
Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

ISSN: 0025-5742

THE

MATHEMATICS

STUDENT
Volume 85, Numbers 1-2, January-June (2016)

(Issued: May, 2016)

Editor-in-Chief

J. R. PATADIA

EDITORS

Bruce Berndt George Andrews M. Ram Murty

N. K. Thakare Satya Deo Gadadhar Misra

B. Sury Kaushal Verma Krishnaswami Alladi

S. K. Tomar Subhash J. Bhatt L. Sunil Chandran

M. M. Shikare C. S. Aravinda A. S. Vasudeva Murthy

Indranil Biswas Timothy Huber T. S. S. R. K. Rao

Clare D′Cruz Atul Dixit

PUBLISHED BY

THE INDIAN MATHEMATICAL SOCIETY

www.indianmathsociety.org.in



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

THE MATHEMATICS STUDENT

Edited by J. R. PATADIA

In keeping with the current periodical policy, THE MATHEMATICS STUDENT will

seek to publish material of interest not just to mathematicians with specialized interest

but to the postgraduate students and teachers of mathematics in India. With this in

view, it will ordinarily publish material of the following type:

1. the texts (written in a way accessible to students) of the Presidential Addresses, the

Plenary talks and the Award Lectures delivered at the Annual Conferences.

2. general survey articles, popular articles, expository papers, Book-Reviews.

3. problems and solutions of the problems,

4. new, clever proofs of theorems that graduate / undergraduate students might see in

their course work,

5. research papers (not highly technical, but of interest to larger readership) and

6. articles that arouse curiosity and interest for learning mathematics among readers and

motivate them for doing mathematics.

Articles of the above type are invited for publication in THE MATHEMATICS

STUDENT. Manuscripts intended for publication should be submitted online in the

LATEX and .pdf file including figures and tables to the Editor J. R. Patadia on E-mail:

msindianmathsociety@gmail.com

Manuscripts (including bibliographies, tables, etc.) should be typed double spaced on

A4 size paper with 1 inch (2.5 cm.) margins on all sides with font size 10 pt. in LATEX.

Sections should appear in the following order: Title Page, Abstract, Text, Notes and

References. Comments or replies to previously published articles should also follow this

format with the exception of abstracts. In LATEX the following preamble be used as is

required by the Press:

\ documentclass[10 pt,a4paper,twoside,reqno]{amsart}
\ usepackage {amsfonts, amssymb, amscd, amsmath, enumerate, verbatim, calc}
\ renewcommand{\ baselinestretch}{1.2}
\ textwidth=12.5 cm

\ textheight=20 cm

\ topmargin=0.5 cm

\ oddsidemargin=1 cm

\ evensidemargin=1 cm

\ pagestyle{plain}
The details are available on Indian Mathematical Society website: www.indianmath

society.org.in

Authors of articles / research papers printed in the the Mathematics Student as well as in

the Journal shall be entitled to receive a soft copy (PDF file with watermarked “Author’s

copy”) of the paper published. There are no page charges. However, if author(s) (whose

paper is accepted for publication in any of the IMS periodicals) is (are) unable to send

the LATEX file of the accepted paper, then a charge Rs. 100 (US $ 10) per page will be

levied for LATEX typesetting charges.

All business correspondence should be addressed to S. K. Nimbhorkar, Treasurer, Indian

Mathematical Society, Dept. of Mathematics, Dr. B. A. M. University, Aurangabad -

431 004 (Maharashtra), India. E-mail: sknimbhorkar@gmail.com

Copyright of the published articles lies with the Indian Mathematical Society.

In case of any query, the Editor may be contacted.



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

ISSN: 0025-5742

THE

MATHEMATICS

STUDENT
Volume 85, Numbers 1-2, January-June, (2016)

(Issued: May, 2016)

Editor-in-Chief

J. R. PATADIA

EDITORS

Bruce C. Berndt George E. Andrews M. Ram Murty

N. K. Thakare Satya Deo Gadadhar Misra

B. Sury Kaushal Verma Krishnaswami Alladi

S. K. Tomar Subhash J. Bhatt L. Sunil Chandran

M. M. Shikare C. S. Aravinda A. S. Vasudeva Murthy

Indranil Biswas Timothy Huber T. S. S. R. K. Rao

Clare D′Cruz Atul Dixit

PUBLISHED BY

THE INDIAN MATHEMATICAL SOCIETY

www.indianmathsociety.org.in



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

ISSN: 0025-5742

ii

c© THE INDIAN MATHEMATICAL SOCIETY, 2016.

This volume or any part thereof may not be

reproduced in any form without the written

permission of the publisher.

This volume is not to be sold outside the

Country to which it is consigned by the

Indian Mathematical Society.

Member’s copy is strictly for personal use.

It is not intended for sale or circular.

Published by Prof. N. K. Thakare for the Indian Mathematical Society, type set by

J. R. Patadia at 5, Arjun Park, Near Patel Colony, Behind Dinesh Mill, Shivanand

Marg, Vadodara - 390 007 and printed by Dinesh Barve at Parashuram Process,

Shed No. 1246/3, S. No. 129/5/2, Dalviwadi Road, Barangani Mala, Wadgaon

Dhayari, Pune 411 041 (India). Printed in India.



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

The Mathematics Student ISSN: 0025-5742
Vol. 85, Nos. 1-2, January-June (2016)

CONTENTS

1. A. M. Mathai Mathematics in India-personal perceptions 01-08

2. A. M. Mathai A Versatile Author’s contributions to various areas of
mathematics, Statistics, Astrophysics, Biology and
Social Sciences

09-44

3. M. T. Nair Compact operators and Hilbert Scales in Ill-posed
problems

45-61

4. Uttara Naik Likelihood, Estimating functions and method of 63-78
Nimbalkar moments

5. B. Sury Matrix groups over rings 79-96

6. Siddhi Pathak A simple proof of Burnsides criterion for all groups 97-102
of order n to be cyclic

7. Jack S. Calcut Rational angled hyperbolic polygons 103-111

8. Fahed Metrizability of Arithmetic Progression Topology 113-116
Zulfequarr

9. Amrik Singh Interesting infinite products of rational functions 117-133
Nimbran motivated by Euler

10. G. S. Saluja Some unique fixed point and common fixed point 135-141
theorems in b-metric spaces using rational inequality

11. S. G. Dani Lazy continued fraction expansions for complex 143-149
numbers

12. H. A. Gururaja On Hilbert’s theorem in differential geometry 151-161

13. Ajai Choudhry A pair of simultanous Diophantine equations with no 163-166
solutions in integers

14. - Problem Section 167-174

*******



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

iv



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

The Mathematics Student ISSN: 0025-5742

Vol. 85, Nos. 1-2, January-June (2016), 01-08

MATHEMATICS IN INDIA
- PERSONAL PERCEPTIONS

A. M. MATHAI

Dignitaries on the dais, off the dais, my fellow researchers, students and other

participants, it is a great pleasure for me to be the President of the oldest scientific

society and the truly national mathematical society in India.

1. Proliferation of Scientific/Professional Societies.

In India there are State-wise mathematical societies / associations / forums.

Are such associations necessary? Mathematicians in a geographic or linguistic

region may want to get together and discuss matters in their own regional language

or cultural groups. Thus, such regional associations are needed. When a city has a

large number of scientists they may form a local group. If there is a provision then

people from outside may also join in such groups and participate in their activities.

New York Academy, Gwalior Academy, Calcutta Mathematical Society, etc are

such groups. New York Academy has a lot of activities and any researcher with

published works from around the world can be a member there and participate in

their activities. Such city-based or localized societies are also needed. If there are

a sufficient number of people in a subject area in a country then they may launch

a society for that subject area such as the Society for Special Functions and their

Applications, Indian Society for Probability and Statistics, Applied Mathematics

Forum, Semigroup Forum, etc are such subject-wise societies. Such societies are

also needed to cater to the special needs. Then some people may like the work of a

certain individual and they may be devotees of such a person and they may form a

society to perpetuate the person’s name. In olden days the followers of Pythagoras

created a Pythagorean Society. We have a Ramanujan Society for Mathematics

and Mathematical Sciences, Ramanujan Mathematical Society, etc. Such groups

are also needed to cater to the special interest. Thus, in the Indian scene also, as

in other places in the world, there are a large number of societies / associations

catering to various aspects of mathematical sciences, catering to regional needs,

catering to local needs, catering to topic-wise needs. Does this mean that we

* The text of the Presidential Address (general) delivered at the 81st Annual Conference of the

Indian Mathematical Society held at the Visvesvaraya National Institute of Technology,

Nagpur-440 010, Maharashtra, during the period December 27 - 30, 2015.

c© Indian Mathematical Society, 2016 .
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2 A. M. MATHAI

need a consortium of mathematical societies / associations / forums in India to

amalgamate and coordinate the activities? No such consortium is needed because

all these regional, local, subject-wise societies are catering to special needs. As

national activity, we have the Indian Mathematical Society (IMS), catering to all

regions, all localities, all topics, all individuals’ works, etc. Hence I would like to

request those who are not yet Members of IMS, and interested in any aspect of

mathematical sciences in the wider sense, to become the Life Members of IMS.

2. Indias Share of World Contributions in Mathematical Sciences

Nearly one-fifth of the world population is in the Indian subcontinent. Hence,

one should naturally expect that around one-fifth of the research contributions

in mathematical sciences in the world should be from India. But what is the

reality? Not even one percent is from India. There may be some Indian names

in the upper cadres but they are the ones settled abroad. Why? What are the

real reasons behind this situation even after nearly 70 years of independence?

Research in mathematical sciences do not call for expensive laboratories, expensive

equipments, expensive infrastructure, etc. Then, why? I have located a few of the

problems from my experience in India and in various countries outside India. I

shall mention a few of the major ones that I have recognized.

(a). Concept of learning has to change.

For over forty years I had taught students at the faculty level (below average),

major level (average) and honors level (brilliant) in various topics in Mathematics

and Statistics in different countries outside India. During the past 9 years I had

run 26 undergraduate mathematics training camps in India (trained over 1000

undergraduates) and run 12 research-orientation programs (trained over 400 all-

India participants). In India, especially in Kerala, the concept of learning is to

memorize a few mathematical formulae without really knowing the significance or

relevance. Some students can recite theorems and even their proofs! But they

have no idea why such a theorem is there, what is its importance, its relevance

to real-life situations, etc. Most of the students had negative background in the

subject matter under consideration. In the name of that subject a lot of nonsense

had gone into their brains, and thus the background was negative. I had to de-

program them and start from zero. I could bring out most of their latent abilities.

Unless our students learn the subject matter, rather than memorizing formulae,

they will not be able to make use of whatever they memorize. A real-life problem

does not come in the form of a ready-made formula to compute.

I had recruited 17 M.Sc graduates from various colleges and started training

them at my Centre (CMSS: Centre for Mathematical and Statistical Sciences,

India) for their Ph.Ds. During the past seven years my students had won 19

national level awards for best published paper of the year, best paper presentation,
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MATHEMATICS IN INDIA - PERSONAL PERCEPTIONS 3

best Ph.D thesis, young scientist award etc. They have published over 150 papers

in standard refereed international journals. A number of them have written papers

jointly with the top researchers in the world in various topics and over a dozen

such papers are published. They could present papers in 8 conferences abroad.

13 out of the 17 received their Ph.Ds from Banaras Hindu University (BHU, 6 of

them), Anna University, Chennai (3 or them), MG University, Kerala (4 of them).

CMSS is a recognized research centre of these three universities.

(b). Need for cutting down the number of holidays and extending the work hours.

I achieved all the above publications and awards through a few simple steps.

First, I put a condition that all research scholars must stay within walking distance

from CMSS because in Kerala on almost every day some problems will be there

on the road, either a bandh declared by a political party, or labor union, or local

groups, etc or a bus strike or problems created by students’ unions, etc. Then I

abolished all the holidays except Sundays, Independence Day and Republic Day.

Institution functioned on all days. Individuals are given leaves for personal and

religious reasons. In Kerala a Vice-Chancellor of one of the universities said that

his greatest ambition was to have 75 working days in a year. Then I put the

working hours as 9 am to 5 pm but I used to be present from 7 am until 7 pm.

Naturally, most of the research scholars and staff came by 8 am and left only

around 6 pm. Then I removed all peons, servants, etc and made a rule that all

must clean the premises and all, including me, must share all work in the Centre.

Then I put strict discipline. At the first violation of any rule I removed the person

from the program. Out of 17 only 3 were dismissed and one went abroad with her

husband.

Outside India, no such discipline and enforcement are necessary to achieve the

results. There the children are trained at home and in schools at various levels

about civilized behavioral patterns, about personal cleanliness, about the use of

private and public places, about respect and consideration for others’ rights, etc.

Hence one has to only mention the rules to be followed and discipline will be there.

If India has to catch up with the developed world then it is highly essential to

cut down the number of holidays and extend the work hours. A work culture has

to be created. It is possible in India and I have shown that it is possible. Outsiders

will laugh at the system if we tell that the teaching and research institutions in

India start at 10 am and finish by 3 to 3.30 pm, with two coffee breaks and one

lunch break in between, and government offices function from 11 to 11.30 am until

2.30 to 3 pm.

(c). Periodic work evaluations in all sectors

Poor performance of the students, poor background and negative knowledge

are not due to the fault of the students but these are due to the faults of their
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4 A. M. MATHAI

teachers. In my department of Mathematics and Statistics at McGill University

there is no fixed salary increase every month or every year. Salary increment is

based on the work output. Every faculty member is evaluated every year on three

criteria of research output, teaching and administration. Then the total merit

point is computed based on an open formula. Based on the merit points, the

faulty members are put into 3 to 5 categories. Then the total amount available

to the department for salary increase is divided among these 3 to 5 categories.

Thus, in a certain year the top category may get $2000 increase but in certain

other year the amount may be $1000 depending upon the total fund available to

the department in that year.

When a faculty member is appointed at Assistant Professor level (starting

level) there will be an expert committee set up for that purpose. Usually the

members are mathematicians from outside the university. Then at each stage of

promotion to Associate Professor, Full Professor, tenure, etc there is strict screen-

ing by expert committees, usually from outside. This type of continuous screening

will make everyone productive and active in research, teaching and administra-

tion. Course-credit system gives the students wide choices of courses and they are

free to register into any course provided the student has the required pre-requisite

for that course. This can result in a professor not getting students to register in

his/her courses. This will result in that professor losing the job. Also the students

may make complaints questioning the knowledge of the teacher to teach a partic-

ular course. If the complaint is found to have substance, then also the professor

loses the job. Then there is a periodic evaluation of every department by outside

experts. Usually this is done in every five years. The recommendations of such

outside committees are enforced by the university. The recommendations may

be to remove certain professors or to bring in youngsters to certain areas or to

scrap a certain sector of the department or to scrap the whole department. Such

continuous evaluations of every faculty in every department, in every academic in-

stitution in India, and periodic evaluations of the departments and universities are

necessary to improve the standards of higher education in India. UGC is the right

agency in India to enforce such procedures in colleges, universities and institutions

in India.

(d). Overenthusiastic enforcement of local languages

China has the advantage that the written language is the same all over the

country, even though spoken language varies. India has a great disadvantage in

this respect. Local languages and dialects develop due to the static nature of

the society in olden days. If a group of people are born at a particular place,

live and die within a small spread of land then naturally a local language or at

least a local dialect will develop over time. But their ability to communicate with
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MATHEMATICS IN INDIA - PERSONAL PERCEPTIONS 5

others will be nil or limited. If a child growing up in such an atmosphere wants to

become a scientist then he / she should at least pick up the technical terms in the

current language of science so that the child can easily learn whatever is available

on the subject matter. The language of science in the world used to be French

for some time. All over Europe, whoever learned French was considered to be

learned. Then the language of science became German. After the Second World

War, the language of science is English. Hence, any budding scientist will have

great advantage if he/she knows English or can communicate in English. Once

the symbols and technical terms are picked up in English then it is easy for a child

to follow a mathematical statement. When a child is hearing a technical term for

the first time, it is equally alien to the child, whatever be the language. But if a

technical term is phrased in the mother tongue then it is likely that the child may

misinterpret it and connect it to something else in the mother tongue. For example,

instead of calling the symbol + as “plus” (English word) if the child is taught to

say “adhikam” (Malayalam) then, to the child, “plus” and “adhikam” are both

alien and “adhikam” is more difficult to pronounce. In Malayalam, “adhikam”

is commonly used for “more”, “more than”, “greater”, “greater than”, etc. The

child will not understand the precise meaning of the symbol + if he is learning it

as “adhikam”. In the name of promoting local language, such awkward technical

terms are coined in each language in India now. How can a person communicate

in science with his next State neighbor, let alone communicating with the outside

world?

When I was giving the undergraduate mathematics training at CMSS to col-

lege level students, I heard some students saying “chamithi”, “chamithi”. Where

I grew up, this word “chamithi” meant cleaning up after going to the toilet. I

never knew that it was a mathematical operation. Later I learnt that it was a

mispronounced technical term for some mathematical operation in the name of

promoting Malayalam.

Any forward looking country must make sure that the youngsters can talk

to each other as well as with outsiders, in science, when they grow up. India is

going backward in this respect and destroying opportunities to the vast majority

of children, whose parents cannot afford to send them to English medium schools,

in the name of “promoting” local language. This is not a promotion but nipping

off at the bud prospective scientists of the country.

3. Establishment of Research and Training Centres all Across India

About 30 years back Chinese students from mainland China started coming

to North America in large numbers in all subject areas. In Canada the Chinese

government representatives came to each Province and made deals so that these

Chinese scholars would get fee exemption or fee reduction or fellowships etc. I



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

6 A. M. MATHAI

found the Chinese students coming to our department very good, well motivated

and eager to learn everything that they could learn from us. I was wondering

how they could all be good students without exception. While talking to them I

found that China had established various centres such as my Centre (CMSS) in

different parts of China. Then they recruited motivated students from all across

China and they were given special training in such centres before sending abroad.

What is the net result? When such students come to a department in a university

in Canada or USA they create a very good impression. Professors normally help

students who show promise. They get their Ph.Ds with flying colors and they will

be the best candidates for appointments in universities and they naturally fill all

vacancies since the North American system is an open system based on merit.

Instead of making national effort in creating such training centres (such as

CMSS) all across India and recruiting motivated students to train in such cen-

tres, what is being done in India is to dismantle the only working centre CMSS,

by narrow-minded people sitting in decision-making committees. I have given a

summary of the achievements of CMSS during the past seven years. Such perfor-

mance may not be there anywhere in India. The renewal request for further grant

to CMSS, to take one more batch of students and train them, went through all the

relevant stages except the very last committee. The request was turned down by

this last committee, citing age limit as a reason. The maximum age was specified

as 70 years and I am older than that. In other countries what is looked into are

the following in such a situation: Is the applicant currently active in research? Is

he/she active during the past three years? Was he/she consistently productive? Is

he/she physically and mentally healthy to carry out the proposed work? Is his/her

work up to international standards? If all these criteria are met, then the age limit,

if any, is relaxed and funds are released. This requires the presence of people with

broad-mind, vision and foresight in the decision-making super committees. If such

a step does not come, then India will not be able to catch up with the developed

countries and contributions from India in mathematical sciences will stay at the

current insignificant level.

4. Need for Appointing Proper People in Decision-making Bodies in

India

When top bureaucrats (the government) are looking to appoint persons into

decision-making super committees or granting agencies, they seem to listen only to

people who sit around and praise each other. Now-a-days bureaucrats do not have

to rely on such gossips to evaluate the standing of a person in the field. Google’s

scholar citations are there. This gives criteria such as h-index, i10-index, etc. This

is a criterion showing how others found the person’s research output useful. Then

the bureaucrats can type in the topic or subject matter. Google will print the rank
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MATHEMATICS IN INDIA - PERSONAL PERCEPTIONS 7

list of people who are cited most in that topic. This is another criterion to check

the person’s standing in the topic or subject matter. The bureaucrats can check

into the person’s publications and impact factor of each journal where the papers

appeared. Impact factor is another criterion that can be used to check the relative

standing of the journal. Impact factor is computed by using all citations. Mathe-

maticians may claim that the impact factors of mathematics journals are very low.

The bureaucrats can compare mathematics journals and check the relative stand-

ing of a particular journal among mathematics journals. This is another criterion.

Through such internationally accepted criteria the bureaucrats can line up qual-

ified people for appointments to decision-making bodies, rather than relying on

self-generated gossips about a person’s standing in the field. After lining up qual-

ified people, it is very essential that one should look into the broad-mindedness,

balanced views, lack of biases in the form of caste, creed, regionalism, etc and

appoint the best among the qualified people into such committees. Then research

output from India in mathematical sciences will improve dramatically from year

to year.

5. Need for Transparency and Changing the Funding System for Math-

ematical Sciences in India

If India has to come to the forefront in all topics in mathematical sciences

at the international scene then the definition of mathematics used in India, in

practice, has to change. Mathematics is not only number theory or differential

equations or nonlinear analysis or combinations of these. It has a wide spectrum

of areas and in each area a wide spectrum of topics. Unless we give equal respect

to all topics in each area, India can never come to the forefront. In any particular

topic if India’s contribution comes to the top internationally at any time, then

give more than average encouragement to this topic, but not by cutting off funds

to any other topic. Then topic by topic India will be able to capture the top

positions in international scene. If you look into Google’s scholar citations, even

for small topics, some Chinese names are there in the set of top ten. This is a

recent phenomenon, as a result of national efforts in China. A small group sitting

around and praising each other will not make India’s contribution in any topic

great internationally. It is said that if one has a constant diet of starch alone then

he gets a disease called beriberi, affecting the brain, thinking capacity and nervous

system. This seems to be what has happened to the Indian mathematical scene.

Strong and immediate steps are needed to cure the situation.

Before I make any comment on funding agencies in India, I would like to

take this opportunity to thank NBHM on behalf of IMS and on my own for its

generosity in granting sufficient funds for the 2015 annual conference of IMS. I
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8 A. M. MATHAI

hope that this healthy shift in NBHM’s policy towards IMS and its activities will

continue and that future funding will be there at a healthy level.

I had dealt with DST, NBHM and UGC on various occasions from 1985 on-

ward. I found DST the most transparent one. The Department of Atomic Energy

(DAE) and National Board for Higher Mathematics (NBHM) handled research

funds in mathematical sciences all these years. What is the net result? Re-

search contribution from India in mathematical sciences is miniscule at the in-

ternational scene. There must be something wrong, either in the philosophy of

funding for research in mathematical sciences or in the procedures used. I would

like to see a broader-based National Board for Mathematical and Statistical Sci-

ences (NBMSS), covering all subject matters in the wider sense, and reconstituted

as an autonomous body within DST, parallel SERB in the mathematical sciences

division. There is no use of creating another body or reconstituting existing body

unless the administrators are selected as per the criteria suggested in paragraph 4

above.

I would like to make another remark in this context. People involved in central

grant giving agencies should be selected by using international criteria. They

should be broad-minded without biases of any sort in the name of caste, creed,

religion and regionalism etc. This will encourage research output from all sections

of people and all regions of India.

A. M. Mathai

Centre for Mathematical and Statistical Sciences

Peechi Campus, KFRI Peechi-680653, Kerala, India

E-mail: directorcms458@gmail.com, mathai@math.mcgill.ca
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A VERSATILE AUTHOR’S CONTRIBUTIONS TO
VARIOUS AREAS OF MATHEMATICS, STATISTICS,

ASTROPHYSICS, BIOLOGY AND SOCIAL SCIENCES*

A. M. MATHAI

Abstract. An overview of Mathai’s work in the following topics is given:

Fractional Calculus - real scalar variable case, solutions of fractional differ-

ential equations, extensions of fractional integrals to functions of matrix ar-

gument, extension to complex domains, establishing a connection between

Fractional Calculus and Statistical Distribution Theory, a new general defi-

nition for Fractional Calculus; Functions of Matrix Argument - introduction

of M-transforms, M-convolutions; Krätzel integrals - Krätzel density, exten-

sions; Pathway Models - scalar and matrix-variate cases, extension to complex

matrix-variate cases; Geometrical Probabilities - proof of a conjecture, new

conjectures and proofs, random parallelotopes; Astrophysics - reaction rate

theory, resonant and non-resonant reactions, depleted and tail cut-off cases,

solar and stellar models, gravitational instability and solutions to differential

equations; Special Functions - Popularization in Statistics and Physical Sci-

ences, computable representations, G and H-functions; Multivariate Analysis

- structural decompositions of λ-criteria, exact null and non-null distribu-

tions in the general cases, 11-digit accurate percentage points; Algorithms

for non-linear least squares; Characterizations - characterizations of densi-

ties, information measure, axiomatic definitions, pseudo analytic functions of

matrix argument and characterization of the normal probability law; Mathai’s

entropy - entropy optimization; Graph Theory - almost cubic maps, minimum

number of specifiers, various descriptors; Analysis of Variance - approximate

analysis , matrix series; Dispersion Theory; Population Problems and Social

Sciences; Integer Programming - optimizing a linear function under quadratic

constraints on a grid of positive integers; Quadratic and Bilinear Forms.

1. Mathai’s Contributions to Fractional Calculus

Fractional integrals, fractional derivatives and fractional differential equations

were available only for real scalar variables. The most popular fractional integrals

in the literature are Riemann-Liouville fractional integrals given by the following:

* The text of the Presidential address (technical) delivered at the 81st Annual Conference of the

Indian Mathematical Society held at the Visvesvaraya National Institute of Technology, Nagpur

-440 010, Maharashtra, during the period December 27-30, 2015.

Key words and Phrases: Fractional calculus, functions of matrix argument, Krätzel integral,

special functions, geometrical probabilities, astrophysics, multivariate analysis, characterization,

algorithms, quadratic and bilinear forms.

c© Indian Mathematical Society, 2016 .
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10 A. M. MATHAI

aD
−α
x f =

1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt,<(α) > 0, (1.1)

where <(·) denotes the real part of (·).

xD
−α
b f =

1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt,<(α) > 0. (1.2)

Here −α in the exponent of D indicates an integral. The D with positive exponent

aD
α
xf, xD

α
b f will be used to denote the corresponding fractional derivatives. Here

(1.1) is called Riemann-Liouville left-sided or first kind fractional integral of order

α and (2.2) is called Riemann-Liouville fractional integral of order α of the second

kind or right-sided. If a = −∞ and b = ∞ then (1.1) and (1.2) are called Weyl

fractional integrals of order α and of the first kind and second kind respectively

or the left-sided and right-sided ones. There are various other fractional integrals

in the literature, introduced by various authors from time to time. Mathai was

trying to find an interpretation or connection of fractional integrals in terms of

statistical densities and random variables. In Mathai (2009), an interpretation is

given for Weyl fractional integrals as densities of sum (first kind) and difference

(second kind) of independently distributed real positive random variables having

special types of densities. Fractional integrals were also given interpretations as

fractions of total integrals coming from gamma and type-1 beta random variables.

Also Weyl fractional integrals were extended to real matrix-variate cases there.

These ideas did not make a proper connection to statistical distribution theory.

1.1. Mellin convolutions of products and ratios

Then while working on Mellin convolutions of products and ratios, Mathai

found that a fusion of Fractional Calculus and Statistical Distribution Theory was

possible which also opened up ways of extending fractional calculus to real scalar

functions of matrix argument, when the argument matrix is real or in the complex

domain. Let us consider real scalar variables first. The Mellin convolution of

a product of two functions f1(x1) and f2(x2) says the following: Consider the

integral

g2(u2) =

∫
v

1

v
f1(

u

v
)f2(v)dv. (1.3)

Then the Mellin transform of g2(u2), with Mellin parameter s, is the product of

the Mellin transforms of f1 and f2. That is

Mg2(s) = Mf1(s)Mf2(s), (1.4)

where

Mf1(s) =

∫ ∞
0

xs−1
1 f1(x1)dx1 and

∫ ∞
0

xs−1
2 f2(x2)dx2 = Mf2(s).
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It is easy to note that if g2(u2) is written as

g2(u2) =

∫
v

1

v
f1(v)f2(

u

v
)dv (1.5)

then also the formula in (1.4) holds. Thus, the Mellin convolution of a product

has the two integral forms in (1.3) and (1.5). But, Mellin convolution of a ratio

will have four different representations. Two of these that we will make use of are

the following

Mg1(u1) = Mf1(s)Mf2(2− s) (1.6)

where

g1(u1) =

∫
v

vf1(uv)f2(v)dv (1.7)

and

Mg1(s) = Mf1(2− s)Mf2(s) (1.8)

where

g1(u1) =

∫
v

v

u2
1

f1(
v

u1
)f2(v)dv. (1.9)

1.2. Statistical interpretations of Mellin convolutions

Let x1 and x2 be real scalar positive random variables, independently dis-

tributed, with densities f1(x1) and f2(x2) respectively. Let u2 = x1x2 and u1 = x2

x1
,

v = x2. Then the Jacobians are 1
v and − v

u2
1

respectively or

dx1 ∧ dx2 =
1

v
du2 ∧ dv

and

dx1 ∧ dx2 = − v

u2
1

du1 ∧ dv.

The joint density of x1 and x2 is f1(x1)f2(x2) due to statistical independence and

then the marginal densities of u2 and u1, denoted by g2(u2) and g1(u1) are given

by the following

g2(u2) =

∫
v

1

v
f1(

u2

v
)f2(v)dv (1.10)

and

g1(u1) =

∫
v

v

u2
1

f1(
v

u1
)f2(v)dv. (1.11)

In u2, if x1 is taken as v then the roles of f1 and f2 change in (1.10). If x1 in u1

is taken as v then we get (1.7) with the roles of f1 and f2 interchanged. Hence
x1

x2
gives two forms and x2

x1
gives two forms for Mellin convolution of ratios. The

Mellin convolutions in (1.4) and (1.8) can be easily interpreted in terms of random

variables. u2 = x1x2 gives E(us−1
2 ) = E(xs−1

1 )E(xs−1
2 ) due to independence where

E(·) denotes the expected value. That is,

E(us−1
2 ) =

∫ ∞
0

us−1
2 g2(u2)du2 = Mg2(s).
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Similarly

E(xs−1
1 ) =

∫ ∞
0

xs−1
1 f1(x1) = Mf1(s) and E(xs−1

2 ) = Mf2(s).

This means Mg2(s) = Mf1(s)Mf2(s), which is (1.4) the Mellin convolution of a

product. Now, consider u1 = x2

x1
. Then E(us−1

1 ) = E(xs−1
2 )E(x−s+1

1 ) due to

statistical independence. This means

E(us−1
1 ) =

∫ ∞
0

us−1
1 g1(u1)du1 = Mg1(s),

E(xs−1
2 ) =

∫ ∞
0

xs−1
2 f2(x2)dx2 = Mf2(s)

and

E(x−s+1
1 ) =

∫ ∞
0

x−s+1
1 f1(x1)dx1 =

∫ ∞
0

x
(2−s)−1
1 f1(x1)dx1 = Mf1(2− s).

In other words, Mg1(s) = Mf1(2 − s)Mf2(s), which is (1.8), one form of Mellin

convolution of a ratio. Mellin convolutions of products and ratios make direct

connection to product and ratio of real positive random variables.

1.3. Mellin convolutions, statistical densities and fractional integrals

Let f1(x1) and f2(x2) be statistical densities as in Section 1.2. Let x1 have a

type-1 beta density with parameters (γ + 1, α) or

f1(x1) =
Γ(γ + 1 + α)

Γ(γ + 1)Γ(α)
xγ1(1− x1‘)α−1, 0 ≤ x1 ≤ 1,<(α) > 0,<(γ) > −1

and zero elsewhere. Let f2(x2) = f(x2) an arbitrary density. Then the Mellin

convolution of a product is given by

g2(u2) =

∫
v

1

v
f1(

u2

v
)f(v)dv

=
Γ(γ + 1 + α)

Γ(γ + 1)

1

Γ(α)

∫
v

(
u2

v
)γ(1− u2

v
)α−1f(v)dv

=
Γ(γ + 1 + α)

Γ(γ + 1)
K−α2,u2,γ

f, (1.12)

where

K−α2,u2,γ
f =

uγ2
Γ(α)

∫
v>u2

v−γ−α(v − u2)α−1f(v)dv,<(α) > 0,<(γ) > −1 (1.13)

is Kober fractional integral of order α and of the second kind with parameter γ.

This is a direct connection among Kober fractional integral of the second kind,

Mellin convolution of a product and statistical density of product of two indepen-

dently distributed real scalar positive random variables where one has a type-1

beta density with parameters (γ + 1, α) and the other has an arbitrary density.

Mathai had illustrated this connection of fractional integrals to statistical dis-

tribution theory in 2011-2012 period. Then the idea was extended to fractional
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calculus of matrix-variate functions and then to complex matrix-variate distribu-

tions. These developments were summarized and a series of four articles were put

on Cornell University arXiv as Mathai-Haubold papers.

1.4. General definition for fractional integrals

Motivated by this observation, Mathai has given a new definition for fractional

integrals of the first and second kinds of order α. This was given in 2011-2012.

Let

f1(x1) = φ1(x1)
1

Γ(α)
(1− x1)α−1, 0 ≤ x1 ≤ 1,<(α) > 0

and f1(x1) = 0 elsewhere, and f2(x2) = φ2(x2)f(x2) where φ1 and φ2 are pre-

fixed functions and f(x2) is an arbitrary function, where f1 and f2 need not be

statistical densities. Let us consider the Mellin convolution of a product. Then

using the same notation as g2(u2) we have

g2(u2) =

∫
v

1

v
f1(

u2

v
)f2(v)dv

=

∫
v

1

v
φ1(

u2

v
)

1

Γ(α)
(1− u2

v
)α−1φ2(v)f(v)dv

=

∫
v>u2

φ1(
u2

v
)
v−α

Γ(α)
(v − u2)α−1φ2(v)f(v)dv (1.14)

=
1

Γ(α)

∫
v>u2

(v − u2)α−1f(v)dv for φ1 = 1, φ2(x2) = xα2 . (1.15)

But (1.15) gives Weyl fractional integral of the second kind of order α. If v is

bounded above by a constant b then (1.15) is Riemann-Liouville fractional integral

of the second kind of order α. Thus, by specifying φ1 and φ2 it can be seen

that all fractional integrals of order α of the second kind can be obtained from

(1.14). Evidently when φ1(x1) = xγ1 and φ2(x2) = 1 then we have (1.13) or Kober

fractional integral of order α of the second kind with parameter γ.

1.5. First kind fractional integrals

Let f1(x1) and f2(x2) be as given above in Section 1.4. Let us consider (1.9)

the Mellin convolution of a ratio. Let us use the same notation. Then

g1(u1) =

∫
v

v

u2
1

f1(
v

u1
)f2(v)dv

=

∫
v

v

u2
1

φ1(
v

u1
)

1

Γ(α)
(1− v

u1
)α−1φ2(v)f(v)dv. (1.16)

Let φ1(x1) = xγ−1
1 and φ2 = 1. Then (1.16) reduces to the following form

g1(u1) =
u−γ−α1

Γ(α)

∫
v<u1

vγ(u1 − v)α−1f(v)dv = K−α1,u1,γ
f. (1.17)

Then

g∗1(u1) =
Γ(γ + α)

Γ(γ)
K−α1,u1,γ

f,<(α) > 0,<(γ) > 0 (1.18)
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is a statistical density when f1 and f2 are statistical densities. This is Kober

fractional integral operator of the first kind of order α and parameter γ, denoted

by K−α1,u1,γ
f . From (1.16), by specializing φ1 and φ2 one can get all fractional

integrals of order α of the first kind in the real scalar case, defined by various

authors from time to time.

This formal definition of fractional integrals as Mellin convolutions of ratio and

product was introduced formally in Mathai (2013). A geometrical interpretation

of fractional integrals as fractions of integral over a simplex in n-space is given in

Mathai (2014). Earlier, in Mathai (2009), an interpretation was given as fractionas

of total probability in gamma and type-1 beta distributions.

1.6. Extension of fractional integrals to real matrix-variate case

Mathai (2009) introduced fractional integrals in the real matrix-variate case for

the first time but they could not be given any physical interpretations. In Mathai

(2013) there are interpretations in terms of statistical distribution problem and M-

convolutions introduced in Mathai (1997). When M-convolutions were introduced

in (1997), the author could not find any physical interpretation. Now, a very

meaningful interpretation is given as the densities of product and ratio of matrix-

variate random variables. Some details are in the following.

All the matrices appearing here are p×p real positive definite matrices, unless

specified otherwise. The notation Xj > O means the p× p real symmetric matrix,

Xj = X ′j , is positive definite, where a prime denotes the transpose. X
1
2
j means

the positive definite square root of the positive definite matrix Xj . If X = (xij)

is m× n then the wedge product of differentials will be denoted by dX, that is,

dX =
m∏
i=1

m∏
j=1

∧dxij

and it is
∏
i≥j ∧dxij if m = n = p and X = X ′. Also,

∫ B
A
f(X)dX

=
∫
A<X<B

f(X)dX means the integral over all X > O of the real-valued scalar

function f(X) of X, such that A > O,B > O,X − A > O,B − X > O where

A and B are positive definite constant matrices. We will need some Jacobians of

matrix transformations in our discussion. These will be given as lemmas, without

proofs. For proofs and for other such Jacobians see Mathai (1997).

Lemma 1.1. Let X = (xij) be m×n matrix of distinct real scalar variables xij’s.

Let A be m×m and B be n× n nonsingular constant matrices. Then

Y = AXB ⇒ dY = |A|n|B|mdX (1.19)

where |(·)| denotes the determinant of (·).
Lemma 1.2. Let X = X ′ be p×p. Let A be a p×p nonsingular constant matrix.

Then

Y = AXA′ ⇒ dY = |A|p+1dX. (1.20)
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Lemma 1.3. Let X be a p× p nonsingular matrix. Let Y = X−1. Then

Y = X−1 ⇒ dY =

|X|−2pdX, for a general X

|X|−(p+1)dX for X = X ′.
(1.21)

Lemma 1.4. Let X > O be p × p. Let T = (tij) be a lower triangular matrix

with positive diagonal elements, that is, tij = 0, i < j, tjj > 0, j = 1, ..., p. Then

X = TT ′ ⇒ dX = 2p{
p∏
j=1

tp+1−j
jj }dT. (1.22)

With the help of (1.22) we can evaluate a matrix-variate gamma integral and write

the result as

Γp(α) = π
p(p−1)

4 Γ(α)Γ(α− 1

2
)...Γ(α− p− 1

2
),<(α) >

p− 1

2
(1.23)

where ∫
X>O

|X|α−
p+1
2 e−tr(X)dX = Γp(α),<(α) >

p− 1

2
(1.24)

with tr(·) denoting the trace of (·). Combining (1.24) and (1.20) we can define a

matrix-variate gamma density as

h1(X) =


|B|α
Γp(α) |X|

α− p+1
2 e−tr(BX)dX,X > O,B > O,<(α) > p−1

2

0, elsewhere.
(1.25)

Since the total integral is 1, from (1.25) we have the identity

|B|−α ≡ 1

Γp(α)

∫
X>O

|X|α−
p+1
2 e−tr(BX)dX,B > O. (1.26)

This identity will be used to establish fractional derivatives in a class of matrix-

variate functions. The real matrix-variate type-1 beta density is defined as

h2(X) =


Γp(α+β)

Γp(α)Γp(β) |X|
α− p+1

2 |I −X|β−
p+1
2 , O < X < I,<(α) > p−1

2 ,<(β) > p−1
2

0, elsewhere.

(1.27)

There is a corresponding type-2 beta density, which is of the form

h3(X) =


Γp(α+β)

Γp(α)Γp(β) |X|
α− p+1

2 |I +X|−(α+β), X > O,<(α) > p−1
2 ,<(β) > p−1

2

0, elsewhere,

(1.28)

1.7. Fractional integrals for the real matrix-variate case

With the preliminaries in Section 1.6 we can define fractional integrals in the

real matrix-variate case. Let X1 > O and X2 > O be p × p real matrix-variate

random variables, independently distributed. Let U2 = X
1
2
2 X1X

1
2
2 be defined as

the product of X1 and X2 and let U1 = X
1
2
2 X

−1
1 X

1
2
2 be defined as the ratio of X2
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over X1. Let V = X2. Then with the help of the above lemmas we can show that,

ignoring sign,

dX1 ∧ dX2 = |V |−
p+1
2 dU2 ∧ dV = |V |

p+1
2 |U1|−(p+1)dU1 ∧ dV. (1.29)

Denoting the densities of U2 and U1 as g2(U2) and g1(U1), we can compute these

by using the densities f1(X1) and f2(X2) through transformation of variables and

they will be the following

g2(U2) =

∫
V

|V |−
p+1
2 f1(V −

1
2U2V

− 1
2 )f2(V )dV (1.30)

and

g1(U1) =

∫
V

|V |
p+1
2 |U1|−(p+1)f1(V

1
2U−1

1 V
1
2 )f2(V )dV. (1.31)

Let f1(X1) be a type-1 beta density of the type in (1.27) with parameters (γ +
p+1

2 , α). Note that in (1.27) the parameters are (α, β). Then g2(U2) will be of the

following form

g2(U2) =
Γp(γ + p+1

2 + α)

Γp(γ + p+1
2 )

|U2|γ

Γp(α)

∫
V >U2

|V |−α−γ |V − U2|α−
p+1
2 f(V )dV

=
Γp(γ + p+1

2 + α)

Γp(γ + p+1
2 )

K−α2,U2,γ
f. (1.32)

This K−α2,U2,γ
f in (1.32) for p = 1 is Kober fractional integral of the second kind of

order α and parameter γ and hence Mathai called the integral as Kober fractional

integral of order α and parameter γ of the second kind in the real matrix-variate

case. This notation is also due to him. In a similar fashion, Kober fractional

integral of order α of the first kind with parameter γ, available from (1.31) by

taking f1(X1) as a real matrix-variate type-1 beta with parameters (γ, α) is the

following

K−α1,U1,γ
f =

|U1|−γ−α

Γp(α)

∫
V <U1

|V |γ |U1 − V |α−
p+1
2 f(V )dV. (1.33)

The density of U1, again denoted by g1(U1), is given by

g1(U1) =
Γp(γ + α)

Γp(γ)
K−α1,U1,γ

f (1.34)

where the first kind Kober fractional integral in the matrix-variate case is given

in (1.33).

The above notations as well as a unified notation for fractional integrals and

fractional derivatives were introduced by Mathai (2013,2014,2015, Linear Algebra

and its Applications).

The above results in the real matrix-variate case are extended to complex

matrix-variate cases, see Mathai (2013), to many matrix-variate cases, see Mathai

(2014) and also the corresponding fractional derivatives in the matrix-variate case
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are worked out in Mathai (2015). The matrix differential operator introduced in

Mathai (2015) is not a universal one, even though it works on some wide classes

of functions. The matrix differential operator is introduced through the following

symbolic representation. Let D be a differential operator defined for real matrix-

variate case. Then Dα and D−α represent αth order fractional derivative and

fractional integral respectively. Then

Dαf = DnD−(n−α)f, n = 1, 2, ...,<(n− α) >
p− 1

2
,<(α) >

p− 1

2
.

This is the αth order fractional derivative in Riemann-Liouville sense. Consider

Dαf = D−(n−α)Dnf, n = 1, 2, ...,<(α) >
p− 1

2
,<(n− α) >

p− 1

2

is the αth order fractional derivative in the Caputo sense. In the Caputo case, Dn

operates on f first and then the fractional integral D−(n−α) is taken, whereas in

the Riemann-Liouville sense, the (n − α)th order fractional integral is taken first

and then Dn operates on this. A universal differential operator D in the real as

well as complex matrix-variate case is still an open problem.

2. Mathai’s Work on Krätzel Integrals

Let x be a real scalar positive variable. Consider the integrals

I1 =

∫ ∞
0

xγ−1e−ax
δ−bxρdx, a > 0, b > 0, δ > 0, ρ > 0 (2.1)

and

I2 =

∫ ∞
0

xγe−ax
δ−bx−ρ , a > 0, b > 0, δ > 0, ρ > 0. (2.2)

Structures such as the ones in (2.1) and (2.2) appear in many different areas. This

(2.2) for δ = 1, ρ = 1 is the basic Krätzel integral, see Krätzel (1979). For ρ = 1

and general δ > 0 is the generalized Krätzel integral. An integral transform of the

form

I3 =

∫ ∞
0

e−ax−bx
−1

f(x)dx (2.3)

where f(x) is arbitrary so that I3 exists, is known as Krätzel transform. The

structures of the integral in (2.2) and (2.1) are very interesting ones. Mathai has

investigated various aspects of (2.1) and (2.2) in detail and he has also introduced

a statistical density in terms of Krätzel integral. The structures in (2.2) and (2.1)

can be generated as Melin convolutions of product and ratio. Consider the real

scalar variables x1 and x2 and the corresponding functions f1(x1) and f2(x2).

Then it is seen from (1.10) that the Mellin convolution of a product is given by

g2(u2) =

∫
v

1

v
f1(

u2

v
)f2(v)dv and Mg2(s) = Mf1(s)Mf2(s) (2.4)

or u2 = x1x2, v = x2, and the Mellin convolution of a ratio, from (1.7), as

g1(u1) =

∫
v

vf1(u1v)f2(v)dv and Mg1(s) = Mf1(s)Mf2(2− s) (2.5)
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or u1 = x1

x2
, v = x2. Let f1 and f2 be generalized gamma functions of the form

fj(xj) = x
αj
j e−ajx

βj
j , xj > 0, aj > 0, βj > 0, j = 1, 2. (2.6)

Then g1(u1) of (2.5) reduces to the form

g1(u1) = uα1
1

∫ ∞
0

vα1+α2+1e−a1(u1v)β1−a2vβ2 dv. (2.7)

This is the form in (2.1). Now, consider Mellin convolution of a product when f1

and f2 are generalized gamma functions in (2.6). Then g2(u2) reduces to the form

g2(u2) = uα1
2

∫ ∞
0

vα1−α2−1e−a1(
u2
v )β1−a2vβ2 dv. (2.8)

This is the form in (2.2). Hence (2.1) and (2.2) can be treated as Mellin convolu-

tions of ratio and product when f1 and f2 are generalized gamma functions.

Note that if f1 and f2 are multiplied by the corresponding normalizing con-

stants c1 and c2 then f1 and f2 become statistical densities. Let x1 and x2 be inde-

pendently distributed real scalar positive random variables. Let u2 = x1x2, u1 =
x1

x2
, v = x2. Then the densities of u2 and u1 are given by (2.4) and (2.5) mul-

tiplied by the appropriate constants and reduce to the forms in (2.8) and (2.7),

multiplied by appropriate constants. In other words, (2.1) and (2.2), multiplied by

appropriate constants, can be looked upon as the density of a ratio and product

respectively.

The integrand in (2.2) for δ = 1, ρ = 1, γ = − 3
2 and normalized is the inverse

Gaussian density available in stochastic processes. The integral in (2.2) for δ =

1, ρ = 1
2 is the basic reaction-rate probability integral, which will be considered

later. Mathai (2012) has introduced a Krätzel density associated with (2.1) and

(2.2) and it is shown that one has general Bayesian structures in (2.1) and (2.2).

For example, let us consider a conditional density of y, given x, in the form

h1(y|x) = ĉ1 y
αe−a( yx )ρ , y > 0, x > 0, a > 0 (2.9)

and ĉ1 can act as the normalizing constant. In other words, the conditional density

is a generalized gamma density. Let the marginal density of x be given by h2(x) =

ĉ2x
βe−a1x

δ

, a > 0, x > 0, δ > 0, and ĉ2 can act as a normalizing constant, a

generalized gamma density. Then the joint density of y and x is given by

h1(y|x)h2(x) = ĉ1ĉ2y
αxβe−a1x

δ−a( yx )ρ . (2.10)

Then the unconditional density of y, fy(y), is available by integrating out x from

this joint density. That is,

fy(y) = ĉ1ĉ2y
α

∫ ∞
0

xβe−a1x
δ−a y

δ

xδ dx. (2.11)

Now, compare (2.2) and (2.11). They are one and the same forms. Hence (2.2)

can be considered as an unconditional density in a Bayesian structure.
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For δ = 1, ρ = 1 in (2.1) and (2.2) one can extend the integrals to the real

and complex matrix-variate cases. Mathai has also looked into this problem of

Krätzel integrals in the matrix-variate cases. There will be difficulty with the Ja-

cobians if we consider general parameters δ and ρ in the matrix-variate case. The

type of difficulties that can arise is described in Mathai (1997) by considering the

transformation Y = X2 when X = X ′. In the real matrix-variate case the scalar

quantity xγ is replaced by the determinant |X|γ and exponent e−ax is replaced by

e−atr(X) for X > O, where a > 0 is a real scalar, or e−tr(AX) if a is also replaced

by a positive definite constant matrix A > O. Mathai has also extended Baysian

structures, densities of product and ratio, inverse Gaussian density, Krätzel in-

tegral and Krätzel density, to matrix-variate cases. When the matrix is in the

complex domain |X| is replaced by |det(X̃)| = absolute value of the determinant

of X̃, where X̃ is a matrix in the complex domain.

3. Pathway Model

In a physical system the stable solution may be exponential or power function

or Gaussian. This may be the idealized situation. But in reality the solution

may be somewhere nearby the ideal or the stable situation. In order to capture

the ideal situation as well as the neighboring unstable situations, a model with

a switching mechanism was introduced by Mathai (2005, Linear Algebra and its

Applications). A form of this was proposed in the 1970’s by Mathai in connection

with population studies. This was a real scalar variable case. Then the ideas were

extended to matrix-variate cases and brought out in 2005. For the real scalar

positive variable situation, the model is the following

p1(x) = c̃1x
γ [1− a(1− q)xδ]

1
1−q , a > 0, δ > 0, q < 1, x > 0. (3.1)

If (3.1) is to be used as a statistical density then c̃1 is the normalizing constant

there. Otherwise c̃1 is a constant, may be c̃1 = 1 and then (3.1) will be a mathe-

matical model. For q > 1 we can write 1 − q = −(q − 1) and then (3.1) becomes

p2(x) = c̃2x
γ [1 + a(q − 1)xδ]−

1
q−1 , a > 0, x > 0, q > 1, δ > 0. (3.2)

When q → 1 then p1(x) and p2(x) go to

p3(x) = c̃3x
γe−ax

δ

, a > 0, x > 0, δ > 0. (3.3)

Note that p1(x) in (3.1) is in the family of generalized type-1 beta family of func-

tions, whereas p2(x) is in the family of generalized type-2 beta family of functions

and p3(x) belongs to the generalized gamma family of functions. Thus, when the

pathway parameter q, goes from −∞ to 1 we have one family of functions, when

q is from 1 to ∞ we have another family of functions and when q → 1 we have a

third family of functions. Thus, all the three cases are contained in (3.1), which

is the pathway model for the real positive scalar variable case. Replace x by |x|,
−∞ < x < ∞, to extend the families over the real line. In (3.2) and (3.3), δ can

be either δ > 0 or δ < 0.
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When p1(x), p2(x), p3(x) are statistical densities then (3.1) to (3.3) give a

distributional pathway to go to three different families of functions. Mathai has

also established a parallel pathway in terms of entropy optimization and in terms

of differential equations. These give entropic and differential pathways as well.

For example, consider the optimization of Mathai’s entropy, namely

Mα(f) =

∫
x
[f(x)]2−αdx− 1

α− 1
, α 6= 1, α < 2 (3.4)

where f(x) is a density function of x, and x can be real scalar or vector or matrix

variable. A density means that f(x) ≥ 0 for all x and
∫
x
f(x)dx = 1. If we take

the limit when α→ 1 then (3.4), for real scalar x, reduces to

Mα(f)→ −
∫
x

f(x) ln f(x)dx = S(f) (3.5)

where S(f) is Shannon’s entropy or measure of “uncertainty” or the complement of

“information”. In (3.5),
∫
x
f(x) ln f(x)dx is taken as zero when f(x) = 0. Consider

the optimization of (3.4) subject to the conditions (a):
∫
x
xγ(1−q)+δf(x)dx = fixed

and (b):
∫
x
xγ(1−q)f(x)dx = fixed. For γ = 0, condition (b) becomes

∫
x
f(x)dx =

1 since the total probability is 1. For γ = 1, q = 0, (b) means that the first moment

is fixed. This can correspond to the physical law of conservation of energy when

dealing with energy distribution. If we use Calculus of Variation to optimize (3.4)

then the Euler equation there is
∂

∂f
[f2−α − λ1x

γ(1−q)f + λ2x
γ(1−q)+δf ] = 0 (3.6)

where λ1 and λ2 are Lagrangian multipliers. Note that (3.6) gives the structure

f1−α = µ1x
γ(1−q)[1− µ2x

δ]

for some µ1 and µ2, which means

f = γ1x
γ [1− γ2x

δ]
1

1−q (3.7)

for some γ1 and γ2. For γ2 = a(1−q) and γ1 = c̃1 we have the model in (3.1). Thus,

for q < 1, q > 1, q → 1 one has an entropic pathway. Similarly we can consider the

corresponding differential equations to obtain a differential pathway. The phrases,

distributional, entropic and differential pathways, were coined by Hans J. Haubold,

co-author of Mathai in various topics in physics, fractional differential equations

etc.

The original paper Mathai (2005) deals with rectangular matrix-variate case.

Let X = (xij) be m× n,m ≤ n and of rank m be a matrix of distinct real scalar

variables xij ’s. Let A be m×m and B be n×n constant positive definite matrices.

Consider the function

P1(X) = C1|AXBX ′|γ |I − a(1− q)AXBX ′|
1

1−q , q < 1, a > 0 (3.8)

where a > 0, q < 1 are scalars, I is a m×m identity matrix and C1 is a constant.

If (3.8) is to be taken as a density then C1 is the normalizing constant there and

I − a(1− q)AXBX ′ > O. For q > 1, P1(X) goes to

P2(X) = C2|AXBX ′|γ [I + a(q − 1)AXBX ′|−
1
q−1 , q > 1, a > 0 (3.9)



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

A VERSATILE AUTHOR’S CONTRIBUTIONS TO .... AND SOCIAL SCIENCES 21

and when q → 1, P1(X) and P2(X) go to

P3(X) = C3|AXBX ′|γe−atr(AXBX′), a > 0. (3.10)

If a location parameter matrix is to be introduced then replace X by X−M where

M is a m× n constant matrix.

Note that the structure |AXBX ′| is the structure of the volume content of

a parallelotope in n-space. Let us look at the m rows of X. These are 1 × n

vectors. These can be taken as m points in n-dimensional Euclidean space. These

m vectors, m ≤ n, are linearly independent when the rank of X is m. These taken

in a given order can form a convex hull and a m-parallelotope. The volume of

this m-parallelotope is the determinant |XX ′| 12 . Hence |AXBX ′| 12 is the volume

content of a generalized m-parallelotope.

Also AXBX ′ is a generalized quadratic form. For A = Im and m = 1 it is

a quadratic form in the 1× n vector variable. Thus the theory of quadratic form

and generalized quadratic form can be extended to a wider class represented by

the pathway model (3.8). The current theory of quadratic form and bilinear form

in random variables is confined to samples coming from a Gaussian population,

see the books Mathai and Provost (1992), Mathai, Provost and Hayakawa (1995).

The results on quadratic and bilinear forms can now be extended to the wider class

of pathway models. One problem in this direction is discussed in Mathai (2007).

The area is still wide open. The matrix-variate pathway model in Mathai (2005) is

extended to complex domain in Mathai and Provost (2005, 2006). Some works in

the scalar complex variable case, associated with normal or Gaussian population,

are available in the literature with lots of applications in sonar, radar, communi-

cation and engineering problems. These results are not included in Mathai and

Provost (1992) and Mathai, Provost and Hayakawa (1995). This is a deficiency

there. These results can be extended to the pathway family, which may produce

many useful results in communication, engineering and related areas. These are

open problems.

Note that (3.8) for a = 1, q = 0 is a matrix-variate type-1 beta density or

AXBX ′ is a type-1 beta matrix. This is the exact form of the matrix appear-

ing in the generalized analysis of variance and design of experiments areas, in

the likelihood ratio test involving one or more multivariate normal or Gaussian

populations etc, a summary of the contributions of Mathai and his co-workers is

available from Mathai and Saxena (1973). The theory available there is based on

Gaussian populations. Now, generalized analysis of variance can be examined in

a wider pathway family so that the limiting form corresponding to (3.10), will be

the Gaussian case. This is wide area, not explored yet. Instead of Gaussian pop-

ulations, now the likelihood ratio tests in a wider pathway family, corresponding

to (3.8) and (3.9), can be examined. This also is a wide area, not explored yet.
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While exploring a reliability problem, Mathai (2003) came across a multivari-

ate family of densities, which could be taken as a generalization of type-1 Dirichlet

family of densities. Then Mathai and his co-workers introduced several general-

izations of type-1 and type-2 Dirichlet densities. Many papers are written in this

area, see for example Thomas and Mathai (2009). For the different generaliza-

tions of type-1 and type-2 Dirichlet family, a number of characterization results

are established showing that these models could also be generated by products of

statistically independently type-1 beta distributed real scalar random variables.

This is exactly the same structure available in the likelihood ratio criteria in the

null cases of testing hypotheses on the parameters of one or more Gaussian popula-

tions as well as in the determinant |AXBX ′| or in the model (3.8) for a = 1, q = 0.

Thus, it is already shown that these three areas are connected. This is not yet

explored in detail. All the problems here can be set in a general pathway family

of functions. These are all open problems.

In (3.1) if we put γ = 0, δ = 1 then we get Tsallis statistics in non-extensive

statistical mechanics. This is a very popular area. It is said that between 1990

and 2010 more than 5000 papers are published in this area, mostly applications

in various problems of physics. Then the pathway model is directly applicable in

these problems, which may even produce some significant new theories in physical

sciences. Also, (3.2) for δ = 1 as well as for some general δ > 0 is superstatistics.

This is also a very hot area recently. Dozens of articles are published in this area

also. (3.2) and its limiting form (3.3) are covered in superstatistics but (3.1) is

not covered because superstatistics considerations deal with a conditional density

of generalized gamma form as well as the marginal density a generalized gamma

form then the unconditional density, which is superstatistics in statistical terms

from a Bayesian point of view, can only produce a type-2 beta form, namely (3.2)

form and not (3.1) form. Thus, superstatistics is also a special case of the pathway

model in the real scalar positive variable case.

Mathai’s students and others have created a pathway fractional integral op-

erator, a pathway transform or P-transform, pathway Weibull or q-Weibull distri-

bution, q-logistic distribution, q-stochastic process etc, which produced significant

results and better-fitting models for many types of real-life data.

In the pathway idea itself there is an open area which is not yet explored. The

scalar version of the pathway model in (3.1) to (3.3) can be looked upon as the

behavior of a hypergeometric series 1F0 (binomial series) going to 0F0 (exponential

series). That is,

1F0(− 1

1− q
; ; a(1− q)xδ) = [1− a(1− q)xδ]

1
1−q . (3.11)

lim
q→1−

1F0(− 1

1− q
; ; a(1− q)xδ) = e−ax

δ

= 0F0( ; ;−axδ). (3.12)
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From the point of view of a hypergeometric series, the process (3.11) to (3.12) is

the process of a binomial series going to an exponential series. But a Bessel series

0F1 can also be sent to an exponential series. For example, consider the Bessel

series

lim
q→1−

0F1( ;
1

1− q
;− a

1− q
xδ) = e−ax

δ

= 0F0( ; ;−axδ). (3.13)

Therefore, a generalized form, covering the path towards the exponential form

e−ax
δ

, is the Bessel form 0F1( ; 1
1−q ;− a

1−qx
δ). Many practical situations are con-

nected to various forms of Bessel functions, the path given by (3.13) can yield rich

results. Bessel function with matrix argument is also defined. Hence this area is

still there, to be fully explored, as open problems.

4. Mathai’s Work on Functions of Matrix Argument

There are not many people working in this area around the world. A multivari-

ate function usually means a function of many scalar variables. This is different

from a matrix-variate function of a function of matrix argument. Functions of

matrix argument are real-valued scalar functions f(X), where X is a square or

rectangular matrix. For example, for a p × p matrix X, |X| = determinant of

X, tr(X) = trace of X are real-valued scalar functions when X is real. Even for

a square p × p matrix X, the square root cannot be uniquely determined unless

further conditions are imposed on X. If we use the definition A = BB = B2 then

B = A
1
2 the square root of A we can have many candidates for B. For example,

for a simple matrix like a 2 × 2 identity matrix A = I2, B1, B2.B3, ... are square

roots

A =

[
1 0

0 1

]
, B1 =

[
−1 0

0 1

]
, B2 =

[
1 0

0 −1

]
, B3 =

[
1 0

0 1

]
.

If we restrict A and A
1
2 to be positive definite matrices then B3 is the only can-

didate here. Hence, if X is p × p real positive definite or Hermitian positive

definite then X
1
2 can be uniquely defined. Therefore, functions of matrix ar-

gument are developed mainly when the argument matrix is either real positive

definite or Hermitian positive definite. There are three approaches available in

the literature for functions of matrix argument, that is, real-valued scalar func-

tions f(X) of matrix argument X. For convenience, all the matrices appearing

in this section are p × p positive definite denoted by X > O, real or Hermitian,

unless stated otherwise. One definition is through Laplace and inverse Laplace

transforms. This development is due to Herz (1955) and others. Here the basic

assumption of functional commutativity is used, that is, f(AB) = f(BA) even

if AB 6= BA. For example, determinant and trace will satisfy this property.

When X is real symmetric then there exists an orthonormal matrix Q such that

QQ′ = I,Q′Q = I,Q′XQ = D = diag(λ1, ..., λp) where λ1, ..., λp are the eigenval-

ues of X. Then
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f(X) = f(XI) = f(XQQ′) = f(Q′XQ) = f(D) (4.1)

or f(X), which is a function of p(p+ 1)/2 real variables xij ’s, when X = X ′ and

real, has become a function of D which is of p real variables λ1, ..., λp, under this

assumption of functional commutativity. If X = (xij) = X ′, p× p and T = (tij) =

T ′, p× p then

tr(XT ) =

p∑
j=1

xjjtjj + 2
∑
i<j

xijtij . (4.2)

Therefore ∫
X>O

e−tr(TX)f(X)dX 6= Lf (T ) (4.3)

the Laplace transform of f(X) because (4.3) is not consistent with the definition

of multivariate Laplace transform. In (4.2) the non-diagonal terms appear twice.

In the multivariate Laplace transform, the variables and the corresponding pa-

rameters must appear only once each. If we consider a modified parameter matrix

T ∗ = (t∗ij), t
∗
ij = t∗ji for all i and j, and

t∗ij =

tii, i = j

1
2 tij , i 6= j

, T = (tij) = T ′, (4.4)

then ∫
X>O

e−tr(T∗X)f(X)dX = Lf (T ∗) (4.5)

is the Laplace transform in the real symmetric positive definite matrix-variate

case, where T ∗ is the parameter matrix and dX stands for the wedge product of

the p(p+ 1)/2 differentials dxij ’s or

dX =
∏
i≥j

∧dxij . (4.6)

Under this approach, a hypergeometric function of matrix argument, denoted by

rFs(a1, ..., ar; b1, ..., bs;X),

where a1, ..., ar and b1, ..., bs are scalar parameters and X is a p × p real positive

definite matrix, is defined by a Laplace and inverse Laplace pair. Under this defi-

nition, explicit forms are available only for 0F0 and 1F0. Details of the definition

and properties may be seen from Herz (1955) and from the book Mathai (1997).

The second approach is through zonal polynomials, developed by James (1961),

Constantine (1963) and others. Here also functional commutativity is implicitly

assumed, though not stated explicitly. Under this definition, a hypergeometric

series is defined as follows

rFs(a1, ..., ar; b1, ..., bs;X) =
∞∑
k=0

∑
K

(a1)K ...(ar)K
(b1)K ...(bs)K

CK(X)

k!
(4.7)

where CK(X) are zonal polynomials of order k,K = (k1, ..., kp), k1+k2+...+kp = k

and
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(a)K =

p∏
j=1

(a− j − 1

2
)kj and (b)kj = b(b+ 1)...(b+ kj − 1), (b)0 = 0, b 6= 0. (4.8)

Here (b)kj is the Pochhammer symbol and (a)K is the generalized Pochhammer

symbol. All terms of the series in (4.7) are explicitly available but since zonal

polynomials are complicated to compute, only the first few terms up to k = 11

are computed. Details of zonal polynomials may be found, for example from the

book Mathai, Provost and Hayakawa (1995). The definition through (4.5) and

its inverse Laplace form and the definition through (4.7) are not very powerful

in extending results in the univariate case to the corresponding matrix-variate

case. When (4.7) is used to extend univariate results to matrix-variate cases the

following two basic results will be essential. These will be stated here as lemmas

without proofs.

Lemma 4.1. We have∫
X>O

e−tr(ZX)|X|α− p+ 1

2
CK(XT )dX = |Z|−αCK(TZ−1)Γp(α,K), (4.9)

where

Γp(α,K) = π
p(p−1)

4

p∏
j=1

Γ(α+ kj −
j − 1

2
) = Γp(α)(α)K (4.10)

with (α)K defined as in (4.8).

Lemma 4.2. We have∫ I

O

|X|α−
p+1
2 |I −X|β−

p+1
2 CK(TX)dX =

Γp(α,K)Γp(β)

Γp(α+ β,K)
CK(T ). (4.11)

Starting from 1970, Mathai developed functions of matrix argument through

M-transforms and M-convolutions. Under M-transform definition, a hypergeomet-

ric function rFs with p × p matrix argument X > O is defined as that class of

functions f(X) satisfying functional commutativity and the integral equation∫
X>O

|X|ρ−
p+1
2 f(−X)dX = CΓp(ρ)

∏r
j=1 Γp(aj − ρ)∏s
j=1 Γp(bj − ρ)

,<(α) >
p− 1

2
(4.12)

where

C =

∏s
j=1 Γp(bj)∏r
j=1 Γp(aj)

.

For example∫
X>O

|X|ρ−
p+1
2 f(−X)dX = Γp(ρ),<(ρ) >

p− 1

2
⇒ f(−X) = e−tr(X). (4.13)

Since the left side in (4.12) is a function of only one parameter ρ, we cannot

normally recover f(X) = f(D) a function of p scalar variables. It is conjectured

that when f(X) is analytic in the cone of positive definite matrices X, one has

f(X) uniquely recovered from the right side of (4.12). This is not established yet

and also an explicit form of an inverse or f(X) through the right-side of (4.12)
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is not available yet. But (4.12) is the most convenient form to extend univariate

results on hypergeometric functions to the corresponding class of matrix-variate

cases. In general, when we go from a univariate case, such as a univariate function

e−x, to a multivariate case, there is nothing called a unique multivariate analogue.

Whatever be the properties of the univariate function that we wish to preserve

in the multivariate analogue, we may be able to come up with different functions

as multivariate analogues of a univariate function. Hence, a class of multivariate

analogues is more appropriate than a single multivariate analogue. Properties

of M-transforms and properties of hypergeometric family coming from (4.12) are

available in the book Mathai (1997). When Mathai introduced M-convolutions and

M-transforms, details in Mathai (1997), no physical meaning could be found. Now,

a physical interpretation is available for M-convolutions as densities of products

and ratios of matrix random variables, as illustrated in Sections 1.17.

5. Mathai’s Work in Geometric Probabilities

The work until 1999 is summarized in the first full textbook in this area Mathai

(1999) and later works are available in published papers. The work started as an

off-shoot of the work in multivariate statistical analysis. Mathai noted that the

moment structure for many types of random geometric configurations was that of

product of independently distributed type-1 beta, type-2 beta or gamma random

variables. Such structures were already handled by Mathai and his co-workers in

connection with problems in multivariate analysis. Earlier contributions of Mathai

in this area are available from Chapter 4 of the book Mathai (1999). Then Harold

Ruben, a colleague of Mathai at McGill University, one day gave a copy of his

paper showing a conjecture in geometrical probabilities, called Miles’ conjecture

about a re-scaled, relocated random volume, generated by uniformly distributed

random points in n-space, as asymptotically normal when n→∞. The proof was

very roundabout. Mathai noted that it could be proved easily with the help of as-

ymptotic expansions of gamma functions. This paper was published in Annals of

Probability, Mathai (1982). Then Mathai formulated and proved parallel conjec-

tures regarding type-1 beta distributed, type-2 beta distributed points and gamma

distributed points and published a series of papers. Then Mathai noted that many

European researchers were working on distances between random points, and ran-

dom areas when the random points are in particular shapes such as triangles,

parallelograms, squares, rhombuses etc. As generalizations of all these classes of

problems, Mathai generalized Buffon’s clean-tile problem, the starting point of

geometrical probabilities. He considered placing a ball at random in a pyramid

with polygonal base, defining “at random” in terms of kinematic measure, Mathai

(1999b). When mixing geometry with probability or measure theory, or in the

area of stochastic geometry, the basic axioms of probability are not sufficient, as
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pointed out by Bertrand’s or Russell’s paradoxes. We need an additional axiom of

invariance under Euclidean motion. Another major contribution of Mathai in this

area is Mathai (1999a, Advances in Applied Probability) where he has shown that

the usual complicated procedures coming from Integral Geometry and Differential

Geometry are not necessary for handling certain types of random volumes but

only the simple properties of functions of matrix argument and Jacobians of ma-

trix transformation are sufficient. The procedure is illustrated in the distribution

of volume content of parallelotope generated by random points in Euclidean n-

space. The work on geometrical probabilities is currently progressing in the areas

of random sets, image processing etc. The book, Mathai (1999), only deals with

distributional aspects of random geometric configurations.

As an application of geometrical probabilities, Mathai and his co-authors

looked into a geography problem of city designs of rectangular grid cities as in

North America versus circular cities as in Europe, with reference to travel dis-

tance, and the associated expense and loss of time, from suburbs to city core,

see Mathai (1998), Mathai and Moschopoulos (1999). There are many interesting

applications of geometrical probabilities. Nearest neighbor problem, crystal for-

mation, packing and covering problems, antibodies nullifying viruses etc are some

of these problems. Some details may be seen from Mathai (1999).

6. Mathai’s Work in the Area of Astrophysics

After publishing the books Mathai and Saxena (1973, 1978) many physicists

were using various results in special functions in their physics problems. Some of

these physicists from Germany were contacting Mathai in Montreal, Canada, to

clear some of their doubts in the area of special functions. Then Mathai suggested

for the physicists from various parts of Germany to get together, collect all their

open problems where help from special functions was needed, and send one person

to Montreal, Canada, so that they could sit together and solve all these problems

one by one. As a result, Hans J. Haubold came to Montreal, Canada, in 1982 with

12 open problems on reaction-rate theory, solar and stellar models, gravitational

instability etc. The idea was to get exact analytical results and analytical models

where computations and computer models were available. Mathai figured out

that all the problems connected with reaction-rate theory could be solved once

the following integral was evaluated explicitly

I =

∫ ∞
0

xγ−1e−ax−bx
− 1

2 dx, a > 0, b > 0. (6.1)

The corresponding general integral is

I(γ, a, b, δ, ρ) =

∫ ∞
0

xγ−1e−ax
δ−bx−ρdx, a > 0, b > 0, δ > 0, ρ > 0. (6.2)

In 1982 Mathai could not find any mathematical technique of handling (6.2) or

its particular case (6.1). He noted that (6.2) could be written as a product of
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two integrable functions and thereby as statistical densities by multiplying with

appropriate normalizing constants. Then the structure in (6.2) could be converted

into the form

I(γ, a, b, δ, ρ) =

∫ ∞
0

1

v
f1(

u

v
)f2(v)dv (6.3)

and the right side of (6.3) is the density of a product of two real scalar posi-

tive independently distributed random variables with densities f1(x1) and f2(x2)

respectively with u = x1x2, v = x2. Take

f1(x1) = c1e−x
δ
1 , f2(x2) = c2x

γ
2e−ax

ρ
2 , x > 0, a > 0, δ > 0, ρ > 0

where c1, c2 are normalizing constants. When u = x1x2 the density of u, denoted

by g(u), is given by

g(u) = c1c2

∫ ∞
0

1

v
vγe−av

δ−bv−ρdv, b = uρ. (6.4)

Now, it is only a matter of evaluating the density g(u) by using some other method.

Note that u = x1x2 where x1 and x2 are independently distributed means

E(us−1) = E(xs−1
1 )E(xs−1

2 )

where E(·) denotes the expected value of (·). Then for (6.4)

E(xs−1
1 ) = c1

∫ ∞
0

xs−1
1 e−x

ρ
1dx1 = c1

1

ρ
Γ(
s

ρ
),<(s) > 0

which also shows that c1 = ρ
Γ( 1
ρ )

since E(xs−1
1 ) at s = 1 is 1. Evaluations of c1

and c2 are not necessary for our procedure to hold.

E(xs−1
2 ) = c2

∫ ∞
0

xγ+s−1
2 e−ax

δ
2dx2 =

c2
δ

Γ(
γ + s

δ
)a−( γ+sδ ),<(γ + s) > 0.

Therefore

E(us−1) =
c1c2
δρ

a−
γ
δ Γ(

s

ρ
)Γ(

γ + s

δ
)a−

s
δ .

Hence g(u) is available from the inverse Mellin transform. That is,

g(u) =
c1c2
δρ

a−
γ
δ

1

2πi

∫ c+i∞

c−i∞
Γ(
s

ρ
)Γ(

γ + s

δ
)(a

1
δ u)−sds, c > 0, i =

√
−1. (6.5)

Comparing (6.4) with (6.5) the required integral is given by the following

I(γ, a, b, δ, ρ) =

∫ ∞
0

1

v
vγe−av

δ−bv−ρdv

=
1

δρa
γ
δ

H2,0
0,2

[
a

1
δ b

1
ρ

∣∣
(0, 1ρ ),( γδ ,

1
δ )

]
. (6.6)

The right side of (6.6) is a H-function. Extensive work in G and H-functions were

already done by Mathai and his co-workers earlier.

For the reaction-rate probability integral, δ = 1 and ρ = 1
2 . In this case, the

H-function in (6.6) reduces to a G-function and explicit computable series forms
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are also given by Mathai and his co-workers. A series of papers were published in

all leading physics journals and some mathematics journals also by Haubold and

Mathai. Haubold supplied the physics part and Mathai supplied the mathemat-

ics part. Problems considered were resonant reactions, non-resonant reactions,

depleted case, high energy tail cut off etc. A summary of the work until 1988

is available in the research monograph Mathai and Haubold (1988). After pub-

lishing dozens of papers in physics by using statistical techniques it was realized

that the density of a product of independently distributed real positive random

variables was nothing but the Mellin convolution of a product. Hence, one could

have applied Mellin and inverse Mellin transform techniques there. Mathai and

his co-workers are credited with popularizing Mellin and inverse Mellin transform

technique in Statistics, Physics and engineering problems. The work in this area

of reaction-rate also resulted in two encyclopedia articles, see Haubold and Mathai

(1997 on Sun and 1998 on Universe).

6.1. Analytic solar models

Another attempt was to replace the current computer model for the Sun with

analytic models. The idea was to assume a basic model for the matter density

distribution in the Sun or in main sequence stars which could be treated as a

sphere in hydrostatic equilibrium. Let r be an arbitrary distance from the center

of the Sun and let R� be the radius of the Sun. Let x = r
R�

so that 0 ≤ x ≤ 1.

The model for the matter density distribution is taken as

f(x) = c(1− xδ)γ (6.7)

where c is the central core density when x = 0. The parameters δ and γ are se-

lected to agree with observational data. Then by using (6.7), expressions for mass,

pressure,temperature and luminosity are computed by using physical laws. Then

by using known observations, or comparing with known data on mass, pressure

etc the best values for δ and γ are estimated so that close agreement is there with

observational values of mass, pressure etc. Some of the results until 1988 are given

in the monograph Mathai and Haubold (1988). Later works are available in papers

only.

Another area that was looked into was the gravitational instability problem of

mixing of cosmic dusts. Russian physicists were working on the problem of mixing

two types of cosmic dusts. The problem was brought to the attention of Mathai

by his co-worker Haubld. The problem was formulated in the form of complicated

differential equations. Mathai tried to change the operator D = d
dx to x d

dx . Then

the differential equation got simplified a bit. Then he changed the dependent

variable a little bit and found that the differential equation became a particular

case of G-function differential equation. Mathai and his co-workers had done a

lot of work on G-function. Thus, Mathai could simplify the differential equation
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and then consider the case of k different dusts mixing. This resulted in the first

paper of Mathai in integer order differential equations and it was published in

the prestigious MIT journal (Mathai(1989)). Then the results were applied to

gravitational instability problem and wrote papers in physics, see for example

Haubold and Mathai (1988).

Another area looked into was solar neutrino problem. Haubold and Mathai

tried to come up with appropriate models to model the solar neutrino data. Mathai

had noted that the graph of the time series data looked similar to the pattern that

he had seen when working on modeling of the chemical called Melatonin in human

body. Usually what is observed is the residual part of what is produced minus what

is consumed or converted or lost. Hence the basic model should be an input-output

type model. The necessary theory is available in Mathai (1993b). Mathai had

successfully tackled input-output models to study dam capacity, effect of acid rain,

grain storage etc. The simplest input-output model is an exponential type input

x1 and an exponential type output x2 so that the residual part u = x1−x2. When

x1 and x2 are independently and identically exponentially distributed then u has

a Laplace distribution. A direct application of Laplace model is in modeling sand

dunes created by opposing forces of wind. One model Haubold and Mathai tried

was Laplace type random variables over time so that the graph will look like blips

at equal or random points on a horizontal line. If the time-lag is shortened then

the blips will start joining together. If exponential models of different intensities,

that is, in the input-output model f(xj) = θe−θxj , θ > 0, xj > 0.j = 1, 2, if θ is

different for different blips then the pattern can be brought to the pattern seen in

nature or the pattern seen from the data. One of the latest models of Haubold

and Mathai in 2015 is of this type. This may be close to what is seen in nature.

Haubold is the main persuasive force behind Mathai’s adventure into astrophysics

area.

7. Mathai’s Work on Special Functions

Mathai and his co-workers are credited with popularizing special functions,

especially G and H-functions, in Statistics and Physics. Major part of the spe-

cial function work was done with co-worker Saxena and most of the papers were

published as Mathai and Saxena papers. They thought that they were the first

one to use G and H-functions in statistical literature. But D.G. Kabe pointed

out that he had expressed a statistical density in terms of a G-function in 1958.

This may be the first paper in Statistics where G or H-function was used. Most

probably the use of G and H-function in Physics an engineering areas started after

the publication of our books Mathai and Saxena (1973, 1978). We started using

G and H-functions in Statistics from 1966 onward. The first work on the fusion of

statistical distribution theory and special functions started by creating statistical
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densities by using generalized special functions. In this connection the most gen-

eral such density is based on a product of two H-functions, which appeared in the

Annals of Mathematical Statistics (Mathai and Saxena (1969)). Another area that

was looked into was Bayesian structures. The unconditional density in Bayesian

analysis is of the form

f(x) =

∫
y

f1(x|y)g(y)dy. (7.1)

What are the general families of functions for f1(x|y) and g(y) so that the integral

in (7.1) can be evaluated? We have constructed some general mixing families of

f1(x|y) and g(y).

Another family of problems that was looked into were the null and non-null

distributions of the likelihood ratio criterion or λ-criterion for testing hypotheses

on the parameters of one or more multinormal populations. Consider the p × 1

vector Xj having the density

f(Xj) =
1

(2π)
p
2 |V | 12

e−
1
2 (Xj−µ)′V −1(Xj−µ), V > O (7.2)

where µ is a constant vector, known as the mean-value vector here. For j =

1, 2, ..., N if Xj ’s are independently distributed with the same density in (7.2)

then we say that we have a simple random sample of size N from the p-variate

normal or Gaussian population (7.2). Suppose that we want to test a hypothesis

Ho : V = is diagonal. This is called the test for independence in the Gaussian

case. Then the λ-criterion can be shown to have the structure

u = λ
1
N =

|S1|
|S1 + S2|

= u1u2...up (7.3)

where S1 and S2 are independently distributed matrix-variate gamma variables of

(1.25) with the same B. Then the structure in (7.3) is distributed as a product

of independently distributed type-1 beta random variables, u1, ..., up. Then the

density of u can be written as a G-function of the type Gp,0p,p(u). The density

of λ will go in terms of a H-function. The H-function is more or less the most

generalized special function in real scalar variable case and it is defined by the

following Mellin-Barnes integral and the following standard notation is used

Hm,n
r,s (z) = Hm,n

r,s

[
z
∣∣(a1,α1),...,(ar,αr)

((b1,β1),...,(bs,βs)

]
(7.4)

=
1

2πi

∫
L

φ(ρ)z−ρdρ,
√
−1 where (7.5)

φ(ρ) =
{
∏m
j=1 Γ(bj + βjρ)}{

∏n
j=1 Γ(1− aj − αjρ)}

{
∏s
j=m+1 Γ(1− bj − βjρ)}{

∏r
j=n+1 Γ(aj + αjρ)}

(7.6)

where αj , j = 1, ..., r;βj , j = 1, ..., s are real and positive numbers, aj ’s and bj ’s are

complex numbers. L is a contour separating the poles of Γ(bj+βjρ), j = 1, ...,m to

one side and those of Γ(1−aj−αjρ), j = 1, ..., n to the other side. Existence of the
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contours and convergence conditions are available from the books Mathai (1993

[309 citations as of August 2015]), Mathai and Saxena (1973, 1978[793 citations as

of August 2015]), Mathai and Haubold (2008 [218 citations as of August 2015]),

Mathai, Saxena and Haubold (2010 [353 citations as of August 2015]). When

α1 = 1 = ... = αr, β1 = 1 = ... = βs then the H-function reduces to a G-function

denoted as

Gm,nr,s (z) = Gm,nr,s

[
z
∣∣a1,...,ar
(b1,...,bs

]
. (7.7)

Explicit computable series forms of Gp,00,p(x), Gp,0p,p(x), Gp,pp,p(x) and for the general

Gm,nr,s (x), were given by Mathai in a series of papers. The first three forms cor-

respond to product of independently distributed gamma variables, type-1 beta

variables and type-2 beta variables respectively. These forms appear in a large

number of situations in various fields. The details of the computable represen-

tations are available in the book Mathai (1993). This is achieved by developing

an operator which can handle poles of all orders. This operator may be seen

from Mathai (1971) and its use from Mathai (1993). This is a modification of a

procedure developed in Mathai and Rathie (1971) in the Annals of Mathematical

Statistics paper to handle generalized partial fractions. Let

1

(x− a1)m1(x− a2)m2 ...(x− ak)mk
=

k∑
i=1

mi∑
j=1

cij
(x− ai)j

(7.8)

where mi = 1, 2, ... for i = 1, 2, ..., k and the coefficients cijs are to be evaluated.

The technique developed in Mathai and Rathie (1971) enables one to compute

cij ’s easily and explicitly.

The G and H-functions are also established by Mathai for the real matrix-

variate cases through M-transforms, along with extensions of all special functions

of scalar variables to the matrix-variate cases. Also Mathai extended multivariate

functions such as Apple functions, Lauricella functions, Kampé de Fériet func-

tions etc to many matrix-variate cases. Some details may be seen from Mathai

(1993,1997) and further details from later papers.

By making use of the explicit series forms, MAPLE and MATHEMATICA

have produced computer programs for numerical computations of G-functions and

MATHEMATICA has a computer program for the evaluation of H-function also.

This is why physicists and engineers started using H-function very frequently now.

Solutions of fractional differential equations usually end up in terms of Mittag-

Leffler function, its generalization as Wright’s function and its generalization as H-

function. In connection with fractional differential equations for reaction, diffusion,

reaction-diffusion problems Haubold, Mathai and Saxena have given solutions for

a large number of situations, which may be seen from the joint works of Haubold

and Mathai, Haubold, Mathai and Saxena starting from 2000 and the work is
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still continuing. In all these solutions, either Mittag-Leffler function or Wright’s

function or H-function appears. Also many other physicists, mathematicians and

engineers have tried other fractional partial differential equations where also the

solutions are available in terms of H-functions. Mathai and his co-workers have

contributed to all aspects of special functions, apart from the five books mentioned

above. Also Mathai has extended various results in the scalar variable case to the

corresponding matrix-variate case in this area of special functions;

As of December 2015, Google scholar citation counts, that is the counts of

others citing the works or making use of the works, gives Mathai second rank of

most cited in the literature for special functions, second rank for applied analysis,

first rank for statistical distributions, first rank for geometrical probabilities and

first rank for multivariate analysis, globally. All citations = 6101, h-index = 30,

i-10 index = 90, Research Gate score = 37.

8. Mathai’s Works in Multivariate Statistical Analysis and Statistical

Distribution Theory

Mathai has made a large number of very significant contributions in these ar-

eas. In the area of multivariate analysis, almost all exact null distributions in the

most general cases and a large number of non-null distributions of λ-criteria for

testing hypotheses on one or more multivariate Gaussian populations, exponen-

tial populations etc are given by Mathai or Mathai with his co-workers Rathie or

Saxena or Katiyar or Tan or Tracy or Moschopoulos or Provost. The λ-criterion

is explained in (7.3). Null distributions mean the distributions when the null hy-

potheses are assumed to hold and non-null distributions mean without the restric-

tions imposed by the hypotheses. In the non-null situations some of the cases are

still open problems. In the null cases, u, a one-to-one function of the λ-criterion,

has usually the following representations

u = u1...up; (8.1)

u = v1...vp; (8.2)

u = w1...wp (8.3)

where u1, ..., up are independently distributed real scalar type-1 beta random vari-

ables, v1, ..., vp are the same type of type-2 beta random variables and w1, ..., wp

are same type of gamma random variables. The density of u in (8.1) can be

written in terms of a Gp,op,p(u), that of (8.2) as a Gp,pp,p(u) and that of (8.3) as a

Gp,00,p(u). Computational aspects of these forms are already discussed in Section

7 above. In geometrical probabilities also the squares of the volume content of a

p-parallelotope can be written as (8.1) when the random points are type-1 beta

distributed, as (8.2) when the random points are type-2 beta distributed and as

(8.3) when the random points are gamma distributed. There also densities can be

evaluated in terms of the three types of G-functions, as explained above.
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Also, Mathai and his co-workers have established a connection between λ-

criterion in testing of statistical hypotheses, connected with multivariate normal

populations, and certain generalizations of type-1 Dirichlet models. Various gen-

eralizations of type-1 and type-2 Dirichlet models were introduced by Mathai and

his co-workers starting with Mathai (2003). In this area also G and H-functions

appear. The forms Gp,0p,p)(x) and Gp,pp,p(x), coming from products of scalar vari-

able type-1 and type-2 beta variables, appear in this area of generalized Dirichlet

models.

Exact 11-digit accurate percentage points connected with the null distribu-

tions of the λ-criteria were developed by Mathai and Katiyar starting with the

Biometrika paper Mathai and Katiyar (1979). A series of papers were published

by Mathai and Katiyar in this area. As a byproduct, an algorithm for non-linear

least squares was also developed by them, see Mathai and Katiyar (1993).

8.1. Work on Mittag-Leffler function and Mittag-Leffler density

Haubold, Mathai and Saxena have solved a large number of fractional differ-

ential equations, starting from 2000, where the solutions invariably come in terms

of Mittag-Leffler function, Wright’s function or H-function. Exponential type solu-

tions of integer order differential equations automatically change to Mittag-Leffler

functions when we go from integer order to fractional differential equations. Goren-

flo and Mainardi call Mittag-Leffler function the queen function in fractional dif-

ferential equations. There is also a Mittag-Leffler stochastic process based on a

Mittag-Leffler density, which is a non-Gaussian stochastic process. Work in this

area is summarized in the review paper Haubold, Mathai and Saxena (2011).

Mathai has also introduced a generalized Mittag-Leffler density and shown that it

is attracted to heavy-tailed models such as Lévy and Linnik densities, rather than

to Gaussian models. Several interesting properties and structural decompositions

are also given there.

9. Mathai’s Contributions to Characterization Problems

In this area two basic books are Mathai and Rathie (1975) and Mathai and

Pederzoli (1977). Characterization is the unique determination through some given

properties. Characterization of a density means to show that certain property or

properties uniquely determine that density. Unique determination of a concept

means to give an axiomatic definition to that concept. That is, to show that the

proposed axioms will uniquely determine the concept. The techniques used in this

area, to go from the given properties to the density or from the given axioms to the

concept such as“uncertainty” or its complement “information” etc, are functional

equations, differential equations, Laplace, Mellin, Fourier transforms etc. For

example, let us look at the distribution of error. The error ε may be the error in

measurement in an experiment, the error between observed and predicted values
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etc. If the factors contributing to the error are known then the experimenter will

try to control these factors. Very often the error is contributed by infinitely many

unknown factors each factor contributing infinitesimal quantities towards ε. Let

us put some conditions on this ε. Let

ε = ε1 + ε2 + ..., Sn = ε1 + ...+ εn (i)

where ε1, ε2, ... are assumed to be independently distributed. Let us assume that

each εj = +a or −a with equal probabilities. That is,

Pr{εj = a} = Pr{εj = −a} =
1

2
, j = 1, 2, .... (ii)

Let us assume that the total variance of ε is finite or

Var(ε) = σ2 <∞. (iii)

Let us check the consequence of these three assumptions. Var(Sn) = nVar(εj) =

n[ 1
2a

2 + 1
2 (−a)2] = na2, where a is fixed and finite. For large n we may take

a = σ2

n . The moment generating function of εj is

Mεj (t) = E[eεjt] =
1

2
[e−at + eat] = 1 +

a2t2

2!
+
a4t4

4!
+ ... = 1 +

σ2t2

2!n
+O(

1

n2
).

Hence

MSn(t) = [Mεj (t)]
n = [1 +

σ2t2

2!n
+O(

1

n2
)]n.

That is

ln[MSn(t)] = n ln[1 +
σ2t2

2!n
+O(

1

n2
)] =

σ2t2

2
+O(

1

n
)→ σ2t2

2
as n→∞.

Therefore

Mε(t) = e
t2σ2

2

which is the moment generating function of a normal density with mean value zero

and variance σ2 or the density is

f(ε) =
1

σ
√

2π
e−

ε2

2σ2 ,−∞ < ε <∞, σ > 0. (9.1)

This is the derivation of the Gaussian or normal density given by Gauss, and

hence it is also called the Gaussian density or error curve. The book, Mathai

and Pederzoli (1977) contains such characterizations of the normal probability

law by using structural properties, regression properties etc. One fundamental

idea was introduced in this area by Gordon and Mathai (1972) in their Annals’

paper. They tried to come up with pseudo-analytic functions of matrix argument

involving rectangular matrices and by using this, characterization theorems were

established for multivariate normal densities.

In Mathai and Rathie (1975), axiomatic definitions of information theory mea-

sures and basic statistical concepts are given. This is the first book giving ax-

iomatic definitions of information measures. The techniques used are mainly from
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functional equations, that is , by using the proposed axioms create a functional

equation and obtain its unique solution by imposing more conditions, if necessary,

thus coming up with a unique definition or characterization of the concept. One

such measure there is the one introduced by two Hungarian mathematicians called

Havrda-Charvát measure, which for the continuous case is the following

Hα(f) =

∫∞
−∞[f(x)]αdx− 1

21−α − 1
, α 6= 1 (9.2)

where f(x) is a density of the real scalar variable x. There is a corresponding

discrete analogue, which is given by

Hα(p1, ..., pk) =

∑k
j=1[pj ]

α − 1

21−α − 1
, α 6= 1 (9.3)

where pj > 0, j = 1, ..., k; p1 + ... + pk = 1. A modified form of (9.2) and (9.3) is

Tsallis entropy given by

Tq(f) =

∫∞
−∞[f(x)]qdx− 1

1− q
, q 6= 1 (9.4)

for the continuous case, with a corresponding discrete analogue. Optimization of

(9.4) under the condition that the total energy is preserved or the first moment

is fixed, leads to Tsallis statistics of non-extensive statistical mechanics. Tsallis

statistics is of the following form

p(x) = [1− (1− q)x]
1

1−q (9.5)

which is also a power law in the sense d
dxp(x) = −[p(x)]q. Note that a direct

optimization of (9.4), under the assumption that the first moment in f(x) is fixed,

does not yield (9.5) directly. One has to go through an escort density

g(x) =
[p(x)]q∫∞

−∞[p(x)]qdx

and then assume that the first moment is fixed in the escort density g(x), to get

the form in (9.5). Mathai’s entropy

Mα(f) =

∫
x
[f(x)]2−αdx− 1

α− 1
, α 6= 1, α < 2 (9.6)

when optimized under the condition of first moment in f(x) being fixed leads to

Tsallis statistics directly. Also the optimization of (9.6) under two moment-type

conditions leads to the pathway model, discussed in Section 3, where (9.5) will

be a particular case. But (9.4) and (9.5) created the new area of non-extensive

statistical mechanics and it is claimed that more than 3000 researcher are working

in this area around the globe. After the book Mathai and Rathie (1975) came out,

a lot of people in image processing area started to make use of the results. The

work of these researchers in image processing resulted in the machines for reading
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handwriting and automatic sorting of mail, image reading machines at check-out

counters of grocery stores etc.

10. Mathai’s Work in Biological Modeling

The most significant contribution in this area is the proposal of a theory of

growth and form in nature and the explanation of the emergence of beautiful pat-

terns in sunflower, along with explanation for the appearance of Fibonaci sequence

and golden ratio there. The proposed theory is only substantiated so far by others

and nobody has contradicted yet. The mathematical reconstruction of the sun-

flower head, with all the features that are seen in nature, is still the cover design of

the journal of Mathematical Biosciences. The paper of Mathai and Davis appeared

in that journal in 1974 and in 1976 the journal adopted the mathematically recon-

structed sunflower head of Mathai and Davis (1974) as the journal’s cover design.

When this paper was sent for publication to this journal, the editor wrote back

saying: “enthusiastically accepted for publication” because this was the first time

all natural features were explained in full. Several theories were already there,

proposed by various people from time to time. As per Davis and Mathai, the pro-

gramming of the sunflower head is like a point moving along an Archimedes’ spiral

at a constant speed so that when the point makes an angle θ a second point starts

and moves at the same speed. When the second point comes to θ a third point

starts, and so on. The rule governing the movement is f(θ1) + f(θ2) = f(θ1 + θ2)

or r = kθ where k is a constant, giving Archimedes’ spiral. When θ ≈ 137.5o

or θ
2π−θ =

√
5−1
2 = golden ratio, we have sunflower, coconut tree crown, certain

cactus heads and so on. For other values of θ we have other patterns. Such a

movement can be generated by a viscous fluid flowing up through a capillary with

valves so that when a certain pressure is built up in one chamber the liquid moves

up to the next chamber. The continuous flow is made pulse-like at the end. The

upward motion can be effected by evaporation process in the leaves, and there is

no need for a heart-like mechanism in trees pumping the fluid up.

It is noted that if we take a projection of the growing crown of a coconut tree

onto a circle then we get a replica of the sunflower if we look at the center of the

leaf attachment to the crown. In a follow-up paper Mathai and Davis (National

Academy of Sciences, India) have shown that from several mathematical points of

view the arrangement of leaves on a coconut tree crown is an ideal arrangement.

One more paper in this line was brought out in a FAO publication.

11. Mathai’s Contribution to Graph Theory

The first attempt in this area was the paper of Mathai and Rathie (1972) on

almost cubic maps. As an application of functional equations, this problem was

solved and the paper appeared in the best journal in that area. Mathai had left

the area. Then due to the persuasion of Dr B.D. Acharya, Advisor to Government
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of India in the Department of Science and Technology, Mathai went back to the

area and introduced some descriptors based on the norms of adjacency matrices.

This was published in the proceedings of an international conference. Then an

attempt was made to come up with a criterion called MNS (minimum number

of specifiers) so that an underlying pattern can be uniquely determined with the

minimum number of 2 or 3 numbers as specifiers. In other words the pattern in

the adjacency matrix is uniquely determined by 2 to 3 numbers. Mathai thought

that the idea was great and the paper was sent to the best journal in the area

but the editor did not appreciate it. Then, since various descriptors were usually

used for classifying chemicals, this paper was sent to the journal of Mathematical

Chemistry. They did not appreciate it either. Then the work was abandoned.

Tom Zaslavsky had seen the draft of this paper. When he heard that Mathai was

abandoning the idea of publishing the work, he said that he would make some

modifications. Modifications were made and then the paper was published as a

joint paper of Mathai and Zaslavsky in 2015.

12. Mathai’s Contribution to Design of Experiments and Analysis of

Variance

The first paper of Mathai, Mathai (1965), was on an approximate analysis of

variance. It was on the analysis of a two-way classification with multiple obser-

vations per cell. Here the orthogonality is lost, and when estimating the main

effects, one ends up in a singular system of linear equations of the form

(I −A)α = b (11.1)

where A = (aij), aij =
nij
ni.
, ni. =

∑m
j=1 nij , nij > 0 for all i and j, is called the

incidence matrix and the sum of the elements in each row is equal to 1. Thus

I − A is singular and hence one cannot write it as α = (I − A)−1b where A and

b are known and the m × 1 vector α is unknown and is to be estimated. Mathai

noted that one could profitably use the conditions in the design and make I − A
a nonsingular matrix. One condition in the design is that α1 + ...+αm = 0 where

αj , j = 1, ...,m are the elements in α. Let C be a matrix where all elements in the

i-th row of C are the median of the i-th row elements in A, namely the median of

ai1, ..., aim for i = 1, ...,m. Then evidently Cα = O (null). Then

(I −A)α = b⇒ (I −B + C)α = b⇒ (I −B)α = b (12.2)

where B = (bij), bij = aij − ci and ci is the median of the i-th row elements in A.

Then a norm ofB is ‖B‖ = maxi
∑m
j=1 |aij−ci|. But since the mean deviation from

the median is the least, ‖B‖ is the minimum under the circumstances. Therefore,

not only that I − B is nonsingular but the series I + B + B2 + ... is the fastest

converging series for the problem at hand. Then

(I −B)α = b⇒ α = (I +B +B2 + ...)b.
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A good approximation for α is available as α ≈ (I + B)b. This is found to be

sufficient for all practical purposes of testing of statistical hypotheses on the com-

ponents of α. When this paper was sent to the best journal in the area, Biometrics,

the three referees unanimously stated that the method was an ingenious one. This

work was followed up and Mathai worked on the analysis of data under missing

values. But the reception by the research community was poor and hence Mathai

left the area.

13. Mathai’s Work on Dispersion Theory

This was an idea proposed in 1964, papers appeared in 1967-69, showing that

the whole area of statistical inference of estimation and testing of hypotheses or

decision-making was study of a properly defined “dispersion” or “scatter”. An

axiomatic definition of “dispersion” was given and it was illustrated that the esti-

mation process was an optimization of a measure of “dispersion”, test criteria were

the results of optimization of measures of “dispersion”, best prediction problem

was an optimization of a measure of “dispersion’ etc. A few papers were pub-

lished but since the reception was poor the idea was abandoned. Later, Italinan

statisticians claimed that “Dispersion Theory” was “one of the innovations of the

20th century” and persuaded Mathai to return to the area. By then Mathai was

involved in other areas and did not return to develop “Dispersion Theory” further.

14. Mathai’s Work on Population Problems and Social Sciences

An expert in population studies, Aleyamma George, had assembled demo-

graphic data on 38,000 households, under a Ford Foundation survey in Kerala,

India. She sought help from Mathai in analyzing this massive data. Various pop-

ulation aspects were looked into and a series of papers were published in the area

of demography and social statistics. One problem that was looked into was the

study of inter-live-birth interval in cohabiting fecundable women. Between two

live births there may be still births, miscarriages and associated sterile periods

etc. The standard models used for waiting time in this area are exponential mod-

els. In an exponential model, the probability of the woman getting pregnant soon

after marriage is the maximum and it decreases as time goes by. This is not the

reality. There are cultural and sociological factors inhibiting pregnancy at the

time of marriage and from the massive data on hand it was shown that a gamma

model was the most appropriate because the maximum chance was away from the

starting point or away from the time of marriage. Various models were constructed

for the inter-live-birth-intervals and a number of papers were published in various

journals including Sankhya.

Another problem that was looked into was how to come up with a measure

of “distance” or “closeness” or “affinity” between two sociological groups or how

to say that one community is close to another community with respect to a given
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characteristic. This study was motivated by the need to come up with a sci-

entific way of checking the claims of some politicians that some communities

produce more children compared to other communities. Mathai introduced the

concepts of “directed divergence”, “affinity” etc from Information Theory to so-

cial statistics. Let P = (p1, ..., pk), pj > 0, j = 1, ..., k, p1 + ... + pk = 1 and

Q = (q1, ..., qk), qj > 0, j = 1, ..., k, q1 + ... + qk = 1 be two discrete populations.

Consider the representation of P and Q as points on a hypersphere of radius 1,

x2
1 + ...+ x2

k = 1. Then the points are (
√
p1, ...,

√
pk) and (

√
q1, ...,

√
qk). Consider

cos θ where θ is the angle between these vectors or points on the hypersphere.

Note that the lengths of the vectors are

‖(√p1, ...,
√
pk)‖ = 1, ‖(√q1, ...,

√
qk)‖ = 1

and hence

cos θ =
k∑
j=1

√
pjqj . (14.1)

This is a measure of angular dispersion and it is usually called “affinity” between P

and Q or Matusita’s measue of affinity between two discrete distributions. George

and Mathai computed “affinity” between communities with reference to the char-

acteristic of production of children and found that the politicians’ statements did

not match with the realities. The paper was published in the Journal of Biosocial

Sciences published from UK. Several papers were published in Canadian Studies in

Population. Demography of India etc where different techniques from Information

Theory and Statistics were introduced into social sciences.

Another problem that was looked into was the estimation of missing events

from information supplied by various agencies. In Kerala, India, birth registers

are kept by Registrar’s office, villages, churches, temples etc, none of them has a

complete list. How to come up with the true estimate of the population? The age-

old technique used in this area was based on an approximate likelihood procedure.

It was shown by George and Mathai that, in the approximate likelihood, the

deleted portion contained the most relevant information and hence the method

was not good and they proposed a method based on information measures.

15. Mathai’s Work on Integer Programming

An optimization problem such as optimizing a linear function subject to qua-

dratic constraints or a quadratic function subject to linear or quadratic constraints

etc are not difficult when the variables are continuous. But if the variables are

discrete in the sense if the variables are restricted to integers such as a grid of

positive integers only, then the optimization problem becomes quite complicated.

The usual results that one may expect can be seen not to hold. Such an opti-

mization problem when the variables are restricted to a grid of integers is called

an integer programming problem. A problem of this type of optimizing a linear
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function subject to a quadratic constraint but the variables are defined on a grid

of positive integers, was brought to the attention of Mathai by a Greek statistician

and an earlier colleague Stratis Kounias. They looked into the problem and came

up with a nice technique of handling such problems and the paper was published

in the best journal in the area, Optimization, in 1988.

16. Mathai’s Work on Quadratic and Bilinear Forms

Major contributions in these areas are summarized in the books Mathai and

Provost (1992), and Mathai, Provost and Hayakawa (1995). Mathai-Provost book

has 644 citations as of August 2015 as per Google’s counts. Almost all avail-

able results on quadratic forms in real random variables are included in Mathai

and Provost (1992). Complex variable cases are not included there. There are a

lot of applications of the theory of quadratic forms in complex random variables,

such as applications in radar, sonar etc. Major parts of the two books are con-

tributions from Mathai, Provost, Hayakawa and Mathai and Provost. There is a

very important concept in quadratic forms in Gaussian random variables called

chisquaredness of quadratic forms. That is, X ′AX ∼ χ2
r iff A is idempotent and of

rank r, where X the p×1 vector having the standard normal distribution Np(O.I),

that is, X ∼ Np(O, I) and χ2
r is a chisquare random variable with r degrees of

freedom. This result is the most important and fundamental result in the areas of

model building, regression analysis, analysis of variance etc. Is there a correspond-

ing concept when dealing with bilinear forms? When the samples come from a

bivariate Gaussian or normal population it is not difficult to work out the density

of the sample correlation coefficient. But what about the density of the sample

covariance, without the scaling factors of the standard deviations? This was a

question raised in a course in 1962 when Mathai was a student at the University

of Toronto, taking his M.A degree in Mathematics. Both these questions were

answered by Mathai (1993b) where Mathai introduced a concept called Laplacian-

ness of bilinear forms ((Mathai 1993a)) and also worked out the density of the

covariance structures observing that covariance structure is a bilinear form. The

necessary and sufficient conditions for a bilinear form to be noncentral generalized

Laplacian are given in Corollary 2.5.2 of Mathai, Provost and Hayakawa (1995).

For a noncentral generalized Laplacian the moment generating function is of the

form
M(t) = (1− β2t2)−α exp{−2λ+ 2λ(1− β2t2)−1}

where λ is the non-centrality parameter.

17. New Concepts and Procedures Introduced by Mathai

The following are the new concepts, new ideas and new procedures introduced

by Mathai: Dispersion Theory - a new theory and a new idea proposed in 1967;

Developing a generalized partial fraction technique, with Rathie, in 1971; Devel-

oping an operator to evaluate residues when poles of all types of orders occur
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(1971); Proposed a theory of growth and forms in nature (1974), the theory still

stands, mathematical reconstruction of a sunflower head; Introduction of the con-

cepts of “affinity”, “distance” etc in social sciences and creating a procedure to

compare sociological groups (1974); Functions of matrix argument through M-

transforms and M-convolutions - new ideas introduced in (1990-1997); Non-linear

least square algorithm (1993); Solving Miles’ conjecture in geometrical probabili-

ties, creating and solving parallel conjectures (1982), introduction of Jacobians of

matrix transformations in solving problems of random volumes, replacing the com-

plicated Integral and Differential Geometry procedures (1982); Now meaningful

physical interpretations are available for M-convolutions. Unique recovery of f(X)

from its M-transform is still a conjecture, extensions of Jacobians from the real

case to complex matrix-variate cases in a large number of situations; Concept of

Laplacianness of bilinear forms and creating density of covariance structure (1993);

Pathway model and pathway idea (2005), particular cases are the most popular

Tsallis statistics and superstatistics in the new area of non-extensive statistical

mechanics; Extension of Fractional Calculus to real matrix-variate cases (2007);

Establishing a connection between Fractional Calculus and Statistical Distribution

Theory (2007); Mathai’s entropy (2007); Geometrical interpretation and a general

definition for fractional integrals (2013-2015); Extension of Fractional Calculus to

complex matrix-variate case and complex domain in general (2013); Extension of

fractional calculus to many matrix-variate cases (real and complex)(2014); Devel-

opment of a fractional differential operator in the matrix-variate case (2015).
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Abstract. A Hilbert scale is a family of Hilbert spaces Hs, s ∈ R, such

that for every s, t ∈ R with s < t, Ht ⊆ Hs and the inclusion operator is

continuous. Given a Hibert space H, we show how to construct a Hilbert

scale with H0 = H using the concept of Gelfand triple and give examples

of Hilbert scales which are generated by compact operators between Hilbert

spces as well as closed densely defined unbounded operators. Citing results

from some of the recent work of the author, we discuss the use of Hilbert scales

for obtaining improved error estimates for regularized approximate solutions

of ill-posed operator equations.

1. Hilbert Scales

The role of Hilbert scales while solving operator equations is similar to the

role of Sobolev spaces in partial differential equations.

Definition 1.1. A Hilbert scale is a family {Hs}s∈R of Hilbert spaces such

that the following hold.

(1) For s < t, Ht ⊆ Hs and as a subspace, Ht is a dense subspace of Hs;

(2) As Hilbert spaces, the above inclusion is a continuous embedding, i.e.,

there exists cs,t > 0 such that

‖x‖s ≤ cs,t‖x‖t ∀x ∈ Ht.

One may have a Hilbert space H and a family {Hs}s≥0 of Hilbert spaces

satisfying the properties (1) and (2) in Definition 1.1 with H0 = H. Then the

Hilbert spaces H−s for s > 0 are defined using the concept of a Gelfand triple.

1.1. Gelfand triple. Let H be a Hilbert space and H1 be a dense subspace of

H, which itself is a Hilbert space with respect to a stronger norm ‖ · ‖1, i.e.,

‖u‖ ≤ c‖u‖1 ∀u ∈ H1

for some c > 0. For v ∈ H, let

* The (modified) text of the 12th Ganesh Prasad Memorial Award lecture delivered at the 81st

Annual Conference of the Indian Mathematical Society held at the Visvesvaraya National Insti-

tute of Technology, Nagpur - 440 010, Maharashtra, during the period December 27-30, 2015.

2010 Mathematics Subject Classification : 47A52, 65J20, 65J22

Key words and phrases: Hilbert scales, Gelfand triple, Compact operators, Ill-posed proble-

ms, Tikhonov regularization.

c© Indian Mathematical Society, 2016 .

45



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
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‖v‖−1 := sup{|〈u, v〉| : u ∈ H1, ‖u‖1 ≤ 1}.
Then, using the fact that H1 is a dense subspace of H, it can be seen that v 7→
‖v‖−1 is a norm on H and

‖v‖−1 ≤ c‖v‖ ∀ v ∈ H.

Let H−1 be the completion of H w.r.t. ‖ · ‖−1. The inclusions in

H1 ⊆ H ⊆ H−1

are continuous embeddings.

Definition 1.2. The triple (H1, H,H−1) is called a Gelfand triple.

We shall show that H−1 is linearly isometric with (H1)′ so that H−1 is a

Hilbert space with respect to the inner product induced from (H1)′. Before that

let us give an example of a Gelfand triple.

Example 1.1. Let H be a separable Hilbert space, {un : n ∈ N} be an orthonormal

basis of H, and (σn) be a sequence of positive real number such that σn → 0 as

n→∞. Let

H1 := {x ∈ H :
∞∑
n=1

|〈x, un〉|2

σ2
n

<∞}.

On H1, define

〈x, y〉
1

=
∞∑
n=1

〈x, un〉〈un, y〉
σ2
n

, x, y ∈ H1.

It can be seen that 〈·, ·〉1 is an inner product on H1 and H1 is a Hilbert space with

respect to this inner product. Now, we show that for x ∈ H,

‖x‖−1 =
( ∞∑
n=1

σ2
n|〈x, un〉|2

) 1
2

.

Recall that

‖x‖−1 := sup{|〈x, u〉| :
∞∑
n=1

|〈u, un〉|2

σ2
n

≤ 1}.

Note that for u ∈ H1 with ‖u‖1 ≤ 1,

|〈x, u〉| =
∣∣∣ ∞∑
n=1

σn〈x, un〉
〈un, u〉
σn

∣∣∣
≤

( ∞∑
n=1

σ2
n|〈x, un〉|2

) 1
2
( ∞∑
n=1

|〈u, un〉|2

σ2
n

) 1
2

≤
( ∞∑
n=1

σ2
n|〈x, un〉|2

) 1
2

.

Thus, ‖x‖−1 ≤
(∑∞

n=1 σ
2
n|〈x, un〉|2

) 1
2

. To show the equality, let

u =
∞∑
n=1

σ2
n〈x, un〉
α

un, α :=
( ∞∑
n=1

σ2
n|〈x, un〉|2

) 1
2

.
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Then 〈u, un〉 =
σ2
n〈x,un〉
α so that

∞∑
n=1

|〈u, un〉|2

σ2
n

=
1

α2

∞∑
n=1

σ2
n|〈x, un〉|2 = 1

and

〈x, u〉 =
1

α

∞∑
n=1

σ2
n|〈x, un〉|2 =

( ∞∑
n=1

σ2
n|〈x, un〉|2

) 1
2

.

Therefore, ‖x‖−1 =
(∑∞

n=1 σ
2
n|〈x, un〉|2

) 1
2

.

1.2. Linear isometry between H−1 and (H1)′. We show H−1 is linearly iso-

metric with (H1)′. In particular, H−1 is a Hilbert space with respect to the inner

product induced from (H1)′.

Theorem 1.1. Let H̃ := H with ‖ · ‖−1. For v ∈ H̃, let fv(u) = 〈u, v〉, u ∈ H1.

Then fv ∈ (H1)′ and the map Φ0 : H̃ → (H1)′ defined by Φ0(v) := fv, v ∈ H−1,

is a linear isometry.

Proof. Clearly fv is linear. Moreover

|fv(u)| = |〈u, v〉| ≤ ‖u‖ ‖v‖ ≤ ‖u‖1‖v‖, u ∈ H1.

Hence fv ∈ (H1)′ and

‖fv‖ = sup{|fv(u)| : ‖u‖1 ≤ 1} = ‖v‖−1.

Thus Φ0 : v 7→ fv is a linear isometry from H̃ to (H1)′. �

We shall extend the linear isometry Φ0 obtained in the above theorem to the

whole of H−1 and show that the extended isometry is surjective. First we prove

the following.

Theorem 1.2. The subspace {fv : v ∈ H} is dense in (H1)′.

Proof. By Hahn-Banach extension theorem, it is enough to prove that for ϕ ∈
(H1)′′, ϕ(fv) = 0 for all v ∈ H implies ϕ = 0. So, let ϕ ∈ (H1)′′ such that

ϕ(fv) = 0 for all v ∈ H. Since H1 is reflexive, there exists u ∈ H1 such that

ϕ(f) = f(u) ∀ f ∈ (H1)′.

Thus, 〈v, u〉 = fv(u) = ϕ(fv) = 0 ∀ v ∈ H. Hence, u = 0. Consequently,

ϕ = 0. �

Theorem 1.3. Let Φ : H−1 → (H1)′ be defined by

Φ(v) := lim
n→∞

fvn , v ∈ H−1,

where (vn) in H is such that ‖v − vn‖−1 → 0. Then Φ is a surjective linear

isometry.

Proof. Clearly, Φ is linear. Also,

‖Φ(v)‖ = lim
n→∞

‖fvn‖ = lim
n→∞

‖vn‖−1 = ‖v‖−1, v ∈ H−1.

Thus, Φ is a linear isometry. For surjectivity, let f ∈ (H1)′. Since {fv : v ∈ H} is
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dense in (H1)′, there exists (vn) in H such that ‖f − fvn‖ → 0. Then (vn) is a

Cauchy sequence in H̃ and
f = lim

n→∞
fvn = Φ(v),

where v ∈ H−1 is such that ‖v − vn‖−1 → 0. �

1.3. The Hilbert space H−1. For u, v ∈ H−1, define

〈u, v〉−1 := 〈Φ(u),Φ(v)〉.

Recall that, for f, g ∈ (H1)′,

〈f, g〉 := 〈ug, uf 〉H1 ,

where uf is the unique element in H1 (by Riesz representation theorem) such that

〈v, uf 〉H1 = f(v), v ∈ H1.

Thus, Gelfant triple is a triple of Hilbert spaces. Given u ∈ H, Φ(u) := fu ∈ (H1)′,

and there exists a unique ũ ∈ H1 such that

〈w, ũ〉H1 = fu(w) := 〈w, u〉 ∀w ∈ H1.

Here is an illustration of the above.

Example 1.2. Let Ω be a bounded open subset of Rk. Then the Sobolev space

H1
0 (Ω) is a dense subspace of L2(Ω). Given u ∈ L2(Ω), there exists a unique

ũ ∈ H1
0 (Ω) such that

〈w, ũ〉H1
0 (Ω) = fu(w) := 〈w, u〉L2(Ω) ∀w ∈ H1

0 (Ω)

i.e., ∫
Ω

∇w(x).∇ũ(x) dx =

∫
Ω

w(x)u(x) dx ∀w ∈ H1
0 (Ω).

Thus, ũ is the weak solution of −∆ũ = u with u|∂Ω
= 0 and for u, v ∈ H,

〈u, v〉−1 :=

∫
Ω

∇ũ(x).∇ṽ(x) dx.

1.4. Examples of Hilbert scales.

Example 1.3. Let H be a separable Hilbert space and {un : n ∈ N} be an orthonor-

mal basis of H. Let (σn) be a sequence of positive real numbers with σn → 0. For

s ≥ 0, let

Hs := {x ∈ H :
∞∑
n=1

|〈x, un〉|2

σ2s
n

<∞}.

Then it can be shown that Hs is a Hilbert space with inner product

〈x, y〉s :=
∞∑
n=1

〈x, un〉〈un, y〉
σ2s
n

and the corresponding norm is stronger than the original norm. For s < 0, Hs is

defined via Gelfand triple. Thus, {Hs : s ∈ R} is a Hilbert scale. For x ∈ H and

s ≥ 0,
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‖x‖−s =
∞∑
n=1

σ2s
n |〈x, un〉|2.

This can be seen as in Example 1.1.

Example 1.4. Let H be a Hilbert space and L : D(L) ⊆ H → H be a densely

defined strictly positive self adjoint operator which is also coercive., i.e.,

〈Lx, x〉 ≥ γ‖x‖2 ∀x ∈ H

for some γ > 0. Let X = ∩∞k=1D(Lk). For s > 0, let

〈u, v〉s := 〈Lsu, v〉, u, v ∈ X,

where Ls is defined via spectral representation of L. Thus,

〈Lsu, v〉 =

∫ ∞
γ

λsd〈Eλu, v〉 u, v ∈ X,

where {Eλ : λ ≥ γ} is the resolution of identity of L. Clearly, 〈·, ·〉s is an inner

product on X. Let Hs be the completion of X with respect to 〈·, ·〉s. The following

can be verified.

(1) For s > 0, Hs is a dense subspace of H as a vector space.

(2) For s > 0, Hs is continuously embedded in H.

(3) For s > 0, (Hs, H0, H−s) is Gelfand triple with H0 = H.

(4) For 0 ≤ s ≤ t, Ht ⊆ Hs and the inclusion is continuous.

Thus, {Hs : s ∈ R} is a Hilbert scale.

Definition 1.3. The Hilbert scale {Hs : s ∈ R} as in Example 1.4 is called the

Hilbert scale generated by L.

Traditionally, Hilbert scale is defined as in Example 1.4.

Remark 1.1. The Hilbert scale in Example 1.3 is a special case of Example 1.4:

The Hilbert scale is generated by L : D(L) ⊆ H → H,

Lx :=

∞∑
n=1

〈x, un〉
σn

un, x ∈ D(L),

where

D(L) := {x ∈ H :

∞∑
n=1

|〈x, un〉|2

σ2
n

<∞}.

Note that

〈Lx, x〉 =
∞∑
n=1

|〈x, un〉|2

σn
≥ 1

σ0
‖x‖2,

where σ0 := sup
n
σn.

We may observe that A : H → H defined by

Ax :=
∞∑
n=1

σn〈x, un〉un, x ∈ H
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is an injective compact self adjoint operator and its range is D(L), and its inverse

is L.

Remark 1.2. Consider the Hilbert scale as in Example 1.4. Let s > 0 and u ∈ H.

Then fu(x) = 〈x, u〉, u ∈ H1 and fu ∈ (Hs)
′. By Riesz representation theorem,

there exists a unique ũ ∈ H1 such that fu(x) = 〈x, ũ〉s, x ∈ Hs. Thus,

〈x, u〉 = 〈x, Lsũ〉 ∀x ∈ H,
i.e., ũ is the unique element in Hs such that Lsũ = u. Note that, even if u ∈ Hs,

the element ũ need not be equal to u.

Example 1.5. Let X and Y be Hilbert spaces and K : X → Y be a compact

operator of infinite rank. Then singular value representation of K is given by (see

Nair[10])

Kx =
∞∑
n=1

σn〈x, un〉vn, x ∈ X,

where (σn) is a sequence of positive real numbers which converges to 0, {un : n ∈
N} is an orthonormal basis of H := N(K)⊥, and {vn : n ∈ N} is an orthonormal

basis of R(K) = N(K∗)⊥. In fact, for n ∈ N, Kun = σnvn and K∗vn = σnun.

Further,

(K∗K)
1
2x =

∞∑
n=1

σn〈x, un〉un, x ∈ X.

As observed in Remark 1.1, the operator L : D(L) ⊂ H → H defined by

Lx := (K∗K)−
1
2x =

∞∑
n=1

〈x, un〉
σn

un, x ∈ D(L),

with

D(L) := {x ∈ H :

∞∑
n=1

|〈x, un〉|2

σ2
n

<∞}

is a positive densely defined coercive self-adjoint operator, which generate the

Hilbert scale, also called the Hilbert scale generated by the compact operator K.

Theorem 1.4. Let {Hs : s ∈ R} be as in Example 1.3 and

u(s)
n := σsnun, s ∈ R, n ∈ N.

Then the following hold.

(i) {u(s)
n : n ∈ N} is an orthonormal basis of Hs.

(ii) For s < t, the inclusion map Is,t : Ht → Hs is a compact embedding.

Proof. For x ∈ Hs, we have

〈x, u(s)
j 〉s =

∞∑
n=1

〈x, un〉〈un, u(s)
j 〉

σ2s
n

=
∞∑
n=1

σsj
〈x, un〉〈un, uj〉

σ2s
n

=
〈x, uj〉
σsj

.

Hence,

〈u(s)
i , u

(s)
j 〉s =

〈u(s)
i , uj〉
σsj

=
σsi 〈ui, uj〉

σsj
= δij
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and for x ∈ Hs,

x =
∞∑
n=1

〈x, un〉un =
∞∑
n=1

σsn〈x, u(s)
n 〉s un =

∞∑
n=1

〈x, u(s)
n 〉s u(s)

n .

Therefore, {u(s)
n : n ∈ N} is an orthonormal basis of Hs. Also, for x ∈ Ht,

x =
∞∑
n=1

〈x, un〉un =
∞∑
n=1

σtn〈x, u(t)
n 〉t un =

∞∑
n=1

σt−sn 〈x, u(t)
n 〉t u(s)

n

Thus,

Is,tx =
∞∑
n=1

σt−sn 〈x, u(t)
n 〉u(s)

n , x ∈ Ht.

Since σt−sn → 0, the inclusion map Is,t is a compact operator, and the above

representation is its singular value representation. �

Example 1.6. For s ≥ 0, recall that

Hs(Rk) := {f ∈ L2(Rk) :

∫
Rk

(1 + |ξ|2)s|f̂(ξ)|2dξ <∞}

is a Hilbert space with inner product

〈f, g〉s :=

∫
Rk

(1 + |ξ|2)sf̂(ξ)ĝ(ξ)dξ

and the corresponding norm

‖f‖s :=

[∫
Rk

(1 + |ξ|2)s|f̂(ξ)|2dξ
]1/2

.

For s < 0, Hs(Rk) is defined via Gelfand triple. Thus, {Hs(Rk) : s ∈ R} is a

Hilbert scale, called the Sobolev scale.

1.5. Interpolation inequality in Hilbert scales. In most of the standard

Hilbert scales {Hs : s ∈ R} we have the inequality

‖u‖s ≤ ‖u‖1−λr ‖u‖λt , u ∈ Ht,

whenever r < s < t with λ := (t− s)/(t− r).
The above inequality is called the interpolation inequality in {Hs : s ∈ R}.
Example 1.7. Let {Hs}s∈R be the Hilbert scale as in Example 1.3. Let r < s < t

and x ∈ Ht. Then

s = (1− λ)r + λt with λ := (t− s)/(t− r).

We write
∞∑
n=1

|〈x, un〉|2

σ2s
n

=
∞∑
n=1

[ |〈x, un〉|2(1−λ)

σ
2(1−λ)r
n

] [ |〈x, un〉|2λ
σ2λt
n

]
.

Applying Hölder’s inequality with p = 1
1−λ , q = 1

λ , we have
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∞∑
n=1

|〈x, un〉|2

σ2s
n

=
∞∑
n=1

[ |〈x, un〉|2(1−λ)

σ
2(1−λ)r
n

] [ |〈x, un〉|2λ
σ2λt
n

]

≤

{ ∞∑
n=1

|〈x, un〉|2

σ2r
n

}1−λ{ ∞∑
n=1

|〈x, un〉|2

σ2t
n

}λ
=

{
‖x‖2r

}1−λ {‖x‖2t}λ .
Thus, the interpolation inequality ‖x‖s ≤ ‖x‖1−λr ‖x‖λt holds for all x ∈ Ht.

Example 1.8. Consider the Sobolev scale {Hs(Rk)}s∈R as in Example 1.6. For

r < s < t, we have s = (1 − λ)r + λt with λ := (t− s)/(t− r) so that, for

f ∈ Ht(Rk), by Hölder’s inequality, we have

‖f‖2s =

∫
Rk

(1 + |ξ|2)s|f̂(ξ)|2dξ

=

∫
Rk

[(1 + |ξ|2)r|f̂(ξ)|2](1−λ) [(1 + |ξ|2)t|f̂(ξ)|2]λdξ

≤
[∫

Rk
(1 + |ξ|2)r|f̂(ξ)|2dξ

]1−λ [∫
Rk

(1 + |ξ|2)t|f̂(ξ)|2
]λ
dξ

= ‖f‖2(1−λ)
r ‖f‖2λt .

Thus, the interpolation inequality ‖f‖s ≤ ‖f‖1−λr ‖f‖λt holds for all f ∈ Ht(Rk).

Example 1.9. Let {Hs}s∈R be the Hilbert scale as in Example 1.4. In this case

also, for s = (1− λ)r + λt with λ := (t− s)/(t− r) , we have for x ∈ Ht,

‖x‖2s = 〈Lsx, x〉 =

∫ ∞
0

λsd〈Eλx, x〉

=

∫ ∞
0

λr(1−λ)λtλd〈Eλx, x〉

≤
(∫ ∞

0

λrd〈Eλx, x〉
)1−λ(∫ ∞

0

λtd〈Eλx, x〉
)λ

= ‖x‖2(1−λ)
r ‖x‖2λt .

Thus, the interpolation inequality ‖x‖s ≤ ‖x‖1−λr ‖x‖λt holds for all x ∈ Ht.

2. Ill-Posed Operator Equations

Let X and Y be Banach spaces. For a given y ∈ Y , consider the problem of

finding a solution x of the operator equation

F (x) = y, (1)

where F : D(F ) ⊆ X → Y .

According to Hadamard [4], the above problem is said to be well-posed if

(1) for every y ∈ Y there is a solution x,

(2) the solution x is unique, and

(3) the solution depends continuously on the data (y, F ).
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Definition 2.1. If the problem is not a well-posed problem, then it is called an

ill-posed problem.

Operator theoretic formulation of many of the inverse problems that appear

in science and engineering are ill-posed. Here are two proto-types of ill-posed

problems:

(1) Fredholm integral equations of the first kind (cf. [3, 5])

(a) Computerized tomography,

(b) Geophysical prospecting,

(c) Image reconstruction problems.

(2) Parameter identification problems in PDE (cf. [17, 1, 2]):

(a) diffraction tomography,

(b) impedance tomography,

(c) oil reservoir simulation, and

(d) under water hydrology.

2.1. Fredholm integral equations of the first kind. In this, the problem is

to solve the integral equation∫
Ω

k(s, t)x(t) dt = y(s), x ∈ X, s ∈ Ω,

where k(·, ·) is a non-degenerate kernel in L2(Ω×Ω) and y ∈ L2(Ω) with Ω a domain

in Rk for some k ∈ N. We may observe that the operator T : L2(Ω) → L2(Ω)

defined by

(Tx)(s) =

∫
Ω

k(s, t)x(t) dt, x ∈ X, s ∈ Ω,

is a compact operator with non-closed range. Thus, the problem of solving such

integral equations is ill-posed.

Illustration: Let x, y ∈ L2[0, 1] be such that Tx = y. Consider a perturbed data

yn(s) = y(s) + εn(s)

with

εn(s) :=

∫ 1

0

k(s, t) sin(nπt)dt, s ∈ [0, 1].

Then Txn = yn with

xn(t) := x(t) + sin(nπt).

We may recall that (ϕn) with ϕn(s) :=
√

2 sin(nπs) is an orthonormal sequence in

L2[0, 1]. Hence, for each s ∈ [0, 1],

εn(s) =

∫ 1

0

k(s, t) sin(nπt)dt =
1√
2
〈k(s, ·), ϕn〉 → 0,

|εn(s)|2 ≤ 1

2

(∫ 1

0

|k(s, t)|2dt
)
,
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so that ∫ 1

0

|εn(s)|2ds ≤ 1

2

∫ 1

0

(∫ 1

0

|k(s, t)|2dt
)
ds <∞.

Thus, |εn(s)|2 → 0 for each s ∈ [0, 1] and |εn(·)|2 is integrable. Hence, by

Dominated Convergence Theorem,

‖εn(·)‖2 =

∫ 1

0

|εn(s)|2ds→ 0 as n→∞.

Also,

‖xn − x‖2 =

∫ 1

0

sin2(nπt)dt =
1

2
∀n ∈ N.

Thus, we arrive at the situation:

‖yn − y‖ → 0 but ‖xn − x‖ 6→ 0.

2.2. Compact operator equations. Let T : X → Y be a compact operator

between Banach spaces X and Y . We may recall from Functional Analysis that if

T is of infinite rank, then T is not bounded below, and hence, for every sequence

(λn) with λn > 0, there exists (un) in X such that

‖Tun‖ ≤ λn and ‖un‖ =
1

λn
∀n ∈ N.

In particular, if Tx = y and for n ∈ N if we take

yn = y + Tun, xn = x+ un,

then Txn = yn,

‖y − yn‖ ≤ λn and ‖x− xn‖ =
1

λn
.

In particular, if λn → 0 as n → ∞, then (‖y − yn‖) converges to 0 at the rate of

(λn) whereas (‖x− xn‖) diverges to ∞ at the rate of (1/λn).

Illustration: Let X and Y be Hilbert spaces and T : X → Y be a compact

operator of infinite rank. Consider its singular value representation

Tx =
∞∑
n=1

σn〈x, un〉vn, x ∈ X.

We may recall that (σn) is a sequence of positive real numbers such that σn → 0

as n → ∞, {un : n ∈ N} and {vn : n ∈ N} are orthonormal sets in X and Y ,

respectively.

Let x ∈ X and y = Tx. For n ∈ N, let

yn = y +
√
σnvn, xn = x+

1√
σn
un.

Then we have Txn = yn ∀n ∈ N. Note that, as n→∞,

‖y − yn‖ =
√
σn → 0 but ‖x− xn‖ =

1√
σn
→∞.
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2.3. Parameter identification problems in PDE. Let Ω be a bounded domain

in Rn with smooth boundary and q(·) ∈ L∞(Ω) be such that q(·) ≥ c0 a.e. for

some c0 > 0. Then for every f ∈ L2(Ω), there exists a unique u ∈ H2(Ω) such

that

−∇.(q(x)∇u) = f, u|∂Ω
= 0.

The map F : q 7→ u is a nonlinear operator which does not have a continuous

inverse (cf. [3]). Thus, the parameter identification problem of determining the

parameter functin q(·) from the knowledge of u(·) is a nonlinear ill-posed problem.

Illustration using one-dimensional formulation:

d

dt

[
q(t)

du

dt

]
= f(t), 0 < t < 1,

where f ∈ L2(0, 1). Note that

u(t) =

∫ t

0

[
1

q(τ)

∫ τ

0

f(s)ds

]
dτ.

Thus, the problem is same as that of solving the equation

F (q)(t) :=

∫ t

0

[
1

q(τ)

∫ τ

0

f(s)ds

]
dτ = u(t).

Clearly, this equation is nonlinear. Note also that

q(t) =
1

u′(t)

∫ t

0

f(s)ds.

Suppose u(t) is perturbed to ũ(t), say

ũ(t) = u(t) + ε(t).

Suppose q̃(t) is the corresponding solution. Then we have

q(t)− q̃(t) =

[
1

u′(t)
− 1

u′(t) + ε′(t)

] ∫ t

0

f(s)ds

=
1

u′(t)

[
ε′(t)

u′(t) + ε′(t)

] ∫ t

0

f(s)ds.

Hence,

ε′(t) ≈ ∞ =⇒ |q(t)− q̃(t)| ≈ |q(t)|.

There can be perturbations ε(t) such that ε(t) ≈ 0 but ε′(t) ≈ ∞. For example,

for large n,

εn(t) := (1/n) sin(n2x) ≈ 0 but ε′n(t) = n cos(n2x) ≈ ∞.

Thus, the problem is ill-posed.
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3. Regularization

For an ill-posed problem with an approximate data (ỹ, F̃ ) in place of (y, F ),

one looks for a family {x̃α}α>0 of approximate solutions such that

(1) each x̃α is a solution of a well-posed problem and

(2) α := α(ỹ, F̃ ) is chosen in such a way that

x̃α → x as (ỹ, F̃ )→ (y, F ).

The procedure of finding such a stable approximate solution is called a

regularization method.

3.1. Tikhonov regularization. Consider a linear ill-posed problem
Tx = y,

where T : X → Y is a bounded linear operator between Hilbert spaces X and Y

with non closed range R(T ). We may recall (cf. Nair[10] or [11]):

(1) x0 ∈ X is an LRN-solution if ‖Tx0 − y‖ = infx∈X ‖Tx− y‖;
(2) An LRN-solution x0 exists if and only if y ∈ R(T ) + R(T )⊥, and in

that case T ∗Tx0 = T ∗y.

(3) If y ∈ R(T ) +R(T )⊥, then there exists a unique LRN-solution x† := T †y

of minimal norm.

(4) One looks for stable approximations for the the minimum norm LRN-

solution x† := T †y, y ∈ D(T †) := R(T ) +R(T )⊥.

In Tikhonov regularization, the regularized solution is the unique minimizer of

x 7→ ‖Tx− ỹ‖2 + α‖x‖2,
equivalently, the unique solution of the well-posed operator equation

(T ∗T + αI)x̃α = T ∗ỹ.

It is known (cf. [11])

(1) If y ∈ D(T †), and ‖ỹ− y‖ ≤ δ for some δ > 0, then the best possible error

estimate is ‖x† − x̃α‖ = O(δ2/3).

(2) The above estimate is order optimal for the source set

{x ∈ X : x = (T ∗T )u : ‖u‖ ≤ ρ}

(3) It is attained by an a priori choice of α, namely, α ∼ δ2/3 or by the a

posteriori choice of Arcangeli’s method (see [7]) ‖T x̃α − ỹ‖ = (δ/
√
α).

3.2. Improvement using Hilbert scales. In order to improve the error

estimate, Natterer [16] suggested a modification using a Hilbert scale {Hs : s ∈ R}
to obtain approximations for the LRN-solution which minimizes the function

x 7→ ‖x‖s.
It is assumed that the interpolation inequality

‖u‖s ≤ ‖u‖1−λr ‖u‖λt , s = (1− λ)r + λt

holds. In this modification, the regularized solution is the the minimizer x̃α,s of

x 7→ ‖Tx− ỹ‖2 + α‖x‖2s.



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

COMPACT OPERATORS AND HILBERT SCALES IN ILL-POSED PROBLEMS 57

Natterer[16] showed the following.

Theorem 3.1. If T satisfies

‖Tx‖ ≥ c‖x‖−a ∀x ∈ X

for some a > 0 and c > 0, x̂ ∈ Ht where 0 ≤ t ≤ 2s+ a, and α ∼ δ
2(a+s)
a+t , then

‖x̃α,s − x̂‖ = O(δ
t
t+a ). (2)

According to the above theorem, higher smoothness requirement on x̂ and

with higher level of regularization gives higher order of convergence.

3.3. Use of unbounded stabilizing operators. Another approach is to look for

an approximation of the LRN-solution which minimizes the function x 7→ ‖Lx‖,
where L : D(L) ⊆ X → X is a closed densely defined operator. It is known

(cf. [13]) that such an LRN-solution exists whenever

y ∈ R(T|D(L)
) +R(T )⊥.

Accordingly, one finds the unique minimizer x̃α of the function

x 7→ ‖Tx− ỹ‖2 + α‖Lx‖2, x ∈ D(L),

Existence and uniqueness of the regularized solutions xα(ỹ) are ensured by assum-

ing the completion condition (cf. [13, 6]):

‖Tx‖2 + ‖Lx‖2 ≥ γ‖x‖2 ∀x ∈ D(L), (3)

The condition (3) is satisfied, if for example, L is bounded below, which is the

case for many of the differential operators that appear in applications. The choice

L = I corresponds to ordinary Tikhonov regularization.

Also, condition (3) ensures that

(1) x̃α is the unique solution of the well-posed equation (T ∗T+αL∗L)x = T ∗ỹ,

(2) y ∈ R(T|D(L)
) + R(T )⊥ implies xα → x̂ as α → 0, where x̂ is the

unique LRN-solution which minimizes x 7→ ‖Lx‖.

Suppose we have the perturbed data yδ with ‖y − yδ‖ ≤ δ, and let xδα be the

corresponding regularized solution, i.e., (T ∗T + αL∗L)xδα = T ∗yδ. It is required

to choose the regularization parameter α := α(δ, yδ) appropriately so that

xδα → x̂ as δ → 0.

In order to obtain error estimates, it is necessary to impose some smoothness

assumptions on x̂, by requiring it to belong to certain source set. This aspect

has been considered extensively in the literature in recent years by assuming that

the operators T, L are associated with a Hilbert scale {Xs}s∈R in an appropriate

manner (cf. [16, 15, 14]).



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

58 M. T. NAIR

3.4. Interplay between Hilbert scales and operator pairs. Let us consider

the following conditions on (T, L) using a Hilbert scale {Hs : s ∈ R}:
(1) There exists a > 0, c > 0 such that

‖Tx‖ ≥ c‖x‖−a ∀x ∈ X. (4)

(2) There exists b ≥ 0, d > 0 such that D(L) ⊆ Xb and

‖Lx‖ ≥ d‖x‖b ∀x ∈ D(L). (5)

The following result is proved in Nair[8].

Theorem 3.2. If the Hilbert scale conditions (4) and (5) are satisfied and if x̂

belongs to the source set

Mρ = {x ∈ D(L) : ‖Lx‖ ≤ ρ} (6)

for some ρ > 0, α is chosen according to the Morozov discrepancy principle

c1δ ≤ ‖Txδα − yδ‖ ≤ c0δ (7)

with c0, c1 ≥ 1, then

‖x̂− x̃α‖ ≤ 2
(ρ
d

) a
a+b
(δ
c

) b
a+b

. (8)

Remark 3.1. The estimate in (8) corresponds to the estimate (2) obtained by

Natterer [16] for the case t = s = b.

In [9], two more source sets are considered, namely,

M̃ρ = {x ∈ D(L) : ‖L∗Lx‖ ≤ ρ}, (9)

Mρ,ϕ := {x ∈ D(L∗L) : L∗Lx = [ϕ(T ∗T )]1/2u, ‖u‖ ≤ ρ}. (10)

and obtained improved estimates as given in the following theorem. Here, ϕ :

[0,∞)→ [0,∞) is a strictly monotonically increasing continuous function such that

lim
λ→0

ϕ(λ) = 0. In regularization theory, such functions are called index functions.

Theorem 3.3. Suppose the Hilbert scale conditions (4) and (5) are satisfied and

α is chosen according to the Morozov discrepancy principle (7).

(i) If x̂ belongs to the source set M̃ρ defined in (9), then

‖x̂− x̃α‖ ≤ 2
( ρ
d2

) a
2a+b

(δ
c

) 2b
a+2b

.

(ii) If x̂ belongs to the source set Mρ,ϕ defined in (10), then

‖x̂− x̃α‖ = (1 + c0)
( ρ
d2

) a
a+2b

(
δ

c

) 2b
a+2b [

ψ−1
p

(
ε2
δ

)] a
2(a+2b)

where

p =
a

a+ 2b
, εδ := c

(
d2δ

cρ

) a
a+2b

, ψp(λ) := λ1/pϕ−1(λ).
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3.5. A unified consideration. In a recent paper [12] a unified approach is

adopted by replacing the Hilbert scale conditions (4) and (5) by a single condition

involving T and L:

θ-condition: There exist η > 0 and 0 ≤ θ < 1 such that

η‖x‖ ≤ ‖Tx‖θ‖Lx‖1−θ ∀x ∈ D(L). (11)

Observe that

(1) θ = 0 corresponds to L being bounded below so that R(L) is closed and

L−1 : R(L)→ X is a bounded operator. This case also includes the choice

L = I, the identity operator.

(2) θ = 1 is excluded, as it would imply that T has a continuous inverse.

Theorem 3.4. The following results hold.

(1) The θ-condition (11) implies the completion condition (3) with γ = η2;

(2) Hilbert scales conditions (4) and (5) imply θ-condition (11) with θ = b
a+b

and η = cθd1−θ.

Proof. (1). Suppose the θ-condition (11) is satisfied. From the relation ab ≤ ap

p + bq

q

with

a = ‖Tx‖2θ2, b = ‖Lx‖2(1−θ), p =
1

θ
, q =

1

1− θ
,

we obtain

‖Tx‖2θ‖Lx‖2(1−θ) ≤ θ‖Tx‖2 + (1− θ)‖Lx‖2 ≤ ‖Tx‖2 + ‖Lx‖2.

Thus η2‖x‖2 ≤ ‖Tx‖2 + ‖Lx‖2.

(2). Suppose the Hilbert scales conditions (4) and (5) are satisfied, i.e.,

‖Tx‖ ≥ c‖x‖−a, ‖Lx‖ ≥ d‖x‖b.

Then ‖x‖0 ≤ ‖x‖θ−a‖x‖1−θb , where θ is such that 0 = (1 − θ)(−a) + θb, that is,

θ = a/(a+ b). Thus,

‖x‖0 ≤ (‖Tx‖/c)θ(‖Lx‖/d)1−θ,

so that η‖x‖ ≤ ‖Tx‖θ‖Lx‖1−θ with η = cθd1−θ. �

The following theorem in [12] unifies results in the setting of general

unbounded stabilizing operator as well as for Hilbert-scale and Hilbert-scale-free

settings.

Theorem 3.5. Under the θ-condition (11) and the discrepancy principle (7), the

following hold.

(i) If x̂ ∈Mρ, then ‖x̂− xδαδ‖ ≤ 2η−1ρ1−θδθ.

(ii) If x̂ ∈ M̃ρ, then

‖x̂− xδαδ‖ ≤ (1 + c0)

(
1

η2

) 1
1+θ

ρ
1−θ
1+θ δ

2θ
1+θ .
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(iii) If x̂ ∈Mρ,ϕ and δ2 ≤ γ2
1ϕ(1) where γ1 = 4ρ/γ, then

‖x̂− xδαδ‖ ≤ (1 + c0)

(
1

η2

) 1
1+θ

ρ
1−θ
1+θ δ

2θ
1+θ [ψ−1

p (ε2δ)]
1/2p,

where p := 1+θ
1−θ , εδ := η

2
1+θ

(
δ
ρ

)1/p
.

Remark 3.2. The results in Theorem 3.2 and Theorem 3.3 are recovered from

Theorem 3.5, (i) and (ii), respectively, by taking

θ =
b

a+ b
, η = c

b
a+b d

a
a+b .

In the ordinary Tikhonov regularization, that is, for the case of L = I, equivalently,

θ = 0 in part (iii) of Theorem 3.5, we have p = 1 and εδ = η2
(
δ
ρ

)
. Hence, the

estimate reduces to

‖x̂− xδαδ‖ ≤ (1 + c0)

(
1

η2

)√
ψ−1

1 (η2δ2/ρ2).

Thus, we recover the error estimate for ordinary Tikhonov regularization under

the general source condition obtained in [15].
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AND MEHOD OF MOMENTS*
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Abstract. The likelihood theory is the most central topic in statistical mod-

eling and inference. In this article, we briefly review the method of maximum

likelihood estimation attributed to Fisher. We next discuss the theory of

estimating functions introduced by Godambe and Durbin in order to over-

come the limitations of specifying the functional form of the likelihood while

modeling a random phenomenon. The estimating function theory combines

the strengths of the least squares approach of Legendre and Gauss and the

likelihood approach. We consider the generalized method of moments estab-

lished by Hansen for applications in econometrics, for which he got, in part,

the 2013 Nobel prize in economics. We show the connection between the

estimating function and the generalized method of moments approach. We

conclude with a discussion of our work on the estimating function approach

for ‘state-space models’ and for Hilbert space valued parameters.

This article is a brief overview of three important methods in statistics

and is meant for those not too familiar with statistical inference.

1. Introduction

In statistical applications, one formulates a statistical model for representing

the empirical random phenomenon being studied. One identifies the family of

probability distributions which can describe the data we observe, that is, based on

a sample of observations one formulates a probability distribution for the popula-

tion. For example, the random variables denoting measurement errors are usually

modeled by the normal distribution, the number of accidents at a point by a Pois-

son distribution, life lengths of units by either a Weibull or a Gamma distribution

and so on. If the data are from continuous random variables, that is those that

can take any values within a range, a histogram is drawn, and if the data are from

discrete random variables, that is those that can take only certain values, finite
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or countable, like the number of runs in a cricket match, a bar chart is formed.

Based on the shape of the histogram (or the bar chart), a probability density (a

probability mass function) is assumed for the random variables whose values form

the observed data. For example, in the continuous case, if the histogram is sym-

metric about a point and is bell-shaped, the normal distribution is assumed for

the random variable, whereas if it is not bell-shaped, then a different distribution

has to be assumed. The corresponding cumulative distribution function (cdf) de-

termines the probability that the random variable will assume values in specified

intervals. A distribution function usually depends on one or many unknown pa-

rameters, which are related to the biological, physical, or other type of system that

governs the observed phenomenon or to the domain of application. Based on the

observations, these parameters are to be estimated, that is numerical values are

obtained for them so that one can obtain numerical values for certain probabilities.

In this article, we consider parametric inference on the basis of the observed

data {x1, · · · , xn}, which are realized values of random variables {X1, · · · , Xn}. It

is assumed that a parametric statistical model F (x, θ) specifies the joint distribu-

tion of {X1, · · · , Xn}. The interest is in making inference about the parameter θ

belonging to some subset Θ of the p dimensional Euclidean space Rp, p < n. The

subset Θ, is called the parameter space.

Once a parametric statistical model is formulated for the observed data, sta-

tistical inference consists mainly of procedures for

(1) obtaining point estimate(s) of the parameter(s) θ, that is, for estimating

the ‘true’ parameter,

(2) obtaining confidence interval estimates for θ with level of confidence (1−
α)% (= 90%, 95%, 99%). An interval with confidence level 95% means

that if the experiment is performed a large number of times, 95% of the

interval estimates will contain the true parameter.

(3) Statistical Hypothesis Testing: test and conclude with given level of sig-

nificance or confidence whether the true parameter belongs to a specified

set.

(4) Model selection: test whether the specified statistical model fits the data

or some other model would be better.

The likelihood approach, attributed to Fisher, is the most predominant approach

in parametric statistical inference and is used for all the four problems stated

above. We discuss this approach briefly in the next section but restrict only to

the estimation problem. In the section 3, we consider the estimation procedure

based on the estimating functions and in the section 4, the generalized method of

moments. In the section 5, we describe the application of the estimating function
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approach to state-space models. In the section 6, we give an extension of the esti-

mating function approach for parameters taking values in an infinite dimensional

Hilbert space and conclude with some remarks in the section 7.
2. Likelihood L(θ|x)

Suppose the random vector Xn = (X1, · · · , Xn) has the joint probability

density function (pdf) (probability mass function (pmf)) f(xn; θ), where xn =

(x1, · · · , xn). Here θ denotes the parameter (which could be a scalar or a vector)

and let Θ denote the parameter space. The likelihood is defined as follows.

Definition 2.1. For a given xn, the likelihood is a function from Θ to [0,∞)

defined by
L(θ|xn) = f(xn; θ).

If the data x1, · · · , xn are observations on independent and identically distributed

(iid) random variables, then the likelihood is

L(θ|xn) =
n∏
i=1

f(xi; θ),

where f(x; θ) is the common pdf (pmf).

Example 2.1: Suppose one tosses a coin 20 times and observes 15 Heads. We want

to estimate the probability θ of observing a Head. In this case we can assume that

the observations x1, x2, · · · , x20, are from a Bernoulli distribution with parameter

θ, where xi = 1 if on the i−th toss a Head is observed and xi = 0 if a Tail is

observed. The likelihood is

L(θ|x20) = Pθ(X = 15) =

(
20

15

)
θ15(1− θ)5.

To obtain an estimate of the parameter θ, one maximizes the likelihood.

Definition 2.2. The maximum likelihood estimate (mle) θ̂ of θ is that value of θ

that maximizes the likelihood function L(θ|xn).

In the above Example 2.1, the mle θ̂ of θ is θ̂ = 15/20.

We note that in the discrete set up, if the statistical model is parametrized

by a fixed and unknown θ, the likelihood L(θ|x) is the probability of the observed

data x considered as a function of θ. Thus the θ that maximizes the likelihood is

the value of θ for which the observed value x is most likely.

However in the continuous set up, the likelihood is not a probability. In fact

in this case the probability of observing any point x is zero. One may consider the

following approximation and think of it as an infinitesimal probability. For small

ε,

L(θ|x) = f(x; θ) ≈
∫ x+ε

x−ε
f(u; θ)du = P (x− ε < X < x+ ε).

Example 2.2: Suppose x1, · · · , xn are observations from iid random variables with

the common distribution being normal with mean µ and variance σ2. Then the



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

66 UTTARA NAIK NIMBALKAR

likelihood for µ and σ2 is

L(µ, σ2|xn) =
n∏
i=1

1√
2πσ2

exp(− 1

2σ2
(xi−θ)2) =

1

(
√

2πσ2)n
exp(− 1

2σ2

n∑
i=1

(xi−θ)2),

and the mle of µ and σ2 are

µ̂ =
1

n

n∑
i=1

xi and σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2.

In the likelihood approach, the full form of the joint pdf (pmf) is specified.

Just for the sake of examples, we give below the functional forms of some common

pdfs (pmfs) f(x; θ).

(1) Poisson(λ): This distribution is used to model some counting random

variables such as the number of accidents in a fixed interval, or the number

of incoming telephone calls, the number of incoming packages over the

internet traffic, etc. The parameter λ denotes the rate of occurrence of

the events, i.e., the average number per unit of time.

P (X = k) = e−λ
λk

k!
; k = 0, 1, · · · ;λ > 0.

The parameter space Θ = (0,∞).

(2) Gamma density (Gamma(α, β))

f(x;α, β) =
βα

Γ(α)
xα−1e−βx; x > 0, α > 0, β > 0.

The parameters α and β are respectively referred to as the shape and the

scale parameters and the parameter space Θ = (0,∞)× (0,∞).

(3) Weibull density (used to model the life lengths of items )

f(x;α, β) =
α

β

(
x

β

)α−1
e−(x/β)

α

;x ≥ 0, α > 0, β > 0.

The parameters α and β are respectively referred to as the shape and the

scale parameters and the parameter space Θ = (0,∞)× (0,∞).

We note that an estimate of a parameter θ is some function θ̂(xn) of the data.

For a different set of observed values on the random variables, that is, for another

sample, a different value of the estimate is obtained. The corresponding random

function θ̂(Xn) is referred to as an ‘estimator’ of θ. In Example 2.1, θ̂(X20) =
1
20

∑20
i=1Xi and similarly in Example 2.2, the estimator of the mean µ is µ̂(Xn) =

1
n

∑n
i=1Xi, and that of the variance σ2 is σ2(Xn) = 1

n

∑n
i=1(Xi − µ̂(Xn))2.

Besides the maximum likelihood approach, there are other methods of obtain-

ing estimators of a parameter θ. The quality of the estimator is decided from the

properties defined below. Let Tn denote an estimator of θ based on a sample of

size n.
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Definition 2.3. An estimator Tn is said to be an unbiased estimator of θ if

Eθ(Tn) = θ for all θ ∈ Θ. The bias of an estimator Tn is defined as Biasθ(Tn) =

Eθ(Tn)− θ.
Definition 2.4. The mean squared error (MSE) of an estimator Tn of θ is a

function of θ defined by MSEθ(Tn) = Eθ(Tn − θ)2.
The MSE can be expressed as MSEθ(Tn) = V arianceθ(Tn) + (Biasθ(Tn))2.

A good estimator of θ should have small bias and small variance, or should be

unbiased and have minimum variance. An estimator which has the smaller MSE

for all θ ∈ Θ is preferable. A good estimate should be very close to the true value.

An estimate is a value of the estimator, hence all possible values of the estimator

should be close to the true value of θ.

The above measures of performance are considered if the sample size n is small.

For large n, the desired properties are of consistency and asymptotic normality.

Definition 2.5. An estimator Tn of θ is said to be consistent if as n → ∞,

Tn converges to θ in probability for all θ ∈ Θ. That is for all θ, and all ε > 0,

limn→∞Pθ[|Tn − θ| ≤ ε] = 1

A consistent estimator is close to the true value for large n.

Definition 2.6. An estimator Tn is said to be asymptotically normal if the distri-

bution of
√
n(Tn−θ) converges to the distribution of a Normal mean zero random

variable as n→∞.
Under the regularity conditions given below, the maximum Likelihood (ML)

estimator is consistent, asymptotically unbiased and asymptotically normal.

The Regularity Conditions:

(1) The parameter space Θ is an open subset of the Euclidean space R (Rp.)

(2) The support {x|f(x; θ) > 0} of the pdf (pmf) does not depend on θ.

(3) The derivatives ∂f(x; θ)/∂θ and ∂2f(x; θ)/∂θ2 exist for all θ ∈ Θ and

almost all x.

(4)
∫
f(x; θ)dx and

∫
(∂f(x; θ)/∂θ)f(x; θ)dx are differentiable under the inte-

gral sign.

(5) Eθ[(∂f(X; θ)/∂θ)2] > 0, for all θ ∈ Θ.

(6) The third order derivative ∂3f(x; θ)/∂θ3 exists for every x and is contin-

uous in θ.

(7) For every θ0 ∈ Θ, ∃ a positive number c and a function M(x) (both of

which may depend on θ0) such that |∂3f(x; θ)/∂θ3| ≤M(x) for all x, and

θ ∈ (θ0 − c, θ0 + c) with Eθ0 |M(X)| <∞.

Most standard pdfs (pmfs) satisfy these conditions.

The mle is mostly obtained by maximizing the log of the likelihood, that is by

solving the equation
∂

∂θ
logL(θ|x) = 0 for θ.
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Definition 2.7. The function ∂
∂θ logL(θ|x) is called the score function.

Under the regularity conditions 1, 2, and conditions 3 and 4 for the derivative

of order 1, Eθ
[
∂
∂θ logL(θ|X)

]
= 0, for all θ.

Under the regularity conditions, the asymptotic variance of the ML estimator

is given by the reciprocal of the Fisher information I(θ), which is defined as

Definition 2.8. The Fisher information I(θ) = Eθ

[(
∂logL(θ|X)

∂θ

)2]
.

Under the regularity conditions 1 to 4, I(θ) = −Eθ
[
∂2

∂θ2 logL(θ|X)
]
. Thus an

estimate of the asymptotic variance of the ML estimator θ̂(Xn), is given by the

reciprocal of the observed Fisher information I(θ̂) = − ∂2

∂θ2 logL(θ|xn)|θ=θ̂(xn). The

Cramér-Rao inequality gives a lower bound for the variance of an estimator Tn of

θ, and holds under the regularity conditions 1 to 4. The inequality states that

V arianceθ(Tn) ≥
(
∂
∂θEθ[Tn]

)2
I(θ)

,

for all θ. An estimator whose variance attains the Cramér-Rao lower bound is

said to be an ‘optimal’ estimator for θ. We note that if the estimator is unbiased

for θ, then the numerator of the right hand side of the inequality reduces to 1.

The ML estimator is asymptotically unbiased, asymptotically ‘optimal’, consistent

and asymptotically normal (if the regularity conditions hold.) This is the main

justification of the ML approach.

One limitation of the ML method is that the full form of the pdf (pmf) has

to be specified, only the parameters are unknown. It is sometimes not possible to

specify the entire cdf. In some cases, like the stable distributions, the pdf is not

analytically expressible except for some parameter values. ML estimation method

will not work, if the likelihood function is unbounded. Further, likelihood based

inference is not possible if the number of parameters increase with the sample size,

like in the ‘state-space’ models described in the section 5, and if the data is high

dimensional like the gene expression data.

We have given only a brief description of the estimation method and mostly

for a scalar parameter. For vector valued parameters, for the proofs of the re-

sults stated and the likelihood’s fundamental role in inference (likelihood ratio

tests, likelihood based confidence intervals, etc.) we refer to [19] and [3]. For the

historical development of maximum likelihood see [22] and references therein.

3. Estimating Functions

The least squares method of estimation was invented by Gauss in 1795 to solve

problems in astronomical studies and later Legendre independently invented the

method and published his results in 1806. For this method, assumptions on only

the first two moments of the random variable are made. However the resulting
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estimators are (asymptotically) ‘optimal’ only when the underlying distribution is

normal. Whereas the ML estimators are generally (asymptotically) ‘optimal’. The

estimating function approach introduced by [5] and [7] combines the strengths of

the least squares approach and the likelihood approach.

Similar to the least squares approach, the Estimating Functions approach does

not require the full form of the distribution to be specified but only assumptions

regarding certain moments like the mean and the variance are made.

Definition 3.1. An Estimating Function g(x, θ) is a function of the sample x

and the parameters θ.

For estimation, an unbiased estimating function is used, which is defined as:

Definition 3.2. An estimating function g(x, θ) is said to be an Unbiased

Estimating Function (EF) if Eθ[g(X, θ)] = 0, for all θ ∈ Θ.

Besides the unbiased property, the EF should satisfy the regularity conditions

given below.

Regularity conditions:

(1) For almost all x, ∂g/∂θ exists for all θ ∈ Θ.

(2)
∫
g(x, θ)f(x, θ)dx is differentiable under the integral sign for all θ ∈ Θ.

(3) Eθ
[
∂
∂θg(X, θ)

]
6 =0, for all θ ∈ Θ.

An estimator of θ is obtained by solving g(X, θ)] = 0. The score function
∂
∂θ logL(θ|x) is an estimating function and under the regularity conditions 1, 2,

and conditions 3 and 4 for the derivative of order 1, stated in the section 2, it is

an unbiased estimating function.

The EF is usually suggested by the model itself, and one can obtain a class of

EFs. From a given class of EFs, one chooses an ‘optimal’ EF for the estimation

purpose. Below we give the definition of an ‘Optimal Estimating Function’.

Let G be a class of EFs.

Definition 3.3. An estimating function g∗ in G is said to be optimal, if

Eθ[(g
∗)2]

(Eθ[∂g∗/∂θ])2
≤ Eθ[g

2]

(Eθ[∂g/∂θ])2

for every g ∈ G and for every θ ∈ Θ.

In [7] it is shown that if the score function belongs to the class G, then it is

the optimal estimating function in that class. The above optimality criterion is

equivalent to the following criterion based on the square distances.

An equivalent criterion: An estimating function g∗ in G is optimal if and only

if

Eθ[(g
∗ − ∂

∂θ
logL(θ|X))2] ≤ Eθ[(g −

∂

∂θ
logL(θ|X))2]

for every g ∈ G and for every θ ∈ Θ.

The following extended Cramér-Rao type inequality was proved in [13] under the

regularity conditions. This inequality shows that the score function is ‘optimal’.



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

70 UTTARA NAIK NIMBALKAR

Cramér-Rao type inequality:

Eθ[(g)2]

(Eθ[∂g/∂θ])2
≥ 1

I(θ)
,

for every g ∈ G and for every θ ∈ Θ.

Example 3.1: Let X1, · · · , Xn be independent random variables with Eθ[Xi] = θ

and V arθ(Xi) = σ2 for each i.

Consider a class of unbiased estimating functions (for θ),

G = {g =
n∑
i=1

bi(Xi − θ)|bi, i = 1, · · · , n, are real numbers and
n∑
i=1

bi 6= 0}.

According to the Definition (3.3), the optimal estimating function in this class is

g∗ =
∑n
i=1(Xi − θ) and one solves the equation

∑n
i=1(Xi − θ) = 0 to obtain an

estimator of θ. We note that this equation is the same as the one obtained while

minimizing
∑n
i=1(Xi− θ)2 to get the least square estimator of θ. The estimator is

θ̂ =
∑n
i=1Xi/n, which is the sample mean.

We note that the Gauss-Markov theorem states that the sample mean is the

linear unbiased minimum variance estimator of θ. The ‘unbiased minimum vari-

ance’ property of the estimator fails if θ is replaced by some non-linear function of

θ. For a discussion on this and the failure of the least squares approach, we refer

to ([9], Chapter 1).

The EF method is very useful when the observations are dependent or from

a stochastic process [8]. Let {Xt, t = 0, 1, · · · } be a discrete time stochastic

process whose probability distribution Pθ depends on a parameter θ taking values

in an open subset Θ of the real line R (or Rp). We assume that each (Ω,F , Pθ)
is a complete probability space. Let Fi = σ{Xj , j = 0, 1, · · · , i}, the σ−field

generated by the random variables {Xj , j = 0, 1, · · · , i}. We need not specify the

form of Pθ in order to estimate θ. Suppose there exist (measurable) functions

hi = hi(X1, · · · , Xi; θ) such that the conditional expectations

Eθ[hi(X1, · · · , Xi; θ)|Fi−1] = 0, i = 1, · · · , T, ∀θ ∈ Θ.

Consider a class of ‘linear’ (martingale) estimating functions

G = {g =
T∑
i=1

ai−1hi}, (1)

where the coefficients ai−1are Fi−1 measurable functions of X1, · · · , Xi−1 and θ,

i = 1, · · · , T.
The optimal estimating function in the class G is given by

g∗T =
T∑
i=1

Eθ[∂hi/∂θ|Fi−1]

Eθ[h2i |Fi−1]
hi. (2)

The class G of EFs is often obtained by combining basic (unbiased) EFs suggested

by the model.
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Example 3.2 : Autoregressive Process (AR(1)): Let {Xt, t = 1, 2, ...} be a sto-

chastic process such that

Xt = θXt−1 + εt,

where {εt} is a sequence of uncorrelated random variables with mean zero and

finite variance σ2. Based on the observations on the Xt’s, t = 1 · · · , T, the aim is to

estimate the parameter θ. Then the basic estimating functions are hi = Xi−θXi−1,

i = 2, · · · , T. In this example Eθ[∂hi/∂θ|Fi−1] = Xi−1 and Eθ[h
2
i |Fi−1] = σ2.

From (2), the optimal EF in the class defined in (1) is given by

g∗T =
T∑
i=2

Xi−1

σ2
(Xi − θXi−1),

and the estimator θ̂ = (
∑T
i=2XiXi−1)/(

∑T
i=2X

2
i−1).

The above techniques have been extended for inference in continuous time

stochastic processes, see [12] and references therein.

Under appropriate regularity conditions and for the proper choice of the class

of estimating functions, the estimator obtained by solving the optimal estimating

function, is consistent and asymptotically normal. The optimal EF leads to mini-

mum size asymptotic confidence zones. For the proofs of these results and for the

use of EFs in hypothesis testing we refer to[12].

The above discussion is given in terms of a scalar parameter but the EF

approach holds for a vector valued parameter also. For further details and appli-

cations, we refer to [2], [9], [12] and [18].

4. Generalized method of moment (GMM)

Karl Pearson [20] introduced the Method of Moments (MM) to estimate the

unknown parameters. In this method the sample moments are equated to the

population moments and the equations solved for the unknown parameters to

obtain their estimates. The number of equations taken is same as the number of

parameters. The GMM was developed in [11] for analyzing models in econometrics.

For this method, the full functional form of the distribution function need not be

known.

Suppose we have observations on the random variables Xn and the parame-

ter θ is a p-dimensional vector. Let Tn = Tn(Xn) be a k-dimensional vector of

summary statistics, k ≥ p and Eθ[Tn] = τ(θ). Let Gn(Xn, θ) = Tn − τ(θ), that is,

Eθ[G(Xn, θ)] = 0, for all θ. Thus Gn(Xn, θ) is an EF. For the GMM, an estimator

of θ is the value of θ that minimizes

Gn(Xn, θ)
′WnGn(Xn, θ), (3)

where Wn is a k×k matrix that may depend on the data (but not on θ) and which

converges in probability to a positive definite matrix W, as n→∞.
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The Wn’s are called the weighting matrices. The above is like the weighted

least squares, which involves minimizing (w.r.t. θ) the sum {
∑n
i=1 ai(xi − θ)2},

for known ai’s.

The minimizer of (3) satisfies the estimating equation

g(Xn, θ) = (−∂τ
∂θ

)′WnGn(Xn, θ) = 0,

assuming the existence of the derivatives involved. The estimating function will

be unbiased for the appropriate choice of Wn. This approach does not necessarily

use an optimal EF.

The consistency and asymptotic normality of a GMM estimator hold under

certain conditions, see [11].

The choice of Wn affects the properties of the estimators in terms of their

variances. An optimal estimator in a class is one that has a minimum asymp-

totic covariance, in the matrix sense, in that class. The optimal choice for Wn is

S−1, where S−1 is the inverse of the limiting (as n → ∞) covariance matrix of

Gn(Xn, θ). However, in practice S−1 is not known and has to be estimated.

The GMM is used for the hypothesis testing problems as well. For a good

coverage on this topic we refer to the book by [10].

5. Filtering and Smoothing Via EFs

We discuss the applications of the EF approach in filtering and smoothing

from [17]. A State Space Model is specified by two equations, the observational

equation and the state equation as follows:

Observational Equation : ft1(Yt, Yt−1, Xt) = εt, (4)

State Equation : ft2(Xt, Xt−1) = δt, (5)

where {εt} and {δt} are appropriate sequences of random variables. Appropriate

initial conditions are assumed.

Only yt’s, realized values of the random variables Yt’s are observed for

t = 1, · · · , T and the problem is to estimate the corresponding states, that is, the

xt’s, which are the realized values of the Xt’s. The terms filtering and smoothing

are defined as follows.

Filtering: Estimate the state xt at time t, given the observations y1, · · · , yt, up

to time t, t = 1, 2, · · · , T.
Smoothing: Estimate all the states (x1, · · ·xT ) based on the observations

y1, · · · , yT .
The state space models have origins in systems theory and engineering. The

stateXt denotes a measurement such as the position or velocity, etc. of a spacecraft

at time t. The state equation in this set up is an approximation to physical

laws of motion. The observation Yt is a radar observation (signal) on Xt which

is contaminated by noise (error) denoted by εt. The observational equation is



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

LIKELIHOOD, ESTIMATING FUNCTIONS AND METHOD OF MOMENTS 73

Yt − αtXt = εt, and the state equation can be Xt − µ − βt(Xt−1 − µ) = δt. The

non random quantities µ, αt and βt are usually assumed to be known.

In the literature, filtering and smoothing were discussed under the assumption

that the {εt} and {δt} are independent sequences of independent random variables

and with known distributions, frequently Gaussian. Under these assumptions, the

well known Kalman filter [14] and Kalman-Bucy filter [15] are used to obtain xt

from the observations.

In these models, the quantities to be estimated are random, which was not

the case in the ‘frequentist’ approach described in the earlier sections. It is more

in line with a Bayesian set up.

In practice the {εt} and {δt} need not be sequences of independent random

variables and the form of the distribution functions may not be fully specified nor

be Gaussian. Below we consider two such examples of state-space models.

Example 5.1. Reliability/Life testing: The model given in this example was pro-

posed in [4] for tracking software reliability growth. The observational model is: Yt

given Xt has the Gamma(ν,Xt) distribution and the state model is: CXt/Xt−1

given Xt−1 has the Beta(σ, ν) distribution. The starting distribution of X0 is

Gamma(σ + ν, u0) and the nonrandom quantities C, σ, ν and u0 are assumed

known.

Example 5.2. This model was used in [16] to model rainfall data. The variable

Yt equals 1, if there is an occurrence of rainfall on day t and equals 0 if there is

no rainfall on day t. The observational model is specified such that Yt given Xt

is Bernoulli(πt) with πt = eXt/(1 + eXt). The state equation is Xt = Xt−1 + δt.

The aim is to estimate πt.

The processes {Yt, t = 1, 2, ...} and {Xt t = 0, 1, 2, ...} are defined on some

probability space (Ω,F ,P). Let Ft1 and Ft2 be sub-σ fields of F , which increase

with t, t = 1, · · · , T.
EFs for smoothing: The state and the observational equations form the basic

EFs, which are
ht1 = ft1(yt, yt−1, xt) and ht2 = ft2(xt, xt−1), t = 1, · · · ,T.

Let

a
∗(r)
tj = E[∂htj/∂xr|Ftj ]/var(htj |Ftj).

We make the following assumptions:

Assumption 1: E[htj |Ftj ] = 0, t = 0, 1, · · · , T ; j = 1, 2.

Assumption 2: E[a
∗(r)
tj htja

∗(r)
sk hsk|Ftj ] = 0, j, k = 1, 2,

for all r, s and t, (s, k) 6= (t, j). (This condition is known as the ‘orthogonality’ of

the htj ’s.)

Consider the class G of EFs defined by
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G = { g = (g(0), · · · , g(T )) | g(r) =
∑T
t=0 a

(r)
t1 ht1 +

∑T
t=0 a

(r)
t2 ht2;

a
(r)
tj is Ftj-measurable, r = 0, 1, · · · , T and j = 1, 2 }.

The optimal EF g∗ = (g∗(0), · · · , g∗(T )) in G is:

g∗(0) = (x0 − µ0)/var(h2,0 + a
∗(0)
02 h1,2),

g∗(s) = a
∗(s)
s1 hs1 + a

∗(s)
s2 hs2 + a

∗(s)
(s+1)2h(s+1)2, for s = 1, · · · , T − 1, and

g∗(T ) = a
∗(T )
T1 hT1 + a

∗(T )
T2 hT2.

Solution of g∗ = 0 gives the estimates of the states (x1, · · ·xT ).

Though the models in Examples 5.1 and 5.2 are not exactly in the form of the

model given by ((4), and (5)), the basic EF’s for the Example 5.1 can be taken as

ht1 = yt − νxt and ht2 = cxt/xt−1 − σ/(σ + ν),

t = 1, · · · , T and for the Example 5.2

ht1 = yt − ext/(1 + ext) and ht2 = xt − xt−1,

t = 1, · · · , T.

EFs for filtering: The basic EFs are

ht1 = ft1(yt, yt−1, xt) and ht2 = xt − xt|t−1,

where xt|t−1 is a function of y0, y1, · · · , yt−1, t = 1, 2, · · · .
Assume A1 and A2 above. For a fixed t consider

G = {g|g = at1ht1 + at2ht2 : atj is Ftj −measurable, j = 1, 2}.

The optimal estimating function g∗ in G is g∗ = a∗t1ht1+a∗t2ht2, where a∗tj =

E [ ∂htj/∂xt | Ftj ] / var(htj | Ftj).
Different classes of estimating functions are obtained for different choices of

σ−fields Ft1 and Ft2

Class(i) F (i)
t1 F (i)

t2

G1 (Ω, ∅) (Ω, ∅)
G2 σ{Y0, Y1, · · · , Yt−1} (Ω, ∅)
G3 σ{Y0, Y1, · · · , Yt−1} σ{Y0, Y1, · · · , Yt−1}
G4 σ(Yt−1; Xt) σ(Yt−1; Xt−1)

where Yt−1 = (Y0, · · · , Yt−1), and Xt−1 = (X0, · · · , Xt−1).

We note that G1 ⊂ G2 ⊂ G3 ⊂ G4. Thus the G4-optimal function g∗ is ‘better’ than

the functions ‘optimal’ in the subclasses.

Within G4, g∗ is closest to the posterior score function and coincides with it

in some situations. Computation of the optimal weights in case of G4 are easier

than those for the others. The class G3 of estimating functions is a subclass of

posterior unbiased estimating functions. The optimal estimating function in this
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class is closest to the posterior score function in the posterior sense (where the

posterior distribution is the conditional distribution of the parameters given the

data).

The optimal estimating equations may be nonlinear but can be solved using

a software package such as the NLSYS module of the software package GAUSS.

It may happen that the filtering procedure does not recursively compute a xt|t−1

such that the Assumption A1 holds for Xt−Xt|t−1. In this situation, we carry out

the smoothing procedure up to time t for each t, and declare the estimator of xt

obtained through smoothing at t to be the filter for xt.

As stated earlier we do not make any distributional assumptions on {εt} and

{δt}, nor do we assume that they are sequences of independent random variables.

We do assume the knowledge of the first two conditional moments of {εt} and {δt},
namely E(εt|F (4)

t1 ) = 0, E(δt|F (4)
t2 ) = 0, var(εt|F (4)

t1 ) = Vt, and var(δt|F (4)
t2 ) = σ2

t ,

where Vt and σ2
t are known functions of the conditioning random variables.

If ft1 and ft2 are linear and σ2
t and Vt are constants, then our procedure

reduces to the celebrated Kalman filter and Smoother.
6. Optimal unbiased estimating functions for Hilbert space valued

parameters

Non-parametric problems (form of the probability distribution or probability

function is not assumed) or estimation of functions can be treated as parametric

ones by taking the parameter space to be an infinite dimensional space. In [23] we

consider the parameter space to be a real separable (infinite dimensional) Hilbert

space and extend the Cramér-Rao type inequality for the EFs under some condi-

tions, which leads to the definition of an ‘optimality’ criterion for the estimating

function.

Let X be a sample space with probability measure Pα. Suppose the parameter

α belongs to a real separable Hilbert space H. Let < ·, · > denote the inner product

and C = {en, n ≥ 1} a complete orthonormal basis in H. Let f(x, α) = dPα/dµ(x)

denote the probability density w.r.t. some σ-finite measure µ on X .

Definition 6.1. A function G : X × H → H is called an unbiased estimating

function (EF) iff ∀α ∈ H and ∀ek ∈ C

Eα[< ek, G(x, α) >] = 0.

We assume regularity conditions, analogous to those given in the section 2.

Let

Sj(x, α) = { d
dt
f(x, α+ tej)|t=0}/f(x, α),

where the quantity in the numerator is the Gateaux derivative of f(x, α) in the

direction ej . We note that the Sj(x, α)’s are analogues of the score function
∂
∂θ (log(f(x, θ))). Further, we assume that ∃ non-zero real constants wj , j ≥ 1,

such that Eα[
∑
j |Sj(x, α)wj |2] <∞, ∀α ∈ H.
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For β =
∑
j βjej ∈ H, let Jαβ =

∑
k(
∑
j βjEα[wkSk(x, α)wjSj(x, α)])ek. Let

diGk(x, α) = d
dtGk(x, α + tei)|t=0 and DG,αβ =

∑
k(
∑
j βjEα[dkGj(x, α)])wkek,

where Gk(x, α) =< ek, G(x, α) >. Under the appropriate regularity conditions on

f(x, α) and on G(x, α) we obtain the following inequality. An EF satisfying the

regularity conditions is called a regular EF.

Cramér-Rao type inequality: for all regular G(x, α),

V arα < β,G(x, α) > ≥ < β,D′G,αJ
−1
α DG,αβ >, ∀ α & β ∈ H, (6)

where D′ denotes the adjoint of the operator D.

Definition 6.2. : A ‘regular’ G∗ is said to be optimal in the class of ‘regular’ EFs

iff equality holds in (6).

The article [23] has been used in [6], which is on classification of functional

time series. The optimality criterion of the definition 6.2 differs from the usual

one in the finite dimensional case, which is based on the non-negative definiteness

of the difference of the dispersion matrices of standardized regular EFs and which

assumes the invertiblity of DG,α. Some examples are included in our above cited

article. For a comprehensive treatment of Hilbert space methods and estimating

functions we refer to [21].

7. Concluding Remarks

In all the three methods of estimation considered in this article, the estimate

is obtained by solving an estimating equation. If one knows the functional form of

the pdf (pmf) of the data generating process, except up to a parameter, and if the

regularity conditions stated in the section 2 hold, then the likelihood approach can

be used to obtain an asymptotically optimal estimator. If the functional form can

not be specified, but if some moments or conditional moments can be specified,

then the EF approach or the GMM are good alternatives. The GMM results in an

estimating function, which may not be an ‘optimal’ estimating function as defined

in the section 3. However, the resulting estimators, under certain conditions, are

consistent and asymptotically normal but their optimality in terms of minimum

variance depends on the weighting matrix used. The skill, in this case, is in

choosing a proper weighting matrix. In the EF approach, first the optimal EF

is obtained in some specified class of EFs and then it is solved to obtain the

estimates. The estimators so obtained are consistent and asymptotically normal

under certain conditions. The optimal EF within a class can be used to construct

minimum size confidence zones in that class. Moreover, the optimal EF in a class

is closest to the score function than all other EFs in that class and coincides with

it if the score function belongs to that class. A drawback is that the weights

involved in obtaining the optimal EF, may not be easy to compute or may involve

the unknown parameters resulting in a complicated estimating equation. For the
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EF approach, an appropriate class of EFs should be chosen; as was considered in

the section 5.

In some problems, the regularity conditions may not hold, and other methods

are considered to obtain ‘good’ estimators.
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MATRIX GROUPS OVER RINGS

B. SURY

Abstract. This write-up is in the nature of an exposition of some work

dealing with matrix groups over rings and their various decomposition theo-

rems. The topic of matrix groups over rings like the integers is too general

and too vast to allow a reasonable survey; so, we give an overview of some

topics related to factorization. We discuss two types of related questions on

matrix groups over rings here: (i) generating certain matrix groups by ab-

stract subgroups like cyclic groups and implications on the structure of the

ambient group; and (ii) ‘finite width’ factorization into unipotent subgroups

over rings.

1. Introduction.

Groups of matrices are ubiquitous in mathematics via their various avataars:

Lie groups - if we work over R or C, arithmetic subgroups - over integers and

other number rings, finite simple groups - over finite fields, representation the-

ory - over any ring. The existence of decompositions/factorizations into special

types of pieces (for instance, Iwasawa, Cartan, Bruhat, Langlands,...) have tra-

ditionally played key roles. For example, Bruhat decomposition which arose in

the theory of linear algebraic groups has proved useful in diverse contexts like

numerical stability, and coding theory. In the paper ( [19]), it is shown that for

certain classes of matrices that have an exponential growth factor when Gaussian

elimination with partial pivoting is applied, Bruhat decomposition has at most

linear growth. In the paper ([17]), the authors present a new Bruhat decompo-

sition design for constructing full diversity unitary space-time constellations for

any number of antennas. The so-called Langlands decomposition of a parabolic

subgroup is behind the “philosophy of cusp forms” due to Harish-Chandra (a pre-

cursor to Langlands’s program) where the discrete groups take the backstage and

inducing representations via the Langlands decomposition take center stage. So,

generating matrix groups via special kinds of elements is useful. These are trickier

* The (modified) text of the 26th Hansraj Gupta Memorial Award Lecture delivered at the

81st Annual Conference of the Indian Mathematical Society held at the Visvesvaraya National

Institute of Technology, Nagpur - 440 010, Maharashtra, during December 27-30, 2015.
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Keywords and Phrases: Matrix groups, bounded generation, unitriangularization, finite wid-

th, Chevalley groups, rings of stable rank 1.
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and more subtle over rings which are not fields. In the next section, we describe

a few of the applications where matrix groups over rings play a key role. The

examples are chosen for their diversity. Following that, in section 3, we describe

the more recent factorization theorems and their proofs.

2. Matrix groups over rings - some old applications

In this section, we briefly describe some of our earlier results on matrix groups

over rings which are related to number theoretic and combinatorial group-theoretic

questions. These examples are selected purely to demonstrate the diversity of

applications that matrix groups over various rings have on other topics.

2.1. Salem numbers. A question due to D. H. Lehmer (which is still open from

1933) asks if there is a positive constant c > 1 such that for any integer coefficient

polynomial, the product of the absolute values of its roots is strictly > c unless the

polynomial has only roots of unity as roots. Lehmer’s computations revealed that

the “worst” polynomials in this respect correspond to reciprocal polynomials with

one real root τ > 1 and other roots being 1
τ , τ2, τ2, · · · , τd, τd for |τi| = 1. Such

algebraic integers τ are known as Salem numbers - named after Raphael Salem who

studied some of their properties. We can reformulate this question (see [25]) for the

above subclass of polynomials in terms of the subgroups of SL(2,R); the question

is equivalent to asking if there is a neighbourhood U of the identity matrix such

that every arithmetic subgroup Γ with no elements of finite order other than the

identity and such that the quotient SL(2,R)/Γ is compact, satisfies Γ∩U = {I}.
2.2. Generating a family of subgroups. Here is an example to show how

combinatorial-type properties may have bearing on deeper properties of the group.

We proved (see [31]) the following theorem.
Theorem 2.1. For any fixed n ≥ 3, there is a number N(n) depending only on n

so that every group of the form

Ker(SLn(Z)→ SLn(Z/kZ))

can be generated by N(n) elements for every k > 1. One may also wrote out a

description of generators for each k.

Recently, Detinko, Flannery and Hulpke used the generators to give an algo-

rithm (see [7]) to decide whether a subgroup of SLn(Z) (for n > 2) has finite index

- in general, such problems are undecidable. In the above-mentioned paper, we

had also given an example to show that there is no bound like N(n) if we allow

all normal subgroups of finite index. Very recently, Mark Shusterman proved a

result bounding rank of a group in terms of its index where he elaborates on our

example to show that his result is close to optimal.

2.3. Infinitely presented matrix groups. The following matrix group over a

ring is an example of certain phenomena dealing with factorization, generation

and finite presentation (see [26]).
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Theorem 2.2. Let p be a prime. We consider the ring Z[1/p] of rational numbers

whose denominators can only be divisible by powers of p. Let

G =

{1 a b

0 pn c

0 0 1

 : a, b, c ∈ Z[1/p], n ∈ Z
}

has the remarkable properties. Then,

(a) G = C1C2 · · ·C12 where Ci’s are cyclic groups (not necessarily distinct (that

is, G has bounded generatios of degree ≤ 12);

(b) the commutator subgroup [G,G] is not finitely generated;

(c) G is not finitely presented.

Indeed, if x = diag(1, p, 1), y12 = I + E12, y23 = I + E23 ∈ G, then1 apk bpl

0 pn cpm

0 0 1

 = xn−kya12x
m−n+kyc23x

n−mxByA12x
−By23x

By−A12 x−B

where A,B are defined by bpl − acpm−n+k = Ap−B .

The commutator subgroup ofG is the unipotent group

{1 a b

0 1 c

0 0 1

} is infinitely

generated; indeed, even its abelianization is infinitely generated. The fact that G

is not finitely presentable follows from a criterion due to Bieri and Strebel.

2.4. Matrix groups over finite rings and elementary number theory. El-

ementary number-theoretic identities often fall out when one looks at natural

actions of matrix groups over finite rings (note that finite rings have stable rank 1

- our factorization theorems in the next section deal with rings of stable rank 1).

For instance, the identity∑
t1∈(Zn)∗,t2,··· ,tr∈Zn

GCD(n, t1 − 1, t2, · · · , tr) = φ(n)σr−1(n)

can be derived (see [24]) by applying the so-called Cauchy-Frobenius-Burnside

lemma to the group

G = {


t1 t2 t3 · · · tr

0 1 0 · · · 0
...

...
...

...
...

0 0 0 · · · 1

 : t1 ∈ (Zn)∗, ti ∈ Zn ∀i > 1}

acting naturally on (Zn)r. More generally, the action of the full upper triangular

subgroup Ur of GL(r,Zn) yields:∑
A∈Ur

r∏
k=1

dk = n(r
2)φ(n)rdr(n)
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where A = (aij),

dk = GCD

(
n,

na1,k
(n, a1,1 − 1, a1,2, · · · , a1,k−1)

,

na2,k
(n, a22 − 1, a23, · · · , a2,k−1)

, · · · , nak−1,k
(n, ak−1,k−1 − 1)

)
and d1(n) =

∑
d|n d, dk =

∑
d|n dk−1(d).

2.5. Finite matrix groups as capable groups. Matrix groups over finite fields

provide natural and easy examples of certain phenomena which occur in finite

groups. For instance we have the following theorem (see [23]).

Theorem 2.3. If A is a finite abelian capable group (that is, A ∼= G/Z(G) for

some group G) where the center Z(G) of G is cyclic, then A ∼= B × B for an

abelian group B; in particular, the order of A is a perfect square. Further, this

property of A is not necessarily true if Z(G) is not cyclic.

Thus, it is of interest to find simple examples where Z(G) is not cyclic where

G/Z(G) has non-square order. In loc. cit., we constructed the following example.

Example. Let F be a finite field and E ⊂ F be a proper subfield. Consider the

group

G =

{1 a c

0 1 b

0 0 1

 : b, c ∈ F ; a ∈ E
}
.

If we denote a typical element of G by g(a, b, c), then

g(a, b, c)g(a′, b′, c′) = g(a+ a′, b+ b′, ab′ + c+ c′).

Further, g(a, b, c)−1 = g(−a,−b, ab − c). Now, note that g(a, b, c) ∈ Z(G) if and

only if ab′ = a′b for all a′ ∈ E, b′ ∈ F . Thus, some g(a, 0, c) ∈ Z(G) if and only

if ab′ = 0 for all b′ ∈ F ; that is, if and only if a = 0. On the other hand, if

some g(a, b, c) ∈ Z(G) with b 6= 0, then g(a, b, c)g(1, 0, 0) = g(1, 0, 0)g(a, b, c) gives

0 = b, a contradiction. Thus

Z(G) = {g(0, 0, c) : c ∈ F} and G/Z(G) ∼= E ⊕ F.
Note that the finite, abelian, capable group G/Z(G) can have non-square order -

for instance, if E has p elements and F has p2 elements then Z(G) is not cyclic.

2.6. Matrix groups as monodromy groups of polynomials. The problem of

finiteness of number of solutions of Diophantine equations of the form f(x) = g(y)

where f, g are integer polynomials leads to questions on their monodromy groups

which can be fruitfully answered by analyzing certain matrix groups which are

isomorphic to finite dihedral groups. Work of Yuri Bilu showed (see [4]) that

one may reduce the problem to determining the possible quadratic factors of the

polynomial f(X)−g(Y ). Over an algebraically closed field K of any characteristic,

the latter question is answered in the following manner.
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Let x be transcendental over K, and set t = f(x). If f(X)−g(Y ) has an irreducible

factor of degree 2, then K(x) has a quadratic extension L, the function field of

this quadratic factor. Then L/K(t) is Galois. The Galois group is generated by

two involutions, hence it is dihedral. The intermediate field K(x) is the fixed

field of one of the involutions. By Lüroth’s Theorem, KL is a rational field K(z).

So Gal(K(z)/K(t)) is a subgroup of Gal(L/K(t)). Also, the index is at most 2.

The group of K-automorphisms of K(z) is PGL2(K) acting as linear fractional

transformations of z. Thus, to determine factors of degree at most 2 of f(X)−g(Y ),

we have to determine the cyclic and dihedral subgroups of PGL2(K), and analyze

the cases which give pairs f, g such that f(X)− g(Y ) has a quadratic factor over

K. We may show (see [11]):

Proposition. Let K be an algebraically closed field of characteristic p, and ρ ∈
PGL2(K) be an element of finite order n. Then one of the following holds:

(a) p does not divide n, and ρ is conjugate to

(
1 0

0 ζ

)
, where ζ is a primitive

n-th root of unity.

(b) n = p, and ρ is conjugate to

(
1 1

0 1

)
.

Using this, we may deduce the following (loc. cit.). First, we introduce two

notations. For u, v ∈ K[X], write u ∼ v if and only if there are linear polynomials

L,R ∈ K[X] with u(X) = L(v(R(X))). Also, for a ∈ K, the Dickson polynomial

Dn(X, a) is defined by Dn(z + a/z, a) = zn + (a/z)n. It turns out that we have

the following theorem.

Theorem 2.4. Let f, g ∈ K[X] be non-constant polynomials over a field K, such

that f(X) − g(Y ) ∈ K[X,Y ] has a quadratic irreducible factor q(X,Y ). If the

characteristic p of K is positive, then assume that at least one of the polynomials

f, g cannot be written as a polynomial in Xp. Let deg f = n. Then there are

f1, g1,Φ ∈ K[X] with f = Φ◦f1, g = Φ◦g1 such that q(X,Y ) divides f1(X)−g1(Y ),

and one of the following holds

(a) max(degf1,degg1) = 2 and q(X,Y ) = f1(X)− g1(Y ).

(b) There are α, β, γ, δ ∈ K with g1(X) = f1(αX+β), and f1(X) = h(γX+δ),

where h(X) is one of the following polynomials.

(i) p does not divide n, and h(X) = Dn(X, a) for some a ∈ K. If a 6= 0,

then ζ + 1/ζ ∈ K where ζ is a primitive n-th root of unity.

(ii) p ≥ 3, and h(X) = Xp − aX for some a ∈ K.

(iii) p ≥ 3, and h(X) = (Xp + aX + b)2 for some a, b ∈ K.

(iv) p ≥ 3, and h(X) = Xp − 2aX
p+1
2 + a2X for some a ∈ K.

(v) p = 2, and h(X) = X4 + (1 + a)X2 + aX for some a ∈ K.
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(c) n is even, p does not divide n, and there are α, β, γ, a ∈ K such that

f1(X) = Dn(X+β, a), g1(X) = −Dn((αX+γ)(ξ+1/ξ), a). Here ξ denotes

a primitive 2n-th root of unity. Furthermore, if a 6= 0, then ξ2+1/ξ2 ∈ K.

(d) p ≥ 3, and there are quadratic polynomials u(X), v(X) ∈ K[X], such that

f1(X) = h(u(X)) and g1(X) = h(v(X)) with h(X) = Xp−2aX
p+1
2 +a2X

for some a ∈ K.

The theorem excludes the case that f and g are both polynomials in Xp. The

following theorem handles this case; a repeated application of it reduces to the

situation of the Theorems

Theorem 2.5. Let f, g ∈ K[X] be non-constant polynomials over a field K, such

that f(X)− g(Y ) ∈ K[X,Y ] has an irreducible factor q(X,Y ) of degree at most 2.

Suppose that f(X) = f0(Xp) and g(X) = g0(Xp), where p > 0 is the characteristic

of K. Then one of the following holds:

(a) q(X,Y ) divides f0(X)− g0(Y ), or

(b) p = 2, f(X) = f0(X2), g(X) = f0(aX2 + b) for some a, b ∈ K, and

q(X,Y ) = X2 − aY 2 − b.

2.7. Bounded generation and finite width. The matrix groups over integers

like SLn(Z) are finitely generated and even have finite presentations. However,

a remarkable refinement of the first property came to the fore in the work of

A.S.Rapinchuk. This is known as bounded generation. An abstract group G is

said to be boundedly generated of degree ≤ n if there exists a sequence of (not

necessarily distinct) elements g1, · · · , gn such that

G =< g1 >< g2 > · · · < gn >

that is,
G = {ga11 ga22 · · · gann : ai ∈ Z}.

A free, non-abelian group (and therefore, SL2(Z) also) is not boundedly generated.

On the other hand, a group like SLn(Z) for n ≥ 3, is boundedly generated by

elementary matrices (an elementary proof of this can be given using Dirichlet’s

theorem on primes in arithmetic progressions). It turns out that this difference is

an indicator of a deeper attribute called the congruence subgroup property; viz.,

every subgroup of finite index in SLn(Z) for n ≥ 3 contains a subgroup of the

form

Ker(SLn(Z)→ SLn(Z/kZ))

This was revealed in the work of V.P.Platonov & A.S.Rapinchuk ([21]) and also

in the work of A.Lubotzky ([16]).

Matrix groups which are finitely generated have an abundance of subgroups

of finite index. More precisely, they are residually finite - that is, the intersection

of all subgroups of finite index is the trivial group. In this case, it is beneficial to

define a topology using as a basis the subgroups of finite index - residual finiteness
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guarantees this is Hausdorff. The completion with respect to this topology is

known as the profinite completion; this is a compact group in which the original

group embeds.

A finitely generated group for which the normal subgroups which have indices

powers of a (fixed) prime p intersect in the identity, is said to be residually-p. The

corresponding profinite completion is called the pro-p completion. In general, a

profinite group is formed by putting together a tower of finite groups by a limiting

process; a classical example is that of Galois group of the algebraic closure. Notions

involved in the theory of finite groups and many properties find resonance in the

theory of profinite groups and the topology available in the latter theory makes it

possible to deduce properties of abstract, discrete groups.

A profinite group G is said to be boundedly generated as a profinite group if there

exists a sequence of (not necessarily distinct) elements g1, · · · , gn such that
G = < g1 >< g2 > · · ·< gn >

where the ‘bar’ denotes closure.

It follows from Lazard’s deep work on p-adic Lie groups (see [12]) and the solution

to the restricted Burnside problem that a pro-p group has bounded generation

(as a profinite group) if and only if it is a p-adic compact Lie group; this can be

thought of as an analogue of Hilbert’s 5th problem for the p-adic case.

If an abstract group has bounded generation, then so do its pro-p completions for

each prime p (as does the full profinite completion). Therefore, we have a nice

sufficient criterion for an abstract group to have a faithful linear representation -

viz., if it has bounded generation and is virtually residually-p. We can use this

idea to show that the automorphism group of a free group does not have bounded

generation (see [26]).

The question of existence of bounded generation for matrix groups over number-

theoretic rings has rather deep connections with other properties. The profinite

completion of an arithmetic group is boundedly generated if, and only if, it has the

congruence subgroup property - this was proved independently by V. P. Platonov

& A. S. Rapinchuk and by A. Lubotzky (see [21]) and [16]). Lubotzky also conjec-

tured that the congruence subgroup property holds for an S-arithmetic group if,

and only if, it can be embedded as a closed subgroup of SLn(A) - a so-called adelic

group. This was proved in [22], where we also conjectured that finitely generated

closed subgroups of adelic groups have bounded generation. Then M.Liebeck &

L.Pyber proved ([15]) that if G is a subgroup of GLn(K) where K is of character-

istic p which is large compared to n, and if G is generated by elements of orders

powers of p, then G is a product of 25 Sylow p-subgroups. They used it to prove

our conjecture mentioned above.

It is still an intriguing open question as to whether the property of bounded

generation for an S-arithmetic group Γ equivalent to bounded generation for its
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profinite completion (which is, as mentioned earlier, equivalent to the congruence

subgroup property holding good for Γ). The answer is perhaps in the negative and

certain arithmetic subgroups of Sp(n, 1) could provide counter-examples. More-

over, this is a subtle question specific to arithmetic groups and not for more general

profinite groups because the group
∏
r≥1 PSLn(F2r ) is boundedly generated group

as a profinite group but none of its discrete subgroups is boundedly generated.

O.Tavgen proved bounded generation of arithmetic groups in rank > 1 groups

(see [33]). However, bounded generation for co-compact arithmetic lattices is still

an open question in general excepting the case of quadratic forms (see [8]); note

here that there are no unipotent elements.

A notion related to but weaker than bounded generation is that of finite width

wirh respect to a subset defined as follows.

A group G has finite width with respect to a subset E if there exists a positive

integer n such that each element of G can be expressed as g = e1e2 · · · er with

r ≤ n and ei ∈ E.

If we look at rings R that are finitely generated as abelian groups, then

SL(n,R) has bounded generation if it has finite width with respect to the set

of all elementary matrices Xij(t) with t ∈ R and i 6= j.

More generally, for any commutative ring R, one could look at the question

of finite width for elementary group En(R) which may be a proper subgroup of

SL(n,R). It is not difficult to check that En(R) has this property if and only if

K1(n,RN)→ K1(n,R)N is injective, where the K-group K1 is the quotient of GL

by E.
3. Finite unipotent width over stable rank 1 rings

We describe some results on finite width obtained in collaboration with Vavilov

and Smolensky. The following problem arises in several independent contexts. It

addresses Chevalley groups which we will describe shortly.

Problem. For a commutative ring R, find the shortest factorization

G = UU−UU− . . . U± of an elementary Chevalley group E(Φ, R), in terms of

the unipotent radical U = U(Φ, R) of the standard Borel subgroup B = B(Φ, R),

and the unipotent radical U− = U−(Φ, R) of the opposite Borel subgroup B− =

B−(Φ, R).

There are following two problems here.

• first, to establish the existence of such factorizations, and

• second, to estimate their length.

We can prove the following theorem for rings of stable rank 1 ( [28]).

Theorem 3.1. Let Φ be a reduced irreducible root system and R be a commutative

ring such that the stable rank of R is 1. Then the elementary Chevalley group

E(Φ, R) admits a uni-triangular factorisation

E(Φ, R) = U(Φ, R)U−(Φ, R)U(Φ, R)U−(Φ, R)
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of length 4. Further, 4 is the minimum possible for such a result to hold good if R

has a nontrivial unit.

Here, a commutative ring has stable rank 1, if for all x, y ∈ R, which generate

R as an ideal, there exists a z ∈ R such that x+ yz is invertible. In this case we

write sr(R) = 1. Examples of ring of stable rank 1 are semilocal rings, and the

ring of ALL algebraic integers.

The same method allows us to prove (see [29]) the following theorem.

Theorem 3.2. With R as above, the elementary Chevalley group E(Φ, R) admits

a Gauss decomposition

E(Φ, R) = (T (Φ, R) ∩ E(Φ, R))U(Φ, R)U−(Φ, R)U(Φ, R).

Conversely, if Gauss decomposition holds for some elementary Chevalley group,

then sr(R) = 1.

Actually, a corollary of this last theorem is the following statement which also

shows theorem 3.1 holds at least in the weaker form with length 5.

Corollary 3.3. Let Φ be a reduced irreducible root system and R be a commutative

ring such that sr(R) = 1. Then any element g of the elementary Chevalley group

E(Φ, R) is conjugate to an element of

U(Φ, R)H(Φ, R)U−(Φ, R).

In the 1960’s, N. Iwahori & H. Matsumoto, E. Abe & K. Suzuki, and M. Stein

discovered (see [1], [2], [10], [30]) that Chevalley groups G = G(Φ, R) over a

semilocal ring admit the remarkable Gauss decomposition G = TUU−U , where

T = T (Φ, R) is a split maximal torus, whereas U = U(Φ, R) and U− = U−(Φ, R)

are unipotent radicals of two opposite Borel subgroups B = B(Φ, R) and B− =

B−(Φ, R) containing T . It follows from the classical work of Hyman Bass and

Michael Stein that for classical groups Gauss decomposition holds under weaker

assumptions such as sr(R) = 1 or asr(R) = 1. Later N. Vavilov noticed that

condition sr(R) = 1 is necessary for Gauss decomposition to be valid. In our

theorems, we show that for the elementary group E(Φ, R), the condition sr(R) = 1

is also sufficient for Gauss decomposition to hold good. In other words, E =

HUU−U , where H = H(Φ, R) = T ∩ E. This surprising result pinpoints the fact

that stronger conditions on the ground ring, such as being semi-local, asr(R) = 1,

sr(R,Λ) = 1, etc., were only needed to guarantee that for simply connected groups

G = E, rather than to verify the Gauss decomposition itself. Our method of proof

is an elaboration of a beautiful idea of O. Tavgen ([32]).

Results equivalent to writing matrices in terms of upper and lower triangular ma-

trices have been proved piece-meal in various situations by programmers working

on computational linear algebra and others ([20],[13], [5], [3], [9], [27], [34]). So,

results such as the above unitriangular factorization admit potential applications

in computational linear algebra, wavelet theory, computer graphics and Control
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theory. For instance, the one-dimensional shears correspond to transvections that

are standard in the study of matrix groups over rings.

3.1. Number rings-finite width. Number-theoretic rings are usually more com-

plicated. Over the ring Z[1/p], we prove (see [28]):

Theorem 3.4. Let p be a prime. The elementary Chevalley group E
(

Φ,Z
[
1
p

])
admits unitriangular factorisation

E

(
Φ,Z

[
1

p

])
=

(
U

(
Φ,Z

[
1

p

])
U−
(

Φ,Z
[

1

p

]))3

of length 6.

The theorem is deduced from the one below for SL2 which we can prove in the

following slightly stronger form.

Lemma 3.5.

SL2

(
Z

[
1

p

])
= UU−UU−U = U−UU−UU−.

From this factorization, we deduce explicitly that SL2(Z[ 1p ]) has bounded

generation. This is known earlier (see [14]), but the bounded generation was

deduced either using generalized Riemann Hypothesis or deep analytic results like

Vinogradov’s three primes theorem or an indirect model-theoretic proof is given

where there was no information on the degree of bounded generation.

Such factorizations can be treated by relating them to division chains (see

[6]) in the ring Z[ 1p ]. Note that expressing a matrix in the group SL(2, R) over

a Euclidean ring R as a product of elementary matrices is equivalent to studying

continued fractions. Existence of arbitrary long division chains in Z shows that the

group SL(2,Z) cannot have bounded width in elementary generators. If

(
A C

B D

)
is in SL2(Z[ 1p ]), then we have the following lemma.

Lemma 3.6. A = Q1B +R1, B = Q2R1 +R2 R1 = Q3R2 + 1.

Thus (
1 0

−R2 1

)(
1 −Q3

0 1

)(
1 0

−Q2 1

)(
1 −Q1

0 1

)(
A C

B D

)
=

(
1 ∗
0 1

)

3.2. Number rings - explicit bounded generation. Using the above theorem,

for the matrices T =

(
p−1 0

0 p

)
, U1 =

(
1 1

0 1

)
and V1 =

(
1 0

1 1

)
, we can

deduce unconditionally the following theorem.

Theorem 3.7. Let p be a prime number. Then SL2(Z[ 1p ]) has bounded generation

of degree at the most 11. In fact, we have

SL2(Z[1/p]) = {T a1U b11 T a2V
c1
1 T a3U b21 T

a4V c21 T a5U b31 T
a6 : ai, bi, ci ∈ Z}.
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One should note that this is not completely straightforward from the above uni-

triangular factorization theorem because one can show that the group SL2(Z[1/p])

cannot have bounded generation with respect to only unipotent matrices!

Let us mention in passing that some matrix groups over rings of polynomials

are finitely generated but are not boundedly generated. For instance, the group

of 2 × 2 matrices

(
tm tnf(t)

0 1

)
where f is any polynomial with integer coeffi-

cients and m,n are any integers, is an infinite group (it can be identified with the

wreath product of Z by Z) and it has an infinitely generated abelian subgroup,

but is itself generated by just two matrices

(
t 0

0 1

)
and

(
1 1

0 1

)
. One can prove

by combinatorial methods that the above matrix group does not have bounded

generation. In fact, we have (see [18]) the following result.

If A and B are groups then A oB has bounded generation if and only if A has

bounded generation and B is finite.

4. Elementary Chevalley groups over rings
We now proceed to introduce the Chevalley groups and the elementary sub-

groups occurring in the statements of our theorems 1 and 2.

Let Φ be a reduced irreducible root system of rank l, W = W (Φ) be its

Weyl group and P be a lattice intermediate between the root lattice Q(Φ) and the

weight lattice P(Φ). Further, we fix an order on Φ and denote by Π = {α1, . . . , αl},
Φ+ and Φ− the corresponding sets of fundamental, positive and negative roots,

respectively.

It is classically known that with these data one can associate the Chevalley

group G = GP(Φ, R) for any ring R; this is the group of R-points of an affine

groups scheme GP(Φ,−) - the Chevalley-Demazure group scheme. The group is

said to be simply connected (res. adjoint) if P is the weight lattice (resp. root

lattice). Since our results do not depend on the choice of the lattice P, we will

usually assume that P = P(Φ) and omit any reference to P in the notation. Thus,

G(Φ, R) will denote the simply connected Chevalley group of type Φ over R.

Fix a split maximal torus T (Φ,−) of the group scheme G(Φ,−) and set T =

T (Φ, R). Fix isomorphisms xα : R 7→ Xα. Here, the elements xα(ξ); ξ ∈ R, α ∈ Φ

are called root unipotents and, the root groups Xα comprised of these elements

when ξ varies in R, are interrelated by the Chevalley commutator formulae. The

root subgroups Xα, α ∈ Φ generate the elementary subgroup E(Φ, R) of G(Φ, R).

Let α ∈ Φ and ε ∈ R∗. Set hα(ε) = wα(ε)wα(1)−1, where wα(ε) =

xα(ε)x−α(−ε−1)xα(ε). The elements hα(ε) are called semisimple root elements.

For a simply connected group one has

T = T (Φ, R) = 〈hα(ε), α ∈ Φ, ε ∈ R∗〉.

One also defines H(Φ, R) = T (Φ, R)∩E(Φ, R). Let N = N(Φ, R) be the algebraic
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normalizer of the torus T = T (Φ, R), i. e. the subgroup, generated by T = T (Φ, R)

and all elements wα(1), α ∈ Φ. The factor-group N/T is canonically isomorphic

to the Weyl group W , and for each w ∈W we fix its preimage nw in N .

The theorems 1 and 2 stated above generalize and strengthen results which were

proved piecemeal over finite fields by several authors with a much simpler, uniform

proof. Recall the statements again in the following form.

Theorem 4.1. E(Φ, R) admits a Gauss decomposition

E(Φ, R) = H(Φ, R)U(Φ, R)U−(Φ, R)U(Φ, R).

Conversely, if Gauss decomposition holds for some elementary Chevalley group,

then sr(R) = 1.

Corollary 4.2. ( to Theorem 1). We have a unitriangular factorisation

E(Φ, R) = U(Φ, R)U−(Φ, R)U(Φ, R)U−(Φ, R)

of length 4. Further, 4 is the minimum possible for such a result to hold good if R

has a nontrivial unit.

The proofs rely on a beautiful idea of Oleg Tavgen on rank reduction (see [32]);

we use the fact that for systems of rank ≥ 2 every fundamental root falls into

the subsystem of smaller rank obtained by dropping either the first or the last

fundamental root. One needs to study elementary parabolic subgroups then. We

just discuss a toy case first.

4.1. Toy case of theorem 3.1. The following lemma is this Toy case.

Lemma 4.3. Let R be a commutative ring of stable rank 1. Then

SL(2, R) = U(2, R)U−(2, R)U(2, R)U−(2, R).

In particular, SL(2, R) = E(2, R).

The toy case is the only place where the stability condition on R is invoked. To

deduce the general theorem, we use only the theory of linear algebraic groups. Let

us prove the toy case above.

proof. Let us trace how many elementary transformations one needs to bring an

arbitrary matrix g =

(
a b

c d

)
∈ SL(2, R) to the identity. We will not introduce

new notation at each step, but rather replace the matrix g by its current value,

as is common in computer science. Obviously, its entries a, b, c, d should be also

reset to their current values at each step.

Step 1. Multiplication by a single lower elementary matrix on the right allows

to make the element in the South-West corner invertible.

Indeed, since the rows of the matrix are unimodular, one has cR + dR = R and

since sr(R) = 1, there exists such an z ∈ R, that c+ dz ∈ R∗. Thus,

gt21(z) =

(
a+ bz b

c+ dz d

)
.
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Step 2. We (can) assume that c ∈ R∗; then, multiplication by a single upper

elementary matrix on the right allows to make the element in the South-East

corner equal to 1. Indeed,

gt12(c−1(1− d)) =

(
a b+ ac−1(1− d)

c 1

)
.

Step 3. We (can) assume that d = 1; so, multiplication by a single lower ele-

mentary matrix on the right allows to make the element in the South-West corner

equal to 0. Indeed,

gt21(−c) =

(
a− bc b

0 1

)
.

Since det(g) = 1, the matrix on the right hand side is equal to t12(b). Bringing

all elementary factors to the right hand side, we see that any matrix g with de-

terminant 1 can be expressed as a product of the form t12(∗)t21(∗)t12(∗)t21(∗), as

claimed in the lemma.
4.2. A concrete case of theorem 3.2. We discuss a special concrete case. If

N(n,R) is the group of monomial matrices over any commutative ring R, then we

have the following result.

Proposition 4.4. Let R be an arbitrary commutative ring. Then one has the

following inclusion N(n,R) ⊆ U(n,R)U−(n,R)U(n,R)U−(n,R).

Proof. Let g = (gij) ∈ N(n,R). Let us argue by induction on n ≥ 2.

Case 1. First, let gnn = 0. Then, there exists a unique 1 ≤ r ≤ n − 1 such that

a = grn 6= 0 and a unique 1 ≤ s ≤ n− 1 such that b = gns 6= 0, all other entries in

the s-th and the n-th columns are equal to 0. Since g is invertible, automatically

a, b ∈ R∗. The matrix gtsn(b−1) differs from g only in the position (n, n), where

now we have 1 instead of 0. Consecutively multiplying the resulting matrix on the

right by tns(−b) and then by tsn(b−1), we get the matrix h, which differs from g

only at the intersection of the r-th and the n-the rows with the s-th and the n-th

columns, where now instead of

(
0 a

b 0

)
one has

(
−ab 0

0 1

)
.

Observe, that the determinant of the leading submatrix of order n− 1 of the

matrix h equals 1, and thus we can apply induction hypothesis and obtain for that

last matrix the desired factorisation in the group SL(n− 1, R). This factorisation

does not affect the last row and the last column. We have shown

gtsn(b−1)tns(−b)tsn(b−1) = u1u
−
1 u2u

−
2 ,

where these matrices have no role in the n-th row and column. As they normalize

the tsn’s and the tns’s, the proof can be completed in this case; this is where the

general root system requires a carefully proved normalization result stated below

as key lemma.

Case 2. Let b = gnn 6= 0. Take arbitrary 1 ≤ r, s ≤ n−1 for which a = grs 6= 0.

Again, automatically a, b ∈ R∗. As in the previous case, let us concentrate on the
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r-th and the n-th rows and the s-th and the n-th columns. Since there are no

further non-zero entries in these rows and columns, any additions between them

do not change other entries of the matrix, and only affect the submatrix at the

intersection of the r-th and the n-th rows with the s-th and the n-th columns.

Now, multiplying g by tns(b
−1)tsn(1− b)tns(−1)tns(−b−1(1− b)) on the right, we

obtain the matrix h, where this submatrix, which was initially equal to

(
a 0

0 b

)
,

will be replaced by

(
ab 0

0 1

)
. At this point the proof can be finished in exactly

the same way as in the previous case.

4.3. Towards the proof - elementary parabolics. The main role in the proofs

in general is played by Levi decomposition for elementary parabolic subgroups.

Denote by mk(α) the coefficient of αk in the expansion of α with respect to the

fundamental roots

α =
∑

mk(α)αk, 1 ≤ k ≤ l.

Fix any r = 1, . . . , l - in fact, in the reduction to smaller rank it suffices to employ

only terminal parabolic subgroups, even only the ones corresponding to the first

and the last fundamental roots, r = 1, r = l.

Denote by

S = Sr =
{
α ∈ Φ, mr(α) ≥ 0

}
the r-th standard parabolic subset in Φ. As usual, the reductive part ∆ = ∆r and

the special part Σ = Σr of the set S = Sr are defined as

∆ =
{
α ∈ Φ, mr(α) = 0

}
, Σ =

{
α ∈ Φ, mr(α) > 0

}
.

The opposite parabolic subset and its special part are defined similarly as

S− = S−r =
{
α ∈ Φ, mr(α) ≤ 0

}
, Σ− =

{
α ∈ Φ, mr(α) < 0

}
.

Obviously, the reductive part of S−r equals ∆.

Denote by Pr the elementary maximal parabolic subgroup of the elementary

group E(Φ, R). By definition

Pr = E(Sr, R) =
〈
xα(ξ), α ∈ Sr, ξ ∈ R

〉
.

By the Levi decomposition

Pr = Lr i Ur = E(∆, R) i E(Σ, R).

Recall that

Lr = E(∆, R) =
〈
xα(ξ), α ∈ ∆, ξ ∈ R

〉
,

whereas

Ur = E(Σ, R) =
〈
xα(ξ), α ∈ Σ, ξ ∈ R

〉
.

A similar decomposition holds for the opposite parabolic subgroup P−r , whereby

the Levi subgroup is the same as for Pr, but the unipotent radical Ur is replaced

by the opposite unipotent radical U−r = E(−Σ, R). As a matter of fact, we use

Levi decomposition in the following form. It will be convenient to slightly change
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the notation and write U(Σ, R) = E(Σ, R) and U−(Σ, R) = E(−Σ, R).

Lemma 4.5. (Key Lemma) The group
〈
Uσ(∆, R), Uρ(Σ, R)

〉
, where σ, ρ = ±1,

is the semidirect product of its normal subgroup Uρ(Σ, R) and the complementary

subgroup Uσ(∆, R).

In other words, the subgroup U±(∆, R) normalizes each of the groups U±(Σ, R)

so that, in particular, one has the following four equalities for products

U±(∆, R)U±(Σ, R) = U±(Σ, R)U±(∆, R).

Furthermore, the following four obvious equalities for intersections hold

U±(∆, R) ∩ U±(Σ, R) = 1.

In particular, one has the following decompositions

U(Φ, R) = U(∆, R) i U(Σ, R), U−(Φ, R) = U−(∆, R) i U−(Σ, R).

5. Idea of proofs of theorems 1 and 2

Start with the following result which is easy, well known, and very useful.

Lemma 5.1. The elementary Chevalley group E(Φ, R) is generated by unipotent

root elements xα(ξ), α ∈ ±Π, ξ ∈ R, corresponding to the fundamental and

negative fundamental roots.

Proof. Indeed, every root is conjugate to a fundamental root by an element

of the Weyl group, while the Weyl group itself is generated by the fundamental

reflections wα, α ∈ Π. Thus, the elementary group E(Φ, R) is generated by the

root unipotents xα(ξ), α ∈ Π, ξ ∈ R, and the elements wα(1), α ∈ Π. It remains

only to observe that wα(1) = xα(1)x−α(−1)xα(1).

Further, let B = B(Φ, R) and B− = B−(Φ, R) be a pair of opposite Borel

subgroups containing T = T (Φ, R), standard with respect to the given order.

Recall that B and B− are semidirect products B = T i U and B− = T i U−, of

the torus T and their unipotent radicals

U = U(Φ, R) =
〈
xα(ξ), α ∈ Φ+, ξ ∈ R

〉
,

U− = U−(Φ, R) =
〈
xα(ξ), α ∈ Φ−, ξ ∈ R

〉
.

Recall that a subset S in Φ is closed , if for any two roots α, β ∈ S whenever

α + β ∈ Φ, already α + β ∈ S. For closed S, define E(S) = E(S,R) to be the

subgroup generated by all elementary root unipotent subgroups Xα, α ∈ S:

E(S,R) = 〈xα(ξ), α ∈ S, ξ ∈ R〉.

In this notation, U and U− coincide with E(Φ+, R) and E(Φ−, R), respectively.

The groups E(S,R) are particularly important in the case where S ∩ (−S) = ∅.

In this case E(S,R) coincides with the product of root subgroups Xα, α ∈ S, in

some/any fixed order.

Again, let S ⊆ Φ be a closed set of roots; then S can be decomposed into a

disjoint union of its reductive = symmetric part Sr, consisting of those α ∈ S, for
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which −α ∈ S, and its unipotent part Su, consisting of those α ∈ S, for which

−α 6∈ S. The set Sr is a closed root subsystem, whereas the set Su is special.

Moreover, Su is an ideal of S (i.e., if α ∈ S, β ∈ Su and α + β ∈ Φ, then

α+ β ∈ Su).

Levi decomposition shows that the group E(S,R) decomposes into the semidi-

rect product E(S,R) = E(Sr, R) i E(Su, R) of its Levi subgroup E(Sr, R) and

its unipotent radical E(Su, R).

5.1. Reduction to smaller rank. As mentioned earlier, the proofs depend on

the reduction of rank as in the following theorem.

Theorem 5.2. Let Φ be a reduced irreducible root system of rank l ≥ 2, and R

be a commutative ring.

(a) Suppose that for subsystems ∆ = ∆1,∆l the elementary Chevalley group

E(∆, R) admits unitriangular factorisation

E(∆, R) = (U(∆, R)U−(∆, R))L.

Then the elementary Chevalley group E(Φ, R) admits unitriangular factorisation

E(Φ, R) = (U(Φ, R)U−(Φ, R))L.

of the same length 2L.

(b) Suppose that for subsystems ∆ = ∆1,∆l the elementary Chevalley group

E(∆, R) admits the Gauss decomposition

E(∆, R) = H(∆, R)U(∆, R)U−(∆, R)) · · ·U±(∆, R)

of length L. Then, the elementary Chevalley group E(Φ, R) admits the Gauss

decomposition

E(Φ, R) = H(Φ, R)U(Φ, R)U−(Φ, R)) · · ·U±(Φ, R)

of the same length L.

Clearly, Theorem 2 immediately follows from Theorem 5.2 and the rank 1 case;

so, it only remains to prove Theorem 5.2.

Observation. If Y is a subset in E(Φ, R) and if X is a symmetric generating set

satisfying XY ⊆ Y , then clearly Y = G.

Therefore, to prove (a), we will prove XY ⊆ Y with X =
{
xα(ξ) | α ∈ ±Π, ξ ∈ R

}
and Y = (U(Φ, R)U−(Φ, R))L. The proof of (b) is similar with the same X and

Y = H(Φ, R)U(Φ, R)U−(Φ, R) · · ·U±(Φ, R).

Proof of Theorem 5.2. As we noted, the group G is generated by the funda-

mental root elements X =
{
xα(ξ) | α ∈ ±Π, ξ ∈ R

}
. Thus, to prove (a), it suffices

to prove that XY ⊆ Y where Y = (U(Φ, R)U−(Φ, R))L.

Fix a fundamental root unipotent xα(ξ). Since rk(Φ) ≥ 2, the root α belongs

to at least one of the subsystems ∆ = ∆r, where r = 1 or r = l, generated by all

fundamental roots, except for the first or the last one, respectively. Set Σ = Σr

and express U±(Φ, R) in the form

U(Φ, R) = U(∆, R)U(Σ, R), U−(Φ, R) = U−(∆, R)U−(Σ, R).
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We see that
Y = (U(∆, R)U−(∆, R))L(U(Σ, R)U−(Σ, R))L.

Since α ∈ ∆, one has xα(ξ) ∈ E(∆, R), so that the inclusion xα(ξ)Y ⊆ Y imme-

diately follows from the assumption. This completes the proof of theorem 5.2 (a).

The proof of (b) is entirely similar with

Y = H(Φ, R)U(Φ, R)U−(Φ, R) . . . U±(Φ, R).

Remarks. To prove theorems 1 and 2, in theorem 5 above, one needs the decom-

position of E(∆, R) only for subsystems ∆ whose union contains all the funda-

mental roots. These subsystems do not have to be terminal as in theorem 5.
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Abstract. This note gives a simple proof of a famous theorem of Burnside,

namely, all groups of order n are cyclic if and only if (n, φ(n)) = 1, where φ

denotes the Euler totient function.

1. Introduction

The question of determining the number of isomorphism classes of groups of

order n has long been of interest to mathematicians. One can ask a more basic

question: For what natural numbers n, is there only one isomorphism class of

groups of order n? Since we know that there exists a cyclic group of every order,

this question reduces to finding natural numbers n such that all groups of order n

are cyclic. The answer is given in the following well-known theorem by Burnside

[1]. Let φ denote the Euler function.

Theorem 1.1. All groups of order n are cyclic if and only if (n, φ(n)) = 1.

Many different proofs of this fact are available. Practically all of them are

inaccessible to the undergraduate student since they use Burnside’s transfer the-

orem and representation theory [2]. Here, we would like to give another proof of

this theorem which is elementary and uses only basic Sylow theory. Throughout

this note, n denotes a positive integer and Cn denotes the cyclic group of order n.

2. Groups of order pq

Let p and q be two distinct primes, p < q. In this section, we investigate the

structure of groups of order pq. The two cases to be considered are when p | q− 1

and p - q − 1.

First, let us suppose that p - q − 1. In this case, every group of order pq is

cyclic. Indeed, let G be a group of order pq. Let np be the number of p-Sylow

subgroups and nq be the number of q-Sylow subgroups of G. Then by Sylow’s

theorem
nq ≡ 1 mod q and nq | p.

Since p < q, nq = 1, the q-Sylow subgroup, say Q, is normal in G. Again by

Sylow’s theorem

2010 Mathematics Subject Classification : 20D60, 20E99.

Key words and phrases : Groups of a given order, cyclic groups, Sylow’s theorems.
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np ≡ 1 mod p and np | q.
Since q is prime, either np = 1 or np = q. But p - q − 1. Hence, np = 1. Thus,

the p-Sylow subgroup, say P , is also normal in G. Further, since the order of non-

identity elements of P and Q are co-prime, P ∩Q = {e}. Now, if a ∈ P and b ∈ Q
then consider the element c := aba−1b−1 ∈ G. The normality of Q implies that

aba−1 ∈ Q and hence, c ∈ Q. On the other hand, the normality of P implies that

ba−1b−1 ∈ P and hence, c ∈ P . Thus, c ∈ P ∩Q = {e}. Therefore, the elements

of P and Q commute with each other. This gives us a group homomorphism

Ψ : P ×Q→ G

such that Ψ(a, b) = ab. Since, P ∩Q = {e}, Ψ is injective. |P ×Q| = |G| implies

that Ψ is also surjective and hence, an isomorphism. As P and Q are cyclic groups

of distinct prime order, P × Q is cyclic and so is G. Therefore, if p - q − 1, then

all groups of order pq are cyclic.

Now, suppose p | q − 1. We claim that in this case, there exists a group of

order pq which is not cyclic.

Note that since p | q− 1, there exists an element in Aut(Z/qZ) of order p, say

αp. To see this, note that

Aut(Z/qZ) ' (Z/qZ)
∗ ' Cq−1,

and a cyclic group of order n contains an element of order d, for every divisor d of

n. Thus, we get a group homomorphism, say θ, from Cp to Aut(Z/qZ) by sending

a generator of Cp to αp. Denote θ(u) by θu. Clearly, θ is a non-trivial map. We

define the semi-direct product, Cp nθ Cq as follows.

As a set, Cp nθ Cq := {(u, v) : u ∈ Cp and v ∈ Cq} . The group operation on

this set is defined as
(u, v).(u′, v′) = (uu′, θu(v)v′). (1)

One can check that this operation is indeed associative and makes Cpnθ Cq into a

group. To see that this group is non-abelian, consider (u, v) and (u′, v′) in CpnθCq.
Thus

(u′, v′).(u, v) = (u′u, θu′(v′)v),

which is not equal to (u, v).(u′, v′) as evaluated in (1) since θ is non-trivial. Thus,

if p | q − 1, then there exists a group of order pq which is not abelian, and hence

in particular not cyclic.

Remark. It may be observed that given any group G of order pq, one can show

that it is either cyclic or isomorphic to the semi-direct product constructed above.

Thus, if p | q− 1, there are exactly two isomorphism classes of groups of order pq.

3. Proof of the only if part

Suppose all groups of order n are cyclic, i.e, there is only one isomorphism

class of groups of order n. Since Z/p2Z and Z/pZ × Z/pZ are 2 non-isomorphic

groups of order p2, we see that n is squarefree.
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Proof. Let us note that if n =
∏k
i=1 pi where, p1, . . . , pk are distinct primes and

p1 < · · · < pk, then (n, φ(n)) = 1 ⇐⇒ pi - (pj − 1), for all 1 ≤ i < j ≤ k.

Now, suppose n is squarefree and (n, φ(n)) > 1, i.e, there exists a pi such that

pi | (pj − 1) for some 1 ≤ i < j ≤ k. As seen in the earlier section, there exists a

group, G of order pipj that is not cyclic. Thus, G × Cn/pipj is a group of order n

and is not cyclic. This contradicts our assumption that all groups of order n are

cyclic. Hence, n and φ(n) must be coprime. �

4. Proof of the if part

The condition that (n, φ(n)) = 1 helps us to infer that it is enough to consider

only those n that are squarefree.

Our proof hinges upon the following crucial lemma.

Lemma 4.1. Let G be a finite group such that every proper subgroup of G is

abelian. Then either G has prime order, or G has a non-trivial, proper, normal

subgroup i.e, G is not simple.

Proof. Let G be a group of order n. By a maximal subgroup of G, we will mean

a nontrivial proper subgroup H of G such that, for any subgroup H ′ of G that

contains H, either H ′ = G or H ′ = H itself.

Let M denote a maximal subgroup of G. Let |M | = m. Suppose M = {e},i.e,

G contains no nontrivial proper subgroup. Sylow’s first theorem thus implies that

the order of G must be prime.

Suppose n is not prime. Hence, m ≥ 2. Let NG(M) denote the normalizer of

M in G. Recall that
NG(M) = {g ∈ G : gMg−1 = M}.

If M is normal in G, then clearly G is not simple. Therefore, let us suppose that

M is not normal. Hence, NG(M) 6= G. Since M ⊆ NG(M) and M is maximal,

NG(M) = M . Let the number of conjugates of M in G be r, r > 1. The number

of conjugates of a subgroup in a group is equal to the index of its normalizer.

Therefore

r = [G : NG(M)] = [G : M ] =
n

m
.

Let {M1, · · · ,Mr} be the set of distinct conjugates of M . Suppose Mi∩Mj 6= {e}
for some 1 ≤ i < j ≤ r. Let K1 := Mi ∩Mj . Since Mi and Mj are abelian by

hypothesis we have
K1 / Mi ,K1 / Mj . (2)

Therefore K1 is normal in the group generated by Mi and Mj . Since conjugates

of maximal subgroups are themselves maximal, the group generated by Mi and

Mj is G. Thus, K1 is normal in G and hence G is not simple.

Therefore, we suppose that all the conjugates of M intersect trivially. Let

V := ∪ri=1Mi. Then

|V | = r(m− 1) + 1 = n−
[ n
m
− 1
]
< n.
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Thus, ∃ y ∈ G, y /∈ V .

If G is a cyclic group generated by y (of composite order), then the subgroup

of G generated by yk for any k|n, k 6= 1, n is a non-trivial normal subgroup. So

we can assume that the group generated by y is a proper subgroup of G. Let

L be a maximal subgroup containing the subgroup of G generated by y. Since,

y /∈ V,L 6= Mi ∀ 1 ≤ i ≤ r. If L is normal in G, then G is clearly not simple.

Therefore, suppose that L is not normal in G.

Let the number of conjugates of L in G be s, s > 1. Let {L1, · · · , Ls} be

the set of distinct conjugates of L in G. If any two distinct conjugates of L or a

conjugate of L and a conjugate of M intersect non-trivially, then the corresponding

intersection is a normal subgroup of G by an argument similar to the one given

above. Thus, G is not simple. Hence, it suffices to assume that

Mi ∩Mj = {e}, (3)

Mi ∩ Lq = {e}, (4)

Lp ∩ Lq = {e}, (5)

for all 1 ≤ i < j ≤ r, for all 1 ≤ p < q ≤ s.
Let |L| = l, l ≥ 2. Since L is not normal in G but is maximal, NG(L) = L.

Thus, the number of conjugates of L in G is

s = [G : NG(L)] = [G : L] =
n

l
.

Let W := ∪sp=1Lp. By (3), (4) and (5),

|V ∪W | = r(m− 1) + s(l − 1) + 1 = n− n

m
+ n− n

l
+ 1

= 2n− n(
1

m
+

1

l
) + 1 ≥ 2n− n+ 1 > n,

since m, l ≥ 2. But V ∪W ⊆ G. Therefore, |V ∪W | ≤ n. This is a contradiction.

Hence, G must have a nontrivial proper normal subgroup. �

We will now prove that if (n, φ(n)) = 1, then all groups of order n are cyclic.

As seen earlier, we are reduced to the case when n is squarefree.

Proof. We will proceed by induction on the number of prime factors of n. For the

base case, assume that n is prime. Lagrange’s theorem implies that any group of

prime order is cyclic. Thus, the base case of our induction is true.

Now suppose that the result holds for all n with at most k − 1 distinct prime

factors, for some k > 1. Let n = p1 · · · pk for distinct primes p1, · · · , pk and

p1 < p2 < ... < pk. Since k ≥ 2, Sylow’s first theorem implies that G has

nontrivial proper subgroups. Let P be a proper subgroup of G. Hence, |P | has

fewer prime factors than k. Therefore, by induction hypothesis, P is cyclic and

hence abelian. Thus, every proper subgroup of G is abelian. By Lemma 4.1, G

has a nontrivial proper normal subgroup, say N . The induction hypothesis implies
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that G/N is cyclic. Therefore, G/N has a subgroup of index pi for some 1 ≤ i ≤ k.

Let this subgroup be denoted by H. By the correspondence theorem of groups, all

subgroups of G/N correspond to subgroups of G containing N . Let the subgroup

of G corresponding to H via the above correspondence be H, i.e, H = H/N . Since

G/N is abelian, H /G/N and hence, H /G. By the third isomorphism theorem of

groups

G/N

/
H/N ' G/H.

Since, [G/N : H] = pi, [G : H] = pi. Thus, G has a normal subgroup of index pi,

namely, H. Note that H is cyclic. In particular

H ' Ca, (6)

where a = p1 · · · pi−1pi+1 · · · pk. Let K be a pi- Sylow subgroup of G. Thus

K ' Cpi . (7)

Consider the map Φ : K → Aut(H) that sends an element k ∈ K to the auto-

morphism γk where, γk is conjugation by k. Since H / G, γk is a well-defined

map from H to H. Therefore, Φ is a well-defined group homomorphism. Since,

ker(Φ) is a subgroup of K and K has prime order, either ker(Φ) = {e} or

ker(Φ) = K. Suppose, ker(Φ) = {e}. Then, Φ(K) is isomorphic to a subgroup

of Aut(H). By the induction hypothesis, H is isomorphic to the cyclic group of

order |H| = p1 · · · pi−1pi+1 · · · pk. It follows that

H '
k∏

j=1,j 6=i

Z/pjZ.

Since Aut(Z/pZ) ' (Z/pZ)∗ for any prime p, therefore

Aut(H) '
k∏

j=1,j 6=i

(Z/pjZ)∗.

Hence |Aut(H)| =
∏k
j=1,j 6=i(pj−1). Therefore, by Lagrange’s theorem, |K| divides

|Aut(H)| , i.e,

pi

∣∣∣∣ k∏
j=1,j 6=i

(pj − 1).

Since (n, φ(n)) = 1, we see that pi - (pj − 1) for any 1 ≤ i, j ≤ k. We thus arrive

at a contradiction. Hence, ker(Φ) = K. Let k ∈ ker(Φ) i.e, γk is the identity

homomorphism. Since ker(Φ) = K, kh = hk for all h ∈ H and for all k ∈ K. We

now claim that G ' H×K. To prove this claim, consider the map Ψ : H×K → G

sending a tuple (h, k) to the product hk. Since the elements of H and K commute

with each other, Ψ is a group homomorphism. H has no element of order pi.

Thus, H ∩ K = {e}. This implies that Ψ is injective and hence surjective as

|H ×K| = |G|. Thus Ψ is the desired isomorphism. By (6) and (7) G ' Cn. It

follows that every group of order n is cyclic. �
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RATIONAL ANGLED HYPERBOLIC POLYGONS

JACK S. CALCUT

(Received : 16 - 09 - 2015 ; Revised : 18 - 12 - 2015)

Abstract. We prove that every rational angled hyperbolic triangle has tran-

scendental side lengths and that every rational angled hyperbolic quadrilat-

eral has at least one transcendental side length. Thus, there does not ex-

ist a rational angled hyperbolic triangle or quadrilateral with algebraic side

lengths. We conjecture that there does not exist a rational angled hyperbolic

polygon with algebraic side lengths.

1. Introduction

Herein, an angle is rational provided its radian measure θ is a rational mul-

tiple of π, written θ ∈ Qπ. Rational angles may also be characterized as angles

having rational degree measure and as angles commensurable with a straight an-

gle. Algebraic means algebraic over Q. Let A ⊂ C denote the subfield of algebraic

numbers. If θ ∈ Qπ, then cos θ ∈ A and sin θ ∈ A.

In Euclidean geometry, there exists a rich collection of rational angled polygons

with algebraic side lengths. Besides equilateral triangles, one has the triangles in

the Ailles rectangle [Ail71] and in the golden triangle (see Figure 1). Further, let

2

2

36º

36º

36º

1

60º

Figure 1. Ailles rectangle and the golden triangle.
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σ(d) denote the number of similarity types of rational angled Euclidean triangles

containing a representative with side lengths each of degree at most d over Q.

Then

(1) σ(d) <∞ for each d ∈ Z+. A proof of this fact uses three ingredients: (i)

the Euclidean law of cosines, (ii) if ϕ is Euler’s totient function, n > 2, and

k is coprime to n, then the degree over Q of cos(2kπ/n) equals ϕ(n)/2,

and (iii) ϕ(n) ≥
√
n/2 for each n ∈ Z+ (see [Cal10]).

(2) σ(1) = 1. This class is represented by an equilateral triangle (see [CG06,

pp. 228–229] or [Cal10, p. 674]). While Pythagorean triple triangles have

integer side lengths, they have irrational acute angles; a simple approach

to this result uses unique factorization of Gaussian integers [Cal09]. In

fact, the measures of the acute angles in a Pythagorean triple triangle are

transcendental in radians and degrees [Cal10].

(3) σ(2) = 14. Parnami, Agrawal, and Rajwade [PAR82] proved this result

using Galois theory. The 14 similarity types are listed in Table 1. It is an

exercise to construct representatives for these 14 classes using the triangles

above in Figure 1.

60–60–60 45–45–90 30–60–90 15–75–90

30–30–120 30–75–75 15–15–150 30–45–105

45–60–75 15–45–120 15–60–105 15–30–135

36–36–108 36–72–72

Table 1. The 14 similarity types (in degrees) of rational angled

Euclidean triangles with side lengths each of degree at most two

over Q.

A polar rational polygon is a convex rational angled Euclidean polygon with inte-

gral length sides. The study of such polygons was initiated by Schoenberg [Sco64]

and Mann [Man65] and continues with the recent work of Lam and Leung [LL00].

In sharp contrast, there seem to be no well-known rational angled hyperbolic

polygons with algebraic side lengths. Throughout, H2 denotes the hyperbolic

plane of constant Gaussian curvature K = −1. We adopt Poincaré’s conformal

disk model of H2 for our figures.

Below, we prove that every rational angled hyperbolic triangle has transcen-

dental side lengths and every rational angled hyperbolic quadrilateral (simple, but

not necessarily convex) has at least one transcendental side length. Our basic

tactic is to obtain relations using hyperbolic trigonometry to which we may apply

the following theorem of Hermite and Lindemann.
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Theorem 1.1 (Hermite-Lindemann [Niv56, p. 117]). If α1, α2, . . . , αn ∈ A are

pairwise distinct, then eα1 , eα2 , . . . , eαn are linearly independent over A.

We conjecture that there does not exist a rational angled hyperbolic polygon

with algebraic side lengths. We ask whether a rational angled hyperbolic polygon

can have any algebraic side lengths whatsoever.

Throughout, polygons are assumed to be simple, nondegenerate (meaning con-

secutive triples of vertices are noncollinear), and not necessarily convex. In partic-

ular, each internal angle of a polygon has radian measure in (0, π) ∪ (π, 2π). Our

closing section discusses generalized hyperbolic triangles with one ideal vertex,

spherical triangles, and the dependency of our results on Gaussian curvature.

2. Hyperbolic Triangles

Consider a triangle ABC ⊂ H2 as in Figure 2. Recall the following hyperbolic

A

a

B

C

c

b

γ

β

α

Figure 2. Hyperbolic triangle ABC.

trigonometric identities (see Ratcliffe [Rat06, p. 82]) known respectively as the hy-

perbolic law of sines, the first hyperbolic law of cosines, and the second hyperbolic

law of cosines
sinh a

sinα
=

sinh b

sinβ
=

sinh c

sin γ
, (HLOS)

cos γ =
cosh a cosh b− cosh c

sinh a sinh b
, and (HLOC1)

cosh c =
cosα cosβ + cos γ

sinα sinβ
. (HLOC2)

Lemma 2.1. Let ABC ⊂ H2 be a rational angled triangle labelled as in Figure 2.

Then, every side length of ABC is transcendental.

Proof. Define x := cosh c > 0. Then

xe0 =
1

2
ec +

1

2
e−c. (2.1)

As α, β, γ ∈ Qπ and A is a field, HLOC2 implies that x ∈ A. As c > 0, the

Hermite-Lindemann theorem applied to (2.1) implies that c 6∈ A. The proofs for

a and b are similar. �

Corollary 2.2. Each regular rational angled hyperbolic polygon has transcendental

side length, radius, and apothem.
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Proof. Consider the case of a quadrilateral ABCD ⊂ H2. By an isometry of H2,

we may assume ABCD appears as in Figure 3 where E is the origin and F is the

midpoint of segment AB. Triangle AEF has radian angle measures θ/2, π/4, and

A

B

C

c

θ

c

c c

θ

D

E

θ

F

2

c 2

r

a

Figure 3. Regular hyperbolic quadrilateral ABCD.

π/2. Lemma 2.1 implies that c/2, r, and a are transcendental. The cases n 6= 4

are proved similarly. �

We will use the following lemma in the next section on quadrilaterals.

Lemma 2.3. There does not exist a triangle ABC ⊂ H2, labelled as in Figure 2,

such that γ ∈ Qπ, α+ β ∈ Qπ, and a, b ∈ A.

Proof. Suppose, by way of contradiction, that such a triangle exists. Define

x := cos (α+ β) ∈ (−1, 1) ∩ A,

y := sin γ ∈ (0, 1] ∩ A, (2.2)

z := cos γ ∈ (−1, 1) ∩ A, and

Z := cosh c > 0.

Then HLOC1 and HLOS yield

x = cos (α+ β) = cosα cosβ − sinα sinβ

=
Z cosh b− cosh a

sinh b sinh c
· Z cosh a− cosh b

sinh a sinh c
− y2 sinh a sinh b

sinh2 c
.

As sinh2 c = Z2 − 1, we obtain

x
(
Z2 − 1

)
sinh a sinh b

= (Z cosh b− cosh a) (Z cosh a− cosh b)− y2 sinh2 a sinh2 b. (2.3)

By HLOC1

Z = cosh a cosh b− z sinh a sinh b. (2.4)

Make the substitution (2.4) in (2.3) and then, for t = a and t = b, expand

hyperbolics into exponentials using the standard identities

cosh t =
1

2
et +

1

2
e−t and sinh t =

1

2
et − 1

2
e−t.
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Expand out the resulting equation by multiplication, multiply through by 64, and

then subtract the right hand terms to the left side. Now, collect together terms

whose exponentials have identical exponents as elements of Z [a, b]. One obtains

(x− 1) (z − 1)
2
e3a+3b + (sum of lower order terms) = 0. (2.5)

Equation (2.5) is our relation. Its left hand side, denoted by R, is the sum of 25

terms each of the form pema+nb for some p ∈ Z [x, y, z] and some integers m and

n in [−3, 3]. By definition, lower order terms of R have m < 3 or n < 3 (or both).

As a > 0 and b > 0, the Hermite-Lindemann theorem applied to (2.5) implies that

x = 1 or z = 1. This contradicts (2.2) and completes the proof of Lemma 2.3. �

3. Hyperbolic Quadrilaterals

Consider a quadrilateral ABCD ⊂ H2. Whether or not ABCD is convex, at

least one diagonal AC or BD of ABCD lies inside ABCD (this holds in neutral

geometry). Relabelling the vertices of ABCD if necessary, we assume BD lies

inside ABCD and that ABCD is labelled as in Figure 4. The radian measures

A

B

Cc

α
D

d

e ba

β1 β2

δ1 δ2
γ

Figure 4. Quadrilateral ABCD ⊂ H2 with internal diagonal BD.

of the internal angles of ABCD at B and D are β = β1 + β2 and δ = δ1 + δ2

respectively.

Theorem 3.1. If quadrilateral ABCD is rational angled, then at least one of its

side lengths a, b, c, or d is transcendental.

Proof. We have α, β, γ, δ ∈ Qπ. Suppose, by way of contradiction, that a, b, c, d ∈ A.

Define

w := cosβ ∈ (−1, 1) ∩ A,

x := cos δ ∈ (−1, 1) ∩ A,

y := sinα ∈ [−1, 1] ∩ A− {0} , (3.1)

z := sin γ ∈ [−1, 1] ∩ A− {0} , and

E := cosh e > 0.

Then HLOC1 and HLOS yield

w = cosβ = cos (β1 + β2) = cosβ1 cosβ2 − sinβ1 sinβ2

=
E cosh a− cosh d

sinh a sinh e
· E cosh b− cosh c

sinh b sinh e
− sinh d

sinh e
sinα

sinh c

sinh e
sin γ.
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As sinh2 e = E2 − 1, we obtain

w
(
E2 − 1

)
sinh a sinh b

= (E cosh a− cosh d) (E cosh b− cosh c)− yz sinh a sinh b sinh c sinh d. (3.2)

The analogous calculation beginning with x = cos δ = cos (δ1 + δ2) yields

x
(
E2 − 1

)
sinh c sinh d

= (E cosh d− cosh a) (E cosh c− cosh b)− yz sinh a sinh b sinh c sinh d. (3.3)

In each of the equations (3.2) and (3.3), move all terms to the right hand side and

re-group to obtain two quadratic formulas in E given by

0 = A1E
2 +B1E + C1 and

0 = A2E
2 +B2E + C2.

Inspection shows that B1 = B2. Define B := B1 = B2. We claim that A1 6= 0

and A2 6= 0. Suppose, by way of contradiction, that A1 = 0. Expanding the

hyperbolics in A1 into exponentials and collecting terms by the exponents of their

exponentials yields

−1

4
(w − 1) ea+b + (sum of lower order terms) = 0.

The Hermite-Lindemann theorem implies w = 1 which contradicts (3.1). Hence

A1 6= 0, and similarly A2 6= 0.

The quadratic formula yields

0 < E =
−B ±

√
B2 − 4A1C1

2A1
=
−B ±

√
B2 − 4A2C2

2A2
,

where the ± signs are ambiguous and not necessarily equal. We have

−A2B ±A2

√
B2 − 4A1C1 = −A1B ±A1

√
B2 − 4A2C2,

and hence
A1B −A2B ±A2

√
B2 − 4A1C1 = ±A1

√
B2 − 4A2C2.

Squaring both sides yields

(A1B −A2B)
2

+A2
2

(
B2 − 4A1C1

)
± 2 (A1B −A2B)A2

√
B2 − 4A1C1

= A2
1

(
B2 − 4A2C2

)
.

Therefore

(A1B −A2B)
2

+A2
2

(
B2 − 4A1C1

)
−A2

1

(
B2 − 4A2C2

)
= ∓2 (A1B −A2B)A2

√
B2 − 4A1C1.

Again squaring both sides yields[
(A1B −A2B)

2
+A2

2

(
B2 − 4A1C1

)
−A2

1

(
B2 − 4A2C2

)]2
= 4 (A1B −A2B)

2
A2

2

(
B2 − 4A1C1

)
. (3.4)

Subtract the right hand side of (3.4) to the left side, expand out by multiplication,

and cancel the common factor 16A2
1A

2
2 6= 0 to obtain
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A2
1C

2
2 +A2

2C
2
1−2A1A2C1C2+A1B

2C1+A2B
2C2−A1B

2C2−A2B
2C1 = 0. (3.5)

At this point, use of a computer algebra system is recommended; we used MAGMA

for our computations and Mathematica for independent verification. In (3.5),

expand hyperbolics into exponentials and then expand out by multiplication.

Multiply through the resulting equation by 4096 and then collect together terms

whose exponentials have identical exponents as elements of Z [a, b, c, d]. This yields

(w − 1)
2
y2z2e(4a+4b+2c+2d) + (x− 1)

2
y2z2e(2a+2b+4c+4d)

+ 2 (w − 1) (1− x) y2z2e(3a+3b+3c+3d) + (sum of lower order terms) = 0. (3.6)

Equation (3.6) is our relation. Its left hand side, denoted by R, is the sum of

1041 terms each of the form peka+lb+mc+nd for some p ∈ Z [w, x, y, z] and some

integers k, l, m, and n in [−4, 4]. Here, a lower order term is defined to be one

whose exponential exponent ka+ lb+mc+ nd is dominated by 4a+ 4b+ 2c+ 2d,

2a+ 2b+ 4c+ 4d, or 3a+ 3b+ 3c+ 3d. This means, by definition, that either

(1) k ≤ 4, l ≤ 4, m ≤ 2, n ≤ 2, and at least one of these inequalities is strict,

(2) k ≤ 2, l ≤ 2, m ≤ 4, n ≤ 4, and at least one of these inequalities is strict,

or

(3) k ≤ 3, l ≤ 3, m ≤ 3, n ≤ 3, and at least one of these inequalities is strict.

There are now two cases to consider.

Case 1. One of the sums 4a+4b+2c+2d, 2a+2b+4c+4d and 3a+3b+3c+3d is

greater than the other two. Then, the Hermite-Lindemann theorem implies that

the corresponding polynomial coefficient in equation (3.6) must vanish, that is

(w − 1)
2
y2z2 = 0, (x− 1)

2
y2z2 = 0, or 2 (w − 1) (1− x) y2z2 = 0.

By equations (3.1), we have w 6= 1, x 6= 1, y 6= 0, and z 6= 0. This contradiction

completes the proof of Case 1.

Case 2. Two of the sums 4a+4b+2c+2d, 2a+2b+4c+4d, and 3a+3b+3c+3d are

equal. Then, a+ b = c+ d. Recalling Figure 4, a+ b = c+ d and two applications

of the triangle inequality imply that D cannot lie inside triangle ABC. Similarly,

B cannot lie inside triangle ADC. This implies that diagonal AC lies inside

quadrilateral ABCD. Now, repeat the entire argument of the proof of Theorem 3.1

using diagonal AC in place of diagonal BD. We either obtain a contradiction as

in Case 1 or we further obtain a + d = b + c. Taken together, a + b = c + d and

a+d = b+c imply that a = c and b = d. So, opposite sides of quadrilateral ABCD

are congruent. By SSS, triangles ABD and CDB are congruent. In particular,

δ1 = β2. So, β1 + δ1 = β ∈ Qπ and triangle ABD contradicts Lemma 2.3. This

completes the proof of Case 2 and of Theorem 3.1. �

4. Concluding Remarks

The results above have analogues for generalized hyperbolic triangles with one

ideal vertex and for spherical triangles.
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Lemma 4.1. Let ABC be a generalized hyperbolic triangle with one ideal vertex

C as in Figure 5. If α, β ∈ Qπ, then the finite side length c is transcendental.

A

B

C
c

β

α

0

Figure 5. Generalized hyperbolic triangle ABC with one ideal

vertex C.

Proof. By Ratcliffe [Rat06, p. 88], we have

cosh c =
1 + cosα cosβ

sinα sinβ
.

Thus

(sinα sinβ) ec + (sinα sinβ) e−c = 2 (1 + cosα cosβ) e0. (4.1)

As c > 0, the Hermite-Lindemann theorem applied to (4.1) implies c /∈ A. �

Let S2 ⊂ R3 denote the unit sphere of constant Gaussian curvature K = +1.

Lemma 4.2. Let ABC ⊂ S2 be a rational angled triangle labelled as in Figure 6.

Then, every side length of ABC is transcendental.

A

a

B

C
c

b

γ

β

α

Figure 6. Spherical triangle ABC.

Proof. The second spherical law of cosines (see Ratcliffe [Rat06, p. 49]) gives

(sinα sinβ) eic + (sinα sinβ) e−ic = 2 (cosα cosβ + cos γ) e0, (4.2)

where c > 0 and sinα sinβ ∈ A − {0}. Whether or not the algebraic num-

ber cosα cosβ + cos γ vanishes, the Hermite-Lindemann theorem applied to (4.2)

implies c /∈ A. The proofs for a and b are similar. �

On the other hand, the results in this note do not hold for arbitrary constant

curvature. In a plane of constant Gaussian curvature

K = −
(

cosh−1
(

1 +
√

2
))2
≈ −2.3365 . . . ,
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a regular triangle with angles of radian measure π/4 has unit side lengths.

Similarly, in a sphere of constant Gaussian curvature

K =
π2

4
≈ 2.4674 . . . ,

a regular right angled triangle has unit side lengths.
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Abstract. Besides giving a way to produce an infinite number of metrics

for Furstenberg topology on integers the article rather focuses on a new proof

of its metrizability using geometric series.

1. Introduction

Gone are the days when topology was confined to be a branch of pure mathe-

matics. No area of science now escapes from its gravity. For instance, topology is

used to understand important concepts of genotype and phenotype in evolutionary

biology. Moreover seemingly distant branches of mathematics, number theory and

topology have some elegant connections. In this direction, H. Furstenberg in 1955

discovered a strange topology on integers via arithmetic progression and found a

beautiful topological proof of infinitude of primes [2]. This article moves a step

further and proves metrizability of this topology.

Section 2 introduces Furstenberg topology on integers and contains some useful

properties of arithmetic progression. Using convergence of geometric series, a

metric on integers is defined in section 3. Last section deals with metrizability of

integers with respect to Furstenberg topology.

2. Notations and Preliminaries

The set of all integers is denoted by Z. We let Z∗ = Z \ {0}. For m ∈ Z and

n ∈ Z∗, an arithmetic progression is defined by the set

Am,n = {m+ kn | k ∈ Z}.
We denote the collection of all arithmetic progression by A. The topology gener-

ated by A is the Furstenberg topology on Z also known as arithmetic progression

topology (cf.[1, page 54]). We interchangeably use these terms and let it be de-

noted by τA.

One can easily observe the following useful facts on Z.

Remarks 2.1 (1). Am,n = Am,−n = Ar,n for any r ∈ Am,n.

(2). Z\Am,n =
⋃i=n−1

i=1 Am+i,n. Hence an arithmetic progression

is open as well as closed set in τA.

2010 Mathematics Subject Classification : Primary 54-021; Secondary 11B25

Key words and phrases : Arithmetic Progression, Metrizability, Geometric Series

c© Indian Mathematical Society, 2016 .
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3. metric on integers

A metric on any non-empty set X is a non-negative real-valued function de-

fined on X×X taking all its diagonal elements to zero, positive on the complement

of diagonal and satisfying symmetric and triangular inequality axioms.

We define an arithmetic function f on Z using the convergence of geometric

series for any fixed real p > 1 by

f(x) =
∑

k∈N, k-x

1

pk
, x ∈ Z∗ and f(0) = 0. (*)

The following theorem contains some useful facts about the above arithmetic

function.

Theorem 3.1. The function f(x) defined in (*) satisfies following properties

(a) f(x) ≥ 0 for all x ∈ Z.
(b) f(x) = f(−x) for all x ∈ Z.
(c) f(kx) ≤ f(x) for any k ∈ Z.
(d) f(x+ y) ≤ f(x) + f(y) for all x, y ∈ Z.

Proof. (a) follows from the definition of f(x). Divisibility over Z yields (b). (c)

follows from the fact that divisors of x are also the divisors of kx. For (d), if either

x = 0 or y = 0, the equality holds. So we assume that x 6= 0 and y 6= 0 and

observe that

f(x) =
∑
k-x

1

pk
=
∞∑
k=1

1

pk
−

∑
k| x

1

pk

⇒ f(x) =
1

p− 1
−

∑
k|x, k-y

1

pk
−

∑
k|x, k|y

1

pk
.

Similarly

f(y) =
1

p− 1
−

∑
k|y, k-x

1

pk
−

∑
k|x, k|y

1

pk
and

f(x+ y) =
1

p− 1
−

∑
k|x+y

k-x & k-y

1

pk
−

∑
k|x, k|y

1

pk
.

Therefore we have

f(x) + f(y)− f(x+ y)

=
1

p− 1
+

∑
k|x+y

k-x & k-y

1

pk
−

∑
k|x, k-y

1

pk
−

∑
k|y, k-x

1

pk
−

∑
k|x, k|y

1

pk

>
∑

k|x+y

k-x & k-y

1

pk

which proves (d). �
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We now define another function d induced by f on Z by

d(m,n) = f(m− n) =
∑
k∈N

k-(m−n)

1

pk
. (**)

The next theorem asserts that d actually defines a distance function on Z.

Theorem 3.2. For m,n ∈ Z, the function d(m,n) defines a metric on Z.

Proof. In view of theorem 3.1, all conditions for d to be a metric holds trivially.

For instance, triangular inequality follows from (d). In fact, for any m, l, n ∈ Z
d(m,n) = f(m− n) = f(m− l + l − n) 6 f(m− l) + f(l − n) = d(m, l) + d(l, n).

�
4. metrizability of Furstenberg topology

Metrizable spaces have additional structure that can be very useful. For in-

stance, metrizable spaces are Hausdorff so any convergent sequence has a unique

limit. Related to metrizability of a topological space, there are two important

problems: (1) For a given topological space, construct a metric that induces the

topology on the set, (2) Discover a criterion for metrizability of the topological

space without specifically finding a metric on it as in the case of Urysohn’s metriz-

able lemma.

Metrizability of Furstenberg topology on Z is already known to us. Readers

are encouraged to see [1] and [3]. We prove this by using the metric d(m,n) on Z
as defined in the previous section.

Theorem 4.1. The metric d(m,n), m,n ∈ Z, induces Furstenberg topology τA.

Proof. Let the topology induced by metric d be denoted by τd. In the light of

Remark 2.1, for the inclusion τA ⊆ τd, it suffices to prove that for a given arithmetic

progression Am,n there exists some r > 0 such that the open ball B(m, r) centered

at m with radius r is contained in Am,n. For this we choose r < 1
pn . Then for any

t ∈ B(m, r) we have

d(t,m) =
∑
k∈N

k-(m−t)

1

pk
< r <

1

pn

⇒ n | (m− t) (in fact n! | (m− t))

⇒ t = m+ kn, for some k ∈ Z.

This implies that B(m, r) ⊆ Am,n. For proving the reverse inclusion τd ⊆ τA,

consider an open ball B(m, r) and choose n ∈ Z∗ such that f(n) < r. Such n

indeed exists; in fact, think of sufficiently large k ∈ N such that

1

pk(p− 1)
< r,

and put n = k!. Then

f(n) =
∑

i∈N, i-n

1

pi
6

∞∑
i=k+1

1

pi
=

1

pk(p− 1)
< r.
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Let us now take any t = m + kn ∈ Am,n. By using part (c) of Theorem 3.1, we

have

d(t,m) = f(t−m) = f(kn) 6 f(n) < r.

Thus we get Am,n ⊆ B(m, r) and the proof is completed. �
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Abstract. This paper contains a survey of interesting infinite products of

rational functions based on Euler’s Gamma function and infinite product

expansions for sinx and cosx. Though the index in many products ranges,

as usual, over the positive integers, we also treat products where the index

ranges over the prime numbers. Historical information concerning the original

sources for the gamma function and infinite products is also given.

1. Gamma function and products

The first noteworthy infinite product was discovered by the French mathe-

matician François Viète (1540–1603) in 1593 (Opera, Leyden 1646, p. 400)
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The English mathematician John Wallis (1616–1703) gave a neat product for
4
π (denoted by �) in Prop. 191 (page 179) of his Arithmetica infinitorum (1656)

wherein he aimed at finding a general method of quadrature for curved surfaces and

interpolated means in the sequence 1, 6, 30, 140, 630, · · · (defined by the recursion

tn+1 = 4n+2
n × tn, t1 = 1)

� =
3× 3× 5× 5× 7× 7× etc.
2× 4× 4× 6× 6× 8× etc.

(2)

Leonhard Euler (1707–1783), the versatile Swiss mathematician, did pioneer-

ing work on infinite series and products which began when he was 22. An arith-

metical function representing the product of the first n natural numbers was

known from earlier times though the notation n! was introduced later by a French

mathematician Christian Kramp (1760–1826) in his Eléments d’arithmétique uni-

verselle (1808) while the term ‘factorial’ was coined by his fellow-countryman Louis

François Antoine Arbogast (1759–1803).

Christian Goldbach (1690-1764), who was Euler’s colleague at the St. Peters-

burg Academy but had moved to Moscow soon after Euler’s arrival in 1727, and

Daniel Bernoulli (1700–1784), with whom Euler stayed then in St. Petersburg,
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118 AMRIK SINGH NIMBRAN

having failed to solve the problem of interpolating between the factorials, sug-

gested it to Euler who announced his solution to Goldbach in two letters and soon

detailed his ideas in [4].

The first letter dated October 13, 1729 contained the expression

1 · 2m

1 +m

21−m · 3m

2 +m

31−m · 4m

3 +m

41−m · 5m

4 +m
· · · .

Setting m = 1
2 , Euler obtained Γ(3

2 ) =
√
π

2 and deduced Wallis’ product.

In his letter of January 8, 1730 and in [4], Euler took up the series
∑
n! and found

the general term for the factorial to be
∫

(− lnx)n dx. Thus, the terms of the series

transform into a definite integral

∫ 1

0

(
ln

1

x

)n
dx, which on substituting x = e−t,

converts into
∫∞

0
tn e−t dt, the definite integral given later in Art.11 of his paper

[8]. Extended to z ∈ C, it becomes

Γ(z) =

∫ ∞
0

tz−1 e−t dt, R(z) > 0. (3)

One may note that the notation Γ(a) was introduced by the French mathematician

Adrien-Marie Legendre (1752–1833) who defined it [14, p.477, sec.53](1809) as

Γ(a) =

∫
dx

(
log

1

x

)a−1

.

In §10 of [8], Euler recorded an infinite product representation

y = 1 · 2 · 3 · · ·x =

√
2π(x+ n)∏n
k=1(x+ k)

(
x+ n

e

)x+n

es, (4)

where s =

∞∑
m=1

(−1)m−1 c2m(2m− 2)!

22m−1(x+ n)2m−1
and c2m being the coefficient of π2m

occurring in Euler’s zeta function ζ(2m).

In §12, Euler noted two more product representations (including one recorded

in his first letter to Goldbach)

y =
∞∏
n=1

n

n+ x

(
n+ 1

n

)x
(5)

=

(
1 + x

2

)x ∞∏
n=1

n

n+ x

(
2n+ 1 + x

2n− 1 + x

)x
. (6)

In §8 of [4], Euler actually started with another integral
∫
xe dx (1− x)n which he

evaluated by expanding (1− x)n through the Binomial Theorem∫ 1

0

xe(1− x)n dx =
1 · 2 · · ·n

(e+ 1)(e+ 2) · · · (e+ n+ 1)
.

His objective now was to isolate 1 · 2 · · ·n from the denominator so as to have an

expression for n! as an integral. He thus arrived at the integral
∫

(− lnx)n dx. The
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INTERESTING INFINITE PRODUCTS ..... MOTIVATED BY EULER 119

former integral was termed by Legendre the first Eulerian integral or the Beta

function and the latter the second Eulerian integral with

B(m,n) =

∫ 1

0

tm−1(1− t)n−1 dt =
Γ(m) Γ(n)

Γ(m+ n)
.

Integration of (3) by parts yields the functional equation

Γ(z + 1) =

∫ ∞
0

tz e−t dt = −tze−t
∣∣∣∞
0

+ z

∫ ∞
0

tz−1 e−t dt = zΓ(z). (7)

Legendre gave the duplication formula [14, page 485]

Γ(a) =
21−2a

√
π

cos aπ Γ(2a) Γ

(
1

2
− a
)
, a <

1

2
. (8)

Carl Friedrich Gauss (1777-1855) studied the Gamma function while dealing

with the hypergeometric series [11]. He used the notation Πz, where

Πz = lim
k→∞

k!kz∏k
j=1(z + j)

. (9)

His functional equation (§21, (44)) is slightly different: Π(z + 1) = (z + 1)Πz and

Π(−1
2 ) =

√
π, Π( 1

2 ) = 1
2

√
π. In §26, equation (57), we find

nn z
∏n−1
k=0 Π

(
z − k

n

)
Πnz

=
(2π)

1
2 (n−1)

√
n

. (10)

Schlömilch [24, p.171, eq(12)](1844) and Newman [16, p.59, eq. (10)] (1848)

found

Γ(1 + α) = e−Cα
eα

1 + α
1

· e
1
2α

1 + α
2

· e
1
3α

1 + α
3

· · · , (11)

where C is the constant γ introduced by Euler as the constant of integration in

[5] (1734) and treated in depth in [9] (1776).

Recognizing the advantages of starting with 1
Γ(z) , Karl Weierstrass (1815-

1897) used this form. He called 1
Γ(u+1) the “Factorielle of u”, denoted it by Fc(u)

[28, p. 7] and gave following representations [28, eq.(10), (15), (46), (47)]

Fc(u) =u
∞∏
α=1

{(
α

1 + α

)u (
1 +

u

α

)}
= lim
n→∞

{
n−uu(1 + u)

(
1 +

u

2

)
· · ·
(

1 +
u

n− 1

)}
.

This can be written as

1

Γ(z)
= zeγz

∞∏
n=1

(
1 +

z

n

)
e−

z
n . (12)

Formula (12) shows the roots of 1
Γ(z) . As Davis [3, page 862] remarks, the reciprocal

of the gamma function is a much less difficult function to deal with than the gamma

function itself.



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

120 AMRIK SINGH NIMBRAN

Since ln(ab )=ln a− ln b, we have ln(n+ 1)=
∑n
k=1 ln(k+1

k ), and

γ = lim
n→∞

[
n∑
k=1

1

k
−

n∑
k=1

ln
k + 1

k

]
.

Then multiplying both sides by −z followed by raising the two sides to the power

of e yields

e−γz = lim
n→∞

e−
∑n
k=1

z
k eln(1+ 1

k )z = lim
n→∞

n∏
k=1

e−
z
k

(
1 +

1

k

)z
.

Using Gauss’ representation, we get

zΓ(z) = lim
n→∞

n∏
k=1

(
1 +

1

k

)z (
1 +

z

k

)−1

= lim
n→∞

n∏
k=1

(
1 +

1

k

)z
e−

z
k

(
1 +

z

k

)−1

e
z
k

which on using the result deduced above yields

Γ(z) = z−1e−γz lim
n→∞

n∏
k=1

(
1 +

z

k

)−1

e
z
k

and this on being inverted becomes (12).

Euler’s reflection/complement formula can be obtained by employing the

representation of Weierstrass for the expression 1
Γ(z)Γ(−z) followed by the use of

Γ(−z) = −Γ(1−z)
z and Euler’s product expansion for sin z (to follow soon)

Γ(1− z) Γ(z) =
π

sin(π z)
⇒ Γ(1− z) Γ(1 + z) =

πz

sin(π z)
, z 6= 0, ±1, · · · . (13)

This formula possibly motivated Euler to find the product expansion for sinx. He

factorized the function ex − e−x to obtain [6, Ch. IX, §158]

sinx = x

(
1− x2

π2

)(
1− x2

(2π)2

)(
1− x2

(3π)2

)
· · · , (14)

and

cosx =

(
1− 4x2

π2

)(
1− 4x2

(3π)2

)(
1− 4x2

(5π)2

)
· · · . (15)

Euler derived Wallis’ product in [7, Ch.9, §358] by setting x = 1
2 in (14) and then

shifting the term 1
2 to the left hand side. We find that it can also be obtained

through (15) by transferring the first factor on the right to the left and then taking

the limit x→ π
2 . As the limit is of the indeterminate form 0

0 , we apply L’ Hospital’s

rule, differentiating the expression and so getting the desired result.

2. Summary of formulas and special values

We summarize in the following the gamma function identities and values (some

noted earlier) that are needed in the rest of the paper

2.1. Definitions.

2.1.1. Euler’s integral : Γ(z) =
∫∞

0
tz−1 e−t dt, R(z) > 0.
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INTERESTING INFINITE PRODUCTS ..... MOTIVATED BY EULER 121

2.1.2. Euler’s product : Γ(z) = limn→∞
∏n
k=1

(n−1)!
z(z+1)(z+2)···(n+z−1)n

z,

valid for all z except z 6= 0,−1,−2, · · · .

2.1.3. Weierstrass product : 1
Γ(z) = zeγz

∏∞
n=1

(
1 + z

n

)
e−

z
n ,

valid for all z except z 6= 0,−1,−2, · · · ; and γ =N→∞

N∑
n=1

1

n
− lnN.

2.2. Important identities.

2.2.1. Functional relation : Γ(z + 1) = zΓ(z).

2.2.2. Euler’s reflection formula : Γ(z) Γ(1− z) = π
sin(π z) .

2.2.3. Legendre’s duplication formula : Γ(2z) = π
−1
2 22z−1Γ(z) Γ

(
z + 1

2

)
.

2.2.4. Gauss’s multiplication formula :

Γ(nz) = (2π)
1−n

2 nnz
1
2 Γ(z) Γ

(
z +

1

n

)
Γ

(
z +

2

n

)
· · ·Γ

(
z +

n− 1

n

)
.

2.3. Special values. (Here n is a nonnegative integer.)

2.3.1. Factorial : Γ(n+ 1) = n!.

2.3.2. Half-integer values : Γ
(

1
2

)
= π

1
2 ; Γ

(
−n+ 1

2

)
= (−1)n 22n n!

(2n)!

√
π ;

Γ
(
n+ 1

2

)
= (2n−1)!!

2n Γ
(

1
2

)
= (2n)!

22n n!

√
π.

2.3.3. Quarter-integer values : Γ
(

1
4

)
=
√√

2π L , Γ
(
n+ 1

4

)
= 1·5·9···(4n−3)

4n Γ
(

1
4

)
,

where L = 2.62205755429212 · · · is called the lemniscate constant and

equals one half the perimeter of the unit lemniscate curve r2 = cos 2θ (a

special case of Bernoulli’s lemniscate) just as π is one half the circumference

of the unit circle [31]. The numbers π and L share several common features.

L is also related to Gauss’s constant K by L = πK with

K =
2

π

∫ 1

0

dx
4
√

1− x4
=

∞∏
n=1

tanh2 nπ

2
=

Γ2
(

1
4

)
(2π)

3
2

.

Note: We are using K for the Gauss constant instead of G used in [30] as

we will use G for the Catalan constant later.

2.3.4. Rational values
(
n+ 1

k

)
:

Γ

(
n+

1

k

)
=

1 · (1 + k) · (1 + 2k) · · · (1 + (n− 1)k)

kn
Γ

(
1

k

)
.

Euler gave the following formula which is a consequence of the multiplication

formula of Gauss
n−1∏
m=1

Γ
(m
n

)
=

(2π)
n−1

2

√
n

.
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122 AMRIK SINGH NIMBRAN

Let Φ(n) = {m : 1 ≤ m < n ∧ gcd(m,n) = 1}. Let φ(n) = N(Φ(n)) represent

Euler’s totient function. For any prime p, φ(p) = p− 1. If gcd(a, b) = 1, φ(a · b) =

φ(a)× φ(b). And φ(mk) = mk−1 φ(m). Then we have [23, 15, 17, 2]

n∏
m=1

Γ
(m
n

)
=

(2π)
φ(n)

2

e
Λ(n)

2

=

 (2π)
φ(n)

2√
p ifm = pr

(2π)
φ(n)

2 ifm 6= pr

where Λ(n) is Mangoldt’s function defined to be log p if n = pr; p − prime, r ∈ N
and 0 otherwise.

3. Products of rational functions of integer index

Probably the most famous product of rational functions with integer index is

the Wallis product. We will give a general theorem that explains all such products

and gives a closed form for the expansions as a quotient of gamma functions. But

before that we touch upon the theory of infinite products.

An infinite product is formed by multiplying, in a given order, the terms of

an infinite sequence {ar} of real or complex numbers and is denoted by
∏∞
r=1 ar.

The product of the first n terms, that is Pn =
∏n
r=1 ar, is called the n-th partial

product. If Pn tends to a non-zero finite limit P as n → ∞, then the infinite

product is said to converge to (value) P.

To determine the convergence of an infinite product, we write the general term

as ar = 1 + br or ar = 1 − br. If the infinite product is convergent, Pn and Pn−1

tend to the same limit as n→∞. Since Pn
Pn−1

= 1 + bn, we have
lim
n→∞

Pn

lim
n→∞

Pn−1
= 1⇒ lim

n→∞
(1 + bn) = 1⇒ lim

n→∞
bn = 0.

It is thus a necessary (but not sufficient) condition for
∏

(1 + bn) to converge that

bn → 0. A necessary and sufficient condition for the convergence of
∏

(1 + bn) and∏
(1− bn) is the convergence of the series

∑
bn.

3.1. Products derived via Gamma function. We now state and prove the

following theorem from Whittaker and Watson [32, page 238].

Theorem 3.1. Let un =
A (n+ a1)(n+ a2) · · · (n+ ak)

(n+ b1)(n+ b2) · · · (n+ bl)
be a general rational

function of n. If A = 1, k = l and a1 + a2 + · · ·+ ak = b1 + b2 + · · ·+ bk then the

infinite product
∞∏
n=1

un converges absolutely; and it has the closed form value

∞∏
n=1

(n+ a1)(n+ a2) · · · (n+ ak)

(n+ b1)(n+ b2) · · · (n+ bk)
=

Γ(1 + b1)Γ(1 + b2) · · ·Γ(1 + bk)

Γ(1 + a1)Γ(1 + a2) · · ·Γ(1 + ak)
. (16)

Proof. Since we require lim
n→∞

un = 1, we must have k = l and A = 1. Observe

that the general term of the infinite product can be written as

un =
(1 + a1

n )(1 + a2

n ) · · · (1 + ak
n )

(1 + b1
n )(1 + b2

n ) · · · (1 + bk
n )
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INTERESTING INFINITE PRODUCTS ..... MOTIVATED BY EULER 123

= 1 +
a1 + a2 + · · ·+ ak − b1 − b2 − · · · − bk

n
+O(

1

n2
).

For the convergence we require that the factors un, when expanded in reciprocal

powers of n, say as 1 + α
n + β

n2 + · · · , approach 1 faster than 1 + α
n , so we must

have α = 0. Thus we need a1 + a2 + · · ·+ ak = b1 + b2 + · · ·+ bk (See [32, §2.7]).

Further, observe that we can write

un =
(1 + a1

n )e−
a1
n (1 + a2

n )e−
a2
n · · · (1 + ak

n )e−
ak
n

(1 + b1
n )e−

b1
n (1 + b2

n )e−
b2
n · · · (1 + bk

n )e−
bk
n

by inserting exponential convergence factors in the expression for un without

altering the value of the product. (Inserting these exponentials causes a factor like

(1 + a
n )e−

a
n to approach 1 with order 1

n2 , thus ensuring absolute convergence of

our infinite product). From the Wierstrass definition of the infinite product we

have
∞∏
n=1

{(
1 +

z

n

)
e−

z
n

}
=

1

zΓ(z)eγz
=

1

Γ(z + 1)eγz
.

The closed form of our infinite product (16) now follows at once. �

As a consequence of this theorem, every infinite product of rational functions

has a closed form expansion in terms of a quotient of gamma functions. So the

next step would be to find certain values of the constants a and b which reduce the

quotient of gamma functions to a more familiar value. With the aid of the known

special values of the gamma function, and other identities previously shown, we can

obtain an endless number of these products. We also note that other approaches

to products of this type, such as the Wallis product, may be found by entirely

different (and sometimes simpler) methods. We now illustrate it by deriving a few

such infinite products.

Example 1. Wallis product. Taking a1 = − 1
2 , a2 = 1

2 , b1 = b2 = 0, we get

∞∏
n=1

(n− 1
2 )(n+ 1

2 )

n · n
=

Γ(1)Γ(1)

Γ
(

1
2

)
Γ
(

3
2

)
which immediately simplifies to

∞∏
n=1

(2n− 1)(2n+ 1)

(2n)2
=

2

π
.

Example 2. Taking a1 = − 1
2 , a2 = 1 and b1 = b2 = 1

4 we obtain

∞∏
n=1

(n− 1
2 )(n+ 1)

(n+ 1
4 )(n+ 1

4 )
=

Γ2
(

5
4

)
Γ( 1

2 )Γ(2)
=

Γ2
(

1
4

)
16
√
π

;

and since Γ2
(

1
4

)
= 2
√

2π L it follows that
∞∏
n=1

(4n− 2)(4n+ 4)

(4n+ 1)2
=

L

4
√

2
. (17)
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124 AMRIK SINGH NIMBRAN

Example 3. The values a1 = 1
2 = a2 = − 1

4 , b1 = 0 and b2 = 1
4 yield

K =
L

π
=
∞∏
n=1

(2n+ 1)(4n− 1)

2n(4n+ 1)
. (18)

A number of such products (derived mostly by the author) are listed in the Appen-

dix. Most of the products in the Category C are based on the relations between

particular Gamma values found in [26] and [29]. Two of the products in the

Category B are motivated by a result occurring in [12].

3.2. Products derived via the cosine function. Euler’s expansion for cosx

can be expressed as

cos
kπ

2m
=
∞∏
n=1

(2mn− (m+ k))(2mn− (m− k))

(2mn−m)2
, m, k ∈ N; 1 ≤ k ≤ m.

Setting k = 1, 2, 3, · · · (m− 1) yields products having factors of the form 2mn− k.

Since
cos(π/4)

cos(π/3)
=
√

2 and 12 is the L.C.M. of 3 and 4, so putting m = 6, k = 3, 4

in the above identity and then dividing the formula obtained with k = 3 by the

formula with k = 4, we get
√

2 =
∞∏
n=1

(12n− 9)(12n− 3)

(12n− 10)(12n− 2)
.

Some results noted in the Appendix have been derived by combining various prod-

ucts so obtained using the twenty-four possible values (computed by the author)

for sin θ and cos θ given in Table 1.

4. Products involving prime numbers

Beginning with his solution of the famous Basel problem in 1734, Euler eval-

uated the series of reciprocals of even powers of the natural numbers thus intro-

ducing the Euler zeta function sometime around 1737. He then discovered in 1744

a beautiful relationship between ζ(s) and prime numbers

ζ(s) =
∞∑
n=1

1

ns
=

∏
p−prime

(
1− p−s

)−1
, <(s) > 1. (19)

Euler obtained (19) by making use of the fundamental theorem of arithmetic (each

natural number n > 1 can be expressed uniquely as a product of primes) and using

the formula for the sum of a geometric series as follows

1 +
1

2s
+

1

3s
+

1

4s
+ · · · =

(
1 +

1

2s
+

1

22s
+ · · ·

)(
1 +

1

3s
+

1

32s
+ · · ·

)
(

1 +
1

5s
+

1

52s
+ · · ·

)
· · · =

∏
p−prime

(
1 +

1

ps
+

1

p2s
+ · · ·

)
=

∏
p−prime

1

1− 1
ps

We now show how Euler obtained the following remarkable product [10, §15]

that ranges over all odd primes
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π

4
=

3

4
· 5

4
· 7

8
· 11

12
· 13

12
· 17

16
· 19

20
· · · =

∏
p−odd prime

p

p+ (−1)
p+1

2

. (20)

To understand the use of (−1)
p+1

2 one may observe that all the odd prime numbers

can be divided into two classes - those of the form 4n + 1 and those of the form

4n− 1. If p ≡ −1 (mod 4), (−1)
p+1

2 = 1 and if p ≡ 1 (mod 4), (−1)
p+1

2 = −1. In

fact, Euler starts with the Leibniz series (1674)

π

4
= 1− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
+ · · · . (21)

Multiplying (21) by 1
3 (3 is a prime of the form 4n−1) one gets the series expansion

π

4
· 1

3
=

1

3
− 1

9
+

1

15
− 1

21
+

1

27
− 1

33
+ · · · (22)

which when added to (21) will give the following series expansion whose right side

is bereft of the multiples of 1/3.

π

4

(
1 +

1

3

)
= 1 +

1

5
− 1

7
− 1

11
+

1

13
+ · · · . (23)

Similarly, first multiplying (22) by 1
5 (5 is prime of the form 4n+ 1) one gets the

series expansion

π

4

(
1 +

1

3

)
1

5
=

1

5
+

1

25
− 1

35
− 1

55
+

1

65
+ · · · , (24)

which when subtracted from (23) will result in to the following series expansion

the right side of which is bereft of multiples of 1/5.

π

4

(
1 +

1

3

)(
1− 1

5

)
= 1− 1

7
− 1

11
+

1

13
+

1

17
− 1

19
− · · · .

Continuing in this way, adding when the denominator of the second term on right

side of the concerned series expansion is a prime of the form p = 4n − 1 and

subtracting when it is a prime of the form p = 4n+1, we can successively eliminate

all multiples of 1/7, 1/11, 1/13, · · · from the right side of the series expansion

eventually getting

π

4

(
1 +

1

3

)(
1− 1

5

)(
1 +

1

7

)(
1 +

1

11

)(
1− 1

13

)
· · · = 1

which can be written as

π

4

∏
p−oddprime

(
1 + (−1)

p+1
2

1

p

)
=
π

4

∏
p−oddprime

(
p+ (−1)

p+1
2

p

)
= 1

from which Euuler’s product (20) now follows at once.

Observe that when the index ranges over all odd integers ≥ 3 one obtains∏
n≥1

(4n− 1)(4n+ 1)

(4n)2
=
∞∏
n=0

(
n+ 3

4

) (
n+ 5

4

)
(n+ 1)2

=
Γ2(1)

Γ( 3
4 )Γ( 5

4 )
=

2
√

2

π
. (25)
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Dividing (25) by (20) we can deduce the following product involving composite

numbers only∏
k−odd>1
k 6=p

k

k + (−1)
k+1

2

=
9

8
· 15

16
· 21

20
· 25

20
· 27

28
· 33

32
· 35

36
· · · = 8

√
2

π2
. (26)

Euler further observes that the following series of the reciprocals of odd squares

1 +
1

32
+

1

52
+

1

72
+

1

92
+

1

112
+

1

132
+ · · ·

whose sum he had shown to be π2/8 will turn into

π2

8
=

3 · 3
2 · 4

· 5 · 5
4 · 6

· 7 · 7
6 · 8

· 11 · 11

10 · 12
· 13 · 13

12 · 14
· · · .

By squaring the equation (19) and then dividing the result by the preceding prod-

uct, Euler obtained a product for 2.

Alternatively, consider the following result due to Euler

π2

6
=

∏
p−prime

p2

p2 − 1
=

2 · 2
1 · 3

· 3 · 3
2 · 4

· 5 · 5
4 · 6

· 7 · 7
6 · 8

· · · . (27)

Dividing the two sides of this product by 22/(22 − 1) and then dividing the result

so obtained by (20), we obtain the following product not given by Euler

π

2
=

∏
p−odd prime

p

p+ (−1)
p−1

2

=
3

2
· 5

6
· 7

6
· 11

10
· 13

14
· 17

18
· 19

18
· · · . (28)

It may be noted here that each denominator leaves remainder 2 when divided by

4, while 4 divides each denominator in the product (20). Using the products (20)

and (28), we get the following Euler’s product for 2

2 =
∏

p−odd prime

p+ (−1)
p+1

2

p+ (−1)
p−1

2

=
3 + 1

3− 1
· 5− 1

5 + 1
· 7 + 1

7− 1
· 11 + 1

11− 1
· 13− 1

13 + 1
· · · . (29)

Since,

∞∑
n=1

1

nm
=

∏
p−prime

pm

pm − 1
and

∞∑
n=1

1

n4
=
π4

90
, we straightway deduce

ζ(4)

ζ(2)
=
π2

15
=

∏
p−prime

p2

p2 + 1
=

4

5
· 9

10
· 25

26
· 49

50
· · · . (30)

Using various products noted above, we get the following product not given by

Euler

3 =
∏

p−odd prime

p2 + 1(
p+ (−1)

p−1
2

)2 =
10

22
· 26

62
· 50

62
· 122

102
· 170

142
· · · . (31)
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We have the following product for G =
∞∑
n=1

(−1)n−1

(2n− 1)2
, the Catalan constant,

G =
∏

p−odd prime

p2

p2 + (−1)
p+1

2

. (32)

Using Euler’s formulas noted earlier we get

8G

π2
=

∏
p−prime≡−1 (mod 4)

p2 − 1

p2 + 1
, (33)

and we find the formula

8G

π2
=

2

π
3F2

(
1

2
,

1

2
,

1

2
; 1,

3

2

)
(34)

in [1, page 45, Entry 35(i)/35(iv)]. Thus we get∏
p−prime≡−1 (mod 4)

p2 − 1

p2 + 1
=

2

π
3F2

(
1

2
,

1

2
,

1

2
; 1,

3

2

)
. (35)

It is easy to deduce from the products noted earlier that∏
p−prime

p2 + 1

p2 − 1
=

5

2
and

∏
p−odd prime

p2 + 1

p2 − 1
=

3

2
. (36)

Hence, using the previous product we obtain

12G

π2
=

∏
p−prime≡1 (mod 4)

p2 + 1

p2 − 1

∏
p−prime≡−1 (mod 4)

p2 − 1

p2 + 1
, (37)

that is, ∏
p−prime≡1 (mod 4)

p2 + 1

p2 − 1
=

3

π
3F2

(
1

2
,

1

2
,

1

2
; 1,

3

2

)
. (38)

Concluding Remarks: We urge the reader to examine the original papers of

Euler. They are exciting! They reveal his brilliant intuition and inventive mind.

Remember Laplace’s advice: “Reader Euler, read Euler. He is the master of us

all.”

The original derivation of the Wallis product is described in modern terms in

[19, 20, 22, 25]. It is very interesting and novel. One can also read the translation of

his The Arithmetic of Infinitesimals [27]. However, it is a difficult going. Perhaps

the simplest derivation of the Wallis product is through the infinite product for

the sine function. An interesting twist on this is found in [21].

We also invite the reader to explore new ideas for additional products. There

may be hidden patterns in the many products in the Appendix that have not yet

been revealed. The field is vast and uncharted!!
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Appendix

A. Products relating to 2
p
q

√
1 +
√

2 =
∞∏
n=1

(4n− 3)(8n− 5)

(4n− 2)(8n− 7)
=
∞∏
n=1

(4n− 2)(8n− 3)

(4n− 3)(8n− 1)
. (39)

2
1
m =

∞∏
n=1

(2mn−m)(2mn− 2)

(2mn−m− 1)(2mn− 1)
. (40)
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2
1
m =

∞∏
n=1

(2mn−m+ 1)(2mn+ 1)

(2mn−m)(2mn+ 2)
. (41)

2
m−1
m =

∞∏
n=1

(2mn− 2m+ 2)(2mn−m)

(2mn− 2m+ 1)(2mn−m+ 1)
, m ∈ N. (42)

2
m−1
m =

∞∏
n=1

(2mn− 1)(2mn+m− 1)

(2mn−m)(2mn+ 2m− 2)
, m ∈ N. (43)

2
m+1
2m+1 =

∞∏
n=1

[2(2m+ 1)n− (2m+ 2)][2(2m+ 1)n− (2m+ 1)]

[2(2m+ 1)n− (3m+ 2)][2(2m+ 1)n− (m+ 1)]
. (44)

2
m+1
2m+1 =

∞∏
n=1

[2(2m+ 1)n−m][2(2m+ 1)n+ (m+ 1)]

[2(2m+ 1)n− (2m+ 1)][2(2m+ 1)n+ (2m+ 2)]
. (45)

B. Products relating to
√

2k + 1

√
2k + 1 =

∞∏
n=0

k∏
j=1

(2k + 1)2(2n+ 1)2 − (2j − 1)2

(2k + 1)2(2n+ 1)2 − (2j)2
, k ∈ N. (46)

√
2k + 1

2
=

∞∏
n=0

 ((4k + 2)n+ 4)((4k + 2)n+ 6) · · ·
((4k + 2)n+ 2k)2((4k + 2)n+ 2k + 2)2

((4k + 2)n+ 2k + 4) · · · ((4k + 2)n+ 4k − 2)


 ((4k + 2)n+ 3)((4k + 2)n+ 5) · · ·

((4k + 2)n+ 2k + 1)2

((4k + 2)n+ 2k + 3) · · · ((4k + 2)n+ 4k − 3)


. (47)

√
2k + 1

2
=

∞∏
n=0

k∏
j=1

(2k)2(2k + 1)2(2n+ 1)2 − (2k)2(2j − 1)2

(2k)2(2k + 1)2(2n+ 1)2 − (2k + 1)2(2j − 1)2
. (48)

C. Products relating to 3
p
q and 5

p
q

√
3 =

∞∏
n=1

(6n− 4)(6n− 2)

(6n− 5)(6n− 1)
. (49)

√√
3 =

∞∏
n=1

(12n− 8)2(12n− 7)

(12n− 9)2(12n− 5)
. (50)

√√
3 =

∞∏
n=1

(3n− 1)(4n− 2)2(12n− 5)

(3n− 2)(4n− 1)2(12n− 7)
. (51)

3
3
4 =

∞∏
n=1

(4n− 2)2(6n− 2)2(12n− 5)

(4n− 1)2(6n− 5)(6n− 1)(12n− 7)
. (52)

3
3
8 =

∞∏
n=1

(3n− 1)(12n− 1)(24n− 18)(24n− 16)(24n− 7)

(6n− 1)(6n− 3)(24n− 21)(24n− 11)(24n− 3)
. (53)

3
1
8 =

∞∏
n=1

(6n− 3)2(8n− 1)(12n− 7)(24n− 16)2

(6n− 5)(6n− 1)(8n− 3)(12n− 5)(24n− 23)(24n− 7)
. (54)
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3
3
10 =

∞∏
n=1

(5n− 4)(30n− 25)(30n− 5)

(5n− 3)(30n− 28)(30n− 8)
. (55)

3
1
5 =

∞∏
n=1

(5n− 2)(15n− 13)(15n− 8)(30n− 25)(30n− 5)

(5n− 3)(15n− 14)(15n− 4)(30n− 21)(30n− 9)
. (56)

3
1
10 =

∞∏
n=1

(12n− 9)(12n− 3)

(12n− 11)(12n− 1)
. (57)

3
√

2 +
√

6

2
=
∞∏
n=1

(12n− 8)(12n− 4)

(12n− 11)(12n− 1)
=
∞∏
n=1

(24n− 19)(24n− 17)

(24n− 23)(24n− 13)
. (58)

√
1 +
√

3 =
∞∏
n=1

(6n− 5)(6n− 1)(24n− 21)(24n− 3)

(3n− 2)(12n− 1)(24n− 23)(24n− 7)
. (59)

√√
2 +
√

3 =
∞∏
n=1

(3n− 2)(12n− 1)(24n− 7)

(6n− 5)(6n− 1)(24n− 1)
. (60)√(

1 +
√

2
)(

1 +
√

3
)(√

2 +
√

3
)

=
∞∏
n=1

(8n− 7)(24n− 12)(24n− 9)

(8n− 6)(24n− 1)(24n− 23)
. (61)

√
5 =

∞∏
n=1

(10n− 8)(10n− 6)(10n− 4)(10n− 2)

(10n− 9)(10n− 7)(10n− 3)(10n− 1)
. (62)

√√
5 =

∞∏
n=1

(5n− 4)(5n− 1)(20n− 17)(20n− 13)

(5n− 3)(5n− 2)(20n− 19)(20n− 11)
. (63)√√

5

2
=
∞∏
n=1

(10n− 9)(10n− 1)(20n− 17)(20n− 13)

(10n− 5)2(20n− 19)(20n− 11)
. (64)

2

√√
5 =

∞∏
n=1

(10n− 5)2(12n− 17)(20n− 13)

(10n− 7)(10n− 3)(20n− 19)(20n− 11)
. (65)

5
1
6 =

∞∏
n=1

(3n− 2)(30n− 25)2(30n− 5)2

(3n− 1)(30n− 28)(30n− 22)(30n− 16)(30n− 4)
. (66)

φ =
1 +
√

5

2
=

∞∏
n=1

(5n− 3)(5n− 2)

(5n− 4)(5n− 1)
. (67)

φ
1
2 =

∞∏
n=1

(10n− 6)(10n− 4)(20n− 19)(20n− 11)

(10n− 9)(10n− 1)(20n− 17)(20n− 13)
. (68)

φ
1
2 =

∞∏
n=1

(10n− 9)(10n− 1)(20n− 17)(20n− 13)

(10n− 8)(10n− 2)(20n− 19)(20n− 11)
. (69)

2
1
5 5

1
4

√
1 +
√

5 =
∞∏
n=1

(20n− 16)(20n− 12)

(20n− 19)(20n− 9)
. (70)

2
1
5

√√
5− 1 =

∞∏
n=1

(20n− 16)(20n− 12)(20n− 11)

(20n− 17)(20n− 13)(20n− 9)
. (71)
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1 +
√

5 =
∞∏
n=1

(5n− 3)(10n− 5)2(20n− 17)(20n− 13)(20n− 9)

(5n− 4)(10n− 8)2(20n− 6)2(20n− 11)
. (72)

D. Products relating to L

∞∏
n=1

(4n− 2)4n

(4n− 3)(4n+ 1)
=

(
Γ
(

1
4

))2
4
√
π

=
L√
2
. (73)

∞∏
n=1

(4n− 1)2

(4n− 3)(4n+ 1)
=

(
Γ
(

1
4

))4
8π2

=
L2

π
. (74)

∞∏
n=1

(4n− 1)2(4n+ 2)

(4n− 2)(4n+ 1)2
=

(
Γ
(

1
4

))4
16π2

=
L2

2π
. (75)

∞∏
n=1

(4n− 2)(4n− 1)(4n+ 2)

(4n− 3)(4n+ 1)2
=

(
Γ
(

1
4

))4
8
√

2π2
=

L2

√
2π

. (76)

———

Table on the next page
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Table 1. Values of sin θ and cos θ

θ sin θ cos θ

0 0 1

π
24

√
4−
√

2−
√

6

2
√

2

√
4+
√

2+
√

6

2
√

2

π
20

√
3+
√

5−
√

5−
√

5
4

√
3+
√

5+
√

5−
√

5
4

π
16

√
2−
√

2+
√

2

2

√
2+
√

2+
√

2

2
π
12

√
3−1

2
√

2

√
3+1

2
√

2

π
10

√
5−1
4

√
10+2

√
5

4

π
8

√
2−
√

2
2

√
2+
√

2
2

3π
20

√
5+
√

5−
√

3−
√

5
4

√
5+
√

5+
√

3−
√

5
4

π
6

1
2

√
3

2

3π
16

√
2+
√

2+
√

2−
√

2−
√

2+
√

2

2
√

2

√
2+
√

2+
√

2+

√
2−
√

2+
√

2

2
√

2

π
5

√
10−2

√
5

4

√
5+1
4

5π
24

√
4+
√

2−
√

6

2
√

2

√
4−
√

2+
√

6

2
√

2
π
4

1√
2

1√
2

7π
24

√
4−
√

2+
√

6

2
√

2

√
4+
√

2−
√

6

2
√

2

3π
10

√
5+1
4

√
10−2

√
5

4

5π
16

√
2+
√

2+
√

2+

√
2−
√

2+
√

2

2
√

2

√
2+
√

2+
√

2−
√

2−
√

2+
√

2

2
√

2
π
3

√
3

2
1
2

7π
20

√
5+
√

5+
√

3−
√

5
4

√
5+
√

5−
√

3−
√

5
4

3π
8

√
2+
√

2
2

√
2−
√

2
2

2π
5

√
10+2

√
5

4

√
5−1
4

5π
12

√
3+1

2
√

2

√
3−1

2
√

2

9π
20

√
3+
√

5+
√

5−
√

5
4

√
3+
√

5−
√

5−
√

5
4

11π
24

√
4+
√

2+
√

6

2
√

2

√
4−
√

2−
√

6

2
√

2
π
2 1 0
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Abstract. The purpose of this paper is to extend and generalize the results

of Khan [8] from complete metric spaces to that in the setting of complete

b-metric spaces.

1. Introduction and Preliminaries

Fixed point theory plays a very important role in the development of nonlinear

analysis. In this area, the first important result was proved by Banach in 1922 for

contraction mapping in complete metric space, known as the Banach contraction

principle [10]. In [8], Khan studied a fixed point theorem using symmetric ratio-

nal expression in complete metric spaces. The Banach contraction principle with

rational expressions have been expanded and some fixed and common fixed point

theorems have been obtained in [5], [6].

In [2], Bakhtin introduced b-metric spaces as a generalization of metric spaces.

He proved the contraction mapping principle in b-metric spaces that generalized

the famous contraction principle in metric spaces. Czerwik, in [3], used the concept

of b-metric space and generalized the renowned Banach fixed point theorem in b-

metric spaces (see, also [4]).

In this note, we extend and generalize the results of Khan [8] and establish

some unique fixed point and common fixed point theorems using Khan [8] and

almost Khan rational expressions in the framework of complete b-metric spaces.

Definition 1.1. ([2]) Let X be a nonempty set and s ≥ 1 be a given real number.

A mapping d : X×X → R+ is called a b-metric if for all x, y, z ∈ X, the following

conditions are satisfied:

(b1M) d(x, y) = 0 if and only if x = y;

(b2M) d(x, y) = d(y, x);

(b3M) d(x, y) ≤ s[d(x, z) + d(z, y)].

The pair (X, d) is called a b-metric space.

2010 Mathematics Subject Classification : 47H10, 54H25.

Key words and phrases : Fixed point, common fixed point, rational inequality, b- metric

space.

c© Indian Mathematical Society, 2016 .
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It is clear from the definition of b-metric that every metric space is a b-metric

space for s = 1. Therefore, the class of b-metric spaces is larger than the class of

metric spaces.

Some known examples of b-metric, which shows that a b-metric space is real

generalization of a metric space, are the following.

Example 1.1. ([1]) The set of real numbers together with the functional d(x, y) =

|x − y|2 for all x, y ∈ R is a b-metric space with constant s = 2. Also, we obtain

that d is not a metric on R.

Example 1.2. ([7]) Let X = `p with 0 < p < 1, where `p = {{xn} ⊂ R :∑∞
n=1 |xn|p <∞}. Let d : X ×X → R defined by d(x, y) =

(∑∞
n=1 |xn − yn|p

) 1
p

,

where x = {xn}, y = {yn} ∈ `p. Then (X, d) is a b-metric space with the coeffi-

cient s = 21/p > 1, but not a metric space. It is obtained that the above result

also holds for the general case `p(X) with 0 < p < 1, where X is a Banach space.

Example 1.3. ([9]) Let p be a given real number in the interval (0, 1). The space

Lp[0, 1] of all real functions x(t), y(t) ∈ [0, 1] such that
∫ 1

0
|x(t)|p < 1, together

with the functional

d(x, y) :=
(∫ 1

0

|x(t)− y(t)|p dt
)1/p

,

for each x, y ∈ Lp[0, 1] is a b-metric space with constant s = 21/p.

Example 1.4. (see [1]) Let X = {0, 1, 2}. Define d : X × X → R+ as follows

d(0, 0) = d(1, 1) = d(2, 2) = 0, d(1, 2) = d(2, 1) = d(0, 1) = d(1, 0) = 1, d(2, 0) =

d(0, 2) = p ≥ 2 for s = p
2 where p ≥ 2, the function defined as above is a b-metric

space but not a metric space for p > 2.

Example 1.5. ([7]) Let X = {1, 2, 3, 4} and E = R2. Define d : X ×X → R by

d(x, y) =

{
(|x− y|−1, |x− y|−1) if x 6= y,

0, if x = y.

Then (X, d) is a b-metric space with the coefficient s = 6
5 > 1. But it is not a

metric space since the triangle inequality is not satisfied,

d(1, 2) > d(1, 4) + d(4, 2), d(3, 4) > d(3, 1) + d(1, 4).

Definition 1.2. [([8])] Let (X, d) be a complete metric space. A self mapping

T : X → X is called a Khan contraction if it satisfies following condition:

d(Tx, Ty) ≤ α [d(x, Tx) d(x, Ty) + d(y, Ty) d(y, Tx)]

d(x, Ty) + d(y, Tx)
(1)

for all x, y ∈ X and α ∈ [0, 1).

Now, we define the following:
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Definition 1.3. Let (X, d) be a complete metric space. A self mapping T : X → X

is called an almost Khan contraction if it satisfies the following condition:

d(Tx, Ty) ≤ α [d(x, Tx) d(x, Ty) + d(y, Ty) d(y, Tx)]

d(x, Ty) + d(y, Tx)

+β d(x, y) (2)

for all x, y ∈ X and α, β ∈ [0, 1) with α+ β < 1.

Remark 1.1. If we take β = 0, then almost Khan contraction (2) reduces to Khan

contraction (1).

Theorem 1.1. ([8]) Let (X, d) be a complete metric space and T : X → X satisfies

the contractive condition (1), then T has a unique fixed point in X.

In our main result we will use the following definitions which can be found in

[1] and [9].

Definition 1.4. ([1], [9]) Let (X, d) be a b-metric space, x ∈ X and {xn} be a

sequence in X. Then

(d1) {xn} is a Cauchy sequence if for ε > 0 there exists a positive integer N

such that for all n,m ≥ N , we have d(xn, xm) < ε;

(d2) {xn} is called convergent if for ε > 0 and n ≥ N we have d(xn, x) <

ε, where x is called the limit point of the sequence {xn}. We denote this by

limn→∞ xn = x or xn → x as n→∞.

(d3) (X, d) is said to be a complete b-metric space if every Cauchy sequence

in X converges to a point in X.

Remark 1.2. In a b-metric space (X, d), the following assertions hold:

(i) a convergent sequence has a unique limit;

(ii) each convergent sequence is Cauchy;

(iii) in general, a b-metric is not continuous.

2. Main Results
In this section we shall prove some fixed point and common fixed point theo-

rems for rational expressions in the framework of b-metric spaces.

Theorem 2.1. Let (X, d) be a complete b-metric space (CbMS) with the coefficient

s ≥ 1. Suppose that the mappings S, T : X → X satisfy the rational expression:

d(Sx, Ty) ≤ α [d(x, Sx) d(x, Ty) + d(y, Ty) d(y, Sx)]

d(x, Ty) + d(y, Sx)
(3)

for all x, y ∈ X, α ∈ [0, 1) with sα < 1. Then S and T have a unique common

fixed point in X.

Proof. Choose x0 ∈ X. Let x1 = S(x0) and x2 = T (x1) such that x2n+1 = Sx2n

and x2n+2 = Tx2n+1 for all n ≥ 0. From (3), we have

d(x2n+1, x2n) = d(Sx2n, Tx2n−1)

≤
α
[
d(x2n, Sx2n) d(x2n, Tx2n−1) + d(x2n−1, Tx2n−1) d(x2n−1, Sx2n)

]
d(x2n, Tx2n−1) + d(x2n−1, Sx2n)
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=
α
[
d(x2n, x2n+1) d(x2n, x2n) + d(x2n−1, x2n) d(x2n−1, x2n+1)

]
d(x2n, x2n) + d(x2n−1, x2n+1)

≤ αd(x2n, x2n−1). (4)

By induction, we have
d(xn+1, xn) ≤ αd(xn−1, xn) ≤ α2 d(xn−2, xn−1) ≤ . . . ≤ αn d(x0, x1). (5)

Hence for any m,n ≥ 1 and m > n, we have

d(xn, xm) ≤ s[d(xn, xn+1) + d(xn+1, xm)]

= sd(xn, xn+1) + sd(xn+1, xm)

≤ sd(xn, xn+1) + s2[d(xn+1, xn+2) + d(xn+2, xm)]

= sd(xn, xn+1) + s2d(xn+1, xn+2) + s2d(xn+2, xm)

≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3)

+ · · ·+ sn+m−1d(xn+m−1, xm)

≤ sαnd(x1, x0) + s2αn+1d(x1, x0) + s3αn+2d(x1, x0)

+ · · ·+ smαn+m−1d(x1, x0)

= sαn[1 + sα+ s2α2 + s3α3 + · · ·+ (sα)m−1]d(x1, x0)

≤
[ sαn

1− sα

]
d(x1, x0).

Since sα < 1, therefore taking limit m,n→∞, we have limm,n→∞ d(xn, xm) = 0.

Hence {xn} is a Cauchy sequence in complete b-metric space X. Since X is

complete, so there exists q ∈ X such that limn→∞ xn = q. Now we have to show

that q is a common fixed point of S and T . For this consider

d(x2n+1, T q) = d(Sx2n, T q)]

≤
α
[
d(x2n, Sx2n) d(x2n, T q) + d(q, T q) d(q, Sx2n)

]
d(x2n, T q) + d(q, Sx2n)

=
α
[
d(x2n, x2n+1) d(x2n, T q) + d(q, T q) d(q, x2n+1)

]
d(x2n, T q) + d(q, x2n+1)

.

Taking limit n→∞, we have d(q, T q) ≤ 0.

Hence by definition 1.1(b1M), we get Tq = q. Thus q is a fixed of T .

In an exactly the same fashion we can prove that Sq = q. Hence Sq = Tq = q.

This shows that q is a common fixed point of S and T .

Uniqueness. Let p be another fixed point common to S and T , that is, Sp =

Tp = p such that p 6= q. Then from (3), we have

d(p, q) = d(Sp, Tq) ≤ α [d(p, Sp) d(p, Tq) + d(q, T q) d(q, Sp)]

d(p, Tq) + d(q, Sp)

=
α [d(p, p) d(p, q) + d(q, q) d(q, p)]

d(p, q) + d(q, p)
≤ 0.

Hence by definition 1.1(b1M), we get p = q. This shows that q is a unique common

fixed point of S and T . This completes the proof. �
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From Theorem 2.1, we obtain the following result as corollary.

Corollary 2.1. Let (X, d) be a complete b-metric space (CbMS) with the coeffi-

cient s ≥ 1. Suppose that the mapping T : X → X satisfies the rational expression:

d(Tx, Ty) ≤ α [d(x, Tx) d(x, Ty) + d(y, Ty) d(y, Tx)]

d(x, Ty) + d(y, Tx)
(6)

for all x, y ∈ X, α ∈ [0, 1) with sα < 1. Then T has a unique fixed point in X.

Theorem 2.2. Let (X, d) be a complete b-metric space (CbMS) with the coefficient

s ≥ 1 such that for positive integer n, Tn satisfies the rational expression (1) for

all x, y ∈ X, α ∈ [0, 1) with sα < 1. Then T has a unique fixed point in X.

Proof. If x0 is the unique fixed point of Tn, then Tx0 = x0 because T (Tnx0) =

Tx0 or Tn(Tx0) = Tx0. This shows that x0 is the unique fixed point of T , and

completes the proof. �

Theorem 2.3. Let (X, d) be a complete b-metric space (CbMS) with the coefficient

s ≥ 1. Suppose that the mapping T : X → X satisfies an almost Khan rational

expression (2) for all x, y ∈ X, α, β ∈ [0, 1) with sα + sβ < 1. Then T has a

unique fixed point in X.

Proof. Choose x0 ∈ X. We construct the iterative sequence {xn}, where xn =

Txn−1, n ≥ 1, that is, xn+1 = Txn = Tn+1x0. From (2), we have

d(xn, xn+1) = d(Txn−1, Txn)

≤ α [d(xn−1, Txn−1) d(xn−1, Txn) + d(xn, Txn) d(xn, Txn−1)]

d(xn−1, Txn) + d(xn, Txn−1)

+β d(xn−1, xn)

=
α [d(xn−1, xn) d(xn−1, xn+1) + d(xn, xn+1) d(xn, xn)]

d(xn−1, xn+1) + d(xn, xn)

+β d(xn−1, xn)

≤ (α+ β) d(xn−1, xn) = λ d(xn−1, xn) (7)

where λ = (α+ β), since sα+ sβ < 1, it is clear that 0 < λ < 1/s. By induction,

we have
d(xn+1, xn) ≤ λ d(xn−1, xn) ≤ λ2 d(xn−2, xn−1) ≤ . . .

≤ λn d(x0, x1). (8)

Let m,n ≥ 1 and m > n, we have

d(xn, xm) ≤ s[d(xn, xn+1) + d(xn+1, xm)]

= sd(xn, xn+1) + sd(xn+1, xm)

≤ sd(xn, xn+1) + s2[d(xn+1, xn+2) + d(xn+2, xm)]

= sd(xn, xn+1) + s2d(xn+1, xn+2) + s2d(xn+2, xm)
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≤ sd(xn, xn+1) + s2d(xn+1, xn+2) + s3d(xn+2, xn+3)

+ · · ·+ sn+m−1d(xn+m−1, xm)

≤ sλnd(x1, x0) + s2λn+1d(x1, x0) + s3λn+2d(x1, x0)

+ · · ·+ smλn+m−1d(x1, x0)

= sλn[1 + sλ+ s2λ2 + s3λ3 + · · ·+ (sλ)m−1]d(x1, x0)

≤
[ sλn

1− sλ

]
d(x1, x0).

Since sλ < 1, therefore taking limit m,n→∞, we have limm,n→∞ d(xn, xm) = 0.

Hence {xn} is a Cauchy sequence in complete b-metric space X. Since X is

complete, so there exists z ∈ X such that limn→∞ xn = z. Now we have to show

that z is a fixed point of T . For this consider

d(xn+1, T z) = d(Txn, T z)

≤
α
[
d(xn, Txn) d(xn, T z) + d(z, Tz) d(z, Txn)

]
d(xn, T z) + d(z, Txn)

+ β d(xn, z)

=
α
[
d(xn, xn+1) d(xn, T z) + d(z, Tz) d(z, xn+1)

]
d(xn, T z) + d(z, xn+1)

+ β d(xn, z).

Taking limit n→∞, we have d(z, Tz) ≤ 0. Hence by definition 1.1(b1M), we get

Tz = z. Thus z is a fixed of T .

Uniqueness. Let z1 be another fixed point T , that is, Tz1 = z1 such that z 6= z1.

Then from (2), we have

d(z, z1) = d(Tz, Tz1)

≤ α [d(z, Tz) d(z, Tz1) + d(z1, T z1) d(z1, T z)]

d(z, Tz1) + d(z1, T z)
+ β d(z, z1)

=
α [d(z, z) d(z, z1) + d(z1, z1) d(z1, z)]

d(z, z1) + d(z1, z)
+ β d(z, z1) ≤ β d(z, z1).

The above inequality is possible only if d(z, z1) = 0 and so z = z1. Thus z is a

unique fixed point of T , and the proof is completed. �

From Theorem 2.3, we obtain the following result as corollaries.

Corollary 2.2. Let (X, d) be a complete b-metric space (CbMS) with the coeffi-

cient s ≥ 1. Suppose that the mapping T : X → X satisfies Khan rational expres-

sion (1) for all x, y ∈ X and α ∈ [0, 1) with sα < 1. Then T has a unique fixed

point in X.
Corollary 2.3. Let (X, d) be a complete b-metric space (CbMS) with the coef-

ficient s ≥ 1. Suppose that the mapping T : X → X satisfies the contraction

condition d(Tx, Ty) ≤ β d(x, y) for all x, y ∈ X and β ∈ [0, 1) with sβ < 1. Then

T has a unique fixed point in X.

Remark 2.1. (i) Theorem 2.1 and 2.2 extend and generalize Theorem 1 of Khan [8]

from complete metric space to that setting of complete b-metric space considered

in this paper.
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(ii) Theorem 2.1 also extends and generalizes Theorem 3 of Khan [8] from

complete metric space to that setting of b-metric space considered in this paper.

(iii) Corollary 2.3 extends well known Banach [10] contraction principle from

complete metric space to that setting of complete b-metric space considered in this

paper.
3. Conclusion

In this paper, we establish some unique fixed point and common fixed point

theorems using Khan and an almost Khan rational contractions in the setting of

b-metric spaces. Our results extend and generalize several results from the existing

literature.

Acknowledgements. The author would like to thank the anonymous referee for

his careful reading and useful suggestions on the manuscript.
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Abstract. We discuss a general notion of continued fraction expansion for

complex numbers in terms of partial quotients in various subrings and prove

the convergence of the corresponding sequences of convergents.

1. Introduction
For a real number t the classical simple continued fraction expansion is con-

structed by setting t0 = t, a0 = [t], the largest integer not exceeding t, and

recursively tn+1 = 1
tn−an

for n ≥ 0, provided tn 6= an, and an+1 = [tn+1]; we

terminate the sequence when tn = an (for the first time), so tn − an can not be

inverted. When t is an irrational number the sequence is non-terminating and we

have

t = a0 +
1

a1 + 1
a2+···

,

in the sense that the rational numbers pn

qn
, n ≥ 0, obtained by omitting from the

above expression the part after an, converge to t; pn

qn
are called the convergents

and the expression is called the simple continued fraction expansion of t. Here

a0 ∈ Z and an ∈ N for all n ≥ 1. These expansions have played an important role

in various problems in number theory and its applications in other areas since the

eighteenth century when they came to the fore in a big way (the reader is referred

to [1] and [5] for a historical perspective and [6] for a general introduction to the

topic).

If in place of the largest integer not exceeding the given number we opt for the

integer nearest to the given number, for picking an depending on tn at each stage

n ≥ 0, and proceed analogously (allowing the tn’s and an’s to be negative), then

again for an irrational number we get a continued fraction expansion in terms of

an ∈ Z, with |an| ≥ 2 for n ≥ 1, known as the nearest integer continued fraction

expansion. These expansions have also appeared in various contexts, and were

used recently in [2] for studying certain asymptotics of values of quadratic forms

at integer points.
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144 S. G. DANI

The nearest integer continued fraction expansion has a natural analogue for

complex numbers in terms of Gaussian integers x + iy with x, y ∈ Z. Let z ∈ C
and define z0 = z, a0 the Gaussian integer nearest to z (when there are more

than one such, a choice may be made by some convention which does not play

much role in the theory) and recursively zn+1 = 1
zn−an

for n ≥ 0, provided

zn 6= an, and an+1 is the Gaussian integer nearest to zn+1 (with the conven-

tion as above); the expansion is non-terminating for z /∈ Q(i), the smallest sub-

field of C containing i. This expansion was introduced and studied by A. Hur-

witz [8] who proved various interesting results about it - including convergence

of the corresponding convergents, monotonicity of the size of the denominators

of the convergents, an analogue of the classical Lagrange theorem characterising

quadratic irrationals, etc. (the reader is referred to [7], [4] and [3] for details in

this respect). Hurwitz also discussed analogous issues for expansions in terms of

Eisenstein integers, namely complex numbers of the form x + yω, where ω is a

nontrivial cube root of unity and x, y ∈ Z. Continued fraction expansions have

also been considered with partial quotients from some more discrete subrings of C
(see §3 below, and [3] and other references cited there).

Unlike in the classical case of simple continued fractions, the proof of conver-

gence of the convergents in [8] and in later literature (see for example [7]) turns

out to be rather intricate. In this note we present a short proof of convergence, in

fact in a substantially broader set up, of what is referred to below (and in the title)

as “lazy continued fraction expansion”; it should be noted however that Hurwitz’s

proof brings in, along with the proof of convergence of the convergents, consider-

able insight also into certain other aspects of behaviour of the continued fraction

expansions which does not have a parallel in our case. Our main emphasis is on

the generality of the framework and simplicity of the proof. The idea underlying

the proof below is also involved in the proof of Proposition 3.6 in [4] in the special

case of Gaussian integers; Theorem 2.1 is a generalization of that result, and in

the proof an attempt is also made to improve the presentation.

2. The theorem
Let Γ be a discrete subring of C containing 1 and let K be the quotient field

of Γ. We note that K is a countable subfield of C. We shall be interested in

continued fraction expansions of z in C\K; the latter correspond to irrational

numbers in the general case. We shall assume Γ to be such that for any z ∈ C\K
there exists an a ∈ Γ such that |z − a| < 1; equivalently, the union of the open

unit discs with centers at points of Γ covers C\K. A brief discussion on the rings

satisfying this condition is included in §3; for the present it may be noted that the

ring of Gaussian integers and the ring of Eisenstein integers have this property.

Now let z ∈ C\K and let {zn} be a sequence in C\K constructed as follows:

we start by setting z0 = z and pick some element a0 ∈ Γ such that |z0 − a0| < 1,
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LAZY CONTINUED FRACTION EXPANSIONS FOR COMPLEX NUMBERS 145

and put z1 = (z0 − a0)−1; since z ∈ C\K, a0 6= z0, and moreover z1 ∈ C\K. Now

starting with z1 we define, following the same steps, an element z2, and then z3

etc.. In other words, for n ≥ 0, we choose zn+1 = 1
zn−an

and an+1 to be some

element of Γ such that |zn+1 − an+1| < 1. We thus get a sequence {zn}∞n=0 such

that z0 = z, and |zn| > 1 with zn−1 − z−1n ∈ Γ for all n ≥ 1, and the associated

sequence {an}∞0 in Γ such that an = zn − z−1n+1 for all n ≥ 0. The sequence

{an}∞n=0 is analogous to the classical continued fraction expansion sequences, and

we shall call it a lazy continued fraction expansion for z; “lazy” refers to the fact

that we do not put in any effort looking for an element of Γ fulfilling some criterion

like being the nearest etc., but just pick our an to be any element of Γ such that

|zn− an| < 1. We call {zn} an iteration sequence and {an} the sequence of partial

quotients with respect to the given lazy continued fraction expansion; for n ≥ 0, zn

and an are called the nth iterate and the nth partial quotient respectively. Note

that any z will have (uncountably!) many lazy continued fraction expansions and

corresponding iteration sequences, and sequences of partial quotients. Now let

{pn}∞n=−1 and {qn}∞n=−1 be the sequences defined recursively by the relations

p−1 = 1, p0 = a0, pn+1 = an+1pn + pn−1, for all n ≥ 0,

q−1 = 0, q0 = 1, qn+1 = an+1qn + qn−1, for all n ≥ 0.

There is, a priori, no certainty that qn 6= 0 for all n ≥ 1, but if this does hold then

it can be readily seen, inductively, that

pn
qn

= a0 +
1

a1 + 1
a2+····+ 1

an

,

for all n ≥ 0, as in the case of the usual continued fraction expansions. We call

(pn, qn) the nth convergent for the given lazy continued fraction expansion.

The following theorem, which is our main result in the paper, shows that the

procedure as above indeed gives a continued fraction expansion for z.

Theorem 2.1. Let Γ be a discrete subring of C such that the open unit discs with

centers at elements from Γ cover C\K. Let z ∈ C and {an} be the sequence of

partial quotients, in Γ, with respect to a lazy continued fraction expansion of z.

Let {(pn, qn)}∞n=−1 be the corresponding sequence of convergents. Then qn 6= 0 for

all n and
pn
qn
→ z as n→∞.

Before going to the proof of the theorem we note the following.

Proposition 2.1. Let the notation be as in the theorem and also let {zn} be the

associated iteration sequence. Then qnz−pn = (−1)n(z1 · · · zn+1)−1 for all n ≥ 0.

Consequently qn 6= 0 for all n ≥ 0.

Proof. At the outset we note that since Γ is a discrete subring of C, for any nonzero

γ ∈ Γ we have |γ| ≥ 1.
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146 S. G. DANI

We now proceed with the proof by induction. Since p0 = a0, q0 = 1 and

z − a0 = z−11 , the desired assertion holds for n = 0. Now let n ≥ 1 and suppose

the desired assertion holds for 0, 1, . . . , n− 1. Then we have

qnz − pn = (anqn−1 + qn−2)z − (anpn−1 + pn−2)

= an(qn−1z − pn−1) + (qn−2z − pn−2)

= (−1)n−1(z1 · · · zn)−1an + (−1)n−2(z1 · · · zn−1)−1

= (−1)n(z1 · · · zn)−1(−an + zn) = (−1)n(z1 · · · zn+1)−1,

which proves the first part of the proposition. The second part is immediate, since

if qn = 0 for some n then we get |pn| = |z1 · · · zn+1|−1 < 1, which is a contradiction

since pn ∈ Γ, and pn 6= 0. �

Proof of the theorem. Let {zn} be the iteration sequence associated with the given

lazy continued fraction expansion. Since qn 6= 0 for all n, and qn ∈ Γ, we have

|qn| ≥ 1 and hence by Proposition 2.1 we get∣∣∣∣z − pn
qn

∣∣∣∣ = |qn|−1|z1 · · · zn+1|−1 ≤ |z1 · · · zn+1|−1.

Therefore to prove the theorem it suffices to prove that lim supn→∞ |zn| > 1. We

shall suppose that this is not true, and arrive at a contradiction. Thus we may

assume that |zn| → 1 as n→∞.

Let C denote the unit circle in C centered at the origin, and let

Φ = {θ ∈ C | |θ − γ| = 1 for some γ ∈ Γ, γ 6= 0}.

Since Γ is discrete it follows that Φ is a finite subset of C. We first show that the

limit points of {zn} are all contained in Φ.

Let ζ be any limit point of {zn}. Since |zn| → 1 as n → ∞, it follows that

ζ ∈ C, and that there exists a sequence {nk} in N such that znk
→ ζ as k → ∞.

Then |znk
− ank

| = |znk+1|−1 → 1 as k → ∞. Since znk
→ ζ as k → ∞ and

ank
∈ Γ, this implies that ank

, k ∈ N, belong to a finite subset of Γ. Therefore,

passing to a subsequence of {nk} and modifying notation we may assume that ank

is a constant sequence, say ank
= a for all k. Then a ∈ Γ and a 6= 0, and since

znk
→ ζ as k →∞ we further get that |ζ − a| = 1. Thus ζ ∈ Φ, as claimed above.

As the set of limit points of {zn} is contained in Φ, which is a finite set, we

can fix ϕn ∈ Φ for each n such that zn − ϕn → 0 as n→∞. As zn − ϕn → 0 and

|zn − an| = |zn+1|−1 → 1, as n → ∞, we have |ϕn − an| → 1, and since Φ and Γ

are discrete subsets it follows that |ϕn − an| = 1 for all large n, say all n ≥ n0.

For all n let ρn = zn − ϕn and σn = ϕn − an. Then ρn → 0 as n→∞. Since

|zn| > 1 and |ϕn| = 1, we have ρn 6= 0 for all n. Also, since Φ is finite and Γ is

discrete {σn} is a discrete subset, and since |σn| = 1 for all n ≥ n0, it is in fact a

finite set.
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We have zn − an = ρn + σn for all n. Hence for any n,

zn+1 =
1

zn − an
=

1

ρn + σn
=

1

σn
+

−ρn
σn(ρn + σn)

= σn +
−ρn

σn(ρn + σn)
.

We note that ∣∣∣∣ −ρn
σn(ρn + σn)

∣∣∣∣ ≤ |ρn|
1− |ρn|

→ 0, as n→∞.

Thus zn+1 − σn → 0 as n → ∞. Since we also have zn+1 − ϕn+1 → 0 as n → ∞
and {σn} and {ϕn} are finite subsets of C this implies that ϕn+1 = σn for all large

n, say for all n ≥ n1. Thus we have

ρn+1 = zn+1 − ϕn+1 = zn+1 − σn =
−ρn

σn(ρn + σn)
,

for all n ≥ n1. Hence, for all n ≥ n1,

|ρn+1| =
|ρn|

|ρn + σn|
=

|ρn|
|zn − an|

≥ |ρn|.

But this is a contradiction, since ρn 6= 0 and ρn → 0 as n → ∞. Hence

lim supn→∞ |zn| > 1 and consequently, as noted above, |z − pn

qn
| → 0 as n → ∞.

This proves the theorem. �
3. Miscellanea

In this section we discuss various points related to the theorem.

3.1. The rings Γ. Let Γ be a discrete subring of C containing 1, other than Z.

Then it is of the form Z[i
√
k] or Z[ 12 + i

2

√
4l − 1] for some k, l ∈ N; this can be

proved by noting that as a subgroup Γ is generated by 1 and a number z ∈ C\R,

and z2 has to be an integral combination of 1 and z; the element z can be adjusted

suitably to get one of the above forms. The condition as in §2, that for all z ∈ C\K
there exists a ∈ Γ such that |z − a| < 1, holds for a ring as above if and only if k

and l are 1, 2 or 3; except in the case k = 3 the open discs of unit radius centered

at points of Γ cover the whole of C; interestingly the five rings for which this holds

are precisely the discrete subrings of C that are Euclidean rings (the author is

thankful to Sudesh Kaur Khanduja for pointing this out). In the case of k = 3

the open unit discs centered at points of Γ cover all complex numbers except 1
2γ,

γ ∈ Γ, all of which belong to K.

For k = 1 the ring Γ as above is the ring of Gaussian integers and for l = 1 it is

the ring of Eisenstein integers. The three other rings noted above to be Euclidean

and fulfilling the desired condition, are also considered in literature with regard to

continued fraction expansions; see [3] for some details and references.

3.2. Expansions in other discrete subrings. If Γ is a discrete subring for

which not every z ∈ C is contained in an open unit disc centered at an element

of Γ, one can still follow the procedure as above and get an (infinite) iteration

sequence and corresponding sequence of partial quotients, for z from a certain

subset of C (for others, at some stage we end up with a zn for which there is no
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an with |zn − an| < 1). The set for which this holds can be characterised, which

we leave to the reader. The argument in Theorem 2.1 applies to these sequences

also (corresponding to the points from the special subset), in the sense that if

{(pn, qn)} is the corresponding sequence of convergents (defined analogously) then
pn
qn

converges to z, as n→∞.

3.3. More general iteration sequences. Here we have chosen to put the con-

dition on the iteration sequence {zn} that |zn| > 1 for all n ≥ 1. As far as the

general procedure is concerned it is possible to weaken the condition to |zn| ≥ 1

for all n ≥ 1, provided we assume that zn+1 6= z−1n for all n. This was in fact

done in [4] where a variation of Theorem 2.1 was proved in the particular case of

the ring of Gaussian integers; with the generalised notion the conclusion is upheld

under an additional condition on {zn}. In [4] an iteration sequence was referred

as non-degenerate if it satisfied the desired condition, and degenerate otherwise;

while we shall not go into the details of these notions here, it may be mentioned

that in degenerate sequences {zn} one has |zn| = 1 for all large n. An analogous

criterion for exceptional sequences can be worked out also for the other rings Γ to

which Theorem 2.1 applies.

3.4. Restricted iteration sequences and Diophantine approximation. In

constructing the iteration sequences {zn} if we put a stronger condition that there

exists ρ > 1 such that |zn| > ρ for all n, then we get a degree of control on the

convergence of the convergents as in the theorem, which relates to Diophantine

approximation: under this condition the (pn, qn)’s satisfy the relation
∣∣∣z − pn

qn

∣∣∣ ≤
(ρ − 1)−1|qn|−1 for all n; see [3], Proposition 4.2. For which ρ it is possible to

generate such iteration sequences will depend on the ring Γ. The lower bound

can be readily determined (see [3]); for the ring of Gaussian integers it is possible

for ρ ≥ 1√
2
, and for the ring of Eisenstein integers ρ ≥ 1√

3
suffices. (It may be

mentioned however that with these values the estimate as above is substantially

weaker than those for classical continued fraction expansions).

3.5. Some curious continued fraction expansions. Let t ∈ R be an irrational

number and consider the iteration sequence {tn} defined by setting t0 = t, a0 the

farther of the two (real) integers within distance 1 from t = t0, and inductively,

tn+1 = 1
tn−an

for n ≥ 0, and an+1 the farther of the two integers within distance 1

from tn+1; each successive tn is an irrational number and hence the sequence is

defined for all n. Then it is easy to verify inductively that for all n ≥ 1, an is one of

the integers ±1 or ±2. These choices are among those admissible for lazy iteration

sequences, and hence by Theorem 2.1 the corresponding convergents converge to

the number t. Thus we get a continued fraction expansion for each irrational,

involving only these four integers as partial quotients, beyond a0.
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Now let Γ be a discrete subring of C, with quotient field K, such that for all

z ∈ C\K there is a ∈ Γ within distance less than 1. Proceeding analogously to

the above we get a continued fraction expansion for any z ∈ C\K, such that the

partial quotients beyond the initial one, viz. a0, are from a fixed finite subset of Γ.

Let us consider specifically the case with Γ the ring of Gaussian integers. Let

z ∈ C\K and a0 be the Gaussian integer which is the farthest among those that

are within distance less than 1. Then z − a0 is contained in the unit disc, and

either the real part or the imaginary part of z − a0 has absolute value at least 1
2 .

It follows that z1 = (z − a0)−1 is contained in the region bounded by the outer

semicircles on the sides of the square with vertices at ±1 ± i; viz. the region

consisting of the square together with the unit discs with centers at ±1 and ±i.
This implies that a1 is contained in the subset {x+ iy ∈ Γ | x2 + y2 ≤ 5}. As we

follow the same procedure with z2, z3, . . . , it follows that all later partial quotients

a2, a3 . . . belong to {x+ iy ∈ Γ | x2 + y2 ≤ 5}.
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Abstract. In 1901, David Hilbert proved that there does not exist any

complete embedded surface of constant negative Gaussian curvature in the

Euclidean 3-space E3. Hilbert’s proof was later simplified by Bieberbach and

Blaschke. In the mean time, E. Holmgren gave an alternative and a simpler

proof of Hilbert’s theorem in 1902. In this article, we will present Holmgren’s

proof and also a sketch of Hilbert’s original proof. Hilbert’s theorem was

extended in 1964 by N. V. Efimov to variable negative curvature, provided

that the curvature is bounded above by a negative constant. We will end this

article with a few comments on Efimov’s result.

1. Introduction

We begin by stating that all surfaces considered in this article have empty bound-

ary. It is a well known result in the theory of embedded surfaces in E3 that

a compact surface must have a point where the Gaussian curvature is positive.

This result immediately rules out, among other things, the existence of a compact

surface of constant negative curvature in E3. However, one can ask if there is a

complete surface of constant negative curvature in E3. The answer is negative and

this fact was first proved by Hilbert [4] in 1901.

Hilbert’s theorem is of fundamental historical significance. It showed for the

first time ever that the Hyperbolic geometry must be defined in an abstract setting.

It is of interest to note here that some mathematicians (for instance, see [3], page

no.119) have speculated that not possessing an example of a complete surface of

constant negative curvature in E3 was probably the reason why Gauss did not

make his views regarding non-Euclidean geometry public.

Hilbert’s theorem is actually a little more general. It states that there exists no

isometric immersion of any complete abstract surface of constant negative curva-

ture into E3. Recall that a map is called an isometric immersion if its differential is

injective at each point and, moreover, preserves the inner products. We shall give

a sketch of Hilbert’s proof as well as a slightly different and simpler proof of the

2010 Mathematics Subject Classification : Primary 43A85; Secondary 22E30.
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theorem discovered by Holmgren [5] in section 3 below. Efimov’s generalization

[2] of Hilbert’s theorem will be briefly discussed in the final section.

2. preliminaries from surface theory

As the proof of Hilbert’s theorem involves many concepts from classical surface

theory, we will briefly recall them below. For a more detailed discussion of these

concepts we refer the reader to any of the standard texts on surface theory, for

instance [1].

Eventhough the differential geometry of curves and surfaces in Euclidean space

began immediately after the invention of calculus and analytic geometry and that

there were a few results about them before, it was Gauss who brought the theory

of surfaces into its modern definitive form in his great work on surface theory

Disquisitiones generales circa superficies curvas in 1827. In this work he made

in particular the remarkable discovery, the Theorema egregium, that the Gaussian

curvature of a surface is an intrinsic invariant of the surface.

For an embedded surface S in E3, suppose N denotes a unit normal vector

field to S defined in a neighborhood of some point p ∈ S. For any unit tangent

vector v to S at p, the plane Πv containing the vectors v and N(p) intersects S

along some curve γv passing through p, which is called as a normal section of S

at p. The curvature of the plane curve γv at p is called the normal curvature of

S along the vector v at p. The maximum and minimum of the normal curvatures

at p are known as the principle curvatures of S at p and their product is called

the Gaussian curvature of S at p. Eventhough the principle curvatures change

their signs when the normal field is changed the Gaussian curvature, being their

product, will remain the same. From a qualitative point of view, if the Gaussian

curvature at p is positive then there is a neighborhood of p in the surface which
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lies entirely on one side of the tangent plane to the surface at p and, in the case

when the Gaussian curvature is negative, any neighborhood of p lies on either sides

of the tangent plane at p.

One can get an explicit expression for the Gaussian curvature of S as follows.

For this purpose assume that S is given by a surface patch σ : U ⊂ R2 → R3.

Let N = σu×σv

‖σu×σv‖ denote the standard unit normal to σ. Moreover, let ds2 =

Edu2 + 2Fdudv + Gdv2 and II = Ldu2 + 2Mdudv + Ndv2 denote the first and

second fundamental forms of σ, respectively. Then the Gaussian curvature K of

σ is given by K = LN−M2

EG−F 2 .

Gaussian curvature of a surface S in R3 can also be described in terms of the

Gauss spherical map G : S → S2. Here S2 denotes the unit sphere in R3. In

order to define this map we assume that the surface is orientable, i. e., S admits a

smooth unit normal vector field N . Then the Gauss map is given by G(p) = N (p),

where we now view N (p) as a point in R3. The idea is that to measure how curved

a surface is at a point we look at how fast a normal field to the surface near the

point varies. Since the tangent planes TpS and TG(p)S
2 are the same we obtain

the endomorphism DG(p) : TpS → TpS. Then K(p) = detDG(p). In fact, this

was how Gauss defined “Gaussian” curvature. We have the following geometric

interpretation of the Gaussian curvature: The (oriented) area of the image on

S2 of an infinitesimal region around p in S under the Gauss map is K(p) times

the area of this infinitesimal region. Therefore, if U ⊂ S is a “nice” set then

Area(G(U)) =
∫
U
KdA, where dA denotes the area element on S.

Quite often a problem in differential geometry can be simplified by introducing

a suitable parametrization of the surface. A unit tangent vector v at p to S

is called an asymptotic direction at p if the normal curvature of S at p along

v vanishes. In terms of the second fundamental form II of a parametrization

this is equivalent to the condition II(v, v) = 0. Clearly, if v is an asymptotic

direction at p then so is the vector −v. If K(p) is positive then both the principle

curvatures at p have the same sign and therefore there are no asymptotic directions

at p. Now suppose that K(p) < 0. If II = Ldu2 + 2Mdudv + Ndv2, then a

unit vector v = (a, b) is a asymptotic direction precisely when La2 + 2Mab +

Nb2 = 0. This last equation may be viewed as a quadratic equation in a
b with
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positive discriminant M2−LN and therefore will have two distinct solutions. As a

consequence there are (upto sign) exactly two asymptotic directions at p whenever

K(p) is negative. A curve on S is called an asymptotic curve if at each point on

the curve its tangent vector is along an asymptotic direction. One can write down

the differential equation for such curves: γ(t) = (u(t), v(t)) is an asymptotic curve

if and only if it satisfies the differential equation Lu′2 + 2Mu′v′ + Nv′2 = 0. If

S has negative Gaussian curvature then it follows from the theory of ordinary

differential equations ( existence, uniqueness and smooth dependence of solutions

on the initial data) that through each point of S there pass (upto orientation)

exactly two distinct asymptotic curves and that these curves are the parameter

curves of some parametrization of a neighborhood of each point in the surface.

Clearly, in such a parametrization one has L = N = 0.

Another parametrization that can sometimes be useful in certain problems

is the so called Tschebyshef net. For any abstract surface S an immersion σ :

(a, b)× (c, d)→ S is called a Tchebyshef net if all the parameter curves have unit

speed. Equivalently, the first fundamental form of the surface patch σ has the

form ds2 = du2 + 2Fdudv + dv2. It is not difficult to show that near any point

of any surface such a parametrization exists. As we shall see below, the notion

of Tschebyshef nets makes a surprising and crucial appearance in the proof of

Hilbert’s theorem.

We shall also require some global notions. We deal with abstract surfaces in

what follows and the word curvature shall mean the sectional curvature of the

surface. For an embedded surface in E3 the sectional curvature agrees with the

Gaussian curvature.

Recall that a surface is called complete if every geodesic on the surface is

defined for all time. This corresponds to the familiar axiom for the Euclidean

plane geometry that a straight line segment in the plane can be extended to infinity

in both directions. A famous result, the Hopf-Rinow theorem, asserts that this

notion of completeness of the surface is equivalent to the notion of completeness

of the surface as a metric space, where the distance between any two points on the

surface is defined to be the infimum of the lengths of all piecewise smooth paths

on the surface joining these points.

Another notion that appears in Hilbert’s proof is that of a covering surface.

A covering surface of a surface S is another surface S̃ together with a surjective

map Φ : S̃ → S, called the covering map, such that for any point q ∈ S, there

exists an open neighborhood U of q such that Φ−1(U) is a disjoint union of open

sets in S̃, each of which is mapped diffeomorphically by Φ onto U . We refer the

reader to [1], Chapter 5, for a detailed discussion of this notion. The key point for

us will be the fact that any surface admits a (essentially unique) simply connected
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covering surface called the universal covering surface of the given surface. Recall

that a path connected surface is said to be simply connected if, roughly speaking,

every closed curve on the surface can be continuously deformed to a point within

the surface. As an illustrative example, for the case of the Torus T 2(= S1 × S1),

the plane R2 will be the universal covering surface with respect to the mapping

Φ : R2 → T 2 given by Φ(x, y) = (eix, eiy).

The covering map becomes a local isometry when the universal covering surface

is given the pullback metric by the covering map and, therefore, these surfaces have

the same curvatures. Moreover, it is not difficult to see that the universal covering

surface is complete precisely when the surface is complete.

The curvature of a surface influences the behavior of geodesics on the sur-

face. Roughly speaking, if the the curvature of the surface is positive then nearby

geodesics converge as in the case of a Sphere whereas if the curvature of the sur-

face is negative then they diverge as in the case of the Hyperbolic plane. This last

statement is usually made precise by introducing the notion of exponential map

and Jacobi field. Assume that S is complete and p ∈ S. For any v ∈ TpS there

is a unique geodesic γ such that γ(0) = p and γ′(0) = v. We set expp(v) = γ(1),

i.e., expp(v) is the point on the surface obtained by following the geodesic γ start-

ing from p and going upto a distance equal to the length of v. The mapping

expp : TpS → S so obtained is called the exponential map based at p. It is a

consequence of the inverse function theorem from calculus that this map is a dif-

feomorphism of a neighborhood of 0p in TpS onto some neighborhood of the point

p in the surface. This fact allows us to introduce the analogue of polar coordinates

around p which turn out to be extremely important in the study of the geometry

of the surface. Jacobi fields are variation fields of geodesic variations and relate

the behavior of geodesics with the curvature of the surface. By a detailed study

of the relationship between geodesics and curvature one can prove the following

important global results which will be used later on (Proofs of these theorems can

be found in [1], Chapter 5).

Bonnet-Myers theorem. If the curvature of a complete surface S is bounded

below by a positive number then S must be compact.

Model spaces of constant curvature. Let S be a complete simply connected

surface which has constant curvature K. Then

S must be isometric to the Euclidean plane E2 if K = 0;

S must be isometric to the unit sphere S2 in R3 if K = 1;

S must be isometric to the Hyperbolic plane H2 if K = −1.

Cartan-Hadamard theorem. Suppose that a complete simply connected

surface S has nonpositive curvature. Then S must be diffeomorphic to a plane.

All the three global results extend to higher dimensions as well.
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3. Statement and proof of Hilbert’s theorem

Theorem (Hilbert, 1901). Let S be a complete abstract surface of constant

negative curvature. Then there does not exist any isometric immersion of S into

E3.

Proof. We will simultaneously give Holmgren’s and Hilbert’s proofs below. The

proofs will be divided into many steps. Steps 1 to 3 are common to both the

proofs.

Step 1. Let S be a surface in E3 of constant curvature K < 0 and p ∈ S. We

can find a parametrization about p which is a Tschebyshef net and such that the

parameter curves are asymptotic curves.

Proof of Step 1. Since S has negative curvature, we know that the asymptotic

curves give a parametrization near p. Thus we have a parametrization σ : (−ε, ε)×
(−ε, ε) → S, σ(0, 0) = p, such that the parameter curves are asymptotic curves.

Let ds2 = Edu2 + 2Fdudv + Gdv2 and II = Ldu2 + 2Mdudv + Ndv2 denote the

first and second fundamental forms of this parametrization, respectively. Without

loss of generality, we may assume that the parameter curves passing through p

have unit speed. Hence E(s, 0) = 1 and G(0, t) = 1. Using the constancy of the

curvature, we show below that all parameter curves have unit speed.

Let N = (σu × σv/‖σu × σv‖) denote the standard unit normal associated to

σ and let D =
√
EG− F 2. We know that Nu ×Nv = Kσu × σv. Therefore

(N×Nv)u − (N×Nu)v = 2Nu ×Nv = 2KDN.

Also N ×Nu = 1
D{〈σu,Nu〉σv − 〈σv,Nu〉σu} = 1

D (Mσu − Lσv) and N ×Nv =
1
D (Nσu −Mσv). Since K = −M2

D2 and L = N = 0, we conclude that N ×Nu =

±
√
−Kσu, N × Nv = ∓

√
−Kσv so that 2KDN = ∓

√
−Kσuv ∓

√
−Kσvu =

∓2
√
−Kσuv.

Hence σuv is parallel to N which implies Ev = 0 = Gu. Also 0 = (〈σu,N〉)u =

L+〈σu, Nu〉 = 〈σu,Nu〉. Therefore Eu = (〈σu,N〉)u = L+〈σu,Nu〉 = 0. Similarly

Gv = 0. Hence E,G are constants and must be equal to 1 throughout. Thus the

first fundamental form of σ has the form ds2 = du2 + 2Fdudv + dv2 and we are

done with the proof of Step 1. �

Step 2. Let S be an abstract surface and let σ : (a, b)×(c, d)→ S be a Tschebyshef

net. Define the angle function ω : (a, b)×(c, d)→ R as follows: 0 < ω(s0, t0) < π

is the angle between the parameter curves passing through g(u0, v0). Then ω

satisfies the partial differential equation

∂2ω

∂u∂v
= −K sinω, (3.1)

where K denotes the curvature of S.
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Proof of Step 2. Since σ is a Tschebyshef net the first fundamental form of

the net has the form ds2 = du2 + 2Fdudv + dv2. One form of Gauss’s Theorema

Egregium states that K = 1√
EG−F 2

{( Fu√
EG−F 2

)v + ( Fv√
EG−F 2

)u}. Here E = G =

1,
√
EG− F 2 = sinω. Therefore the above equation can be written in the form

(3.1). �

Step 3. Let S be a complete abstract surface of constant negative curvature. As-

sume that S can be immersed in E3. Then there exists an asymptotic Tschebyshef

net F : R2 → S.

Proof of Step 3. Fix a point p0 ∈ S and consider an asymptotic curve c(u)

passing through p0. Since c has unit speed and S is complete, it is not difficult to

see that c is defined on all of R. Now choose the other asymptotic curve through

p0 whose velocity at p0 is V0. For each u ∈ R, let γu(v) denote the unique asymp-

totic curve passing through c(u) whose velocity vector at c(u) is obtained from

continuous extension of V0. Now define F : R2 → S by F (u, v) = γu(v).

We have to show that each parameter curve u → F (u, v) is an asymptotic

curve of S. This will be shown using the existence of an asymptotic Tschebyshef

net σ : (−ε, ε)×(−ε, ε)→ S about each point of S, as proved in step 1. First observe

that if for some v ∈ (−ε, ε) the parameter curve u→ σ(u, v) lies along a parameter

curve u → F (u, v), then all parameter curves u → σ(u, v) lie along parameter

curves of F. Given (u0, v0) ∈ R2, we can find a finite number of Tschebyshef nets

σ1, σ2, ...., σn whose images cover the set {F (u0, t) : 0 ≤ v ≤ v0.} Arranging the

σi’s so that the images of the consecutive ones overlap and using the fact that the

curve u → F (u, 0) is an asymptotic curve (by definition of F ), we see that the

curve u→ f(u, v0) must be an asymptotic curve for u sufficiently close to u0. �

Holmgren’s proof. In view of steps 2 and 3, to prove Hilbert’s theorem it is

enough to prove the following:

There does not exist a function ω : R2 → R satisfying ∂2ω
∂u∂v = C sinω,

0 < ω < π, for any constant C > 0.

Assume that such a solution ω exists. Then ∂2ω
∂u∂v > 0 so that ∂ω

∂u is increasing in

v and hence ∂ω(u,v)
∂u > ∂ω(u,0)

∂u for v > 0. Integrating this inequality gives ω(b, v)−
ω(a, v) > ω(b, 0) − ω(a, 0) for v > 0 and a < b. Without loss of generality, we

can assume that ∂ω(0,0)
∂u 6= 0. Further, since the function (u, v) → ω(−u,−v) also

satisfies the differential equation, we may actually assume that ∂ω(0,0)
∂u > 0. Now

fix three numbers 0 < u1 < u2 < u3 with

∂ω(u, 0)

∂u
> 0

for 0 ≤ u ≤ u3 and set ε = min{ω(u3, 0) − ω(u2, 0), ω(u1, 0) − ω(0, 0)}. Then for

v > 0 and u ∈ [0, u3] we have ω(u, v) is increasing in u, ω(u1, v)− ω(0, v) > ε and

ω(u3, v) − ω(u2, v) > ε. Therefore ε ≤ ω(u, v) ≤ π − ε for u ∈ [u1, u2] and v ≥ 0.

Thus sin(ω(u, v)) ≥ sin ε for u ∈ [u1, u2] and v ≥ 0.
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If we integrate the differential equation ∂2ω
∂u∂v = C sinω over the rectangle

[u1, u2] × [0, T ] for any T > 0, we obtain C
∫ T
0

∫ u2

u1
sinω(u, v)dudv = ω(u2, T ) −

ω(u1, T )− ω(u2, 0) + ω(u1, 0), so that ω(u2, T )− ω(u1, T ) = ω(u2, 0)− ω(u1, 0) +

C
∫ T
0

∫ u2

u1
sinω(u, v)dudv ≥ ω(u2, 0) − ω(u1, 0) + CT (u2 − u1) sin ε. However this

gives a contradiction for large enough T , as the left hand side is smaller than π. �

Sketch of Hilbert’s proof. The basis of Hilbert’s proof is the following lemma.

Lemma 1. (Formula of Hazzidakis). Let S be an abstract surface of constant

curvature K < 0 and let σ : (a, b) × (c, d) → S be a Tschebyschef net. Then any

quadrilateral formed by parameter curves of σ has area utmost 2π
−K .

Proof. If Q denotes a quadrilateral formed by parameter curves of σ with

vortices (u1, v1), (u2, v1), (u2, v2) and (u1, v2) with corresponding interior angles

α1, α2, α3, α4, then using step2 we see that Area(Q) =
∫
Q

sinωdu ∧ dv =
1
−K

∫ u2

u1

∫ v2
v1

∂2ω
∂u∂vdudv = 1

−K (ω(u2, v2) − ω(u1, v2) − ω(u2, v1) + ω(u1, v1)) =
1
−K ([α3 − (π − α4)− (π − α2) + α1] = 1

−K (α1 + α2 + α3 + α4 − 2π) < 2π
(−K) . �

Lemma 2. The area of the Hyperbolic plane H2 is infinite.

Proof. The hyperbolic plane is the upper half plane endowed with the metric

g = dx2+dy2

y2 . Therefore its area is
∫∞
−∞

∫∞
0

1
y2 dxdy =∞. �

Now we can complete Hilbert’s proof as follows. Without loss of generality we

may assume that the constant curvature is −1. If there is an immersion of S into

E3, then by going to the universal covering surface S̃ of S, we can find an isometric

immersion of S̃ into E3. Note that S̃ must be isometric to H2 and therefore must

have infinite area. Now, if we are able to show that the asymptotic Tschebyshef net

considered in step 3 above can be extended to form a parametrization of all of the

simply connected surface S̃, then using Lemmas 1 and 2 we obtain a contradiction.

Thus establishing the existence of a global asymptotic Tschebyshef net is the main

(and the harder) part in Hilbert’s proof. The reader is referred to [7] or [1] for a

complete proof. Also see [8] and [9]. �

4. Efimov’s theorem

An example. The Hyperboloid. Consider the surface x2 + y2 = 1 + z2 in R3

which is known as the Hyperboloid of revolution.

A straightforward calculation shows that the Gaussian curvature K of the

Hyperboloid is given by the formula K(x, y, z) = − 1
(1+2z2)2 . It follows that the

Gaussian curvature of the Hyperboloid is strictly negative everywhere. The fact

that the Hyperboloid is complete can be seen, for example, from the follow-

ing proposition (It may be worth remarking that the converse of the following

proposition is false).

Proposition 1. An embedded surface S ⊂ R3 which is also a closed subset of R3

must be complete.
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Proof. Let γ be any unit speed geodesic of S defined on the interval [0, b). We

show that γ can be extended to a geodesic α which is defined on [0,∞).

Choose a sequence tn in [0, b) such that tn → b. Now |tn − tm| ≥
dS(α(tn), α(tm)) ≥ ‖α(tn) − α(tm)‖, since straight line segments realize the

Euclidean distance. Thus the sequence α(tn) is Cauchy and hence converges in R3

to some point p. Since S is closed we actually have p ∈ S.
We can choose a neighborhood of W of p in S and a number δ > 0 such that

for every q ∈W, expq is a diffeomorphism on the ball Bδ(0) and W ⊂ expq(Bδ(0))

(See [1], page no. 300, Proposition 1). In this case any two points of W are

connected by a unique geodesic of length less than δ. If α(tn) and α(tm) belong to

W with |tn − tm| < δ, then the unique geodesic of length less than δ joining α(tn)

and α(tm) must coincide with γ. Since expα(sn) is a diffeomorphism in Bδ(0) and

expα(sn)(Bδ(0)) ⊂W , γ extends α beyond p. Thus α is defined at t = b. �

Observe that in the Hyperboloid example the Gaussian curvature tends to 0 as

z → ±∞. In 1930’s, Cohn-Vossen had conjectured that there exists no isometric

immersion of a complete abstract surface of negative curvature into E3, provided

that the curvature remains bounded away from 0. This conjecture was settled in

[2] by the Russian mathematician Efimov in 1964.

Theorem (Efimov, 1964). Let S be a complete abstract surface whose curvature

K is negative and satisfies K ≤ k < 0 for some constant k < 0. Then there exists

no isometric immersion from S into E3.

The proof of Efimov’s theorem is too long and delicate to give here in complete

detail. We will, therefore, only give a very brief sketch of the key points involved.

The interested reader is referred to the paper [6] for the complete proof.

To begin with, we need a generalization of Lemma 2.

Proposition 2. Let S be a complete simply connected abstract surface of non-

positive curvature. Then the area of S must be infinite.
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Proof. Fix any point p ∈ S. The key point here is that the exponential map

expp : TpS → S is a diffeomorphism, by Cartan-Hadamard theorem. This fact

allows us to set up a polar co-ordinate system on all of S. The metric in polar co-

ordinates (r, θ) (with p as the origin) has the form ds2 = dr2 + φ2(r, θ)dθ2, where

the function φ satisfies φ(0, θ) = 0 and ∂φ(0,θ)
∂r = 1. Since K(r, θ) = −φrr(r,θ)

φ(r,θ) ≤ 0,

we see that φrr(r, θ) ≥ 0 and hence r → φ(r, θ) is increasing. Since ∂φ(0,θ)
∂r = 1

and φ satisfies φ(0, θ) = 0 we conclude that φ(r, θ) ≥ r for all (r, θ). Therefore the

volume of M=
∫∞
0

∫ 2π

0
φ(r, θ)dθdr ≥

∫∞
0

∫ 2π

0
rdθdr =∞. �

As in the case of Hilbert’s proof we may assume that S is simply connected

by going to the universal covering surface of S. By Cartan-Hadamard theorem, S

must be diffeomorphic to the plane. Let Ω denote the surface S equipped with

the metric obtained from pulling back the Riemannian metric of the 2-Sphere S2

to S via the Gauss map G : S → S2. Then Ω has constant positive curvature 1.

Note, however, that Ω cannot be complete. Otherwise, it would be compact by

the Bonnet-Meyer theorem and, therefore, the surface S must have a point where

the curvature must be positive, which is contrary to the hypothesis. Now, Efimov

considers the metric completion Ω of Ω. The Gauss map G : Ω → S2 extends as

a continuous map G : Ω→ S2. By a deep study of the behavior of this map near

the “boundary” of Ω, i.e., near the set Ω \Ω, Efimov proves that Ω has finite area

(in fact, of area atmost 4π). Taking this fact for granted, the proof of Efimov’s

theorem can be completed as follows

Fix a point p ∈ S. Let A(r) denote the area of the geodesic ball Dr(p) of radius

r at p in S and let A∗(r) be the area of this ball in Ω. Since |K| ≥ k > 0 on S,

we have 4π ≥ A∗(r) =
∫
Dr(p)

|K|dA ≥ k
∫
Dr(p)

dA = kA(r), which is impossible in

view of Proposition 2.

We end this article by remarking that the regularity hypothesis in Efimov’s

(and Hilbert’s) theorem can be weakened. It suffices for the surface to be of class

C2. See [6] for further details.
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Abstract. This paper is concerned with the simultaneous diophantine

equations xm
1 + xm

2 = ym1 + ym2 , xn
1 + xn

2 = yn1 + yn2 , where m, n are distinct

positive integers. It is shown that for arbitrary m, n, these equations have no

solutions in nonnegative integers; further when m, n are of the same parity,

these equations have no solutions in integers, whether positive or negative.

This paper is concerned with the simultaneous diophantine equations

xm1 + xm2 = ym1 + ym2 , (1)

xn1 + xn2 = yn1 + yn2 , (2)

where m, n are distinct positive integers. It has been shown by Sinha [4] that

these two equations do not have a nontrivial solution in integers when 1 ≤ m ≤ 4

and 1 ≤ n ≤ 4. The special case when (m, n) = (2, 3) has also been considered

independently by other authors ([1], [2], [3]).

Any solution (x1, x2, y1, y2) = (α1, α2, β1, β2) of eqs. (1) and (2) will be

called a trivial solution if the pair of numbers, α1, α2, is a permutation of the

numbers β1, β2. Further, when both m and n are odd integers, any solution of the

type (x1, x2, y1, y2) = (α, −α, β, −β) will also be considered as a trivial solution.

All other solutions will be referred to as nontrivial solutions.

In this paper it is shown that if m, n are arbitrary distinct positive integers,

the simultaneous equations (1) and (2) have no nontrivial solutions in nonnegative

integers. It is also shown that when the integers m, n are of same parity, the

simultaneous equations (1) and (2) have no nontrivial solutions in integers, whether

positive or negative. These results are proved in the two theorems that follow.

Theorem 1. If m and n are arbitrary distinct positive integers, the simultaneous

equations (1) and (2) have no nontrivial solutions in nonnegative integers.

Proof. Without loss of generality, we assume that m > n. Let (x1, x2, y1, y2)

= (α1, α2, β1, β2) be a nontrivial solution in nonnegative integers of eqs. (1) and

(2) with αi ≥ 0, βi ≥ 0, i = 1, 2.
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ons.

c© Indian Mathematical Society, 2016 .

163



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

164 AJAI CHOUDHRY

We first show that none of the integers α1, α2, β1, β2 can be 0. It is readily

seen that two or more of these four integers cannot be 0. If only one of the four

integers, say α2, is 0 then we have
αn
1 = βn

1 + βn
2 , (3)

so that

α1 > β1, α1 > β2. (4)

Multiplying (3) by αm−n
1 we get

αm
1 = αm−n

1 βn
1 + αm−n

1 βn
2 ,

> βm
1 + βm

2 ,
(5)

in view of the relations (4). This contradicts the assumption that (α1, 0, β1, β2)

is a solution of (1). Similarly, the other integers α1, β1, β2 are seen to be nonzero

and henceforth we assume that all the integers α1, α2, β1, β2 are positive.

We assume without loss of generality that α1 ≥ α2 and β1 ≥ β2. Let

αn
1 + αn

2 = βn
1 + βn

2 = 2s, (6)
so that we may write

αn
1 = s+ d1, αn

2 = s− d1, βn
1 = s+ d2, βn

2 = s− d2, (7)

where s is a positive rational number and d1, d2 are distinct rational numbers

such that 0 ≤ di < s, i = 1, 2 and we may assume without loss of generality that

d1 > d2. It follows from (7) that

α1 = (s+ d1)1/n, α2 = (s− d1)1/n, β1 = (s+ d2)1/n, β2 = (s− d2)1/n. (8)

We thus get
αm
1 + αm

2 = (s+ d1)m/n + (s− d1)m/n, (9)

βm
1 + βm

2 = (s+ d2)m/n + (s− d2)m/n. (10)

We now consider the following function

f(d) = (s+ d)m/n + (s− d)m/n, (11)

where s is a fixed positive rational number. The derivative of f(d) is given by

f ′(d) =
m

n
.{(s+ d)(m−n)/n + (s− d)(m−n)/n}. (12)

When 0 ≤ d < s, both the numbers (s+d)(m−n)/n and (s−d)(m−n)/n are positive

and hence their arithmetic mean is not less than their geometric mean. Thus,

when 0 ≤ d < s, we get

f ′(d) ≥ 2m

n
.(s2 − d2)(m−n)/n > 0 (13)

and hence the function f(d) is monotonically increasing in this interval. Since

0 ≤ di < s, i = 1, 2, it follows that when d1 > d2 we have f(d1) > f(d2). It now

follows from (9), (10) and (11) that

αm
1 + αm

2 > βm
1 + βm

2 . (14)
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This contradicts the assumption that (α1, α2, β1, β2) is a solution of (1). It

follows that there cannot exist a solution in nonegative integers of the

simultaneous equations (1) and (2). This proves the theorem.

Theorem 2. If m and n are arbitrary distinct positive integers of the same

parity then the simultaneous equations (1) and (2) have no nontrivial solutions in

integers, whether positive or negative.

Proof. If the integers m and n are both even, any nontrivial solution

(α1, α2, β1, β2) of eqs. (1) and (2) involving negative integers immediately yields a

nontrivial solution (|α1|, |α2|, |β1|, |β2|) in nonegative integers of these equations.

This contradicts Theorem 1.

If the integers m and n are both odd, we assume without loss of generality

that m > n. Let (x1, x2, y1, y2) = (α1, α2, β1, β2) be a nontrivial solution of

eqs. (1) and (2) so that

αm
1 + αm

2 = βm
1 + βm

2 , (15)

αn
1 + αn

2 = βn
1 + βn

2 . (16)

In view of Theorem 1 at least one of the four integers α1, α2, β1, β2 must be

negative. We now have the following cases.

Case-1. Only one of the four integers α1, α2, β1, β2 is negative. Without loss of

generality we may take α1 > 0, α2 < 0, β1 > 0, β2 > 0, so that we obtain, from

(15) and (16), the following relations after transposition

αm
1 = |α2|m + βm

1 + βm
2 , (17)

αn
1 = |α2|n + βn

1 + βn
2 . (18)

It follows from (18) that α1 > |α2|, α1 > β1 and α1 > β2. Now, on multiplying

(18) by αm−n
1 we get

αm
1 = αm−n

1 |α2|n + αm−n
1 βn

1 + αm−n
1 βn

2 ,

or, αm
1 > |α2|m + βm

1 + βm
2 ,

(19)

which contradicts the relation (17).

Case-2. Two of the four integers α1, α2, β1, β2 are negative. Clearly the two

negative integers cannot both be on the same side of eqs. (1) and (2). Thus, one

of the two integers α1, α2 must be negative, and similarly, one of the two integers

β1, β2 must be negative. Since both m and n are odd we can obtain from (15)

and (16), after suitable transpositions, a nontrivial solution of eqs. (1) and (2) in

nonnegative integers in contradiction of Theorem 1.

Case-3. When three of the four integers α1, α2, β1, β2 are negative, we obtain

relations of the type (17) and (18) by suitable transpositions. As already seen

earlier such solutions cannot exist. Similarly, it is readily seen that there cannot

exist any solution in which all four integers α1, α2, β1, β2 are negative.
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Thus, we see that in all cases when m and n are both even or are both odd,

the existence of a nontrivial solution of the simultaneous equations (1) and (2)

leads to a contradiction. It follows that when m and n are of the same parity

there cannot exist a solution of eqs. (1) and (2) in integers, whether positive or

negative. This proves the theorem.

Acknowledgment. I wish to thank the Harish-Chandra Research Institute,

Allahabad, for providing me all the necessary facilities that have helped me to

pursue my research work in mathematics.

References
[1] Gatteschi, L. and Rosati, L. A., Risposta ad una questione proposta da A. Moessner, Boll.

Un. Mat. Ital. (3) 5 (1950), 43–48.

[2] Gupta, H., A system of equations having no nontrivial solutions, J. Res. Nat. Bur. Standards

Sect. B 71B (1967), 181–182.
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PROBLEM SECTION

Problems of the Mathematics Student Vol. 84, Nos. 1-2, January-June,

(2015) (MS, 84, 1-2, 2015 for short): We published Proposer’s solution to the

Problem-4 and the correct submitted solution from the floor to the Problems 5, 9

and 11 in the MS, 84, 3-4, 2015. Till April 30, 2016, no responses are received to

the remaining Problems 2, 3, 6, 7, 8 and 10 and hence we provide in this issue the

Proposer’s solution to these problems. Problem 1 is an open problem.

Problems of the MS, 84, 3-4, 2015: One submitted solution to the Problem-18

is received from the floor which is correct and is published in this issue. Readers

can try their hand on the remaining Problems 12, 13, 14, 15, 16 and 17 till October

31, 2016.

In this issue we first present eight new problems. Solutions to these problems

as also to the remaining Problems 12, 13, 14, 15, 16 and 17 of MS, 84, 3-4, 2015,

received from the floor till October 31, 2016, if approved by the Editorial Board,

will be published in the MS, 85, 3-4, 2016.

MS-2016, Nos. 1-2: Problem-01: Proposed by M. Ram Murty.

Let φ denote Euler’s function. Show that for any positive real number a,

there is a constant C(a) such that∑
n≤x

(
n

φ(n)

)a
≤ C(a)x.

MS-2016, Nos. 1-2: Problem-02: Proposed by B. Sury

Suppose a, b, c, d are integers such that the last 2016 digits of the number

ab + cd are all 9’s. Show that there exist integers A,B,C,D each ending in

2016 zeroes such that

(a+A)(b+B)(c+ C)(d+D) = ±1.

MS-2016, Nos. 1-2: Problem-03: Proposed by B. Sury .

Show that the number 11 · · · 122 · · · 25 where 1 is repeated 2015 times and

2 is repeated 2016 times, is a perfect square.

c© Indian Mathematical Society, 2016 .

167



Mem
be

r's
 co

py
-  

no
t f

or
 ci

rcu
lat

ion
 

168 PROBLEM SECTION

MS-2016, Nos. 1-2: Problem-04: Proposed by B. Sury .

Let f = c0 + c1X + · · ·+ cnX
n be a polynomial with integer coefficients.

Prove that there exist n+ 1 primes p0, p1, p2, · · · , pn and a polynomial g with

integer coefficients such that

f(x)g(x) = a1x
p1 + a2x

p2 + · · ·+ anx
pn

for some integers ai’s.

MS-2016, Nos. 1-2: Problem-05: Proposed by B. Sury .

Let f =
∑n
i=0 ciX

i where n is a positive integer and each ci = ±1. If all

the roots of f are real, determine all the possibilities for f .

MS-2016, Nos. 1-2: Problem-06: Proposed by Raja Sridharan, TIFR,

Mumbai; submitted through Clare D’Cruz.

Let A be a commutative ring with unity, M a finitely generated A-module,

and I be an ideal of A.

(1) Suppose that IM = M . Then show that there exists an x ∈ I such

that (1 + x)M = 0.

(2) Suppose I is a finitely generated ideal such that I2 = I. Then show

that I is generated by an idempotent, i.e., there exists an element x

such that I = (x) and x2 = x.

(3) Suppose x1, ..., xn ∈ I and (x1, ..., xn)+I2 = I. Then show that there

exists x ∈ I such that I = (x1, ..., xn, x).

(4) Let x ∈ A be an idempotent element and let y ∈ A be any other

element. Then show that the ideal I = (x, y) is principal.

(5) Let I ⊆ A be a finitely generated ideal. Suppose there exists

x1, ..., xn ∈ I such that (x1, ..., xn) + I2 = I. Then show that for

any y ∈ A, (I, y) can be generated by n+ 1 elements.

(6) Let (A,m) be a local ring with 1 and I ⊆ m an ideal. Suppose

x1, ..., xn ∈ I are such that (x1, ..., xn)+I2 = I. Then I = (x1, ..., xn).

(7) Is (6) true for any ideal I in a Noetherian ring with 1? What are

classes of rings for which (6) is true?

MS-2016, Nos. 1-2: Problem-07: Proposed by Purusottam Rath, CMI,

Chennai; submitted through Clare D’Cruz.

Let M = (aij) be an n× n matrix with aij ∈ R and |aij | ≤ 1. Show that

the absolute value of determinant of M is at most nn/2. When does equality

hold?
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MS-2016, Nos. 1-2: Problem-08: Proposed by Purusottam Rath, CMI,

Chennai; submitted through Clare D’Cruz.

let A and B be finite subsets of integers. Consider the set A+B given by

A+B := {a+ b : a ∈ A, b ∈ B}.
Show that |A+B| ≥ |A|+ |B| − 1.

Solution from the floor: MS-2015, Nos. 3-4: Problem 18: Evaluating

the product, prove that
√
2

1+
√
2
.

√
2+
√
2

1+
√√

2
.

√
2+
√

2+
√
2

1+

√√√
2
... = ln 4

π .

(Solution submitted on 08-01-2016 by Subhash Chand Bhoria; Corporal, Air

Force Station, Bareilly, Technical Flight, UP-243002, India; scbhoria@yahoo.com).

Solution. Put xn =
√

2 + xn−1, wn = xn

2 , for n ≥ 1, where in x0 = 0. We have

lim
k→∞

k∏
n=1

wn =
2

π

in view of Viéte’s formula (see Beckmann, Petr, A history of π, Second Edition,

The Golden Press, Boulder, Colo. (1971), 94-95). For yn = 1+21/2
n

for all n ≥ 1,

we then obtain

lim
k→∞

k∏
n=1

xn
yn

=
2

π

(
lim
k→∞

k∏
n=1

2

yn

)
=

2

π

 lim
k→∞

2k

k∏
n=1

(
1 + 21/2n

)
 .

Observe that

1∏k
n=1

(
1 + 21/2n

) =
1×

(
1− 21/2

k
)

((
1 + 21/2

) (
1 + 21/4

)
· · ·
(
1 + 21/2k

))
×
(
1− 21/2k

)
=

(
1− 21/2

k
)

(
1 + 21/2

) (
1 + 21/4

)
· · ·
(

1 + 2
1

2k−1

)(
1− 2

1

2k−1

)
=

(
1− 21/2

k
)

(
1 + 21/2

) (
1− 21/2

) =
(

21/2
k

− 1
)
.

Therefore

lim
k→∞

k∏
n=1

xn
yn

=
2

π

(
lim
k→∞

2k
(

21/2
k

− 1
))

.

Now take 1
2k

= t. Noticing that t tends to 0 as k tends to infinity and using

L’Hôpital’s rule, we then obtain

2

π

(
lim
k→∞

2k
(

21/2
k

− 1
))

=
2

π

(
lim
t→0

(2t − 1)

t

)
=

2

π
(ln 2) =

ln 4

π

which completes the proof.
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Solution by the Proposer George E. Andrews: MS-2015, Nos. 1-2:

Problem 2: Prove that, for |q| < 1 and b not a negative power of q,

∞∑
n=1

qn

(1− qn)(1− bqn)
=
∞∑
n=1

nqn
∞∏
m=n

(1− qm+1)

(1− bqm)
. (0.1)

Fokkink, R., Fokkink, W. and Wang, B. (A relation between partitions and the

number of divisors, Amer. Math. Monthly, 102(1995), 345-347) proved that the

number of divisors of n equals

−
∑
π∈Dn

(−1)#(π)σ(π),

where Dn is the set of integer partitions of n into distinct parts, #(π) is the number

of parts of π and σ(π) is the smallest part of π.

Ex. When n = 6, D6 = {6, 5 + 1, 4 + 2, 3 + 2 + 1}, so the above sum is

6− 1− 2 + 1 = 4, and there are four divisors of 6, namely 1,2,3, and 6.

Deduce the Fokkink, Fokkink and Wang theorem from (0.1).

Solution. We require the following notation

(A; q)n =
n−1∏
j=0

(1−Aqj) and (A; q)∞ =
∞∏
j=0

(1−Aqj).

Also we need the classical q-binomial series
∞∑
n=0

(A; q)nt
n

(q; q)n
=

(At; q)∞
(t; q)∞)

. (0.2)

Then
∞∑
n=1

nqn
∞∏
m=n

(1− qm+1)

(1− bqm)
=

d

dz

∣∣∣
z=1

∞∑
n=0

znqn
(qn+1; q)∞
(bqn; q)∞

=
d

dz

∣∣∣
z=1

(q; q)∞
(b; q)∞

∞∑
n=0

znqn(b; q)n
(q, q)n

=
d

dz

∣∣∣
z=1

(q; q)∞
(b; q)∞

(zbq; q)∞
(zq, q)∞

(by (0.2))

=
(q; q)∞
(b; q)∞

{
(bq; q)∞
(q; q)∞

( ∞∑
n=1

qn

1− qn
−
∞∑
n=1

bqn

1− bqn

)}
(by the rule of differentiation of products)

=
1

1− b

( ∞∑
n=1

(1− bqn)qn − bqn(1− qn)

(1− qn)(1− bqn)

)

=
1

1− b

∞∑
n=1

qn(1− b)
(1− qn)(1− bqn)

=
∞∑
n=1

qn

(1− qn)(1− bqn)
.

If one sets b = 0, we note that the left hand side of (0.1) becomes
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∞∑
n=1

qn

(1− qn)
=
∞∑
n=1

d(n)qn,

where d(n) is the number of divisors of n. The right hand side of (0.1) becomes
∞∑
n=1

nqn(1− qn+1)(1− qn+2)(1− qn+3) · · ·

and we see that the nth term of this series counts, with weight ±n, the partitions

with distinct parts whose smallest part is n. The “+′′ occurs if the partition in

question has an odd number of parts, and “−′′ occurs for an even number of parts.

Thus the coefficient of qn is

−
∑
π∈Dn

(−1)#(π)σ(π).

As an added bonus, we observe that if b = q, we have

∞∑
n=1

qn

(1− qn)(1− qn+1)
=
∞∑
n=1

nqn,

This implies that the number of partitions of n in which the difference between

the largest and smallest parts is at most one equals n.

For example, there are five such partitions of 5:

5; 3 + 2; 2 + 2 + 1; 2 + 1 + 1 + 1; 1 + 1 + 1 + 1 + 1.

Solution by the Proposer Kannappan Sampath: MS-2015, Nos. 1-2:

Problem 3: Let H denote the division algebra of quaternions over the field R of

real numbers. Let n be a positive integer. Suppose that A and B are two n × n
matrices such that AB = In×n = I, say. Show that BA = I.

Solution. Throughout, we shall view of H as the R-algebra given by

H = R⊕ Ri⊕ Rj ⊕ Rk,
where i, j, k are subject to the usual relations i2 = j2 = k2 = ijk = −1. We begin

by remarking that every real quaternion can be written uniquely as z1 +z2j where

z1, z2 ∈ C. In view of this, if A is an n×n matrix over H, we may write A uniquely

as
A = A1 +A2j (0.3)

where A1, A2 ∈Mn×n(C) and j = diag(j, . . . , j) ∈Mn×n(H). For a, b ∈ R, we note

that (a + bi)j = j(a − bi) so that for a matrix C ∈ Mn×n(C), we have Cj = j C̄.

It is now routine to verify that

Mn×n(H)→M2n×2n(C) such that A 7→

(
A1 A2

−Ā2 Ā1

)
is an R-algebra isomorphism. The proof is now straightforward. We have

AB = I ⇐⇒

(
A1 A2

−Ā2 Ā1

)(
B1 B2

−B̄2 B̄1

)
= I
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⇐⇒

(
B1 B2

−B̄2 B̄1

)(
A1 A2

−Ā2 Ā1

)
= I

⇐⇒ BA = I.

invoking the fact that ST = I if and only if TS = I for square matrices S and T

over a field. This completes the proof.

Remark. Compare with Bourbaki’s Algebra, Corollary to Proposition 9 in

Chapter II, §7.4, pg. 298.

Solution by the Proposer Amritanshu Prasad: MS-2015, Nos. 1-2:

Problem 6: Let X be the set of all subsets of {1, . . . , n} of size 2 (so X has
(
n
2

)
elements). Let V be the complex vector space

V =
{
f : X → C |

∑
{s∈X|i∈s}

f(s) = 0 ∀ i ∈ {1, 2, · · · , n}
}∗
.

Show that V is a vector space of dimension n(n− 3)/2 over C.

* The inadvertant typographical error in the definition of V in the statement of

this problem that appeared in the Mathematics Student 84, nos. 1-2, (2015) is

regretted.

Solution. Let U be the space of all functions X → C. For each i ∈ {1, . . . , n},
let Li be the linear functional U → C defined by

Lif =
∑

{s∈X|i∈s}

f(s).

Then V is the subspace of U on which all the Li’s vanish. We claim that

{Li | 1 ≤ i ≤ n}

is a linearly independent set in the dual space of U . Indeed, if L =
∑n
i=1 αiLi for

some α1, . . . , αn ∈ C, and for each s ∈ X δs ∈ U is the function which 1 at s and

0 at all other points of U , then

L
( ∑
{s∈X|i∈s}

δs

)
=
∑
j 6=i

(αi + αj) = (n− 1)αi +
∑
j 6=i

αj .

Also

L
( ∑
{s∈X|i/∈s}

δs

)
= (n− 2)

∑
j 6=i

αj .

Thus

αi = L
( 1

n− 1

∑
{s∈X|i∈s}

δs −
1

(n− 1)(n− 2)

∑
{s∈X|i/∈s}

δs

)
,

showing that αi can be recovered from L for each i ∈ {1, . . . , n}. It follows that

L is linearly independent, and so V , which is the intersection of the kernels of the

linear functionals L1, . . . , Ln must have dimension

dimU − n =

(
n

2

)
− n =

n(n− 3)

2
, as required.
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Solution by the Proposer Ashay Burungale: MS-2015, Nos. 1-2:

Problem 7: Consider a kingdom made up of an odd number 2k + 1 of is-

lands. There are bridges connecting some of the islands. Suppose each set S of k

islands has the property that there is an island not among S which is connected

by a bridge to each island in S. Show that some island of the kingdom has bridges

connecting it to all the other islands.

Solution. Any island I is part of some set of k islands and hence, there is another

island J connected to it by a bridge. Thus, the set {I, J} has the property that

each pair of islands in it (there is only one!) is connected by a bridge. So, one

may consider a (non-empty) set T of islands in the kingdom which has maximum

cardinality such that every pair of islands in T is connected by a bridge. There

may be more than one choice for T but fix one. We claim that T has cardinality

at least k + 1. If not, then consider any set T0 of k islands containing T . By

hypothesis, there is an island I not in T0 which is connected to each island in

T0. But, then T ∪ {I} is a larger (than T ) set of islands in which every pair is

connected. This contradicts the choice of T . Therefore, |T | ≥ k + 1. Let S ⊂ T

be any subset with exactly k + 1 islands. Of course, each pair of islands in S is

connected by bridges (as this is true of T ). Since the complement of S has exactly

k islands, the hypothesis implies there is an island I in S connected to each island

in the complement of S. But then I is connected to all islands.

Solution by the Proposer Abhijin Adiga: MS-2015, Nos. 1-2:

Problem 8: Consider the set S = {1, 2, ..., n}. Let Si be n distinct non-

empty subsets of S. Prove that there exists an element k ∈ S, such that Si \ {k}
are still distinct

Solution. Consider the subsets as the vertices of an n-dimensional hypercube.

Now if there are two subsets Si and Sj such that Si − {k} = Sj − {k}, then

clearly k was in one of them and not in the other. Thus there was an edge in

the hypercube between the corresponding two vertices. Mark this edge with the

letter k- if there are many such edges, just pick one and mark it. Now if for all

k ∈ {1, 2, . . . , n}, such and edge can be found, then the marked n edges define a

subgraph of the hypercube on n vertices. Thus there is a cycle in this subgraph,

which means more than one of these edges are marked with the same letter k: If

we added k to a subset to move away from it, we have removed it to come back.

Contradiction.

Solution by the Proposer Mathew Francis: MS-2015, Nos. 1-2:

Problem 10: Given a t-regular graph that is properly t-edge coloured with

colours 1, 2, · · · t. Consider any cut of the graph and let ki be the number of edges

coloured i crossing the cut. Show that k1 = k2 = · · · = kt mod 2.
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Solution. Suppose not. Note that each color class has to be a perfect matching,

since each vertex sees all the three colors. Consider a cut (A, V − A). Now if |A|
is even then all of k1, k2, k3 should be even. Else suppose k1 is odd. Consider the

matching of k1 edges colored with 1 going from A to V − A. Let A′ be the end

points of these edges on the A side. Clearly A′ ⊂ A since |A| is an even number

and |A′| is odd. Since the set of edges colored by 1 is a perfect matching, we should

have a perfect matching on the set of vertices A− A′ which is not possible, since

|A−A′| is odd.

In a similar way, if |A| were odd, then all of k1, k2, k3 should be odd. Otherwise

let k1 be even, and we will have |A − A′| odd in this case also, which makes it

impossible to have a perfect matching on A−A′.
———–
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