustrated in mathematics by the discovery of
arithmetic of function fields over finite fields. Hilbert and others already noticed
there was an analogy between complex function theory and algebraic number
theory. But at the dawn of the 20th century, beginning with the doctoral work of
Emil Artin, a new kind of zeta function was discovered which showed structural
similarity to the Riemann zeta function but was much simpler to study. Artin con-
jectured the analog of the Riemann hypothesis for his zeta function and this was
proved later by Hasse. But these reflections led Weil to study the zeta functions
attached to curves and show the Riemann hypothesis held for these functions as
well. Finally, in his epochal paper of 1949 [8], he formulated what became known
as the Weil conjectures and these were settled by Deligne [1] in 1974, a part of
which led to the proof of the Ramanujan conjecture. In his reflective essay [9],
Weil records how he was led to his conjectures. “In 1947, in Chicago, I felt bored
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and depressed, and, not knowing what to do, I started reading Gauss’s two mem-
oirs on biquadratic residues, which I have never read before. The first one deals
with the number of solutions of ax4 − by4 = 1 over finite fields and the second
one with ax3 − by3 = 1. Then I noticed similar principles can be applied to all
equations of the form axm + byn + czr + · · · = 0 and this implies the truth of the
so-called Riemann hypothesis for diagonal equations.”

The Rosetta stone was discovered in 1799 and inscribed in the stone were
three scripts: hieroglyphics, demotic and ancient Greek. Since scholars knew
ancient Greek, they could decipher the other two scripts. It was in this way, the
Egyptian hieroglyphs were decoded. Weil makes the analogy to the Rosetta stone
when he compares the analogy between the number field, the function field over
the finite field case and the complex function theoretical frame with its rich legacy
of algebraic topology. The fascinating account is recorded in [10].

The method of transfer is to transfer an idea from one area of study to another.
Again, a good example is again of the Doppler effect used in weather prediction.
Microwaves are bounced off clouds to see if there are particles there that will
cause precipitation and if so, how fast these clouds will be approaching us. As
we all know, this is not a fool-proof method but it is approximately true and is a
good illustration of the principle of transfer.

A seventh method is induction. This is essentially the method of generaliza-
tion. Here is a simple example of how one uses the method of induction.

13 + 23 + · · ·n3 = (1 + 2 + · · ·n)2 .
A more sophisticated example is from the theory of L-functions alluded to earlier.
GL(1) and GL(2) are two layers of a larger hierarchy. The Langlands program
was largely suggested by induction.

The converse method of generating questions is simple enough. Whenever
A implies B, we can ask if B implies A. This is called the converse question. A
good example occurs in physics in the discovery of electromagnetism.

Around 1820, Oersted performed a historic experiment to show that an elec-
tric current creates a magnetic field. It was only a question of time before some
one asked if the converse is true? That someone was Michael Faraday. Shortly af-
ter, he showed by experiment that the converse was true. A magnetic field creates
an electric current.

The story is that when Faraday gave a public lecture demonstrating electro-
magnetic induction, the prime minister asked him of what use is it. Faraday
responded by saying, “I don’t know, but I am sure that someday you will figure
out a way to tax it!” And he was right!

The converse method was also fundamental in the resolution of Fermat’s last
theorem. We have seen that the Riemann zeta function and the Ramanujan zeta
functions have similar properties. We also learned that Langlands constructs
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many more zeta functions from automorphic representations. The question of
whether all such objects arise from automorphic representations is called con-
verse theory in the Langlands program. Langlands proved a 2-dimensional spe-
cial case of a prediction of this theory.

This was the starting point for the proof by Wiles of Fermat’s last theorem. To
compress three centuries of history is difficult. However many mathematicians
played a vital role in the genesis of the solution: Fermat, Euler, Kummer, Rie-
mann, Ramanujan, Hecke, Rankin, Selberg, Taniyama, Shimura, Weil, Iwasawa,
Frey, Serre, Mazur, Ribet, Langlands, Taylor and Wiles. Inspired by some earlier
work of Hasse, Taniyama predicted that L-functions attached to elliptic curves
come from automorphic representations. This was made a bit more precise by
Shimura and Weil. Then in 1985, Frey (and independently Hellegouarch), noticed
that such a conjecture may imply Fermat’s last theorem. This connection was
then made more precise in some fundamental conjectures of Serre and Mazur,
and then Ribet proved a special case of these conjectures. Ribet then showed
that Taniyama’s conjecture implies Fermat’s last theorem. It was at this point
that Wiles was inspired to prove the Taniyama conjecture. Beginning with the
fundamental work of Langlands, he showed how one can construct a modular
form whose L-series is the same as the L-series of a given elliptic curve over the
rationals. At first, his announced proof of 1995 had a gap in it which was subse-
quently corrected in a joint paper of his with Taylor. With this, the proof of FLT
was complete.

What are the future directions of research? In the last two decades, some
new connections have been discovered linking Feynman diagrams, knot theory,
zeta functions, and more generally, multiple zeta functions. This is a novel theme
linking number theory and physics and will undoubtedly inspire many more dis-
coveries. This is the way science progresses: through small steps by innumerable
researchers. This gives us hope. We can all join in the adventure of expanding
human knowledge.

To summarise, we have seen there are eight methods of generating good
questions in the art of research. They are

• Survey,
• Observations,
• Conjectures,
• Re-interpretation,
• Analogy,
• Transfer,
• Induction and
• Converse,
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giving us the acronym of SOCRATIC.
Science has come very far in expanding our vision. The Hubble telescope has

been able to look very deep into outer space, as far as the coma cluster of galaxies
whose movement subtantiates the claim for dark matter. If we are able to see this
far, it is not that we have stood on the shoulders of giants, but rather because it is
the power of the human mind to question, to inquire, that we have exercised.
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Abstract. The Eisenstein series for the full modular group satisfy a well

known recursion. We present a recursive formulation for Hecke Eisenstein

series of odd level in terms of the Weierstrass zeta-function using only el-

ementary facts about Gauss sums and L-functions. The Eisenstein series

associated with primitive Dirichlet characters χ are expressed as linear com-

binations of Weierstrass zeta-values at division points.

1. Introduction

The Weierstrass ℘ function

℘ := ℘(z | τ) =
1

z2
+
∞∑
n=1

(2n+ 1)G2n(τ)z2n. (1.1)

generates the holomorphic Eisenstein series on SL(2,Z) with Fourier expansion

G2k(τ) = 2ζ(2k) +
4ζ(2k)

ζ(1− 2k)

∞∑
n=1

nk−1qn

1− qn
, q = e2πiτ , Im τ > 0, (1.2)

where ζ denotes the analytic continuation of the Riemann zeta function. Analytic

properties of ℘ translate to properties for Eisenstein series. For example, the

equation

(℘′)2 = 4℘3 − g2℘− g3, g2 = 60G4(τ), g3 = 140G6(τ), (1.3)

demonstrates the recursion for Eisenstein series, with dk = k! · (2k + 3)G2k+4,

2n+ 9

3n+ 6
dn+2 =

n∑
k=0

(
n

k

)
dkdn−k, d0 = 3G4(τ), d1 = 5G6(τ). (1.4)

In this note, we provide an elementary formulation of a twisted analogue of

(1.4) for normalized Eisenstein series of weight k on Γ0(N) twisted by the Dirichlet

character χ modulo N [2, p. 17]. The Fourier expansion for these Eisenstein series

is given by
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Ek,χ(q) = 1 +
2

L(1− k, χ)

∞∑
n=1

χ(n)
nk−1qn

1− qn
, (1.5)

where L(1 − k, χ) is the analytic continuation of the associated L-series and

χ(−1) = (−1)k. Although twisted Eisenstein series are of fundamental impor-

tance in number theory, explicit exposition of recursion formulas induced by their

relation to elliptic functions does not appear in the extensive literature on elliptic

modular functions.

2. Preliminaries

Define the Weierstrass zeta function with quasi-periods ω1 = 2π, ω2 = 2πτ by

ζ(θ) =
1

2
cot

θ

2
+

θ

12
− 2θ

∞∑
n=1

nqn

1− qn
+ 2

∞∑
n=1

qn sinnθ

1− qn
. (2.1)

For {wn}k−1n=0 ⊂ C, there exist k uniquely determined finite Fourier coefficients

{an : n = 0, 1, ..., k − 1} such that

wm =
k−1∑
n=0

ane
2πimn/k, am =

1

k

k−1∑
n=0

wne
−2πimn/k, 0 ≤ m ≤ k − 1. (2.2)

Let χ be a Dirichlet character modulo k. The sum [1, p. 165]

G(n, χ) =
k∑

m=1

χ(m)e2πimn/k (2.3)

is called the Gauss sum associated with χ. The Gauss sum is said to be separable

if

G(n, χ) = χ(n)G(1, χ). (2.4)

3. Main Results

Theorem 3.1. Let ζ(θ) denote the Weirstrass ζ function. For each odd p ∈ N
and nonprincipal primitive Dirichlet character χ modulo p with χ(−1) = (−1)k,

we have

Ek,χ(q) =
−2

(−i)kp · L(1− k, χ)

p−1
2∑

m=1

G(m,χ)ζ(k−1)
(

2mπ

p

)
, k > 1. (3.1)

If k = 1, the corresponding Eisenstein series satisfies

E1,χ(q) =
2

ipL(0, χ)

−πE2(q)G(1, χ)

6p

p−1
2∑

m=1

mχ(m) +

p−1
2∑

m=1

G(m,χ)ζ

(
2mπ

p

) ,

(3.2)

where E2 denotes the Eisenstein series for SL(2,Z) with Fourier expansion

E2(q) = 1− 24
∞∑
n=1

nqn

1− qn
.
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Proof. From the partial fraction expansion for the cotangent,

cot θ =
∞∑
n=1

(
1

θ − nπ
+

1

θ + (n− 1)π

)
, (3.3)

we derive

cot(`) θ = (−1)``!
∞∑
n=1

(
1

(θ − nπ)`+1
+

1

(θ + (n− 1)π)`+1

)
. (3.4)

If χ is a nonprincipal primitive Dirichlet character modulo p and χ(−1) = (−1)`+1,

then (3.4) implies
p−1
2∑

m=1

χ(m) cot(`)
(
mπ

p

)
(3.5)

= (−1)``!
p`+1

π`+1

p−1
2∑

m=1

∞∑
n=1

(
χ(−m)

(pn−m)
`+1

+
χ(m)

(m+ p(n− 1))
`+1

)

= (−1)``!
p`+1

π`+1

∞∑
n=1

χ(n)

n`+1
= (−1)``!

p`+1

π`+1
L(`+ 1, χ).

The L-functions, for primitive Dirichlet characters modulo p, satisfy the functional

equation

L(1− s, χ) =
ps−1Γ(s)

(2π)s
{e−πis/2 + χ(−1)eπis/2}G(1, χ)L(s, χ). (3.6)

For any primitive Dirichlet character modulo p, we have
p∑

h=1

χ(h)e2πinh/p = χ(n)G(1, χ). (3.7)

Here χ denotes the complex conjugate of the character χ. This formula implies

that for any primitive character, the corresponding Gauss sum is separable [1, p.

165], so

G(m,χ) = χ(m)G(1, χ). (3.8)

Therefore, with the assumption that χ and ` have opposite parity, we may use

(3.5) and (3.6) to derive
p−1
2∑

m=1

χ(m)cot(`)
(
mπ

p

)
= (−1)`

p`+1

π`+1
L(`+ 1, χ)`!

= (−1)`
p2`+1L(−`, χ)`!

Γ(`+ 1){e−πi(`+1)/2 + χ(−1)eπi(`+1)/2}G(1, χ)

= (−1)`
p2`+1

−2 · (−i)`iG(1, χ)
L(−`, χ) =

−(−i)`+1p2`

G(1, χ)
L(−`, χ). (3.9)
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For each integer k with 0 ≤ k ≤ (p− 1)/2, we have

cos

(
2πk

p

)
= cos

(
2π(p− k)

p

)
, (3.10)

sin

(
2πk

p

)
= − sin

(
2π(p− k)

p

)
. (3.11)

Therefore, from the above identities and (2.2)

χ(m) =

p−1∑
n=0

ane
2πimn/p =


2

p−1
2∑

n=1

an cos

(
2mnπ

p

)
, χ even,

2i

p−1
2∑

n=1

an sin

(
2mnπ

p

)
, χ odd,

(3.12)

where

an =
1

p

p−1∑
n=0

χ(n)e−2πimn/p =


2

p

p−1
2∑

n=1

χ(n) cos

(
2mnπ

p

)
, χ even,

−2i

p

p−1
2∑

n=1

χ(n) sin

(
2mnπ

p

)
, χ odd.

(3.13)

It readily follows that G(m,χ) = χ(−1)pam. Note the trivial equality

dk−1

dθk−1
sin(nθ) =

−iknk−1 cos(nθ), k even,

ik−1nk−1 sin(nθ), k odd.
(3.14)

Thus, if χ(−1) = (−1)k, and k is odd, we derive

2

∞∑
n=1

p−1
2∑

m=1

G(m,χ)
nk−1qn sin(k−1)

(
2mnπ
p

)
1− qn

(3.15)

= 2
∞∑
n=1

p−1
2∑

m=1

(−pam)
nk−1qn sin(k−1)

(
2mnπ
p

)
1− qn

= ikp
∞∑
n=1

p−1
2∑

m=1

2iam sin

(
2mnπ

p

)
nk−1qn

1− qn

= −(−i)kp
∞∑
n=1

χ(n)nk−1qn

1− qn
. (3.16)

Similarly when χ(−1) = (−1)k = 1, the extreme sides of (3.15) and (3.16) are

equal. Therefore, from the definition (2.1) of ζ(θ) and by (3.9), for k > 1
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p−1
2∑

m=1

G(m,χ)ζ(k−1)
(

2mπ

p

)

=
G(1, χ)

2 · 2k−1

p−1
2∑

m=1

χ(m) cot(k−1)
(
mπ

p

)
+ 2

∞∑
n=1

p−1
2∑

m=1

G(m,χ)
nk−1qn sin(k−1)

(
2mnπ
p

)
1− qn

=
−(−i)kpL(1− k, χ)

2

(
1 +

2

L(1− k, χ)

∞∑
n=1

nk−1χ(n)qn

1− qn

)
.

For k = 1, we have

p−1
2∑

m=1

G(m,χ)ζ

(
2mπ

p

)
=

1

2

p−1
2∑

m=1

G(m,χ) cot

(
mπ

p

)
+

π

6p
E2(q)

p−1
2∑

m=1

mG(m,χ)

+ 2

p−1
2∑

m=1

G(m,χ)
∞∑
n=1

qn sin
(

2mnπ
p

)
1− qn

=
1

2
G(1, χ)

p−1
2∑

m=1

χ(m) cot

(
mπ

p

)

+
π

6p
E2(q)G(1, χ)

p−1
2∑

m=1

mχ(m) + ip
∞∑
n=1

χ(n)qn

1− qn

=
π

6p
E2(q)G(1, χ)

p−1
2∑

m=1

mχ(m) +
1

2
ipL(0, χ)E1,χ(q).

This is equivalent to the claimed identity (3.2). �

Theorem 3.1 demonstrates that Hecke Eisenstein series of weight k on Γ0(p)

may be expressed as a linear combination of (k − 1)th order derivatives of the

Weierstrass zeta-function at division points. The relation between the Weierstrass

functions ζ ′(θ) = −℘(θ) and Equation (1.3) leads to

ζ(n+3)(θ) = −6
n∑
k=1

(
n

k

)
ζ(k)(θ)ζ(n−k+2)(θ), n ≥ 1. (3.17)

In particular, for p an odd prime, a recursive relation between the twisted Eisen-

stein series for Γ0(p) may be determined by inverting the relation from Theorem 3.1

between the (p− 1)/2 Weierstrass zeta-values at division points and the (p− 1)/2

linearly independent Eisenstein series. Although straightforward, the recursion is

not as elegant as (1.4) for the Eisenstein series on SL(2,Z). We conclude with an

example from [3, 4] for p = 5.

Theorem 3.2. Let χ2,5 and χ4,5 be the odd Dirichlet characters modulo 5. For

k ≥ 1,
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E2k+1,χ2,5(q) = 2(−1)kG(1, χ2,5)
ζ(2k)(4π/5) + iζ(2k)(2π/5)

5L(−2k, χ2,5)
, (3.18)

E2k+1,χ4,5
(q) = 2(−1)k−1G(1, χ4,5)

ζ(2k)(4π/5)− iζ(2k)(2π/5)

5L(−2k, χ4,5)
, (3.19)

where (3.17) may be used to reduce the order of derivatives in (3.18), (3.19), and

ζ(2k)(2π/5) =
5(−1)k

4i

(
L(−2k, χ2,5)

G(1, χ2,5)
E2k+1,χ2,5

(q) +
L(−2k, χ4,5)

G(1, χ4,5)
E2k+1,χ4,5

(q)

)
,

ζ(2k)(4π/5) =
5(−1)k

4

(
L(−2k, χ2,5)

G(1, χ2,5)
E2k+1,χ2,5

(q)− L(−2k, χ4,5)

G(1, χ4,5)
E2k+1,χ4,5

(q)

)
.
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Abstract. For any natural number n and (m,n) = 1, we analyse the eigen-

values and their multiplicities of the matrix A(n,m) := (ζmrs
n ) for 0 ≤ r, s ≤

n − 1. As a consequence, we evaluate the quadratic Gauss sum and derive

the law of quadratic reciprocity using only elementary methods.

1. Introduction

For natural numbers n and k, a general Gauss sum is defined as

G(k) :=
n−1∑
j=0

e2πij
k/n. (1.1)

When k = 1, (1.1) reduces to the sum of all n-th roots of unity, which is a

geometric sum and can be easily evaluated to be zero. The case k = 2 turns out to

be more difficult, and it took Gauss several years to determine (1.1) when n is an

odd prime in order to prove the law of quadratic reciprocity. For further reading

on Gauss sums, we refer the reader to [2] and [3].

In this article, we focus on the quadratic Gauss sum, namely,

G(2) =
n−1∑
j=0

e2πij
2/n. (1.2)

It can be shown that

Theorem 1.1. For a natural number n,

G(2) =



√
n if n ≡ 1 mod 4,

0 if n ≡ 2 mod 4,

i
√
n if n ≡ 3 mod 4,

(1 + i)
√
n if n ≡ 0 mod 4.

There are many proofs of Theorem 1.1 in the literature. But most of the

proofs use advanced tools. For example, [4] uses the theory of Fourier series,

while [7] proves it using the truncated Poisson summation formula. The novelty

of this article is that it utilizes only elementary methods, thus making the proof

of Theorem 1.1 accessible to high school students. This linear algebra approach to

2010 Mathematics Subject Classification: 11L05, 11A15.

Key words and phrases : Gauss sum, quadratic reciprocity law.
1 Research of the first author was partially supported by an NSERC Discovery grant.
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evaluating (1.2) was initiated by Schur [9] in 1921 and simplified by Waterhouse

[10] in 1970, to prove Theorem 1.1 when n is an odd prime. It was later expanded

upon by the first author [8] to prove Theorem 1.1 for all n odd. The case n even

was left open. In this note, we use a slight generalization of the method in these

earlier works to prove Theorem 1.1 for even natural numbers n, hence determining

(1.2) for all natural numbers n using only linear algebra and elementary number

theory.

For clarity and continuity of exposition, we include the proof of Theorem 1.1

for n odd and the law of quadratic reciprocity in the earlier sections. We then use

these results to prove Theorem 1.1 for n even.

2. Preliminary Results

Let n be a natural number and ζn := e2πi/n. For (m,n) = 1, we define the

n× n matrix, A(n,m) = (ζmrsn ) for 0 ≤ r, s ≤ n− 1.

The motivation behind defining this matrix is the observation that

TrA(n, 1) =
n−1∑
j=0

ζj
2

n = G(2).

Let A(n,m)r,s denote the (r, s)-th entry of A(n,m). Since the trace of a matrix is

the sum of its eigenvalues counted with multiplicities, it suffices to find the eigen-

values of A(n,m) and their multiplicities. In order to compute the eigenvalues,

observe that for 0 ≤ k, l ≤ n− 1,(
A(n,m)

)2
k,l

=
n−1∑
j=0

ζmkjn ζmjln =
n−1∑
j=0

ζmj(k+l)n , (2.1)

which is zero unless m(k + l) ≡ 0 (mod n). Since (m,n) = 1, this is equivalent to

the condition that (k+ l) ≡ 0 (mod n), in which case the sum is n because it is a

geometric sum. In other words,

A(n,m)
2

=



n 0 0 . . . 0 0

0 0 0 . . . 0 n

0 0 0 . . . n 0
...

...
... . .

. ...

0 0 n . . . 0 0

0 n 0 . . . 0 0


. (2.2)

Therefore, (
A(n,m)

)4
r,s

=
n−1∑
k=0

(
A(n,m)

)2
r,k

(
A(n,m)

)2
k,s
,

and the summand is n2 if r + k ≡ 0 (mod n) and s + k ≡ 0 (mod n) and zero

otherwise. Thus, the summand is non-zero only when r = s in which case it is n2.

This shows that (
A(n,m)

)4
= n2I.
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Hence, the eigenvalue of
(
A(n,m)

)4
is n2. By elementary linear algebra, we get

that the eigenvalues of
(
A(n,m)

)2
are n and −n. Consequently, the eigenvalues of

A(n,m) are ±
√
n and ±i

√
n. Let a, b, c, d be the multiplicities of

√
n,−
√
n, i
√
n

and −i
√
n respectively. Thus,

TrA(n,m) =
√
n
(
(a− b) + i(c− d)

)
, (2.3)

for some natural numbers a, b, c and d.

Now, if [x0, x1, · · · , xn−1] is an eigenvector of
(
A(n,m)

)2
with eigenvalue n,

then due to (2.1), it satisfies xi = xn−i for 1 ≤ i ≤ n − 1. Hence, the dimension

of the eigenspace corresponding to the eigenvalue n of
(
A(n,m)

)2
is (n + 1)/2 if

n is odd and n/2 + 1 if n is even. Since the n-eigenspace of
(
A(n,m)

)2
comprises

of the ±
√
n-eigenspace of A(n,m), we get the relations

a+ b = (n+ 1)/2 and c+ d = (n− 1)/2, (2.4)
when n is odd and

a+ b = (n/2) + 1 and c+ d = (n/2)− 1, (2.5)

when n is even. Before proceeding, we prove the following lemma:

Lemma 2.1. For any natural number n and (m,n) = 1, let A(n,m) = (ζmrsn )

with 0 ≤ r, s ≤ n− 1. Then we have

∣∣TrA(n,m)
∣∣ =


√
n if n is odd,
√

2n if n ≡ 0 mod 4,

0 if n ≡ 2 mod 4.

Proof. Observe that∣∣TrA(n,m)
∣∣2 =

(
TrA(n,m)

)(
TrA(n,m)

)
=

( n−1∑
k=0

ζmk2

n

)( n−1∑
l=0

ζ−ml2

n

)

=
n−1∑
k=0

n−1∑
l=0

ζm(k2−l2)
n =

n−1∑
l=0

n−1∑
k=0

ζm(k−l)(k+l)
n .

The above sums depend only on the residue class of k and l modulo n and run

over all residue classes mod n. Thus, for each fixed l mod n, we can make the

linear change of variable j = k − l, which again runs over all residue classes mod

n. Therefore, we have∣∣TrA(n,m)
∣∣2 =

n−1∑
l=0

n−1∑
j=0

ζmj(j+2l)
n =

n−1∑
j=0

ζmj
2

n

n−1∑
l=0

ζ2mjln .

Since (m,n) = 1, the inner sum is non-zero only if 2j ≡ 0 (mod n). If n

is odd, then the only value of j which satisfies this congruence is j = 0. Thus,

|TrA(n,m)| evaluates to n when n is odd. If n is even, there are two values of j

that satisfy the congruence, namely, j = 0 and j = n/2. Hence, the sum becomes∣∣TrA(n,m)
∣∣2 =

(
1 + ζmn

2/4
n

)
n = (1 + imn)n,

which is zero if n ≡ 2 (mod 4) and 2n if n ≡ 0 (mod 4). This proves the lemma.

�
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Note that Lemma 2.1 proves Theorem 1.1 when n ≡ 2 (mod 4). As a conse-

quence of the above lemma, we have

Corollary 1. For an odd natural number n,

TrA(n,m) =

±
√
n if n ≡ 1 mod 4,

±i
√
n if n ≡ 3 mod 4.

Proof. From (2.3),∣∣TrA(n,m)
∣∣ =
√
n

(
(a− b)2 + (c− d)

2

)1/2

.

When n is odd, Lemma 2.1 leads us to deduce that either

(1) a− b = ±1 and c = d, or (2) a = b and c− d = ±1.

In Case (1), equation (2.4) implies that c+d = 2d = (n−1)/2, i.e, d = (n−1)/4 ∈ N
and hence n ≡ 1 (mod 4). In Case (2), equation (2.4) implies that a + b = 2b =

(n+ 1)/2, i.e, b = (n+ 1)/4 ∈ N so that n ≡ 3 (mod 4). �

We observe that the quadratic Gauss sums have the following multiplicative

property.

Lemma 2.2. For a natural number n = n1n2 with (n1, n2) = 1 and (m,n) = 1,

define A(n,m) = (ζmrsn ) for 0 ≤ r, s ≤ n− 1. Then we have,

TrA(n,m) = TrA(n1,mn2) TrA(n2,mn1).

Proof. The right hand side can be simplified as follows

TrA(n1,mn2) TrA(n2,mn1) =

n1−1∑
j=0

n2−1∑
k=0

e2πimn2j
2/n1 e2πimn1k

2/n2

=

n1−1∑
j=0

n2−1∑
k=0

e2πim(n2
2j2+n1

2k2)/n1n2

=

n1−1∑
j=0

n2−1∑
k=0

e2πim(n2j+n1k)
2/n,

as e2πim(2jkn1n2)/n = 1. Now, since (n1, n2) = 1, the Chinese remainder the-

orem gives that as j and k range from 0 to n1 − 1 and 0 to n2 − 1 respec-

tively, n2j + n1k ranges over all residue classes modulo n. Hence, we have

TrA(n1,mn2) TrA(n2,mn1) =
∑n−1
r=0 e

2πimr2/n = TrA(n,m). �

3. Proof of Theorem 1.1 for n odd

As seen earlier, G(2) = TrA(n, 1). Thus, we consider the case m = 1 in this

section. Corollary 1 gives the value of the desired sum up to sign. To determine

the sign in each case, we consider the determinant of the matrix A(n, 1), which is

the product of its eigenvalues counted with multiplicities.

Lemma 3.1. Let A := A(n, 1) = (ζrsn ) for 0 ≤ r, s ≤ n− 1. Then

detA =

i(
n
2) nn/2 if n is odd,

i(
n
2)+1 nn/2 if n is even.

(3.1)
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Proof. Observe that A is a Vandermonde matrix, that is, A is of the form
1 x1 x1

2 x1
3 . . . x1

n−1

1 x2 x2
2 x2

3 . . . x1
n−1

...
...

...
...

. . .
...

1 xn xn
2 xn

3 . . . xn
n−1

 .
The determinant of an n× n Vandermonde matrix is well-known to be∏

1≤i<j≤n

(
xj − xi

)
.

Hence, we have that
detA =

∏
0≤r<s≤n−1

(
ζsn − ζrn

)
. (3.2)

From the explicit computation of A(n, 1)
2

in (2.2), we see that this matrix is nI up

to interchanging of rows. Moreover, interchanging 2 rows of a matrix only changes

the sign of the determinant. Hence, detA2 = ±nn. In particular, the number of

row interchanges to transform A2 to nI is (n− 1)/2 when n is odd and (n− 2)/2

when n is even. This is because we need to interchange rows corresponding to r

and n − r for 1 ≤ r ≤ n − 1 to get nI. This is precisely (n − 1)/2 number of

distinct changes for odd n. When n is even, the row corresponding to r = n/2 has

its diagonal entry as n, which need not be changed. For reasons evident from the

calculations below, we write this as

detA =

±i(
n
2) nn if n is odd,

±i(
n
2)+1 nn if n is even.

(3.3)

To determine the sign in the above computation, we calculate product in equation

(3.2) in another way. For notational convenience, we will write r < s for 0 ≤ r <

s ≤ n− 1 and simplify (3.2) as follows -

detA =
∏
r<s

(
ζsn − ζrn

)
=
∏
r<s

(
e2πis/n − e2πir/n

)
=
∏
r<s

eiπs/neiπr/n
(
e(iπs−iπr)/n − e−(iπs−iπr)/n

)
= i(

n
2)
∏
r<s

[
eiπ(r+s)/n

]∏
r<s

[
2 sin

(
(s− r)π

n

)]
, (3.4)

as sin θ = (eiθ − e−iθ)/2i. Now, note that

n−1∑
r,s=0,
r 6=s

(r + s) =
n−2∑
r=0

n−1∑
s=r+1

(r + s) =
n−1∑
s=1

s−1∑
r=0

(r + s)

=
n−1∑
s=1

(
s(s− 1)

2
+ s2

)
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=
n−1∑
s=1

3s2 − s
2

=
3

2

(n− 1)n(2n− 1)

6
− 1

2

n(n− 1)

2
= 2n

(
n− 1

2

)2

.

Therefore, the first product in (3.4) becomes

eiπ(
∑

r<s(r+s))/n = eiπ(2n(n−1)
2/4n) = i(n−1)

2

,

which is 1 when n is odd and i when n is even. Since 0 < (s − r)π/n < π, the

second product in (3.4) is a positive quantity. Thus, the determinant becomes

i(
n
2)nn when n is odd and i(

n
2)+1nn when n is even. �

Since the determinant of a matrix is the product of its eigenvalues, we have

detA = (
√
n)
a
(−
√
n)
b
(i
√
n)
c
(−i
√
n)
d

= i2b+c+3d nn/2.

Comparing this with Lemma 3.1 and noting that 3 ≡ −1 mod 4, we get the con-

ditions that

2b+ c− d ≡ nC2 mod 4, (3.5)

when n is odd. We will use this congruence to determine a, b, c, d as follows.

Suppose n is odd and n ≡ 1 (mod 4). By Corollary 1, we know that a−b = ±1

and c− d = 0. Thus, (2.4) and (3.5) lead to

a− b = a+ b− 2b ≡ n+ 1

2
− n(n− 1)

2
mod 4 ≡ n+ 1− n+ 1

2
mod 4 ≡ 1 mod 4.

Therefore, a − b = 1, which proves that G(2) = TrA(n, 1) =
√
n when n ≡ 1

(mod 4). Now, suppose n ≡ 3 (mod 4). Corollary 1 tells us that a = b and

c− d = ±1. Thus, (2.4) and (3.5) give

c− d ≡ n(n− 1)

2
− 2b mod 4 ≡ 3(n− 1)

2
− n+ 1

2
mod 4

≡ 3n− 3− n− 1

2
mod 4 ≡ 2n− 4

2
mod 4 ≡ 1 mod 4.

Therefore, when n ≡ 3 mod 4, we deduce that G(2) = TrA(n, 1) = i
√
n as in

Theorem 1.1.

4. The law of quadratic reciprocity

Let a be a natural number and p be an odd prime. The Legendre symbol is

defined as (
a

p

)
=


0 if p | a,

1 if x2 ≡ a mod p has a solution,

−1 if x2 ≡ a mod p has no solution.

We connect the quadratic Gauss sum G(2) with the Legendre symbol in the

following lemma.
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Lemma 4.1. Let p be an odd prime and (m, p) = 1. Define A(p,m) = (ζmrsp ) for

0 ≤ r, s ≤ p− 1. Then

TrA(p,m) =

(
m

p

)
TrA(p, 1),

where (mp ) is the Legendre symbol.

Proof. We note that(
k

p

)
+ 1 =


1 if p | k,

2 if p 6 | k, k is a quadratic residue mod p,

0 otherwise.

For any 0 ≤ k ≤ p − 1, the polynomial x2 − k has at most two roots in Fp, the

finite field with p elements. Also, if j is a root of this polynomial, then so is p− j
(which is distinct from j as p is odd). Hence, for each k ∈ Fp and k 6= 0, there are

either 2 values of j satisfying j2 ≡ k (mod p) or none. Thus, the quadratic Gauss

sum can be rewritten as

TrA(p,m) =

p−1∑
j=0

e2πimj
2/p =

p−1∑
k=0

[(
k

p

)
+ 1

]
e2πimk/p

=

p−1∑
k=0

[
e2πimk/p

]
+

p−1∑
k=0

(
k

p

)
e2πimk/p

=

p−1∑
k=0

(
k

p

)
e2πimk/p, (4.1)

as the first sum is the sum of all p-th roots of unity and vanishes. Since the

Legendre symbol is multiplicative, we multiply the second sum by 1 = (mp )
2

and

have

TrA(p,m) =

(
m

p

)2 p−1∑
k=0

(
k

p

)
e2πimk/p =

(
m

p

) p−1∑
k=0

(
km

p

)
e2πikm/p

=

(
m

p

) p−1∑
j=0

(
j

p

)
e2πij/p =

(
m

p

)
TrA(p, 1),

by taking m = 1 in (4.1). �

The law of quadratic reciprocity can be stated as follows.

Theorem 4.2. Let p and q be distinct odd primes. Then(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)/4
.

Proof. For convenience of notation, we define

e(n) =

1 if n ≡ 1 mod 4,

i if n ≡ 3 mod 4.
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Thus, Theorem 1.1 states that for odd n, TrA(n, 1) = e(n)
√
n. Therefore, taking

n = pq, we have

e(pq)
√
pq = TrA(pq, 1) =

(
TrA(p, q)

)(
TrA(q, p)

)
,

by Lemma 2.2. Using Lemma 4.1, we get

e(pq)
√
pq =

(
p

q

)(
q

p

)(
TrA(p, 1)

)(
TrA(q, 1)

)
=

(
p

q

)(
q

p

)
e(p)e(q)

√
pq,

which implies that (
p

q

)(
q

p

)
=

e(pq)

e(p)e(q)
.

We observe that the right hand side is 1 if at least one of p or q is congruent to

1 (mod 4) and −1 otherwise. This is precisely as stated in the law of quadratic

reciprocity. �

5. Evaluation of TrA(n,m) for odd n

In Section 3, we evaluated TrA(n, 1) for odd natural numbers n. We use this

computation to determine TrA(n,m) for n odd and (m,n) = 1 in general. Before

proceeding, we recall the Jacobi symbol, which is a generalization of the Legendre

symbol. For any positive integer a and an odd natural number n = pα1
1 pα2

2 · · · p
αk

k ,

where pj are distinct odd primes, the Jacobi symbol ( an ) is defined as a product

of the Legendre symbols, (
a

n

)
=

k∏
j=1

(
a

pj

)αj

.

Recall that the law of quadratic reciprocity extends to the Jacobi symbol by ele-

mentary number theory considerations.

Lemma 5.1. For an odd natural number n and (m,n) = 1, we have

TrA(n,m) =

(
m

n

)
TrA(n, 1),

where (mn ) is the Jacobi symbol.

Proof. Let ω3(n) be the number of prime divisors p of n with p ≡ 3 (mod 4)

counted with multiplicity. We claim that for any odd n,

TrA(n, 1) = δ(n)
∏
p|n

TrA(p, 1), (5.1)

where δ(n) = ±1 and the product is over primes dividing n repeated with multi-

plicity. Indeed, we know that the product on the right hand side of (5.1) can be

evaluated by the already proven cases of Theorem 1.1 to be∏
p|n

TrA(p, 1) = iω3(n)
√
n.
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Also, since

n ≡

1 mod 4 if ω3(n) is even,

3 mod 4 if ω3(n) is odd,

and the results from Section 3, the left hand side of (5.1) is
√
n if ω3(n) is even

and i
√
n if ω3(n) is odd. Thus, TrA(n, 1) and the product agree up to sign (which

of course depends on n) so that(5.1) is immediate.

Writing (5.1) explicitly,

n−1∑
j=0

e2πij
2/n = δ(n)

∏
p|n

[ p−1∑
k=0

e2πik
2/p

]
= δ(n)

∏
p|n

[ p−1∑
k=0

(
e2πik

2/n
)n/p]

,

we observe that all terms in (5.1) lie in the n-th cyclotomic field, Q(ζn). Thus,

by applying the Galois automorphism that sends ζn to ζmn , and noting that this

automorphism fixes the rationals (and hence δ(n)), (5.1) becomes

n−1∑
j=0

e2πimj
2/n = δ(n)

∏
p|n

[ p−1∑
k=0

(
e2πimk

2/n
)n/p]

= δ(n)
∏
p|n

[ p−1∑
k=0

e2πimk
2/p

]
.

Each term in the above product is TrA(p,m) for an odd prime p and (m, p) = 1.

Hence, by Lemma 4.1, we get

TrA(n,m) = δ(n)

[∏
p|n

(
m

p

)][∏
p|n

TrA(p, 1)

]
.

Thus, by (5.1), TrA(n,m) =

(
m
n

)
TrA(n, 1). �

6. Proof of Theorem 1.1 for n even

The case n ≡ 2 (mod 4) was settled in Lemma 2.1. Thus, we assume that 4|n.

We begin with the following elementary result which will be proved by induction.

Lemma 6.1. Let r and s be natural numbers with r ≥ 2 and s odd. Then

TrA(2r, s) =

(
2r

s

)
(1 + is)

√
2r.

Proof. We proceed by induction on r. The base cases are r = 2 and r = 3. For

r = 2,

TrA(4, s) = 1 + e2πis/4 + e2πis + e2πis9/4 = 2(1 + is).

For r = 3,

TrA(8, s) = 2(1 + (−1)
s

+ 2eiπs/4),

by considering squares modulo 8. Thus, TrA(8, s) = 4eiπs/4. Using eiθ = cos θ +

i sin θ, we get that TrA(8, s) = 4(cos(sπ/4) + i sin(sπ/4)), which is 2
√

2(1 + i) if

s ≡ 1 (mod 4) and −2
√

2(1− i) if s ≡ 3 (mod 4). Hence, we see that Lemma 6.1

is true when r = 2, 3.
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Suppose that r ≥ 4 and Lemma 6.1 holds for all 2 ≤ α ≤ r − 1. To prove it

for r, we note that

TrA(2r, s) =
2r∑
j=1

e2πisj
2/2r

=
2r∑
j=1,
j−odd

e2πisj
2/2r +

2r∑
j=1,
j−even

e2πisj
2/2r

=
1

2

( 2r∑
j=1,
j−odd

e2πisj
2/2r + e2πis(j+2r−2)

2
/2r
)

+
2r−1∑
k=1

e2πisk
2/2r−2

,

where in the first sum, we pair the terms corresponding to j and j + 2r−2 (which

are distinct as j is odd) and in the second sum, we change the index of summation

by setting j = 2k. Now, each summand of the first term is

e2πisj
2/2r + e2πis(j+2r−2)

2
/2r = e2πisj

2/2r + e2πisj
2/2r e2πis(2

r−1j)/2r

= e2πisj
2/2r − e2πisj

2/2r = 0,

as j is odd. We recognize the second term as 2 TrA(2r−2), which is equal to

(2r−2/s) 2 (1 + is)
√

2r−2

by the induction hypothesis. Thus, the principle of mathematical induction implies

that
TrA(2r, s) = (2r/s)(1 + is)

√
2r

for all r ≥ 2. �

We now derive Theorem 1.1 in the case 4|n as a consequence of the proposition

below.

Proposition 6.2. Let n be natural number with 4|n and (m,n) = 1. Then

TrA(n,m) = (n/m) (1 + im)
√
n.

Proof. Write n = 2uv, with u ≥ 2 and v odd. We would like to evaluate

TrA(2uv,m) for (m,n) = 1. By Lemma 2.2, we get

TrA(2uv,m) =

(
TrA(2u, vm)

)(
TrA(v, 2um)

)
. (6.1)

We note that v is odd and (v, 2um) = 1. Hence, by Lemma 5.1,

TrA(v, 2um) =

(
2um

v

)
TrA(v, 1), (6.2)

which is known by the results in Section 3. Since 4|n and (m,n) = 1, m is odd.

Therefore, vm is odd and (2u, vm) = 1. To determine TrA(2u, vm), we use Lemma

6.1.

Thus, by (6.1), (6.2) and Lemma 6.1, we have

TrA(2uv,m) =
√

2u
(

2um

v

)(
2u

vm

)
(1 + ivm) TrA(v, 1),
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which can be simplified using the multiplicativity of the Jacobi symbol to

TrA(2uv,m) =
√

2u (2u/m) εv,m,

where
εv,m = (m/v) (1 + ivm) TrA(v, 1).

Hence we see that the value of trace depends on whether v and m are congruent

to 1 or 3 modulo 4. We remark that the case of odd n from Theorem 1.1 can be

re-written as

TrA(n, 1) = i(n−1)
2/4
√
n.

Since both v and m are odd, we can use the law of quadratic reciprocity to deduce(
m

v

)(
v

m

)
=

−1 if both m, v ≡ 3 mod 4,

1 otherwise.

Therefore, we have the following table of values of εv,m:

v

m
1 mod 4 3 mod 4

1 mod 4

(
v
m

)
(1 + i)

√
v

(
v
m

)
(1− i)

√
v

3 mod 4

(
v
m

)
(1− i)i

√
v −

(
v
m

)
(1 + i)i

√
v

Observe that i(1 − i) = (1 + i) and i(1 + i) = −(1 − i). Thus, whenever 4|n, we

have TrA(n,m) = (n/m)(1 + im)
√
n. �

In particular, for m = 1, Proposition 6.2 implies Theorem 1.1 for n ≡ 0 mod 4.

7. Concluding Remarks

We observe that determining the quadratic Gauss sum in the case 4|n is more

delicate than the case n odd. The study of the eigenvalues and their multiplicites

of the matrix A(n,m) lies deeper than the law of quadratic reciprocity. The matrix

A(n,m) also appears in the context of the discrete Fourier transform of periodic

arithmetical functions. Thus, the study of its eigenvalues and their multiplicities

is interesting in its own right. Moreover, the investigation of the eigenvectors of

A(n, 1) is even deeper than the study of its eigenvalues and their multiplicites (for

example, see [6]). Surprisingly, the explicit construction of these eigenvectors was

first done as late as 1972 in the paper of McClellan and Parks [5].

Acknowledgements. We thank the referee and Anup Dixit for helpful comments

on an earlier version of this paper.
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The Mathematics Student ISSN: 0025-5742

Vol. 86, Nos. 1-2, January-June, (2017), 151-157

PROBLEM SECTION

In the last issue of the Math. Student Vol. 85, Nos. 3-4, July-December

(2016), we had invited solutions from the floor to the remaining problems 1, 2, 4,

5 and 6 of the MS, 85, 1-2, 2016 as well as to the five new problems 9, 10, 11, 12

and 13 presented therein till April 30, 2017.

No solution was received from the floor to the remaining problems 1, 2, 4

and 5 of the MS, 85, 1-2, 2016 and hence we provide in this issue the Proposer’s

solution to these problems. Problem 6 is a research problem.

We received from the floor four correct solutions to the Problem 11 & two

correct solutions to the Problem 13 of MS, 85, 3-4, 2016 and we publish here a

solution received from the floor to the Problem 11 and 13. Readers can try their

hand on the remaining problems 9, 10 and 12 till October 31, 2017.

In this issue we first present five new problems. Solutions to these problems as

also to the remaining problems 9, 10 and 12 of MS, 85, 3-4, 2016, received from the

floor till October 30, 2017, if approved by the Editorial Board, will be published

in the MS, 86, 3-4, 2017.

MS-2017, Nos. 1-2: Problem-1:

Proposed by Zoltán Boros and Árpád Száz, Institute of Mathematics, Univer-

sity of Debrecen, H-4002, Debrecen, Pf. 400, Hungary. zboros@science.unideb.hu,

szaz@science.unideb.hu; submitted through B. Sury.

For all a, b ∈ R determine

F (a, b) = inf
n∈N

(
an+

b

n

)
,

where N and R denote the sets of all natural and real numbers respectively.

Problems proposed by B. Sury:

MS-2017, Nos. 1-2: Problem-2:

Let n be a positive integer and d1, · · · , dr be certain divisors of n (not

necessarily all and not necessarily distinct). Let a1, · · · , ar, b be arbitrary

integers. Determine the number of solutions of the congruence

a1x1 + · · ·+ arxr ≡ b mod n
for integers xi satisfying (xi, n) = di.

c© Indian Mathematical Society, 2017 .
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MS-2017, Nos. 1-2: Problem-3:

If there is a painting of dimensions 40 inches by 100 inches, what is the

smallest square frame which can cover it completely? Answer the same ques-

tion when the painting has dimensions 40 inches by 90 inches.

MS-2017, Nos. 1-2: Problem-4:

There is a one way street which has n parking spaces numbered 1 to n.

Suppose there are n cars C1, · · · , Cn. Each car Ci has a certain favourite

parking slot ai (1 ≤ ai ≤ n). Each car enters the street and, if its favourite

slot is empty, it parks there. If not, it proceeds ahead and parks at the

next available slot. If no slot is available, the car has to leave the street. A

sequence (a1, · · · , an) is a parking sequence if every car can park. For example,

(1, 1), (1, 2), (2, 1) are parking sequences when n = 2.

(i) Find the number of parking sequences.

(ii) Find a natural bijection between the parking sequences and the number

of regions formed in Rn by the hyperplanes xi − xj = 0, xi − xj = 1 for

1 ≤ i < j ≤ n.

MS-2017, Nos. 1-2: Problem-5:

Prove that
∑n
k=1

1
kr =

∑
I

(
n
ir

) (−1)r−1

i1i2···ir where I = (i1, · · · , ir) runs through

r-tuples satisfying 1 ≤ i1 ≤ i2 ≤ · · · ≤ ir ≤ n.

Solution from the floor: MS-2016, Nos. 3-4: Problem 11: If a strictly

increasing function f : R→ R satisfies f(2t− f(t)) = t = 2f(t)− f(f(t)) for all t

then prove that there exists c ∈ R such that f(t) = t+ c for all t.

(Solution submitted on 16-02-2017 by S. U. Weeraratne, K. K. D. S. de Silva,

T. R. Ekanayake (Department of Mathematics, Faculty of Science, University of

Colombo, Sri Lanka) and D. N. Pannipitiya (IT Unit-2, Faculty of Science, Uni-

versity of Colombo, Sri Lanka.); suweerainfo@gmail.com, kkdsdesilva@gmail.com,

thusaraekanayake@gmail.com, diyathnp@yahoo.com).

Solution. It can be easily shown that f−1 : R 7−→ R exists and f−1 = 2t− f(t).

Since f increases, so does f−1. Let n ∈ N. Suppose

ff · · · f︸ ︷︷ ︸
n

(t) = nf(t)− (n− 1)t

Then

ff · · · f︸ ︷︷ ︸
n+1

(t) = ff · · · f︸ ︷︷ ︸
n

(f(t)) = nf(f(t))− (n− 1)f(t)

= n(2f(t)− t)− (n− 1)f(t) = (n+ 1)f(t)− nt.
Thus, with the given fact t = 2f(t) − f(f(t)), it follows by the mathematical in-

duction that ff · · · f︸ ︷︷ ︸
n

(t) = nf(t)− (n− 1)t for any n ∈ N.



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

PROBLEM SECTION 153

Replacing t by f−1(t) in t = 2f(t) − f(f(t)) we have f−1(t) = 2t − f(t).  Suppose
f−1f−1 · · · f−1︸ ︷︷ ︸

n

(t) = (n+ 1)t− nf(t).

Then

f−1f−1 · · · f−1︸ ︷︷ ︸
n+1

(t) = (n+ 1)f−1(t)− nf(f−1(t))

= (n+ 1)f−1(t)− nt

= (n+ 1)(2t− f(t))− nt = (n+ 2)t− (n+ 1)f(t).

Thus, it follows by the mathematical induction that

f−1f−1 · · · f−1︸ ︷︷ ︸
n

(t) = (n+ 1)t− nf(t) for any n ∈ N

.Let x1, x2 ∈ R be such that x1 < x2. Then ff · · · f︸ ︷︷ ︸
n

(x1) < ff · · · f︸ ︷︷ ︸
n

(x2), that is,

nf(x1)− (n− 1)x1 < nf(x2)− (n− 1)x2 which gives

(n− 1)/n < (f(x2)− f(x1))/(x2 − x1)

.
Similarly we can show that

(f(x2)− f(x1))/(x2 − x1) < (n+ 1)/n

by using the fact f−1f−1 · · · f−1︸ ︷︷ ︸
n

(t) = (n+1)t−nf(t) and the fact f−1 is increasing.

Thus

1− 1/n < (f(x2)− f(x1))/(x2 − x1) < 1 + 1/n

for any n ∈ N. It follows that (f(x2) − f(x1))/(x2 − x1) = 1, thus proving the

claim as x1 and x2 are arbitrary.

Correct solution was also received from the floor from:

Aritro Pathak; (Department of Mathematics, Brandeis University, Waltham,

Massachusetts, 02453, USA; Eimail: ap323@brandeis.edu; received on 08-01-2017)

Dasari Naga Vijay Krishna; (Machilipatnam, Andhra Pradesh -521001; E-

mail: Vijay9290009015@gmail.com; received on 13-02-2017)

Prajanaswaroopa S.; (Bangalore, India; E-mail: sntrm4@rediffmail.com, re-

ceived on 30-04-2017)

Solution from the floor: MS-2016, Nos. 3-4: Problem 13: If f : R→ R
is a differentiable function satisfying the conditions |f ′(x)| ≤ |f(x)| and f(0) = 0

then show that f(x) = 0 for all x ∈ R. Give also a proof that uses only the Mean

Value Theorem.

(Solution submitted on 13-02-2017 by Dasari Naga Vijay Krishna (Machili-

patnam, Andhra Pradesh-521001; Vijay9290009015@gmail.com).

Solution. Suppose to the contrary, there exists a, real, such that f(a) = b 6= 0”.

Without loss of generality, we may assume that a, b > 0 (if a < 0, work with

g(x) = f(−x); if b < 0, work with g(x) = −f(x)).

f being continuous, there exists u, v such that 0 ≤ u < v < u + 1 and f(u) = 0,
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f(x) > 0 for all x ∈ (u, v].

In fact, let A = {x ≥ 0 : f(t) ≤ 0 ∀ t ∈ [0, x)}, and put u = SupA. Obviously

u ∈ [0, a). Continuity of f and f(a) > 0 imply f(u) = 0 and there exists t > u

such that f(x) > 0 ∀ x ∈ [u, t). Choose now v ∈ (u, min{u+ 1, t}). Observe that

existence of a imply existence of u; without existence of a, may be A = [0, ∞)

and SupA does not exist.

Now, define g : [u, v] → [0, ∞) as g(u) = 0 and g(x) = f(x)
x−u ∀ x ∈ (u, v]. g is

continuous over [u, v] and so has maximum value at some t ∈ (u, v]. Since f is

differentiable, there exists w ∈ [u, t] such that

f ′(w) =
f(t)− f(u)

t− u
.

Therefore

g(w) =
f(w)

w − u
> f(w) ≥ |f

′
(w)| =

f(t)

t− u
= g(t)

in contradiction with the fact that g(t) is the maximum of g(x) over [u, v].

Proof-2. Let [f = 0] be the zero set of f . Assume [f 6= 0] is not empty. We may

assume without loss of generality that there is x0 > 0 such that f(x0) > 0. Since

[f = 0] is closed, we can pick its biggest element y such that f(y) = 0 and y < x0.

By continuity of f , f(x) > 0 on (y, x0). Again by continuity, f takes a maximum

value on [y, y + t] for 0 < t < min{x0, 1}, say at the point xm. Now using mean

value theorem on [y, x0], we obtain

f(xm) = (xm − y)f ′(θ) ≤ (xm − y)f(θ)

a contradiction since (xm − y) < 1.

Correct solution was also received from the floor from:

Prajanaswaroopa S.; (Bangalore, India; E-mail: sntrm4@rediffmail.com, re-

ceived on 30-04-2017)

Solution by the Proposer M. Ram Murty: MS-2016, Nos. 1-2:

Problem 1: Let φ denote Euler’s function. Show that for any positive real

number a, there is a constant C(a) such that∑
n≤x

(
n

φ(n)

)a
≤ C(a)x.

Solution. Writing (
n

φ(n)

)a
=
∑
d|n

g(d),

we easily see that g is multiplicative since n/φ(n) is multiplicative. It therefore

suffices to determine g(n) when n is a prime power. Thus,

g(1) = 1, g(p) =

(
1 +

1

p− 1

)a
− 1, g(pα) = 0,∀α ≥ 2,

for any prime p. Observe that g(n) is non-negative for all values of n and that

g(p) = O(1/p) by a simple approximation in the binomial theorem. Now,
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∑
n≤x

(
n

φ(n)

)a
=
∑
n≤x

∑
d|n

g(d) =
∑
d≤x

g(d)[x/d],

upon interchanging the summation. As g is non-negative, this is

≤ x
∑
d≤x

g(d)

d
≤ x

∞∑
d=1

g(d)

d
.

But g is multiplicative, so the series can be written as an infinite product over the

prime numbers:
∞∑
d=1

g(d)

d
=
∏
p

(
1 +

g(p)

p

)
.

Because, g(p) = O(1/p), the product converges absolutely giving us the desired

result.

Solution by the Proposer B. Sury: MS-2016, Nos. 1-2: Problem 2:

Suppose a, b, c, d are integers such that the last 2016 digits of the number ab+ cd

are all 9’s. Show that there exist integers A,B,C,D each ending in 2016 zeroes

such that
(a+A)(b+B)(c+ C)(d+D) = ±1.

Solution. Let n be a positive integer and suppose ab+ cd+ 1 is a multiple of n.

We will show that adding integral multiples nA, nB, nC, nD of n, respectively to

a, b, c, d, we have that (a+ nA)(b+ nB) + (c+ nC)(d+ nD) = −1. Applying this

to n = 102016, we have the assertion of the problem.

Write ab + cd + 1 = qn. Note that GCD (b, d, n) = 1. First, let us suppose that

GCD (b, d) = 1. Consider a′ = a + un and c′ = c + vn where u, v are integers to

be chosen. Now a′b+ c′d+ 1 = ab+ cd+ 1 + (ub+ vd)n = (q + ub+ vd)n.

Since GCD (b, d) = 1, we may choose integers u, v with q = −ub − vd; this gives

a′d + b′c + 1 = 0 and we will be done. So, we only have to prove that we may

change b, d modulo n so that they are relatively prime.

Let p1, · · · , pr be the set of all primes which divide b. If each pi|n, then clearly,

none of the pi’s divide d since GCD (b, d, n) = 1. In such a case, evidently GCD

(b, d) = 1.

So, let us suppose that some of the pi’s do not divide n; let p1, · · · , pk be the

subset of those prime factors of b which divide n. So GCD (n, p1, · · · pk) = 1.

By the Chinese remainder theorem, choose an integer x ≡ d mod n and

x ≡ 1 mod p1 · · · pk. Then, clearly p1, · · · , pk 6 |x.

Also, writing x = d+ ln, we have that the prime factors pi (k < i ≤ r) of b which

divide n, cannot divide d+ ln as GCD (b, d, n) = 1. Hence (b, d+ ln) = 1 and we

are done.

Solution by the Proposer B. Sury: MS-2016, Nos. 1-2: Problem 4:

Let f = c0 + c1X + · · · + cnX
n be a polynomial with integer coefficients. Prove
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that there exist n + 1 primes p0, p1, p2, · · · , pn and a polynomial g with integer

coefficients such that

f(x)g(x) = a1x
p1 + a2x

p2 + · · ·+ anx
pn

Solution. In the ring Q[X] of polynomials with rational coefficients, consider the

ideal (f) generated by f . The quotient ring Q[X]/(f) is a vector space of dimension

equal to the degree of f (the images of 1, X,X2, · · · , Xdeg(f)−1 is a basis). So, the

dimension is at most n (it equals n if cn 6= 0). Thus, for any set of n+ 1 distinct

primes q0, q1, · · · , qn, the images of the n + 1 polynomials Xq0 , Xq1 , · · · , Xqn in

Q[X]/(f) form a linearly independent set over Q. Hence, there exist rational

numbers a0, a1, · · · , an (not all zero) such that the image of
∑n
i=0 aiX

qi is 0 in the

quotient ring Q[X]/(f); in other words, there is a polynomial q ∈ Q[X] such that

n∑
i=0

aiX
qi = f(X)q(X).

We can clear denominators from ai’s as well as from q(X) to get integers b0, · · · , bn
and a polynomial g ∈ Z[X] such that

∑n
i=0 biX

qi = f(X)g(X).

Solution by the Proposer B. Sury: MS-2016, Nos. 1-2: Problem 5: Let

f =
∑n
i=0 ciX

i where n is a positive integer and each ci = ±1. If all the roots of

f are real, determine all the possibilities for f .

Solution. We find all monic polynomials f whose roots are all real. Then, the

required possibilities are ±f . Now, write

f = Xn + cn−1X
n−1 + · · · c1X + c0

with each ci = ±1. Now, if α1, · · · , αn are the roots of f , then
n∑
i=1

αi = −cn−1;
∑
i<j

αiαj = cn−2;

n∏
i=1

αi = (−1)nc0.

Hence
n∑
i=1

α2
i = c2n−1 − 2cn−2 and

n∏
i=1

α2
i = c20

.
If all the αi’s are real, the αi’s are positive. Applying AM ≥ GM for the numbers

α2
i , we have

(cn−1 − 2cn−2)/n ≥ c2/n0 .

As cn−1, cn−2 are ±1, we must have cn−2 = 1. Therefore 3 ≥ nc2/n0 , and hence

3n ≥ nn

implying n ≤ 3. By looking at all the cases, we arrive at the possibilities

±(X + 1), ±(X − 1), ±(X2 +X − 1), ±(X2 −X − 1),

±(X3 +X2 −X − 1), ±(X3 −X2 −X + 1).

Note. Partial solution to this problem was received from Vikas Chakraborty,

Department of Mathematics, University of Kalyani, Kalyani-741235, West Bengal,
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India; E-mail: bikashchakraborty.math@yahoo.com ; vikashchakrabortyy@gmail.com,

way back on 06-06-2016.

———–



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

158



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

FORM IV
(See Rule 8)

1. Place of Publication: PUNE

2. Periodicity of publica-
tion:

QUARTERLY

3. Printer’s Name: DINESH BARVE
Nationality: INDIAN
Address: PARASURAM PROCESS

38/8, ERANDWANE
PUNE-411 004, INDIA

4. Publisher’s Name: N. K. THAKARE
Nationality: INDIAN
Address: GENERAL SECRETARY

THE INDIAN MATHEMATICAL SOCIETY
c/o:CENTER FOR ADVANCED STUDY IN
MATHEMATICS, S. P. PUNE UNIVERSITY
PUNE-400 007, MAHARASHTRA, INDIA

5. Editor’s Name: J. R. PATADIA
Nationality: INDIAN
Address: (DEPARTMENT OF MATHEMATIC,

THE M. S.UNIVERSITY OF BARODA)
5 , ARJUN PARK, NEAR PATEL COLONY
BEHIND DINESH MILL, SHIVANAND MARG
VADODARA - 390 007, GUJARAT, INDIA

6. Names and addresses of THE INDIAN MATHEMATICAL SOCIETY
individuals who own the
newspaper and partners
or shareholders holding
more than 1% of the
total capital:

I, N. K. Thakare, hereby declare that the particulars given above are true to the
best of my knowledge and belief.

N. K. THAKARE
Dated: 22rd May 2017 Signature of the Publisher

Published by Prof. N. K. Thakare for the Indian Mathematical Society, type set by
J. R. Patadia at 5, Arjun Park, Near Patel Colony, Behind Dinesh Mill, Shivanand
Marg, Vadodara - 390 007 and printed by Dinesh Barve at Parashuram Process,
Shed No. 1246/3, S. No. 129/5/2, Dalviwadi Road, Barangani Mala, Wadgaon
Dhayari, Pune 411 041 (India). Printed in India



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

The Mathematics Student ISSN: 0025-5742
Vol. 86, Nos. 1-2, January-June, (2017)

EDITORIAL BOARD
J. R. Patadia (Editor-in-Chief)

5, Arjun Park, Near Patel Colony, Behind Dinesh Mill
Shivanand Marg, Vadodara-390007, Gujarat, India

E-mail : msindianmathsociety@gmail.com

Bruce C. Berndt George E. Andrews
Dept. of Mathematics, University Dept. of Mathematics, The Pennsylvania
of Illinois 1409 West Green St. State University, University Park
Urbana, IL 61801, USA PA 16802, USA
E −mail : berndt@math.uiuc.edu E −mail : gea1@psu.edu

M. Ram Murty N. K. Thakare

Queens Research Chair and Head C/o :
Dept. of Mathematics and Statistics Center for Advanced Study
Jeffery Hall, Queens University in Mathematics, Savitribai Phule
Kingston, Ontario, K7L3N6, Canada Pune University, Pune− 411007, India
E −mail : murty@mast.queensu.ca E −mail : nkthakare@gmail.com

Satya Deo Gadadhar Misra
Harish− Chandra Research Institute Dept. of Mathematics
Chhatnag Road, Jhusi Indian Institute of Science
Allahabad− 211019, India Bangalore− 560012, India
E −mail : sdeo94@gmail.com E −mail : gm@math.iisc.ernet.in

B. Sury A. S. Vasudeva Murthy
Theoretical Stat. and Math. Unit TIFR Centre for Applicable Mathematics
Indian Statistical Institute P. B. No. 6503, GKV K Post Sharadanagara
Bangalore− 560059, India Chikkabommasandra,Bangalore− 560065, India
E −mail : surybang@gmail.com E −mail : vasu@math.tifrbng.res.in

S. K. Tomar Krishnaswami Alladi
Dept. of Mathematics, Panjab University Dept. of Mathematics, University of
Sector − 4, Chandigarh− 160014, India F lorida, Gainesville, FL32611, USA
E −mail : sktomar@pu.ac.in E −mail : alladik@ufl.edu

Subhash J. Bhatt L. Sunil Chandran
Dept. of Mathematics Dept. of Computer Science&Automation
Sardar Patel University Indian Institute of Science
V. V. Nagar − 388120, India Bangalore− 560012, India
E −mail : subhashbhaib@gmail.com E −mail : sunil.cl@gmail.com

M. M. Shikare T. S. S. R. K. Rao
Center for Advanced Studyin Theoretical Stat. and Math. Unit
Mathematics, Savitribai Phule Pune Indian Statistical Institute
University, Pune− 411007, India Bangalore− 560059, India
E −mail : mms@math.unipune.ac.in E −mail : tss@isibang.ac.in

Kaushal Verma C. S. Aravinda
Dept. of Mathematics TIFR Centre for Applicable Mathematics
Indian Institute of Science P. B. No. 6503, GKV K Post Sharadanagara
Bangalore− 560012, India Chikkabommasandra,Bangalore− 560065, India
E −mail : kverma@math.iisc.ernet.in E −mail : aravinda@math.tifrbng.res.in

Indranil Biswas Timothy Huber
School of Mathematics, Tata Institute School of Mathematics and statistical Sciences
of Fundamental Research, Homi Bhabha University of Texas Rio Grande V alley, 1201
Rd., Mumbai− 400005, India West Univ. Avenue,Edinburg, TX78539 USA
E −mail : indranil29@gmail.com E −mail : timothy.huber@utrgv.edu

Clare D′Cruz Atul Dixit

Dept. of Mathematics, CMI, H1, SIPCOT AB 5/340, Dept. of Mathematics
IT Park, Padur P.O., Siruseri IIT Gandhinagar, Palaj, Gandhinagar−
Kelambakkam− 603103, Tamilnadu, India 382355, Gujarat, India
E −mail : clare@cmi.ac.in E −mail : adixit@iitg.ac.in



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

THE INDIAN MATHEMATICAL SOCIETY
Founded in 1907

Registered Office: Center for Advanced Study in Mathematics
Savitribai Phule Pune University, Pune - 411 007

COUNCIL FOR THE SESSION 2017-2018

PRESIDENT: Manjul Gupta, Professor, Department of Mathematics
& Statistics, I. I. T. Kanpur-208 016, Kanpur (UP), India

IMMEDIATE PAST PRESIDENT: D. V. Pai, Visiting Professor, Mathematics and
I/C Sciences & HSS, I. I. T. Gandhinagar, Palaj, Gandhinagar-382355, Gujarat,
India

GENERAL SECRETARY: N. K. Thakare, C/o. Center for Advanced Study in
Mathematics, S. P. Pune University, Pune-411 007, Maharashtra, India

ACADEMIC SECRETARY: Peeush Chandra, Professor (Retired), Department of
Mathematics & Statistics, I. I. T. Kanpur-208 016, Kanpur (UP), India

ADMINISTRATIVE SECRETARY: M. M. Shikare, Center for Advanced Study in
Mathematics, S. P. Pune University, Pune-411 007, Maharashtra, India

TREASURER: S. K. Nimbhorkar, Dept. of Mathematics, Dr. Babasaheb Ambedkar
Marathwada University, Aurangabad-431 004, Maharashtra, India

EDITOR: J. Indian Math. Society: Satya Deo, Harish-Chandra Research
Institute, Chhatnag Road, Jhusi, Allahabad-211 019, UP, India

EDITOR: The Math. Student: J. R. Patadia, (Dept. of Mathematics, The M. S.
University of Baroda), 5, Arjun Park, Near Patel Colony, Behind Dinesh Mill
Shivananda Marg, Vadodara-390 007, Gujarat, India

LIBRARIAN: G. P. Youvaraj, Director, Ramanujan Inst. for Advanced Study
in Mathematics, University of Madras, Chennai-600 005, Tamil Nadu, India

OTHER MEMBERS OF THE COUNCIL

P. B. Vinod Kumar: Dept. of Mathematics, RSET, Rajagiri, Cochin-682 039, Kerala, India

Manjusha Muzumdar: Dept. of Pure Maths., Calcutta Univ., Kolkata-700 019, WB, India

Bankteshwar Tiwari: Dept. of Mathematics, BHU, Varanasi-221 005, UP, India

S. P. Tiwari: Dept. of Applied Mathematics, I. S. M. , Dhanbad - 226 007 (Jharkhand), India

Veermani, P.: Dept. of Mathematics, I. I. T. Madras, Chennai-600 036, TN, India

G. P. Singh: Dept. of Mathematics, V.N.I.T., Nagpur-440 010, Maharashtra, India

S. S. Khare: 521, Meerapur, Allahabad-211003, Uttar Pradesh, India

P. Rajasekhar Reddy: Sri Venkateswara University, Tirupati-517 502, A.P., India

Back volumes of our periodicals, except for a few numbers out of stock, are available.

Edited by J. R. Patadia and published by N. K. Thakare
for the Indian Mathematical Society.

Type set by J. R. Patadia at 5, Arjun Park, Near Patel Colony, Behind Dinesh Mill,
Shivanand Marg, Vadodara-390 007 and printed by Dinesh Barve at Parashuram
Process, Shed No. 1246/3, S. No.129/5/2, Dalviwadi Road, Barangani Mala, Wadgaon
Dhayari, Pune – 411 041, Maharashtra, India. Printed in India

Copyright c©The Indian Mathematical Society, 2017


	01-Front cvrs-ok-23-05-17-aprvd
	02-Frnt pgs-ii-ok--23-05-17-aprvd
	03-Frnt pgs iii-vi-cntnts-ok--24-05-17
	04-pres adrs-gen-2017-25-05-17-aprvd
	05-DVPai-tech-prfs-25-05-17-aprvd
	06-RKBisht-prf-23-05-17-aprvd
	07-sury-kannapam-23-05-17-aprvd
	08-Diyath-23-05-17-aprvd
	09-Saranya-Shorey-24-05-17-aprvd
	10-BVN-BID-prfs-24-05-17-aprvd
	11-Jena-Sahoo-prfs-23-05-17-aprvd
	12-Saranya-Shorey-revsd-prfs-25-05-17-aprvd
	13-Arpita-revsd-23-05-17-prfs-aprvd
	14-P-18-George-23-05-17-prfs aprvd
	15-Ram-revssd-crctd prfs-25-05-17-aprvd
	16-Tim-prfs-23-05-17-aprvd
	17-Ram-Siddhi revsd-prfs-23-05-17-aprvd
	18-Prblm secn-MS-2017-1-2-25-05-17-working
	19-Form IV-ok-22-05-2017
	20-RearCoverpages-23-05-17



